A comparative Fourier analysis of discontinuous Galerkin schemes for advection–diffusion with respect to BR1, BR2, and local discontinuous Galerkin diffusion discretization

dc.date.accessioned2020-07-27T09:44:53Z
dc.date.available2020-07-27T09:44:53Z
dc.date.issued2020-05-14
dc.description.sponsorshipGefördert im Rahmen des Projekts DEAL
dc.identifierdoi:10.17170/kobra-202007241488
dc.identifier.urihttp://hdl.handle.net/123456789/11657
dc.language.isoeng
dc.relation.doidoi:10.1002/mma.6509
dc.rightsNamensnennung 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectadvection-diffusion problemseng
dc.subjectdiffusion fluxeseng
dc.subjectdiscontinuous Galerkin methodseng
dc.subjectdispersion relationseng
dc.subjectFourier analysiseng
dc.subject.ddc510
dc.subject.swdGleichungger
dc.subject.swdFourier-Analyseger
dc.subject.swdGalerkin-Methodeger
dc.subject.swdDispersionsrelationger
dc.titleA comparative Fourier analysis of discontinuous Galerkin schemes for advection–diffusion with respect to BR1, BR2, and local discontinuous Galerkin diffusion discretizationeng
dc.typeAufsatz
dc.type.versionpublishedVersion
dcterms.abstractThis work compares the wave propagation properties of discontinuous Galerkin (DG) schemes for advection–diffusion problems with respect to the behavior of classical discretizations of the diffusion terms, that is, two versions of the local discontinuous Galerkin (LDG) scheme as well as the BR1 and the BR2 scheme. The analysis highlights a significant difference between the two possible ways to choose the alternating LDG fluxes showing that the variant that is inconsistent with the upwind advective flux is more accurate in case of advection–diffusion discretizations. Furthermore, whereas for the BR1 scheme used within a third order DG scheme on Gauss‐Legendre nodes, a higher accuracy for well‐resolved problems has previously been observed in the literature, this work shows that higher accuracy of the BR1 discretization only holds for odd orders of the DG scheme. In addition, this higher accuracy is generally lost on Gauss–Legendre–Lobatto nodes.eng
dcterms.accessRightsopen access
dcterms.creatorOrtleb, Sigrun
dcterms.source.identifierEISSN 1099-1476
dcterms.source.issueIssue 13
dcterms.source.journalMathematical Methods in the Applied Scienceseng
dcterms.source.pageinfo7841-7863
dcterms.source.volumeVolume 43
kup.iskupfalse

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
mma_6509.pdf
Size:
3.71 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.03 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections