A free boundary approach to the Rosensweig instability of ferrofluids

dc.date.accessioned2017-04-24T13:01:11Z
dc.date.available2017-04-24T13:01:11Z
dc.date.issued2017-04-18
dc.identifier.uriurn:nbn:de:hebis:34-2017042452416
dc.identifier.urihttp://hdl.handle.net/123456789/2017042452416
dc.language.isoeng
dc.rightsUrheberrechtlich geschützt
dc.rights.urihttps://rightsstatements.org/page/InC/1.0/
dc.subjectferrofluidseng
dc.subjectfree boundary problemeng
dc.subjectconvex-concave functionaleng
dc.subject.ddc510
dc.subject.msc35R35ger
dc.subject.msc49J35ger
dc.subject.msc35Q61ger
dc.subject.msc35Q35ger
dc.titleA free boundary approach to the Rosensweig instability of ferrofluidseng
dc.typePreprint
dcterms.abstractWe establish the existence of saddle points for a free boundary problem describing the two-dimensional free surface of a ferrofluid which undergoes normal field instability (also known as Rosensweig instability). The starting point consists in the ferro-hydrostatic equations for the magnetic potentials in the ferrofluid and air, and the function describing their interface. The former constitute the strong form for the Euler-Lagrange equations of a convex-concave functional. We extend this functional in order to include interfaces that are not necessarily graphs of functions. Saddle points are then found by iterating the direct method of the calculus of variations and by applying classical results of convex analysis. For the existence part we assume a general (arbitrary) non linear magnetization law. We also treat the case of a linear law: we show, via convex duality arguments, that the saddle point is a constrained minimizer of the relevant energy functional of the physical problem.eng
dcterms.accessRightsopen access
dcterms.bibliographicCitationarXiv:1704.05722 [math.AP]
dcterms.creatorParini, Enea
dcterms.creatorStylianou, Athanasios
dcterms.isPartOfMathematische Schriften Kassel ;; 17, 01ger
dcterms.source.journalMathematische Schriften Kasselger
dcterms.source.volume17, 01

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
prep1701.pdf
Size:
385.69 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.23 KB
Format:
Item-specific license agreed upon to submission
Description: