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Abstract/ Zusammenfassung / Résumé

Abstract

When jumping from the number fields theory to the function fields theory,
one cannot miss the deep analogy between rank 1 Drinfeld modules and the
group of root of unity and the analogy between rank 2 Drinfeld modules
and elliptic curves. But so far, there is no known structure in number fields
theory that is analogous to the Drinfeld modules of higher rank r > 3.

In this thesis we investigate the classes of those Drinfeld modules of higher
rank r > 3. We describe the Weil polynomials defining the isogeny classes
of rank r Drinfeld modules for any rank r» > 3, which generalizes what Yu
already did for r = 2. We also provide a necessary and sufficient condition
for an order O in the endomorphism algebra corresponding to some isogeny
classes, to be the endomorphism ring of a Drinfeld module. To complete the
classification, we define the notion of fine isomorphy invariants for any rank
r Drinfeld module and we prove that the fine isomorphy invariants together
with the J-invariants describe the L-isomorphism classes of rank r Drinfeld
modules defined over the finite field L.

Zusammenfassung

Wiéhrend der Reise von der Zahlkorper-Theorie nach der Funktionenkorper-
Theorie ist es fast unmoglich, dass man die Ahnlichkeit zwischen Drinfeld-
Moduln von Rang 1 und die Gruppe der Einheitswurzeln nicht bemerkt und
auch die Ahnlichkeit zwischen Drinfeld-Moduln von Rang 2 und elliptische
Kurven. Aber bisher gibt es keine Struktur in der Zahlkorper-Theorie, die
analog zu Drinfeld-Moduln von Rang r > 3 ist.

In dieser Doktorarbeit, untersuchen wir die Klassen dieser Drinfeld-Moduln

von Rang r > 3. Wir beschreiben die Weil-Polynome, die Klassen der Isoge-
nien von Drinfeld-Moduln von Rang r > 3 definieren. Es verallgemeinert die
Arbeit, die Yu fiir r = 2 gemacht hat. Wir finden auch eine notwendige und
hinreichende Bedingung, so dass eine Ordnung O in der Endomorphismen-
Algebra von manchen Isogenien-Klassen ein Endomorphismus-Ring eines Drinfeld-
Moduls ist.
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Um die Klassifikation abzuschliefien, definieren wir die Fine-Isomorphy-Invarianten
fiir irgendeinen Drinfeld-Modul von Rang r und wir beweisen, dass die Fine-
[somorphy-Invarianten zusammen mit den J-Invarianten die L-Isomorphismus-
Klassen der Drinfeld-Moduln von Rang r beschreiben, die iiber den endlichen
Korper L definiert ist.

Résumé

En se baladant de la théorie des corps de nombres a la théorie des corps

de fonctions, il est difficile de ne pas remarquer la ressemblance frappante
qui existe entre les modules de Drinfeld de rang 1 et le group des racines de
I'unité et celle qui existe entre les modules de Drinfeld de rang 2 et les courbes
élliptiques. Malheureusement il n’existe pas pour le moment de structure de
la theorie des corps de nombres analogue aux modules de Drinfeld de rang
r > 3.
Dans ce travail, nous investiguons les classes de ces modules de Drinfeld de
rang superieur » > 3. Nous décrivons les polynomes de Weil définissant
les classes d’isogenies des modules de Drinfeld de rang » > 3. Ce qui
généralise le travail déja fait par Yu pour ceux de rang r = 2. Nous
présentons aussi une condition nécessaire et suffisante pour qu'un ordre O
de l'algebre d’endomorphisme associée a certaines classes d’isogenies, soit
I’anneau d’endomorphismes d’'un module de Drinfeld donné. Pour compléter
la classification, nous définissons la notion d’invariants fins d’isomorphisme
associés a un module de Drinfeld de rang r et nous démontrons que les invari-
ants fins d’isomorphisme associés aux J-invariants décrivent completement
les L-classes d’isomorphismes des modules de Drinfeld de rang r definis sur
le corps fini L.

vii



Introduction

At the beginning of the story (1974), Vladimir Drinfeld wanted to prove the
Langlands conjectures for GLy over algebraic function fields. On his way
to the solution, he came up with the notion of elliptic modules (nowadays
called Drinfeld modules). His proof had been later on generalized by Laurent
Lafforgue for GL,, (and he got the Fields Medal for that work).

The interest to Drinfeld modules has been increasing more and more because
they happen to be useful in factorizing efficiently univariate polynomials over
a finite field (Narayanan, 2015) and also are useful in coding theory.

Many attempts to apply Drinfeld modules in cryptography have also been
made. This is the case for Gillard et al. (in [9], 2003), who proposed a cryp-
tosystem based on Carlitz (rank 1 Drinfeld) modules. But S. Blackburn et
al. proved later on (in [3]) that the proposed system is unsecured.

More recently, the so-called SIDH (standing for Supersingular Isogeny Diffie-
Hellman), which is a cryptosystem based on isogeny graph of supersingular
elliptic curves, has been proposed and entered in the very short list of good
candidate for post-quantum cryptography because of its resistance to quan-
tum attacks. But Joux and Narayanan proved (in [12], 2019) that the SIDH
version of rank 2 Drinfeld modules is not secured.

If there is a common ground to all these attempts to apply Drinfeld modules
theory, it is that most of the time only rank 1 and rank 2 Drinfeld modules
are used. In fact,

Drinfeld modules of rank 1 are the function-field analogue of the group of
roots of unity in number fields theory whereas Drinfeld modules of rank 2
are the function-field analogue of elliptic curves in number fields theory.

In addition, almost everything concerning the classification of rank 1 and
rank 2 Drinfeld modules is known.

Yu explicitly described (in [26]) the isogeny classes of rank 2 Drinfeld mod-
ules over finite fields by giving the list of all the Weil polynomials (or Weil
numbers) defining them. Knowing that the endomorphism algebra of a Drin-
feld module is an isogeny invariant, Yu has also described all the orders in
the endomorphism algebra corresponding to any isogeny class, occurring as
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endomorphism ring of a rank 2 Drinfeld module over a finite field in that
isogeny class.

Gekeler has described (in [8], 2008) the L-isomorphism classes of rank 2 Drin-
feld modules.

Concerning Drinfeld modules of higher rank r > 3, first of all there is no
known analogue structure in number fields theory and very little is known
about their classification (in the sense we mentioned before). That is,

1. The Weil polynomials (or Weil numbers) defining the isogeny classes
of rank r (r > 3) Drinfeld modules.

2. The orders in the endomorphism algebra corresponding to a given
isogeny class, occurring as endomorphism ring of a Drinfeld module
in that isogeny class.

3. The description of the L-isomorphism classes in a given isogeny class
of rank r Drinfeld modules defined over the finite field L.

We aim throughout this thesis, to answer those three questions following the
below mentioned plan.

We first of all give in the first chapter some preliminaries necessary for our
discussions.

In the second chapter, we describe the degree r polynomials defining the
isogeny classes of rank r Drinfeld modules over a finite field L and we pro-
vide algorithms to check and list all those Weil polynomials.

In the third chapter, we focus on isogeny classes for which the corresponding
endomorphism algebra is a field and we describe the orders in that function
field, that occur as endomorphism ring of a Drinfeld module in our chosen
isogeny class.

In the fourth chapter, we characterize for a Drinfeld module of rank r defined
over a finite field L, its L-isomorphism class.

The fifth chapter is booked for the application to Drinfeld modules of rank
3 and rank 4. In this part, we compute given the maximal order of the
corresponding (cubic or quartic) function field, all the orders that are endo-
morphism rings of a (rank 3 or rank 4) Drinfeld module in the chosen isogeny
class. We also explain with a concrete example how the computation of the
L-isomorphism classes in a fixed isogeny class is made.



CHAPTER 1

Preliminaries

1.1 Function fields

We do not prove the results in this part because all of them are very well
known results in function fields theory and any interested reader can find
detailed proofs in [22].

Definition 1.1. An algebraic function field F'/k of one variable over a field
k is an extension k C F such that F is a finite algebraic extension of k(T)
for some T € F which is transcendental over k.

Example 1.1. Let k = F, be the finite field with ¢ = p"™ elements (p a prime
number). Any finite extension of k(T) = F,(T') is an algebraic function field.
The field F,(T') itself is called the rational function field of one variable over
F,.

Definition 1.2. A valuation ring of the function field F/k is a subring O C
F such that k C O C F and for any z € F, z€ O or 27t € O.

Example 1.2.
o Let P(T) € F,[T] be an irreducible polynomial.

0, — {% | F(D). o(T) € E,[T) and P(T) £ 9(T)}

is a valuation ring of the rational function field F, (T').

e The ring

Or = { L5 1 1T). 4(T) € Fy[T] and des 1(7) < deg(7)}

is also a valuation ring of the rational function field F,(T).

f(T)
9



1.1. FUNCTION FIELDS

Proposition 1.1. Let O be a valuation ring of the function field F/k. Then

e O is alocal ring. i.e. O has a unique mazimal ideal p = O\ O, the
set of non-units of O.

o ForanyO#z€F, z€pif and only if 27 ¢ O.

Proposition 1.2. Let O be a valuation ring of the function field F/k and
let p be the corresponding maximal ideal.

e p is a principal ideal.

e Let t be a generator of p. For any 0 # z € F there exists a unique
integer n € 7 such that z = t"u with u € O* a unit in O.

e O is a principal ideal domain and if p = tO and {0} #1 C O is a
non-zero ideal, then I = t"O for some n € N.

Definition 1.3. Any ring with the above mentioned properties is called a
discrete valuation ring (DVR in short).

Definition 1.4.

1. A place p of a function field F/k is the mazimal ideal of some valuation
ring O of F/k. Any element t € p such that p = tO is called a
uniformizer (or uniformizing element or prime element) for p.

2. Pr denotes the set of all places of F/k.
Remark 1.1. If a place p € Pr is given, the corresponding valuation ring is
O={zeF|z"¢p}

Definition 1.5. A discrete valuation of F/k is a map v : F — Z U {0}
with the following properties:

1. v(z) =00 & 2=0

2. v(z122) = v(2z1) + v(z2) for all z;, 2z € F.

3. v(z1 + z2) > min{v(z1),v(22)} for all z1, z € F.
4. There exists an element t € F with v(t) = 1.

5. v(a) =0 for all a € k.

Remark 1.2. The inequality in 3. (sometimes called the ultrametric or strict
triangular inequality) becomes an equality when v(z1) # v(z2).

4



1.2. ALGEBRAIC FUNCTION FIELDS EXTENSIONS

Remark 1.3. To a place p € Pp, we associate a map v, : F — Z U {oo}
such that

vp(0) =00 and for 0 # z € F, vy(2) =n

where n is the unique integer (as mentioned before) such that z = t"u with
u € O*. O is the valuation ring associated to the place p and t is the
corresponding uniformizer. One easily checks that v, is a discrete valuation.

Proposition 1.3. Let F'//k be a function field.

1. Let p € Pp and v, be the corresponding discrete valuation. We have
the following:
O ={z € F|vy(z) >0} is the corresponding valuation ring.
O* ={z € F | vy(z) = 0} is the group of units of O.
p={z¢€ F|uv(z) >0} is the mazximal ideal of O.

2. Conversely, if v is a discrete valuation defined on F/k, we have the
following:
p, ={z € F|v(z) >0} is a place of F/k.
O, ={z € F | v(z) > 0} is the corresponding valuation ring.

Remark 1.4. We can therefore deduce from the previous proposition that a
place of a function field F/k is entirely defined by giving either a valuation
ring O of F/k, a mazimal ideal of a valuation ring O of F/k or a discrete
valuation v defined on F.

Definition 1.6. Let p be a mazimal ideal of a valuation ring O, of the
function field F/k.

o F,=0,/p is a field called the residue field associated to the place p.

o For z € O,, z(p) denotes the residue class of z modulo p.
When z € p we have z(p) = 0. that is the reason why the place p in
this case is called a zero of the element z.
When z € F'\ Oy, vy(2) <0 and p is called a pole of z.

o degp = [F, : k] is called the degree of the place p.

1.2 Algebraic function fields extensions
Definition 1.7. An algebraic function field F'/k' is called an algebraic ex-
tension of F/k if F' O F is an algebraic field extension and k' 2 k.

The extension is said to be finite if [F' : F| < 00.

5



1.2. ALGEBRAIC FUNCTION FIELDS EXTENSIONS

Definition 1.8. We consider an algebraic extension F'/k' of F/k. A place
p' € Pr is said to lie over the place p € Pr if p C p’. We also say that p’ is
an extension of p or p lies under p’ and we write p’ | p.

Proposition 1.4. Let F'/k' be a function field extension of F/k. p € Pp
and p’ € Ppr. O, and O, denote the corresponding discrete valuation rings.
vy, and vy denote the corresponding discrete valuations. The followings are
equivalent:

1. p" [ p.
2. 0, C Oy

3. There exists an integer e > 1 such that v,(z) = evy(z) for all z € F.
Moreover p =p'NF and Oy = Oy N F.

Remark 1.5. As a consequence of the previous proposition, if p' | p then the
residue field Fy = Oy /9" is a field extension of the residue field F, = O,/p.

Definition 1.9. Let F'/E' be an algebraic extension of F/k, and let p' € Pp
be a place of F'/k' lying over p € Pp.

a) The integer e (p' | p) = e, with v,(2) = evy(z) Vz € F, is called the
ramification index of p’ over p.

p' | p is said to be ramified ife (p' | p) > 1 and unramified ife (p’ | p) = 1.

b) f(p'|p) :=[Fy :F,] is called the relative (or residual) degree of p' over

p.
Remark 1.6.
e c(p|p)eN.

o f(p'|p)<oo & [F:F]<oo.

o [fF” /K" is an algebraic extension of F'/k' and p” is a place of F” /k”
lying over p’ then
e’ [p) =e®” [p) e [p)
FO7 o) =F07 [9)-f ([ p).
Proposition 1.5. Let F'/k' be an algebraic function field extension of F/k.

a) For each place p' € Ppr, the exists exactly one place p € Pr such that
plp.



1.3. ORDERS IN FUNCTION FIELDS EXTENSIONS

b) Conversely, every place p € Pr has at least one (and at most finitely
many) extension p’ € Pp.

Theorem 1.1 (Fundamental equality).

Let F'/K' be a finite algebraic function field extension of F/k. Let p € Pg
and P, -+, Pm be all the places of F'/k' lying over p. Let e; = e (p; | p) be
the ramification index and f; = f (p; | p) be the residual degree of p; | p. We

have then .

> eifi=[F':F]

i=1
Remark 1.7. Let p be as in the previous theorem.

a) p is said to split completely in the extension F'/F if there are exactly
n = [F": F| distinct places of F' /K’ lying over p.

b) p is said to be ramified if there exists i € {1,--- ,m} such that e; > 1.
Otherwise p is said to be unramified.

c) p is said to be totally ramified if there is only one place p’ € P lying
over p with ramification index e (p' | p) =n = [F': F.

1.3 Orders in function fields extensions

From now on we will be mostly working with algebraic function fields exten-
sions of the rational function field F (7).
Let A=F,[T] and k = F,(T'). Let F be a finite field extension of k.

Definition 1.10. An order O of F is a finitely generated A-submodule of F
such that O is a subring of F' and O spans F' over k. That means k-O = F.

Example 1.3. Let ™ be an algebraic element over k which is also integral
over A. We consider the function field extension k(m)/k. O = A[r] is an
order of k().

Remark 1.8. If an order O of F is not properly contained in any other
order, then O is called a maximal order.

An example of maximal order is the integral closure of A in F. In addition,
this is the unique maximal order of the function field F'. This maximal order
15 usually called the ring of integers of the function field F'.

Arbitrary orders and mazimal orders share some properties but also have dif-
ferences. One of the main differences is that maximal orders are Dedekind
domains. Which is not the case for arbitrary orders. That means, any proper

7



1.3. ORDERS IN FUNCTION FIELDS EXTENSIONS

ideal of a mazimal order factors uniquely (up to units) as a product of prime
tdeals. This is the main feature that allows to do arithmetic in maximal or-
ders. We also recall that prime ideals in Dedekind domains are also mazimal.

Definition 1.11 (Norm of an ideal).
We consider again our function field F'. Let O,,q, be the ring of integers of
F. The norm Ngy (?) of ideals in Opgy is defined as follows:

o Ifp is a prime ideal of Oy lying above a prime ideal po of A, then
the norm Npyy (p) is defined as
Nk (p) = pb
where fo is the residual degree of p | po.

e [fp1 and py are prime ideals (not necessarily distinct) of Oz then
Nryr (p1-p2) = Neyr (p1) - Nejk (P2)

Remark 1.9. The unique prime factorization of ideals in the Dedekind do-
main Opqe completes the definition above to that of the norm of any ideal 1

of Onaz-

There is something that measures at which extend a given order O of a
function field F' is far from the maximal order O,,,, of F. It is called the
conductor of O in O,,,, and it is defined as follows:

Definition 1.12. Let ¢o (or simply ¢ if there is no confusion on the order
O) denotes the conductor of an order O in the mazimal order O, gy -

c={x € F| 204 C O}
¢ is the largest ideal of O,qe contained in O.

Remark 1.10. [t is a very well known fact that
disc (O) = Npyy (¢) disc (Omaz)

Where disc(?) denotes the discriminant of an A-basis of the order in arqu-
ment. Also if the discriminant of the order O is (up to a unit) the same as
the discriminant of the mazximal order, then the order O is also maximal.
Thus Npyi, (¢) can be used to measure to which extend O is far from Opqs.

We want now to talk about Drinfeld modules but before, let us discuss
the notion of additive polynomials which is important in Drinfeld modules
theory.



1.4. ADDITIVE POLYNOMIALS

1.4 Additive polynomials

[10] is a good reference for all the results mentioned in this part.
Let L be a field with p = char(L). L denotes an algebraic closure of L.

Definition 1.13. A polynomial P(x) € L[z is said to be additive if
P(x +y) = P(z) + P(y) as polynomial in x and y or equivalently if
Va, B € L, Pla+ ) = P(a) + P(B).

Example 1.4. Some trivial ezamples are the polynomials
P(z) =ax, a € L and Q(x) = 29 for any ¢ = p", n € N.

Proposition 1.6. Let P(x), Q(x) € Llz| be two additive polynomials over
L.

o P(z)+ Q(z) is additive.
e aP(x) is additive Ya € L.
e P(Q(x)) is additive.

The proof follows straightforwardly from the definition.

The proposition above shows that the set A(L) of additive polynomials over
L forms a ring under polynomials addition and composition.

From now on we denote 7, the additive polynomial defined by 7,(x) = z*.
We denote L{7,} the subring of A(L) spanned by {7}, i =0,1,2,---}

We recall that 7 is the additive polynomial defined by 7)(z) = .

L{r,} is a non-commutative ring and one checks that Va € L, 7,-a = oP-7,.
It follows from the definition of additive polynomials that

Proposition 1.7. A(L) = L{7,}.

In general, one can also set ¢ = p”, n € N such that F, € L. And
consider then the ring L{7} of F -linear additive polynomials spanned by
{r%, i =0,1,2,---}. Where 7 is the F -linear additive polynomial defined
by 7(x) = 29 and 7°(x) = .

As a consequence, the ring L{7} is an F-algebra. Where 7-a = a7 Va € L.
L{7} is sometimes called the ring of Ore polynomials.

Proposition 1.8 (Fundamental theorem of additive polynomials).

We assume that the field L is algebraically closed. Let P(x) € Lx] be a
separable polynomial and A = {\1,--+ , A} C L be the set of roots of P(x).
P(z) is additive if and only if A is a subgroup of L.

Proof:[10, theorem 1.2.1] ¢



1.5. DRINFELD MODULES

Corollary 1.1. Let P(x) be as in the previous proposition.
P(x) is Fy-linear if and only if the set of roots A is an F,-vector subspace of

L.
Proof:[10, Corollary 1.2.1] {

Remark 1.11. A polynomial f(7) € L{T} is said to be separable if its con-
stant coefficient is non-zero.

1.5 Drinfeld modules

1.5.1 Definition and some properties

Let us now give the definition and some properties of Drinfeld modules.

Let A = F,[T] be the ring of polynomials in the variable 7" over the finite
field F,. Let L be an A-field. That is, a field equipped with an F,-algebras
homomorphism v : A — L. 7 and L{7} are as defined in the previous
section.

Definition 1.14. A Drinfeld module ¢ over L is an Fy-algebra homomor-
phism ¢ : A — L{1} such that

o ¢(A) € L. In other word Ja € A such that deg. ¢(a) > 1.
e Vac A, ¢(a)=~(a)r® mod 7. In other words the constant coefficient
(w.r.t ) of p(a) is v(a)7°.

Remark 1.12. Most of the time one omits 70 and simply write o instead of
at® for any a € L. We also usually simply write ¢, instead of ¢(a).
Since A =TF,[T], ¢ is entirely defined by giving only the image ¢ of T

Definition 1.15. The rank of the Drinfeld module ¢ is defined as
r =rank¢ = deg_¢r.

Example 1.5. A =F;5[T], L =TF; is an A-field defined by

v A—s L, f(T)— £(0).

¢r = 72 + 7 defines a rank 2 Drinfeld module.

p = 7 defines a rank 1 Drinfeld module (usually called Carlitz module).

Remark 1.13. Let ¢ : A — L{7} be a Drinfeld module.

1. The term “module” is due to the non-trivial A-module structure induced
by the map ¢ on L as follows:

Vace Aanda € L, a-a:= ¢q(a)

10



1.5. DRINFELD MODULES

2. We denote ¢la) = {a € L | ¢a() = 0} the group of a-torsion points.
If I is an ideal of A, ¢[I] := mqb[a] = ¢[b] where b is a generator of

ael

the ideal I of A.
3. The map ¢ is injective by definition.

4. The kernel of the Fy-algebras homomorphism v : A — L defining the
A-field L is called the A-characteristic of L (or the characteristic of the
Drinfeld module ¢).

When Kery = {0}, the Drinfeld modules over L are said to have
generic characteristic. Otherwise the Drinfeld modules over L are said
to have a special characteristic.

For instance when L is finite, any Drinfeld module defined over L must
have a special characteristic.

Since we will be dealing with Drinfeld module over a finite field L, let
us assume from now on that L has a special A-characteristic we denote
(p,) = Kery. We recall that Kery is by definition a maximal ideal of A.

v will denote the valuation (or place) of A (or k) associated to that maximal

ideal.

Definition 1.16. Let f(7) € L{r}.
The weight of f(1) denoted wgt (f(7)) is defined as the sub-degree of the
polynomial f(7). i.e. f(1) = ar®"™¥) + monomials in T of higher degrees .

with o # 0.

Proposition 1.9. [10, lemma 4.5.6]
There exists a positive integer h such that for alla € A, wgt (¢,) = hv(a) degp,.
We recall that v denotes the valuation defined over k associated to the place

Py

Remark 1.14. For a = p, we have then wgt (¢,,) = hdegp,.

We take this opportunity to recall that since the ideal p,, is principal in A, we
will sometime abuse the language by keeping the same notation for the ideal
and its generator. But at each time the reader could easily guess which one
we will be talking about.

Definition 1.17. The positive integer h is called the height of the Drinfeld
module ¢.

Remark 1.15. It is a well known fact that for any a € A, if a is relatively
prime to p, then ¢la] ~ (A/aA)". Otherwise ¢la] ~ (A/aA)"™". In particular
opy] ~ (A/va)T_h. Where r = rank¢ and h is the height of ¢.

11



1.5. DRINFELD MODULES

1.5.2 Morphisms of Drinfeld modules

As it has always been the case in mathematics, each time one defines a new
structure, one should also define the notion of morphism between two such
structures in order to complete the definition of that category.

Definition 1.18. Let ¢ and v be two Drinfeld modules over the A-field L.
a morphism from ¢ to 1 is an element f € L{T} such that

[-¢a=va- [ VacA
which s equivalent to f - ¢r = - f.
Remark 1.16.
e One can straightforwardly see that f is an isomorphism if and only if
deg, f(7) = 0.

When such an isomorphism exists, ¢ and v are said to be isomorphic
or lie in the same isomorphism class (as equivalence relation).

o A non-zero morphism is called an isogeny.

Proposition 1.10. Let ¢ and v be Drinfeld modules over the A-field L such
that there exists an isogeny f(1) € L{tT} from ¢ — . Then there exists
also an isogeny g € L{t} from ¢» — ¢ such that

fg=1vq and g- f = ¢, for some a € A.

Proof:[10}, proposition 4.7.13] ¢

Remark 1.17.

1. One clearly sees from the previous proposition that the isogeny relation
18 an equivalence relation.
¢ and v are therefore said to be isogenous or lie in the same isogeny
class (as equivalence relation).

2. It 1s a well known fact that only Drinfeld modules with the same rank
can be isogenous.
One easily sees it by comparing the degrees (in 7) of the polynomials
involved in the equation f - ¢ = Y7 - f.

12



1.5. DRINFELD MODULES

Remark 1.18. Let f(7) : ¢ — 1 be an isogeny and H = Spec (L[z]/{f(x)))
be the so-called scheme-theoretic kernel of f.

The Drinfeld module i s called the quotient Drinfeld module of ¢ by H
and it is denoted ¥ = ¢/H. In other words, given a Drinfeld module ¢, an
isogenous Drinfeld module v is entirely defined by giving the corresponding
scheme-theoretic kernel.

The following result provide a necessary and sufficient condition for a group
scheme H to be a scheme-theoretic kernel of an isogeny.

Proposition 1.11. [10, proposition 4.7.11]

Let ¢ be a fized Drinfeld module of rank r over the finite A-field L. Let
H C G,/L = Spec(L[z]) be a finite affine subgroup scheme. We have the
following:

H is the scheme theoretic kernel of an isogeny f : ¢ — ¢ if and only if H
is invariant under the action of A (via ¢) and the local (or connected) part
Hy,. of the group scheme H 1is of the form

Hy,. = Spec (L[x]/(xqt degp“>> for some integer t > 0

Corollary 1.2. Any étale affine subgroup scheme H C G,/L = Spec(L|x])
which is A-invariant (via ¢) is the scheme-theoretic kernel of an isogeny f

from ¢ to another Drinfeld module v := ¢/H.

Proof: This corollary follows from the fact that in such a case the local
part Hj,. of H is trivial and we have then

Hipe = {0} = Spec(L) = Spec (L[z]/(x)) = Spec (L[x]/(xqo‘deg"v>)

One applies then the previous proposition with ¢ = 0. O

Remark 1.19. The former proposition basically says (as shown in [23,
proposition 2.5]) that

H is given as the kernel of an additive polynomial f € L{T} and

f 1s an isogeny if and only if

H is A-invariant (via ¢) and height(f) =0 mod degp,.

Definition 1.19. An isogeny f from a Drinfeld module ¢ to itself is called
an endomorphism.

Remark 1.20. The set of endomorphism of ¢ over L together with the zero
morphism form a ring denoted Endp¢ (or simply Ende if there is no confu-
sion on the field L) and it is called the endomorphism ring of ¢.

13



1.5. DRINFELD MODULES

Proposition 1.12. Let ¢ and 1 be two Drinfeld modules.
If ¢ and 1 are isogenous then

o The endomorphism k-algebras Ende @4 k and Endiy ®4 k are iso-
morphic. In other words the endomorphism k-algebra is an isogeny
mvariant.

e End¢ and Endy have the same rank over A.

Theorem 1.2. Let ¢ be a Drinfeld module over a finite A-field L

and s = [L : F].

There 1s a special endomorphism of ¢ defined by m = 7°. This endomorphism
1s called the Frobenius endomorphism of ¢.

The following are known facts (see [26]):

e 7 is an algebraic integer and the function field k() is the center of the
k-algebra Endg @4 k.

o v =rank¢ = [k(r) : k]\/rankym Endd @4 k.

For the special case when Endp ®4 k is a field, we have
r =rank¢ = [k(r) : k] and End¢ is an A-order in the function field k(m).

14



CHAPTER 2

Isogeny classes of rank r Drinfeld modules

The aim of this part is to describe in detail and provide a complete list of rank
r Weil numbers for a fixed positive integer r. The description of rank 2 Weil
numbers has already been done by Yu in [26]. We want to extend it to higher
ranks. Before starting let us fix some notations. Throughout this part, we
denote A = F,[T] the ring of polynomial in T over a finite field F,. L is a finite
A-field defined by an F -algebras homomorphism v : A — L. p, = Ker(7y)

and m = [L : A/pv]' k =T,(T) denotes the fraction field of A and Q(T) is
the monic generator of the principal ideal p?* i.e. pI* = (Q) = Q(T) - A.

2.1 Definitions and potential Weil polynomi-
als

Let us first define what a Weil number is.

Definition 2.1. [26] Weil numbers]
An element m € k is called a degree r Weil number over a finite A-field L if
the following conditions hold.

(c1) 7 is integral over A.

(¢2) There is only one place of k(m) which is a zero of m and this place lies
above the A-characteristic v of L.

(c3) There is only one place of k(m) lying over the place oo of k.

(c4) |T|so = M7 where | = |L| and |.|« is the unique extension to k(m) of the
normalized absolute value of k corresponding to the place co.

(c5) [k(m) : k| divides r



2.1. DEFINITIONS AND POTENTIAL WEIL POLYNOMIALS

Remark 2.1. We recall that the place at oo in k is defined via the valuation
Voo 1 k —> Z U {00} such that

Vs <%> = deg g(T) — deg f(T) for 0 # L3 € k and v,(0) = oo.

That means concerning condition of definition that the place at oo

i k is normalized in such a way that the absolute value of the uniformizer %
is ‘%‘OO = q~1. This absolute value is then extended to k(m) using the unique
extension (for which we keep the same notation unless otherwise mentioned)

oo in k().

Definition 2.2. [Weil polynomial]
We will call throughout this part Weil polynomial, the minimal polynomial
over the field k of a Weil number.

Remark 2.2.  From now on, we denote by M(x) the minimal polynomial
associated to the algebraic number w. We set r1 = [k(m) : k] the degree of
M (z). The condition of deﬁm’tz’on imposes that v divides r. So we

also set ro = ﬁ i.e. T =1T1-To.

Now let us take a Weil number 7 and the corresponding Weil polynomial
M (z). We want to investigate how M (x) looks like, having in mind all the
required conditions provided by the above mentioned definition [2.1]

The first condition is that 7 is integral over A. Therefore the minimal
polynomial is of the form

M(z)=a" + a2 '+ +a, 17 +a, €Al].

Also a,, = M(0) = (=1)" Ni(z)/x (7). But 7 has a unique zero in k() which
lies over p, according to the condition (¢2)). Thus p, is the unique prime of
A dividing a,,. That is

Qry = ,prf; (*)

where a € N, p € F} 1
m deg py

Moreover, we know from condition that |7|o = [/ = ¢+ . That

means Voo () = Voo (m;) = —% Vi, where mys denote the roots of M(z).
T1

We also know that a,, = (—1)" Hm. Hence vgo(ay,) =m0 () = —%fp“.
i—1

. o __ m-degpy _m
From |(x)|we have —avdeg p, = voo(ar,) = =52 and therefore N 5 oo = .

Thus 5 | m and a,, = up,? = MQ%

16



2.1. DEFINITIONS AND POTENTIAL WEIL POLYNOMIALS

where () = p* is the monic generator of the ideal pI'. Therefore
1
M(z) = 2™ 4+ a2 4+ a2 4 pQ7 € Alz], pe .

Let us consider again the roots 7y, --- , ., of M(z) in k. One knows that
an = (—1)" Z iy iy - * Ty, . Lhat is

11, in

Voo (an) = Voo ( Z 7Ti17Ti2"'7Tin> > min {Uoo(ﬂiﬂia'”ﬂin)}

1, 4in

But

min {Uoo(ﬂiﬂiz : “7%)} = Voo (T, )y =+ M), ) = Voo (Tjy ) FV00 (T ) -+ Voo (705,

11, in

for some (jy,- -+, jn)
Again as we mentioned before, one draws from condition that
Voo (Tj1) = Voo (Tjy) =+ = Voo (T}, ) = Voo() = _mdigpv — el

Hence voo(an) > Voo (5,) + Voo (15,) + -+ - + Voo (Tj,) = 1+ Uso(T) = —%.

Thus — dega,, > —@ that is

dega, < " 98¢
n = T .

Therefore the coefficients a; of M (x) satisfy the boundary condition

i-degQ i-degQ7

r T1

dega; <

Remark 2.3. As conclusion of our above discussion, we will be working from
now on with polynomials of the form

M(z) = 2™ 4+ apz™ 4 -+ ap, g1 + pQY™ € Al

such that ro | m and dega; < M.

Lemma 2.1. Let Q) be a given monic polynomial in A = F,[T| whose degree
is a multiple of a positive integer r with ged(r,q) = 1. Then Q is an rt
power in ko where k =T, (T).

Proof: vs (T&%) = 0. Thus ng% € O. where Oy denotes the
valuation ring associated to the place co. () is a monic polynomial. Therefore,

17



2.1. DEFINITIONS AND POTENTIAL WEIL POLYNOMIALS

Tdé% =1 mod (%.OOO). We consider the polynomial
fY)=Y"— 5. Since f(1) =1 — 25 =0 mod (+.04), f/(1)=rl=

r.1 mod (7.0) and ged (r,char(k)) = 1 that is 7.1 # 0. We can apply the

Hensel lemma and conclude that Td;% is an r-th power in O,. Since deg () is

a multiple of r, () is also an r-th power in k.. O

Remark 2.4. [Some assumptions/
Before moving forward, let us make two major assumptions. From mow till
otherwise mention,

Al we assume that r is a prime number. That is
ry =71, ro =1 and therefore M(x) = 2" + a1z ' + -+ + a,_ 17 + uQ
orri =1, 1y =1 and therefore M(z) = x + pQ'/"

A2 we also consider r to be coprime with the characteristic char(k).
ged (r,char(k)) = 1. This assumption is made so that the minimal
polynomial M (x) is separable.

We will later on generalize our results by getting rid of those assumptions
one after the other. The assumption Al on the primality of r will be dropped
first and we will therefore list all the “separable” Weil polynomials. After
then we will drop also the assumption A2 about the separability and show
how one can without loss of generality assume that M(x) is separable.

Proposition 2.1. Let © € k be a Weil number and M (x) be its the minimal
polynomial over k which is (as we mentioned in remark of the form

M(z)=a" 4+ a4+ apqx + puQ or M(x) =z + uQY".

Since m satisfies the condition of deﬁm'tion M (z) must have one of

the below mentioned forms.

1. M(z) =2" 4+ a2 ' + -+ + a,_1x + pQ such that the polynomial

Mo(z) = 2" + Fa™ ' + -+ ey + 7% is irreducible in koo[z].

Wh@r{f S = ’deegp”-‘ — [degQ" — ’Vdeng/m-‘ '

r r 1

2. M(z) =z + pQY" with r | m and p € F;

Proof: First of all one can clearly notice from remark [2.3] that
dega; <is Vi. That means the polynomial My(z) € Oy|x].
M (x) has just two possible forms as consequence of the assumption Al of
remark [2.4]

18



2.1. DEFINITIONS AND POTENTIAL WEIL POLYNOMIALS

If M(z) = 2" +ax" ' + -+ + a,_1x + pQ then the minimal polynomial of
Zis Mo(z) = 2" + Za™ + o 4 Z2log

If M (x) = z+pQ"" then the minimal polynomial of % is My(z) = x—uQTlgT.
In addition k(7) = k(7).

We also know that there is a unique extension of the place at oo in k() if
and only if My(z) is irreducible over the completion k, or My(x) is a power
of an irreducible polynomial over k., (see [18] proposition 8.2, page 163]).
For the first case, deg My(z) is a prime number. So My(z) must be irre-
ducible since it cannot be a power of a polynomial of degree > 2.

For the second case, My(z) = x — /LQTlir is a degree 1 polynomial and there-
fore already irreducible. Also, m € k, 7 is integral over A and A is integrally
closed. Thus m € A. 7" = a(Q for some a € F,. () = p}*. In addition p, is a
prime element in the UFD A. Thus p, is the unique prime element dividing
m. That is m = B - pJ for some n € N and g € F,. Hence 8" - p)" = o - pI.
i.e. nr =m and then r | m.

Therefore we have the expected result. O

Remark 2.5. A natural question one can ask after a look at our proposi-
tion (2. 1) above is how one can actually check that

My(z) —xr—i-%x?'_l%—-”—l—%x—i—uj%
is 1rreducible over the completion field k.. Before answering that question,
let us remind for the convenience of the reader the following well known fact
i algebraic number theory.
Let k be a global field, M(x) € klx] be an irreducible polynomial over k with
integer coefficients (i.e. the coefficients of M(x) lie in the ring of integers of
k) and v a given place of k. Let n € N with n > v (discriminant (M (x))).
As a direct consequence of the Hensel lemma, the irreducible decomposition
M(x) = fi(x)--- fo(x) mod p" completely encodes the irreducible decompo-
sition M(x) = fi(x)--- fs(x) € ky[z] of M(x) over the completion field k,
(see [4, III.4.3, theorem 1] or [1, theorem 7.5]).

Here is therefore an answer for the above mentioned question.

Proposition 2.2. Let h = vy, (disc (My(x))) + 1.
Mo(z) = a" + fra™" + - + Stow + 7% is irreducible in koo[7] if and
only if Mo(z) mod 77O« is irreducible.

Proof: The proof follows from remark O

Remark 2.6.
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2.1. DEFINITIONS AND POTENTIAL WEIL POLYNOMIALS

e One can notice that My(x) is defined over F, [%]. So checking the
irreducibility of My(z) mod %(’)oo 1s equivalent to checking the one of

MO(;L') mod %]Fq [%} Since Fq [%}/%Fq [%] = A/ThA 1S finite, one

can then check (using proposition in finitely many steps, whether
My(x) is irreducible over ko, or not.

e One can also compute h = vy, (disc (My(z)))+ 1 directly from M(x) by
noticing that disc (My(z)) = wt—ydisc (M (x)).
Therefore h = vy (disc (M (x))) + sr(r — 1) + 1.

After our investigation, we can say so far that any element 7 € k which
is a degree r Weil number (r prime) must have a minimal polynomial of one
of the below mentioned forms.

(1) 2" +ayz" '+ - +a,_12+pQ such that deg a; < @ and the polynomial
My(z) = 2" + %xr—l N Tf(;jmx + /LT% is irreducible in k. [z] where
_ [deg@
s = [=B=].

(2) z — p@Q+ with r | m and p € F,

Conversely, let us pick 7 a root of the polynomials or . We want to
check whether 7 is a Weil number. Let us have a look at each condition from

to .

e The condition |(c1)|is obvious in both cases since the polynomials
and |[(2)| are in A[z]

e The condition follows from the definition of those polynomials. For
the polynomial , we clearly have the condition that it is irreducible
over the completion k., of k at the place oo.

For the polynomial , it is irreducible over k., as degree 1 polynomial.

e Concerning the condition , one can just notice that
(=1)"u@  for polynomials of the form
Ni(myi () = " a " a4 pQ
puQYr for polynomials of the second form z — Q"

To avoid any ambiguity, let us denote oo’ the place in k() above oo in
k. Voo () := mvm (Nigmyi (1)) = —1 deg @ (in both cases).

Therefore |7T’oo/ = q—%o/(ﬂ) — q% deg@Q _ ll/r.
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2.1. DEFINITIONS AND POTENTIAL WEIL POLYNOMIALS

e The condition |(c5)|is also straightforward since
r  for polynomials of the form

[K(7): K] = "+ ar" a1+ pQ
1 for polynomials of the second form x — pQ/"
In any case [K () : K] divides 7.

e The condition is also fulfil for the polynomial because there is
(in this case) a unique prime above p, in k(7) and A fortiori a unique
zero of m above p,.

Therefore the only missing condition is the condition for the polynomials
of the first form

Let us then investigate the places above p,. 7 denotes here a root of a
polynomial of the first form . It is a trivial fact from the properties of the
polynomial |(1)| that 7 has at least one zero in k(7) and any zero p, of 7 lies
above p,.

Proposition 2.3. Let n = v (disc(M(x))) + 1. Where

M(z)=a2"+a1x"  + -+ a,_1x + pQ is a polynomial of the first form .
M(z) = fi(z) - fa(x)--- fo(x) (for some s € N) is the irreducible decom-
position of M(x) over the completion k, of k at the place p, if and only if
M(z) = fi(x) - fo(z)--- fo(z) is an irreducible decomposition of

M(x) = M(z) mod py. Where f;(z) is the lifting of fi(x) in k,[z] ie.
fi(x) = fj(x) mod pl.

Proof: Direct consequence of Hensel lemma as mentioned in remark 2.5

Remark 2.7. Let us remind some other well known facts in algebraic
number theory.

e [fyp is a place of k and M(z) is the minimal polynomial over k of a
given © € k, and if M(z) = fi(x)--- fo(x) mod p™ is an irreducible
decomposition of M(xz) mod p" (with n as in remark[2.5) then
p=p7"--p% in k(m). If §; denotes the residual degree of p;|p then we
have in addition, e;f; = deg fi(x). (see [13, theorem 2.C]). Each p; is
described by the polynomial f;(x) through the valuation v; defined by
v; = v oT; with v the unique extension of v to k, and

Tt k() — ky
™ — T

for some root m; of fi(x).
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e One can also wonder why we consider the irreducible decomposition
of M(x) to be of the form M(x) = fi(z) - fo(z)--- fs(x) instead of
M(zx) = fi(x)™ - fo(x)™2 - fo(x)™ with m; > 1. This is due to the
simple reason that M(x) has been assumed to be separable. We will
come back later on to case where M (x) is not separable.

Proposition 2.4. As before M(x) = fi(z) - fo(z) - fs(x) is the irreducible
decomposition of M(x) over k,. If f;,(x) describes a zero p;, of m in k(r),

then 7 has a unique zero in k() if and only if Res (flo (x), ;\4((2))) mod p, # 0.
io

Res(?,7) denotes the resultant function.

Proof: Let us assume that 7 has a unique zero p;, in k() described by the

factor fi,(x). If Res ( fio (), ;\_4((?)) =0 mod p, then we have the following:
20

We recall that p, can be seen here as the unique place of the completion field
k

p, | Res (fio(x), }‘i%) ie. p, | Res (fi,(z), fj(x)) for some j € {1,---,s}

J # io. That means p; | Res (fi,(z), f;(z)) foralli=1,--- ,s.

Where p, = pi* - -+ p2 is the prime decomposition of p, in k(7).

p; can be seen as the unique extension of p, in the completion field

(k(7)),, = ku(m;). Where m; is a root of the irreducible factor fi(z) € ky[z]
of M(x) defining the place p;.

In particular p;, divides Res (f;, (), fj(x)).

Let p;, be a prime of F" above p;,. F' = Gal (k(7)) denotes the Galois closure
of k(m) (i.e. the splitting field of M(x)).

pi, | Res (fi,(z), f;(z)) implies that p;, | Res (fi,(x), fj(x)). In other words
p;, divides m;, — 7; for some root m;, of fi,(x) and 7; of f;(x).

i, divides . 7 and m;, are both, roots of f; (x). The corresponding valuation
v;, is defined by v;, = v o 7y with

T T

T is the valuation defined over k, (extending v).

By definition, p;, divides 7 i.e. v;,(7) > 0. In addition, 7 = o(m;,) for some
o € Gal(F/k). That is v;, o o(m;,) > 0.

But v;, o 0 and v;, define the same place of k(m) because 7 and m;, are roots
of the same irreducible factor f; (). Thus p;, divides 7;,.

p;, divides m;, — m; and p;, divides m;, implies that p;, divides 7;.

But 7; = o;(m) for some o; € Gal(F/k). That means p;, | 7; i.e. p;, | 0j(7).
In other word o " (p;,) | .

o' (pi,) is a place of F above the place p; of k(r) defined by f;(x).
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2.1. DEFINITIONS AND POTENTIAL WEIL POLYNOMIALS

We have then w € o' (p;,) N k() = p;.
Therefore 7 possesses at least two zeros and it contradicts our initial hypoth-
esis.

Let us assume conversely that Res ( fio (), ]])_/[((?)> mod p, # 0.
ig

If there are more than a zero of m above p, in k(7), then we have the follow-
ing:

M(x) = fi(z)--- fs(x) € ky[z]. Suppose that f; (z) and f;, (x) describe zeros
of m above p, in k(). Let p;, and p;, be primes of F' above p;, and p;,
respectively. There exists 0 € Gal(F/k) such that p;, = o (p;,). Since p;,
and p;, both divide m we have o (p;,) divides m and p;, divides 7. That is,
pi, divides o~!(7) and p;, divides 7.

o~ 1(r) is a conjugate of m which is not a root of f;,(x). Otherwise it would
describe the same place of k(7). Which is not the case since p;, and p;, are
primes of F' above two distinct primes p;, and p;, of k(7).

Thus p;, divides o7'(7) — 7. ie. p;, divides Res (flo(x),y—((xx)o But
io

Res <fio(x), ;‘ii?)) € A,. That is Res (fio(x), ;wo—((?)) € A, NPiy = .

Therefore p, | Res (fio (x), ;\4((2))) i.e. Res (fio (x), ?_4((?)> =0 mod p,.
0 0

It contradicts our initial hypothesis.

Hence there is a unique zero of 7 above p,, in k(7).

O

Remark 2.8. We know by definition that the conjugate of a Weil number ™
15 also a Weil number. So any characterization of Weil numbers one provides
must not depend on 7 but on its minimal polynomial M (x) over k.

Based on that fact, two questions emerge from the previous proposition [2.4).
First of all how does one identify which factor f; (x) describes a zero of w?
Secondly one can notice at the first glance that the condition

M ()
’ fio <I>
depends on the factor fi,(x) describing a zero of w. So even if one succeeds

in identifying fi,(x), how sure are we that the statement remains true for
any other conjugate of w¢ The following proposition handle that issue.

“Res (fz'o (LE) ) mod Po # 0”

Proposition 2.5. M(x) is the minimal polynomial of ® € k. p1,--- ,ps
denote the primes of k(m) above p,. If there is a unique prime containing
i.€.

Alig e {1,---,s}such that ™ € p;, but ™ & p; Vj # iy.

then so is it for any other conjugate 7 of .
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Proof: As mentioned before, F' denotes the splitting field of M (z). = and
7 are conjugate. that means one can find a € Gal (F/k) such that 7 = « (7).
T € pi, and 7 & p; Vi # do. Let pyj, -+, py;; be the primes of F' above p;.
T € Pj, means m € Py Vi =1, 1. ie. a(m) € a(py,) Vi=1,--- ;. In
other words 7 € a(p;, ).
Vj # iy m € p;. That means 7 ¢ p;; for some ¢ € {1,---,l;}. Equivalently,
a(m) & a(p;;) for some i. In other words @ & a(p;).
Therefore 7 € a(p;,) and T ¢ « (p;) Vj # dp. Since a acts as a permutation
on the set of primes, we can conclude that 7 belongs to some prime
Gk, = «(pi,) of k() above p, and 7 does not belong to any other prime
q; J # ko of k() above p,.

%

Corollary 2.1. M(z) = fi(z) - fo(x) - fs(z) € ky[x] is the irreducible de-
composition in k,[x] of a polynomial of the first form .
There is a unique zero of m in k(w) lying over the place v of k if and only if

Res (f](x)vj}/jT(;))> mod pv%ovje{la 78}'

Proof: Let us assume that there is a unique zero of 7 in k(7). Let f;,(x) be
the irreducible factor of M(z) in k,[x] describing that zero of w. That means

Res (fm(x),%—((‘?)) mod p, # 0. If for some other iy € {1,---,s} iy #

ig, Res (fil(x), ;Z%) mod p, = 0, then we have the following:

fi,(x) also describes a zero in k(7) of some root © of M(z). Let F be
the splitting field of M(z). Since M(z) is irreducible and separable over
k, Gal(F/k) acts transitively on the set of roots. That means 7 and 7 are
conjugate. In other words there exists a € Gal(F'/k) such that

7 =a(m). Res (f“(x), }Zi‘%) mod p, = 0 means that 7 has more than a

zero in k(7) above p, (see proposition[2.4]). This is (based on proposition
a contradiction.
Hence we also have Res (fj(:v), %Eg) mod p, # 0 for any other j # 4.

fi(@)

have in particular Res (fio (x), ?—%) mod p, # 0. Where f; (z) denotes
ig

an irreducible factor of M (z) in k,[z] describing a zero of m. Hence 7 has a
unique zero in k() above the place v of k (see proposition .

Conversely if Res (f](x), mod p, # 0 for all j € {1,---,s} then we

O

We summarize our discussion in the following theorem.

Theorem 2.1. Let M (z) = 2" +ay 2" '+ - -+a,_12+pQ € Alz] be a potential
Weil polynomial. i.e. dega; < @ and M (z) is irreducible over k. Let D

24



2.2. ALGORITHM - WEIL POLYNOMIALS

be the discriminant of the polynomial M (x). k() = klx]/M(x) - k[z].

1. Let n = v(D) +1 and M(x) = fi(x) - fo(x)--- fo(x) mod p" be an
irreducible decomposition of M(z) mod pI.
There is a unique zero of m in k(m) lying over the place v of k

if and only if Res <E($), %) #0 modyp, Vi=1,---,s.

2. Let s = [Y2€] and h = veo(D) + sr(r — 1) + 1.
Mo(z) =a" + 2o 1+ + %x—l—/ﬁ%.
There is a unique place of k() lying over the place at oo of k if and

only if Mo(z) = My(z) mod 7 is irreducible.

2.2 Algorithm - Weil polynomials

In this part we provide an algorithm that takes as input a polynomial of
the form M(x) = 2" + ay2" ' + -+ + a,_12 + pQ with dega; < @ and
s = [989] (r prime ).

The algorithm outputs a “True” if the polynomial is a Weil polynomial and
a “False” otherwise.

Before giving the algorithm, let us draw the attention of the reader on the
fact that from the results we provided so far, all the conditions (c1|to of
definition [2.1| can be checked using only the coefficients of the given polyno-
mial.

Algorithm 2.1. Input: M(z) = 2"+ a1z" '+ + ap_17 + pQ
1. Compute D = disc (M (z)).
2. Compute h = voo (D) + sr(r—1) +1

3. Set My(z) = a" + ™t 4 Lo 2 4 log 48
If My(zx) is not irreducible modulo # then output Fulse and exit.
else move to the next step.

4. Compute n = v(D)+ 1 where v is the valuation associated to the prime
P, A-characteristic of L.

5. Compute M(z) = M(z) mod p? and decompose (irreducibly)
M(z) = fi(z) - folz) - fi(2).
If for all j € {1,--- s} Res (fj(x), %%) #0 mod p, then
output True and exit.
Else: then output False and exit.

Res(-,-) denotes the resultant function.
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Remark 2.9.

1. Each step of algorithm requires to know only the coefficients of the
polynomial M (z) and can be achieved in finitely many computations.

2. Ifr| deg@ and h =1 then s = defQ, and the step 2 is done by simply
checking that the polynomial
My(x) = 2" + Z ai,oxr_i + p is irreducible over F,.
iel
Where I = {z =1,---,r—1; dega; = @} and a; denotes the
leading coefficient of a;.
Indeed, for h =1,

Tis idegQ

T

a; {O mod = ifdegai<@

1 _
a;p mod % ifdega; =

One can also remark that the residue field associated to the place oo is

F,.
One may also notice that h = 1 if and only if disc (My(x)) # 0 where

My(x) = 2" + Z ai7ox”_i + .

iel
Indeed, The discriminant of the polynomial
M(z)=2"+ax" '+ + a7+ pQ

1s a homogeneous polynomial of degree 2r —2 in its coefficients. One of
the monomials is u" Q"1 whose degree (in T') is (r — 1) deg Q. Also,
all the monomials of the form ag' - - - ag' with iy € I, have degree (in T)
(r —1)deg Q. Therefore vy, (disc(M(x))) := — degy (disc (M (z))) =
—(r —1)deg @ iff disc (Mo(x)) # 0. In such a case h = 1.

3. A priori, the algorithm only tells us for a given polynomial whether
the polynomaial is a Weil polynomial or not. But one can also use that
algorithm to provide the complete list of degree r Weil polynomials.
Indeed, the coefficients a; of the polynomial

M(z)=2"+ax" '+ + a7+ pQ
are bounded by deg a; < @ and a; € Fy[T]. So there are finitely many

such polynomials. One can then check for each polynomial (using the
algorithm) whether the polynomial is a rank r Weil polynomial or not.
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In fact the number of polynomials a; € Fy[T'] of degree atmost idergQ :
ide,
gL Thas for polynomials of the form

M(z)=a"+ a2z + - + a2 + pQ € Alzl,

r—1
ideg deg Q
we have a total number of Hq SRS _ q(rfl)[lJr 5] polynomials to

=1
be checked. This number can be reduced if one takes into account the
following result.

Proposition 2.6. We consider the same polynomial

M(z) = 2" + ayz" ' + - + a,_1x + pQ € Alx], whose root m generates
the fields extension k(m)/k. If p, does not divide a,_y, then m satisfies the
condition of the definition . That is, there is a unique zero of ™ in
k(m) over the place v.

Proof: We get to prove the contraposition of the statement above. That
is, if 7 has more than a zero over the place v then p, divides a,_;.
Let p; be a zero of m above v in k(). If © has another zero say po, then we
have the following.
Let F' be the splitting field of M (z). F/k is a Galois extension and k(7) is an
intermediate field. Let p} and p/, be extensions of p; and p, respectively in F'.
Let B be the integral closure of A in k(7). pPiNA=pNBNA=pNA=p,.
Same for p,. So p} and pj, are primes of F' above p,. Since Gal(F/k) acts
transitively on the sets of primes above p,, there exists o € Gal(F/k) such
that py = o(p}). ph|m then o(p})|m. That is pi|o~* (7). Moreover, o~ !(m) # =
otherwise o would be in Gal(F/k(m)) that is
pr=o0(p1) =c(P|NB) =0c(p))No(B) =p,N B = py. Which is not possible

since p; # pg. Also, a,_1 = Z H 7 (1), PHW and ]JHO'_I(’/T). There-
J=1 i=1,i#j

fore p’1|ar_1. That is a,_1 € p| but a,_; € A. Hence a,_y € py N A =p, ie.

pv‘ar—l- <>

Remark 2.10. As we mentioned in remark if one takes into account
the above mentioned result, the number of polynomials to be checked (using

the whole algorithm can be reduced to

r—2
14+ (rfl)rdEgQidegpv % H ql+ideTgQ

=1

(r—1) [%—&-1] —deg py

q =4q

For other polynomials for which p, 1 a,_1, one can just check the step 2 of
our algorithm.
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2.3 Generalization to any positive degree r.

As we promised in remark [2.4] we are going to drop the primality property of
r and just consider any positive integer r. But we still keep the assumption
A2 of remark [2.4] concerning the separability of the extension k(m)/k.

One can notice that, the only condition which has really involved the pri-
mality property of r is the last condition of definition . Once we get
rid of that primality hypothesis, instead of polynomials and as we got
before, we now have the below mentioned polynomials:

Theorem 2.2 (General potential Weil polynomials).
Let r be a positive integer and s = (%] A degree r Weil polynomial must
have one of the below mentioned forms:

(1) M(z) = 2" +a1 " '+ - +a, 12+ pQ such that the polynomial My(x) =
e R Teo=n T + ,uT(’fT is irreducible in koo [z]

(2) M(z) = 2™ + ayz™ ' + -+ a,, 12 + pQY™ such that the polynomial
My(x) = 2™ + Sam ! .+ dsr 4 /L%ls—/r? is irreducible in koo |x].
Where 11 and ry are positive integers (> 2) such that r = ry - ry and
ro divides m. The coefficients a5 follow the same boundary condition

degai < ideg Q — ideg Q1/72 S is.

- T T1

(3) x — pQY" with r | m and pu € F;

Proof: Let m be a rank r Weil number and M (z) the corresponding Weil
polynomial (i.e. the minimal polynomial of 7 over k). The condition (c5)
requires deg M (z) to be a divisor of r. Let r; = deg M (x) and ry = .
Remark (which does not require the primality hypothesis on 7) informs
us that M (z) has the form

M(x) = 2" + a4+ @y + pQY™

: i deg Q . . _ [degQ
with 75 | m, dega; < *°BY <is with s = [,

If r; =rthen M(z) =2"+az" '+ + a,_17 + pQ.
7 is a rank » Weil number. Thus the place at oo has a unique extension
in k() = k (). That is, the minimal polynomial of 7 which is
= " ﬂ r—1 e & Q
M()(l’) =T + Tsx + + Ts(r—l)l’ + 'uTsr
must be irreducible or a power of an irreducible polynomial in k. [z];
but since My(x) is separable, My(x) must be irreducible in ky[x].
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If r; =1 then M(z) =z + pQY", p € F; and for the same reason as for the
case r prime, r must divide m.

If 4 # 1, r then we have the following:

M(x) — " +a1xr1—1 4. +ar1—1x+MQ1/T2

with ro | m, dega; < @ as mentioned in remark . Since there
is a unique place above the place at oo in k(7) = k (74 , the minimal
polynomial of = which is

a/T‘l—]_ QI/TQ
Ts(rl—l) T+ H T'sm

My(z) = 2™ + %x”_l et

must be either irreducible or a power of an irreducible polynomial over
k. But My(x) is separable. Therefore it must be irreducible in ky[z].

Hence we have the expected result.

Conversely, let us now pick m a root of the above mentioned polynomials

, or in theorem .

e The condition is obvious for each case since the polynomials (1)

and |(3) are in Afzx].

e The condition follows from the condition imposed to the polyno-
mial My(x) for the cases and [(2)] Mo(x) is irreducible over the
completion field k., of k£ at the place co. i.e. there is a unique place of
k(m) over co. Same thing for the corresponding polynomial in |(3)|since
it is a degree 1 polynomial.

e The condition is obtained from the value of Ny, (7) in each
case.
For the polynomial |(1)} Ny (1) = (—1)" p@Q. i.e.
Voot () 1= Gy Voo (Ni(myie (1)) = =1 deg Q.
Likewise for the third polynomial .
Concerning the polynomial , we have Ny (1) = (=1)" pQ'/"

and then v (m) = mvm Nietx) /i (7r)) = _TﬁTz deg Q = —% deg Q.
oo’ here denotes (to avoid any confusion) the unique extension of oo in
k().

Therefore in each case |7|s = g '™ = g7 46Q = [/ where | = |L|.

e Condition is also straightforward from the hypothesis since
in case [k(m) : k] = r divides r,
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in case [k(m) : k] = r1 which is assumed to be a divisor of r,
and in case |(3)| [k(7) : k] = 1 divides 7.

Therefore the only condition missing to the bunch of requirements is the

condition )

Corollary 2.2. If m and r are coprime, then the only potential Weil poly-
nomials are the one of the form

M(z)=a"+ax" '+ + a7+ pQ

Q .
T 1S

such that the polynomial My(x) = o + Sa" ' 4+ - + T T+
irreducible in kso[z].

Proof: If m and r are coprime, then no divisor of r other than 1 divides
m. Thus the cases (2) and (3) of theorem [2.2| cannot occur. ¢

Remark 2.11. The algom'thm can also be used here (without any further
modification) to list the rank r Weil polynomials where r denotes any positive
integer. The only thing that changes is the list of potential Weil polynomials.

In addition to the set of polynomials we had before, one must also check
(using the algOM'thm each polynomaial of the form

g (lll'n_l N Ay, 1T +/,LQ1/T2-

Where o Tuns through the set D(r,m) of common divisors of r and m, and

_r
7'1—;.

2.4 Generalization for inseparable Weil poly-
nomials

As mentioned in remark 2.4] we are going to drop the last remaining assump-
tion A2.

Remark 2.12. Before going further, let us draw the attention of the reader
on the following fact:

The only sprain to the generality is how to check the conditions and
when M (x) is inseparable. In other words how to get the irreducible factor-
ization of M (x) over the completion field k. € {koo, ky}. In the previous
case, the factorization was entirely determine by the irreducible decomposi-
tion of M(x) mod p? and M(x) mod # for k, and ko respectively. Where
n=wv(disc(M(z))) + 1 and h = vy (disc (M (z))) + sr(r — 1) + 1.
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That argument is not valid anymore in this case because disc(M(z)) = 0.
But at least one knows that if M(x) is an inseparable irreducible polynomial
over a field k of characteristic p > 0, then there exists a separable polyno-

mial f(x) € klz] such that M(z) = f <a:pd> for some d € N. We will use

the separable polynomial f(x) to overcome the difficulties encountered when
M (z) is inseparable.

2.4.1 Some properties of monic irreducible polynomi-
als over a field k of characteristic p > 0

We provide in this part, as mentioned in the title, some important properties
of irreducible polynomials over a field k, with char(k) = p > 0. These
properties will be very helpful later on.

Proposition 2.7. [6, theorem A6, page 11]

Let k be a field of characteristic p > 0 and f(z) be a monic irreducible
polynomial in klx]. Then f(zP) is either irreducible or a p-th power of an
irreducible polynomial in k[zx].

Proof:[6] Let k& be a field of characteristic p > 0 as mentioned above

and f(x) be a monic irreducible polynomial in k[z]. Let g(x) be a monic
irreducible factor of f(z?). So f(2?) = g(z)" - h(x) for some n € N and
h(z) € k[z] such that g(z) does not divide h(x). Differentiating both sides
of the equation gives:
0 = ng'(x)-g(x)"~"-h(x)+g(2)"-h (x) = g(x)"~" (ng'(x) - h(x) + g(z) - I ().
Thus ng'(x) - h(x) = —g(z) - ' (x) i.e. g(z) | ng( ) - h(x). But klz] is a
UFD, g(x) is irreducible (hence prime) in k[z] and g(z) t h(z). Therefore
g(x) | ng'(x). But degg(x) > deg ¢'(x). So ng'(z) must be 0. i.e.

n=01ink or ¢'(x) = 0.

e If ¢(z) = 0 then
g(x) = g(z?) for some monic polynomial §(z) € k|x].
Thus f(2?) = g(x)™ - h(z) = g(zP)" - h(z). By differentiating both sides
of the equation f(z?) = g(«P)" - h(x), one can also see that h(x) must
be a polynomial in 7. That is h(z) = h(z?) for some monic polynomial
h(zx) € k[z].
So one obtains f(z?) = §(zP)"-h(z?). In other words f(z) = §(z)"-h(x).
But f(x) is a monic irreducible polynomial over k.
Since n > 1 we must therefore have n = 1 and h(z) = 1.
Hence f(xP) = g(aP) = g(z) is irreducible.
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° Ifn:Oinkthenn—psforsomesEN.
So f(zP) = g(x)" - h(z) = g(x)* - h(x). By differentiating both sides
of the equation f(aP) = g(z)?® - h( ), one can see that h(z) must be
a polynomial in 2? since h'(zr) = 0. So f(2?) = g(z)P* - h(z?) where
h(z) = h(z?).
g(x)P is of course a polynomial in aP. Let us set g(x)? = g(z?). Thus
F(a?) = §(a?)* - h(a?) that is f(x) = §(z)° - h(z).
But f(x) is a monic irreducible polynomial in k[z]. Therefore we must
have h(z) = 1 and s = 1. That is f(2?) = §(a?) = g(z)P.
Hence f(zP?) is a p-th power of an irreducible polynomial in k[z].

Corollary 2.3. [6, Corollary A8]
Let k be a field of characteristic p > 0 and f(z) be a monic irreducible
polynomial in k[z]. The following statements are equivalent.

(i) f(xP") is irreducible in k[x] Vn € N.
(i) f(x) ¢ kP[x]
One should keep in mind that we mean by kP = {a”, a € k}.
Proof:[0]

(i) = (i) If f(z) € kP[x] then f(:np) € k:p[a:p]
That is f(2P") = 2?" + dja?" + -+ +al_jaP +al, a; € k.

"3 p . .
Thus f(zF") = (mp +aa? et apT + an) is reducible.

In other words, f(z) € kP[x] implies f(zP") reducible in k[z]. Therefore
by contrapositive, f(zP") irreducible implies f(x) & kP[x].

(17) = (i) We proceed by induction on n. f(x) is a monic irreducible poly-
nomial in k[z]. One can then get from the proposition [2.7|that f(aP) is
either irreducible or a p-th power of an irreducible polynomial in k[z].
If f(zP) were a p-th power of an irreducible polynomial in k[z], then
f(z) would be in kP[x] which is not possible according to our hypothesis
(i)

Therefore f(z?) is irreducible.

Let us assume that f(2") is irreducible for some fixed ng € N and let
us prove that f(z2""") is also irreducible.

We set g(z) = f(zP").

g(z) is a monic irreducible polynomial in k[z]. So from proposition [2.7]
one can say that either g(zP) is irreducible or g(zP) is a p-th power
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of an irreducible polynomial in k[z]. f(2P"’) and f(x) have the same
coefficients in k. Thus since f(x) € kP[z], g(x) = f(aP") & kP[x].

If g(zP) were a p-th power of an irreducible polynomial in k[x] then
g(x) would be in kP[z]. That is not possible because of our hypothesis
(i4).

Therefore g(2?) must be irreducible in k[z]. That is f(z?""") is irre-
ducible in k[z].

Hence Vn € N f(2P") is irreducible in k[z].

O

Corollary 2.4. Let k be a field of characteristic p > 0 and f(z) be a monic
irreducible polynomial in k[z]. Let n € N.

f(xP") is either irreducible or a p™-th power of an irreducible polynomial in
k[x] for some ng € N.

Proof: Let f(x) be a monic irreducible polynomial in k[x] as mentioned
in the corollary above. We know from corollary [2.3| that if f(z) ¢ kP[z] then
f(aP") is irreducible.

Now if f(z) € kP[z] then,
Let f(z) =2+ adjz¥ '+ +d) |z +dl.
We set ny = min {Vp(af), i=1,--- 7d} where v,(a?) denotes the positive

integer ¢t such that af = bft and b; € k\ k?. Let aj be the coefficient for
which ng = v,(ay,).

notrd_1

f(.CE) _ xd_i_b]lﬁwﬁgjd—l+b§"0+f2xd—2+ . +bp 0 d— 20+ +bp +b§"0+’"d

If n > ngthen we have the following
fa?")y = %" + b]anJrTlx(d_l)p" N bf:ox(d—io)Pn NI
+b§ﬁol+rd71xpn + bzn(ﬁm
_ (xdp”*"O + b}frlx(dfl)P”*”O S biox(d*io)Pnfno 4ot

0
pdl nno po

+ by

- (o))

with go(z) = 2 4+ 0wt oo bt o B B
go(x) must be irreducible in k[ |. Indeed,

If go(z) is reducible in k[z], that is go(x) = hy(x)-ho(z) with hy(x) and ho(z)

in k[x], then we have the following:

9o ( P no) =h (xpn7n0> - ho (xpnfno). That is,
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no no no
P = (oo () = () ) (ha (o) )
= W (@) (a")
Where kP (x) denotes the polynomial obtained from h,(x) by raising
all its coefficients to the power p™.
Thus f(z") = 1Y (a")-BE" (27") ice. f(x) =y " (x)-h5" (x) which
contradicts the fact that f(x) is irreducible.
Hence go(z) must be irreducible in k[z].

In addition, since by, ¢ kP, we also have g (xpn7n°> is irreducible (see

corollary .

If n < ng then one can write down f(zP") as follows

n

F(z) = f(a"") = (g(x))"

with g(z) = 2% + ¢y 127 + - - + 17 + o € kP[x].
Claim 1: If f(z) is separable then so is g(x).
We know that f(z) is a separable polynomial and d = deg f(z). We

also know that for each root « of f(x), the p"-th root a# of a is a root
of F(x). So F(z) has at least d distinct roots (1.

Also F(z) = f(z*") = (¢9(x))”" and degg(z) = d. Thus F(zx) has a
maximum of d distinct roots (2).

(D and (2) imply that F(z) must have exactly d distinct roots.
Therefore g(z) is separable.

Claim 2: g(x) is irreducible over k.

Indeed, Let us assume that g(x) is reducible over k.

That is g(x) = hy(z) - ha(x).

Therefore (g(z))?" = (hy(z))”" - (ho(z))?" = K" (zP")-h5" (27"). Where
h?" (z) denotes the polynomial obtained from h;(z) by raising all its
coefficients to the power p".

Thus f(2*") = (g(x))"" = h?" (xp”)hg" (z7") Thatis f(z) = R (x)- hE (x)
which is impossible since f(x) is irreducible over k.

Hence g(x) must be irreducible.

So for this special case, if in addition to the hypothesis of the corollary
f(x) is separable, then f(2?") would be a p"-th power of an irreducible
separable polynomial.

Therefore in any case f(z*") is either irreducible or a p"™-th power of an irre-
ducible polynomial in k[z]. O
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2.4.2 Inseparable Weil polynomials

Let us come back to our Weil number 7 with all the notations we have set at
the beginning and k = F,(T"). We now assume that the extension k(7)/k is
not separable. That is the minimal polynomial M (z) of 7 is an irreducible
inseparable polynomial in k[z]. We know that if it is the case, then there
exists a separable irreducible polynomial f(z) € k[z] such that

M(z) = f(aP") for some n € N.

Let us first discuss the case where n = 1. i.e. M(z) = f(xP).

Let f(z) = fi(x)--- fs(z) be the irreducible decomposition of f(x) over the
completion field k, (where k, € {k,, ko }).

So M(z) = f(af) = fi(a®) - fs(2P). According to the proposition 2.7, each
polynomial f;(z?) is either irreducible or a p-th power of an irreducible poly-
nomial h;(x) € ki[z] ie. fi(zF) = (hi(x))’. In any case, the irreducible
decomposition of f(z) encodes all the irreducible factors of M(z) in k,[x]
and is enough to decide about the conditions and of definition .
Indeed,

7 satisfies condition if and only if M(z) is irreducible or a power of an
irreducible polynomial over k.

But we can say from our above discussion that M (x) is irreducible or a power
of an irreducible polynomial over k., if and only if the separable polynomial
f(z) is irreducible over k,

Likewise, one can properly check in this case the condition of defini-
tion using proposition where M (z) is replaced by the irreducible sep-
arable polynomial f(z). In other words the condition is satisfied by the
polynomial M (x) if and only if it is satisfied by the polynomial f(z). That

is Res <fz(x), ﬂx)) # 0 mod p, Vi € {1,--- s}. Thanks to corollary .

fi(z)

Now if M (z) = f(«?") with n > 1 then the same idea holds. That is, the
irreducible decomposition of f(x) = fi(z)--- fs(z) over the completion field
k. encodes the irreducible decomposition of M (z) over k,.

M(x) = f(2") = fiz”) - fo(a™)

From corollary one can draw that each f;(a?") is either irreducible or a
p"°-th power of an irreducible polynomial in k,[z] for some ny € N.
Therefore one can use the irreducible decomposition of f(z) in k,[z] to check
the conditions and of definition . Exactly as it happened for the
case n =1,

7 satisfies condition if and only if M (z) is irreducible or a power of an
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irreducible polynomial over k.
M (z) = f(2P") is irreducible or a power of an irreducible polynomial over ko,
if and only if the separable polynomial f(x) is irreducible over k.. Thanks

to corollary [2.4]
Following the same idea, the polynomial (or a root 7 of the polynomial)

M (z) satisfies the condition of definition [2.1}if and only if

Res (fl-(xpn), ff\é(fg» # 0 modp, Vi € {1,---,s}. Thanks once more to

proposition [2.4] and also to corollary [2.1]

Remark 2.13. A conclusion one can draw from our discussion above is that,
modulo some slight changes, one can use the same algorithm[2.1] in the case
where the polynomial M (z) is inseparable. After those minor changes, we
get the following algorithm.

T p"ro
Input : M(z) = 27" 4 a12?" "0~V . 4 aq, 2" + p@Q = f(2?").
Where f(x) = 2™ + a12™ ' + -+ + a,y 17 + pQ.

Algorithm 2.2. (1 = p'r, s = [422] = [£20])

1. Compute h = v (disc (f(x))) + sro(ro— 1) + 1

2. Set fo(x) = 2™ + %xm—l + %xro_z +-ot szz%ilnsx + /LTﬂ?To»S'
If fo(z) is not irreducible modulo % then output False and ezxit.
else move to the next step.

3. Compute u = v(disc (f(x))) + 1 where v is the valuation associated to
the prime p, A-characteristic of L.

4. Compute f(x) = f(z) mod p* and provide the irreducible decomposi-
tion f(x) = fi(x)- fo(x)- - fs(x). That is the irreducible decomposition
of M(x) is given by M(x) = f(a*") = fi(a?") - fo(a?") - fo(z?")

If for all j € {1,---s} Res (fj(x), %) #0 mod p,
then output True and exit.
Else: output Fulse and exit.

Remark 2.14. The above mentioned algorithm is based on the fact that the
irreducible decomposition of the separable polynomial f(x) in k.[z] encodes
the irreducible decomposition of M (x) = f(z*") in k.[x]. We mean that one

can get a 1-to-1 map between the irreducible factors of f(x) and those of
M(z) = f(2P") in k.[z].
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CHAPTER 3

Description of the endomorphism rings of
Drinfeld modules in a given isogeny class

We know that the endomorphism algebra is an isogeny invariant. We consider
here isogeny classes of Drinfeld modules whereby endomorphism algebras are
field i.e. End¢ ® k = k(m) where 7 is the Frobenius endomorphism of Drin-
feld modules ¢ in the chosen isogeny class.

A natural question that arises and that we aim to answer in this chapter is:
Which orders of End¢ ® k = k() occur as endomorphism rings of Drinfeld
modules in our chosen isogeny class?

Let us clearly point out that this question is different from the one answered
by Kuhn and Pink in [I4] and by Garai and Papikian in [7]. The previ-
ously mentioned authors provided efficient algorithms which compute, given
a Drinfeld module ¢ the endomorphism ring Enda.

As we have seen before, a general Weil polynomial has the form

M(z) = 2" + a1z 4 - a3+ pps?
where 11 = [k(7) : k] and 7y = \/dimyx) Endg @4 k.
Therefore our restriction on the endomorphism algebra (that must be a field)
leads to the restriction to isogeny classes defined by Weil polynomials of the
form

M(z)=a2"+ax"  + -+ a2+ pp”
Before answering our question, let us recall the notions of Tate modules and
Dieudonné modules which are very important to answer the question.

3.1 Tate module of a Drinfeld module

Let ¢ be a Drinfeld module over the A-field L with A-characteristic p,. v
denotes the place of k associated to the prime p,. Let w be a place of k
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different from v and p,, denotes the corresponding prime. [p”] denotes the
group of p’-torsion points of .

Definition 3.1. The Tate module of 1 at w is defined by the inverse limit
T ==l Plpr] = Homa, (ku/Au, ¥[p]) where [p] = | vp2]

n>1

Remark 3.1. (Recall)
Let ¢ and v be two isogenous Drinfeld modules defined over the A-field L.
Homyp(¢,) denotes the group of isogenies from ¢ to 1. Let u: ¢ — 1 be

an isogeny. If y € ¢[p] then u(y) € ¥[pl].
To u € Homp(p,v) ® A, corresponds therefore a canonical morphism of
A,-modules u* € Homy, (T,¢0,T,1).
Theorem 3.1. [Tate, [10, see theorem 4.12.12]]
Let ¢ and v be two 1sogenous Drinfeld modules over the finite A-field L as
mentioned in the previous remark. Let G = Gal(L/L). The canonical map
HomL(¢7 ¢) ® Aw ;> HomAw[G] (ngb, Tw¢)
is a bijection (as morphism of A,-modules).
Corollary 3.1.
o [f ¢ =1 then we have the bijection

Endp¢ @ A, — Enda,qT.,¢

o We denote V,¢ =T, R k,.
Endro ® k, = Endkw[g]qub
as k,,-algebras.
Remark 3.2. Let m be the Frobenius endomorphism of the Drinfeld module
¢. We denote M(x) the minimal polynomial of ™ over k.
The characteristic polynomial of the action of ™ on the Tate module T, ¢ is

M(z)" where t = dimg(r Endg @ k. If t = 1 as it will be the case in the
sequel, then M (x) is the characteristic polynomial of the action of m on T,,¢
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3.2 Dieudonné module of a Drinfeld module

We want now to discuss what the so-called Tate’s theory says when one
works at the place v defined by the A-characteristic of the Drinfeld module
¢ defined over the finite A-field L.

Let us recall that the Tate’s theory at the other places w, strongly relies on
the fact that the polynomial ¢, (x) is separable. That means ¢[p’] (as group
scheme) is étale. This is not true anymore at the place v. That difficulty is
overcome by considering the notion of Dieudonné modules. Before moving
forward, let us recall the following theorem known as Dieudonné-Cartier-Oda
theorem.

Theorem 3.2. Let m € N and L be a degree m field extension of A/p,. Let
K, be the unique degree m unramified extension of the completion field k,
of k at the place v. Let W be the ring of integers of K,. Let F and V be
indeterminates such that

FV =VF =y,

FX=0(ANF and \V=Va(\) YAe W

where o : W — W s the unique automorphism induced by the Frobenius
rdespo of [,

There is an anti-equivalence of categories between the category of finite com-
mutative group scheme over L of finite A/p,-rank and the category of left
WIF,V]-modules of finite W -length.

Remark 3.3.

e Given a finite commutative L-group scheme S of finite A/p,-rank, we
denote D(S) the corresponding left W |[F, V]-module of finite W -length.

o D(S) is W-free and rankay,, S = rankw D(S).

o W is also known as the ring of Witt vectors over the field L and since
L is finite (and therefore perfect), W is a discrete valuation ring and
L 1is its residue field.

Definition 3.2 (Dieudonné module at the place v).
Let 1) be a Drinfeld module over the finite A-field L with m = [L : A/p,].
The Dieudonné module of 1 is defined by the direct limit

Ty == lim D(¥[py])

where D([p?]) is the left W[F, V]-module associated to the L-group scheme

v

Y[p?] as mentioned in the previous remark.
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The corresponding Tate theorem is given below.

Theorem 3.3. [Serre-Tate, [11l, proposition8.2, corollary 8.3, theorem 8.4]]
The canonical map

Homy, (¢,v) @ Ay — Homwpy) (Tot), Ty9)
is a bijection (as morphism of A,-modules).
Remark 3.4. [see [11)]]
o If ¢ =1 then we have Endy ® A, — Endw gy Ty

o We denote Vi) = Typ @ K,,. We have Endy @k, — Endg,(r,r-1 Vo).
o T, /p"T,) can be identified to D(¢[pl]).
o The W[F,V]-module D(1[p?]) can be decomposed into its étale and lo-

(%

cal parts. DY[py]) = D (YP5])ie © D (W[p7]) g
Actually the polynomial yn(z) = x"m 8% . g () where g,(z) is a sep-
arable polynomaial.

D ([p3])io. = D ([p3]ioc) and D (V[p7]) e, = D (Vlpy]a)
where ([Pl = Spee (Lla]/{a™%¥%)) and p[p]a = Spec (Lla]/(g,(2))).
That means the Dieudonné module can also be decomposed as

va = (TU¢)ZOC b (Tvlp)ét .
e The Frobenius m of ¢ acts on Ty via m = F™.

e F (and therefore m = F™ ) acts on the local part D (¢[p,]),,. as a nilpo-
tent element and acts on the étale part D ([p,]),, as an isomorphism.

For more details on this part, one can follow [I1], §6, 7 and 8§].
The following dictionnary can be helpful:

e Q=F,(C) ~ k=F,(T)
® F(C/,OC/) ~ A:FQ[T]

¢z~ py

o Fyllz]] ~ A,
o Osllz]] ~ W
o Os[l2]l [7] ~ WIV]

Abelian sheaf 7 ~» Drinfeld module ¢

Dieudonné module (]—A"  F ) ~» Dieudonné W[F,V]-module T, ¢
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3.3 Main theorem

Before giving the main theorem, let us lay the groundwork with the following
lemmas and remarks.

Lemma 3.1. Let M(x) = 2" +ayx" '+ - +a,_jx+up™ be a Weil polynomial
as described in the previous chapter.

The height h (see deﬁnition of the isogeny class defined by M (x) is the
sub-degree of the polynomial M (x) mod p,. That is

M(z)=2"+a2"  + - + a,_p2" mod p,.

Proof: Let us first of all recall that the height is an isogeny invariant.
That means two isogenous Drinfeld modules share the same height.
Let ¢ be a Drinfeld module in our isogeny class. We recall that the Dieudonné
module T,¢ of ¥ is a W[F, V]-module and the Frobenius endomorphism
acts on it via m = F™ as we mentioned before.
m = F™ acts W-linearly on the Dieudonné module 7,1 with the same char-
acteristic polynomial (in A[x]) as it does as A,-linear endomorphism of the
Tate module T, for any w # v (see [B, proof of theorem A1.1.1] or replacing
Tate modules by Dieudonné modules in the proof of theorem 4 in [I7, page
167]).
But the characteristic polynomial of the action of 7 on the Tate module T,
is the minimal polynomial M (x) of 7 over k (since End¢ @ k = k(w) see
remark .
Therefore M(z) is also the characteristic polynomial of the action of the
Frobenius endomorphism 7 = F™ on the Dieudonné module T},1).
One gets from there that M (z) mod p, is the characteristic polynomial of
the action of 7 on T,¢0/p, T, = D (¢[p,]) (see remark [3.4).
As mentioned in remark [3.4, we also know that D (¢[p,]) decomposes (via
the corresponding group scheme) into its étale and local parts i.e.

D (¥[po]) = D (¥[po])10e © D (¥[po]) -

Therefore the characteristic polynomial also splits into
M(z) = Myoe(x) - Mg (x) mod p,

where Mj,.(z) mod p, (resp. Mg (x) mod p,) is the characteristic polyno-
mial of the action of 7 on the local part D (¢[p,]),,, (resp. on the étale part
D (¢[py))s,). That means,
deg (Mloc($) mod pv) = Tank:WD (w[pv])loc and
dog (M () mod p,) = rankyD (1[p.]),
But we have by the definition of the height of ¢ (see definition

Yy, = rrdegpy 4 o prdegpo—l oL 4 Oé(rfh)degpv’rhdegpv

= (rrmdesve g pOmdesbt g 0) phdesp.

41



3.3. MAIN THEOREM

with Q(r—h) deg p, 75 0 That iS,
(r—h) degpv (r—h)degpy—1 h deg py h deg py
Yy, ()= 21 + aqad + - ap_p) degpv> x? = g(x)-2?

where g(x) is a separable polynomial (since o(,—p)degp, 7 0) and

UlpJe = Spec (Llal/(9(x))) and Glpulioe = Spec (Llz]/ (20" "))

where L is an algebraic closure of L.

As we have mentioned in remark[3.4] 7 acts on D (¢[p,]),,. (resp. D (¢[p,])s)
as a nilpotent element (resp. as an isomorphism). That means the character-
istic polynomial M;,.(z) mod p, is a power of 2 and the characteristic poly-
nomial Mg (x) mod p, has only non-zero roots (non-zero eigenvalues). In
addition, deg (Mg (z) mod p,) = rankw D (¢[p,)e;) = r—h (see remark [3.3).
Therefore

M(z) = Mipe(z) - Mgp(2) = 2" (2" "+ 12" "'+ -+ a,_;) mod p,

and the result follows.

¢

Corollary 3.2. Let M(x) be as in the previous lemma.
Mioe(x) is the irreducible factor of M(x) in ky[z| that describes the unique
zero of m in k()

Proof:

e First of all Mj,.(x) is an irreducible factor of M (x) in k,[z]|. Indeed,
if Mipe(x) = fi(x) - f;(z) € k,[x] is a product of two irreducible factors
of M(z) in k,[z], then since M,.(z) = 2" mod p,, fi(z) and f;(z)
would have a common zero modulo p,. That is not possible since M (x)
is a Weil polynomial.

o If f; (x) is the factor of M(z) in k,[z] describing the zero p;, of 7 in
k(m), then the constant coefficient ag;, of f;,(z) must be divisible by
p,. Indeed,

V() > 0 ie. Do, (m) > 0. In other words v(m;,) > 0,

where 7;, denotes a root of f; (z).

That means, Uiy, (x;,) (Tiy) > 0 i.e. viy(m;,) > 0.

As a result v, (Nkv(mo)/kv (7i,)) > 0 and thus

v (Nkv(ﬂ'io)/k'u (Wio)) > () since Nkv(ﬂ'io)/kv (771'0) - ]CU.

But the constant coefficient of f; (), ag;, = (—1)degf"0(w)Nkv(mo)/kv (Tig)-
That means we also have v(ag;,) > 0 and the claim follows.

e Since M (z) is a Weil polynomial, there must be only one such factor
fio(x) of M(x) in k,[z]. Since M,.(r) = 2" mod p,, the constant co-
efficient of Mj,.(z) in A,[x] is divisible by p,.
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Hence Mj,.(z) = f;,(x) is the irreducible factor of M(x) in k,[z] de-
scribing the zero p;, of 7 in k(7).

Before moving forward, let us formulate the problem.

Formulation of the problem:

Yu in [26] basically showed that for an isogeny class of rank 2 Drinfeld
modules, the orders occurring as endomorphism ring of a Drinfeld module
are either (in case the endomorphism algebra is not a field) the maximal
orders in the quaternion algebra over k ramified at exactly the places v and
00, or those orders O of k(m) containing 7 that are maximal at all the places
lying over v i.e. such that O ® A, is a maximal A,-order of the k,-algebra
ky().

Now the question is: What about Drinfeld modules of higher rank (r > 3)?
Of course for an order O of (the endomorphism algebra) k(m) to be the
endomorphism ring of a Drinfeld module, it is necessary that the Frobenius
m € O. But must we have O maximal at all the places of k(7) lying over
the place v? In other words, must we have O ® A, maximal A,-order of the
k,-algebra k,(m)? The answer is No! and we provide below an example of a
rank 3 Drinfeld module whose endomorphism ring is not at all places of k()
lying over the place v maximal.

Before the example, let us recall the definition and a fact concerning the
notion of conductor of an order.

Definition 3.3 (Recall). A=TF,[T], k=F,(T)

Let F/k be a function field and O,q. be the ring of integers of F. Let O be
an A-order of F'. The conductor ¢ of O is the mazimal ideal of O which is
also an ideal of Opap. It is defined by ¢ = {x € F' | 200, C O}.

Remark 3.5. As a very well known fact, disc(O) = N (¢) disc (Opaz)-

Where disc(?) denotes the discriminant of a basis of the corresponding free
A-lattice and Np(?) denotes the norm of the ideal in argument. We recall
that if B is a prime of F above the prime p of k then Ng, (B) = p' where §
denotes the residual degree of B | p. In addition Npi(?) is multiplicative i.e.

New (B1B2) = Nejw (Br) Neyr (Ba)-

Example 3.1.

A= ]F5[T], k= F5(T), L= F125 = F5(O[) with Oz3 +3a+ 3 =0.

po = Kery=(T). M(z) =2*+ (T + 1)a* + (T?* + 3T + 4)x + 4T°.
One shows using the algorithm that M(z) is a Weil polynomial.
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disc (M (z)) = T*(T+4)*(T*+4T+2). Following the paper [21] one computes
the following:
The discriminant of the cubic function field k() is

A = disc (k(r)) = (T +4)2(T? + 4T +2). We set [ = /20 — 7,

The mazimal order of the function field k(w)/k is the order generated by

as B+ astPai+i>
2 =

(wo, w1, ws), wherewy =1, wy =T =71+2T+2, wy = =

Wath
382 +c; =0 mod [
B3+ c1Bs+ co =0 mod I?

ap = =203 =% mod [
Where c¢; and co denote the coefficients of the so-called standard form of the
cubic polynomial M (x). We will come back later on to this.
After solving the system, one gets 262 =4 and ap = 3.
That is, wy = 3+4(7r+2T+2%+(ﬂ+2T+2)
We now claim that the conductor ¢ of O = A[r] is¢ =T-O+(r—3T+3)-O.
Indeed,

M(z) = z(x — 3T +3)> mod T
We also have (m — 3T + 3)(Aowo + Awy + Aawse) € Alr| for \; € A. Because
(m1—3T+43)wy = (T+1)7m+4T%+4T +3 € A[r]. That means 7 —3T+3 € ¢.
Therefore T- O+ (r —3T +3)- O Cc G O.
Let us consider the canonical morphisms

#1 (A/T - A)lz] ©2 A/T-A)z
Alr] = Alal/M (@) - Ala] =2 Jo=mm RS = o
~A/T-A

T-O+ (r—=3T+3)-0 is a mazimal ideal of O as kernel of the morphism
pooy since Alr]/Ker(psopr) =~ Im(psopy) =~ A/T- A is a field. Therefore
c=T-0+(n—-3T+3)-0.

M(z) = x(x+3)* mod T. Since M(z) is a Weil polynomial, the irreducible
decomposition of M(x) over the completion field k, is of the form

M(x) = My(x) - My(z) € kylz]. That means p, = T splits into two primes
p1 and py in k().

As a matter of fact, any prime ideal p of O containing T is either
T-O+(r—=3T+3)- O orT-O+7-0. Indeed,

First of allT-O+ (r —3T+3)-O and T - O + 7 - O are mazimal ideals of
O = A[r| as kernel of the canonical morphisms

#1 (A/T - A)lz] ©2 A/T-A)z
Alr] = Alal/M(@) - Ala] =2 Jro=m RS = s
~A/T-A

44



3.3. MAIN THEOREM

and
al (A/T - A)z] 5 AJT-A)z
Alr) = Alal /M (@) - Ale) = o s = S
~A/T-A

respectively.

Since M(z) = x(x — 3T + 3)> mod T and M(7) =0, we have

m(m — 3T +3)> € T - A[r] C p. But p is a prime ideal of O. That means
meporm—3T+3€p. In other words
T-O+(r—=3T+3)-OCporT-O+7-OCp

From the maximality of these ideals we conclude that
p=T-O+ (7 —=3T+3)-Qorp=T-O+x-0.

We assume then WLOG that po NO =T - O+ (r —3T+3)- O =c.

That is, po | ¢ and p; 1 c.

The norm of the conductor is

Ny (¢) = T? since disc (M (z)) = T? - disc (k(w)).

Therefore we have only two possibilities for orders occurring as endomor-
phism of a Drinfeld module: A[n] and the maximal order Opqay. This is due
to the fact that the norm of the conductor of any order O containing properly
Alr] (i.e. Alr] @ O C Opaz) is a square of a proper divisor of T* and thus
must be a unit. In other words disc(Q) = disc (Opaz)- i.. O = Onag.
After some computations (using a code we implemented in the computer al-
gebra system SAGE) we found the following:

o For ¢ = —a73 + 2a27% + o1 we have:

34 AT+ 207 + 2) + (7% 4 207 4 2)°
a or

In other words wy € Endg. Therefore Endd = O,qs.

€ L{r} and ¢r-ws = w7

%)

o For pr = 73+ 72 + 7 we have:

3444 20 4+ 2) + (7P + 2 + 2)?
a Ur

Since we have only two possibilities for Endiy, we can conclude that
Endy = Alr].

Alr| is therefore the endomorphism ring of a Drinfeld module but A[r]
is not mazimal at at least one of the places of k(m) lying over the place
v because its conductor ¢ is not relatively prime to p, =T

¢ L{1} and a fortiori wy ¢ Endi.

%)
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One can notice in the example above that M,.(r) = M;(x) = x mod p,.
That means deg M;,.(x) = 1. Thus any order containing 7 is maximal at the
corresponding place vy (which represent the zero of 7 in k(7)).

Concerning the étale part,

Mg (z) = My(z) = (x + 3)* mod p,. i.e. deg My () = 2.

We have then here “enough” p,-torsion points.

This example already encodes some tips for the generalization.

Definition 3.4. [10, remark 4.7.12.1][recall]

Let ¢ and v be two isogenous Drinfeld modules over L. Let u : ¢ —> 1, u €
L{7} be an isogeny from ¢ to 1.

W is called the quotient of the Drinfeld module ¢ by the kernel G of u and
denoted ¢ == ¢/G.

Lemma 3.2. Let ¢ be a Drinfeld module over the finite A-field L whose en-
domorphism algebra is a field i.e. Endp®k = k(m), where 7 is the Frobenius
endomorphism of ¢. Let O be an A-order of k(m) containing m. We choose
a place w of k different from v.

If Endp @ A, 2 O ® A, as A,-module then there exists a Drinfeld module
quotient ¢ = ¢/Gr such that

Endyp @A, =0 ® A, and Endy @ A, = End¢ @ A, for all places v # w.

Proof: With the hypotheses of the lemma,
let us assume that Endeo ® A, # O ® A,. We are looking for an isogeny u
that changes (via its kernel) the Drinfeld module ¢ into a Drinfeld module
1 so that the endomorphism ring of the resulting Drinfeld module coincides
at w with O.
O is an A-order of k(m) containing 7. That means O ® A, is an A,-order
of the k-algebra k,(7) = End¢ ® k,. We also know from the corollary
of the Tate theorem that there is a canonical isomorphism of k,-algebras
End¢ @ k, — Endy,, V¢, where V,0 = T,0 @ k,,.
Since in addition w € O, V,,¢ therefore contains an A,-lattice £ containing
T,¢ and stable under the action of 7w such that the corresponding order
Enda, L= 0O ® A, as A,-modules. We consider then such an A,-lattice
L. We have then T,¢0 C L C V,,¢.
Let (t1;--- ,t.) be an A,-basis of T,,¢ and (z1,--- ,2,) be an A,-basis of L,
where r = rank¢. M, denotes the matrix in ., (A,) such that

tl 21
= M,
t, Zr
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Let s = w (detMy) be the valuation (wrt w) of the determinant det M.
detMy = app;, where p,, is the uniformizing element of the place w and ay is
a unit in A,. The reader can notice that s > 0 because Endp® A, 2 OR A,.
We consider the following map

Co(My)t: T, — L
11 21
— QP
tr 2y

The kernel of this map is kerCo(My)" = My - ¢[p].

We recall that Co(My)* (as one can guess) denotes the transpose of the co-
matrix of the matrix Mj.

Indeed,

if \it1 + -4+ N\t € My - ¢[pi}] then

Co(Mo)" - (Mty + -+ Arty) € Co(Mo)" - Mo - ¢[p,] = pZ, - ¢[pi] = {0}
That is, Co(My)" - (A1t1 + -+ - + A\t,) = 0 and thus

Aty 4+ F Nt € K@TCO(MO)t.

Conversely if \it1+- - -+ t, € KerCo(My)! then Co(Mp)t- (At + - - - + \t,)=0
Le. apps (Mz1 + -+ + A\pz) = 0 and therefore A2y + -+ 4+ 2. € @[p3].
That means Aty + -+ A\t = Mo - (M1z1 + -+ N\ez) € My - ¢[p?].

Hence kerCo(My)" = My - ¢[ps].

Applying the first isomorphism theorem to the morphism of A, -modules, one
gets Tw¢/MO ) QS[piJ] =1Im (CO(MO)t) = <p2217 U apfuZT>'

Let Lg = (p? 21, ,p52) be the A,-lattice generated by (p? 21, ,p52).
Tw(b/MO ) ¢[PZ] =L = ne L.

We set Gy = My - ¢[p?] and we consider the Drinfeld module quotient
1 = ¢/G defined over L.

The existence of the Drinfeld module ¢ is guaranteed by the fact that the
separable additive polynomial

whose kernel G ( which is stable under the action of the Frobenius endo-
morphism 7 mainly because 7 € O), lie in L{7} (see [10, proposition 1.1.5
and corollary 1.2.2]), in addition to the fact that the local part of the group
scheme H = Spec (L[z]/(u(x))) is trivial because u € L{r} is separable (see
[10, proposition 4.7.11, for t=0]).

We have then T,,0) = T, /M, - ¢[p3] = L =p? - L as A,-modules.

Since Gz = My - ¢[p] and L are stable under the action of 7, so are T},1) and

47



3.3. MAIN THEOREM

L. In other words T,v = L, as A, [r]-modules.
That means End, 1Y = Endy, - Ls.
One also easily checks that (since L5 = p? - £) £ and L, generate the same
order i.e. Enda, Ls = Enda,L.
Therefore Enda, T, = Enda, L. Applying the Tate theorem , one
gets then Endy ® A, = EndAw[Tr]Twl/J = EndAw[w]E 20®A,.
At all the other places v # w, v of k, we have the following:
0— G = My-op?] - s ¢ ——— 1) —> 0 is an exact sequence.
G has no non-trivial p,-torsion points. Applying the Tate theorem at the
place v to this short exact sequence, one gets the exact sequence
0— T, —— T,1) — 0. That means T,¢ = T, as A,-modules.
In other words Endy ® A, = Enda, 1,0 = Enda,qT,¢ = Endd @ A,.
O

Lemma 3.3. Let ¢ be a Drinfeld module over the finite A-field L whose
endomorphism algebra Endp @ k = k(m) is a field, where w denotes the
Frobenius endomorphism of ¢. Let O be an A-order of k(m) containing
and such that O is mazimal at the unique zero vy of m in k(m) lying over the
place v of k.

If O® A, % Endp ® A, then there exists a quotient Drinfeld module

= ¢/Gr such that

Endp® A, Z0® A, and Endy ® A, = Endp ® A,, at all the other places

w#v of k.

Proof: With the hypothesis of the lemma,
we assume that Endo @ A, 22 O ® A, as A,-modules. That means there
must exist at least one other place vy # vy of k(7) lying over the place v of k
(i.e. ¢ is not supersingular) such that the completion O,, of O at the place
vy is different from the completion (Ende), of End¢ at that same place v;.
Let vy, vy, -+ ,vs be the places of k() lying over the place v of k. We choose
vo here to be the unique zero of 7 in k() lying over the place v.
We are looking for a quotient Drinfeld module ¢ = ¢/G such that
Endyp® A, 20 ® A, and Endy ® A, = Endp ® A, at all the other places
w # v.
The idea here is to act on the étale part of the Dieudonné module T,¢ of ¢
so that the resulting endomorphism ring meets our needs.
Let then M (z) be the minimal polynomial (Weil polynomial) of 7 over k.
We know that the places vy, vy, , v, are described by the irreducible fac-
tors of M(x) in k,[x]. Let then M (z) = My(x) - My(z)--- My(x) € k,[x] be
the irreducible decomposition of M (x) over the completion field k.
We also know that the irreducible factor My(x) =: M,.(x) describing the
zero vy of m in k() is the characteristic polynomial of the action of 7 on the
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local part of the Dieudonné module (T,¢),,. (see corollary [3.2).
In addition, My(z) = 2" mod p,, where h is the height of ¢ (see lemma.
Mg (xz) = My(x)--- Ms(z) is the characteristic polynomial of the action of 7
on the étale part of the Dieudonné module (7,¢),,. In this case, we there-
fore clearly see that ranky (T,¢), = deg Me(x) > 2. Because if we had
deg Me(z) = 0, ¢ would be supersingular and if we had deg M (x) = 1,
Endgp ® A, and O ® A, would be both maximal orders of the k,-algebra
k,(m) and thus we would have
Endp ® A, =2 O ® A,, which in either case contradicts our assumption.
We recall the notation K, which is the unique degree m unramified extension
of k, and W its ring of integers.
We know that O ® A, = H O,, is an A,-order of the k,-algebra

vilv
ky(m) = Endg ® k, = Endg,[pyVo¢ (see remark .
ie. O ® Av - kv(ﬂ') = Ende[F’V}VU¢
Also, O is maximal at v i.e. the completion O,, is the maximal order of the
field k,(mo) = k,[x]/My(z) - ky[x].
Thus there exists a W-lattice Ly of (V,0),, = (T00) ® K, containing (T,,¢),
stable under the actions of F" and V/,
(ie. To¢p = (To@) 100 © (To) gy € (To) 10 © Lo € Vi = (Vo) & (Vo) )
such that the corresponding order Endw ((1y¢),,.® Lo) = O ® A,.
We set | = r — h = deg My (z) > 2. Let (t1,--- ,t;) be a W-basis of (T,¢),,
and (z1,-- -, 2) be a W-basis of Ly. Ny denotes the matrix in .#,; (W) such

that
t 21

4] 2]

Let s = v (detNy). Since Endp ® A, =2 EndwipTyd # O @ Ay, so > 1.
Since K, is an unramified extension of k, and the corresponding ring of
integers W is a discrete valuation ring, we keep (by abuse of language) the
same notation v for the place of K, extending the place v of k,. p, denotes
the corresponding prime.

det Ny = Bop;°, where [y is a unit in W. The same way we did before, let us
consider the morphism

CO(NO)t : (Tv(b)ét — Ly
tl tl 21
: — Co(No)' | = | = Bowy?
t t 2l

where C'o(Np)" denotes the transpose of the co-matrix of Ny. We recall that
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Co(Ny)' - Ny = det Ny - IdentityMatriz.
The kernel of Co(Ny)" is given by Ker (Co(Ny)') = Ny - D (¢[p]),.-

D (¢[ps])y, is the W[F,V]-module associated to the group-scheme ¢[p3°]e
(see remark [3.3)). Indeed,

Let Mty + -+ XNty € No - D (¢[p2°]),. We have then,

Co(No)'-(Ats + -+ -+ Nitr) € CoNo)-No-D (6]}, = p20-D (6p2]) o {0}

We recall that D (4[p?]) can be identified to T,,¢/p? - T,¢ for any n € N,
Conversely, let Ajtq+- - -+)\ltl € Ker (Co(Np)t) i.e. Co(No)t-(Aity + -+ -+ Nity)=0
That means [Bop°(A121 + - -+ Njz;) = 0 and then

Mzt )\lzl € D (¢[py ])ét'

But /\1t1 + o+ Nty =Ny - ()\121 + -+ )\lZl> € Ng-D (¢[ zo])ét'

Therefore Ker (Co(Ny)*) = Ny - D (¢[ps°]) .

Applying the first isomorphism theorem to our morphism, one gets that

(Tu6)s [No - D (Blp]), = I (Co(No)!) = (pioz1, - ,pio ).

Let L, be the W-lattice generated by (p0zy,--- ,piz).

Le. (Tug)g /No - D (9[pi])e = Lso-

No- D (¢[p3°]),, is stable under the actions of F' and V' because N, commutes
with the actions of F' and V' (via the stability of (T,¢), and Ly under those
actions) and D (¢[p:°]) is by definition stable under those actions (see theo-
rem (3.2)).

Let G, be the finite commutative L-group scheme associated to the W [F, V-
module Ny - D (¢[p°])e, (theorem [3.2). We consider the additive separable

polynomial

whose kernel is G,. By definition, Gy, is stable under the action of 7 = F™.
For the same reason as the case w # v in lemma 3.2 v € L{r} and u is
an isogeny from the Drinfeld module ¢ to a Drinfeld module . That is,
o7 - u=wu-Yp. In fact ¢ := ¢/Gy,.

The Dieudonné module of 1 is given as follows:

va =T, <¢/Gso) = Tv¢/D(Gso) = ((Tv¢)loc b (Tv¢)ét) /NO -D (¢[ quo])ét‘
That is,

va = (Tv¢)loc ©® (Tv(b)ét /NO ' (¢[ f}o])et = ( v(b)loc ©® ‘ESO

One easily checks that since L,, = p3° - Lo, EndwLs, = Endw Ly.
Therefore Endw ((T,0),,. ® Ls,) = Endw (Tv0),,. ® Lo) = O® A, and from
the stability under the actions of F' and V', one gets

O@AU = Endw[pjv] ((Tv¢)loc ©® ﬁo) = Endw[p,v} ((Tvgb)loc ©® ‘Cso) = E’fldw[ﬂv]Tvi/J
Hence O ® A, = Endy ® A, (Thanks to the Tate’s theorem |3.3]).
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At all the other places w # v we have the exact sequence

0 — Gy ¢ ———= 1 =0¢/Gy, — 0

Applying the Tate’s theorem at the place w, we get
0—1T,0— T, —0

In fact by definition of the Dieudonné functor in theorem and from the
Lagrange theorem for finite group scheme, we have the following:

If ro = rank (Ny - D (¢[p:°])) then pl° - Gy, = {0} i.e. G5, C @[pi°]. That
means the Tate module T,,G4, = {0} for any place w # v.

Hence we get from the above exact sequence that T,,¢ = T,,1).

In other words

Endop®A, = EndAw[ﬂ-]Tw¢ = EndAw[ﬂ]Tw’gD >~ Endy®A,.

Theorem 3.4. A=F,[T], k =F,(T) and p, is the (generator of the) kernel
of the characteristic morphism v : A — L defining the finite A-field L.
M(z) =a"+aa" + -+ a,x+ ppl € Alz] is a Weil polynomial, where
m = |[L:A/p,-A]l. Let O be an A-order of the function field

k(m) = klx]/M(x) - k[x]. Let vy be the unique zero of w in k(m) lying over the
place v of k.

O s the endomorphism ring of a Drinfeld module in the isogeny class defined
by the Weil polynomial M (z) if and only if O contains m and O is mazimal
at the place vy.

Proof: With the hypotheses of the theorem, we have the following:
If O = End¢ then it is clear that O contains the Frobenius endomor-
phism 7. Yu proved in [26] that End¢ is maximal at the zero vy of 7 in k(7).

Conversely, let us assume that O contains 7 and O is maximal at the
place vy.

Let ¢ be any Drinfeld module over L in the isogeny class defined by M (z).
We know that O and End¢ differ at only finitely many places, since both are
orders of the same function field k(7). That means there exist finitely many
places wy, - -+ ,w, such that

ORA, = Endp®A, for all places w except (may be) at w € {v, wy, wa, -+ ,ws}.
For w = wy, one can get from lemma |3.2] a Drinfeld module ¢; defined over
L such that

Endp, ® A, =0 ® A, and

Endp, ® A, = Ende ® A, at all other places v # wy,v.

That means End¢; @ A, = O ® A, for all places w of k except (may be) at
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w e AV, wy, w3, ,ws}

Repeating the process at all the places w;, one gets from lemma[3.2]a Drinfeld
module ¢ defined over L such that

Endp® A, = O ® A, for all places w of k with w # v.

Concerning the place v, we know in addition that O is maximal at the unique
zero vg of 7 in k(7) lying over the place v.

We can therefore apply lemma [3.3| and get the following:

e If ¢ (equivalently our isogeny class) is supersingular, then we already
have Endp ® A, = O ® A, as maximal order of the k,-algebra (which
is actually in this case a field) k, (7).

e If © (equivalently our isogeny class) is not supersingular and
Endp ® A, 22 O ® A,, then there exists (see lemma a Drinfeld
module 1) = ¢ /G such that
Endyp® A, =0 ® A, and
Endyp® A, = Endp ® A, = 0O ® A, at all the other places w # v.
In any case, we get a Drinfeld module ¢ such that
Endy ® A, = O ® A, at all the places w of k.
Hence O = Endy.
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CHAPTER 4

L-isomorphism classes of Drinfeld modules
defined over a finite field L

We keep the same notations,

[F, is a finite field with q elements.

A =TF,[T] is the ring of polynomials with coefficients in F,.

L is a finite A-field defined by an F,-algebra homomorphism v : A — L.
L{7} is the twisted ring of Ore polynomials.

Introduction

While going through the Drinfeld modules theory, one can notice the won-
derful resemblance with elliptic curves. This resemblance has been a great
source of inspiration for mathematician involved in that theory. It is for
instance known from the elliptic curves theory that, two elliptic curves de-
fined over a field L are isomorphic over L if and only if they have the same
J-invariant. Potemine has proved this result in [19] for the case of Drinfeld
module, after having defined the notion of J-invariants of a rank r Drinfeld
A-module. It is also known from theory of elliptic curve that Hasse invari-
ants and j-invariants determine the L-isomorphism class of an elliptic curve.
Likewise in the theory of Drinfeld modules, we define in the sequel the notion
of fine isomorphy invariants for any rank r Drinfeld A-module. Afterwards,
we prove that the fine isomorphy invariants together with J-invariants de-
termine the L-isomorphism class of a rank r Drinfeld A-module.



4.1. ISOMORPHISM INVARIANTS

4.1 Isomorphism invariants

Definition 4.1 (Fine Isomorphy Invariant).
Let ¢ : A — L{1} be a rank r Drinfeld A-module defined by

¢pr=~yT)+ g7+ -+ gT1"

We set

d=gcd(d" =1, kel)=¢ -1

where [ ={i=1,---,r; ¢; #0} and 6 = gcd(k : k € I).
We write d = Z)\k(qk —1); A € Z and we set X = (Ag)ger-
kel

Let B = {a = ()ger, d= Zak(qk — 1)}

kel
The fine isomorphy invariant of ¢ is defined as FI(¢) = (FI\(¢)),cp, where

FI\(¢) = [ [ o* modL*

kel

Example 4.1. Let ¢ : A — L{7} be a rank 2 Drinfeld module defined by
dr = Y(T) + 17 + go72. We assume g1 # 0 and go # 0. We know from
Bezout’s lemma that if a, b € Z and d = gcd(a,b), then there exists ag and
Bo integers such that d = aga + Pob. All the other Bezout’s coefficients of d
ap = ag + k:%
Br = Bo — kg
Let’s come back to our Drinfeld module ¢p = y(T) + gi7 + go72.
d=gcd(g—1,¢> —1)=¢q— 1.

d=q—1=—q(q—1)+1(¢* —1). The complete list of Bezout’s coefficients
ap=—q+k(g+1)=(k—1)g+k

are given by kel

of d is given by: keZ.
fd is g Y B=1—k
Therefore the fine isomorphy invariant of ¢ is given by

FI(6) = (607" g (mOdL*(q_l))>k€Z

Definition 4.2. [19, J-Invariants/
Let (ky,--- , k) be a tuple with 1 < ky < -+ <k <r—1and dy,---,8 be
integers such that

a) 61(g" — 1)+ +6(¢" —1) =6.(¢" — 1).
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b) 0<0; < fori=1,--- L.

Wﬂl
c) ged(6y, -+ ,0,0,) =1
The so-called basic J-invariants of the Drinfeld module ¢ are defined as

961 “ .. g(;l
818 k k
Jkll ki (¢) = ——— g :

4.2 Main theorems

Theorem 4.1. We keep the same notation above and we consider ¢ and
v A— L{r} as two rank r Drinfeld A-modules defined by

dbr=~T)+qr+-+g¢7 and pr =~v(T) + gy7+ -+ g.7"

. The followings are equivalent

L
(1) ¢ =1

(ii) ¢ = o and 3N € B, FI\(¢) = FI\(¥)

sep

(iii) ¢ = ¢ and FI(¢) = FI(¢)

Proof: Our plan is to prove following the loop (iii) = (i) = (i) = (iii).
Let’s assume (7i7). It obviously implies (i7) since B # ().
[,5ep
Let’s now assume for the second part of the proof that ¢ = 9 and
I\ = (Me)ker € B such that FI,(¢) = FI,(¢).

L
We want to show that ¢ = 1.

[,5€p

¢ = 1 implies that there exists x € L*? such that ¥ = 27 ¢rz.
That is

forall kel, g, =gz’ (4.1)
FI\(¢) = FI,(¢) implies ] g™ = [ o2* modL**. That is
kel kel
there is y € L* such that I_Ig"\’c = Hgg’“.yd. (4.2)
kel kel

From equation |) we get g"\’“ = g,i‘kx’\’f(qk_l) forall kel

Thus A1)
Hg"\’“:H x’% Hat —Hg . (4.3)

kel kel kel
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The equations and imply that 2 = y?.
But d = ged(¢®—1, k € I). That is for all k € I, there exists oy, € Z such that
¢ — 1= ad.
Hence 27! =god = (29" = (y?)* = yord = yo' -1,
ThusV kel g, = gez? 1 = gy L,
Therefore ¢y =y '¢ry and y € L*.
L

Hence ¢ = 1

For the last part of the proof we consider (7). That is ¢
Lsep
implies also that ¢ = ).

Let’s now check that FI(¢) = FI(1).

) ’é @) implies that there exists x € L such that ¢y = 27 ¢px.

That is, for all k € I, g, = gez? 1. From The Bezout’s lemma B # (). Let’s
then pick any A = (Ag)kes € B. We have gt = grrats(a" =1,

Thus

10 &

. It obviously

Hgl’:\k _ ng\k H;E‘Ak(qkil) _ Hggk.xkglz\k(qk—l) _ Hgli\k'xd

kel kel kel kel kel
Therefore Hg;j"“ = Hg,;\k.xd, relL".
kel kel
Which impli Ak — N mod L
plies gt = g;" mo
kel kel

Hence FI,\(¢) = FI,(¢).
Since A\ has been picked randomly, we can conclude that
Therefore FI(¢) = FI(¢). ¢

Remark 4.1. In the sequel, we might at some point abuse the language by
considering as fine isomorphy invariants of ¢, FI,,(¢) = FI(¢) for some
Ao € B. As we can notice from the theorem above, this will not have any
impact on the generality.

Remark 4.2. Potemine proved in [19, Theorem 2.2] that

[sep

¢ = Yo )N (9) =00 (W) for any (ki k) and (61, ,0)

as defined above.
Taking it into account, one can reformulate the theorem as follows.

Theorem 4.2.
6 e I (8) = IO () and FI(6) = FI(0)
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In other words, L-isomorphism classes of Drinfeld modules defined over the
finite A-field L are determined by their fine isomorphy invariants and J-
mvariants.

Example 4.2. For the case of rank 2 Drinfeld A-modules, the only basic J-
g dlg—1,¢>-1)=q—1 1 0

invariant is JIT = 957 Here d = 4 5¢ (4= 14 )= Zf n#
9 ¢ —1 if g1=0

—q if 1 #0

g1 g2 mod L*™1 if g #0

g» mod L**~1 if g1 =0

The invariants J& and FI($) match clearly with the invariants describing

the 1somorphism classes of a rank 2 Dinfeld module as shown by Gekeler in

I8/

Example 4.3. Let’s consider a rank 3 Drinfeld A-module defined over the
field L = Fys = F5() with o® +4a + 2 = 0. We take A = F5[T]. L is an
A-field defined by the ring homomorphism v: A — L, T — «.

Let ¢T = oz+g17+g27'2+gg7'3.

Following the definition[{.9, one can easily compute the basic J-invariants of

¢ which are:

and Ay = 1 in any case.

Therefore Ay = {

Thus FI(¢) = {

Ti5(6), 15 (8, Il (0), 1z (0), Jiz' (8), Jis™ (9), Jis™ (9), 1i5™ ()

152 (0), 152 (0), LGP (0), 152 (8), 15" (8), Jiz' (). Jis™2 (), Jis' (9)

Jr5 (), TP (9), Jist (e),

The fine isomorphy invariant of ¢ is given by
g1 modL**  if g1 #0
FI(¢) = 53 modL**  if gy =0 and g3 # 0
ifgr=92=0

g3 mOdL*124
Therefore the isomorphism class of ¢ is parametrized by those 20 invariants

Remark 4.3. For Drinfeld modules of a given rank defined over a finite field,
Potemine proved in [19] that the number of isomorphism classes is given by:

#Cl(DT/L = q —1+ Z (q90d(i17"'7is,nr) _ 1) <qn o 1)s+(q o 1) [(](T_l)n
(i1, ,is)Elo

Wheren = [L : F,], n, = ged(n,r). Iy is the power set of {1,--- ,r} and I C
Iy is made up of subsets (i1, - ,is) such that gcd(iy,n,) > 1, ged(is,n,) >
1. @(n.,r) is the number of integers < r and coprime with n,.
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Remark 4.4. FEach isomorphism class has a finite number of elements.

Indeed #C1(¢) < #L*7.

We provide in the sequel an algorithm generating the isomorphism classes of
rank r Drinfeld modules in a given isogeny class.

Algorithm 4.1. [Isomorphism classes of a Drinfeld modules]
Inputs: M(z) = 2"+ a;(T)x" '+ + a,_(T)z + pQ(T).
Ouputs: Isomorphism classes of Drinfeld modules in the isogeny class de-

fined by M (x)

1- Set or = g, 7" + -+ 17 +y(T') and solve the equation (system of equa-

tions) given by 7" + ay(¢r)T 0V 4+ a1 (o) T+ pQ(dr) = 0.
Where s = [L : F,]. Let I' be the set of all solutions of that equation.

2- Pick a Drinfeld module ¢ € I'. We assume ¢r = g, 7" + -+ g7 + ~y(T).

3- Compute the fine isomorphy invariant and the J-invariants of ¢. 1.e.

FI(¢) and JP'3 (9).

4- for ¢ inT': Compute FI(y)) and J,fif:fgi (V).
If FI(W) = FI(9) and Jii 31 () = Jit 7 (9):

Then store v in the isomorphism class of ¢.

5- Pick another ¢ in I' which is not in the previously computed isomorphism
classes and mowve to step 3.

6- If the set I' is exhausted then output the isomorphism classes and exit.

Remark 4.5. This algorithm also works for any isogeny class defined by a
Weil polynomial of the form

M(z) = 2™ 4+ a1z" " 4 -+ + a2 + pQY™ with r = riry and | m.
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CHAPTER 5

Application: Explicit description for the cases
of rank 3 and rank 4 Drinfeld modules

We aim in this chapter (as indicated by the title) to describe explicitly (for
the cases of rank 3 and rank 4 Drinfeld modules) the isogeny classes, to list
the endomorphism rings corresponding to a given isogeny class and provide
an example of computation for L-isomorphism classes in a given isogeny class
of Drinfeld modules defined over the finite field L.

5.1 Explicit description for rank 3 Drinfeld
modules

5.1.1 Isogeny classes of rank 3 Drinfeld modules

We keep the same data as before. That is A = F,[T], k = F,(T) with a
distinguished place at infinity co. ) = p}’ is a power of a prime element p,
of A.

As we have seen before, the isogeny classes are given by the following rank 3
WEeil polynomials:

o M(z) =2’ +aix®+asz+uQ € Alz] with yu € F,. Where dega; < 929
and dega, < % such that the resultant modulo p, of any two
irreducible factors M (x) mod p? is non-zero and

My(z) = 23 + %xQ + 7557 + u% mod % is irreducible.

Where h = vy, (disc (M(z)))+sr(r—1)4+1and n = v (disc (M(z)))+1
(see algorithm [2.1).

o M(z) = — pQ3 with 3|m and p € F}



5.1. EXPLICIT DESCRIPTION FOR RANK 3 DRINFELD MODULES

We provide in the sequel some results that help to quickly identify rank 3
Weil polynomials and therefore improve for this special case algorithm [2.1}

Definition 5.1 (Standard form).

Let k(7)/k be a cubic function field. The minimal polynomial My(x) € Alx]
of 7 is said to be in the standard form if My(z) = 23 + ax + b with a and
b € A satisfying the following:

There is no c € A such that ¢*|a and c|b.

Remark 5.1. Let M (z) = 234a12°+asx+pQ be a potential Weil polynomial
whose corresponding cubic field is k(m)/k.
a1

If char (k) # 3, setting x = y — %-, one can transform

M(zx) = 22+ a2 + asx + e,
into a polynomial of the form

P 2a3
y® 4+ by + by € Aly] where by = % + ag, by = 2i71 _ a13a2

pQ.

Using the algorithm 4.1 in [15]. One can therefore convert the polynomial
N(y) = y> + biy + by € Aly] into a standard polynomial 2* + ¢z + co. By
“converting” we mean getting from the irreducible polynomial y> +biy+by an
irreducible polynomial in the standard form My(z) = 23+ ¢z + ¢y whose any
root 7 is such that k(7) = k() (i.e. k() and k(m) define the same field).

In fact doing it, is really a simple exercise. One takes the square-free fac-

ni n2
torizations of by and by. That is by = Mleiu and by = lI/QHb‘;j where
i=1 j=1

pi, po € Fyoand by i = 1,--- ,ny (resp. by j = 1,--- ,ng) are pairwise
n2

ni . .
K A
coprime square-free elements of A. We set g1 = l_IbL?J and gy = Hbé;?J.
i=1 j=1
Taking ¢; = m and cy = gcd(gb—i%)?,, we have that My(x) = 23+ c1x+ ¢y
is a polynomial in the standard form in Alz]. In addition we have the fol-
lowing:
7 is a root of M(x) if and only if m + % is a root of N(y) = y* + byy + by if

a1 .
and only if T = sedlgrgy) s @ oot of My(z) = 2® + c1w + co.

Therefore disc (M (x)) = disc (N(y)) and ind(7) = ind (7T + %)
But ind(7) = % because disc (My(x)) = %.

Also, k(m) =k (7 + %) = k(7).

T+
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As a consequence of proposition [2.2] in the special case of the degree 3
polynomial Mj(x) in the standard form, we have the following:

Proposition 5.1.

Let Mo(x) = 23 + c1w + ¢y be the standard form of the minimal polynomial
M(zx) of m.

There is a unique place of k(m) above the place at infinity oo of k only in the
following cases.

(s1) 3degey < 2deges, degea =0 mod 3 and LC(cz) is not a cube in F,.
LC(?) denotes here the leading coefficient of the argument.

(s2) 3degc; = 2degcy, 4LC(c;)? + 27TLC(c2)* # 0 and
23 + LO(c1)x + LC(cq) has no root in F,.

(s3) 3degc; < 2degey and deges Z0 mod 3

In order to show it, let us first of all get rid of all the cases where
3degc; > 2deg cy through the following lemma.

Lemma 5.1. Let 7 be a root of the irreducible polynomial

My(z) = 2% + 1@ + ¢ € Alz] in the standard form. We consider the cubic
function field k(7)/k.

If there is a unique place of k() above the place at infinity oo of k then
3degcy; < 2deges.

Proof: Let us assume that 3degc; > 2degc,.
k(7) = F,(T)(7) = F (7)(T). T is a root of the irreducible polynomial
No(y) = ea(y) + ci(y)® + 7. We can therefore consider the field extension
F,(7)(T)/F,(7) whose degree is [F(7)(T') : Fy(7)] = maz{degc;,degca}.
c2(T) + c1(T)7 + 7 = 0. Thus for any prime p above oo

3vp () > min{—e, degci + vy(7), —eydegca}

where e, denotes the ramification index of the extension p | co.

If —eydegcy + vp(7) > —eydegcey then we have 3u,(7) = —eydegey ie.
vp(7) = —2LB2 That s,

—epdeg ey + vp(TT) = —ey (deg 1+ dechQ) > —e, deg cs.

In other words deg c; + % < deg cs.

This contradicts the fact that 3degc; > 2degcy. That means we have

—epdegcy + vy (T) < —epdegey ie. 3u,(T) = —eydege; + vy(7) and then
vy () = — 2B dggcl or,

—epdeg ey + v, (T) = —epdeges ie. vy(7) = e, (deg ey — deges). But
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(i) If vp(~) = %98 for all primes p | co then we have
deg ¢y deg c; 3degcy
va Zenfp D) Zepfp:_ 5
ploo ploo ploo
(ii) If vy(7) = ey (deg ¢y — degez) for all primes p | co then
Z U (7) fo = (degc; — deg o Z epfy = 3 (deger — degcy)
ploo ploo

We also know that vy(7) > 0 for all finite primes q since 7 4+ 17 + ¢ = 0
with ¢; and ¢o € A = F,[T]. That means the poles of 7 lie over the place co.
In other words the degree of the pole divisor of 7 is,

deg ((T)oo) = = Y 0p(W)fy = [Fy()(T) : Fy(7)] = maz{deg 1, degca} (see

ploc

[20, prop 5.1]). f, denotes here the residual (or relative) degree of p | co.
Thus va(fr)fp = —maz{degc;,degcs}.
ploo

Unfortunately (i) cannot occur because ——3d62g01

# —max{degcy,degca}
since 3degc; > 2degcy and gde% # deg c;

Also (ii) cannot occur since 3(degc; — degcy) # —maz{degci, degcy}
because,

If max{degci,degea} = degey then 3(dege; — degey) # —deges since
3degc; > 2degc,.

If max{degci,degea} = degey then 3(dege; — degey) # —dege; since
3(degc; — degey) > 0 (because by hypothesis degc; > degey) and

—degc; < 0 (because 3degcy > 2degcs).

Hence if 3degc; > 2deg ¢y then there must be at least two primes above the
place at infinity co. Some for which v, (7) = —e"d% and other for which
0y (T) = ey (deg 1 — degcz). O

Proof: [Proof of the proposition

According to the previous lemma, we can have a unique place above the place

at infinity co only when 3degc; < 2degcs.

The statements (s1) and (s2) are direct consequences of the the proposi-
tion 2.2l where h = 1.

Let us now focus on the last statement (s3)

The proof follows the same idea like the one of the former lemma.

We know that 74c17+cy = 0 i.e. 3v,(7) > min{—e, deg c1+uv,(7), —e, degca}.
If —e,degey + vy(7) < —ep deg ey then 3u,(T) = —e, deg ey + vy(7)

le. vy () = _epd%

Thus —e, deg ey + vy(7) = —¢p (deg ey + 9BL) < —¢, deg cs.
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3ep deg c1
2

ie. — < —ep deg ¢y which contradicts the fact that 3degc; < 2degcs.

Therefore for some prime p above the place oo we must have v, (7) = —®9%E2,
Hence if degc; Z 0 mod 31i.e. 31 degc, then we must have 3 | e, since v,(7)

is an integer. But 1 < e, < 3. Hence e, = 3. Therefore such a prime is the
unique one above oo since 3 = Z eq fq- O

q|oo
For more details about the‘ signature of the place at infinity in a cubic
function field in general, one can have a look at [2], theorem 2.1.4].
What about the condition [2] of definition [2.1] concerning the zero of 7 above
the place v? In the following, we work that condition out and provide a
lighter way to check if it is satisfied by M (x) or not.

Proposition 5.2. Let M (z) = 23+ a2 +agx + pup™ € Alz] be as mentioned
before.

1. If p, | az and p, 1 ay then there is a unique zero of m in k(m) above the
place v if and only if v(az) > 7.

2. If py | ag and p, | ay then there is a unique zero of ™ in k() above the
place v if and only if there is a unique place of k(m) above v (i.e. if
and only if M(x) is irreducible over the completion field k, ).

3. If p, 1 ag then there is a unique zero of m in k(m) above v.

Before proving this proposition, let us recall the following lemma, known as
Hensel lemma or Hensel lifting.

Lemma 5.2. Let M(x) € Alz] and p be a prime in A. Let m,n € N with
m<n

o If M(xg) = 0 mod p" and M'(xg) # 0 mod p then there exists a
unique lifting of xo modulo p"™™. i.e. there exists a unique r; € A
such that M(z1) =0 mod p™™™ and x1 = xo mod p".

o [f M(z9) =0 mod p™ and M'(zg) =0 mod p then we have two pos-
sibilities:
— If M(x9) #0 mod p™*! then there is no lifting of xo modulo p™**.

— If M(x9) =0 mod p™*?t then every lifting of xo modulo p"™ is a
zero of M(x) modulo p™*.

Proof:[Proof of proposition
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1. We assume here that p, | ay and p, 1 a;.
We assume that there is a unique zero of 7 in k(7) above v.

M(x) = 2*(xr+a;) mod p, and p, t a;. That means 0 (as double root)
and —a, are the roots of M(x) module p,.

Using the Hensel lemma , one can lift these roots modulo p., (for [ >
1) as long as M(0) =0 mod p..

We know that disc (M (z)) = (a? —4ag)a3 + p"(—4a} — 27p" + 18a;az)
Let us assume that v(az) < 7.

That means v(a3) < m. Since p, f a; and p, | as, v(a? — 4as) = 0 and
v(—4a? — 27p™ + 18ayas) = 0. In other word

v (disc (M(x))) = v(a3) < m.

For any n € N with n <m, M(0) =0 mod p?. One can therefore lift
the root zo = 0 modulo p, to roots modulo p” for n = v(a3) + 1 and
the (simple) root z; = —a; modulo p, to a root modulo p. One gets
then

M () = Mi(x) - Ma(z) - My(x) mod pyl@=e@@)+t

With M (z) = My(x) =2 mod p, and Ms3(x) =z + a; mod p,.
Thus Res (Mi(x), Ma(x)) =0 mod p, which contradicts the fact that
there is a unique zero of 7 in k(m) above v (see proposition and

corollary :

Therefore v(az) > %

Let us assume conversely that v(az) > 5. We want to show that
there is a unique zero of 7 in k() above v.

We recall that disc (M (x)) = (a? — 4ag)ai + p™(—4a? —27p" + 18a1a3).
P | az and p, 1 a; implies that v(a? —4ay) = v(—4a3 —27p™ +18ayas) =
0. In addition, v(a3) = 2v(ag) > m. Thus v (disc (M(z))) > m.

But M(z) = 2*(x + a;) mod p, with p, { a;.

The root zy = 0 of M(x) mod p, can be lifted to a root of M(z)
mod p? for n < m. But since for n > m + 1 M(0) # 0 mod p?, there
is no lifting of zy to a root of M(x) mod p” (see Hensel lemma[5.2). In
other words, we cannot have M (x) = M;(x)-Ms(x)-Ms(x) mod puldisetM@))+1
with M;(z) = Ms(z) =2 mod p, and M;(z) =2+ a; mod p,.

Therefore we are only left with the possibility

M(z) = My(z) - Ma(z) mod pi@scM@NFL Giep

Mi(z) = 2% mod p, and My(x) = x + a; mod p,, (see 24, Corollary

2.4]). We therefore clearly have Res (M;(z), Ma(x)) Z 0 mod p, since

Pu Jf a1.

Hence there is a unique zero of 7 in k() above the place v.
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2. we assume here that p, | a; and p, | as.
M(7) = 0 implies that 7 = —a 2 —agm—pp™ = p, (—b17% — bow — pp™~1)
where a; = b; - p,. In other words p, divides 7. That means any place
of k(m) above v is a zero of 7.
Therefore there is a unique zero of 7 in k() above v if and only if there
is a unique place of k(m) above v.

3. This case has already been shown in proposition [2.6]

We summarize our previous results in the following theorem.

Theorem 5.1. Let M(x) = 2° + a12® + agx + pp}' € Alz] be a potential
Weil polynomial. i.e. dega; < ””d%p” and M (z) irreducible over k. We
also consider My(x) = 23 + ¢z + co the standard form of M(z).

1. There is a unique place of k(m) lying over the place at oo of k if and
only if one of the following holds.

(s1) 3dege; < 2degey, deges = 0 mod 3 and LC(cy) is not a cube
in .

(s2) 3degcy = 2degey, 4LC(c1)? +27LC(c2)* # 0 and
23 + LC(cy)x + LC(cy) has no root in F,.
(s3) 3degey < 2degcee and deges Z0 mod 3
LC(?) denotes here the leading coefficient of the argument.

2. There is a unique zero of m in k(w) lying over the place v of k if and
only if one of the following holds.
(84) Po | a2, pv'fal and U(GQ) Z %

(sB) py | a2, po | a1 and M(xz) mod pl is irreducible.
Where n = v (disc (M (z))) + 1.

(56) pv Jf Q.

Using the previous results, one can therefore improve the algorithm for
r = 3 as follows:

Algorithm 5.1. Input: M(z) = 2® + a2 + asx + pQ € Alz| irreducible
polynomial defining the cubic field k(m)/k.
Ouput: True if M(x) is a Weil polynomial and False otherwise.

3
2a3

1. Compute blz_Ta%—i-a% by = S — 492 4 Q.
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2. Compute the square-free decomposition of by and bs:

ni 2
by :MHHQ, by :,UQHb]U
i=1 j=1
7,1 7,4
Set g1 = Hblf and gy = Hblj-
i=1 j=1

ba

and ¢y = ——2——
2 27 ged(g1,92)°

3. Compute ¢, = gcd(gb+gz)

4. If ¢y and ¢y fulfill one of the statements (s1), (s2) or (s3) of propo-
sition then move to the next step. Otherwise output False and
et

5. Compute n = v (disc(M(x))) + 1 and
M(x) = 23 + a12”® + asw + u@ mod po.
If p, | az and p, t a1 and v(az) > § then output True and exit.

Else if p, | ag and p, | a1 and M(x) is irreducible then the output True
and ezit.

FElse if p, 1 ay then output True and exit.

Else output False and exit.

Remark 5.2. These new conditions are easier to check than the general ones
in the initial algorithm.

5.1.2 Endomorphism rings in a given isogeny class of
rank 3 Drinfeld modules

We give in this part a better description of the orders occurring as endomor-
phism of a Drinfeld module in the special case of an isogeny class of rank 3
Drinfeld modules. The reader can wonder what we mean by “better” here.
As it has been our philosophy throughout this thesis, we always want to
provide conditions that can be checked using only the basic data we have at
our disposal. That is, the coefficients of the Weil polynomial M (z), the ring
A and its field of fractions k, the finite A-field L and its A-characteristic p,,.
In order to check in general whether an order O is the endomorphism ring
of a Drinfeld module in the chosen isogeny class, the theorem requires
to know the conductor of O and the zero vy of the Frobenius 7. But these
data lie in the upper field k(7). In this special case of rank 3, we are able to
provide conditions that do not require to know additional data apart from
the ones at our disposal.

As a direct consequence of theorem [3.4] we have the following;:
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Proposition 5.3. We keep the same notation we have in the above men-
tioned theorem.
Let M(x) = 23 + a12® + asx + pp™ be a rank 3 Weil polynomial.

1) If p, 1 as then an A-order O of k(w) is the endomorphism ring of a
Drinfeld module in the isogeny class defined by M(x) if and only if it
contains the Frobenius m € O.

2) Otherwise (i.e. if p, | az), an order O of k(w) occurs as endomorphism
ring of a Drinfeld module in the isogeny class defined by M (x) if and
only if the Frobenius endomorphism m € O and O is maximal at all
the places of k(m) lying over v (i.e. O ® A, is a maximal order of the
k,-algebra k,(m)).

Proof:

1) If p,  ap then M(z) = z(2* + a1x + az) mod p,. That means (see
corollary the irreducible factor Mj,.(x) of M (z) in k,[z] describing
the unique zero vy of m in k() is a degree 1 polynomial. Therefore any
A-order of k(m) containing 7 is already maximal at vg. The statement
follows then from theorem [3.4]

2) If p, | a then we have two sub-cases.

o If p, {ay then M(x) = 2*(z +a;) mod p,.

That means there are two places of k(m) lying over the place
v. The zero vy of m which is described by the irreducible fac-
tor Mjoe(z) of M(z) in k,[z] fulfilling Mj,.(z) = 2* mod p, (see
corollary , and another place vy described by the irreducible
factor My (z) of M(x) in k,[x] fulfilling M;(x) =z + a; mod p,.
As a consequence, deg M;(x) = 1. That means the completion
of any A-order O of k(m) containing 7 at the place v; must be
maximal.

It follows that, O is maximal at the zero vy of 7 if and only if O
is maximal at all the places (vy and v1) of k(m) lying over v and
the statement follows.

e If p, | a; then M(xz) = z* mod p,. That means the isogeny
class defined by M(x) is supersingular. In other words there is
a unique place (the zero vy of 7) of k(m) lying over v and the
statement follows from theorem [B.4]
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Remark 5.3 (Recall).
To check that O ® A, is a mazimal A,-order in the k,-algebra k,(m) one
can just check that the norm of the conductor ¢ of O is not divisible by p,.
We recall that the norm of the conductor can be gotten from the relationship
between the discriminant of the order O and the discriminant of the field
k().
disc (O) = Ny (¢) - disc (k(m))
In the upcoming part, we want to explicitly compute the maximal order

of the cubic function field k(7) and all the sub-orders occurring as endomor-
phism ring of a rank-3 Drinfeld module.

Proposition 5.4. [15, Corollary 5.2/

Let My(z) = 23 + c1x + ¢ be the standard form of the polynomial M(x) =

2%+ ay2? +ayz+pQ. Where ¢; and cy are like computed in the algorithm/[5. 1]
!

Let disc (My(x)) = )\HDf be the square-free factorization of disc (My(x)).
i=1
The discriminant of the function field k(m) is given by
disc (k(r)) = AD ged(Dy Dy, c2)* where D = [[ Di, A€ ;.
i odd

We will not give the proof in details since it has already been done in
[T5]. We just remind that the proof strongly relies on the fact that
My(x) = 2% + c1x + ¢y is given in the standard form. That is, for any prime
element p € A, v, (¢1) < 2 or v, (c2) < 3. This condition forces the valuation
of the discriminant v, (disc (My(x))) = v, (—4¢} — 27¢3) to be bounded and
leads to the following lemma.

Lemma 5.3. [16, theorem 2]

Let k(m)/k be a cubic function field defined by the irreducible polynomial
My(z) = 23 + c1z + co given in the standard form. Let Dy = disc (My(x))
and Ag = disc (k(r)). For any prime p of k we have the the following:

(1) vy, (Ao) =2 if and only if vy (c1) > vy (c2) > 1.
(2) v, (Ao) =1 if and only if vy (Dy) is odd.
(3) vy (Ag) = 0 otherwise.

Remark 5.4. The index of © can therefore be computed using the fact that
disc (My(x)) = ind(7)%disc (k()) i.e.

| dise(Mo(x))
I :=ind(7) = “disc (k(m))
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We recall that 7 and 7 define the same function field k(m) = k(7).

Proposition 5.5. [15, theorem 6.4] and [21, lemma 3.1]
Let My(x) = x® + c1x + co be the standard form of the Weil polynomial

3 2 - T+ 5
M(z) = 2° + a12° + asx + pQ. © denotes a root of M (z) and 7# = —————
o, sedlong)
is a root of My(x). Let w; = a; + 7 and wy = W;IWH, where oy, g

and Ps are elements of A.

(1,wy,ws) is an integral basis of the cubic function field k(m) = k(7) if and
382+ c¢, =0 mod I

only if < B35+ c18 +cx =0 mod I?
ay = =27 =2¢1/3 mod [

Proof: The proof mainly relies on the following two facts:
o disc(1,7,7%) = I*disc (k(r)/k)

ag+Pait+i?
I

e For wy, = to be integral it is necessary that

~ ~9\2
wi = (az + ﬁ;;r +7) and (o + T)ws both lie in A[1, 7, w]

In other words there exist Ao, jto, A1, 1 and A9, i € A such that
w32 = Ao+ MT + Aows and Twy = g + 7 + paws.

O

Corollary 5.1. «y in the previous proposition can be assumed to be 0 because

el e
if (1, ap + T, OM+H> is an integral basis, then so is <1, T, OM+7TH> '

This is simply due to the fact that both triples have the same discriminant.

Remark 5.5. One can therefore, given an isogeny class of Drinfeld modules
described by the Weil polynomial M(x) = 23 + a12? + asx + pQ, compute
the corresponding mazimal order O,q, which is the A-module generated by
(1, w1, wy) as mentioned before.

1
Let Opae = (1, wiw2) = {(X,7,2) (w1 | | X, v, Z € a}.
w2
We want now to give a complete list of sub-orders of O,,,,, occurring as endo-
morphism rings of Drinfeld modules. We know from proposition [5.3] that this
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is equivalent to looking for sub-orders containing m and whose conductor’s
norm (in case p, | aq) is relatively prime to p,.

Let then O = (WJy, W1, Ws) be a sub-order of O,,4,.

1 € 0. That means one can write without loss of generality

O:<17 ('Jla ("72>:{(X7Y/7Z) ('Jl X? 5}7 ZGA}

%)
But @ and Wy € O,,4,. That means

CJ]_ = dl + Blwl —+ ’leL)Q and CJQ - dQ + /BNQC‘Jl + /?QWQ

for some &;, f5;, ¥ € A i=1,2. In other words,

1 10 0\ /1 1 0 0
CJl = 021 @1 "}71 w1 ] Let M = dl @1 ’}71 € %3(14)
Wo as B2 Yo W dy P2 Ve

Where .#3(A) denotes the ring of 3 x 3 -matrices with entries in A.

M can be transformed into the so-called Hermite normal form. That means
there the exists a matrix U € GL3(A) and an upper triangular matrix H
such that U - M = H.

Some simple row operations show that the Hermite normal form of M looks

like

0
H= b | with deg;(b) < degp(a) (5.1)
a

OO =
o o O

We therefore redefine «; and Wy as Wy = cwy + bws and Wy = aw,.
The sub-lattice @O can then be written as

—_

0\ /1
0=, G, &) = {(X, Y, 2) b |w | |X, Y, ZeA}
a

%

o o O

0
0

Remark 5.6. One clearly notices that the sub-lattice O above is an order if
and only if W12, h? and W1y belong to O

W12 = (cwy + bwy)? = w? + 2bcwiwy + b2w?2

But ¢ wy? = (awy)? = a’w?

W1y = (cwy + bws)(aws) = acwiws + abws

W12 A b 2 w?
Thus [ W2 | =0 a* 0 w%
(019 0 ab ac W1Wa
N >y
'
My

As we have seen in proposition and its corollary,
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Oég—i‘ﬂgﬁ'—i‘ﬁj

w; =7 and wy = where 72 + 17 4+ ¢ =0

One can therefore compute w?, w2 and wiws in terms of wy; and wo. One gets

2
Wi X X Xig 1
w% = X21 X22 X23 W1 where
Wiws Xz X3o X3 W
N ~~ g
Mo

Xi=—og, Xig= -0, Xig=1

2 — 3 2 _ 2 —B3 _ — 2 2
X21 _ 06262 C109 ‘; (0% 02527 X22 _ 62 C;ﬂg 027 X23 _ 52 c1 + 204
I 5 I T

X3 = @’ Xy = —P3 —IC1 tor 4 Xy = .
Therefore

wp? 1 1

('522 = M1M2 W1 = MlMQH_l w1

W1Wa Wy Wo

Remark 5.7. O is an order if and only if MiMoH ' € #5(A)

Let us now investigate the orders occurring as endomorphism ring of a
rank 3 Drinfeld module.
We know that in addition to the above mentioned condition, O = (1, &, Ws)
must contain the Frobenius 7. In other words, there should exist ag, by, ¢y €
A such that
T™=ag+ boch + CoCJQ. But

aj
™+ 5

B ng(gla 92)

w; =7 and 7T

Also W, = cwy + bwy and Wy = awsy. Therefore

a
—gl +gcd(g1, g2) - w1 = ag + boc - wi + (bob + coa) - wo

Thus
boc = ged (g1, g2) and bpb = —cpa (5.2)

That is,
¢ divides ged(gy, g2) and

d
a divides I 92/ (91.92)
c
We summarize our discussion in the following theorem:

Theorem 5.2. A =TF,[T] and k =F,(T)
Let M(z) = 23 + a2 + asw + pQ € Alx] be a Weil polynomial. In order
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2
to put M(x) in a simple form z® + bix + by, let by = % + as and by =

Qa? 109

27 3

+ pQ whose square-free factorizations are given by

ni n2
blz,Ulelli bQZ,UQHb%j MlaMQEFZ
i=1

Jj=1

In order to get the standard form My(z) = x>+ c1x + co of M(x) (as defined
mn , we consider g1 and go the elements of A defined by

ni n2

i i
o= Hb%fJ and gy = Hb%jJ

i=1 j=1

We remove out from by and by resp. the highest square common divisor and
the highest cubic common divisor by setting

b1 d b2
oo=————andcg = ——————
ged(g1, g2)? ged(g1, 92)?
Let m = #ﬁm be a root of the standard polynomial x° + c1x + cs.
Let I =ind(7) = %, ay and By € A such that

3 +c;=0 mod I
B3+ c1Bs+ca=0 mod I?
Qg = =282 =2¢;/3 mod I
We consider the matriz My € M5 (k) defined by
X X2 Xu

MQZ X21 X22 X23 where
XSI X32 X33

X =—ag, Xig=—pa, Xiz=1

2 2_9 _ _ 2 _ 2
Xy = Qaf3y — craiy —z 3a; 0252’ Xy = By 0252 C27 Xy = B5 — 1+ 2an
1 ) 1 1
Xg1 = OQBQ]_ 62, X3 = b 161 T and X33 = P2

The Endomorphism rings of Drinfeld modules in the isogeny class defined by
the Weil polynomial M (z) are:

O=A+A. (cﬁ+b<w)>+/}.a(w>
1 I
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such that MiMyH™' € #5(A) and in addition gcd(p,,ac) = 1 if p, | as.
Where

2 b 2be 1 00
Mi=|0 a* O and H=[0 ¢ b
0 ab ac 0 0 a

¢ runs through the divisors of ged (g1, g2)
a runs through the divisors of I

d
b € A such that degpb < degra and a | pEENIL 92) (9192)
c
Proof: The proof follows straightforwardly from our discussion before.
The condition gcd(p,,ac) = 1 comes from the fact that in case p, | ao,
the norm of the conductor of O must be prime to p, (see Proposition [5.3).

O

Corollary 5.2. Let M (z) = 2 +a12°+arx+pQ € Alx] be a Weil polynomial.
. ~ ay

7 is a root of M(x) and ® = 7w + 3 Let

blz_Tal—l—agande:ﬁ— Q.

If there is no prime p € A such that p* | by and p3 | by (in particular if by and

by are coprime or by is square-free or by is cubic-free) then the endomorphism

rings of Drinfeld modules in the isogeny class defined by the Weil polynomual
M(zx) are

2 2a§‘ a1as

) :A—l-A-ﬁ'—l-A-a(W)

I
such that M MyH;' € #3(A) and in addition gcd(p,,a) = 1 if p, | as.
Where

1 0 0 1 00

M,=10 a*> 0] and H,=[0 1 0

0 0 a 0 0 a

Here a runs through the divisors of the index I = ind(7).

Proof: One can just reconsider the equation right after remark .
Here ged(g1,92) = 1. Thus bpec = 1 i.e. by and ¢ are units. In addition
bob = —cpa and by is a unit. That means a | b. But deg;b < degra (see
equation ) Therefore b = 0. Hence the matrix H in equation (5.1)) and
the matrix M; become

1 0
H,=10 a
0

o = O
< O O

1
and M, = 1|0
0

N
Q* O O

0
and the result follows. O
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5.1.3 Isomorphism classes in a given isogeny class of
rank 3 Drinfeld modules

Here we mainly explain how the computation can be done and we provide a
concrete example.
We consider the isogeny class defined by the polynomial

M(x) = 2 + ay (T)a? + ax(T) + pQ(T)

We want to list all the isomorphism classes of Drinfeld modules in this isogeny
class. We know that the Frobenius endomorphism 7 = 7° (with s = [L : F])
is a root of M(x). That means

7+ ) (T)7* + an(T)7° + pQ(T) =
By definition of the action of the Drinfeld module ¢ we have

7+ a1 (o) + az(dpr)T° + pQ(pr) =0 ()

We consider (x) as an equation with unknown ¢T This equation can be
solved by setting ¢r = Y(T) + au7 + o7 + azT®. We recall that ~(T') is
already known since 7 is the ring homomorphism defining the A-field L.
One can therefore plug ¢ in the equation (x) and get a non-linear system
of equation (with unknowns a;s). Even though the system is non-linear,
a way to solve it can be by "brute force”. That is, looking for all tuples
(a1, an, a3) € L3 solutions of the system. Since L is finite, we have finitely
many such tuples. Each of those solutions yields a Drinfeld module ¢ defined
by ¢r = Y(T)+a17+asm?+a373. We therefore gather those Drinfeld modules
with respect to their isomorphism classes by computing and comparing their
J-invariants and fine isomorphy invariants.
Let us have a look at a concrete example.
Let A =T;[T], k =TF5(T), L =TF;5(a) with a®> +4a +2 = 0. L is an A-field
defined by v : A — L, f(T) — f(0). The A-characteristic of L is T’
because p, = Kery =T - A is the ideal generated by T

=I[L:A/p,) =[L:A/T-A = [Fs5(a) : F5] = 2. We consider the
polynomial

M(z)=2+32>+ (1 +T)x +T°

Claim: M(z) is a Weil polynomial.
first of all M(z) is irreducible in A[z] and therefore (Gauss lemma) is also
irreducible in k[z]. One easily shows using the algorithm m 2.1 that

[ ] M()(
(h=

) = a3+ 32+
3) is 1rredu01ble

T3 mod 75 = 2*+ 22?7+ e+ 1 mod
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o M(z)=2*+322+(1+T)x+T? mod T? = x(2*+3x+1+T) mod T?
(n = 2) and we clearly have Res(z,2*> + 3z +1+T) mod T # 0.

Hence M (z) defines an isogeny class of Drinfeld modules.

We aim to list (as explained before) all the isomorphism classes of Drinfeld
modules in the isogeny class defined by M (z) = 23 + 322 + (1 + T)x + T
7w =75 with s = [L: Fs] = 2. i.e. 7 =72 In addition M (1) =0 i.e.

0 +3r + (14 ¢r)T* + 5 =0

That means ¢% + ¢r7? + 70 + 374 + 72 = 0. We clearly see from the Weil

polynomial that T € kery. i.e. v(T) = 0.

We can therefore set ¢r = a7 + apm? + 37 € L{7}.
Le. (an7 + aam? + a37)? + (a7 4+ ao? + a3m) T2 + 70 + 371 + 72 = 0.
Solving this equation yields the following Drinfeld modules:

¢(T)

(a+3)7 +27° + (da+ 4)7°
(a+3)7+ (2a+ 172+ (a + 3)73
(a+3)7 +4ar® + (a+ 1)73
(+3)7 + (a+4)7 + 278
27 + 272 + (4da + 2)7°
27 + (2a + 1)7% + 273
27 + 4at? + (da + 4)713
27 + (a+ )72 + (a + 3)73
(4o +4)7 4+ 272 + (a + 3)73
(da+4)7 + 2a+ D)7T* + (4da + 4)73
(4o +4)7 + dat? + (4o + 2)73
(4o +4)7 + (a0 + 4)7* + 273
(4o + 2)7 + 272 + 273
(4o +2)7 + 2a + 1)72 + (4o + 2)73
(4 + 2)7 + 4ar? + 37°
(da+2)7 + (a + )72 + (da + 4)73
31+ 27+ (a+ 3)7°
3T+ (2a+1)72 + 373
37+ dar? + (a4 1)7°
37+ (a+4)7% + (4a + 2)73
(a+ 1)1 +27%+27°
(a+ 17+ a+1)72 + (a+ 1)73
(a+ 1)1 + dat? + 373
(a+ )7+ (@ +4)7* + (o + 3)7°

(a+3)7 +27% + 37°
(a+3)7 +4at® + 273
(0 +3)7 + (Ba+3)7% + (a + 3)7°
(@+3)7+ (a+4)7* + (0 + 1)7°
27 + 272 + (a4 1)73
27 +dat? + (o + 3)73
27 + (Ba+ 3)7% + 278
27 + (a + )72 + (4o + 4)73
(4o + 4)T + 272 + 373
(4a + )7 + dar? + 27°
(da+ 47+ Ba+3)72 + (da+ 4)7°
(4o + )7 + (o + 4)72 + (4o + 2)73
(4o +2)7 + 272 + (o + 1)73
(4o + 2)7 + 4a1? + (4o + 4)73
(4o +2)7+ (Ba+ 3)7 + (da + 2)7°
(4a+2)7 + (o +4)72 + 373
31 +27% + (da + 4)7°
37+ dat? + (4a + 2)7°
37+ (B + 3)7% + 378
3T+ (a+ )2+ (a+1)73
(a+ 1)1 +272 4+ (4o + 2)73
(a+ 1)1 +4am? + (a+ 3)73
(a+ 17+ Ba+3)72+ (a+ 1)73
(a+1)7+ (a+4)7% + 373

We have implemented a SAGE code adapted to algorithm in order to
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gather these Drinfeld modules with respect to their isomorphism classes and
we got the following:

¢ (T)

$2(T)

(a+3)7 +27% + (da + 4)7°
27 + 272 + (da + 2)7°
(4o + 4)7 + 272 4 373

(4a+2)7 + 272 + (. + 1)73
37 + 272 + (a + 3)73
(a+ 1)1 + 272 + 273

(a+3)T + 272 + 373

27 + 272 + (a + 1)73
(da +4)7 + 272 + (a + 3)73

(4o + 2)7 + 272 + 273

31+ 272 + (4o + 4)73
(a+1)7+27% + (4a +2)73

¢3(T) ¢a(T)
(a+3)7+ (2a+ 1)7% + (o + 3)73 (a +3)T + dat? + 273
27 + (2a + 1)7% + 273 27 + 4at? + (da + 4)73
(da + 47+ 2a+ 1)7* + (da+4)7° || (da+4)7 + dat? + (da + 2)73
(4o +2)7 + (2a + 1)7% + (4a +2)73 (4o + 2)7 + 4at? + 373
37+ (2a+ 1)7% + 373 37+ dat? + (a+ 1)73
(a4 1)1+ 2o+ )72+ (a+1)7° (a+ 1)1+ 4a7? + (a + 3)73
¢5(T) ¢6(T)
(a+3)7 +4a7? + (a + 1)73 (@ +3)T + (Ba+3)7% + (a + 3)7°
27 + 4at? + (a + 3)7° 27 + (B + 3)7% + 278
(4o + )7 + dat? + 27° (da+ 47+ Ba+3)m* + (da+ 4)7°
(4o +2)7 +4at® + (da + 4)7° || (da+2)7 + Ba + 3)72 + (4o + 2)73
31 +4a7? + (4a + 2)73 3r(3a + 3)7% + 373
(a+ 1)1 + dat? + 373 (@ + )7+ (Ba+3)7% + (a+ 1)7°

¢7(T) ¢s(T)

(a+3)7+ (a+4)7% + 273 (a+3)7+ (a+ )+ (a+ 1)1

27 + (a+ 4)7% + (4o + 4)73

(4o +2)7 + (o + 4)7% + 373
3T+ (a+4)72 + (a+ 1)1
(a+ 17+ (a+4)72 + (a + 3)73

(da+4)T+ (o +4)7* + (4o + 2)73

27 + (@ +4)7* + (a + 3)7°
(4o + )7 + (a+ 4)72 + 273
(da+2)7 + (a+ 4) 7% + (da + 4)73
31+ (a+4)7% + (4o + 2)73
(a+ 17+ (a+4)7% + 373

Remark 5.8. We know you are probably asking yourself right now the ques-
tion concerning the list of orders that are endomorphism rings of Drinfeld
modules in this isogeny class. The answer is straightforward. All those Drin-
feld modules have the same endomorphism ring, that is Alrw|. This is due to
the fact that disc (M (x)) = 3T* + 3T? + T is square-free. That means A[r]
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is the mazimal order of k().
One would say in a fancier language that all the isogenies are horizontal.

5.2 Explicit description for the case of rank
4 Drinfeld modules

5.2.1 Rank 4 Welil numbers

We still keep the notations A = F [T], k =TF,(T) and Q = p}".
The possible rank 4 Weil polynomials are

o M(z)=a*+aa’+ar? +azz+puQ, p € F,, dega; < # and M (x)
is approved by the test in algorithm [2.1]

o M(z) =2+ ayx+ pQ"?, peF,, dega, < deiQ, 2 | m and M(x) is
approved by the algorithm

o M(z)=z—pQY*, peF,and 4| m.

For the same reason we mentioned before, we focus first on Weil polynomials
of the first form. i.e. M(z) = 2* + a12® + agz® + azz + pQ.

The following result provide for this special case some simpler ways to check
whether the condition 2] of definition 2.1]is fulfilled.

Lemma 5.4. Let M(z) = 2" + ay2® + ax2® + azx + up™ be a potential Weil
polynomial with all the required restrictions on the coefficients a;.

If p, t a3 — 4ay and p, | as then

there is a unique zero of m in k() lying over the place v of k if and only if
v (disc(M(x))) > m.

Proof: With hypotheses of the lemma, we have the following:

We assume that there is a unique zero of 7 in k(m) lying over the
place v of k.
Since p, | as we have M (z) = 2*(2® + a1z + az) mod p,.
If v(disc(M(x))) < m then we can conclude from the Hensel lemma
that the double root zy = 0 modulo p, can be lifted modulo p!, where
n=wv(disc(M(z))) +1 < m, because M(0) =0 mod p.
That means M(x) = M;(x) - Ma(x) - M3(xz) mod p?, where
M (z) = My(z) = mod p, and Mz(x) = 2% + a1z + az mod p,.
i.e. Res(Mi(z), My(z)) =0 mod p, which contradicts the fact that there is
a unique zero of 7 in k(m) lying over the place v of k.
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Hence v (disc (M(x))) > m.

Let us assume conversely that v (disc (M(x))) > m.
We know that M (z) = z%(2* + a1 + az) mod p,.
Since n = v (disc (M (z)))+1>m+1>m, M(0) #0 mod pI.
That means (Hensel lemma the multiple root zy = 0 modulo p, cannot
be lifted modulo p”. Also p, f a? — 4ay i.e. p,ta; or p, 1 as.
That means M (z) = M;(z) - My(z) mod p”
where M (x) is irreducible over k, and

2 .
x* mod p, if p, 1 as and]\@(:c)z{

z® mod p, otherwise
Since a? —4ay # 0 mod p,, My(z) has (in case there exist) only simple roots
modulo p,.
Hence in any case, any two irreducible factors of M (z) mod p” have no com-

mom root modulo p,. In other words there is a unique zero of 7 in k(7) lying
over the place v of k (see corollary .

O

22+ ayx 4+ ay mod p, if p,1a
Mi(x) = ot mod b b fa:
x4+ a; mod p, otherwise

Proposition 5.6. Let M(z) = 2* + a12® + ax® + azz + pp™ be a potential
Weil polynomial with all the required restrictions on the coefficients a;.

1. If p, 1 az then there is a unique zero of ™ in k(m) lying over the place v
of k.

2. ]fpv | as and P | 45) and pv'fal
then there is a unique zero of m in k(w) lying over the place v of k if
and only if v (—27a3 + 18ajasa3 — 4a3a3 + alaia? — 4a3a3) > m.

3. ]fpv | as and vaGQ and Po | ay
then there is a unique zero of m in k(m) lying over the place v of k if
and only if v(ag) > 5.

4. 1f po | ag and p, | ay and p, | ay
then there is a unique zero of m in k(w) lying over the place v of k if
and only if M(z) mod pz(d’“(M(””)))“ is irreducible.
5. If p, | a3 and p, t as and p, 1 a1 then we have the following:
o If in addition p, 1 a® — 4ay

then there is a unique zero of w in k(m) lying over the place v of
k if and only if v(as) > %.
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o If in addition p, | a3 — 4as
then there is a unique zero of m in k(m) lying over the place v of
k if and only if M(x) mod pz(dwc(M(x)))H has no root.

Proof:
1. This case has already been shown in proposition [2.6]

2. If p, | ag and p, | az and p, t a1 then we have the following:
po | az and p, 1 a? — 4a,. In addition the discriminant of the quartic
polynomial M (z) is given by:

disc(M(x)) = 256p3p3™ — 192p2ara3p>™ — 128p%a3p?™ + 144pasap™ —

27a3 + 14412 a2asp®™ — 6paiaip™ — 80uajazazp™+
18ajasa3 + 16pasp™ — dadai — 27p2aip?™ + 18uadazazp™—
4a3a3 — dpaiadp™ + ata3al.

= (266p°p?™ — 192payazp™ — 1282a2p™ + 144 paqa3+
144p2a2asp™ — 6uaia? — 80paaiasz — 27paip™+
18uaiasas — 4uas (a? — 4as)) pm — 27aj + 18aazas—
4a3a3 + ataza3 — 4azal

That means

v (disc (M(x))) > m if and only if

v (—27a3 + 18ajaqsa3 — 4aal + ata3a3 — 4a3a3) > m.
The result follows then from lemma [5.4]

3. If p, | a3 and p, t az and p, | a; then we have again
pv | az and p, { af — day.
In addition
v (—27a3 + 18ajasa3 — 4a3a3 + alala? — 4a3a?)
= v ((—27a3 + 18a1aza3 — 4alaz + a3 (a3 — 4ay)) a3).
That means
v (disc(M(z))) > m if and only if
v (—27a3 + 18ajaqa3 — 4aial + a?a3a3 — 4a3a3) > m if and only if
v ((—27a3 + 18aaza3 — 4adaz + a3 (a2 — 4as)) a3) > m
if and only if v(a3) = 2v(az) > m and the result follows from lemma 5.4

4. If p, | az and p, | ap and p, | a; then M(z) = 2* mod p,.
It follows then from corollary 2.1] that there is a unique zero of 7 in k()
if and only if M (z) is irreducible over k,; which is equivalent to saying
that M(x) mod p? is irreducible, where n = v (disc (M(x))) + 1.

79



5.2. EXPLICIT DESCRIPTION FOR THE CASE OF RANK 4
DRINFELD MODULES

5. If p, | a3 and p, { ay and p, 1 a;
and in addition p, { a? — 4ay then the result follows the same way as it
did for the case 3.
If we have instead p, | a% — 4ay then since a% —4ay =0 mod p,
M(z) = 2*(2® + a1z +as) = 2*(x+ap)? mod p,. with ap Z0 mod p,.
It follows from corollary that there is a unique zero of 7 in k(7)
if and only if M(z) = M;(x) - My(z) mod p” with M;(z) and My (x)
irreducible over k, and
M;(z) = 2* mod p, and My(x) = (x + ap)? mod p,;
where n = v (disc (M(x))) + 1.
Since in this case M(z) cannot be irreducible over k, (otherwise it
would be a power of an irreducible polynomial modulo p, ), this is
then equivalent to saying that M (z) has no root in k, and the result
follows.

O

5.2.2 Endomorphism rings in an isogeny class defined
by the Weil polynomial M (z) = 2* + a;23 + axx® +
asr + ,MQ.

As we did for the rank 3 case, the following result provides a more specific
description of orders occurring as endomorphism ring of a rank 4 Drinfeld
module in our isogeny class.

Proposition 5.7. M(z) = a*+a123+asx®+azz+pup™ is the Weil polynomial
describing our isogeny class.

1. If p, 1 as then an order O of k(w) is the endomorphism ring of a
Drinfeld module in the isogeny class defined by M (z) if and only if the
Frobenius m € O.

2. If p, | ag and p, t ay then we have the following:
Let M (x) = (2®4b1x+bs)(x?+c12402) mod p? (wheren = v (disc (M (x)))+
1) be a decomposition of M(x) over the completion field k,, where
2?2 + by + by is the irreducible factor of M(z) mod p” such that
22+ bz + by = 22 mod p,. We denote Ay = b? — 4by = \30¢ with g
square free in A/ptA.
An order O = (1,01, 09, w3) of k(m) is the endomorphism ring of a
Drinfeld module in the isogeny class defined by M(x) if and only if
the Frobenius m € O and there exists ag, oy, as, ag € A/plA with
(Oéo + 061&}1 + OéQ(IJQ + @3@3)2 = 50.
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3. If p, | ag and p, | ay then
An order O of k(m) occurs as endomorphism ring of a Drinfeld module
in the isogeny class described by M (z) if and only if the Frobenius
m € O and O is mazimal at all the places of k(m) lying over the place
v (i.e. the norm of the conductor of O is relatively prime to p, ).

Proof:

1. If p{as then M(z) = z(2® + @12 + aox + a3) mod p,.
That means deg Mj,.(x) = 1. We recall that M,.(x) is the irreducible
factor of M (x) over the completion field k, describing the unique zero
of m in k(m) lying over the place v of k (see corollary for more
details).
Therefore any order O containing 7 is already maximal at that zero of
7 described by Mj,.(x).
Hence an order O of k(7) in this case, is the endomorphism ring of a
Drinfeld module if and only if it contains 7.

2. If p, | ag and p, 1 az then we have the following:
M(x) = 2*(2® + a1z + az) mod p,

We know that an order O of k() is the endomorphism ring of a Drinfeld
module if and only if 7 € O and O is maximal at the zero vy of 7 in
k(m) lying over the place v of k (see theorem [3.4)).

But vg is described by the degree 2 irreducible polynomial

Mioe(z) = 2% + bz + by € A,[x] such that Mi,.(x) = 22 mod p,. The
completion O,, of O at vy must therefore be the maximal order of the
quadratic extension of k, defined by Mj..(z) = x* + byx + bs.

We know that the maximal order of that quadratic extension is given
by A, + A, - /9y, where &y is the square-free element of A, such that
Ao =12 — 4by = N2o.

Oy = Ay + A, -/ if and only if /&y € O,,. Especially, /& € OR A,.
Therefore O is the endomorphism ring of a Drinfeld module in the
isogeny class defined by M (x) if and only if 7 € O and the polynomial
2% — §y has a root in O ® A,.

i.e. if and only if 7 € O and (ag + a1 @1 + @@ + Odg(:)g)z = ¢ for some
a; € Ay, 1=0,1,2,3.

This is equivalent (Hensel lemma) to checking that

m € O and (ap + 1@ + ey + 043(213)2 =4y

for some a; € A,/pl'A, = A/pIA. Where n = v (disc(M(z))) +1 >
v(dg) + 1.
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3. If p, | a3 and p, | ay then we have two cases.
First case: If p, | a; then we have the following:

M(z) =z* mod p,

Thus the Weil polynomial M (z) must be irreducible over the comple-
tion field k,. In other words there is a unique place (the zero of 7) of
k(m) extending the place v of k. Therefore the statement follows from
theorem [B.4]

Second case: If p, 1 a; then we have the following:

M(z) = 2°(z +a;) mod p,

That means the irreducible factor M,.(z) of M(zx) over the completion
field k, describing the zero of 7 in k() satisfies Mi,.(z) = 2* mod p,

(see corollary [3.2).

That means the irreducible decomposition of M (x) over the completion
field k, has the form M (z) = Mj,.(x)M;(z) with

M, (x) = x 4+ a; mod p,. this implies that deg M;(z) = 1.

Let us denote v; the place of k() lying over v and described by M (x).
Since deg M;(x) = 1, the completion of the A-order O at the place v;
is maximal.

Therefore O is maximal at the zero vy of 7 (described by Mj,.(x)) if
and only if O is maximal at all the places (vy and v;) of k(7) lying over
v. That is, O ® A, is a maximal order of the k,-algebra k,(r).

Hence O occurs as the endomorphism ring of a Drinfeld module in the
isogeny class defined by the Weil polynomial M (x) if and only if the
Frobenius 7 € O and O is maximal at all the places of k() lying over
v (equivalently the norm of the conductor of O is relatively prime to

po)-
O

In the sequel, we compute the maximal order of the field k(7) and compute
the list of all the sub-orders of that maximal order occurring as endomor-
phism ring of a Drinfeld module in the isogeny class defined by the rank 4
Weil polynomial M (z).

The general description of an explicit (like in quadratic and cubic fields) in-
tegral basis of (quartic) function fields is still so far a problem. Nevertheless,
there are algorithms (Zassenhaus algorithm, Puisseux expansion, Montes al-
gorithm, Frobenius based method) implemented in most of the computer
algebra system to compute an integral basis of a function field. One can
therefore assume the integral basis to be known and move forward directly
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to the computation of orders occurring as endomorphism rings of Drinfeld
modules.

We discuss in the follwing part the explicit description of integral basis for
the very special case of biquadratic function field. We rely on the work of
Wu and Scheidler in [25]

Integral basis of a cyclic biquadratic function field

Definition 5.2. A biquadratic function field extension of k is a degree /
function field extension of k that contains an intermediate quadratic subfield.
It is said to be cyclic if it is Galois and the Galois group is Z,.

Definition 5.3. [Standard form/
a polynomial My(z) = x*+c12% + cow+ 3 € Alz] is said to be in the standard
form if there is no ¢ € A such that ¢ | ¢1, ¢ | cy and c*| cs.

Remark 5.9. Let M(z) = 2* + a12% 4 ag2? + azz + pQ be our Weil poly-
nomial and k() /k be the corresponding function field. If char(k) # 2, one
can transform (by setting x = y — %) M(x) into a polynomial of the form
y* 4+ b1y? + bay + by. This polynomial is therefore converted into its standard
form as follows:

1

n na n3
Let by = 11y Hbii, by = po Hbéz and bs = ps Hbgz be the square-free fac-
i=1 i=1 i=1

ni ns

. n2 . i
torizations of by, by and bs. We set g = H bEJ, 9o = Hbﬁ? gs = Hbgfj.
i=1 i=1 i=1
b S S S - S -
gcd(g1,;2,93)2’ €2 = gcd(g1;2793)3’ €3 gcd(g1,22793)4' The polyno
mial My(x) = 2t +c122 + cox+c3 € Alz] is in the standard form. In addition,
T is a root of M(x) = a* + a12® + ax2® + azx + pQ if and only if T+ % is a

root of y* + b1y? + bay + bz if and only if * = #;T;gg) is a root of My(x).
Also k(7) = k(m 4+ %) = k().

Consider ¢ =

Proposition 5.8. [25, theorem 5.1] Let M(x) = z* +a123 + asx® + azx + pQ
be our Weil polynomial. We assume that the standard form of M(x) is a
biquadratic polynomaial

My(x) = z* + c12° + cs.

The corresponding biquadratic function field k() = klx]/M(x) - k[z] is cyclic
if and only if (¢} — 4c3)es is a square in A = F,[T).
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Proposition 5.9. [25, theorem 7.6] We consider our cyclic biquadratic
function field k() as in the previous proposition.
The discriminant of the function field k() is given by:

16GRE?
-

disc (k(m))

where ¢3 — 4c3 = GoSE, 3 = HyTy with Gy and Hy square-free.
D() = ng(Go, SQ,TO) and FO = ng(S(),To).

Theorem 5.3. [25, theorem 8.1] We consider the Weil polynomial

M(z) = 2* + a12® + as2® + azz + pQ which corresponding function field
is k(m) = klz]/M(z) - k[z]. We assume that the standard form of M(x) is
given by a biquadratic polynomial My(z) = z* + c12? + c3 which defines a
cyclic biquadratic function field k(7) = k[z|/My(x) - k[z]. An integral basis
of k() = k(m) is

1 5 72+ /2 T+ CoF
T
) ) S() ) EODO

where,
Do = ng(Go, SQ,T()), Eo = lcm(So, Tg), Fo = ng(So,To)
MSo + Ty = Fo, MoEo+ p2 D = ged(Ey, D) = Dy

_ u1To/2+ X150
Co = M201D0T-

Let us now move to the computation of endomorphism rings of rank 4 Drin-
feld modules in the isogeny classes defined by Weil polynomials of the form
M(z) = 2* + a12® + as2® + azx + pQ.

Endomorphism rings

My(z) = 2* + 12 + cow + ¢3 is the standard form of the polynomial M (z).
7 denotes the Frobenius endomorphism (which is a root of M(z)) and 7
denotes the corresponding root of My(x).

We know that a necessary condition for an A-order in the function field k(7)
to occur as endomorphism ring of a Drinfeld module in the isogeny class
defined by the Weil polynomial M (x) is that it must contain 7. We proceed
exactly the same way we did in the case of rank 3. We assume without loss of
generality that the maximal order O,,,, of k(7) is generated by the integral

basis R SRR
Omaz = <1,7~T,7}2, i ;_ il > = <1,Cd1,¢d2,bd3>.

. _ disc(Mo(x))
Where the index [ = “Tisc(k(m) -
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Let O = (W, w1, ws,ws) be a sub-lattice of O,,q,. A necessary condition for
O to be an order is that 1 € O. We can therefore without loss of generality
assume that wg = 1.

~ ~ wl ~ ~

0= (L) ={(X ¥V 2 T)||, X,V 2 Teaj

w1, We and Wz € O,,4.. That means,

LJl =ay + b1w1 + Cciwa + d1w3
(,JQ = ag + bgwl + Ccowg + dg&)g for some a;, bi, C;, dz S A 1= 1, 2, 3.

LJ3 =as+ b3w1 + Cc3wo + dg(.dg

That is,

1 1 0 0 O 1
| e b oo d wq
WGo | |az by ¢ dy w2
w3 az by c3 ds w3

M

There exists an invertible matrix N € GL4(A) such that N - M = H where
H is an upper triangular matrix of the form

000

H= l; with deg; b < deg, ¢ and deg, d, degre < degy f.

1
0 a
0 0 e

000 f
Suitable row operations on M help to recover such a matrix N. We can
therefore assume without loss of generality that
1

~ ~ ~ wl

O:<1,¢J1,w2,w3>={()€ Y Z T)H XV, 2 TeA}
w3
The A-lattice O is actually an order if and only if it contains 2, Ws?2, WJs2, W1Wa, W3
and LJQ(,Jg.
W12 = (aw; +bwy +dws)? = a?w? +b2w2 + d?w32 + 2abwws + 2adw ws + 2bdwaws.
WGo? = (cwy + ews)? = cAw? + e2w?2 + 2ecwyws.
Ws® = (fws)? = fPw}
Wiy = (awy + bws + dws)(cws + ews) = bews + edws + acwiwy + aewiws +
(dc + be)waws.
W13 = (aw; + bwy + dws) fws = dfw3 + afwiws + bfwows.
Wowiz = (cwq + ews) fwz = efws + cfwsws. That is,
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Wi a’> b d* 2ab 2ad  2bd w?
W2 0 2 e 0 0 2ec ws
G2 10 0 0 f* 0 0 w?
(,51(,52 0 bc ed ac ae dc+ be Wiwso
(,51053 0 0 df 0 CLf bf Wiws
072(,53 0 0 Gf 0 0 Cf Wows
My
Using the following equalities
T=wi, T2 =wy, ™ =—-W —Vw; —Uws+ Iws and 7 = —c5 — cow; — c1ws.
One shows that
w% 0 0 1 0
w% —c3 —cy —c; O 1
2
Wi f 2 [ Koo X Ko Xadpen |y
W12 —W —V —U I W9
wWi1ws Yo Y Y, U w3
Wals Z(] Zl Zg V
Mo
(X _ —UVWH2UWe—U2c3—W24+Wea—2Vegteics
0 — 72
X, — —2UV242UV 1 —U2c—Veateiea—2Ucs
1 — 72
—2U2V+U261+V2—2VCl+C%—UCQ—03
X2 == T2
\Xg — 2UV*2UC]1+2W762
( o — _ _
YO _ —c3 [UW ZO — aW 031U VW
_ _ _ _ _yv2
}/1 — w UIV Cco and Zl _ c1V—c3 ICQU %4
_ V-U?—¢ _ W-VU-c2
\YQ - Ji Zy = Ji
Therefore
Wp 2
(o2 1
~ 2 ~
W3 _ w1
~ ~ - MlMQH ! ~
Wiz %)
W1Ws W3
WalJs

Remark 5.10. O is an order if and only if MiMyH ' € Mex4 (A)

Let us investigate the orders occurring as endomorphism ring of a rank 4
Drinfeld module in our chosen isogeny class.
We know as a necessary condition that for O to be the endomorphism ring of
a Drinfeld module we must have in addition to the condition mention in the
remark above, 7 € O. In other words there must exist ag, by, ¢y and dy € A
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T+ 4

such that 7 = ag + bo(ﬁl + COCJQ + do(ﬁg. But m = 4 . That iS,
9

= gnt — % = gw; — % where g = ged(g1, 92, 93)
as deﬁned in remark m W1 = awy+bwe+dws, Wy = cwotews and W3 = fws.
That is,
gwi — % = ag + boaw; + (bob + coc)wa + (bod + coe + do f)ws. We have then
ap = —%, bpa = g, bob = —coc and byd = —coe — do f.
Thus @ must divide g, c must divide 2b and f must divide —2d + £ e Hence

b
with dege < deg f, a|g, c]—bandf]—gd—i-g
ac

S O O
o O e O
o0 o O
~ O QU O

We summarize our discussion in the following theorem.

Theorem 5.4. A=F,[T] and k =F,(T).
Let M(x) = 2* + a12® + agz® + azz + pQ be a Weil polynomial.
In order to get a simple form x* 4 bix® + byx + bs of the Weil polynomial

M(x),

3a2 a1as 3@‘1l a%ag aias
let b - b —_ - dby=—— -
b =—— ha = 8 g s el = ot T T
whose square -free factomzatzon are gwen by

MIHblza b2 /~L2Hb217 b3 MSHb

In or’der to get the standard form (in the sense we defined in
My(z ) = 2 + c2? +02:B + ¢z of M( ), we consider

L5 L4
Hblz » 92 = Hb2z » g3 = Hsz :
=1 =1
We take off the hzghest square, cubic and quartzc common divisors of by, by
2

Co = g_3 and c3 = E where g = ged (g1, g2, g3)-

+ pQ

and bs by setting ¢, = —;,
g
T+ o

4 is a root of My(z). Let I = ind(7), U,V and W € A such that
g
the mazimal order of the function field k(m) = k(%) is given by

T =

WBHUR+Vi+W

pu— 1 - T
Oma:c < y Ty 7T Ji >
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Where the index I = %. We consider the matriz

0 0 1 0
—C3 —Cy —C 0
Xo X1 Xo X3

My = Where
-Ww -V U 1
Yo i Y, U
Zo Zy 4y V.
(X _ 2UVWA42UWer —U2cs—W2+Wea—2Veg+eics
0 — 72
X _ —2UV2+2UV01—UQCQ—VCQ+61C2—2UC3
1 — 72
X, — —2U2V+U%c14+V2—-2Vei+c2—Ucz—cg
2 — 72
_ 2UV—2Uc1+2W —cy
\X3 o I
( _ —c3—UW _ e W—=csU-VW
Yo = T Zo = 1
_Uv— a2
Y'l — W U]V Cco G/fld Zl — c1V—cs3 ICQU %
_yU?_ _VU—
Y, === Zy = W=VU-c

T
The endomorphism rings of Drinfeld modules in the isogeny class defined by

the Weil polynomial M (z) are:
0= A+ A [ai+bi+d" Uz [+V7T+W

4. [Cﬁ2+e7~r3+Uﬁ2;—V7~r+W} Y [fﬁ3+U7”r2;LV7~r+W]

such that MiMyH ™' € Mys (A). Where
2 0 d? 2ab 2ad 2bd

S

0 ¢ e 0 0 2ec 1 00 O
lo o o0 2 0 o o a b d
My = 0 bc ed ac ae dc+be and H = 00 ¢ e
0 0 df 0 af bf 000 f

0 0 ef 0 0  cf

(¢ runs through the divisors of g
¢ runs through the divisors of I

b runs through the polynomials in A whose degree are less than
degc and such that c | b
f runs through the divisors of I and
d  and e run through the polynomials in A whose degrees are less than

deg f and such that f | —%d + g—ge
And if in addition
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e p, | az and p, | as, we must have ged(p,,acf) = 1.
e p, | as and p, 1 as there must exists og, aq, ag, az € A/pl such that
(ap + 101 + oy + azw3)? = &g (see proposition .

Proof: The proof stems straightforwardly from the discussion we had
before. Concerning the fact that ¢ and f divide I, it comes from the following;:

1 1
(Jl — g w1
W2 w2
w3 W3

That is, disc (1, W, Ws, w3) = (acf)*disc (1,w, wa, ws)
But there exists N € .#, (A) such that

1 1
T w1
~9 = N

™ W2
~3

™ w3

ie. disc(1,7, 72, 7) = (detN)? (acf)?disc (1, w, ws, ws)

Hence acf divides I = ind(7) and thus ¢ and f divide I.

The condition ged(p,,acf) = 1 comes from the fact that the norm of the
conductor of @ must be prime to p,,. O

If g1, g2 and g3 are relatively prime (i.e. ¢ is a unit in A), in particular
3a2 ad  aja
if by = _Tl + ag is square-free or by = gl — 12 2 4 as is cubic-free or

+ u@ is quartic-free or by, by and b3 are relatively

3ai  dlay  ajaz

%= ~556 -
prime, then we have the following:

Corollary 5.3. The orders occurring as endomorphism ring of a Drinfeld
module in the isogeny class defined by M(x) = x* + a12® + as2? + azx + uQ
( with standard form My(x) = x* + c12% + cox + ¢3) are the ones given by

O=A+A w+ A (cws+ews)+ A fuws
such that My MyH ™' € Msyy (A). Where My is the same matriz as before,

1 0 0 0 0 O
0 2 e 0 0 2ec 100 0
oo o 20 o o100
Mi=10 0 0 ¢ e o ™HT= yo ..
00 0 0 f O 000 f

0 0 ef 0 O cf
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c and f run through the divisors of the index I = ind(7) and e runs through
the polynomials in A whose degrees are less than deg f. And if in addition

o p, | az and p, | az, we must have ged(p,, acf) = 1.

e p, | az and p, { ay there must exists o, oy, o, ag € A/pl such that
(o + Q1@ + s + azws)? = &g (see proposition .

5.2.3 Isomorphism classes for rank 4 Drinfeld modules

A =T;[T|, k=TF3(T). L =TFy =TFs(a), where o® + 2a + 1 = 0, is the
A-field defined by the ring homomorphism v : A — L, f(T) — f(0).
The kernel of v is given by (p,) = Kery = (T) =T - A.
We consider the polynomial M (z) = z* 4+ (T +1)a? + (T* — 1)z + T? € Alaz].
Claim: M(z) is a Weil polynomial.
Indeed,
M (z) already fulfils the restrictions on the coefficients of Weil polynomials.
Following our algorithm [2.1], we have in addition
o 5= [deiTﬁ =1 and

D =disc(M(x)) =T +T®+ 2T7 + 2T% + 2T° + 272 + 2.

ie. h—voo(D)—l— (r—l)——9—i—4><3+1:4.

My(z) = 2+ (£ + %) 2% + (% — &) = + % is irreducible over the

completlon field k. as Elnsenstein polynomial.

Therefore there is a unique place of k() lying over the place at oo of

k.

e p, = T does not divide ag = T2 — 1.
Thus there is a unique zero of 7 in k() lying over the place v of k.

Hence M (z) is a Weil polynomial.

We consider then the isogeny class of rank 4 Drinfeld modules defined by the
Weil polynomial M (z).

We aim to compute the isomorphism classes of Drinfeld modules lying in
that isogeny class.

Following the same procedure we did for the rank 3 case, we implemented a
SAGE code to compute first of all the Drinfeld modules in that isogeny class
and we gathered them with respect to their J-invariants and fine isomorphy
invariants, in order to get the isomorphism classes.

The results are given in the following tables:

Each table represents an isomorphism class.
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$1(T)

a®1 + (a? +22)72 + (202 + 20+ 2)7% + ar?
(@ +2a)T + (0 + 2)72 + (202 + 20 + 2)73 + (o + 2)7*
(@ +a+ D1+ 22 +a+ 1)1+ (202 + 20+ 2)73 + (2% + a + 2)74
(202 + 2)7 + o272 + (202 + 20 + 2)73 + (® + 2 + 2)74
(@ + )T + (a® + a)T? + (2% + 20+ 2)73 + (a + 1)7!
(@®+2)7 + (a® + 20+ 1)7% + (202 + 2a + 2)73 + (a® + a + 2)7*
207 + 72+ (202 + 20+ 2)73 + 274
(2a+ )T + (2% + 2)7% + (202 + 2a + 2)73 + 20271
(@ +2a+ 1)+ 2o+ 1)72 + (202 + 20 + 2)73 + (202 + )14
(2% + a+ 1)7 + (202 + 20+ 1)7% + (202 + 2a + 2)73 + (2% + 22 + 2) 74
20+ 2)7 + (a? + a+ )72 + (202 + 20+ 2)73 + (o + 1)74
(202 4+ 2a + 1) + 2a7? + (202 + 20 + 2)7% + (202 + 2a) 74
T+ 20+ 2)72 + (202 + 20 + 2)73 + (222 + 1) 71

¢2(T)

a4+ (@ +20)m2 + 222 + a+ )73 + (a + 2)7!

(@® +2a)7 + (a® + 2)72 + (202 + a+ )73 + (202 + a + 2)7?
(@®+a+ )7+ 22 +a+1)72+ (202 + a+ 1)7° + (o + 20+ 2)7*
(202 +2)T+ a?m?2 + (22 +a+ )73 + (a + 1)7?

(@ +a)T+ (@ + )+ 22 +a+ 1)+ (e +a+2)7!
(@ +2)7+ (&® + 20+ D)7+ (2% + a+ 1)1 + 274
201 + 7% 4 (202 + a + 1)7° 4 277!
2+ D7+ (22 + 2)72 + (2® + a+ 1)1 + (202 + a)7?
(@®+2a+ )7+ 20+ 1)7% + (2% + a + 1)73 + (202 + 20 + 2) 74
22 +a+ 1)1+ 222 +2a+ )72+ (202 + a+ )73 + (o? + 1)7*
2a+2)7+ (a® +a+ 1)7* + (20 + a + 1)73 + (2a% + 2a)7?
(20 +2a + 1) + 2a7% + (2% + a+ 1)72 + (202 + 1)74
T+ (2a+2)72+ (20 +a+ D)7+ ar?
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¢3(T)

a?1 + (@ + 2a)72 + (202 + 2a0)73 + (222 + 1)74
(@® +2a)T + (0 + 2)72 + (202 + 22)73 + at?
(@®+a+ 1)1+ (22 +a+ 172+ (202 +22)7% + (o + 2)7*
(2% +2)T + 7% + (2% + 20)7 + (2% + a + 2)74
(@ + )T + (@® + a)7* + (2% + 22)7% + (a? + 2a + 2)74
(@ +2)7 + (a® + 20+ 1)7% + (202 + 2a) 7% + (a0 + 1) 74
201 + 72 + (202 + 20)73 + (o + o + 2) 7
(2a+ )7 + (2% + 2)7% + (20 + 2a) 73 + 274
(@ 4+ 2a+ 1) + (2a + 1)72 + (202 + 2a)73 + 2074
(202 + a + 1)7 + (202 + 20+ 1)7% + (202 + 2a)7° + (202 + a)7*
2+ 2)7 + (o + a+ )7 + (202 + 2a)7% + (202 + 20 + 2) 74
(202 + 200+ 1)7 + 2a7% + (202 + 2a)7° + (o® + 1)1
7+ 20+ 2)72 + (202 + 2a)73 + (202 + 2a) 74

¢a(T)

@?1 + (2% + 2)72 + (20 + )73 + 274
(@ +2a)7 + (2a + )72 + (202 + )73 + 22271
(@®+a+ 1)1+ (202 +2a+ 1)72 + (2% + )72 + (2% + a)7?
(202 +2)7 + (@® + a+ 1)7% + (2% + )73 + (202 + 2a + 2)72
(@ + )T + 207 + (202 + )73 + (o + 1)1
(@® +2)7 + (2a + 2)7% + (2% + )73 + (202 + 2a)7*
201 + (0 + 2a)72 + (202 + )73 + (2% + 1)7!
2+ D7 + (a? +2)72 + (2% + )73 + at?
(@®+2a+ )7+ (202 + a+ 1)72 + (202 + )7 + (a + 2)7*
202 +a+ )7+ a2+ (222 + ) + (22 + a + 2)7!
(2a +2)7 + (@ + a)7? + (202 + a)73 + (a? + 22 + 2)74
(2% + 20+ 1)1+ (@ + 20+ 1)72 + (202 + )73 + (a + 1)7?
T+72+ (202 + )73 + (0 + a + 2)7
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¢5(T)

a1 + (202 + 2)7% + (202 + 2a)73 + (202 + 2a) 1!

(@® 4 20)T + (20 + 1)7% + (2a% + 2a)7% + (2a® + 1)7*
(@ +a+ 1)1+ (202 +2a + 1)72 + (202 + 22)73 + at?
(202 +2)7 + (@* + a+ 1)7% + (202 + 2a)73 + (o + 2)7*

(@® + )T + 2a7% + (202 + 2a)7° + (20* + o + 2)7*
(@®4+2)T + 2a + 2)7% + (2a* + 2a)7° + (o + 20 + 2)7*
201 + (a? + 2a)72 + (2% + 20)73 + (o + 1)7?
a+ 1)1+ (a2 +2)7% + (2% +2a)72 + (a® + a + 2)7?
(a® 4+ 2a+ 1)+ (202 + a+ 1)72 + (202 + 2a) 73 + 27¢
(2% + a+ )T + a?7? + (2a% + 22)73 + 20274

(2a +2)7 + (0 + a)7? + (202 + 2a)73 + (202 + a) 71!

(202 +2a+ 1)7 + (@ + 2a + )72 4 (2a% + 2a)7° 4+ (20* + 20 + 2)7*
T+ 72+ (2% + 2a)7% + (a? + 1) 7

¢6(T)

’7+ (2% + 2)7% + (202 + D)7 + (a + 1) 7
(@ +2a)T + 2a + 1)72 + (20 + )73 + (0® + a + 2)7*
(@®+a+ 17+ (202 +2a+ 1)1 + (202 + 1)7% + 27¢
(202 +2)7 + (@® + a+ 1)7% + (202 + 1)73 + 2271
(0 + )T +2a7? + (2% + 1)73 + (2% + a) 7!
(@ +2)7 + 2a + 2)72 + (20 + 1)73 + (2a* + 20 + 2)7*
207 4+ (a? +2a)72 + (202 + )73 + (0 + 1)7*
24+ 1)1+ (o +2)7% + (202 + 1)7° + (202 + 2a)7*

(@ +2a+1)7+ 222+ a+ 1)72 + (202 + 1)73 + (202 + 1)7*
(22 +a+ )7+ a2+ (222 + 1)1 + ar?
2a+2)7+ (@ +a)T* + (202 + 1)7° + (@ + 2)7*

(202 4+ 2a+ 1)1+ (&® + 20+ D)7+ (222 + D7 + (20® + a + 2)7!
T+72+ (202 + D)7 + (o + 20 + 2)74
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¢7(T)

1+ (a+ )72 + (202 + 2)73 + (o + 20 + 2) 74
(@®+20)T + (202 + a)7? + (202 + 2)7° + (e + 1)7*
(@®+a+ D1+ 22+ D)7+ (202 +2)73 + (0?2 + a + 2)7?
(2% +2)7 + (a® + 2a + 2)72 + (222 + 2)73 + 27¢
(a® + )T + 22272 + (202 + 2)73 + 20274
(@ +2)7 + (2% + 2a)7% + (2% + 2)73 + (2% + a)7!
207 + (2% + a+ 2)72 + (202 + 2)73 + (202 + 20 + 2) 74
2o+ )7+ 272 + (202 +2)73 + (a® + 1)7!
(@®+2a+1)7+ (a® + 1)72 + (202 + 2)73 + (202 + 2a)7?
202+ a+ )7+ (a+2)7% + (2% + 2)73 + (2% + 1)74
2+ 2)7 + (a® + a+2)72 + (2* + 2)7° + at?

(202 +2a+ )7 + (202 4+ 20+ 2)72 + (202 4+ 2)7% + (a + 2)7*
T4+ ar?+ (222 +2)73 + (2% + a + 2)7!

¢s(T)

a1+ (a+ 1)72 + 2273 + (o + 1)74
(a® +2a)7 + (202 + )72 + 2a%73 + (202 + 2a) 7
(@®+a+ 1)1+ (202 + 1)7% + 20273 + (2% + 1)7?
(2a% +2)7 + (o + 2a + 2)72 + 20273 + att
(a® + a)T + 22272 + 2027 + (o + 2)7°
(@® +2)7 + (2% + 22)7% + 20273 + (2% + a + 2)7!
207 + (202 + a + 2)72 + 20273 + (o + 2a + 2) 7
(204 1)1 + 272 + 20273 + (a + 1)7*
(@ +2a+ 1)1 + (o + 1)7% + 2273 + (o + a + 2)7*
(202 + a+ 1)1+ (a +2)7% + 20273 + 274
(2a +2)7 + (0 + a + 2)7% + 20273 + 20274
(2a% + 2a + 1)7 + (202 + 2a + 2)7% + 20272 + (2% + a) 7t
T+ ar? + 20273 + (20% + 20 + 2)7*
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5.2. EXPLICIT DESCRIPTION FOR THE CASE OF RANK 4
DRINFELD MODULES

¢o(T)

(a+ )72+ (202 + 1)73 + (2% + o)1t
(a® + 2a) (202 + )72 + (2% + 1)73 + (202 +2a+2)
(@®+a+ 17+ 222+ 1D)7% + (202 + )73 + (® + 1)7?
(202 + 2)7 + (a® + 2a + 2)72 + (22% + 1)73 + (202 + 2a) 7!
(@ + )T +2a°7% + (202 + 1)73 + (2% + 1)7?
(@ +2)T + (2% + 2a)7% + (2% + 1)73 + ar?
207 + (202 + a+2)7° + (202 + )7 + (a + 2)7*
2o+ 17 +272+ (202 + )7 + (202 + o + 2)7*
(@ +2a+ 1)1+ (@2 + )72+ (222 + )73 + (o + 20 + 2)74
2 +a+ )T+ (a+2)7% + (22> + )73 + (a + 1)7?
a+2)T+ (® +a+2)72+ 222 + D7 + (o* + a+ 2)7?
(202 4+ 2a + 1)T + (2% + 2a + 2)72 + (202 + 1)73 + 274
T+ ar?+ (2% + 1)7% + 2a%71

++

¢10(T)

1+ (@ +a+2)72 + (2% + 20 + 2)73 + (o + 20 + 2) 71

(@®+a+D)7T+ar®+ (20 + 20+ 2)7° + (o + a + 2)7
(202 +2)7 + (a + 1)72 + (202 + 2a + 2)73 + 27*
(0 + )7 + (202 + )7 + (2a% + 2a + 2)73 + 20271
(@ +2)7 + (202 + 1)72 + (2% + 2a + 2)7° + (202 + a)7*
201 + (o + 20+ 2)7% + (202 + 2a + 2)73 + (2a% + 22 + 2) 7!
(24 1)7 + 20272 + (202 4+ 2004 2)73 + (o + 1)74

(2a+2)7 + 272 + (2a® + 20+ 2)7° + at!
(202 +2a + 1)1+ (&® + )72 + (202 + 20 + 2)7% + (o + 2) 7
T+ (a+2)7? 4+ (202 + 2+ 2)7% + (2% + a + 2)74

(@® +2a)T + (2% + 2a + 2)72 + (202 + 20+ 2)73 + (a + 1) 7*

(@® +2a + 1)7 + (202 4 22)72 + (202 + 22 + 2)73 + (202 + 2a)7*
(202 +a+ )7+ (202 + a+2)72 + (202 + 2a + 2)7% + (222 + 1)1
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5.2. EXPLICIT DESCRIPTION FOR THE CASE OF RANK 4
DRINFELD MODULES

11 (T)

a1+ (@ + a+2)72 + (202 + 2a)73 + (® + 1)74
(@ 4 20)T + (2% + 2 + 2)72 + (20% + 22) 73 + (20 + 2)7*
(@®+a+ 1)1 +ar?+ (20 + 2a)7% + (222 + 1)1
(2% +2)7 + (a + 1)7% + (2a% + 22) 7% + at?
(@ + )T + (202 + a)72 + (202 + 2a)73 + (o + 2)74
(@ +2)7 + (2a% + 1)7% + (2% + 2a)73 + (2% + a + 2)7*
201 + (@ + 2a + 2)72 + (202 + 22)73 + (? + 2 + 2) 74
(2a + D)7 + 20272 + (2% + 20)73 + (a + 1) 71
(@ +2a+ 1)7 + (202 + 20)72 + (202 + 22)72 + (o + a + 2)7?
(202 + a+ 1)+ (202 + a + 2)7% + (2% + 2a) 73 + 274
(2a + 2)7 + 272 + (20 + 22)73 + 20271
(202 4+ 204+ 1)7 + (o + 1)7% + (2a® + 2a)7° + (2a* + )7
T+ (a+2)7% + (202 4 22)7 + (202 4 22 + 2)7*

¢12(T)

A’ + (@ + a+2)12 + (202 + 2a + 1)73 + (202 + )7t
(@ +2a)T + (202 + 20+ 2)72 + (202 + 2a + 1) 7% + (202 + 2 + 2) 74
(@®+a+1)T+ar®+ (20 + 20+ 1)73 +(2 1)r
(202 4+ 2)7 + (a + 1) 72 +(2a + 20+ 1)7* + (202 4 2a)7*
(a® 4+ a)T + (202 + )72 + (202 + 2a + 1)73 + (202 + 1)74
(@ +2)7 + (202 + 1)72 + (2% + 2a + 1)72 + a7
207 + (a2 + 20+ 2)7% + (202 + 2a + 1)73 + (a + 2)74
(204 1)7 + 20272 + (202 + 2a+ )73 + (202 + a + 2)7¢
(@ +2a + 1)7 + (202 4+ 22)72 + (202 + 20 + 1)72 + (a® + 2 + 2)7!
(202 +a+1)T+ (202 + a+2)7% + (202 + 2a + )72 + (a + 1)7?
2a+2)7+ 272+ (202 + 2a + )73 + (@ + a + 2)7!
(2% +2a + 1) + (& + )72 + (202 + 2 + 1) 73 + 274
T+ (@ +2)7% 4+ (20% + 2a + 1)7° 4+ 20274
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5.2. EXPLICIT DESCRIPTION FOR THE CASE OF RANK 4
DRINFELD MODULES

P13(T)

a?1 + (202 + a)m? + (2% + a + 2)73 + (22% + a)7?

(@® +2a)T + (202 + 1)72 + (202 + a + 2)72 + (202 + 22 + 2)7*
(@®+a+ D7+ (a®+2a+2)72 + (202 + a + 2)73 + (a? + 1)
(202 + 2)7 + 2a%7% + (2% + a + 2)7° + (202 + 2a)7?

(@ + )T + (202 + 2a)72 + (202 + a + 2)73 + (202 + 1) 74
(@ +2)7+ (20> + a +2)7° + (22> + a + 2)73 + at?

207 + 272 4+ (20> + a + 2)7° + (a + 2)7*

Ra+ 1)1+ @2+ 1D+ 22 +a+2)73 + (222 + a +2)7!
(@ +2a+ )7+ (a+2)72+ (202 +a +2)73 + (a? + 2o + 2)74
2 +a+ )7+ (®+a+2)72 + (202 + a+2)7 + (a+ 1)74
20+ 2)7+ (2% +2a +2)72 + (202 + a + 2)7° + (a* + a + 2)7?
(202 + 20+ 1) + at? + (20 + a + 2)7% + 27¢
T+ (a+ 17?4+ (202 + a + 2)73 + 20271

¢1a(T)

a1+ (202 + a)m? + (2% + )73 + (a? + 2a + 2)7?
(@ +2a)7 + (202 + D)% + (20 + )73 + (a + 1)74
(@ +a+ D7+ (@ +20+2)72 + 2%+ )P + (o + a + 2)7!
(202 + 2)7 + 2a%7% + (202 + )73 + 274
(@ + )T + (202 + 2a)7% + (202 + )73 + 22274
(@®+2)7+ (202 + a + 2)7% + (2% + )% + (2% + a) 7
201 + 27 + (2% + )7 + (202 + 200 + 2)7?
2o+ 17+ (®+1)7* + (202 + a)7* + (o + 1)1
(@®+2a+ )7 + (a+ 2)72 + (2% + )73 + (202 + 2a) 7!
22 +a+ )T+ (@ +a+2)7% + (2% + )7 + (222 + 1)7?
(2a +2)7 + (2% + 20 + 2)72 + (202 + )7 + at?
(202 +2a+ )7+ am? + (262 + a)7* + (a + 2)7!
T+ (a+ D)7+ (202 + ) + (202 + a + 2)7!
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5.2. EXPLICIT DESCRIPTION FOR THE CASE OF RANK 4
DRINFELD MODULES

¢15(T)

@’ + (20 + o) + (202 + a+ D)7 + (o + 1) 7
(@ +2a)T + (202 + 1)72 + (2% + a + )72 + (202 + 2a)7?
(@®+a+ D)1+ (02 +2a+2)72+ (2a2 +a+ 1) + (2% + 1)74
(2% +2)T + 2072 4+ (2 + a + 1)73 + at?

(@ + )T + (202 + 2a)7* + (202 + a+ )73 + (a + 2)74
(@®+2)7+ (202 +a+2)72 + (20 + a+ )72 + (202 + o + 2)7*
2a1 + 272 + (202 + a+ 1)1 + (o + 2 + 2)74
2a+ 1)1+ (2 + 1)+ 202 +a+ 1) + (o + 1)1
(@®+2a+ D)7+ (a+2)72+ 22 +a+ 1) + (a® +a +2)7?
20 +a+ )7+ (@ +a+2)72 4+ (202 + a + 1)73 + 274
(2a+ 2)T + (2% + 2a + 2)72 + (202 + a + 1)7% + 20274
(202 +2a+ )T+ ar? + (222 + a+ 1)1 + (2% + o)1t
T+ (a+ 1)1+ (202 + a+ )73 + (202 + 20+ 2)74

¢16(T)

A+ (@ + )12 + (202 + 2)73 + (a + 1)7!

(@ +2a)7 + (a + 2)7% + (202 + 2)73 + (® + a + 2)7*
(@ +a+ 1)1+ (®+a+2)7+ (2a% + 2)7% + 274
(202 + 2)7 + (202 + 2 + 2)7% + (202 + 2)7% + 20274
(@ + )T + ar? + (202 + 2)73 + (202 + )1
(@ +2)7 + (a+ )72 + (202 + 2)73 + (2a® + 22 + 2)7*
2a1 + (2a% + a)7% + (202 + 2)7° + (a® 4+ 1)7*

(a4 )7+ (202 + 1)72 + (2% + 2)7° + (2a% + 2a)7*
(@®+2a + 1)T + (a® + 2a + 2)7% + (2% + 2)7% + (2% + 1)7?
(202 + a+ 1)7 + 20272 + (2% + 2)7% + at!

(204 2)7 + (20% 4+ 20)72 + (202 4+ 2)7% + (a + 2)7*

(202 +2a + 1) + (20 + a + 2)72 + (2% + 2)7° + (20* + a + 2)7!
T+272 4 (202 4+ 2)73 + (® + 22 + 2) 74
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5.2. EXPLICIT DESCRIPTION FOR THE CASE OF RANK 4
DRINFELD MODULES

P17(T)

’1+ (@? + )72 + (202 + a+ 1)1 + 274
(@ +2a)7 + (o + 2)7% + (2% + a + 1)7° + 20274
(@ +a+ D7+ (@®+a+2)72+ (202 +a+ 1) + (202 + o)1t
(2% +2)7 + (2% + 20+ 2)72 + (202 + a + 1)73 + (202 + 2a + 2)7*
(@ +a)T+ar*+ 202+ a+ 1)7° + (o + 1)7*
(@ +2)7 + (a+ )72 + (202 + a + 1)73 + (2% + 2a)7*

207 4+ (202 + )7 + (22 + a+ 1)73 + (2% + 1)7!
Qa+ 171+ 22+ 1)+ (2a2 +a+ 1)1 + ar?

(@ +2a+ 1)1+ (a2 +2a+2)72+ 22+ a+ 1)73 + (a + 2)74
(2% + a+ 1)7 + 22272 + (202 + a + 1)73 + (202 + a + 2)7*
(2004 2)7 + (2% + 20)7* + (20* + a + 1)7° + (o + 22+ 2)7*
(202 +2a+ 1)+ (222 + a+ 2)7* + (20 + a+ 1) + (o + 1)7?
T+27+ 22+ a+ 1) + (a® + a4+ 2)7

¢1s(T)

?1+ (0 + 1)1 + (20% + 20+ 1) + (202 4 2a) 7
(@ +2a)T + (a+2)72 + (202 + 2a + 1)72 + (20% + 1)7?
(@®+a+ D7+ (@®+a+2)7%+ (2% + 2a + 1)73 + a7t
(202 +2)7 + (2a% + 20 + 2)72 + (202 + 2a + 1)73 + (o + 2) 74
(@®+ )T +at® + (202 + 2a+ 1)73 + (202 + a + 2)7?

(@ +2)7+ (a+ 1)7* + (202 + 2+ D)7° + (o + 20+ 2)74
2a7 4+ (202 + o) + (202 + 20+ 1)7° + (e + 1)7*
a+ 1)1+ (202 + )72+ (2% + 2a + 1)73 + (o + o + 2) 7
(@®+2a+ )7+ (a? + 2o+ 2)72 + (202 + 20+ 1)73 + 274
(2% + o+ 1)1 + 2272 + (202 + 2a + 1)7% + 20274
(2004 2)7 + (2% + 20)72 + (20% + 20 + 1)73 + (2% + a)7?
(202 4+ 2+ 1)7 + (20 + a + 2)7% + (202 + 2a + 1)73 + (2% + 2a + 2)74
T4+27%7+ (202 + 2a + 1)73 + (a® + 1)7!
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5.2. EXPLICIT DESCRIPTION FOR THE CASE OF RANK 4
DRINFELD MODULES

$10(T)

@’ + (2a+2)72 + (202 + a+ 2)73 + (202 + 1)1
(@® 4+ 20)T + (a® + 2a)7% + (20> + a + 2)7% + ar?
(@®+a+ D1+ (®+2)72+ 202+ a+2)7° + (o + 2)7°
(202 +2)7+ (202 + a+ )72 + (2% + a + 2)73 + (202 + a + 2)7*
(@ + )T+ 2+ (2% + a+ 2)7° + (o + 2a + 2) 7
(@ +2)T+ (a®>+ )T + (2 + a+ 2)73 + (a + 1)7!
207 + (@? + 2a+ )72 + (202 + a + 2)73 + (o + a + 2)7*
a+ 1)1+ 7%+ (2% + a + 2)73 + 271
(a? 4+ 2a+ 1) + (202 + 2)72 + (202 + a + 2)73 + 2274
(202 +a+ )T+ 2a+ )72+ (202 + a +2)72 + (2% + a)7?
2+ 2)7 + (2% + 2a + 1)72 + (202 + a + 2)7% + (2% + 2a + 2)74
(20 +2a + 1)1+ (@ +a+ 1)72 + (202 + a + 2)7% + (o + 1)7*
T+ 2a7? 4 (202 + a + 2)73 + (2% + 2a) 7

P20(T)

*1+ 2a+2)72 + (202 + 2)7 + (2% + a4+ 2)7!

(@ +2a)7 + (a? + 2a)7% + (202 + 2)73 + (o® + 2a + 2)7*
(@®+a+ D7+ (@ +2)72 + (202 4+ 2)73 + (a + 1)7*
(202 +2)7+ 22 +a+ 1)1+ (222 + 2)73 + (a® + a + 2)74
(0 + )T + a?72 + (2% + 2)73 + 274
(@®+2)7 + (o + a)7 + (202 + 2)73 + 22271
207 + (@ + 2a + 1)72 + (2a% + 2)73 + (2% + o)1t
(204 1)7 + 7% + (2a® + 2)7° + (20* + 2a + 2)7*

(@ +2a+ )7+ (202 +2)72 + (202 + 2)73 + (o® + 1)7?
(202 +a+ )7+ 2a+ 1)72 + (202 + 2)73 + (202 + 2a) 74
(2a +2)7 + (2% + 2a + 1)72 + (202 + 2)73 + (202 + 1)7*

(202 +2a + 1)1+ (&® + a + 1)72 + (2% + 2)7% + a7t
T+ 207? + (202 + 2)7° + (a + 2)7!
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5.2. EXPLICIT DESCRIPTION FOR THE CASE OF RANK 4
DRINFELD MODULES

$21(T)

@’ + (2a +2)7% + (2% + )73 + (202 + 200 + 2)7?
(@ 4+ 20)T + (a® + 2a)7% + (20 + )3 + (o + 1)7*
(@®+a+ 17+ (a?+2)7% + (202 + a)73 + (202 + 2a) 7
(202 +2)7 + (2% + a + 1)72 + (202 + )72 + (222 + 1)7?
(@ + )T + a?7% + (202 + )73 + at!
(@®+2)7+ (a? + a)T? + (202 + )72 + (a + 2)74
207 + (o + 2a + 1)7% + (202 + )73 + (202 + a + 2)7*
a+ 17+ 72+ (22 + )7 + (o + 2a + 2)7?

(@? +2a+ 1)1+ (202 +2)72 + (22 + )72 + (a + 1)7?
(202 +a+ )7+ 2a+ 172 + (22 + )7 + (o® + a + 2)7*
(2a+ 2)T + (2% + 2a + 1)7? + (202 + )7 + 274
(202 + 20+ 1)7 + (@® + o+ 1)1 + (20% + )72 + 2a°7?
T+ 2a7? 4 (202 + )73 + (202 + a) 7

P22 (T)

a1 + (202 + 2a + 1)7% + 20273 + (202 + 20 + 2) 74
(0?4 2a)7 + (& + a+ 1)72 + 20773 4 (0 4+ 1)7°
(@ + a+ 1)1 + 2a7? + 20273 + (20 + 22) 72
(2% +2)T + (2a + 2)72 + 2273 + (222 + 1) 74
(a® 4+ a)T + (o + 2a)7% + 20273 + at?

(@® +2)7 + (o® +2)7% 4 20°7° + (o + 2)7*
201 + (20% + a + 1)7% + 207 4 (20° + o + 2)7*
(2a + )7 + a?7? + 20273 + (a® + 2o + 2) 74
(@®+2a+ )7+ (a® + a)7? + 22273 + (o + 1) 74
(2a2 +a+ 1)1+ (a®+2a+ 1)72 + 2023 + (a® + a + 2)74
(2a + 2)T + 72 + 2a%73 + 27¢
(2a% + 20+ 1)7 + (202 + 2)72 + 2a%73 + 20271
7+ 2o+ 1)72 4 20273 + (202 + a) 1!
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5.2. EXPLICIT DESCRIPTION FOR THE CASE OF RANK 4
DRINFELD MODULES

Pa3(T)

a1+ (202 + 2a+ )72 + (202 + 2+ D72 + (@ + a + 2)7?
(@ +2a)T + (&® + a + 1)1 + (2% + 2a + 1)73 + 274
(@®+a+ 1)1+ 2a7? + (2% + 20 + 1)73 + 20274
(202 + 2)7 + (2a + 2)7% + (2a% + 2a + 1)73 + (2% + a)7?
(@ + )T + (® + 2a)72 + (202 + 2a + 1) 73 + (202 + 2a + 2) 72
(@ +2)7 + (a® +2)72 + (20 + 20+ 1) + (o® + 1)7?
207 + (202 + a+ 1)72 + (202 + 20 + 1)72 + (202 + 2a)7?
2+ 1)7 + a?7? + (202 + 2o+ 1)73 + (222 + 1) 74
(@ +2a+ 1)1+ (a? + )7 + (202 + 2a + 1)72 + ar?
(202 +a+ 1)1+ (a® + 2+ 1)72 + (2% + 20+ 1)73 + (a + 2)74
a+2)T+ 72+ (202 +2a+ )73 + (202 + a + 2)7!
(202 4+ 2a + 1)7 + (2% + 2)7% + (2% + 2a + 1)73 + (a? + 22 + 2)7*
T+ 2a+ 172+ (202 + 2a + 1)73 + (a + 1)1

P24 (T)

a?1 + (202 + 2a+ )72 + (202 + 1)73 + at?
(@®+2a)7 + (@®> + a+ )72+ (202 + )72 + (o + 2)7°
(@®+a+ 1)1 +2a1 + (202 + 1)73 + (2% + a + 2)7?

(20 + 2)7 + (2a + 2)7% + (2% + 1)73 + (a® + 22 + 2) 71
(@ +a)T + (a®+2a)72 + 222+ )73 + (a + 1)74
(@ +2)7+ (a?+2)72 + (222 + )7 + (a® + a + 2)7?
207 + (2% + a+ )72 + (202 + 1)73 + 274
(204 1)7 + 72 + (2a% + 1)73 + 227
(@® 420+ )7+ (a® + )72 + (2% + 1)73 + (2% + a)7*
(22 +a+ 1)1+ (a? +2a+ 1)72 + (222 + 1)73 + (202 + 2a + 2)7*
2a+2)7+ 7%+ (222 + )73 + (a* + 1)7?
(202 4+ 2a + 1)7 + (2% + 2)7% + (2% + 1)73 + (202 + 2a)7*
T+ (2a+ 1)72 + (202 + 1)73 + (2% + 1)
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Conclusion

Let us recall that we aimed in this work to classify the rank r Drinfeld
modules in the sense of answering the questions below. For A = F,[T] and
k=TF,(T)

1. What are the Weil polynomials (or Weil numbers) in A[z]| defining the
isogeny classes of rank r Drinfeld modules?

2. Given that the endomorphism algebra End¢ ® 4 k is an isogeny invari-
ant, describe and list the orders in the endomorphism algebra corre-
sponding to a given isogeny class, occurring as endomorphism ring of
a Drinfeld module in that chosen isogeny class.

3. Describe the L-isomorphism classes in a given isogeny class of rank r
Drinfeld modules defined over the finite field L.

Concerning the first question, we picked a degree r polynomial (r; divisor
of r) and we investigated following the definition of a Weil number and it
comes out that the rank r Weil polynomials are the polynomials in A[x] of
the form

M(z) = 2" fayz™ - ap, xtpups? € Alr] with 7 =7y and p € .

Where M (z) can be assumed WLOG to be a separable polynomial and such
that the following conditions are fulfilled.

o dega; < ”"d%p“ and 7o | m.

o for s = [24€%] and h = —deg (disc (M(z))) + sr(r — 1) + 1 we have

m

_ Gy — T2, .
MO((L’) — "+ %xm 1 4.4 TS<T11*11) t’l}—i-,l,b;ifs’n is irreducible modulo T%h

e for n = v (disc(M(x))) + 1 and for any irreducible factor fy(x)
of M(z) mod p?, we have Res <f0(3c), %((3) Z0 mod p,.




For the second question, we have restricted ourselves to the isogeny classes
for which the corresponding endomorphism algebra is a field. For this case,
the corresponding Weil polynomial we have described in the first question
has the form

M(x)=2"+ax" "+ + a,_12 + pup.

We have basically shown that an order O in our endomorphism algebra is
the endomorphism ring of a Drinfeld module in that chosen isogeny class if
and only if O contains the Frobenius endomorphism 7 and O is maximal at
the unique zero vy of 7 in k() lying over the place v of k.

We have also listed for the case r = 3 and the case r = 4 all the possible
orders of k(m) that are endomorphism rings of Drinfeld modules.
Concerning the last question, we came out with the isomorphism invari-
ants we called fine isomorphy invariants, which together with the (already
known) J-invariants describe the L-isomorphism classes in a given isogeny
class of rank r Drinfeld modules defined over the finite field L. We have also
explained for some concrete examples how the isomorphism classes can be
computed.

One can notice for the second question that we made a restriction to
isogeny classes for which the endomorphism algebra is a field. As a conse-
quence of this, we have worked with very special types of Weil polynomials.
As perspectives for future works, it would be good to extend the investiga-
tion to the general case. That is, what happen for the isogeny classes whose
endomorphism algebra is not a field? What are the orders occurring as en-
domorphism rings of Drinfeld modules? A good startlng pomt could be to

look at the rank 4 Weil polynomials of the form z? + az + up? (see
The endomorphism algebra here is a quaternion algebra over the quadratlc
extension (defined by our Weil Polynomial) k(7) of k. One should first of all
describe that quaternion algebra. The next step is to compute the maximal
orders in such a quaternion algebra and for a fixed maximal order, describe
and compute all the orders occurring as endomorphism ring of a Drinfeld
module in our rank 4 isogeny class.



Bibliography

[10]

Samuele Anni and Vladimir Dokchitser. Constructing hyperelliptic
curves with surjective galois representations. Transactions of the Amer-
ican Mathematical Society, 2019.

Tobias Bembom. Arithmetic problems in cubic and quartic function
fields. arXiv preprint arXiv:1007.1319, 2010.

Simon R Blackburn, Carlos Cid, and Steven D Galbraith. Cryptanalysis
of a cryptosystem based on drinfeld modules. TACR Cryptology ePrint
Archive, 2003:223, 2003.

Nicolas Bourbaki. Fléments de mathématique: Chapitres 3 et J. Her-
mann, 1962.

Ching-Li Chai, Brian Conrad, and Frans Oort. Complex multiplication
and lifting problems, volume 195. American Mathematical Soc., 2013.

Keith Conrad. Lecture notes in galois theory, August 2014. http://www.
math.uconn.edu/~kconrad/blurbs/galoistheory/separablel.pdf.

Sumita Garai and Mihran Papikian.  Computing endomorphism
rings and frobenius matrices of drinfeld modules. arXiv preprint
arXiw:1908.01805, 2019.

Ernst-Ulrich Gekeler.  Frobenius distributions of drinfeld modules
over finite fields. Transactions of the American Mathematical Society,
360(4):1695-1721, 2008.

Roland Gillard, Franck Leprevost, Alexei Panchishkin, and Xavier-
Francois Roblot. Utilisation des modules de drinfeld en cryptologie.
Comptes Rendus Mathematique, 336(11):879-882, 2003.

David Goss. Basic Structures of Function Field Arithmetic, volume 35.
Springer, 1998.


http://www.math.uconn.edu/~kconrad/blurbs/galoistheory/separable1.pdf
http://www.math.uconn.edu/~kconrad/blurbs/galoistheory/separable1.pdf

BIBLIOGRAPHY

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Urs Hartl. Uniformizing the stacks of abelian sheaves. In Number fields
and function fieldstwo parallel worlds, pages 167-222. Springer, 2005.

Antoine Joux and Anand Kumar Narayanan. Drinfeld modules are not
for isogeny based cryptography.

Sudesh K Khanduja and Sanjeev Kumar. On irreducible factors of poly-
nomials over complete fields. Journal of Algebra and its Applications,
12(01):1250125, 2013.

Nikolas Kuhn and Richard Pink. Finding endomorphisms of drinfeld
modules. arXiv preprint arXiw:1608.02788, 2016.

Eric Landquist, Pieter Rozenhart, Renate Scheidler, Jonathan Webster,
and Qingquan Wu. An explicit treatment of cubic function fields with
applications. Canadian Journal of Mathematics, 62:787-807, 2010.

Pascual Llorente and Enric Nart. Effective determination of the de-
composition of the rational primes in a cubic field. Proceedings of the
American Mathematical Society, 87(4):579-585, 1983.

David Mumford, Chidambaran Padmanabhan Ramanujam, and 1U I
Manin. Abelian varieties, volume 108. Oxford university press Oxford,
1974.

Jirgen Neukirch. ALGEBRAIC NUMBER THEORY, volume 322.
Springer, 1999.

Igor Yu Potemine. Minimal terminal -factorial models of drinfeld

coarse moduli schemes. Mathematical Physics, Analysis and Geometry,
1(2):171-191, 1998.

Michael Rosen. Number theory in function fields, volume 210. Springer
Science & Business Media, 2013.

Renate Scheidler. Algorithmic aspects of cubic function fields. In
International Algorithmic Number Theory Symposium, pages 395-410.
Springer, 2004.

Henning Stichtenoch. Algebraic Function Fields and Codes. Springer,
2009.

M Van Der Put, Gekeler Eu, and M Reversat. Drinfeld Modules, Mod-
ular Schemes And Applications. World Scientific, 1997.

106



BIBLIOGRAPHY

[24] Joachim von Zur Gathen and Silke Hartlieb. Factorization of polyno-
mials modulo small prime powers. Univ.-Gesamthochsch.-Paderborn,
Fachbereich Mathematik-Informatik, 1996.

[25] Qingquan Wu and Renate Scheidler. An explicit treatment of bi-
quadratic function fields. Contributions to Discrete Mathematics, 2(1),

2007.

[26] Jiu-Kang Yu. Isogenies of drinfeld modules over finite fields. Journal of
Number Theory, 54(1):161-171, 1995.

107



	Preliminaries
	Function fields
	Algebraic function fields extensions
	Orders in function fields extensions
	Additive polynomials
	Drinfeld modules
	Definition and some properties
	Morphisms of Drinfeld modules


	Isogeny classes of rank r Drinfeld modules
	Definitions and potential Weil polynomials
	Algorithm - Weil polynomials
	Generalization to any positive degree r. 
	Generalization for inseparable Weil polynomials
	Some properties of monic irreducible polynomials over a field k of characteristic p > 0
	Inseparable Weil polynomials


	Description of the endomorphism rings of Drinfeld modules in a given isogeny class
	Tate module of a Drinfeld module
	Dieudonné module of a Drinfeld module
	Main theorem

	L-isomorphism classes of Drinfeld modules defined over a finite field L
	Isomorphism invariants
	Main theorems

	Application: Explicit description for the cases of rank 3 and rank 4 Drinfeld modules
	Explicit description for rank 3 Drinfeld modules
	Isogeny classes of rank 3 Drinfeld modules
	Endomorphism rings in a given isogeny class of rank 3 Drinfeld modules
	Isomorphism classes in a given isogeny class of rank 3 Drinfeld modules

	Explicit description for the case of rank 4 Drinfeld modules
	Rank 4 Weil numbers
	Endomorphism rings in an isogeny class defined by the Weil polynomial M(x)=x4 + a1x3 + a2x2 + a3x + Q. 
	Isomorphism classes for rank 4 Drinfeld modules





