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Abstract

Crop yield simulation using the Denitrification–Decomposition (DNDC) model can help to under-
stand key bottlenecks for improved nitrogen (N) use efficiency and estimate greenhouse gas
(GHG) emissions in West African urban vegetable production. The DNDC model was success-
fully calibrated using high-resolution weather records, information on management practices and
soils, and measured biomass accumulation and N uptake by amaranth (Amaranthus L.), jute
mallow (Corchorus olitorius L.), lettuce (Lactuca sativa L.), and roselle (Hibiscus sabdariffa L.)
for different input intensities (May 2014–November 2015) in urban vegetable production of
Tamale (N-Ghana, West Africa). The root mean square error (RMSE) and relative error (E)
values fell within the confidence interval (a 5%) of the measurements, and there was a high
correlation (0.91 to 0.98) between measurements and predictions. However, the analysis of
uncertainty and factor importance indicated that soil properties (pH, SOC, and clay content) and
weather (precipitation) variability contributed highly to yield uncertainty of vegetable biomass.
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1 Introduction

Widespread land degradation in rural areas, job opportuni-
ties, and better educational and medical infrastructure in
urban centres leads to rapidly increasing migration to West
African cities (Brinkmann et al., 2012). As a consequence,
the proportion of urban dwellers in West Africa grew 20-fold
from 1950 to 2019, while the total population has increased
five-fold (United Nations, 2019).

Due to strong local retail market connections, urban horticul-
ture, as part of urban and peri-urban agriculture (UPA), plays
an important direct (food provision) and indirect (contribution
to household income) role in food security for local house-
holds. As elsewhere in sub-Saharan West Africa, UPA in
Tamale (Northern Ghana) is characterized by the limited
availability of water, high use of fertilizers and land scarcity
(Häring et al., 2014; Bellwood-Howard et al., 2015). Due to
the inherently low fertility of the predominantly heavily
leached soils, high application rates of mineral fertilizers and
organic soil amendments are frequently used to maximize
marketable crop yields (Bellwood-Howard et al., 2015). How-
ever, application of uncontrolled amounts and quality of irriga-
tion water and of mineral and organic fertilizers were shown
to decrease water and nutrient use efficiency, which may lead
to soil and groundwater pollution. It has been reported that in
Bobo Dioulasso (Burkina Faso) up to 8% and 40% of the

water supply in the dry and the rainy season, respectively, is
drained away leading to total losses (application surplus) ex-
ceeding 2,000 kg N ha–1 y–1 (Lompo et al., 2012; Sangare
et al., 2012). Under these conditions, annual gaseous emis-
sion losses may amount to 420 kg N ha–1 and 36 t C ha–1

(Lompo et al., 2012).

Previous research has shown the agronomic benefits of
waste water and biochar application in UPA system of Tamale
(Werner et al., 2018; Akoto-Danso et al., 2019a). Biochar
application enhanced N-use efficiency on fertilized plots,
while N surpluses were higher when the crops were irrigated
with waste water (Akoto-Danso et al., 2019b). To better
understand the nutrient dynamics in intensively managed
UPA systems and to derive and test-implement sustainable
management options, which minimize nutrient losses, further
research is required. In this context, modelling can play a key
role in understanding crop responses, especially in terms of
yield potential and N utilization. It has to be understood that
any such modelling efforts depend on the area of scientific
interest such as assessing the effects of crop cultivars, and
agro-ecological regions; the approaches adopted therefore
depend on the complexity of the system (Di Paola et al.,
2016).
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The Denitrification–Decomposition (DNDC) model was ini-
tially developed to simulate C and N turnover in US agricultur-
al soils (Li et al., 1992a, 1992b). By using four agro-ecological
drivers (basic climate, soil, vegetation, and anthropogenic
activity), the DNDC model couples the soil–climate, plant
growth and decomposition sub-models to calculate environ-
mental variables, which can then be used to trace gaseous
emission through denitrification, nitrification, and fermenta-
tion. Therefore, it may be a useful tool to understand the
changes in soil C and greenhouse gas (GHG) emissions in
UPA systems resulting from different management practices.
However, to have a reliable estimate of these, biomass accu-
mulation needs to be simulated correctly (Li, 2013).

Recently, the DNDC model has been used for a variety of
crops in different agroecosystems and on a range of soils
(Ludwig et al., 2011a; Gilhespy et al., 2014; Zhang et al.,
2015). Testing of this model for crops grown under West
African conditions is, however, still limited to N emissions
from natural savannah ecosystems (Grote et al., 2009).

To assess the quality of modelling for a decision-making pro-
cess, measuring uncertainties of the model is essential. This
is especially important when determining how input variability
propagates the uncertainty of the model output. The uncer-
tainty analysis includes determining the contribution of each
input parameters to model output uncertainty referred to as
‘‘factor importance’’; this may be helpful to reduce model
uncertainty. To fill the described knowledge gaps on N flows
in West African UPA systems, the aims of this study were to
(1) validate the DNDC model against measured biomass
accumulation and N uptake data for different management
intensities, which reflect the typical UPA vegetable production
and (2) determine the uncertainty of vegetable biomass accu-
mulation and the factor importance contribution to the mod-
elled yield uncertainty.

2 Material and methods

2.1 Field experiment and sampling

Urban vegetable production was studied within the Urban
FoodPlus project (www.urbanfoodplus.org) within which a
central field experiment was conducted in Tamale, N-Ghana
(9�28¢29N, 0�50¢53W, 151 m asl) where average annual
precipitation (2005–2015) is 1165 mm and air temperature
averages 29�C (www.timeanddate.com). The experimental
soil was classified as a Petroplinthic Cambisol (Häring et al.,
2017). Prior to the study, the entire area was managed by one
farmer and planted with rainfed maize (Zea mays L.).

At the site, a multi-factorial experiment with two fertilization
levels (an unfertilized control and fertilization according to
farmers’ practices, FP) and two biochar levels (0 and
2 kg m–2 biochar addition) was established. The plots were
irrigated with either clean or untreated waste water. There
were two levels of irrigation (full, that is the typical irrigation
quantity, and reduced, that is 2/3 of the full amount). The ex-
periment was laid out in four blocks serving as replicates.
Each block comprised four water quality and quantity levels

as main-plots, which were split into sub-plots of four ferti-
lization and biochar levels. The sub-plots (2 · 4 m) of 16 treat-
ments in total were hand-hoed to a depth of 20 cm 2–3 days
before planting/transplanting. During the experimental period
(May 2014 to November 2015), a total of 11 crops were estab-
lished and harvested. These comprised maize, cabbage
(Brassica oleracea L.), amaranth (Amaranthus cruentus), let-
tuce (Lactuca sativa L.), jute mallow (Corchorus olitorius L.),
and roselle (Hibiscus sabdariffa L.; Tab. 1; Akoto-Danso
et al., 2019a, 2019b; Werner et al., 2019).

At the onset of the experiment, biochar (made from rice
husks) treated plots received 2 kg biochar m–2, which was
hoed to a depth of 0–20 cm. NPK (15–15–15) was applied to
all crops (200 to 563 kg ha–1), except for jute mallow
(April–May and June–July 2015), which received 247 and
256 kg ha–1 of urea, respectively (Tab. 1). All plots were irri-
gated with watering cans using either clean tap water or
waste water from a military barrack (Häring et al., 2017). The
nutrient concentration of the clean and waste irrigation water
was determined weekly.

Yields (kg DM ha–1) were determined by harvesting all above-
ground biomass at maturity. To minimize edge effects, crop
biomass from < 0.4 m of plot borders was discarded. The C
and N concentration in the dry matter was determined by
combustion using an elemental analyzer (Vario MAX CHN
Elementar Analysensysteme GmbH, Hanau, Germany;
Akoto-Danso et al., 2019a).

2.2 Model input

For our modelling tests, we used two years of cropping data
(2014–2015), high-resolution weather records, and soil data
(Tabs. 1 and 2). The weather data comprised minimum and
maximum temperature (�C), precipitation (cm), wind speed
(m s–1), humidity (%), and solar radiation (MJ m–2 d–1) meas-
ured at 20 min intervals of which daily means were used for
modelling. Daily irrigation amount and the nutrient content of
the irrigation water were combined in a fertigation file, which
included Julian day, the quantity of irrigation water (cm), nitro-
gen (kg N ha–1), phosphorus (kg P ha–1) carried in the irriga-
tion water, and the irrigation method. The parameters required
to define crop growth in DNDC were obtained from the field
experiment and literature (Tab. 3). The biomass fraction and
C:N ratio of root, stem and leaves for each vegetable were
derived from three control plots (1 · 1 m) in three farmer fields
surrounding the experimental site. Crops were harvested at
the same vegetative stage as in the experiment, except for
maize and cabbage, for which the default data provided in
the DNDC model were used. Biomass was calculated by
harvesting all plant material (roots, stems, and leaves) and
drying until weight constancy. To calibrate the model for new
crops, we considered the pre-defined cotton (Gossypium
hirsutum L.) growth parameters as a reference for roselle due
to its similar growth habit (Wester, 1907), while for amaranth
and jute mallow the pre-defined general vegetable growth
information was used.

ª 2020 The Authors. Journal of Plant Nutrition and Soil Science published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.plant-soil.com

J. Plant Nutr. Soil Sci. 2020, 183, 306–315 DNDC modelling of urban vegetable production in Ghana 307



2.3 Model calibration and validation

The DNDC model version 9.5 (www.dndc.sr.unh.edu) was
calibrated against the biomass accumulation (kg C ha–1) and
N uptake (kg N ha–1) of the control (unfertilized and no bio-
char addition) treatment with full clean water irrigation for the
seven crops following the calibration instructions of Li (2013).
Two crop growth parameters, the maximum potential biomass
(kg C ha–1) and thermal degree days (�C), were increased to
match the field measurements. The crop biomass fraction
and C:N ratio were adapted to measured field data.

To validate the model, biomass accumulation and N uptake
were simulated across all treatments, excluding the control,
using the default input values (‘‘baseline scenario’’), which
were then compared to the measured values. The quality of
the model validation was assessed using the root mean
square error (RMSE), the relative error (E), and the correla-
tion coefficients (r) based on Eqs. (1–3), respectively,
between the measured and simulated values of all treat-
ments. The statistical significance of the RMSE and E was
tested by comparing model outputs to real harvest values
obtained assuming a deviation corresponding to the 95%
confidence interval of the measurements using Eq. (4) and
Eq. (5) (Smith et al., 1997).
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Table 1: Nutrient (kg ha–1) and irrigation inputs (L m–2) in the vegetable production systems in Tamale, Northern Ghana.a

Crop 1 2 3 4 5 6 7 8 9 10 11

Maize Lettuce Cabbage Amaranth Lettuce Amaranth Jute
mallow

Jute
mallow

Amaranth Jute
mallow

Roselle

Planting date 09/05/
2014

19/06/
2014

26/07/
2014

21/10/
2014

15/12/
2014

04/02/
2015

24/04/
2015

04/06/
2015

25/07/
2015

08/09/
2015

20/10/
2015

Harvesting
date

08/06/
2014

17/07/
2014

06/10/
2014

20/11/
2014

01/02/
2015

06/03/
2015

25/05/
2015

04/07/
2015

28/08/
2015

13/10/
2015

25/11/
2015

Tillage date 07/05/
2014

17/06/
2014

24/07/
2014

19/10/
2014

13/12/
2014

02/02/
2015

22/04/
2015

02/06/
2015

23/07/
2015

06/09/
2015

18/10/
2015

Precipitation* 42 70 542 10 0 37 19 73 147 171 14

Fertilization
date

04/11/
2014

26/12/
2014

14/02/
2015

11/05/
2015

22/06/
2015

26/09/
2015

01/11/
2015

Fertilizer N 84.4 85.5 58.8 31.9 54.1 31.9 115.1 119.5 30.6 45.4 45.2

Fertilizer P 36.1 36.5 25.1 13.6 23.1 13.6 0.00 0.00 11.6 17.2 17.2

Full irrigation 198.0 339.6 204.9 242.0 431.8 176.0 200.8 160.9 38.5 8.3 264.0

Reduced
irrigation

126.5 228.3 145.8 170.5 298.4 118.3 148.5 115.5 27.5 8.3 180.1

ww-N 30.8 52.9 19.3 32.7 172.0 55.0 86.9 91.2 15.0 2.3 55.0

ww-P 4.6 7.9 3.5 12.5 53.8 28.5 14.7 13.8 1.4 0.1 33.4

cw-N 0.5 0.9 0.5 1.7 3.0 1.2 1.1 0.5 0.1 0.0 1.3

cw-P 0.0 0.0 0.1 0.1 0.2 0.1 0.0 0.0 0.0 0.0 0.5

aN: nitrogen; P: phosphorus ; ww: waste water; cw: clean water; * precipitation is in mm.

Table 2: Selected climatic and soil input data for the DNDC model as
calibrated in Tamale, N-Ghana.

Data Value

Climatic data

Latitude (�) 9.4329

N concentration in rainfall (mg N L–1) 0.3

Atmospheric background NH3 concentration
(mg N m–3)

0.06

Atmospheric background CO2 concentration
(ppm)

400

Soil data (0–20 cm)

Soil texture sandy loam

pH 5

Bulk density in g cm–3 (after biochar addition) 1.42 (1.40)

Clay fraction (0–1) 0.06

SOC in kg C kg–1 soil (after biochar addition) 0.0045 (0.0075)

Biochar fraction in SOC 0.4

Initial N concentration (mg N kg–1) 500 (NO�3 )
& 50 (NHþ4 )
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RMSE ¼ 100
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn
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n
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E ¼ 100
n

Xn
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mi � si

mi
; (2)
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Pn
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2
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i¼1 si � sð Þ2
h i1

2

; (3)

RMSE95% ¼
100
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1

t n�2ð Þ95%·Se,i
h i2

n
;

vuuut (4)

E95% ¼
100

n

Xn

i¼1

t n�2ð Þ95%·Se,i
h i

mi
; (5)

where m represents the mean of the measurement, n is the
number of pairs, mi is the ith measurement of n, si is the ith

simulation of n, se,i is the standard error of the measurements
and t(n–2)95% stands for the Student’s t distribution with n – 2
degrees of freedom and a two-tailed P-value of 0.05. An
accurate simulation is indicated by a smaller RMSE or E
value. The correlation coefficient provides an assessment of
how well the simulation shape matches the measurement
shape (Smith et al., 1997).

2.4 Uncertainty and factor importance analysis

There were 400 annual combinations to be simulated using
the Monte Carlo procedure built into the DNDC model to

quantify the total uncertainty of the biomass accumulation as
the result of input uncertainties during the 2-years cropping
system (2014–2015) for each management practice. Five
uncertainty input parameters of climate and soil were tested.
These were temperature, precipitation, clay content, SOC,
and pH, which were selected due to the high variability of the
field measurements (Tab. 4).

The importance of each input parameter relative to the total
uncertainty of biomass accumulation was expressed by the
contribution index (ci). To calculate this index, the Monte Carlo
procedure was then re-simulated for the number input param-
eters assessed, for each simulation one input was held at its
default value and the remaining inputs were varied within their
defined range (i). The normalized standard deviation (ci %) of
each Monte Carlo simulation output was calculated using
Eq. (6),

ci ¼
sg � siPimax

i¼1 sg � si

·100; (6)

where sg is the normalized standard deviation in the total
uncertainty and si is the normalized standard deviation of the
uncertainty as the result of variation in input i.

3 Results

3.1 Site simulation and model validation

Using the calibrated model, almost all the simulated biomass
accumulation and N uptake for crops in each treatment fell
within the measurement range, and they were also within the
95% confidence interval of the measurements (Tab. 5;
Figs. 1–3). However, the DNDC model tended to underesti-
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Table 3: Crop parameters for the DNDC model used to estimate vegetable yields in Tamale, Northern Ghana.

Parameters Amaranth Jute Mallow Lettuce Roselle

Maximum potential biomass for grain, leaves+stems and roots (kg C ha–1) 6000 3000 6000 5000

Grain, leaf, stem and root fractions of total biomass at maturity 0.1:0.5:0.3:0.1 0.1:0.5:0.3:0.1 0.1:0.6:0.2:0.1 0.1:0.6:0.2:0.1

C:N ratio for grain, leaves, stems and roots 10:20:25:25 10:9:13:25 11.5:8.5:10.5:12 10:14:40:40

Thermal degree days (�C) 2000 2000 2000 2000

Water demand (g water g–1 dry matter) 500 500 800 400

Optimum temperature (�C) 25 25 25 25

Table 4: Uncertainties of the inputs observed during the vegetable production in Tamale, Northern Ghana.

Parameters Unit Baseline Std. deviation Min Max Lower limit Upper limit

Daily temperature �C 29.1 0.27 28.9 29.3 –0.5 0.5

Daily precipitation each day mm 2.1 0.5 1.7 2.5 –1 1

Clay volume fraction 0.06 0.01 0.043 0.08 0.04 0.08

SOC kg C kg–1 soil 0.0045 0.001 0.0027 0.0065 0.0025 0.0065

pH unit pH 5 0.3 4.4 6 4 6

J. Plant Nutr. Soil Sci. 2020, 183, 306–315 DNDC modelling of urban vegetable production in Ghana 309



mate yield and N uptake when clean water was applied. On
the other hand, yield and N uptake was overestimated with
waste water. The statistical analysis using the RMSE and E
indicated that there was no significant bias between meas-
ured and simulated values (Tab. 5). The modelled values also
showed a statistically significant correlation (r > 0.9) with their
corresponding measured values (Tab. 5).

The simulation results showed that when waste water irriga-
tion was increased from the reduced to the full rate, biomass
accumulation and N uptake of all crops increased (Figs. 1–3)
except for jute mallow cultivated from September to October
2015 (Fig. 3c, f). Especially for jute mallow, the effect of waste
water irrigation on yield and N uptake was greater for the
unfertilized than the fertilized treatments (Fig. 3a, b, d, e). The
crop biomass harvested for the reduced and full rates of clean
water irrigation were similar for all simulated crop yields and
N uptake (Figs. 1–3). The increase in the simulated biomass
accumulation and N uptake was driven by the input of N from

waste water and mineral fertilizer with increases of up to
1800% and 500%, respectively. Irrigation with waste water of
unfertilized amaranth, jute mallow and lettuce increased
yields more than irrigation with clean water and mineral ferti-
lization (Figs. 1–3). On the other hand, the simulated biomass
accumulation and N uptake of roselle showed a greater
response to mineral NPK fertilization than to waste water
(Fig. 2b, d). The application of biochar increased biomass
accumulation by a maximum of 30% and N uptake by a maxi-
mum of 7% (Figs. 1–3).

3.2 Uncertainty of biomass accumulation

The total uncertainty of modelled vegetable biomass, as pre-
dicted by the Monte Carlo simulations, varied across years
and management practices. The mean of the total uncertain-
ties varied between 1 and 39% relative to the baseline simula-
tion. However, the baseline-simulated results were always
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Table 5: Model goodness of fit between measured and simulated biomass accumulation and N uptake in vegetable production systems at
Tamale, Northern Ghana.

Crops Biomass accumulation N uptake

RMSE RMSE95% E E95% r RMSE RMSE95% E E95% r

Amaranth 24 24 5 23 0.91 25 25 15 28 0.94

Lettuce 26 32 17 30 0.95 22 32 8 29 0.95

Amaranth 15 21 –9 22 0.97 22 28 5 29 0.97

Jute mallow 15 16 –1 23 0.98 28 28 –4 30 0.91

Jute mallow 23 23 6 25 0.93 24 24 2 26 0.93

Jute mallow 21 51 12 42 0.94 26 59 –24 45 0.95

Roselle 18 19 4 20 0.96 17 17 9 16 0.96

Figure 1: Simulated biomass accumulation and N uptake against field measured data (mean and standard deviations) of amaranth during the
off-season growing period October–November 2014 (a, c) and February–March 2015 (b, d) under different management practices in an urban
vegetable production system at Tamale, Northern Ghana.
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within the range of the total uncertainty (Tab. 6). Total uncer-
tainty of the simulated biomass accumulation was higher in
2014 than in 2015 for all treatments and was likely to have

been influenced by the crop and the associated management
and weather conditions (Tab. 1).

ª 2020 The Authors. Journal of Plant Nutrition and Soil Science published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.plant-soil.com

Figure 2: Simulated biomass accumulation and N uptake against field measured data (mean and standard deviations) of lettuce (a, c) and rose-
lle (b, d) under different management practices in a simulated urban vegetable production system at Tamale, Northern Ghana.

Figure 3: Simulated biomass accumulation and N uptake against field measured data (mean and standard deviations) of jute mallow the during
growing period April–May 2015 (a, d), June–July 2015 (b, e) and September–October 2015 (c, f) under different management practices in an
urban vegetable production system at Tamale, Northern Ghana.
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3.3 Relative importance of model
inputs for biomass
accumulation

The relative contribution of five soil and
climate input parameters to the total
uncertainty of vegetable biomass accu-
mulation was reflected in the contribu-
tion index, ci (Fig. 4). A positive value of
ci indicated that changing a certain input
factor increased total uncertainty and
vice versa.

Across all management practices soil
pH was the most important model input
parameter determining uncertainty of
biomass accumulation in the first
year (2014); ci varied between 84%
and 147%. In the second year (2015),
SOC was the main contributor
(ci = 86–104%) in the unfertilized treat-
ments with clean water irrigation. On the
other hand, for unfertilized plots with
waste water irrigation, SOC and pH
were equally important. The ci order of
the input parameters in 2015 showed
different patterns in response to the ferti-
lizer treatments under clean and waste
water irrigation. Soil pH and clay content
were the main contributors to total
uncertainty for biomass accumulation
under clean water irrigation. However,
under waste water irrigation, soil pH and
precipitation contributed more than the
other parameters.

4 Discussion

After the initial calibration, the simula-
tions of biomass and N uptake by the
DNDC model were statistically valid for
the studied leafy vegetables grown on
the sandy soil of Tamale at different lev-
els of N, biochar, and water quantity. The
wide applicability of DNDC is well docu-
mented by previous studies of spring
wheat (Triticum aestivum L.) on a sandy
soil in Darmstadt, Germany (Ludwig
et al., 2011b), and on silty clay, loam
and clay loam soils in Eastern Canada
(Sansoulet et al., 2014). Similarly, sor-
ghum (Sorghum bicolor Moench.) pro-
duction on a silty loam soil in Texas
(Dou et al., 2014) and winter wheat–
summer maize production in the North
China Plain (Zhang et al., 2015, 2018;
Zhang et al., 2017) and on the Southern
Loess Plateau in China (Chen et al.,
2015) have been successfully simulated
by DNDC. The DNDC model has also
been used to simulate yields under dif-
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ferent biochar types in a sandy soil of Myanmar (Kyaw,
2015). The overestimated biomass accumulation under waste
water treatment indicated that DNDC was more responsive to
changing N inputs from irrigation water than to mineral ferti-
lizer. This likely also reflected the yield limiting effects of nu-
trients other than N, particularly P, under the conditions of our
study.

Nitrogen in mineral fertilizers or waste water increased bio-
mass accumulation and N uptake more than increasing the
quantity of irrigation water or the addition of biochar. This indi-
cated that native soil N in Tamale was insufficient to promote
high vegetable yields. The latter were rather robust to water

deficit. A change in soil bulk density and SOC as a response
to the addition of biochar had low short-term effects on bio-
mass accumulation, especially for amaranth on the
unfertilized soils during the February–March 2015 cultivation
period. Although modelled effects were lacking, biochar may
improve soil N uptake by crops under N limiting soil conditions
(Sarfraz et al., 2017). Similarly, Huang et al. (2018) showed in
a field experiment that biochar was able to increase soil N
uptake in rice on a clay soil after a two-year application.

Sansoulet et al. (2014) reported that the predictions of bio-
mass accumulation and N uptake for spring wheat in Eastern
Canada under different N fertilization rates and rainfall deficit
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Figure 4: Contribution index (ci) of
each input factor to global uncer-
tainty of vegetable yield 2014–2015
under different management practi-
ces in Tamale, Northern Ghana.
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conditions were similar for DNDC, STICS (Simulateur mulTI-
disciplinaire pour des Cultures Standard; Brisson et al.,
2003), and DayCent (Daily version of CENTURY; Parton
et al., 1998). However, under excessive rainfall, STICS was
more effective than DNDC and DayCent in estimating N
uptake, as the latter models lack functions to incorporate the
effects of excess water on crop production (Sansoulet et al.,
2014). On the other hand, DNDC tended to predict soil N bet-
ter than DayCent and STICS (Guest et al., 2017). In long-
term experiments with spring wheat in the Canadian prairies,
DNDC and DayCent were effective in predicting crop yields
and N2O emissions. However, in DayCent the predictions of
N2O were mainly from the nitrification process, and they were
evenly split between nitrification and denitrification in DNDC
(Grant et al., 2016).

The DNDC model (v. 9.5) used in our study is the result of a
series of modifications that have been made during the last
20 years. Main improvements were made in crop growth sim-
ulation and hydrological features (Gilhespy et al., 2014). As
the calibrated DNDC model allowed to successfully estimate
crop C and N for a range of farmer practices in Northern Gha-
na, it is a potentially useful tool to optimize the application of
fertilizer and waste water in order to better predict crop yields,
soil C, and GHG emissions.

However, if the model is used to drive decision support sys-
tems, understanding its measurement uncertainties is critical.
The total uncertainty of vegetable biomass accumulation was
derived from the propagation of uncertainty ranges of se-
lected soil and climate parameters reflecting the variability
under field condition. Our data show that the total uncertainty
varied across different management practices and years.
However, the input uncertainty was not the only reason for
the uncertainty in the vegetable biomass accumulation, as
the interaction between temporal site characteristics and
management practices also contributed. Similar results were
obtained when maize yield was modelled by the Agricultural
Production Systems Simulator (APSIM) and the Lund-Pots-
dam-Jena managed Land (LPJmL) in West Africa (Waha
et al., 2015).

5 Conclusions

The calibrated DNDC model predicted the biomass accumu-
lation and N uptake of amaranth, jute mallow, lettuce, and
roselle in response to different N inputs and irrigation water
quantities as tested in our experiment in Northern Ghana with
acceptable tolerance. In addition, the model is capable of sim-
ulating the effects of soil-applied biochar on crop production.
This may also indicate potential model applications to esti-
mate soil C and N stocks and emissions in order to develop
more nutrient- and water-efficient vegetable production sys-
tems in the UPA of West Africa. The results indicated that the
uncertainty associated with the variability in the soil and
weather inputs differed between years and management
practices. Soil pH, SOC, clay content, and precipitation were
important contributors to total uncertainty, and it is thus impor-
tant to have reliable data for these parameters. For predictive
purposes, a better process-oriented understanding of uncer-
tainty in these parameters would be of great help.
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Lemke, R. L., Kröbel, R., McConkey, B. G., Smith, E. G., Lafond,

ª 2020 The Authors. Journal of Plant Nutrition and Soil Science published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.plant-soil.com

314 Budiman, Steiner, Topp, Buerkert J. Plant Nutr. Soil Sci. 2020, 183, 306–315



G. P., Del Grosso, S., Ahuja, L., Parton, W. (2016): Comparison of
DayCent and DNDC Models: Case Studies Using Data From
Long-Term Experiments on the Canadian Prairies, in Del
Grosso, S., Ahuja, L., Parton, W. (eds.): Synthesis and Modeling of
Greenhouse Gas Emissions and Carbon Storage in Agricultural
and Forest Systems to Guide Mitigation and Adaptation, Advances
in Agricultural Systems Modelling 6. ASA, CSSA, SSSA, Madison,
WI, USA. pp. 21–58.

Grote, R., Lehmann, E., Brümmer, C., Brüggemann, N.,
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