On A Hybrid Concept for Approximating Self‐Excited Periodic Oscillations of Large‐Scaled Dynamical Systems

dc.date.accessioned2021-02-10T13:13:54Z
dc.date.available2021-02-10T13:13:54Z
dc.date.issued2021-01-25
dc.description.sponsorshipGefördert im Rahmen des Projekts DEALger
dc.identifierdoi:10.17170/kobra-202101283076
dc.identifier.urihttp://hdl.handle.net/123456789/12488
dc.language.isoengeng
dc.relation.doidoi:10.1002/pamm.202000329
dc.rightsNamensnennung 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subject.ddc620
dc.subject.ddc530
dc.subject.swdSchwingungger
dc.subject.swdHarmonische Balanceger
dc.subject.swdFinite-Differenzen-Methodeger
dc.subject.swdMechanische Eigenschaftger
dc.titleOn A Hybrid Concept for Approximating Self‐Excited Periodic Oscillations of Large‐Scaled Dynamical Systemseng
dc.typeAufsatz
dc.type.versionpublishedVersion
dcterms.abstractConcerning the approximation of self‐excited periodic oscillations in large‐scaled mechanical systems involving strong nonlinearities, this contribution suggests a concept for an efficient treatment. The presented Hybrid FD‐HB method takes the advantages of both schemes Harmonic Balance and Finite Difference to enhance the ratio of computational cost and accuracy for mechanical systems with many degrees of freedom. Within this contribution the residual equations, required when applying a NEWTON‐RAPHSON‐scheme, are derived and the method is applied to a stiff nonlinear mechanical system.eng
dcterms.accessRightsopen access
dcterms.creatorKappauf, Jonas
dcterms.creatorHetzler, Hartmut
dcterms.source.articlenumbere202000329
dcterms.source.identifierEISSN 1617-7061
dcterms.source.issueIssue 1
dcterms.source.journalProceedings in applied mathematics and mechanics (PAMM)eng
dcterms.source.volumeVolume 20
kup.iskupfalse

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
pamm_202000329.pdf
Size:
246.48 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.03 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections