A generalization of Student’s t-distribution from the viewpoint of special functions

dc.date.accessioned2006-06-06T09:11:01Z
dc.date.available2006-06-06T09:11:01Z
dc.date.issued2005
dc.format.extent2086005 bytes
dc.format.mimetypeapplication/pdf
dc.identifier.uriurn:nbn:de:hebis:34-2006060612898
dc.identifier.urihttp://hdl.handle.net/123456789/2006060612898
dc.language.isoeng
dc.rightsUrheberrechtlich geschützt
dc.rights.urihttps://rightsstatements.org/page/InC/1.0/
dc.subjectNormalverteilungger
dc.subjectGammaverteilungger
dc.subjectChi-Quadrat-Verteilungger
dc.subjectt-Verteilungger
dc.subjectProbability distributionseng
dc.subjectCauchy integraleng
dc.subjectDominated convergence theoremeng
dc.subjectPearson distribution familyeng
dc.subjectFisher F-distributioneng
dc.subject.ddc510
dc.subject.msc60E05eng
dc.subject.msc62E20eng
dc.subject.msc33C45eng
dc.subject.swdt-Verteilungger
dc.subject.swdNormalverteilungger
dc.subject.swdGammaverteilungger
dc.titleA generalization of Student’s t-distribution from the viewpoint of special functionseng
dc.typePreprint
dcterms.abstractStudent’s t-distribution has found various applications in mathematical statistics. One of the main properties of the t-distribution is to converge to the normal distribution as the number of samples tends to infinity. In this paper, by using a Cauchy integral we introduce a generalization of the t-distribution function with four free parameters and show that it converges to the normal distribution again. We provide a comprehensive treatment of mathematical properties of this new distribution. Moreover, since the Fisher F-distribution has a close relationship with the t-distribution, we also introduce a generalization of the F-distribution and prove that it converges to the chi-square distribution as the number of samples tends to infinity. Finally some particular sub-cases of these distributions are considered.eng
dcterms.accessRightsopen access
dcterms.creatorKoepf, Wolfram
dcterms.creatorMasjed-Jamei, Mohammad
dcterms.isPartOfMathematische Schriften Kassel ;; 05, 17ger
dcterms.source.journalMathematische Schriften Kasselger
dcterms.source.volume05, 17

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
prep0517.pdf
Size:
1.99 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.34 KB
Format:
Item-specific license agreed upon to submission
Description: