
Bernhard Schlegel

Off-Board Car Diagnostics
Based on Heterogeneous,
Highly Imbalanced and
High-Dimensional Data
Using Machine Learning
Techniques

14

!

!

Cboe!!25!

Herausgegeben von

Prof. Dr. Bernhard Sick, Universität Kassel

Bernhard Schlegel

Off-Board Car Diagnostics

Based on Heterogeneous, Highly Imbalanced

and High-Dimensional Data Using Machine

Learning Techniques

kassel
university

press

This work has been accepted by the Faculty of Electrical Engineering / Computer Science of the University

of Kassel as a thesis for acquiring the academic degree of Doktor der Naturwissenschaften (Dr. rer. nat.).

Supervisor: Prof. Dr. Bernhard Sick, University of Kassel

Co-Supervisor: Prof. Dr. Ludwig Brabetz, University of Kassel

Defense day: 29th May 2019

Bibliographic information published by Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie;

detailed bibliographic data is available in the Internet at http://dnb.dnb.de.

Zugl.: Kassel, Univ., Diss. 2019

ISBN 978-3-7376-0738-4 (print)

ISBN 978-3-7376-0739-1 (e-book)

DOI: http://dx.medra.org/10.19211/KUP9783737607391

URN: https://nbn-resolving.org/urn:nbn:de:0002-407391

© 2019, kassel university press GmbH, Kassel

www.upress.uni-kassel.de

Printed in Germany

v

Preface

The following Ph.D. thesis was made possible by a cooperation between Prof. Bernhard Sick,

head of Lab for Intelligent Embedded Systems at the University of Kassel, and the Bayerische

Motoren Werke Aktiengesellschaft (BMW AG). It was carried out from 2015 to 2018. The idea

was originally brought up by Axel Knaut from BMW AG, who saw the untapped potential of

the available data.

Munich, August 3, 2019

Bernhard Schlegel

vi

Danksagung

Ganz besonderer Dank gilt Prof. Dr. rer. nat. Bernhard Sick, der mich während aller Phasen

der Promotion gefordert und gefördert hat und außerdem stets ein offenes Ohr, exzellente

Anmerkungen und viel Geduld hatte. Weiter möchte ich Prof. Dr. rer. nat. Ludwig Brabetz

für die Zweitgebutachtung meiner Promotion danken.

Außerdem möchte ich Dr.-Ing. Hermann Hajek, Axel Knaut, Dr.-Ing. Dieter Strobel und

Dr.-Ing. Florian Preuß und der BMW AG für die Zusammenarbeit, die Freiräume und die

Ermöglichung von zahlreichen Konferenzteilnahmen bedanken. Herzlicher Dank geht auch

an die Doktoranden und Doktoren des Fachgebietes IES der Universität Kassel für die zahlre-

ichen Anregungen und die tatkräftige Unterstützung sowie an meine Ko-Autoren von BMW,

Peter Wolf und Artur Mrowca.

Vielen Dank auch an Marc Kaminski für seine hervorragende Arbeit und viele, interes-

sante Unterhaltungen quer über den Tisch.

Außerdem möchte ich mich herzlich bei meinen Freunden bedanken, insbesondere bei

der “Crew” (Daniel, Kevin, Lukas, Moritz, und Dr. rer. nat. Oliver) und Andrea für “inspiri-

erende” Momente. Herzlichen Dank geht außerdem an Micha, die mich stets mit Wissen

versorgt hat.

Zuletzt geht mein Dank an meine Eltern Norbert und Marina, die mich von Anbeginn

meines Studiums bis in die finalen Phasen der Promotion unterstützt haben und Annika,

die mir auch in arbeitsintensiven Zeiten zur Seite stand.

vii

Abstract

Data-driven maintenance poses many challenges. Four very important of them, namely

coping with a high dimensional and heterogeneos feature space, the highly imbalanced data

sets, the Remaining Useful Lifetime (RUL) prediction of monitored parts based on short yet

variable length timeseries, and already large but steadily further increasing data set size are

identified. Each of the challenges is dealt with in one chapter. Novel techniques are de-

signed, implemented, validated, and compared to existing approaches based on a variety of

(publicly available) data sets for general applicability. In the following multiple concepts are

proposed and evaluated in great detail: A feature selection pipeline with multiple consecu-

tive stages of increasing run-time complexity but also increasing accuracy to tackle the high

dimensional feature space. Existing techniques to tackle imbalance are evaluated and com-

pared to a novel technique that stands out due to its extremely low computational complex-

ity. Two novel techniques based on cascaded Random Forests (RFs) and on density-based

estimation that outperform current state of the art techniques for RUL prediction. And fi-

nally: The evaluation of an in-memory cluster computing framework regarding its suitabil-

ity for not only large-scale data set extraction from a relational database, preprocessing and

transformation of the dataset but also machine learning.

viii

Zusammenfassung

Die datengetriebene Wartung und Instandhaltung birgt eine Vielzahl von Herausforderun-

gen. Vier sehr wichtige von ihnen wurden identifiziert: Die hohe Dimensionalität und

Heterogenität des vorliegenden Merkmalsraumes, die hohe Imbalance der Datensätze, die

Vorhersage der Restlebensdauer von überwachten Komponenten auf Basis von kurzen bzw.

unterschiedlich langen Zeitreihen und die bereits sehr große und kontinuierlich weiter

wachsendende Menge von Daten. Jeder dieser Herausforderungen ist ein dediziertes Kapi-

tel gewidmet. Hierzu wurden neuartige Techniken entwickelt, implementiert, validiert

und mit existierenden Ansätzen auf Basis einer Vielzahl von teilweise öffentlich verfüg-

baren Datensätzen hinsichtlich ihrer allgemeinen Anwendbarkeit verglichen. Folgende

Konzepte werden vorgestellt und im Detail bewertet: Eine Pipeline zur Merkmalsauswahl

mit mehreren, aufeinander folgenden Schichten mit jeweils steigender Berechnungskom-

plexität und Genauigkeit, um wichtige Merkmale aus hochdimensionalen Merkmalsräu-

men zu extrahieren. Existierende Techniken zur Beherrschung starker Imbalance werden

evaluiert und mit einer neuartigen Technik, die eine extrem geringe Berechnungskomplex-

ität aufweist, verglichen. Zwei neuartige Techniken auf Basis von kaskadierten Random

Forests bzw. auf Basis von Dichteschätzung werden vorgestellt. Diese über-treffen bereits

existierende Lösungen zur Vorhersage der Restlebensdauer von Komponenten. Zum Ab-

schluss werden die vielversprechendsten Methoden für ein In-Memory Cluster Computing

Framework implementiert und dieses hinsichtlich seiner Eignung zur Datenextraktion und

-transformation sowie zur Modellbildung, untersucht.

Contents

Preface . v

Acknowledgment . vi

Abstract . vii

Zusammenfassung . viii

1 Introduction 1

1.1 Motivation . 1

1.2 Data Sources . 3

1.3 Problem Formulation . 4

1.4 Objectives . 6

1.5 Structure of this Thesis . 7

1.6 List of Relevant Publications . 7

2 Preliminary Considerations 9

2.1 Notation . 9

2.2 Machine Learning Models . 10

2.2.1 Random Forests . 10

2.2.2 Logistic Regression . 13

2.2.3 K-nearest Neighbor . 14

2.3 Measuring Classification Performance in

Imbalanced Scenarios . 16

3 Feature Selection 21

3.1 State of the Art . 22

3.1.1 Diagnostics . 22

3.1.2 Filter Measures . 23

3.1.3 Wrapper and Embedded Measures . 33

ix

x CONTENTS

3.2 Research Demand . 35

3.3 Data Sets . 36

3.3.1 Diagnostic Automotive Data . 36

3.3.2 Publicly Available Data Sets . 37

3.4 Proposed Solution . 38

3.4.1 Preparation Layer . 39

3.4.2 Filter Layer . 40

3.4.3 Wrapper Layer . 41

3.4.4 Model Layer . 42

3.4.5 Hyperparameters . 42

3.5 Evaluation . 43

3.5.1 Detailed Look on Feature Group Importance 44

3.5.2 Filter Layer Evaluation . 46

3.5.3 Wrapper Layer Evaluation . 49

3.5.4 Remaining Hyperparameters . 50

3.5.5 Evaluation on Publicly Available Data . 55

3.6 Summary and Conclusion . 57

4 Dealing with Imbalance 62

4.1 State of the Art . 63

4.1.1 Preprocessing Techniques for Imbalanced Data Sets 65

4.1.2 Objective Feature Noise, Borderline, and Overlap Measure 73

4.2 Research Demand . 75

4.3 Data Sets . 76

4.4 Evaluation . 79

4.4.1 Preliminary Investigations . 80

4.4.2 Robustness . 82

4.4.3 Influence of Preprocessing Techniques on the

Classification Performance . 84

4.4.4 Computational Complexity . 90

4.5 Lessons Learned and Conclusions . 91

CONTENTS xi

5 Remaining Useful Lifetime 94

5.1 Notation and Definitions . 95

5.2 State of the Art . 95

5.3 Research Demand . 98

5.4 Data Sets . 99

5.5 Proposed Solution . 101

5.5.1 Approach of Wang . 102

5.5.2 Polynomial-Based Feature Selection . 105

5.5.3 Distribution-Based Similarity Estimation 106

5.5.4 Bucketized RUL Regression . 110

5.6 Evaluation . 113

5.6.1 Hyperparameters of Distribution-based Similarity Estimation 113

5.6.2 Hyperparameters of Bucketized RUL Regression 115

5.6.3 Summary . 122

5.7 Conclusion and Outlook . 124

6 Apache Spark and Application 126

6.1 State of the Spark . 127

6.1.1 Immutable Data Sets . 129

6.1.2 Actions and Lazy Transformations . 129

6.1.3 Estimators and Transformers . 130

6.1.4 Ephemeral Intermediate Results . 130

6.2 Research Demand . 130

6.3 Apache Spark Pipeline . 131

6.3.1 Preprocessing . 132

6.3.2 Modeling . 135

6.3.3 Cluster Setup . 137

6.3.4 Graphical User Interface and Backend . 137

6.4 Evaluation . 138

6.4.1 Limitations of Apache Spark . 139

6.4.2 Data Sets . 143

6.4.3 Experiments . 145

6.5 Brief Economic Analysis . 151

xii CONTENTS

6.6 Conclusion . 154

7 Summary 155

7.1 Summary, Conclusions, and Discussion . 155

7.2 Recommendations for Further Work . 158

A Spark Cluster Setup and Application Launch 160

Chapter 1

Introduction

The growing complexity and diversity of vehicle systems render it increasingly hard to iden-

tify and resolve the root cause of an unplanned maintenance session at hand in a dealer

workshop. This especially holds for workshop staff with limited qualifications and experi-

ence. By today, the workshop staff is supported by expert-based systems, where knowledge

was manually generated, i. e., by formalizing human knowledge using rules.

However, this approach does not seem to be effective, since misdiagnosed and misre-

paired cars are an steadily increasing cost factor in the automotive field1. Especially given

the growing variant diversity, differing environmental conditions, and the increasing prod-

uct complexity, the current expert-knowledge-based offboard diagnostics practiced in work-

shops today seem to be doomed.

On the other hand, rich car- and workshop-data is already available today and remains

widely unused. Due to the telematics enabled data collection, the amount of data is expected

to grow even further in the future. A highly autonomous, machine-learning-based approach

seems promising since the large amount of data is presumably sufficient to automatically

model even complex relationships and error patterns.

1.1 Motivation

According to a survey performed by BearingPoint [7], being unable to identify the is-

sue (and thus performing the right actions) is the biggest contributor to warranty inci-

dents for suppliers and the third biggest contributor for Original Equipment Manufactur-

1From 2011 to 2016, the warranty cost of BMW increased by 19% every year [9, 10, 11, 12, 13, 14] on average.

1

2 CHAPTER 1. INTRODUCTION

ers (OEMs) in the automotive industry. The great importance of so-called No Trouble

Found (NTF) cases are a strong indicator that the current expert knowledge-based diag-

nostics are unable to cope with the constantly growing demands on the workshop and

vehicle diagnostics. The reasons for this are manifold: The complexity of cars is con-

stantly growing due to increased connectivity between and inside cars as well as trends

such as hybridization. Especially the latter yields far more complex drivetrains incor-

porating not only a combustion engine, such as in conventional cars, but also an elec-

tric engine and a high voltage energy storage. The high level of interdependencies be-

tween components make diagnosing these systems very hard using systems based on

Knowledge Databases (KDBs) [4] that are essentially based on often manually generated

if ... then ... else ... rules [119].

Todays car OEMs offer extensive possibilities to customize the car upon order. Different

engines, equipment packages, colors, and other optional extra equipment cause that only a

few vehicles are identical. In addition, vehicles are used in different regions (e.g. with regard

to fuel quality) differently (depending on driving style). A preliminary data analysis2 shows

that even a way less customizable hybrid vehicle offers approximately 9500 unique configu-

rations. This means that there are on average three vehicles with the same configuration in

the data set. Representing and considering this high variety of possible configurations using

classical KDB-based systems, and ensuring that they are up-to-date, e.g. when new software

updates are released, is tremendously challenging.

Evolving countries continue to gain importance for automotive OEMs. In 2016, 43% of

new cars were sold in evolving markets such as China, India, and Brazil [121]. Since it is not

standard in these countries (unlike Germany) to complete several years of training before

working as a mechanic, it is difficult to find qualified personnel for the workshops. This,

however, is a crucial requirement to perform tests and follow the recommendations given by

the KDB properly.

The results can be severe: Low customer satisfaction due to wrong or unnecessary expen-

sive repairs, and high warranty costs as well as damage to the premium image of the OEM.

At the same time, modern vehicles produce a rich set of data that has the potential to revo-

lutionize how cars are diagnosed and repaired in a more generic, precise and autonomous

way. This data is already available today, but is rarely used because of the major challenges

2Performed on the Automotive 2L data set from Chapter 6.

1.2. DATA SOURCES 3

involved, as described in the following. However, its use is promising and will be investigated

in this thesis.

1.2 Data Sources

The starting point to enable data-driven car diagnostics is historical, non-personal, labeled

data. For this work, the data sets were collected from a fleet of modern hybrid vehicles. In

general, every time a vehicle is brought to a BMW dealership and read out using the OBD-II

port or using telematics, a sample is created. Each sample consists of the following feature

groups (that consist of multiple features):

• Readout data (RO): This holds basic information such as when or in which dealer-

ship the readout was performed. Also, software version information of the car and

the mileage are included.

• Car Parameters (CPs): This is static information about the car that was defined during

production, such as the type of car or the engine.

• Extra Equipments (EEs): This, foremost Boolean typed feature group indicates

whether a certain optional extra equipment is present or not. Examples include leather

seats, light and comfort packages, fast charging or if a trailer hitch is available.

• Diagnostic Trouble Codes (DTCs): A car constantly compares measured values (e.g.

the gasoline consumption) to a model-based prediction of the same value. Based on

the self-diagnostic capabilities of Electrical Control Units (ECUs), a DTC is flagged au-

tonomously if the discrepancy grows too large.

• Environmental conditions (ECs): These are usually logged at the same time when a

DTC is flagged and allow to reconstruct the state of the car at the time of the error later

on.

• Measurement Values (MVs): MVs allow for assessing the internal state of the car, e.g.

the coefficients of adaptive controllers, and other values to enable conclusions to be

drawn about how the car was moved.

The potential targets of a model include parts that were switched (Switched Parts (SPs)),

counter actions that were taken (Taken Action (TA)), and Diagnostic Codes (DCs). The latter

4 CHAPTER 1. INTRODUCTION

is a hash like ID that summarizes potentially multiple SPs and TAs. In addition, a variety

of publicly available data sets tailored to the specific aspects of the corresponding chapters

were identified: Chapter 3 uses the golub [48] and secom data sets [77], Chapter 4 includes the

vehicle [117], vowel [125], and forest data sets [32], Chapter 5 uses the PHM08 [104], turbofan

[103], and SML2010 [146] data sets, and Chapter 6 relies on the Credit Card [34] and NIPS

[53] data sets.

1.3 Problem Formulation

Among others, four major challenges need to be overcome to enable data-driven, au-

tonomous, and generic automotive diagnostics that are not tailored towards a specific com-

ponent but able to diagnose basically any part where data is available (generic). These are:

(1.) The high dimensional and heterogeneous feature space: As mentioned earlier, a mul-

titude of data of data is already available today. However, this poses the challenge to identify

the few (usually up to 20, see Chapter 3) useful features required to create meaningful and

well generalizing models from the several thousand features available. This is specifically

challenging, if the feature space is heterogeneous, as shown in Table 1.1: In the automo-

tive context, a variety of different features types occur. The various column header prefixes

match the abbreviations introduced in Section 1.2. Feature datatypes include: Ordinal inte-

gers or floating values, categorical integers, and strings. They all need to be treated differ-

ently. Also, features differ in their sparsity (consider, e.g., SC_IP in Table 1.1 which is very

sparse).

Table 1.1: Example data set for automotive diagnostics.

MV_S MV_1 MV_3 MV_BG EE_TP SC_IP SC_1 SC_2 DTC_PU DTC_1 DTC_2 CP

44 3 20 -0.06 False 2 77 27 False True "v.10a"
72 36 73 -0.01 False 16 29 False "v.10a"

100 4 16 -0.02 True 45 1 False False "v.10b"
44 14 54 -0.02 True 76 False "v.10b"
95 34 73 -0.07 False 80 22 False False "v.10a"
16 50 33 -0.02 True 61 93 False False False "v.11x"

4 27 -0.09 False 59 91 False "v.10a"
48 20 -0.07 False 32 31 False "v.10a"

88 60 72 -0.01 True 1.9 96 53 True False True "v.10a"
27 14 88 False 73 14 False "v.11x"

1.3. PROBLEM FORMULATION 5

(2.) The highly imbalanced data sets: Thanks to the high quality standards of todays cars,

errors are not the norm but the exception. The circumstance that every time a vehicle is read

out in the workshop or via telematics a data sample is created (represented by one row in

Table 1.1) causes a strong imbalance in the data set. The small number of samples in which

the problem occurred compared to the high number of samples where another or no prob-

lem occurred leads to a high imbalance in the data set. This makes model training extremely

difficult. In addition, due to the aforementioned variety of vehicles offered by each OEM,

the possible causes for faults and fault patterns are extremely diverse. This further increases

the imbalance and makes it even more difficult to train meaningful and well generalizing

models.

(3.) Short time series of varying length: Generally speaking, the automotive data sets are

panel data sets: Multiple objects (cars) are measured over multiple time periods. Especially

for predicting the RUL (and thus enabling predictive maintenance), considering temporal

connections during model creation promises an increased model accuracy3. However, time

series data from cars in diagnostic contexts tends to be very short (e.g. only three samples

“long”). In addition, the length of the time series depends extremely on the observed com-

ponent and the type of data collection (workshop or telematics). For these two reasons, clas-

sical time series approaches such as windowing [92] are out of the question. In order to meet

the generic requirement, however, approaches are required that can cope with short and

variable-length time series.

(4.) Large, continuously growing data volumes: This work examines (among other data

sets) two automotive diagnostic data sets in different versions. While the first one originated

from workshop readout processes, the second one was collected via telematics. With 3107

features and 121900 samples, the first automotive data set was already larger than all publicly

available data sets evaluated in the context of this work. However, the second data set was

even larger. The latter was not processable in-memory on a single computer. Should data

collection via telematics gain in importance – which is to be assumed due to the advantages

such as the higher sampling rate – the data volume will continue to increase. This places

demands on data-driven diagnostics with regard to their scalability in order to cope with

presumably ever-increasing data volumes.

Many of the above mentioned challenges apply not only to automotive diagnostics. As

3This is referring to the accuracy in general, not the definition of accuracy derived from a confusion matrix.

6 CHAPTER 1. INTRODUCTION

more and more data becomes available every day, challenges such as imbalance and being

able to process large-scale data sets apply to many industries and products.

1.4 Objectives

The overall objective of this thesis is to develop, implement, and extensively evaluate a ma-

chine learning system which is able to classify whether a counter measure is suitable or to

predict the RUL of a component (regression). Based on the aforementioned challenges, the

following main objectives are derived:

1. The definition of a meaningful error score that allows to accurately assess the classi-

fication performance in the given, imbalanced scenario as discussed in challenge 2

(imbalanced data sets). This also affects challenge 1 and 4 since a meaningfull error

score is a prerequisite for all subsequent considerations.

2. Also, to tackle challenge 1, the combination and adaptation of techniques that are able

to select relevant features from a high dimensional feature space is required.

3. The development and comparison of techniques to tackle the high imbalance of the

automotive and other, publicly available data sets (challenge 2).

4. The development of techniques to accurately estimate the RUL based on short, vari-

able length time series according to challenge 3.

5. The identification and adaptation of a multi node in-memory computing frame work

to deal with large data volumes according to challenge 4. The scalability and perfor-

mance in comparison to single node frameworks shall be examined. Also, potential

caveats and corresponding countermeasures need to be identified.

6. All objectives defined above must meet the “generic” requirement. The declared ob-

jective of this thesis is to create the foundation for automated diagnosis of errors and

prognosis of RULs independent of the examined or modeled component. Thus, eval-

uation shall be based on a variety of different data sets.

7. The evaluation and optimization shall be laid out in respect to both, classification or

regression grade and run-time complexity.

1.5. STRUCTURE OF THIS THESIS 7

1.5 Structure of this Thesis

The rest of this work is structured as follows. Chapter 2 introduces the notation (Section 2.1)

and machine learning models (Section 2.2) used across all following chapters. Also, objective

1 is tackled and a meaningful error measure for classification is identified (Section 2.3).

In Chapter 3, a feature selection pipeline is proposed to tackle objective 2. Chapter 4 will

evaluate various techniques to cope with imbalanced data sets thus satisfying objective 3.

Chapter 5 will propose and evaluate techniques to process short and variable time series

(objective 4).

In Chapter 6, an in-memory cluster computing framework will be evaluated regarding it

suitability for data-driven workshop diagnostics (objective 5).

Chapter 7 will summarize the results of this work and give an outlook for further research.

All chapters will also consider objectives 6 and 7. Generic applicability (objective 6) is en-

sured by evaluating on a variety of different data sets.

For all experiments, the runtime is also logged so that this can be taken into account in

the subsequent run-time complexity evaluation (objective 7). The relevant state of the art

will be presented in Chapters 3, 4, 5, and Chapter 6, respectively. All existing and proposed

approaches are evaluated based on the results originating from extensive experiments which

are described in the corresponding chapters.

1.6 List of Relevant Publications

The following publications directly emerged from the work on this thesis:

• B. Schlegel and B. Sick. Design and Optimization of an Autonomous Feature Selec-

tion Pipeline for High Dimensional, Heterogeneous Feature Spaces. In Proceedings

of the 8th IEEE Symposium Series on Computational Intelligence (SSCI16), pages 1-9,

Athens, Greece, [109].

• B. Schlegel and B. Sick. Dealing with Class Imbalance the Scalable Way: Evaluation

of Various Techniques Based on Classification Grade and Computational Complexity.

In 2017 IEEE International Conference on Data Mining Workshops (ICDMW), pages

69-78, New Orleans, USA, [108].

8 CHAPTER 1. INTRODUCTION

• B. Schlegel, A. Mrowca, P. Wolf, B. Sick, and S. Steinhorst. Generalizing application

agnostic remaining useful life estimation using data-driven open source algorithms. In

2018 IEEE 3rd International Conference on Big Data Analysis (ICBDA), pages 102–111,

Shanghai, China, [107].

• B. Schlegel and M. Kaminski. Next Generation Workshop Car Diagnostics at BMW

Powered by Apache Spark. Presented on the 2017 Spark Summit, San Francisco, USA,

[105].

In Schlegel and Sick [109] a feature selection pipeline based on several layers of differing

run-time complexity is developed, evaluated and optimized. The results of Chapter 3 can be

found in this article. Schlegel and Sick [108] surveys and adapts various techniques, and also

introduces a novel technique to tackle imbalance in classification scenarios. This publica-

tion forms the foundation for Chapter 4. Chapter 5 is based on Schlegel et al. [107], where

novel techniques to estimate the RUL are proposed and compared to current, state of the

art RUL estimation techniques. The presentation by Schlegel and Kaminski [105] presents

a machine learning pipeline for large scale data sets built on top of Apache Spark. Among

other things, the findings presented there form Chapter 6.

Chapter 2

Preliminary Considerations

While each of the following chapters introduces techniques relevant only for the respective

chapter, this chapter explains the techniques used across multiple of the following chapters.

First, the notation used in all following chapters will be defined (Section 2.1). Then, rele-

vant model types (classifiers and regressors) are introduced (Section 2.2). A question that

is of high relevance to all classification focused following chapters is “how to reliably assess

the model performance in imbalanced scenarios?” (in terms of classification grade). This

question and its answer are addressed in Section 2.3.

2.1 Notation

The following notation is used to ensure a clearer understanding of the theoretical introduc-

tion in the next section and all following chapters. The common notation of N referring to

the number of samples (observations) and P referring to the number of features (predictors)

is used as also shown in Equation (2.1) :

• X = {X1, X2, ..., XP } is a set of input variables, also called features, of a machine learning

problem. In general, feature values can be classified into three types [24]: Continuous

or discrete, categorical (nominal), and ordinal. Continuous features can take any value

in a given interval, discrete features can only take integer values. Categorical features

can take only a specific set of values from a set of possible categories (The size of the set

is referred by |DX |). Ordinal features are categorical features with an explicit ordering.

Here, the features’ domains are given by DX1 ,DX2 , ...,DXM , respectively. The domain of

X is thus given by DX =DX1 ×DX2 × . . .DXP .

9

10 CHAPTER 2. PRELIMINARY CONSIDERATIONS

• Y has the domain DY and is the output, also called label or target, of a machine learn-

ing problem. The domain can be either binary (Boolean) for classification (Chapter 3,

Chapter 4, Chapter 6) or continuous/ discrete for regression (Chapter 5).

• S = {s1, s2, ..., sN } refers to the set of N training samples.

• Every sample sn = (xn, yn) consists of values of P features xn = (xn,1, ..., xn,P) and the

target value (e.g., for binary target variables yn ∈ {0,1} for a class C).

X1 X2 . . . XP

s1 x(1,1) x(2,1) . . . x(1,P)

s2 x(2,1) x(2,2) . . . x(2,P)

...
...

...
. . .

...

sN x(N ,1) x(N ,P)

=

Y

y1

y2

...

yN

 (2.1)

2.2 Machine Learning Models

This section presents a short summary of the model types used extensively in the following.

More details are are given in Duda [39], Marsland [82], Murphy [87] and the Bruce brothers

[24].

2.2.1 Random Forests

Random Forests (RFs) are an ensemble of multiple Decision Trees (DTs) and can be used for

both, classification and regression. A DT tries to subsequentially generate splitting rules to

divide the presented data set into “purer” sub-data sets on the way from the trunk to the

leaves. For classification, impurity is measured using the Gini impurity and negative cross–

entropy (which is described in greater detail in Section 3.1.2) in the following. The Gini cri-

terion1 G for of a (sub-data) set is defined based on the label Y as follows [22, 8]:

G[Y] ≡−
K∑

k=1
p(Y = k) · (1−p(Y = k)) (2.2)

with K = |DY | referring the number of states, p(Y = k) refers the probability of label Y taking

the value of k ∈DY . For regression, impurity is measured using squared deviations from the

1Despite being the same, the “Gini criterion” by Breiman [20] is also called “Gini index” by Bishop [8] and
“Gini impurity” by Duda [39]. These terms refer all a impurity measure similar to the entropy (see Equa-
tion (3.2)), but save computational complexity due to the missing log.

2.2. MACHINE LEARNING MODELS 11

mean in the corresponding sub-data set. The purity gain ∆ achieved by splitting is defined

as:

∆(D) = I (D)− NL

N
I (DL)− NR

N
I (DR), (2.3)

with D referring the data set before the split, DL and DR the left and right sub-data sets

after the split, respectively. I is one of the aforementioned measures of impurity.

The algorithm to construct a DT is called recursive partitioning [24]: Repeated partition-

ing of the sub-data sets based on feature values to create the most homogeneous sub-data

sets possible while paying attention to the stopping criteria which avoids, e.g., that each leaf

only holds a single example. To stop a DT to overfit to the (noise in the) training data set

by creating too many rules yielding pure leaf nodes, several concepts exist: Splitting can be

stopped if the sub-data set in the resulting terminal leaf is too small or if the new partitioning

does not significantly decrease the impurity.

An upside–down visualization for a single DT for a multi–class classification is given in

Figure 2.1: The original data set (the trunk) at the top holds three different types of beer. The

first split, according to the alcohol level, splits the data set into two sub-data sets, consisting

of Lager and Pale Ale, and Pale Ale and India Pale Ale (IPA), respectively. Another split is

performed based on the International Bitter Unit (IBU) reducing the impurity even further

(the sub-data sets in the leave nodes mostly consist of one class only).

The RFs used in the following are created from multiple DTs, based on the bootstrap

aggregating (bagging) technique proposed by Breimann [21], where each tree is not only

trained on a subset of samples drawn with replacement from the training set but also on a

subset of features.

The RFs have serveral advantages: They are able to model non–linear relationships and

they are interpretable by human experts (although the usually high number of trees make it

harder in comparision to a single DT) which is important in the given, automotive diagnostic

context. Also, DTs (and therefore RFs) can provide a probability estimate based on the class

ratio in the leaf.

Disadvantages include the greedy optimization strategy (and therefore the risc of getting

stuck in local optima, with the target function being the measure of impurity I), the issue

that small errors close to the trunk yield big estimation errors in the leafes [87], and the risk

of overfitting by relaxed stopping criteria yielding very deep trees.

12 CHAPTER 2. PRELIMINARY CONSIDERATIONS

noyes

yes no yes no

Lager

50%

Pale Ale

30%
IPA

20%

Lager

67%

Pale Ale

33%

Pale Ale
20%

IPA

80%

Lager
90%

Pale Ale
10%

Lager

20%

Pale Ale

80%

Pale Ale

75%

IPA

25%
Pale Ale10%IPA 90%

alcohol ≤ 6%

IBU ≤ 8 IBU ≤ 8

Figure 2.1: Example of a DT.

For cluster computing, as described in Chapter 6, the following optimizations are per-

formed:

• Partitioning: The sampled data sets are, according to the used bagging approach, dis-

tributed among different workers.

• Binning: Continuous feature values are binned (“discretized”) into a given number of

bins. This enables the algorithm to identify potential splitting thresholds by looking at

the bin border. This technique yields major performance gains by trading-off splitting

accuracy, since it would be necessary to sort the data set by every feature otherwise

(which is very expensive on a distributed data set).

• Additional performance is gained, by running the decision tree algorithm on all nodes

for each level of a tree simultaneously.

2.2. MACHINE LEARNING MODELS 13

2.2.2 Logistic Regression

The Logistic Regression (LR) is a special version of the Generalized Linear Model (GLM) to

extend linear regression to other settings. It is characterized by two main components [24]:

The probability distribution or family (binomial if LR is used for two-class classification),

and a link function mapping the linear response to the binary target variable. This is done

by using a logistic sigmoid function σ. The “logit” function σ is defined as

σ(x) = 1

1+e−x
(2.4)

yielding a probability, bounded between 0 and 1, that the label is a “1”:

P (y |xn ,w) = 1

1+e−ywTxn
, (2.5)

with w being the model parameters (“weights”) that need to be fitted to the data. This is

done based on an maximum likelihood estimation (MLE). It aims to find the model that most

likely produced the training data by maximizing the log-likelihood [88]. The log-likelihood

function is defined as

L(w; X ,Y) =
N∑

n=1
logP (yn | xn ;w) (2.6)

Due to its superiority as elaborated in more detail in Section 3.1.3, L1 regularized LR will

be used in the following. Regularization is achieved by adding an additional term to the

function to be optimized (yielding the final weights ŵ):

ŵ = argmax
w,C

(C L(w)−‖w‖1) , (2.7)

with ‖w‖1 denoting the 1-norm
∑n

i=1(wi) and C indicating the trade-off between regulariza-

tion (shrinking w) and correct classification (maximizing the log-likelihood function). This

14 CHAPTER 2. PRELIMINARY CONSIDERATIONS

can be transformed using the following steps2

ŵ = argmax
w,C

(
C

N∑
n=1

logP (yn | xn ;w)−‖w‖1

)
, (2.8)

ŵ = argmax
w,C

(
C

N∑
n=1

log
1

1+e−yn wTxn
−‖w‖1

)
, (2.9)

ŵ = argmax
w,C

(
C

N∑
n=1

log(1)− log(1+e−yn wTxn)−‖w‖1

)
(2.10)

into the following constrained minimization problem which is solved using the coordinate

descent algorithm3 for all instance-label pairs (xn , yn),n = 1, ..., N ,Xp ∈ DXp , yn ∈ {−1,+1}

during training (notation used by Fan et al. [41])

ŵ = argmin
w,c

(
C

N∑
n=1

log(1+e−yn wTxn)+‖w‖1

)
. (2.11)

This is equal to a different notation (e.g. used by Ng [88]), where C is replaced by 1
α

:

ŵ = argmin
w,c

(
N∑

n=1
log(1+e−yn wTxn)+α‖w‖1

)
. (2.12)

Advantages of LR include the output of a “predicted probability” (ranging from 0 to 1)

which allows for a finer differentiation of the classification performance (as described in

Section 2.3) and easy interpretability of the models (weights reflect feature importances).

Moreover, it is being computationally extremely fast.

On the other hand, LR assumes that a parametric linear relationship between the features

X and labels Y exists [24]. Also, LR is prone to severe overfitting for data that is linearly

separable: When the hyperplane separating the two classes is defined by wTx, the magnitude

of w can go to infinity [8].

2.2.3 K-nearest Neighbor

A concept that is often used as a baseline classifier, and also embedded into other ap-

proaches (see e.g. Section 4.1.1) used in the following is the k-nearest neighbors (k-NN)

approach. k-NN can also be used for regression [24, 82]. It is an instance–based or non–

2Using log(a/b) = log(a)− log(b) and log(1) = 0.
3For details please refer to Fan et al. [41].

2.2. MACHINE LEARNING MODELS 15

generalizing4 [91] algorithm that predicts class membership based on density estimation

[8].

The basic idea is to find the k closest samples (in terms of similar feature values). The

majority class of the neighborhood is then assigned to the new sample under consideration.

Choosing the right k is the most important hyperparameter tuning to be performed when

using a k-NN. While a low k is prone to overfit, a high k may oversmooth / underfit the data

[24]. Another hyperparameter is the used distance metric that determines which the “closest

samples” are. The most widely used is the Euclidean distance between two samples s1 and

s2 (dist =
√

(x1,1 −x2,1)2 + ...+ (x1,P −x2,P)2).

The classification is formally based on the Bayes’ theorem [39]: The class conditional

density for a new sample s = (x, y) is estimated by

p(x |Ci) = ki

Ni V
(2.13)

with ki being the number of samples from class Ci among the k nearest neighbors, Ni being

the total number of samples for Ci in the data set, and V being the hyper-sphere volume

(defined by the most distant neighbor). The class priors are estimated by

p(Ci) = Ni

N
. (2.14)

The unconditional density for sample s = (x, y) is estimated with

p(x) = k

NV
, (2.15)

with N samples in total (see Section 2.1). Together, this leads to

p(Ci | x) = p(x |Ci)p(Ci)

p(x)
= ki

k
. (2.16)

An advantage of k-NN is the low amount of model hyperparameters: Aside from the dis-

tance measure (which is usually set prior to training and may be calculated using a kernel),

k is the only one remaining to be tuned during, e.g. Cross-Validation (CV). k-NN is also able

to predict probabilites. Instead of assigning the majority class, using the result from Equa-

4Since no generalizing decision rules are inferred but new sampes are compared only with already known
ones.

16 CHAPTER 2. PRELIMINARY CONSIDERATIONS

tion (2.16) can yield class probabilities in multi-class scenarios. Another big advantage is

that no model needs to be fitted. One one hand, this is beneficial, since this saves training

time. On the other hand, the whole training set needs to be stored as reference. This can

be very memory consuming or even infeasible on large data sets. Techniques introduced in

Chapter 4 can remedy this effect. Also, all predictors need to be in numeric form, e.g. when

using a Euclidean distance measure.

2.3 Measuring Classification Performance in

Imbalanced Scenarios

In order to be able to compare the various methods and algorithms in the following, an ob-

jective performance measure is needed that is suitable for the imbalanced scenario at hand.

This section introduces the metrics used across the following chapters (especially Chapter 3,

4, and 6). Great emphasis is placed on obtaining meaningful values even in imbalanced sce-

narios.

Suppose, e.g., an LR classifier which we would like to evaluate in the following, where

the “predicted probability” is given by the output of the LR model: If the prediction equals

to 0.99, the model considers a result of 1 to be very likely. If the output is 0.63 the model is

definitely less “sure” what the output will really be.

All measures calculated from a confusion matrix (Table 2.1) such as accuracy, precision,

recall, Fβ=1 (F1), etc. inherently disregard the predicted probability. This is due to the way

the confusion matrix (Table 2.1) is constructed: All predictions need to be either assigned

“predicted positive” or “predicted negative”. If the used model outputs a predicted probabil-

ity (e.g., ranging from 0−1), this is achieved by setting a threshold, e.g. at 0.5. This means,

all predictions higher than this threshold will be flagged as “predicted positive”. It is obvious,

that this process removes helpful information (how sure was the model about the predic-

tion?) that could be used to asses the model quality.

2.3. MEASURING CLASSIFICATION PERFORMANCE IN IMBALANCED SCENARIOS 17

Table 2.1: Confusion matrix.

true
positive

true
negative

predicted
positive

True Positive (TP) False Positive (FP)

predicted
negative

False Negative (FN) True Negative (TN)

The formulas for important metrics used in this work are:

accuracy = TP+TN

TP+FN +TN +FN
, (2.17)

fall-out = ROCx = FP

TN +FP
, (2.18)

precision = TP

TP+FP
, (2.19)

recall = ROC y =
TP

TP+FN
, (2.20)

F1 = 2 · precision · recall

precision+ recall
, (2.21)

with TP being the true positives, FN being the false negatives, FP being the false positives,

and TN being the true negatives.

In contrast, the Receiver Operating Characteristic (ROC) curve and the Precision Recall

Curve (PRC) are 2D curves which take the predicted probability into account. Both curves

are created by systematically varying the classification threshold. This way, the same pre-

dicted probability can yield a positive prediction (e.g., if the threshold is low) or a negative

prediction (e.g., if the threshold is high) depending on the threshold. Since this also results

into an altered confusion matrix, each threshold yields a distinct point in the ROC (defined

by (ROCx ,ROC y)) or PRC space (defined by (precision,recall)). For detailed information how

to draw an ROC curve or PRC based on these “predicted probabilities”, Davis [36], Metz [83],

and He and Garcia [57] are referred. Integrating these curves results in an one-dimensional

characteristic, the area under Receiver Operating Characteristics Curve (auROC) or area un-

der Precision Recall Curve (auPRC), respectively. A scalar value is preferable, as this property

simplifies a comparison.

Also, a measure that measures, e.g., whether the right measure is among the three high-

est predictions would have been conceivable. However, self-defined key measures cannot

usually be transferred to public data sets and make it difficult to compare the approaches

18 CHAPTER 2. PRELIMINARY CONSIDERATIONS

proposed in the following with existing literature, as this usually uses one of the measures

defined above.

The widely used accuracy (Equation (2.17), [43]) does clearly not work in imbalanced

scenarios [55, 138, 58, 64, 74]. If the minority class is only present in 0.1% of the samples, a

classifier will achieve 99.9% accuracy by simply neglecting the existence of the minority class.

Similar issues arise with any other metric using values from both columns of the confusion

matrix (Table 2.1).

The auROC is a very popular metric [112] in imbalanced scenarios (e.g., used by Guyon

et al. [54] and Kubat et al. [73]). However, there exist scenarios where even the auROC can

be misleading. To illustrate this, multiple examples and the following notations are used:

SP refers to the set of all actually positive samples, SN the set of all actually negative sam-

ples. |SP | and |SN | refer to the number of elements in the SP and SN set, respectively.

P = pred(S) refers the set of all predictions, PP and PN the set of all predictions for all ac-

tually positive (P) and negative (N) predictions, respectively. For each prediction p ∈ P the

following holds 0 ≤ p ≤ 1.

Figure 2.2 shows a perfect classification of a data set with an imbalance ratio of 1 : 1000

holding |SP | = 100 samples. Since min(PP) > max(PN), the ROC curve passes through the

point (0,1) and the PRC passes the point (1,1).

In contrast, Figure 2.3 shows a very poor model based on an artificial data set with an

imbalance ratio of 1 : 1000. In this case, the |SP | = 100 are uniformly distributed in the top

0.1% percentile of all predictions P . In the automotive context this would e.g. yield a com-

ponent being replaced in 1000 cars while the component was only broken in 100 of them.

The ROC curve does not reflect the definitely worse model performance compared to the

previous example (Figure 2.3a); the PRC unambiguously reflects this (Figure 2.3a).

In the next data set, the imbalance ratio is reduced to 1 : 100 (Figure 2.4). The data set now

holds N = 100+ 10000 = 10100 samples. The |SP | = 100 actually positive samples remain

uniformly distributed in the top 10% percentile of all predictions P . The ROC curve starts

to reflect the poor model performance (Section 2.3). The PRC continues to reflect the model

performance the same way as before (where the imbalance was higher).

Reducing the imbalance ratio further to 1 : 10 (Figure 2.5), the data set now holds N =
100+1000 = 1100 samples. The |SP | = 100 are now distributed among the top 91% percentile

of all predictions. ROC curve now indicates an almost coin-flip model (identified by the

2.3. MEASURING CLASSIFICATION PERFORMANCE IN IMBALANCED SCENARIOS 19

dashed line with a slope of one).

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
False positive rate

R
ec

al
l

Receiver Operating Characteristics

(a) ROC curve.

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Recall

P
re

ci
si

o
n

Precision Recall Curve

(b) PRC curve.

Figure 2.2: Model that identifies the 100 real positives samples without error. Imbalance
1 : 1000.

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
False positive rate

R
ec

al
l

Receiver Operating Characteristics

(a) ROC curve.

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Recall

P
re

ci
si

o
n

Precision Recall Curve

(b) PRC curve.

Figure 2.3: Poor model. Imbalance 1 : 1000.

In addition to the just exemplarily justified unsuitability, a model that dominates another

model in terms of auROC does not necessarily dominate in the PRC space. Conversely, a

model that dominates in the PRC space will always dominate in the ROC space [101, 57, 36].

Thus, the auPRC will be used as primary metric in this work. To ease the comparison

with other research, it will be accompanied by the auROC and the F1 score.

20 CHAPTER 2. PRELIMINARY CONSIDERATIONS

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
False positive rate

R
ec

al
l

Receiver Operating Characteristics

(a) ROC curve.

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Recall

P
re

ci
si

o
n

Precision Recall Curve

(b) PRC curve.

Figure 2.4: Worse than poor model. Imbalance 1 : 100.

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
False positive rate

R
ec

al
l

Receiver Operating Characteristics

(a) ROC curve.

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Recall

P
re

ci
si

o
n

Precision Recall Curve

(b) PRC curve.

Figure 2.5: Catastrophic model. Imbalance 1 : 10.

Chapter 3

Feature Selection

One would intuitively assume that not all of the features a data set offers are in general help-

ful or required to train and create working machine learning models. This suggests to isolate

and select important influencing factors (encoded in features). If the data set offers more

than one potential outcome of interest, multiple models may be required. In this case, rel-

evant features shall be selected specifically for each model, respectivly. This is not only ex-

pected to speed up the training process, but also to improve the generalization of the model

and to benefically influence the interpretability of the trained models by human experts,

which is not only helpful in the automotive context.

The overall goal of this thesis, enabling highly automated data-driven automotive diag-

nostics, requires thousands of models being built – potentially on a daily basis to account

for data updates using a growing amount of samples and features. In order to speed up

model training and to ensure the interpretability of the trained models, the selection of rele-

vant features from the multi-thousand dimensional feature space is indispensable. The im-

plementation of a feature selection pipeline becomes additionally challenging in the given

automotive context, where the features vary in their sparsity, noise level, datatype, and dis-

tribution.

Often, as the following results show, no more than 25 features are needed for modeling.

Therefore, the pipeline must be able to reduce the high-dimensional feature space by up to

99.5%, taking into account the following framework conditions:

To ensure interpretability of the selected features and created models by human experts,

this chapter focuses on feature subset selection techniques only [100]. This refers to the set of

algorithms, that only choose the most promising features from the existing ones but do not

21

22 CHAPTER 3. FEATURE SELECTION

transform features into another (meta-)feature space. Techniques such as Principal Com-

ponent Analysis (PCA) [39], deep learning using auto encoders [27, 2], or feature selection

using compressed features based on information theory [137] are therefore, not part of this

research.

The pipeline proposed in the following consists of three layers: a feature preparation

layer, a filter layer that significantly reduces the feature space at low computational cost

based on entropy and other statistical measures, and a wrapper layer that selects the final

feature set for training based on simple models. Finally, high-performant LR models have

been trained to generate the metrics used for evaluation.

This chapter is structured as follows: First, state of the art data-driven diagnostic tech-

niques (Section 3.1.1) and different feature selection techniques (Section 3.1.2, Section 3.1.3)

are presented. Then, given the aforementioned conditions, research questions are formu-

lated (Section 3.2). Afterwards, the data sets used for evaluation are discussed (Section 3.3).

Finally, a feature selection pipeline is proposed (Section 3.4) and evaluated (Section 3.5). The

results are summarized in Section 3.6.

Preliminary results of the work presented in this chapter have been published in [109],

where a cost-benefit survey of various feature selection algorithms was deducted. The code

to run the experiments described in this chapter was entirely implemented using R.

3.1 State of the Art

3.1.1 Diagnostics

Most known data-driven approaches from automotive contexts based on machine learning

are specific in the sense that they only model a single type of component. Examples include

compressors failures modeled by RFs [93], pump bearings failure prediction based on Ar-

tificial Neural Networks (ANNs) [123], combustion engines faults modeled by ANNs [1] or

wavelet networks to predict distinct (malicious) operation modes [122], turbochargers fail-

ures modeled ANNs [141], and lithium ion batteries failures modeled by Gaussian processes

[95].

On the other hand, generic approaches are not tailored towards a specific component or

problem and therefore able to predict different types of faults. The generic approach pro-

posed by Azarian et al. [4] requires high manual effort to create “suspicious links”, pointing

3.1. STATE OF THE ART 23

from features (DTCs) to targets (parts).

Another generic approach is proposed by Müller et al. [86]. Their model is based on

• DTCs: Based on the self-diagnostic capabilities of ECUs, e.g., discrepancies between

measured and calculated values are flagged as a DTC. This relies on the self-diagnostic

capabilities of the ECU itself.

• encoded customer and workshop staff perception,

• software version numbers of ECUs, and

• part numbers of switched parts.

3.1.2 Filter Measures

Filter measures are the first type of feature assessment [79] techniques discussed in the fol-

lowing. Filters are fast, scalable, and independent from the classifier [100]. The following

sections provide an overview of the used filter measures and will explain the basic concept.

The used filter measures were selected based on a cost/benefit survey by Schlegel and Sick

[109] and are aligned with a recent study by Huertas and Juárez-Ramírez [62] who evalu-

ated several filter measures for homogeneous data sets. These are: Mutual Information (MI)

(Section 3.1.2), the Gini coefficient (Section 3.1.2), Relief (Section 3.1.2), the Chi-Squared

test (Section 3.1.2), and correlation (Section 3.1.2). Thus, a diverse range of mathematical

concepts such as distribution similarity, unbalancedness of distributions, correlation, etc. is

covered. The score was calculated using solely training samples based on the feature (un-

supervised), or the feature and the label if required by the corresponding algorithm (super-

vised) [79]. A features’ importance will be denoted by I in the following.

Mutual Information

Based on the information theory introduced by Shannon [114] the helpfulness of feature can

be assessed by measuring the additional information gained by considering it. A helpful

concept to do so is the Mutual Information (MI) [39, 8], which measures “the reduction in

uncertainty about one variable due to the knowledge of the other variable” [39]. It is defined

as for a given feature Xp [39, 8]:

I[Y , Xp] =H[Y]−H[Y |Xp], (3.1)

24 CHAPTER 3. FEATURE SELECTION

with H[Y] being the entropy of label Y and H[Y |Xp] being the conditional entropy. Using

Equation (3.1), the MI resulting from a feature Xp can now be defined by the decrease of

unpredictability of the label Y when the feature Xp is known [87, 39, 8]. To calculate the MI,

two other measures need to be formally defined: The entropy and the conditional entropy.

The entropy H is a measure for the randomness or unpredictability of discrete variables

(or in this case label Y) [87, 39]:

H[Y] ≡−
K∑

k=1
p(Y = k) log(p(Y = k)), (3.2)

with K = |DY | referring the number of states, p(Y = k) refers to the probability of label Y

taking the value of k ∈ DY . The entropy according to Equation (3.2) reaches its maximum

for an uniformly distributed random variable where p(x = k) = 1/K and equals to zero for

constant variables. This can be extended to the differential entropyH for a continuous Xcont

variable

H[Xcont] ≡−
∫

x
p(x) log(p(x))dx, (3.3)

with p(x) being the distribution over the continuous variable Xcont (note: an integral re-

placed the sum). However, this is not relevant to the remainder of this section, since the

function used to calculate the entropy1 [99] internally discretizes continuous features2.

The conditional entropy used in Equation (3.1) is defined as follows [8] for discrete vari-

ables:

1The information.gain() function from the FSelector package available in R was used.
2Details are available in the FSelector source code, see the discretize.R file.

3.1. STATE OF THE ART 25

H[Y |X] =H[Xp ,Y]−H[Xp] (3.4)

=−
∑

x∈DXp

∑
y∈DY

p(Xp = x,Y = y) log(p(Xp = x,Y = y))−H[Xp] (3.5)

=−
∑

x∈DXp

∑
y∈DY

p(Xp = x,Y = y) log(p(Xp = x,Y = y))+ (3.6)

∑
x∈DXp

p(Xp = x) log(p(Xp = x)) (3.7)

=−
∑

x∈DXp

∑
y∈DY

p(Xp = x,Y = y) log(p(Xp = x,Y = y))+ (3.8)

∑
x∈DXp

∑
y∈DY

p(Xp = x,Y = y) log(p(Xp = x)) (3.9)

=
∑

x∈DXp

∑
y∈DY

p(Xp = x,Y = y)
(
log(p(Xp = x)− log(p(Xp = x,Y = y)

)
(3.10)

=
∑

x∈DXp ,y∈DY

p(Xp = x,Y = y) log

(
p(Xp = x)

p(Xp = x,Y = y)

)
. (3.11)

The mutual information according to Equation (3.1) can now be calculated using Equa-

tion (3.2) and Equation (3.11), with

• p(Xp = x) referring the prior probability of a discrete feature Xp being equal to x ∈DXp

when being drawn randomly,

• p(Y = y |Xp = x) is the conditional probability of a random sample belonging to the

discrete class y ∈DY , given that the discrete feature Xp being equal to x ∈DXp ,

• p(Y = y) is the prior probability of a random sample belonging to the discrete class

y ∈DY and

• p(Xp = x,Y = y) is the joint probability of discrete feature Xp being equal to x ∈ DXp

and discrete class Y being equal to y ∈DY when being drawn randomly.

The following example shall explain how the probability for a random, discrete feature Xp

is estimated. If the feature is continuous, discretization is performed beforehand using the

technique by Fayyad and Irani [42]3. This technique recursively selects splits that minimize

the entropy for each resulting partition until the Minimum Description Length (MDL) [97]

3This technique is used by the Discretize function provided by the RWeka package which was used.

26 CHAPTER 3. FEATURE SELECTION

or an optimal number of intervals is achieved [84]. Suppose the feature Xp has 4 levels (if

necessary, after discretization): {a,b,c,d} for which the respective probabilities are given by(1
5 , 1

5 , 1
5 , 2

5

)
based on the distribution of the feature. This yields the prior probability of, e.g.,

p(X = c) = 1
5 .

MI can take values in the range of [0,H(Y)] for discrete (or discretized) features. The

higher the value, the more information is gained from feature Xp . This filter measure re-

quires both, the feature value and the label and assesses each feature individually.

Gini Coefficient

Originally proposed by Sen [113] to measure the inequality of incomes, the “Gini coefficient”

(not to be confused with the Gini index which is a purity measure similar to entropy, see

Section 2.2.1) for a feature Xp is given by [38, 35]

Gini(Xp) =
∑N

i=1

∑N
j=1 |xi,p −xj,p|

2N 2µ(Xp)
, (3.12)

with N being the number of samples (values) available, µ(XP) being the mean of the feature

XP , and xi,p being the value of i th sample from the pth feature Xp . If the feature X is ordered,

which is ensured by the used implementation4, the following formula can be used [35]

Gini(Xp) =
∑N

j=1(2 j −N −1)xj,p

N 2µ(Xp)
, (3.13)

which decreases the run-time complexity to from O (n2) (two, nested for loops) to O (n ·
log(n)+n) =O (n · log(n)) (sorting and one loop).

Due to the fact that its roots lie in economics, the Gini coefficient ranges from zero (a

feature Xp is constant or economically put “all individuals earn the same”) to one (a feature

is always zero except for one sample, “an infinite population in which every individual except

one has no income” [35]).

Listing 3.1 shows how the Gini coefficient for a single feature Xp is calculated using

zero-indexed pseudo code: First, required information is gathered in lines 1 through 3.

After sorting the feature vector Xp in line 4, the loop in line section 3.1.2 calculates the sum

according to Equation (3.13). This process is repeated for all features Xp ∈DX p. The label Y

4The function ineq(..., type="Gini") provided by the ineq R package was used.

3.1. STATE OF THE ART 27

Table 3.1: Examples for different feature values and their corresponding Gini coefficients.

Gini(Xp) feature Xp

0.75 (0,0,0,1)T

0.8 (0,0,0,0,1)T

0.8 (0,0,0,0,10)T

0.2 (1,1,1,1,0)T

0.4 (0,1,2,3,4)T

is not required for this filter measure.

1 mu := mean(X)
2 N := length(X)
3 temp_sum := 0
4 X := sort(X)
5 for j:= 1 to N do
6 temp_sum := temp_sum + (2j - N - 1) * X[j]
7 gini = temp_sum /(N*N*mu)

Listing 3.1: Pseudo Code to calculate the Gini coefficient [113].

The Gini coefficient can yield counter intuitive results, as shown in Table 3.1. Suppose,

feature X is indicating the income distribution, as this this was the original purpose of use

for the Gini coefficient. In the example, the vector (or feature) (0,0,0,0,1)T refers five people,

where only one of them earns all the money. This yields a Gini coefficient of 0.8 referring

an “unfair” income distribution (second row in Table 3.1). Considering the opposite case

((1,1,1,1,0)T, fourth row in Table 3.1), four persons exactly earn the same (1), and one person

has no income (0). This is less “unfair”, since the income is more equally distributed across a

higher number of people. The Gini coefficient reflects this: In the second scenario the lower

Gini coefficient indicates less unfairness.

However, these results, which are comprehensible from an macroeconomic point of view,

are not comprehensible from the point of view of information theory [114]: E.g., both income

distributions would yield the same entropy: H [(1,4)] = H [(4,1)] ≈ 0.5.

Relief

Unlike all aforementioned filter measures which assume that the features are independent

(each feature is assessed in isolation), the Relief filter originally proposed by Kira and

Rendell [70] and enhanced by Kononenko [71] is not based on this assumption. The key idea

28 CHAPTER 3. FEATURE SELECTION

of this supervised filter measure is to rate features based on their capabilities to distinguish

samples that are near to each other. Thus, the feature values and class labels are required.

1 set all weights w[0:P] := 0.0
2 for i:= 1 to m do
3 randomly select a sample s_rnd
4 find nearest hit s_hit and nearest miss s_miss
5 for j := 0 to P do
6 w[j] := w[j] - diff(j, s_rnd , s_hit) / m +
7 diff(j, s_rnd , s_miss) / m

Listing 3.2: Pseudo Code of the Relief algorithm [70, 71].

The original algorithm [70] works as shown in Listing 3.2: First, all feature importances

are initialized w(Xp) = 0 for all features Xp ∈ X (with P features total) as shown in line 1.

The variable m ≤ N can be used to subsample the data set and thus decrease the run-time

complexity. This thesis used m = 55. Then, in line 3, a random sample is selected from the

set of all samples (srnd ∈S). For the randomly selected sample, the nearest hit shit with same

class label and nearest miss smiss with a different class label are selected (line 4). Using the

nearest hit and miss, all weights w of all features X are updated according to the following

rule (line 7):

w(Xp) := w(Xp)− diff (j , srnd, shit)

m
+ diff (j , srnd, smiss)

m
. (3.14)

The function diff (j , s1, s2) calculates the difference between the values of j th feature for

samples s1 and s2. For discrete features, diff () returns 0 if they are equal, and 1 else. For

continuous attributes, diff () returns the actual normalized difference (ranging from [0,1]):

diff (j , s1, s2) = |value(j , s1)−value(j , s2)|
max(Xp)−min(Xp)

, (3.15)

with value(j , s) returning the value of feature j from sample s. The loop in line 2 is repeated

m −1 more times.

The intuition behind the weight update formula (Equation (3.14)) is that the feature is

more helpful if the closest sample of the same class is very close, while the closest sample of

a different class is very distant, since this eases the identification of a decision boundary.

The enhancements proposed by Kononenko [71, 98] that have been used for this thesis

are the following:

First, Kononenko extends the algorithm to take k > 1 nearest hits and misses into con-

5This was the default value of the relief() function from the FSelector package available in R.

3.1. STATE OF THE ART 29

sideration instead of just a single one. This increases the reliability in noisy scenarios (in

the following k = 5 was used). This is achieved by averaging the contribution to the weight

update in line 7 in Listing 3.2.

Second, the diff () function was enhanced to deal with missing feature values. The best

results were achieved by using Equation (3.16) if one sample misses a value (e.g., s1) and

using the diff () calculation according to Equation (3.17) if both samples have missing values.

Both versions rely on the conditional probabilities p that are approximated with the relative

frequencies from the training set. The sum in Equation (3.17) denotes an iteration over all

possible values v of attribute j .

diff (j , s1, s2) = 1−p
(
value(j , s2)|class(s1)

)
(3.16)

diff (j , s1, s2) = 1−
values(Xp)∑

v

(
(p (v |class(s1)) · (p (v |class(s2))

)
(3.17)

Third, a strategy to deal with multi-class problems was introduced: Instead of picking one

near miss from any different class, one near miss smiss for each different class is picked and

their contribution to the feature weight averaged. However, the third improvement is, unlike

the first two, not relevant for this thesis since this chapter deals with two-class classification

only.

χ2 Test

The Chi-Squared (χ2) test [81] is used here to determine if two random categorical variables

are independent from each other. This is the null hypothesis. In the feature selection con-

text this translates to checking the independence of feature X ∈ X and a label Y . How the

χ2 metric is calculated, is described below. As the MI measure described above, the used

implementation6 internally discretizes continuous features. The number of bins used for

discretization might affect the ranking of the feature and must be further investigated before

transferring the techniques described in this chapter to practical use.

To ease following along, an example based on a categorical feature X “Exercise” with

three different levels and a target class Y “Pulse” (heart rate) with two levels and N = 192

samples is used (Table 3.2). Now:

6To calculate the χ2 ranking, the chi.squared() method from the FSelector package [99] was used.

30 CHAPTER 3. FEATURE SELECTION

Exercise Pulse

Freq high
None low
Freq low
Some low
Some high
Some low
Freq high
Freq high
... ...

Table 3.2: Sample data.

high low

Freq 38 57
None 9 8
Some 49 31

Table 3.3: Contingency table.

1. Transform the data set into a contingency table (Table 3.3), yielding the total number

of instances for each feature-target pair, Qx,y . High dimensional feature spaces can

cause many zero entries in the contingency table. This, however, does not cause any

issues, since Qx,y only appears as numerator in the following equations.

2. Calculate the expected occurrence Ex,y for all variable pairs (Table 3.4). This is per-

formed under the assumption of the null hypothesis (“feature and label are indepen-

dent”):

Ex,y = N ·P (X = x) ·P (Y = y), (3.18)

with N being the total number of samples. In our example, this would e.g. yield

EX=Freq,Y =high = 192 · 38+57
192 · 38+9+42

192 = 47.5

3. The final step is to calculate the Chi-square-points (Table 3.5) and to sum them up

(yielding χ2 = 7.9 in the example):

χ2 =
∑

x

∑
y

(Qx,y −Ex,y)2

Ex,y
. (3.19)

Based on the χ2 calculated above, p can be calculated. The latter refers the probabil-

high low

frequent 47.50 47.50
no 8.50 8.50
some 40 40

Table 3.4: Expected frequencies.

high low

frequent 1.90 1.90
no 0.03 0.03
some 2.03 2.03

Table 3.5: Chi-square points.

3.1. STATE OF THE ART 31

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20
χ2

p
d

of
(χ

2
,d

of
)

(a) PDF of χ2 distribution.

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20
χ2

P
d

of
(χ

2
,d

of
)

dof = 1

dof = 2

dof = 5

dof = 10

(b) CDF of the χ2 distribution.

Figure 3.1: The χ2 distribution.

ity of obtaining results as unusual or extreme as the observed results [24]. To acquire the

corresponding p from the χ2, the χ2 distribution (or a lookup table) is required. The χ2 dis-

tribution is created by summing dof squares of independent, normally distributed random

variables. dof refers the “degrees of freedom” which is defined as dof = (|DXp |−1) · (|DY |−1)

for two categorical random variables, with |D| referring the number of distinct levels of fea-

ture X and label Y (in our example dof = 2). The χ2 distribution is depicted in Figure 3.1a

based on dof . Since the χ2 distribution results from squaring a normal distribution, it ranges

from 0 to infinity. The corresponding p −value is determined based on the CDF according

the following formula

p(χ2) = 1−Pdof (χ2,dof), (3.20)

yielding p = 0.01917 in the example, see the orange line in Figure 3.1b where the cumulative

density function is plotted. A value of χ2 close to zero (corresponding to a p − value close

to 1) tells us that it is very unlikely that the variables are completely independent. Given the

example and a significance level of 0.05 one would reject our null-hypothesis of “working

out has no effect on the pulse”. Yet, this does not mean, that they are strongly dependent.

A similar measure is calculated based on the χ2 measure that indicates the strength of

the association is the Cramer’s V [33] coefficient which is defined as

ΦC =
√

χ2

N (k −1)
, (3.21)

with N being the total number of samples and k being the value of rows or columns in the

32 CHAPTER 3. FEATURE SELECTION

contingency table (whichever is smaller). This normalized value allows to draw conclusions

whether the label and feature depend on each other (ΦC close to 1) or are completely inde-

pendent (ΦC = 0). This value will be used in the following to perform χ2 feature selection.

The example yields ΦC = 0.203. This measure requires both, the label and the target. Dis-

cretization of continuous features is performed as layed out in the “Mutual Information”

section above using the method by Fayyad and Irani [42].

Correlation

The term “correlation” is used for a range of measures, quantifying the dependence between

two random variables. The most commonly used correlation measure is the Pearson co-

efficient of linear correlation (r), which measures the linear dependence between random

variables, which is defined as

r (Xp ,Y) =
∑N

n=1(x(n,p) −µ(Xp))(yi −µ(Y))√∑N
n=1(x(n,p) −µ(Xp))2

√∑N
n=1(yn −µ(Y))2

, (3.22)

with µ(Xp) referring to the mean of the pth feature, µ(Y) referring to the mean of feature or

target Y , and x and y being two continuous variables. However, rXp Y requires the random

variables to be linearly dependent and normally distributed. Especially in generic machine

learning pipelines with thousands of features, this can not be guaranteed.

The Spearman coefficient of rank correlation ρ [61] relaxes these requirements by mea-

suring the linear correlation for the ranks of the original observations. This relaxes the linear

requirement, since the correlation is no longer dependent on the actual value but solely on

the order (or monotonic correlation).

To achieve this, the two variables are first sorted by their values x(n,p) (yn) and then as-

signed rank in ascending order x(1) ≤ x(2) ≤ ·· · ≤ x(N) (y(1) ≤ y(2) ≤ ·· · ≤ y(N)), with N being

the number of samples and x(1) (y(1)) referring to the lowest value of Xp (Y). If multiple

ranks refer the same value, these ranks are averaged in a final step to yield the ranks Rn,p

(Sn) used in the following calculations. E.g., a feature Xp = (0.4,7,7,0.42)T yields the ranks

Rp = (1,3.5,3.5,2)T. Thus, the ranks Rn,p ,Sn are within the interval [1, N]. The Spearman

coefficient is then defined by

ρ(Xp ,Y) = 1− 6
∑N

n=1(Rn,p −Sn)2

N (N 2 −1)
. (3.23)

3.1. STATE OF THE ART 33

Both coefficients (Spearman and Pearson) range from [−1,1], with +1/−1 indicating a strong

positive or negative and 0 indicating no correlation. Also, both require ordinal variables that

enable the calculation of a mean or a performing a division. Thus, categorical variables need

to be transformed e.g. by using a one-of-k scheme (“one-hot-encoding”, see Section 3.4.1).

In a feature selection context, ρ(Xp ,Y) can be used to measure the correlation between

all feature-label pairs. The correlation was calculated for each pair, respectively.

3.1.3 Wrapper and Embedded Measures

While the aforementioned filter techniques require no model to be built, wrappers deter-

mine feature importances based on heuristics that use information from trained models.

One advantage of wrappers is that they take greater account of more complex interdepen-

dencies between features. On the other hand, excessive training (e.g. selecting the best pa-

rameters using cross-validation) can have a high computational complexity, as shown later.

In addition, the results may not be transferable to other model types. Three different imple-

mentations, namely RF (Section 3.1.3), k-NN (Section 3.1.3), and LR (Section 3.1.3), that are

briefly described and extensively evaluated in the following. For all wrapper measures, both

the feature and the target are required.

Random Forest Feature Importances

Having a “forest” of random decision trees in mind, the intuitive definition of a features’ im-

portance should be related to the number of occurrences of the feature under consideration

in the forest, and the average position in the trees (the closer to the trunk, the more impor-

tant). This intuition can be used to formulate an RF importance for a feature Xp [44] as

IRF (Xp) = 1

|d |
∑

d∈DXp

∆(d , Xp), (3.24)

where DXp are all sub-data sets that evolved from splitting by Xp during training, |d | is the

number of samples in the respective sub-data set, and ∆(d , Xp) is the gain of splitting the

sub-data set d by feature Xp (see Equation (2.3), it should be noted that more than two sub-

trees are possible).

34 CHAPTER 3. FEATURE SELECTION

Feature Importances from L1 Regularized Logistic Regression

L1 regularized logistic regression (LR) has been favored over L2 for two reasons:

1. Results from Ng [88] suggest that L2 regularized LR is “rotationally invariant”7 and also

needs more samples from the minority class compared to L1 to perform equally. “Ro-

tational invariance” of a stochastic learning algorithm (which the LR is) refers the cir-

cumstance that the predictions have the same distribution if the training set S and all

remaining samples are rotated by the same rotational matrix M = {M ∈Nd×d | M M T =
M TM = I , |M | = 1}.

2. L1 outperforms L2 regularization when a lot of irrelevant features are present [88] since

L1 results into very low (0) feature weights for important features [8].

The feature importances are represented by the vector of absolute weights w =
(w1, w2, . . . , wP)T (recall Section 2.2.2 for more information on the training process) of the

trained model:

ILR (Xp) = |wp |. (3.25)

Since one step in when predicting using LR is the multiplication of the model weights w

with the presented sample s, it becomes obvious that a feature Xp ranging from 0 to 1 ·106

would be modeled with smaller model weight wi , compared to an evenly important feature

that ranges from 0 to 1 · 10−3. Thus, for L1 LR feature selection to work properly, feature

normalization is required. A normalized feature has zero mean and a standard deviation of

σ= 1.

k-NN greedy approach

Due to the high dimensional feature space, a tailored version of a k-NN wrapper inspired

by Bolon-Canedo et al. [15] and Breker et al. [23] was implemented: For each feature,

one k-NN was trained separately. A range of different values from for k was evaluated:

k = [2,3,4,5,10,15,20]8. The best achieved accuracy of every feature was used to rank the

latter. The benefit of this naive approach is that only PkNN (PkNN is referring the number of

features evaluated by the k-NN wrapper, see Equation (2.1)) k-NNs have to be evaluated.

7For a definition of rotational invariance and the proof itself see Ng [88].
8In a two-class classification problem, uneven numbers should be preferred to eliminate the risk of ties.

3.2. RESEARCH DEMAND 35

Strategies by which the next feature is selected based on the accuracy gain it adds to the

k-NN when being used in addition to the already selected features were not investigated

because being to computationally expensive. The procedure just described would require

PkNN ! k-NNs to be evaluated.

3.2 Research Demand

The implementation, systematic evaluation and optimization of a highly autonomous fea-

ture selection pipeline for high dimensional, heterogeneous feature spaces causes the fol-

lowing research questions, elucidated in the remainder of the chapter.

First, the basic architecture of the pipeline needs to be defined (Section 3.4): How can

available methods and algorithms be orchestrated in the most promising way in a pipeline,

defining the basic structure of the pipeline? Which characteristics have to be obeyed when

preparing the features for the pipeline (Section 3.4.1)? Which filter measures (Section 3.4.2)

and wrapper algorithms (Section 3.4.3) should be evaluated? Which kind of model is suitable

for generating a pipeline performance metric, used for evaluation and optimization (Section

3.4.4)? And: Which hyperparameters result from this to optimize the pipeline (Section 3.4.5

based on Section 2.3)?

Second, preliminary questions are answered: Is it possible, given the available features,

to create models that produce results above a given performance threshold at all? Also, the

automotive feature space as well as potential model outputs (targets such as switched parts)

are evaluated (Section 3.5.1) in detail.

Third, a detailed evaluation of the different pipeline stages is carried out: Which filter

algorithms rank features high in order to create highly performing models (Section 3.5.2)?

Furthermore, a variety of wrapper algorithms (Section 3.5.3) are compared.

Fourth, a multidimensional optimization problem needs to be solved: How to identify

the optimal hyperparameters and algorithms for the pipeline and what are the most valuable

features (Section 3.5)? Thousands of results are analyzed to identify the optimum pipeline

parameters. Finally, the question, how the proposed pipeline performs on data sets for which

it has not been optimized for, is addressed (Section 3.5.5).

36 CHAPTER 3. FEATURE SELECTION

3.3 Data Sets

In this section the data sets are presented that have been used to optimize and evaluate the

performance of the feature selection pipeline. Although the pipeline was developed for the

automotive context (diagnostics data set in Section 3.3.1), it was also evaluated on publicly

available data sets to ensure comparability.

3.3.1 Diagnostic Automotive Data

The automotive data set was collected from BMW Hybrid cars and consists of non personal

data only. In total, 250.000 observations, each with 5000 features were used to predict over

3000 potential targets. These include the parts that were replaced in the workshop, taken

counter actions (e.g., installing a software-update on an ECU), and Diagnostic Codes (DCs).

DCs are hash-like values identifying the final result of a workshop repair. These should not

be confused with DTCs that can provide indications of potential errors based on the self-

diagnostic capabilities of ECUs. A detailed evaluation of the different feature types is given

in Section 3.5.1.

Aside from being very high dimensional, the automotive data set poses another challenge

for feature selection that will be tackled in the following: The heterogeneousness, referring

the fact that each of the aforementioned feature types vary in terms of their datatype, spar-

sity, and information content (as we will see in Section 3.5.1). E.g., EEs is always Boolean

typed (a customer either ordered leather seats or not), CPs are mostly categorical values (a

car is only available with a certain set of unique wheel rims), and most of the remaining fea-

tures are discrete/ continuous or nominal after preprocessing (e.g., the mileage of the read-

out, the value of a specific MV, etc.). Additionally, the sparsity differs between the different

feature groups: DTCs have a sparsity of 99% (since the occurence of errors is rare on average),

whereas MVs only have a sparsity of 65% (measurements are always present, but still hold

the value “zero” for a considerable amount of samples), and RO less than 1%. More details

on the various feature types available in the automotive context are given in Section 1.2.

Also, many potential model targets only appear at a very low rate (e.g., a BMW-engine

part that was only switched a couple of times in the whole data set). This imbalance must

also be taken into account during model training, corresponding procedures are presented

in Chapter 4. To obtain meaningful results, the minimum number of samples, where a target

3.3. DATA SETS 37

was true (“part number 117 was switched”) for the pipeline to select features and create a

model was set to five. This minimum is only exceeded by 69% of the parts, 56% of the taken

actions, and 40% of the diagnostic codes. Only targets that matched this criterion (e.g., a part

that was switched at least five times) have been processed by the pipeline.

In addition to the features used by Müller et al. [86] as described in Section 3.1.1, the

selection pipeline proposed in the following is developed and evaluated on the following

feature types which are offered by the automotive data set (see Section 1.2):

• Long time Measurement Values (MVs): MVs capture slowly changing car parame-

ters, these include but are not limited to: Slowly drifting parameters of proportional-

integral-deriva-tive controllers integrated into the engine control, the number and

strength of misfires, the total number of hours driven, etc.

• Environmental conditions (ECs) from Diagnostic Trouble Codes (DTCs): Every time a

DTC is flagged, values describing the engine or car-state such as the engine rounds per

minute or the vehicle speed and certain temperatures at the time of error occurrence

are recorded. The idea behind is to ease the subsequent analysis.

• Optional Extra Equipment (EE): Customers often make use of the possibility of adapt-

ing the car to their personal needs when ordering by adding optional extras. Examples

are aerodynamic kits, rims, and leather seats.

• Basic Car Parameters (CPs): This information includes, e.g., the engine horse power,

steering type, the type of gearbox (automatic or manual), etc.

• Readout data (RO): A readout contains, e.g., the current odometer value, software ver-

sion information, the readout date, etc.

3.3.2 Publicly Available Data Sets

Also, two publicly available classification data sets with a high dimensional feature space

were selected.

The Golub data set consists of 72 samples, each representing one patient, with 7129 fea-

tures each. The features in this case are gene expressions. The target is to classify which

of patients indicate type one leukemia (acute lymphoblastic leukemia, 47 patients) or type

38 CHAPTER 3. FEATURE SELECTION

two (acute myeloid leukemia, 25 patients). This data set is linearly separable and can not be

considered “imbalanced” (the ratio is 0.532 : 1).

Secom contains 1567 observations from a semi-conductor manufacturing process. The

591 features represent sensor values used for monitoring the process. The goal in this case is

to classify a “pass” of the fabricated wafer, which is recorded 1463 times. A “fail” is recorded

104 times, yielding an imbalance of 0.071 : 1.

3.4 Proposed Solution

The proposed pipeline for feature selection is depicted in Figure 3.2. The vertical axis repre-

sents the number of features being processed. As expected, during processing from the left

to the right this number is reduced throughout the pipeline yielding the funnel like shape

of the pipeline. The latter consists of a preparation layer (Section 3.4.1), two feature selec-

tion layers, and a model building layer (Section 3.4.4). All layers were implemented in R.

The feature selection layers (orange) include a filter layer (Section 3.4.2) and a wrapper layer

(Section 3.4.3).

features...

after preparation
nFAP

after filter
nFAF

after wrapper
nFAW

used in model
nFUM

preparation filter wrapper model

Figure 3.2: Overview of the feature selection pipeline.

3.4. PROPOSED SOLUTION 39

3.4.1 Preparation Layer

This and all subsequent layers must meet the generic requirements. This means that since a

large number of models are to be created parameter free, no kind of manual influence must

be required after implementation.

The preparation includes:

• The removal of constant features,

• the removal of n −1 features from a group of n strongly linearly correlated features,

• encoding of textual features (e.g., the software-version of an ECU which is encoded

such as “BMW3-16-13-100”) into machine readable numbers,

• one-hot-encoding of nominal variables (every level is encoded in a new feature which

equals to 1 if the level under consideration is present and 0 otherwise), and

• normalizing all features such that mean µ(X) = 0 and standard deviation σ(X) = 1 for

all X ∈X .

Also, an outlier filter was implemented. By default, outliers are filtered out by calculating

the feature specific mean and standard deviation and considering all values that are more

than 3 ·σ from µ away as “outliers” [76]. This, however, requires the considered feature to

be normally distributed, which can not be guaranteed in the automotive context at hand.

A visualization is given in Figure 3.3 where the presumably interesting values (on the very

right of the distribution) would be marked counter intuitively as “outliers” since the feature

is not normally distributed. To overcome this, all feature values within the first q0.01 or last

q0.99 percentile were set to the closest, valid value. This yields two key characteristics: First,

a broad range of values is kept. Second, values initialized with extreme values (e.g., 16384)

do not stitch all other feature values when being normalized prior to model training, which

would otherwise happen quite often in the automotive context. Also, this percentile based

approach does not require any manual intervention. Outliers are filtered out before dis-

cretization of the feature is performed.

Furthermore, a variety of nominal features exists that are ordinally encoded, although

there is no linear relationship. So, although being discrete per se, there exists no linear rela-

tionship. As an example consider to two dealerships referred by an integer. Although being

40 CHAPTER 3. FEATURE SELECTION

µ

3∗σ

0

200

400

600

0 5000 10000 15000
Some measurement value (MV)

co
u

n
t

Figure 3.3: Example why standard outlier filters fail, µ is marked as solid, 3 ·σ as dashed line.

discrete, a dealer referenced by 21788 may reside on a different continent compared to a

dealer that is only “1” unit away. A translation to latitude and longitude coordinates fixes

this problem in most cases9. Through these coordinates a linear connection is established,

making the geographical information (e.g., dusty areas or areas with low gasoline quality)

accessible to the model.

After being preprocessed as described above, the data set was split into a training/vali-

dation and a test set according to the pipeline hyperparameter SPLIT , see Section 3.4.5 for

more details.

3.4.2 Filter Layer

Filters reduce the dimensionality at low computational cost and are therefore an essential

building block of the pipeline. Each of the filter algorithms presented in Section 3.1.2 was

evaluated in terms of its capabilities to select helpful features and its computational com-

plexity. Each of the aforementioned filter rankings is calculated completely “parameter-free”.

The final ranking of each feature based on this layer was calculated by summing all filter

measure rankings, each scaled to a range from 0 to 1. This yields a list of ranked features,

sorted descendingly by the sum over all filter rankings. Alternatively the proposed pipeline

offer the possibility, that top ranked feature from each filter measure are guaranteed to be

passed to the following wrapper layer.

9The only exception is the area around the Chukchi and Bearing Sea (coordinates (68,−180)), but consider-
ing the BMW dealership density in this area this can be neglected.

3.4. PROPOSED SOLUTION 41

Instead of picking features from the top of the aforementioned list, a different strategy

to treat the filter rankings was evaluated: Here, the N top ranked features from every filter

were prepended to the list of feature rankings. This way, a feature that received a high score

from only one filter algorithm would be passed to the next pipeline stage, even if all filter

measures ranked it low.

However, filter measures have two major caveats. First, they ignore feature dependencies

between features since features are evaluated one by one. Second, they ignore classifier de-

pendent feature preferences: Examples include the total number of features used to create a

classifier or the polynomial degree that approximates the relationship between the features

and the target (a LR will, e.g., tend to prefer features with linear influence on the target vari-

able).

3.4.3 Wrapper Layer

Once the feature space has been “filtered” at low computational cost, the wrapper layer eval-

uates the remaining features in greater detail. Three concepts were implemented and eval-

uated: The information-gain-based ranking of a random-forest (RF) wrapper, the feature-

weight-based ranking of a LR wrapper, and a k-nearest neighbors (k-NN) embedded ap-

proach as described in Section 3.1.3.

While “embedded” approaches perform the feature selection as a part of their internal

learning procedure (e.g., RF and LR), “wrapper” approaches (such as the k-NN), on the other

hand, are based on model types that do not rank features inherently. Instead, features are se-

lected by evaluating the classification performance of the corresponding model on different

feature subsets (e.g., k-NN) [15]. For simplification, both approaches (wrapper and embed-

ded) will be referenced to as “wrappers” due to their similarity.

In contrast to the filter layer, where the final feature ranking was formed by taking the

ranking from multiple filter algorithms into account, the wrapper algorithms were evaluated

separately due to their high computational complexity.

While LR and RF wrappers consider feature dependencies, this is not the case for the

greedy k-NN embedded approach: Here, a k-NNs is trained for each feature and evaluated

in isolation.

42 CHAPTER 3. FEATURE SELECTION

3.4.4 Model Layer

The primary purpose of the model layer is to generate a metric allowing for the evaluation of

the pipeline. A L1 regularized LR based on the LiblineaR implementation – which serves as

interface for the LIBLINEAR C/C++ library [41] – was used.

Based on the unconstrained optimization problem given in Equation (2.11), seven differ-

ent costvalues C are evaluated and optimized (ranging from 103 to 10−3) with regard to the

auPRC (see Section 2.3) using a 5-fold cross validation.

3.4.5 Hyperparameters

The pipeline described in the aforementioned sections offers a lot of hyperparameters that

span up a search grid when being systematically varied:

• nFAF : The number of features left after the filter layer. The parameter nFAF was varied

in discrete steps: 25,50,100,200,500.

• nFAW : The number of features left after the wrapper layer, also varied in discrete steps:

5,10,15,25,50,500.

• NPR: The positive to negative observations sample ratio defines how many negative

samples (e.g., part was not switched) are sampled from the data set depending on the

number of available, positive (e.g., part was switched) samples. Discrete values that

were evaluated: 1, 3, and 5 times as many negative samples compared to the number

of positives samples. A more detailled explanation of positive and negative samples

is given in Section 4.3. Values NPR ≤ 1, where fewer negative samples were used than

positives, were not evaluated in this chapter. A detailed evaluation of imbalanced data

sets and their effect on classification grade and performance is given in Chapter 4.

• SPLIT : Refers to the training/validation to test split. E.g., 0.7 refers to a split, where

70% of the samples were used for training and 30% were used for testing. Evaluated

values were 0.7 and 0.8.

• WA: The used wrapper algorithm (Section 3.1.3) – either k-NN, RF, or LR.

• TFA: Select features based on the summed ranking over all filter measures (0) or

prepend the one top ranked feature from each filter measure in any case (1) to the

3.5. EVALUATION 43

list of descendingly important features.

3.5 Evaluation

Varying the aforementioned hyperparameters yields nsp = 25·3·2·3·2 = 900 sampling points,

since only 25 features-after-filter-wrapper-pairs match the condition nFAW ≤ nFAF . One sam-

ple point is, e.g., nFAF = 200, nFAW = 15, NPR = 3, SPLIT = 0.8, WA = KNN and TFA = 1.

Every point is sampled 10 times for smoothing, where e.g. the set of randomly subsam-

pled negative samples varies. Multiplied by the total number of at least partially success-

fully evaluated targets (1378), where more than 5 positive samples were available, this yields

nmodellingAttempts = nsp ·10 ·1378 = 12.4 ·106. For each sampling point, minimum, maximum,

standard deviation σ, mean µ, and median of auPRC, auROC, and F1 have been recorded for

evaluation. All experiments in this chapter have been conducted on an HP™ Z-840 equipped

with two Intel® Xeon® E5-2640 v3 2.60GHz CPUs and 96GB of RAM in March 2018.

The pipeline can only be evaluated if the available features allow for a creation of models

at all. Only potential targets from the diagnostic data set (Section 3.3.1) with five or more

observations have been evaluated. This only holds true for ≈ 35% of all potential targets.

Figure 3.4 shows the percentage of models for the targets with more than five observations

that performed above a given average auROC, auPRC and F1 score in dependence on target

type. As mentioned earlier, target types are SPs, TAs, and DCs. As an example, 97.9% all of the

models exceed auROC = 0.9, 47.8% of the models an F1 = 0.9 and only 3.9% of the models an

auPRC of 0.9. This can be interpreted that there are definitely targets that can be modelled

using the given features, but there are also a lot, where the trained model does not perform

well.

Across all measures, SPs allow for better models to be trained (the percentage of mod-

els exceeding all minimum performance thresholds shown in Figure 3.4 is always higher in

comparison to DCs and TAs), and – with only a few exceptions – TAs can be better modelled

than DCs.

An explanation for low AUC and F1 values is, aside from low feature quality, that some

potential targets are too generic. Take, e.g., a bolt (an SP) that is used in a variety of different

situations, the clearing of all DTCs (a TA) which is common after a fault has been found

and fixed, or a planned routine maintenance (a DC) that has no unique triggers other than

44 CHAPTER 3. FEATURE SELECTION

an approximate mileage or other specified usage. An explanation for the generally lower

scoring models of DCs compared to SPs may be the hash-like nature of DCs that summarizes

potentially multiple SPs and TAs which makes it “blurry”, and thus hard to model.

0.00

0.25

0.50

0.75

1.00

0.5 0.6 0.7 0.8 0.9
min(auPRC,auROC,F1)

p
er

ce
n

ta
ge

ab
ov

e
th

re
sh

o
ld Model target

DC

SP

TA

Measure
F1

auPRC

auROC

Figure 3.4: Average model performance depending on target type.

In Section 2.3 it was already argued for the superiority of auPRC under the given, fore-

most imbalanced, circumstances. Figure 3.4 underlines this statement: While 100% (“all”)

the models exceed an auROC of roughly 0.8, both the F1 score and auPRC allow for a finer

distinction of the model quality. Also, percentage of models performing above a given auPRC

threshold starts decreasing at auPRC = 0.5 while even the percentage of models performing

better than F1 = 0.5 score is roughly the same (99.6%) as for F1 = 0.6 (98.6%).

To conclude: There are targets that can be modeled given the available features. The

remaining sections of this chapter will therefore examine the effect of the pipeline hyper-

parameters on classification performance and computational complexity, evaluate the algo-

rithms, and give a measure of the overall pipeline performance.

3.5.1 Detailed Look on Feature Group Importance

Evaluating all successfully trained models, the used feature groups (FGs) are evaluated in

Table 3.6. The row “Bias” references the linear offset of the LR model (used in the final model

layer), being part of all created models.

The column “used” shows the group affiliation of the used features averaged across all

models. For example, a value of 66.5% of the MV row means that on average, the features

3.5. EVALUATION 45

used in the final model belonged in 66.5% of the cases to the MV group. This can be formal-

ized:

used(FG) =
∑M

m=1
∑Fm

f =1 C (f ,FG)∑M
m=1 Fm

, with

C (f ,FG) =

1, if f is a feature of FG

0,otherwise

M : number of models,

Fm : number of features in model m.

(3.26)

Suppose, M = 2 models: The first model m = 1 consists of Fm=1 = 6 features, while only 3

of the features used by the model are from the feature group MV. The second model m = 2

consists of Fm=2 = 11 features, with 7 of them being a MV. Equation (3.26) would thus yield

(assuming that the MVs features are the most important and thus come first):

used(MV) = (1+1+1+0+0+0)+ (1+1+1+1+1+1+1+0+0+0+0)

6+11
= 58.8%. (3.27)

Whereby “used” only considers if a feature from the corresponding group is used or not, the

“weighted” column also takes the feature weight into account, used by the L1 regularized LR

model after training. The summed feature weight of each feature group is divided by the total

weight of all features used by the model. Again, this number is averaged across all models

for all FGs:

weighted(FG) =
∑M

m=1
∑Fm

f =1 W (f ,FG)∑M
m=1

∑Fm
f =1

∑G
g W (f ,g)

, with

W (f ,FG) =

wm, f , if f is a feature of FG

0, otherwise

wm, f : weight of feature f in model m,

G : number of feature groups.

(3.28)

In total, G = 6 feature groups exist (MV, RO, CP, EC, DTC, and EE). The term
∑Fm

f =1

∑G
g W (f ,g)

yields the summed weight of all features for a given model.

With a weighted importance of roughly 60%, MVs turned out to be the most informative

46 CHAPTER 3. FEATURE SELECTION

Table 3.6: Feature group importance.

FG used weighted

MV 66.5% 58.6%

Bias 5.2% 15.4%

RO 4.6% 6.9%

CP 5.1% 6.3%

EC 4.7% 4.5%

DTC 5.1% 4.3%

EE 8.9% 4%

feature groups in the model creation process and also the only one being of higher weighted

importance as the bias. Surprisingly, they have not been leveraged in prior work [86]. The

low impact of DTCs can be explained by the complex set of conditions by which they are

triggered: Often, multiple (even timed) conditions are joined by different logical operators

(OR, AND, XOR, etc.) to finally cause a DTC to be flagged. Despite this wealth of information

that is needed to flag a DTC, the way back from a DTC to the conditions upon which it was

triggered is surjective and not bijective - different sets of conditions can cause the same DTC.

Also, the feature groups type RO or CP had low impact. This can be explained by most of

the features from this group having the same value within the evaluated data set. They may

become important if the data set is extended to include more than one car model and engine.

Any FG with a lower weighted importance than the “Bias” is arguably useless on average

since a constant value (the Bias) is more “informative” to the model, but may provide useful

information in specific scenarios.

3.5.2 Filter Layer Evaluation

The implemented filter measures are evaluated to identify those filter measures that pos-

itively affect the performance of the pipeline. On the other hand, measures that only con-

tribute little to the overall classification performance but significantly increase the computa-

tional complexity can be eliminated. This way, the pipeline is optimized for future research.

To rank the filter measures, more than 39000 filter rankings have been matched with the

resulting LR models trained in the last stage of the pipeline (green box on the right of Fig-

ure 3.2) to yield the results listed in Table 3.7. The corresponding columns shall be explained

3.5. EVALUATION 47

in the following.

First, the total number of features nGTwmin with an absolute weight higher than wmin =
0.001 across all LR models trained in the last stage is calculated:

nGTwmin =
M∑

m=1

Fm∑
f =1

N (feature f ,modelm) , with

N (feature,model) =

1, if

∣∣Imodel(feature)
∣∣> wmin

0, otherwise

(3.29)

In the above formula, Imodel(feature) refers the weight of the given feature in the LR model.

Every time, a filter measure ranks a feature higher than zero that is used in the LR model

created in the final stage with an absolute feature weight higher than wmin, a “hit” is counted.

The column “hit” in Table 3.7 is the number of hits (every hit counts as 1) from each measure

divided by the total number of features with an absolute weight higher than wmin (nGTwmin),

across all trained models M .

hit(filter) =
∑M

m=1
∑P

p=1 H (Xp ,filter,modelm)

nGTwmin

, with

H (X ,filter,model) =

1, if

∣∣Ifilter(X)
∣∣> 0 and |Imodel(X)| > 0

0, otherwise

(3.30)

The term Ifilter(feature) refers the importance of feature according to filter. Therefore, a high

“hit percentage” does not necessarily indicate an useful filter measure: A filter measure rank-

ing all features passed to the next layer with an “importance” ranking of 0.01 would score

100%.

Thus, in addition to solely counting the number of “hits”, the “contribution” column takes

the filter measure ranking and the final feature weight of the trained model into account. In

case of a “hit”, the filter measure importance ranking is multiplied by the feature weight in

the model. This number is summed over all models and divided by nGTwmin . This allows to

assess the correlation between the filter measure scoring and the final feature weight in the

48 CHAPTER 3. FEATURE SELECTION

Table 3.7: Filter measure performance.

measure hit contribution runtime [s]

χ2 82.025% 0.858 2.178

Correlation 98.533% 0.697 0.469

Gini 99.890% 0.549 0.245

Mutual Information 82.025% 0.733 2.611

Relief 99.800% 0.463 70.577

model in a much better way.

contribution(filter) =
∑M

m=1
∑P

p=1 C (Xp ,filter,modelm)

nGTwmin

, with

C (X ,filter,model) = |Imodel(X)| ·
∣∣Ifilter(X)

∣∣ (3.31)

Since the feature weights in final model Imodel(feature) are not scaled to a [0,1] range, the

“contribution” is not normalized. To quickly recapitulate the filter measures introduced in

Section 3.1.2: Correlation is used to measure the correlation between the feature and the tar-

get variable. Chi-squared χ2 measures the dependence of the feature and the target distri-

bution. The Gini coefficient measures the inequality for the features frequency distribution.

The information filter is an entropy-based (H) measure measuring the mutual information

of the feature and the target. And finally: Relief estimates features based on how well their

values can be used to distinguish instances that are close to each other in the feature space,

while considering their class membership [71].

Column “runtime [s]” of Table 3.7 shows the time it took to perform all necessary compu-

tations as described in the corresponding subsections of Section 3.1.2. This includes not only

the actual feature assessment but also computations such as binning that may be required

in dependence on the filter measure.

Considering Table 3.7, the meaningfulness of the Relief measure may be questioned due

to its extraordinary high computational cost, and its inability to identify relevant features: A

high percentage of hits, but low contribution is indicating that the Relief is ranking most of

the features equally high.

Also, the results ofχ2 and the MI-based filter yield the exact same results regarding the hit

percentage. Therefore, the MI measure may be dropped due to its longer runtime compared

3.5. EVALUATION 49

to the χ2 measure if the computational complexity needs to be reduced. Additionally, the χ2

achieved the highest contribution in this comparison.

An explanation for the relatively low contribution of the Gini coefficient can be explained

by considering how the algorithm actually works, as explained in Section 3.1.2: The fact that

a X1 = [0,0,0,0,1] holding five samples yields an extremely high score (Gini(X1) = 0.8) and

X2 = [1,1,1,1,0] yields a very low score (Gini(X2) = 0.2), which makes perfect sense in an

economic scenario: X1 could, e.g., describe an income situation where one person in a com-

pany earns all the money. However, this does not make sense, in a machine learning context,

where both features supposedly carry the same amount of information. Thus, the following

formula is proposed to tackle this issue:

GiniFS(X) =
∣∣∣Gini(X)+Gini(X −max(X))

2

∣∣∣. (3.32)

Which would yield GiniFS = 0.3 for both features alike (X1 and X2). Also, this is the only filter

measure evaluated in this thesis, that does not take the class label Y into consideration. This

is a serious issue as the following example demonstrates. Suppose the following data set,

consisting of two features X1 and X2 as well as the label Y :

X1 X2

1 1

1 0

0 1

0 0

=

Y

1

1

0

0

 (3.33)

Both features would score the same ranking according to the Gini coefficient Gini(X1) =
Gini(X2) = 0.5. This is counter-intuitive, since feature X1 correlates perfectly with label Y ,

while feature X2 is completely useless to determine between the different outcomes of Y .

3.5.3 Wrapper Layer Evaluation

Three different wrapper algorithms were evaluated (hyperparameter WA): A greedy k-NN,

RF, and an LR. Table 3.8 shows the achieved auROC, auPRC and F1 scores as well as the run-

time (see below) for the corresponding wrapper algorithms averaged across all LR models

built in the final pipeline stage. A auPRC = 0.644 for the k-NN wrapper thus refers the aver-

50 CHAPTER 3. FEATURE SELECTION

Table 3.8: Influence of the wrapper algorithm on the pipeline performance.

algorithm auROC auPRC F1 runtime [s]

k-NN 0.927 0.644 0.775 31.931

LR 0.955 0.691 0.850 0.286

RF 0.934 0.654 0.801 10.471

aged auPRC achieved by the final LR model if a k-NN wrapper was used to select the features.

Similarly to the previous section, “run-time [s]” includes all steps necessary to rank the fea-

tures using the corresponding wrapper algorithm as described in Section 3.1.3.

The k-NN and RF wrapper algorithms yield comparable results in terms of averaged

model performance, with the RF wrapper yielding a slight advantage. The LR wrapper yields

slightly higher auROC, auPRC, and F1 scores. This may be due to the fact that the model

layer also uses a LR model. In terms of run-time, LR outperforms all other approaches by

several orders of magnitude. This can be explained by the much less expensive training: LR

is optimized by gradient descent, while RF requires iterative branching and k-NN storing and

iterating over a huge amount of samples as stored reference.

Usually one would remove features that only are have a particularly low weight in the

model and train the model again. Since the actual value of “particularly low” may vary, this –

usually manual – process is reflected by various thresholds t in Figure 3.5. Here, the number

of actually used features by the LR model (final stage) nFUM is shown in dependence on nFAW .

Especially for high thresholds, where a feature is only counted if its feature weight w in the

final model exceeds the threshold t ≥ 1, nFU M starts decreasing after more than nFAW ≈ 50

features are passed to the model. Averaged across all trained models, the feature weights

inferred by the LR model of the final stage after training are defined by the following metrics:

mean(w) = µ(w) = 0.012, median(w) = 0, σ(w) = 2.41, min(w) =−680, max(w) = 413. Thus,

the number of actually relevant features which would remain after the manual removal of

the irrelevant ones (e.g. for t = 0.1) would increase only slightly if more than nFAW = 50 are

passed to the final stage by the wrapper layer, and for t = 1.0 even decrease.

3.5.4 Remaining Hyperparameters

The influence of nFAF on the pipeline’s performance is given in Table 3.9. Results regarding

nFAW are presented in Table 3.10. Both, nFAF and nFAW positively correlate with the pipeline’s

3.5. EVALUATION 51

0

10

20

30

40

50

0 50 100 150 200
nFAW

n
F

U
M

threshold
0.001

0.01

0.1

1.0

Figure 3.5: Number of features used in final model above threshold.

Table 3.9: Influence of nFAF on pipeline performance.

nF AF auROC auPRC F1

25 0.933 0.650 0.790

50 0.939 0.662 0.809

100 0.940 0.665 0.812

200 0.939 0.665 0.811

500 0.940 0.669 0.816

performance (e.g., measured in auPRC: corr(nFAF ,auPRC) = 0.025, corr(nFAW ,auPRC) =
0.076). This means, the more features are passed from the filter layer over the wrapper layer

to the model layer, the higher the performance (in terms of AUC and F1).

Although a higher nFAW leads to a higher model performance, as shown in Table 3.10

the training time of the LR model in final pipeline stage increases disproportionately: While

the auPRC increases by only 13.1% (F1 increases by 18.1%) when increasing the number of

features used by the model from 5 to 50, the model training time increases by 65.2%. Since

the increase of training time is 5 times (3.5 times) as high as the increase of the auPRC (F1),

the optimum number of features passed from the wrapper layer to the model is set implicitly

by the desired model performance in terms of auPRC and F1.

The next evaluated hyperparameter is NPR: According to the results in Table 3.11, the

most relevant measure (auPRC, as shown in Section 2.3) decreases with a higher NPR. Also,

the F1 decreases. The only exception is the auROC score, which neither in- nor decreases

52 CHAPTER 3. FEATURE SELECTION

Table 3.10: Influence of nFAW on model performance and training time.

nF AW auROC auPRC F1 average training time [s]

5 0.909 0.617 0.728 0.118

10 0.932 0.651 0.794 0.156

15 0.941 0.666 0.819 0.177

25 0.950 0.681 0.841 0.191

50 0.960 0.698 0.860 0.195

500 0.964 0.709 0.866 0.257

Table 3.11: Influences of NPR on the pipeline performance and training time.

NPR auROC auPRC F1 model training time [s]

1 0.939 0.724 0.915 0.090

3 0.937 0.648 0.791 0.159

5 0.940 0.613 0.714 0.267

significantly. Note that (unlike the more sophisticated upsampling techniques discussed in

Chapter 4, which are discussed separately) only naive downsampling is applied in this ex-

periment. This means, NPR = 1 undersamples all samples that are not labeled with with the

target class, until there is the same number of target and non-target samples in the training

set. Since a higher NPR only increases the training time according to the this experiment on

the given, automotive data set, NPR values larger than 1 are not recommended.

An explanation, why F1 does not increase, can be explained by the way F1 is calculated,

see Equation (2.21) [39]: It represents the harmonic mean of precision and recall. Thus, a

lower precision always causes a lower F1 if the recall remains the same. Precision and recall

are calculated as shown in Equation (2.19) and Equation (2.20).

An increase of the number of negative samples in the used data set will always lead to a

higher number of FPs under the assumption that the FP to TN ratio is constant. This leads

to a smaller precision while the recall is not dependent on the number of negative samples.

Therefore, increasing the number of negative observations in the used data set, will always

lead to a smaller or equal F1. Similarly, this applies to the auPRC, which is also dependent

on precision and recall. Under the assumption, that the recall values for different decision

thresholds remain the same, the precision is lowered as described above, which will reduce

the area under the curve.

3.5. EVALUATION 53

0.01

0.1

1

10

100

500

5 100 250 500 750 1325
processed features

co
m

p
u

ta
ti

o
n

ti
m

e
[s

]

filterCorr

filterGini

filterMI

filterRelief

filterχ2

wrapperKNN

wrapperLR

wrapperRF

Figure 3.6: Computation time: k-NN, RF, LR, and all filter measures.

The influence of SPLIT and TFA can be neglected. Regarding TFA, this may be explained

by the fact that a feature that is ranked high by a specific filter measure will be very likely

part of the feature set passed to the wrapper layer if 20 or even 200 features are selected.

However, this is only a conjecture. The neglectable influence of SPLIT may be explained by

the similarity of the two values evaluated (0.7 and 0.8).

Aside from evaluating the given hyperparameters, the computational complexity and

scalability of the proposed pipeline was evaluated. Figure 3.6 shows the logarithmically

scaled computation time in dependence on the number of processed features. For the con-

tinuous values, Table 3.12 is referred. To collect the displayed values, all algorithms were

measured one after another three times in immediate succession and the results were av-

eraged. Important things to note are: The LR wrapper measure computes extremely fast,

even outperforming most of the filter algorithms except for correlation and Gini coefficient.

Unfortunately, the Gini coefficient is the filter measure, that performs worst in terms of “con-

tribution” according to Table 3.7. Correlation (filterCorr), on the other hand has a reasonable

high “contribution”, one of the highest “% hit”, and is faster than the LR wrapper. At first

glance, it may not make sense to compare filters with wrappers. However, situations in which

one has to choose between filters or wrappers (e.g. because both in combination show too

high computational runtime complexity) are possible and thus the comparison makes sense.

The relief filter is also not advisable, since an RF is faster. Both, χ2, and the MI (filtergain) filter

run faster than the RF wrapper. The χ2 filter also scored the first rank in terms of “contribu-

54 CHAPTER 3. FEATURE SELECTION

tion” (Table 3.7) and thus may be the primary choice in scenarios with a nonlinear decision

boundary (where a LR wrapper may not suitable). Lastly, the computation time of the k-

NN algorithm grows disproportionally (O (N 2)). Thus, this technique is useless in the given

context.

To approximate the time savings gained by using the proposed pipeline, the following

conservative formula was used (where 100 features are processed by the RF wrapper). The

processing time of a standalone wrapper approach is compared to a combined filter/wrap-

per approach, where the χ2 and correlation filters are used. The number of features fed into

does not exceed nFAP = 1325 in this example (for details on how features are filtered out prior

to the filter layer please refer Section 3.4.1). This limitation may not hold in future or other

applications, where the time savings would be even greater:

tsaving,RF = tRF ,unfiltered − (tfilterχ2 ,unfiltered + tfiltercorr ,unfiltered + tRF ,100)

= 215.790s − (3.277s +0.743s +26.140s)

= 185.63s

which results in a saving of

tsaving,RF /tRF ,unfiltered = 86.023%

However, as shown in Table 3.12, there are combinations where no time is saved. E.g., if the

filter layer utilizes all filter measures (except the Relief filter) and the wrapper layer is using

an LR in comparison to just building the final model using an LR:

tsaving,LR = tLR,unfiltered − (tfilterall ,unfiltered + tLR,100)

= 1.373s − (0.743s +0.677s +3.917s +3.277s +0.280s)

=−7.521s

3.5. EVALUATION 55

Table 3.12: Overview over the layer runtimes in seconds depending on the number of pro-
cessed features.

nfeature filterCorr filterGini filterMI filterRelief filterχ2 wrapperKNN wrapperLR wrapperRF

5 0.017 0.013 0.053 2.313 0.037 0.873 0.087 4.163

10 0.020 0.020 0.057 3.307 0.063 1.460 0.103 4.947

15 0.027 0.027 0.087 4.783 0.063 2.463 0.123 6.203

20 0.030 0.037 0.100 6.400 0.083 3.500 0.133 7.187

25 0.047 0.037 0.130 7.850 0.137 4.543 0.230 8.617

50 0.063 0.067 0.270 15.657 0.200 13.230 0.193 14.563

75 0.090 0.067 0.337 22.037 0.277 25.007 0.267 20.177

100 0.087 0.093 0.427 28.213 0.367 40.400 0.280 26.140

200 0.203 0.163 0.863 58.430 0.773 128.987 0.377 58.773

250 0.230 0.207 1.143 74.060 0.977 194.883 0.420 73.087

500 0.470 0.427 2.290 155.487 1.893 948.083 0.890 163.650

750 0.653 0.600 3.510 250.477 2.970 16016.837 1.220 213.970

1325 0.743 0.677 3.917 275.097 3.277 19330.133 1.373 215.790

3.5.5 Evaluation on Publicly Available Data

For the golub data set, a multidimensional hyperplane exists, separating the two classes

without classification errors. For certain parameterizations, the pipeline scores an averaged

auPRC = auROC = F1 = 1, which has also been achieved by Guyon et al. [54]. Table 3.13

shows the top and last five pipeline parameterizations, sorted by ε= auPRC +F1. Sorting by

ε ensures that results with both, a high auPRC and F1 will appear. This eases the compari-

sion with Guyon et al. [54] who used F1. Keeping the original 833 features in mind, especially

the rows where nFAW = 5 represent a major benefit in terms of computational complexity be-

cause of an enormously reduced feature space. The proposed pipeline was able to reduce the

feature space by 1− 5
833 = 99.4% without compromising model classification performance.

The optimum solution in terms of AUC is possible with other parametrizations as well. Since

an LR model was used, this means that there exists a linear decision boundary.

Generally, the k-NN wrapper leads to higher performing models on the golub data set

(corr(KNN ,auPRC) = 0.343), while the RF wrapper does not perform well (corr(RF ,auPRC) =
−0.399). A high NPR does not yield better performance (corr(NPR,auPRC) =−0.210). TFA is

also a beneficial technique (corr(TFA,auPRC) = 0.129). The LR wrapper does not increase all

56 CHAPTER 3. FEATURE SELECTION

Table 3.13: Performance of the pipeline on the golub data set.

ε auROC auPRC F1 nFAF nFAW NPR WA TFA

1.929 1.000 0.929 1.000 100 5 5 LR 1

1.929 1.000 0.929 1.000 100 10 5 LR 1

1.929 1.000 0.929 1.000 200 5 5 LR 1

1.929 1.000 0.929 1.000 500 10 5 LR 1

1.917 1.000 0.917 1.000 50 5 3 KNN 0

1.279 0.909 0.682 0.597 25 15 10 LR 1

1.277 0.889 0.627 0.650 100 5 10 LR 1

1.223 1.000 0.500 0.723 500 500 5 RF 0

1.218 0.896 0.642 0.577 25 10 10 LR 1

1.071 0.835 0.611 0.460 200 5 10 LR 0

classification measures on the golub data set (corr(LR,auROC) = −0.112, corr(LR,auPRC) =
−0.056, corr(LR,F1) =−0.176) in contrast to the results based on the automotive data set.

Table 3.14: Performance of the pipeline on the secom data set.

ε auROC auPRC F1 nFAF nFAW NPR WA TFA

1.527 0.786 0.814 0.713 100 15 1 LR 1

1.525 0.840 0.855 0.670 50 5 1 LR 1

1.502 0.815 0.836 0.666 50 10 1 LR 1

1.494 0.796 0.734 0.760 500 50 1 KNN 0

1.481 0.809 0.809 0.672 25 25 1 LR 1

0.096 0.646 0.096 0.000 500 25 10 LR 1

0.096 0.644 0.096 0.000 200 50 10 RF 0

0.093 0.637 0.093 0.000 100 50 10 RF 0

0.086 0.527 0.086 0.000 500 10 10 KNN 1

0.081 0.513 0.081 0.000 500 5 10 KNN 1

The scores in terms of ε on the secom data set are promising as well (again, the top and

worst five results regarding ε are shown in Table 3.14) but lower compared to the F1 = 0.947

achieved by Arif et al. [3] with a higher manual effort. An explanation may be – aside from

the positive influence of the manual effort – that the data set requires a nonlinear model to

correctly represent the relationship between the features and the labels: While Arif et al. [3]

used a non-linear RF based model, the LR used in this work is a linear model. Also, since

an LR model was used to generate the classification grade metrics, this could also mean that

3.6. SUMMARY AND CONCLUSION 57

there simply exists no linear decision boundary. The five highest ε scores have been achieved

after reducing the 591 dimensional feature space to 5− 50 features. The RF wrapper was

included in this evaluation and scored εRF ,avg = 0.711 averaged over all parameterizations

(σε,RF = 0.404). This is higher compared to LR and k-NN in terms of the average (εLR,mean =
0.647 and εKNN ,mean = 0.658), and lower in terms of the standard deviation (σε,LR = 0.434 and

σε,KNN = 0.424).

A high NPR decreased the classification performance (corr(NPR,auPRC) = −0.210) in

this case – which is also outlined by Table 3.14, where the top 5 lines have a low value

of NPR in common. The performance was affected negatively by the TFA technique

(corr(TFA,auPRC) =−0.129) and the RF wrapper algorithm (corr(RF ,auPRC) =−0.399).

3.6 Summary and Conclusion

The final scenario discussed in the following only considers the RF and LR wrappers due the

extremely high computational complexity of the k-NN wrapper as visualized in Figure 3.6.

The averaged runtimes accompanied by the respective classification grades, are shown for

the RF (Table 3.15, Table 3.16, and Table 3.17 for auROC, auPRC and F1) and the LR wrap-

per (Table 3.18, Table 3.19, and Table 3.20 for auROC, auPRC and F1), respectively. First, the

feature space was prepared and features with variance close to zero were filtered out. This

already reduced the multi-thousand dimensional feature space to 1325 features after prepa-

ration (nFAP). These were processed and ranked by the filter layer, consisting of all filter

measures.

According to the filter measure ranking, the nF AF top ranked features after the filter layer

were passed to the wrapper. As expected, the wrapper training time increases when more

features are being passed by the filter. Except for LR, the wrapper layer is usually computa-

tionally more expensive (Figure 3.6) when processing the same amount of features compared

to the filter layer. The model training time is given in the last row.

Together with nFAW features after the wrapper layer, this spans up a matrix with model

classification performance scores. For each column of nFAW the corresponding model train-

ing time is given – which also increases when more features are processed.

To adapt the pipeline to other applications, the following recommendations may be help-

ful: Which wrapper to choose may be strongly dependent on the data set. In case of the

58 CHAPTER 3. FEATURE SELECTION

Table 3.15: Overview of pipeline performance and runtime using an RF wrapper and auROC.

nFAF wrapper training time [s] 5 10 15 25 50 500 nFAW

25 8.617 0.902 0.926 0.937 0.948 – –

50 14.563 0.904 0.926 0.936 0.946 0.958 –

100 26.140 0.906 0.927 0.937 0.946 0.957 –

200 58.773 0.906 0.926 0.936 0.945 0.956 –

500 163.650 0.903 0.924 0.934 0.944 0.955 0.962

model training time [s] 0.103 0.107 0.127 0.223 0.197 0.847

Table 3.16: Overview of pipeline performance and runtime using an RF wrapper and auPRC.

nFAF wrapper training time [s] 5 10 15 25 50 500 nFAW

25 8.617 0.603 0.637 0.655 0.673 – –

50 14.563 0.608 0.638 0.656 0.673 0.692 –

100 26.140 0.612 0.643 0.659 0.675 0.693 –

200 58.773 0.611 0.642 0.657 0.673 0.693 –

500 163.650 0.607 0.639 0.655 0.671 0.690 0.705

model training time [s] 0.103 0.107 0.127 0.223 0.197 0.847

Table 3.17: Overview of pipeline performance and runtime using an RF wrapper and F1.

nFAF wrapper training time [s] 5 10 15 25 50 500 nFAW

25 8.617 0.708 0.774 0.809 0.836 – –

50 14.563 0.718 0.777 0.809 0.836 0.857 –

100 26.140 0.729 0.788 0.814 0.837 0.854 –

200 58.773 0.730 0.788 0.814 0.835 0.853 –

500 163.650 0.723 0.785 0.809 0.832 0.852 0.865

model training time [s] 0.103 0.107 0.127 0.223 0.197 0.847

Table 3.18: Overview of pipeline performance and runtime using an LR wrapper and auROC.

nFAF wrapper training time [s] 5 10 15 25 50 500 nFAW

25 0.230 0.939 0.948 0.950 0.951 – –

50 0.193 0.942 0.955 0.958 0.960 0.960 –

100 0.280 0.941 0.957 0.962 0.965 0.966 –

200 0.377 0.938 0.957 0.962 0.966 0.968 –

500 0.890 0.932 0.953 0.959 0.964 0.966 0.967

model training time [s] 0.103 0.107 0.127 0.223 0.197 0.847

3.6. SUMMARY AND CONCLUSION 59

Table 3.19: Overview of pipeline performance and runtime using an LR wrapper and auPRC.

nFAF wrapper training time [s] 5 10 15 25 50 500 nFAW

25 0.230 0.657 0.673 0.676 0.677 – –

50 0.193 0.664 0.687 0.692 0.695 0.696 –

100 0.280 0.664 0.695 0.702 0.707 0.710 –

200 0.377 0.659 0.696 0.706 0.711 0.715 –

500 0.890 0.653 0.692 0.701 0.709 0.712 0.715

model training time [s] 0.103 0.107 0.127 0.223 0.197 0.847

Table 3.20: Overview of pipeline performance and runtime using an LR wrapper and F1.

nFAF wrapper training time [s] 5 10 15 25 50 500 nFAW

25 0.230 0.803 0.831 0.837 0.838 – –

50 0.193 0.817 0.850 0.856 0.859 0.859 –

100 0.280 0.817 0.856 0.864 0.868 0.871 –

200 0.377 0.817 0.859 0.866 0.870 0.872 –

500 0.890 0.813 0.854 0.863 0.866 0.867 0.868

model training time [s] 0.103 0.107 0.127 0.223 0.197 0.847

automotive data set, the LR wrapper yielded a high auROC, auPRC, and F1 while requiring

a minimum of computational power. In contrast, LR yielded low results as wrapper for the

golub data set. Also, the wrapper evaluation may be biased towards the LR wrapper, since

the LR algorithm was also used in the final model layer of the pipeline. This represents the

common scenario. Using the same algorithm for both, the feature selection and the model

building may be beneficial. In this case, combining wrapper and model layer might be pos-

sible.

Selecting the highest ranked features of every filter algorithm used in any case (TFA pa-

rameter, see Section 3.4.5) is an useful technique, if the number of features passed to the

wrapper has to be very low (e.g. 5). In most cases, the available computing power allows to

process 200 or more features. This feature space will very likely be a superset of the feature

space selected by TFA, making this technique unnecessary in most scenarios.

In general, feature selection speeds up model building. In scenarios, where the data set is

reduced once, and a lot of different models are evaluated on the reduced data set, this might

save large amounts of time, while yielding comparable model classification performances

(e.g., auPRC) compared to the original feature space. Procedures in which the optimal model

is first selected on a reduced number of features and then trained on all features are conceiv-

60 CHAPTER 3. FEATURE SELECTION

able.

After evaluating all filter measures introduced in Section 3.1, using a subset of filter mea-

sures that is tailored to the needs of the application is recommended. If too many filter mea-

sures are used at the same time, the filter layer can be computationally more expensive than

“cheap” wrapper layers, e.g., wrappers using LR. In case of an LR wrapper, the necessity of

using a filter layer at all, must be evaluated on a case-by-case basis.

Averaging the pipeline performance in terms of auPRC across all trained models (see e.g.

Table 3.16) of the automotive data set, the best results are achieved with a minor selection

before the wrapper took place when nFAF = 200 and nFAW = 50 were used, respectively. In this

case (RF wrapper based on auPRC), further increasing nFAF from 200 to 500 did only yield

slightly higher auPRC results (0.705
0.693 − 1 = +1.73%) but a much longer RF wrapper selection

(163.65
58.773 −1 =+178%) time.

There may be scenarios where the wrapper or filter layers are computationally more ex-

pensive than the model layer. In case an increased number of features does not affect the

generalization of the final model negatively, the wrapper and / or filter layer may be un-

necessary. As described above, using nFAF = 200, nFAW = 50 represents a good compromise

between a high model performance, a low training time, and a low feature selection time.

Although the optimization of the pipeline took more than 2 weeks on a 32 core, 96GB

workstation, the pipeline can be considered absolutely scalable once the hyperparameters

are set, especially when a subset of filter measures is picked based on the insights gained in

this chapter. A possible usage scenario is that all hyperparameters are tuned once, and can

then be used multiple times for the similar application or data set within a cooperation.

In this chapter, a variety of different algorithms were evaluated and chained in the most

efficient way to create an automotive feature selection pipeline. The proposed pipeline in-

volves multiple layers of different computational complexity, does not require any man-

ual effort, and (once tuned) is computationally unexpensive. The pipeline already yielded

promising models, already successfully applied in real life scenarios for predictively main-

tenancing an engine component used in more than 20,000 cars. The possibility to au-

tonomously select features and create models for more than 3000 potential targets showed

that only 200 well-selected features out of the 5000 available can be sufficient to success-

fully create models (see, e.g., Table 3.15). Also, considering Figure 3.4, in many cases, well-

performing (in terms of auPRC) models can not be created given the currently available data.

3.6. SUMMARY AND CONCLUSION 61

Future work could evaluate if there is a way to assess potential model performance before

actually computing the whole pipeline. E.g., if a link between selected filter measures and

the expected model performance in terms of auPRC could be established, this would allow

the definition of a “early stopping” criterion. E.g., if all available features receive a “poor”

(“unimportant”) ranking by all filter measures, a “successfull” (e.g. in terms of a high auPRC)

will be unlikely. This would allow to save huge amounts of processing time by skipping un-

promising modeling targets.

Chapter 4

Dealing with Imbalance

Highly imbalanced data sets are still a challenge in many data mining and machine learning

applications, in both academia and industry. Many state-of-the-art techniques countering

class imbalances are usually very computationally expensive and therefore unscalable. Most

research effort has been directed towards enhancing those techniques, e.g., by focusing on

borderline examples or combining multiple techniques. This inherently increases the com-

putational complexity, reducing the scalability even further. Since the overall theme of this

work is to repeatedly deal with large-scale data, this chapter examines how to deal with class

imbalances the scalable way. This evaluation is layed out in isolation. Thus, techniques to

select features as laid out in the previous chapter are not considered. Also, many authors

claim that their technique outperforms other techniques, which leads to contradictions that

can only be resolved by a neutral and objective comparison which is done in this chapter.

The focus lies on two-class classification problems, since every multi-class problem can be

broken down to multiple two-class problems.

In general, an “imbalanced data set” refers to a data set where samples for one potential

outcome are by far outnumbered by other potential outcomes. E.g., given a two-class clas-

sification problem, a data set is referred as “imbalanced”, when the class with fewer records,

the minority class, is highly under-represented in contrast to the class with more samples,

also known as the majority class.

This imbalanced class distribution causes several, mostly noise related issues: A k-NN

could assign the wrong (majority) class label to a minority class sample due to “near” noisy

majority class samples [6, 74]. A Bayesian classifier might be biased towards assigning a

majority class label because of a high prior probability of the majority class [74]. In general,

62

4.1. STATE OF THE ART 63

classification algorithms might overfit the majority class noise in the minority class feature

region [6]. Lastly, noisy (majority) class samples having little informative value can cause an

increased training time and storage costs (e.g. when using a k-NN).

Applications suffering from (at least partly noisy) imbalanced data sets include automo-

tive car diagnostics (where a fault occurs only a few times among hundreds of thousands of

cars, see Section 4.3), the prediction of company bankruptcy [148], analyzing cDNA microar-

ray time-series [90], oil-spill detection from satellite images [73], as well as fraud/intrusion

detection, text classification, and medical diagnosis/monitoring [28].

Section 4.1 gives an overview over various existing preprocessing techniques (PTs) and

presents a novel technique that impact the following training of under-represented classes in

noisy, imbalanced data sets (NIDs). The novel technique called Class Sensitive Scaling (CSS)

(Section 4.1.1) partially scales samples (non-) linearly to the corresponding class center.

In Section 4.1.2, a parameter free class overlap and noise measure is introduced to com-

plement the existing measures such as, e.g., the balance ratio to assess the data sets’ prop-

erties. Section 4.3 will present the data sets, used for the extensive evaluation performed

in Section 4.4. All introduced PTs will be evaluated regarding their computational cost and

influence on classification performance in combination with a variety of classifiers.

Section 4.5 will derive general recommendations regarding the suitability of the different

techniques in dependence on data sets’ properties, the used classifier and other require-

ments such as scalability.

4.1 State of the Art

Weiss’ “unifying framework” [138] divides the different techniques to cope with NIDs into

the following categories.

1. Using an appropriate evaluation metric,

2. incorporating expert knowledge,

3. learning an One-Class Classifier (OCC),

4. applying sampling,

5. using cost-sensitive learning or weighting,

64 CHAPTER 4. DEALING WITH IMBALANCE

6. creating ensembles using boosting.

The use of a proper evaluation metric, as proposed, e.g., by Weiss [138] and Han et al.

[55], was extensively addressed in Section 2.3 and is taken as a basis for this chapter.

Although promising, the incorporation of expert knowledge is not evaluated in the follow-

ing for two reasons: First, its effectiveness is hard to prove, especially on publicly available

data sets. Second, expert knowledge conflicts with the overall goal to model thousands of

potential errors that can occur in a car with as less human intervention as possible.

Training an OCC to learn only the minority or majority class has been tested successfully

by Japkowicz et al. [63] using ANNs and Raskutti et al. [94] using Support Vector Machines

(SVMs). According to Raskutti et al. [94], SVMs are particularly useful for extremely unbal-

anced data sets. The two most popular SVM-based approaches for one class classification

according to Khan and Madden [68] are: The approach by Tax and Duin [120] tries to fit the

smallest possible hyper-sphere around the majority class data. Missing some majority class

samples is tolerated, if this sufficiently decreases the volume of the hyper-sphere. Schölkopf

et al. [110] try to fit the data using a hyper-plane that is maximally distant from the origin

with all majority class samples residing on one side of the hyper-plane. More complex de-

cision boundaries can be created in both approaches using kernel functions. Since both of

these approaches have been shown to be equivalent by Rieck [96], this chapter will focus on

the hyper-plane-based approach by Schölkopf.

Another option to tackle NIDs is to apply sampling techniques. Various forms of sam-

pling exist, an overview over existing techniques is given, e.g., by Chawla et al. [28] and He

et al. [57]. Techniques include random under- or over-sampling, informed sampling using

a heuristic that defines which samples to select, and synthetic sampling (where new sam-

ples are artificially generated). Sampling can also include data cleaning, e.g., using Tomek

links [124] (see Section 4.1.1 for details). Sampling can be performed in three ways: over-

sampling the minority class, under-sampling the majority class, or a combination of both.

Over-sampling might increase the likelihood of overfitting [6] and add computational com-

plexity [138]. A drawback of under-sampling is that potentially useful data is thrown away

[6, 138].

In contrast to sampling, where the class distribution is balanced by following a specific

strategy to “pick” a subset of samples from the data set, cost-sensitive learning or weighting

utilizes all samples. This is intended to avoid loss of information. Cost-sensitive learning

4.1. STATE OF THE ART 65

focuses on adjusting the losses for misclassified samples associated with the different cells

of the confusion matrix. Weighting adjusts the influence of every sample (e.g. class specific)

on the model parameters during model training, e.g. by adjusting weights inversely propor-

tional to class frequencies in the training data [91]. Japkowicz et al. [64] state that weighting

outperforms sampling in terms of error rate in most especially artificial scenarios1.

Another technique proposed by Weiss [138] to cope with NIDs is boosting. According to

Joshi et al. [65], where boosting is evaluated for NIDs, there is no guarantee that boosting im-

proves the classification performance of a minority class. Furthermore, the analysis shows

that the best base learner can be identified by comparing the standalone (non-boosted) per-

formance of various base learners. Therefore, this chapter will not consider and evaluate

boosting since this would yield the same trends as just comparing the (non-boosted) base

learners and just raise the simulation time.

Chawla et al. [28] also propose feature selection as an useful technique, since selecting

the features that capture the high skew in the class distribution can lead to a better separa-

bility between the two classes (e.g. by selecting features for the minority and majority classes

separately and combining them afterwards [147]). Since feature selection has already been

addressed in Chapter 3 based on Schlegel and Sick [109] it is therefore not addressed again

in this chapter. Weiss [138] is referred for more information.

To summarize: Expert knowledge is extremely context sensitive and creating ensembles

does not change the ranking of the base learner. Therefore, this chapter is focused on the

remaining points for a “unifying framework”.

4.1.1 Preprocessing Techniques for Imbalanced Data Sets

This section explains the most common (in terms of citations) foundational techniques, eval-

uated in the simulation in greater detail. If available, the algorithms from the imbalanced-

learn package [75] were used, which is implemented in Python. Regarding the novel tech-

nique proposed in Section 4.1.1 a pull-request has been submitted. If not, details are given

in the corresponding section.

Recapitulate Section 2.1: S denotes the original training set, holding N samples

S = {s1, ..., sN }, with each sample sn for n = 1, . . . , N consisting of a vector of feature values

1Only in one experiment (out of 25 artificial experiments) oversampling was more accurate. On real world
datasets, weighting outperformed sampling in two out of eight cases (three cases yielded a tie, sampling out-
performed weighting in three cases).

66 CHAPTER 4. DEALING WITH IMBALANCE

xn and a label y : sn = (xn , y). The target variable y ∈DY is always binary in this chapter and

therefore in the domain DY = {0,1}. Minority class samples are labeled y = 1.

In addition, the set I ⊆ S references the set of all minority class samples: I = {s ∈ S |
y = 1}. A ⊆S references the set of all majority class samples A = {s ∈S | y = 0}. The num-

ber of samples in each set are denoted by NI and NA , respectively. Furthermore, rnd(k, l)

returns an uniformly distributed random scalar r with k ≤ r ≤ l which is either a rational (Q,

rndQ) or a natural (N, rndN) number.

SMOTE

The Synthetic Minority Oversampling TEchnique (SMOTE) [29] combines minority over-

sampling as well as random majority class under–sampling (only over-sampling was per-

formed in this chapter). As of March 2018, SMOTE was cited over 5500 times according to

Google Scholar, making this algorithm the most popular algorithms for dealing with imbal-

anced data sets studied in this work.

To oversample minority class samples, the following steps are performed for each minor-

ity class sample until the data set is balanced2:

1. For any minority class sample sI ∈ I , identify its k = 5 nearest (Euclidean distance)

minority class neighbors3 snn,ki = NN(sI) ∈I with ki = {1,2,3,4,5}. Nominal features

must be encoded as discrete features prior to applying SMOTE.

2. Calculate the Euclidean difference (Kernels are not supported by imbalanced-learn)

from the minority class sample (sI) under consideration and one randomly chosen of

the five nearest neighbors: v = s − snn,rndN(1,5).

3. Multiply the resulting vector v by a random, scalar number between 0 and 1: vrnd =
v · rndQ(0,1).

4. Add this randomized vector to the original sample sSMOTEd = sI + vrnd. This leads to a

new, synthetically generated sample on the line segment between the original minority

class sample sI and its randomly chosen nearest neighbor snn,rndN .

5. Add this artificial minority sample to the training set.

2If necessary, the target class ratio can be explicitly set.
3This value (k = 5) can be changed as well.

4.1. STATE OF THE ART 67

This causes the classifier to create “larger and less specific decision regions” [29], since

the input space for the classifier is less sparse, resulting in better generalization. An example

for k = 4 (since there are only 5 minority class samples), where the minority class of the

original data set (Figure 4.1a) has been oversampled to match the number of majority class

samples is shown in Figure 4.1b. Note, how SMOTE only generates samples (marked by a

blue triangle) between original samples because of rndQ being bounded by 0 and 1 zo ensure

that the minority class region is not enlarged by applying SMOTE.

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3
X

Y

majority
minority

(a) Original data set.

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3
X

Y

majority
minority
SMOTE

(b) Data set after applying SMOTE.

Figure 4.1: Comparison of the original data set before and after applying SMOTE.

ADASYN

ADaptive Synthetic Sampling Approach (ADASYN) [58] is another technique specifically de-

signed for imbalanced learning. As of March 2018, it has been cited over 430 times according

to Google Scholar. The key idea of ADASYN is to use density information as the heuristic to

decide for every minority class sample how many synthetic samples need to be generated.

ADASYN consists of the following steps:

1. Count the number of majority class neighbors 0 ≤∆i ≤ k for each minority class sam-

ple sI ∈I among the k = 5 nearest neighbors.

2. Divide ∆i by the number of nearest neighbors, k. This is repeated for all minority class

samples sI ∈I resulting in a 1×NI ratio vector r.

68 CHAPTER 4. DEALING WITH IMBALANCE

3. Normalize this vector: r̂ = r/
∑NI

i=1 ri .

4. The number of synthetic samples for a sample sI are given by multiplying the cor-

responding entry from r̂i by the total number of necessary synthetic samples g =
NA − NI to generate a balanced data set. Minimal imbalances due to rounding er-

rors of the multiplication (r̂i · g) are tolerated. Samples are generated the same way as

described in Section 4.1.1 (SMOTE).

In comparison to applying no sampling at all this not only leads to a more balanced data

set, but also forces the classifier to focus on regions that are hard to classify. This is shown

in Figure 4.2b: ADASYN creates more samples close to the presumed decision boundary

compared to SMOTE, where the created sampled are randomly spread in the minority class

region (compare Figure 4.1b).

With one exception, the generation of synthetic samples when using ADASYN is equal to

SMOTE, as described above (Section 4.1.1): The only difference between the used SMOTE

and ADASYN implementations is that ADASYN softens the condition for the choice of the

k = 5 nearest neighbors for generating the vector v : While SMOTE requires all of them to be

samples of the minority class, ADASYN utilizes samples of both, the minority- and majority-

class to synthesize minority-class samples. As depicted in Figure 4.2b this causes new sam-

ples not only to be generated on line segments between minority samples, but also “outside”

the minority-class sample region (between minority and majority samples).

Tomek Links

The concept of Tomek links [124] (cited 633 times according to Google Scholar as of March

2018) aims to remove noisy and/or borderline samples from a given data set and therefore

to clarify the border between classes. A “Tomek link” consists of two samples s1 and s2 that

belong to different classes and are each other’s nearest neighbor according to the Euclidean

distance. Nominal features must be encoded as discrete features priorly.

To identify and remove samples that are part of Tomek links, the following steps are per-

formed:

1. For each sample s ∈S , identify its nearest neighbor snn = NN(s) ∈S .

2. Loop over all samples S once. If the sample s is a member of the minority class (s ∈I),

skip this item. If it is a majority class sample (s ∈ A), and its closest neighbor is a

4.1. STATE OF THE ART 69

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3
X

Y

majority
minority

(a) Original data set.

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3
X

Y

majority
minority
ADASYN

(b) Data set after applying ADASYN.

Figure 4.2: Comparison of the original data set before and after applying ADASYN.

minority class sample (snn ∈I), these two samples form a Tomek link. In this case, the

majority class sample under consideration is stored in a list L .

3. The final training set T is created by removing all majority samples that are part of a

Tomek link from S : T = {so ∈S \L }. These steps are only executed once.

The identification of Tomek links is parameter free. As Figure 4.3b shows, two majority

class samples were part of a Tomek link and have been dropped.

CNN

The Condensed Nearest Neighbor (CNN) [56] rule aims to identify a subset of samples which

is a consistent subset C ⊆S of the original data set S . A subset is called consistent if, when

being used by an 1-NN (one nearest neighbor) classifier as stored reference, all other samples

(non-stored samples) are classified correctly. In Figure 4.4b, all non removed samples form

the stored reference. If these are used as the training set for a 1-NN classifier, all removed

samples will be classified correctly. This technique has been cited over 1900 times according

to Google Scholar as of March 2018.

CNN uses a greedy approach to identify one possible consistent subset:

1. Move a random sample s from S to C = {s}, while the grab bag is initially empty G =;.

This results into a deletion from S .

70 CHAPTER 4. DEALING WITH IMBALANCE

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3
X

Y

majority
minority

(a) Original data set.

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3
X

Y

majority
minority
Dropped Tomek Links

(b) Tomek links removed.

Figure 4.3: Comparison of the original data set before and after the removal of Tomek links.

2. The subsequent, random sample from S , s = (x, y) is then classified using the 1NN

rule given the element(s) in S yielding the predicted class ypred.

3. If the classification is correct (ypred = y), the sample is moved from S to G . If not, it is

moved into C . This way it is ensured, that this sample would be correctly classified on

the next iteration.

4. Steps 2 – 3 are repeated for all remaining samples s ∈S .

5. After one pass through S , all samples in G are classified using the elements in C .

6. If all samples are classified correctly, the algorithm terminates. If not, all misclassified

samples will be moved from G to C and step 5 is repeated.

7. The consistent subset C is used as the training set and represents the output of this

algorithm.

The consistent subset C resulting from applying CNN is not unique: For every data set,

multiple consistent subsets exist. One possible solution is depicted in Figure 4.4b.

OSS

One-Sided Selection (OSS) [74] (146 citations according to Google Scholar as of March 2018)

also aims at creating a consistent subset of the original data set C ⊆ S . OSS picks up the

4.1. STATE OF THE ART 71

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3
X

Y

majority
minority

(a) Original data set.

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3
X

Y

majority
minority
Removed samples

(b) Consistent subset (CNN).

Figure 4.4: Comparison of the original data set and the consistent subset according to CNN.

idea of CNN, but introduces several, major modifications:

1. First, instead of randomly picking one sample to serve as stored reference C , OSS has

been specifically designed to work with imbalanced data sets. Therefore, OSS uses

all minority class samples, since they are “too rare to be wasted” [74], and selects one

majority class sample for the initial store set C =I ∪ {sa ∈A |a = rndN(0, NA −1)}.

2. All remaining samples from S are then classified once (in contrast to CNN, where mul-

tiple loops are possible) using C as stored reference.

3. Misclassified (majority) samples are added (compare CNN: moved4) to C . C ⊆ S is

now a consistent subset.

4. The last step is to remove all majority class samples from S , that are part of a Tomek

link.

This results in a consistent subset at less computational cost compared to CNN due to a

reduced number of loops and therefore less classifications, see Figure 4.5b for a visualization.

4Given three features, one target, and 10000 samples, copying outperformed moving by a factor of 2.5 in
Python.

72 CHAPTER 4. DEALING WITH IMBALANCE

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3
X

Y

majority
minority

(a) Original data set.

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3
X

Y

majority
minority
Removed samples

(b) Consistent subset (OSS).

Figure 4.5: Comparison of the original data set and the consistent subset according to OSS.

Class Sensitive Scaling

In addition to the existing techniques, CSS is proposed which was implemented in Python:

It is based on the fact that areas with samples of different classes overlap in most, especially

imbalanced, scenarios. The key idea is to move samples into the direction of the correspond-

ing class center before training to enable a less complex (e.g. a lower depth when using a

random forest as classifier) decision boundary, similar to the concept of Tomek links (Sec-

tion 4.1.1). This is less computationally expensive compared to down-sampling techniques

involving the application of simple models, such as a k-NN. Both ways, the identification of

a decision boundary is eased.

CSS can be parameterized to scale either only one class (minority or majority), or both

classes (referred by the hyperparameter “target”). Also, different scaling “modes” can be set:

In the constant mode, all samples will be scaled by the same amount, set by a scaling con-

stant c. In the linear mode, the amount increases with the distance to the feature-specific

class center. Samples, that are one empirical standard deviation 1σ away from the corre-

sponding class center µ will be scaled with the amount c, samples that are 2σ away will be

scaled with 2c, etc.

To avoid excessively optimistic classification performance during CV, CSS must be only

applied to the training folds, while the validation fold (and the test data) must remain un-

4.1. STATE OF THE ART 73

modified. An explanation how constant scaling of the majority class works is given below:

1. Calculate the feature specific mean µ1,A ,µ2,A , ...,µP,A for all features X1, X2, ..., XP us-

ing majority class samples sA ∈ A only. Since the averages of features need to be cal-

culated, this technique requires – like all of the aforementioned techniques – discrete

or continuous features.

2. Scale all feature values for all majority class samples, e.g. the new value of feature i

from majority class sample s j = ([x j ,1, x j ,2, ..., x j ,P], y j) is calculated using: x j ,i ,scaled =
x j ,i · (1− c)+µi ,A · c. This yields scaled majority samples sA ,scaled ∈Ascaled.

3. Merge the scaled majority class samples Ascaled and the original minority class samples

I into the new training set Tscaled =Ascaled ∪I .

Figure 4.6b shows a synthetic data set with 4 samples. On the left, the unscaled data set

is displayed. It is not possible to draw a decision boundary as straight line in the feature

space, linearly separating all samples without misclassification. After applying CSS to each

of the majority samples, a linear solution becomes obvious. With the assumption that more

samples of class 0 will reside in the lower right corner, the pictured line would work just fine.

A classifier trained on the unscaled data set (pictured left), would likely be overfit, e.g., using

a second order polynomial as the decision boundary.

This concept is transferable to real data sets as well. Figure 4.7b displays the distribution

of the vowel data set (Section 4.3) for class “1” after dimensions have been reduced by PCA

to X and Y. In the unscaled data set classes “0” and “1” overlap more, presumably causing

the classifier to overfit or misclassify. After scaling the majority class (Figure 4.7b, right), an

easier solution to the classification problem becomes visible.

Since this technique is an entirely new approach towards dealing with NIDs (see Sec-

tion 4.4), all 84 combinations of scaling modes (linear and constant), scaled targets (minor-

ity, majority, both) and 14 scaling constants c = [0,1], were simulated.

4.1.2 Objective Feature Noise, Borderline, and Overlap Measure

To measure the “noisiness” of the data set, the feature noise, borderline, and overlap mea-

sure (BS2) is proposed based on Schlegel and Sick [108]. It does not require a model of the

class-conditional densities: The BS2 measure is calculated completely parameter free based

74 CHAPTER 4. DEALING WITH IMBALANCE

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3
X

Y

majority
minority

(a) Original data set.

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3
X

Y

majority
minority

(b) Scaled data set (CSS).

Figure 4.6: Demonstration of CSS with artificial data.

on the number of Tomek links [124] (Section 4.1.1) in relation to the number of minority

class samples. The BS2 measure is inherently normalized, since a value of 1 would mean

all minority samples are part of a Tomek link and therefore noisy, borderline, or part of two

overlapping distributions. BS2 is calculated as follows:

1. Count the number of all N and the minority NI samples in the original data set S .

2. Remove all majority class samples participating in a Tomek link, as described in Sec-

tion 4.1.1. This results into a subset of samples Ssub ⊂S .

3. Count the number of samples NS ,sub in Ssub. This leads to Ntomek = N −NSsub Tomek

links.

4. Calculate the measure using BS2 = Ntomek
NI

.

The noisiness-overlap measure BS2 complements the balance ratio, which is given by

the class ratio Nminority/Nmajority, the total number of samples, and the number of features to

assess the nature of a data set, as laid out in Section 4.3.

4.2. RESEARCH DEMAND 75

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3
X

Y

majority
minority

(a) Original data set.

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3
X

Y

majority
minority

(b) Data set with majority class scaled by CSS.

Figure 4.7: CSS on Vowel data set.

4.2 Research Demand

Many of the foundational techniques addressing NIDs presented in Section 4.1.1 have been

modified, enhanced, or combined (e.g. [55, 5], and [30] in comparison to [29]). Yet, this

chapter will focus on the investigation of the most popular, foundational PTs, because

(1) The improvements achieved by “derived” techniques reside in the lower single-digit

percentage range and are highly dependent on the evaluated data set. Take, e.g., Barua et

al. [5], who proposed a modification of SMOTE proposed by Chawla et al. [29]: Averaged

over all evaluated data sets with a single Neural Network, their approach outperforms the

unmodified one by only 1.14%.

(2) Also, many authors present opposing statements: Han et al. [55] argue for focusing

on borderline samples (since being hard to classify), while Kubat et al. [74] and Batista et al.

[6] propose discarding borderline samples (since being unreliable and noisy)5. Another ex-

ample is Weiss [138] and Chawla et al. [28] who argue for and against sampling: Weiss [138]

proposes “one should use all available training data, regardless of the resulting distribution

of classes or cases”. This way, “no information is lost”. The opposite is stated by Chawla et al.

[28]: “Clever re-sampling [...] methods [...] can provide new information or eliminate redun-

dant information”. In the following, techniques that focus on borderline samples (compare

5One could state that the evaluated data sets were too different, but the range of attributes (Han et al.: 2−36,
Kubat et al.: 10−44) and samples (Han et al.: 306−1600, Kubat et al.: 38−990) clearly overlap.

76 CHAPTER 4. DEALING WITH IMBALANCE

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3
X

Y

majority
minority

(a) Original data set.

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3
X

Y

majority
minority

(b) Scaled data set (CSS).

Figure 4.8: Comparison of the original data set and scaled data set.

ADASYN, Section 4.1.1) and remove borderline samples (compare Tomek, Section 4.1.1 as

well as OSS, Section 4.1.1) are compared.

(3) Avoidance of cross-influences between techniques to enable an isolated performance

comparison of the foundational techniques, respectively.

(4) Combining PTs inevitably leads to a higher computational complexity that might re-

strict the applicability of the respective algorithm.

Therefore, this chapter will objectively assess classification grade improvements and

computational complexity of various foundational PTs while considering interdependencies

on various classifiers (such as LR, RF, etc.) in a data set agnostic fashion to ensure transfer-

ability to other data sets and scenarios.

4.3 Data Sets

Table 4.1 gives an overview of the data sets forming the testbed. Entries are sorted by their

balance ratio. All data sets except for “Automotive” are publicly available on the UCI machine

learning repository [77] or elsewhere as specified to enable other researchers to compare

their results to ours. To generate the most imbalanced scenario, all classifiers are trained

in a one versus all fashion. If a data set offers more than two classes, and the number of

available samples for the respective minority classes vary within a data set, the “minority”

4.3. DATA SETS 77

Table 4.1: Overview of the evaluated data sets.

Data Set Features Samples Minority Classes BS2 Ratio

Pima 8 768 268 2 0.205 0.54

Phoneme 5 5404 1586 2 0.062 0.42

Vehicle* 18 846 216 4 0.154 0.34

Glass* 10 214 38 6 0.080 0.21

Satimage* 36 3998 666 6 0 0.20

Vowel* 14 990 90 11 0 0.10

Abalone 8 731 42 2 0.095 0.06

Forest 12 517 24 2 0.583 0.05

Mammography 6 11182 260 2 0.154 0.02

Automotive* 100 4949** 48 15 0.423 0.01

count was averaged. These data sets are marked with an asterisk (*). Downsampled datasets

are marked with two asterisks (**). All data sets have been normalized prior to modeling.

Unless otherwise specified, a 70% : 30% training-test-split was used. Model hyperparameters

are optimized using a five fold CV based on the training data.

The Pima Indian Diabetes Data set. The target of the “pima” two-class data set [77] is to

predict diabetes. It has a total of 768 samples and eight features. There are 268 samples with

no diabetes present, which is equivalent to an balance ratio of 268 : 500 = 0.54.

Phoneme Data set. The “phoneme”6 data set consists of five features to distinguish be-

tween 3818 nasal and 1586 oral sounds. The balance ratio is therefore 1586 : 3818 = 0.42.

Vehicle Silhouette Data set. The purpose of the “vehicle” [117] data set is to classify the

type of vehicle among 4 classes based on a set of 18 features extracted from the silhouette.

The data set holds 846 samples. The averaged balance ratio is 0.34.

Glass Data set. The “glass” data set consists of 214 measurements with ten features each.

The samples fall into six different classes (glass types). The features indicate the chemical

composition. Each feature represents one element, e.g. magnesium, silicon, or aluminum.

The averaged number of minority samples is 38, resulting in a 38 : 178 = 0.22 balance ratio.

Statlog Landsat Satellite Data set. This data set includes 3998 samples with 36 features

representing spectral values. The target is to classify the type of surface “displayed” in the

corresponding sample. The averaged balance ratio is 0.2.

Vowels Data set. The “vowel” data set [125] holds 990 samples of 11 vowels. Each vowel

6https://www.elen.ucl.ac.be/neural-nets/Research/Projects/ELENA/databases/REAL/phoneme/

78 CHAPTER 4. DEALING WITH IMBALANCE

was spoken six times by each of 15 speakers. Features include – aside from sex and a speaker

ID (which was not used in this article) – spectral data. The train-test-split is predefined in

this data set: 528 samples form the training set, 462 are left for testing (53.33% : 46.66%). The

balance ratio is 90 : 990 = 0.09 ≈ 0.1.

Abalone Data set. This data set consists of various physical measurements such as, e.g.,

length, height, or shell diameter, taken from abalone slugs. The target is to predict the age. As

suggested by Guo et al. [52] and adopted by the authors of ADASYN [58], the class “18” was

chosen as the minority class and class “9” as the majority class. This results into an balance

ratio of 42 : 689 = 0.06.

Forest Fires Data set. The “forest” data set [32] holds samples of various wooded areas,

likely to catch fire. The target is to predict how much of the area was burnt down. Every

forest is identified by X and Y coordinates and is usually observed more than once. Features

include several weather and humidity-based metrics. In order to be able to classify the data

set, the target target variable burned area was binarized using

area =

1, if area ≥ 50

0, otherwise
(4.1)

This results in 493 majority class and 24 minority class samples. The balance ratio is there-

fore 24 : 493 = 0.05.

Mammography Data set. The mammography data set [140] holds 11182 samples, rep-

resenting digitized micro-calcifications in mammogram images. The target is to classify

whether the pixel is cancerous (260 samples) or not (10922 samples).

Automotive Data set. The “Automotive” data set was collected from hybrid cars and con-

sists of non-personal data only. Python and sklearn [91] were not able to cope with 5000

dimensions and over 100000 samples on the available hardware (for details see Section 4.4).

Therefore, the majority class was randomly sampled down to an 100 : 1 = 0.01 balance ra-

tio prior to the following experiments. Also, the number of dimensions was reduced to 100

using PCA. This shows, that a sophisticated feature reduction technique such as the one pro-

posed in Chapter 3 is not only helpful but also a necessity to be able to work with larger data

sets of this kind. Although the data set contains more than 3000 potential classes, 15 classes

that consist of at least 21 and no more than 155 minority class observations were used for

the following evaluation. Five targets of each category were modeled: switched parts, taken

4.4. EVALUATION 79

counter actions, and diagnostic trouble codes (indicating a certain fault in the car). The clas-

sifiers are trained in an one-versus-rest fashion. E.g., a certain part needs to be modeled: All

samples where this part was replaced will be marked as the positive (minority class). All

other samples – if a different or no part was switched – will be marked negative / majority.

4.4 Evaluation

To ensure that the results presented in this chapter are not biased by the used classifier,

the following experiments are performed on a variety of different classifiers. Model hyper-

parameters are optimized with regards to the auPRC using a five-fold CV. The used classifi-

cation algorithms are:

k-NN [8]: The k-NN (Section 2.2.3) was implemented using k = {3,5,10} neighbors.

LR and Weighted Logistic Regression (WLR) [8]: Both techniques (Section 2.2.2) were op-

timized regarding their cost (C = {0.001,0.01,0.1,1}) using a L1 regularized implementation

provided by liblinear. Between LR and WLR is only one difference: In case of WLR, the

weights were chosen to be inversely proportional to class frequencies.

OCC: The used implementation is based on the SVM concept proposed by Schölkopf

et al. [110]. The following parameters were optimized to learn the minority class: the

used kernel (linear, poly using a degree of three, and sigmoid), the kernel coefficient

γ = {0.001,0.01,0.1,1} for poly and sigmoid kernel as well as the cost parameter ν =
{0.001,0.1,0.5,0.75,1}.

RF [19] and Weighted Random Forest (WRF): The number of estimators was optimized

(nest = {5,10,20}) as well as the splitting criterion (using Gini impurity or entropy). In case

of WRF, the weights were chosen to be inversely proportional to class frequencies (similar to

LR and WLR this is the only difference). More details on RFs can be found in Section 2.2.1.

All experiments have been conducted on an HP™ Z-840 equipped with two Intel® Xeon®

E5-2640 v3 2.60GHz CPUs and 96GB of RAM. A total number of 122700 models has been

evaluated to substantiate the results presented in the following. If the model supported mul-

ticore, all available threads were used. This was the case for k-NN, RF, and LR.

Since CSS is an entirely new technique, meaningful default parameters for this technique

were identified in advance (Section 4.4.1), similar to, e.g., SMOTE (where k = 5 nearest neigh-

bors is the default setting). Also, to avoid that all interesting results vanish by averaging over

80 CHAPTER 4. DEALING WITH IMBALANCE

all data sets, they were clustered into three clusters based on the information given in Ta-

ble 4.1. The results from Section 4.4.1 will be used in all following sections, where the actual

comparison between all PTs introduced in Section 4.1.1 and a “naive” approach, where no

(pre-)processing takes place, is carried out.

Combinations of classifiers and PTs are compared with respect to three criteria: Ro-

bustness (Section 4.4.2), computational complexity (section 4.4.4), and classification perfor-

mance in terms of primarily auPRC (Section 4.4.3). A PT-classifier combination is referred

to “robust”, if the performance in terms of auPRC, auROC, or F1 calculated during training

using CV is comparable to the test performance.

4.4.1 Preliminary Investigations

linear, both linear, majority linear, minority

constant, both constant, majority constant, minority

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.2

0.4

0.6

0.2

0.4

0.6

scaling factor

m
ea

n
au

P
R

C

Model
average
KNN
LR
OCC
RF
WLR
WRF

Figure 4.9: Comparison of different CSS modes based on auPRC calculated during CV.

Figure 4.9 shows the mean auPRC during training averaged over all models built with the

different CSS modes. Several interesting observations should be noted.

4.4. EVALUATION 81

First, scaling only the minority class is generally (on average) not advisable (see the black

dashed line). This can also be observed in Figure 4.10, where the achieved auPRC values

are averaged across all modeltypes and plotted in a single chart. However, a scaled minority

(scaling factor s ≈ 0.2) class in combination with a k-NN classifier can yield very promising

results. A possible explanation for the degrading classification performance when scaling

only the minority class is presumably a even smaller minority class feature region after scal-

ing.

Second, best results are achieved according to Figure 4.9 and Figure 4.10 when applying

constant scaling of both classes with c ≈ 0.625 or linear scaling on classes with a scaling

factor of c = 0.25. In this chapter, the latter configuration will be used due to slightly higher

auPRC values and a less distorted feature space that is closer to the unscaled one for smaller

values of c. The only exception is the k-NN classifier, where constant minority scaling with

c = 0.30 was used.

Third, excluding minority class scaling, CSS is able to improve the auPRC performance

compared to the “naive” scenario (c = 0, Figure 4.10 the leftmost point) in all cases on av-

erage. According to Figure 4.9, each of the examined classifiers’ performance in terms of

auPRC is increased for some c when CSS is applied.

0.40

0.45

0.50

0.55

0.60

0.65

0.
00

0.
25

0.
50

0.
75

1.
00

scaling factor

m
ea

n
au

P
R

C Mode
constant, both
constant, majority
constant, minority
linear, both
linear, majority
linear, minority

Figure 4.10: Comparison of different CSS modes based on auPRC averaged across all classi-
fiers.

To avoid that all interesting insights vanish by averaging, the data sets have been clus-

tered into three clusters. This not only allows for better visualization, but also enables to

derive generally applicable, yet tailored recommendations in the final conclusion given in

Section 4.5. The data sets (as shown in Table 4.1) have been clustered manually. The columns

82 CHAPTER 4. DEALING WITH IMBALANCE

“Features” (number of features), “Samples” (the number of samples), the “BS2” measure, and

“Ratio” (the balance ratio) were reduced to two principal components. The result is shown

in Figure 4.11. If the data set holds multiple classes with differing properties (e.g. varying

“Ratio”), every class is plotted individually. The clusters used in the following are:

• Cluster 1: low number of features (5−18), low number of samples (214−5404), low BS2

(0−0.27), high balance (0.04−0.55).

• Cluster 2: high number of features (11−101), medium number of samples (517−6868),

high BS2 (0.12−0.58), medium balance (0.01−0.05).

• Cluster 3: high number of features (6−101), high number of samples (10302−15655),

low BS2 (0.13−0.25), low balance (0.01−0.02).

Abalone
Automotive1

Automotive2

Automotive3

Automotive4

Automotive5

Automotive6

Automotive7

Automotive8

Automotive9Automotive10
Automotive11Automotive12

Automotive13

Automotive14 Automotive15

Forest

Glass1
Glass2

Glass3

Glass5

Glass6

Mammography

Phoneme

Pima

Satimage

Vehicle1Vehicle2

Vehicle3Vehicle4
Vowel

-1

0

1

2

3

-2 0 2
PC1

P
C

2

Cluster
1
2
3

Figure 4.11: Clustering of data sets.

4.4.2 Robustness

To assess the robustness of PT–classifier combinations, the auPRC achieved during training

is compared to the auPRC resulting from the test set. If the test auPRC differs too much from

the auPRC calculated during CV-based training, model hyperparameters chosen during CV

will not lead to well generalizing models.

An example is given in Figure 4.12b: It is impossible to determine which model general-

izes well on the test set based on the overly optimistic training auPRCs. On the other hand,

Figure 4.12a displays a PT–model pair, where all hyperparameter sets which resulted into a

high training auPRC also yielded the best performance on the test set.

4.4. EVALUATION 83

0.5

0.6

0.7
0.

6

0.
7

0.
8

0.
9

training auPRC

te
st

au
P

R
C

CNN with LR

(a) Robust combination.

0.50

0.55

0.60

0.
90

0.
95

training auPRC

te
st

au
P

R
C

ADASYN with kNN

(b) Non–robust combination.

Figure 4.12: Comparison of a robust and non–robust PT-classifier combination.

To objectively assess the concordance of training and test auPRC, the Root-Mean-Square

Difference (RMSD) will be used, which is given by the following formula:

RMSD =
√∑T

t=1(auPRCtrain −auPRCtest)2

T
, with (4.2)

T referring the number of testing and training pairs, auPRCtrain reflecting the auPRC

achieved on the test folds during CV based training, and auPRCtest referring the auPRC

achieved on the test set after training was finished.

Other approaches such as the correlation or fitting a linear regression and evaluating the

slope to assess the concordance have been evaluated, but yielded counterintuitive results.

Table 4.2 (Table 4.3) summarizes the RMSD between the training and test auPRC (au-

ROC) for each PT-classifier combination. The higher the RMSD value, the stronger the cell is

colored in orange . Standard deviation and mean for Table 4.2 are: σRMSD = 0.124 and mean

µRMSD = 0.361. Especially when considering the auPRC, several noteworthy things surface:

First, ADASYN and SMOTE tend to cause high RMSD values. These

are the (only) two techniques, that sample up by creating artificial sam-

ples. An explanation for the high RMSD value might be the simple

way samples are generated, which yields an overly optimistic training

auPRC. This theory is backed up by Figure 4.13, where all training and testing auPRCs

84 CHAPTER 4. DEALING WITH IMBALANCE

Table 4.2: RMSD of training and test auPRC.

ADASYN CNN CSS naive OSS SMOTE tomek

KNN 0.552 0.167 0.238 0.259 0.285 0.505 0.283

LR 0.545 0.305 0.384 0.310 0.359 0.567 0.356

OCC 0.359 0.187 0.245 0.205 0.264 0.374 0.272

RF 0.536 0.251 0.304 0.222 0.305 0.518 0.302

WLR 0.542 0.328 0.407 0.432 0.488 0.571 0.495

WRF 0.571 0.260 0.266 0.229 0.299 0.510 0.298

for SMOTE and CNN (which scored the lowest RMSD scores in Table 4.2) are shown. While

the CNN circles are forming a linear relationship, a large amount of SMOTE crosses are

located at the very right. In case of SMOTE, this makes it impossible to transfer conclusions

regarding hyper-parameters from the training onto the testset.

Second, CNN yields the lowest RMSD values. This is an interesting result, since even the

“naive” approach, where no preprocessing takes place, yields higher RMSD values. CSS, OSS,

and Tomek links yield comparable results, with slightly lower RMSD scores by CSS.

0.00

0.25

0.50

0.75

0.
00

0.
25

0.
50

0.
75

1.
00

training auPRC

te
st

au
P

R
C

PT
CNN
SMOTE

Figure 4.13: Test versus train auPRC of SMOTE and CNN.

4.4.3 Influence of Preprocessing Techniques on the

Classification Performance

Figure 4.14 shows boxplots of the achieved auPRC performance depending on the cluster,

PT, and used classifier. The rightmost column shows the performance for each classifier

averaged across all clusters. The bottom row shows the results averaged across all classifiers.

4.4. EVALUATION 85

WRF, Cluster 1 WRF, Cluster 2 WRF, Cluster 3

WLR, Cluster 1 WLR, Cluster 2 WLR, Cluster 3

RF, Cluster 1 RF, Cluster 2 RF, Cluster 3

OCC, Cluster 1 OCC, Cluster 2 OCC, Cluster 3

LR, Cluster 1 LR, Cluster 2 LR, Cluster 3

KNN, Cluster 1 KNN, Cluster 2 KNN, Cluster 3

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

au
P

R
C

Cluster 1 averaged Cluster 2 averaged Cluster 3 averaged

A
D

A
SY

N

C
N

N

C
SS

n
ai

ve

O
SS

SM
O

T
E

to
m

ek

A
D

A
SY

N

C
N

N

C
SS

n
ai

ve

O
SS

SM
O

T
E

to
m

ek

A
D

A
SY

N

C
N

N

C
SS

n
ai

ve

O
SS

SM
O

T
E

to
m

ek

0.00

0.25

0.50

0.75

WRF averaged

WLR averaged

RF averaged

OCC averaged

LR averaged

KNN averaged

A
D

A
SY

N
C

N
N

C
SS

n
ai

ve
O

SS
SM

O
T

E
to

m
ek

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

Figure 4.14: Achieved auPRC based on the data set cluster, PT, and classifier.

86 CHAPTER 4. DEALING WITH IMBALANCE

Table 4.3: RMSD of training and test auROC.

ADASYN CNN CSS naive OSS SMOTE tomek

KNN 0.433 0.498 0.325 0.311 0.267 0.613 0.257

LR 0.466 0.583 0.452 0.472 0.429 0.481 0.426

OCC 0.318 0.387 0.211 0.218 0.195 0.321 0.195

RF 0.315 0.467 0.283 0.261 0.235 0.398 0.225

WLR 0.466 0.553 0.409 0.428 0.404 0.478 0.397

WRF 0.313 0.475 0.301 0.282 0.254 0.395 0.242

The following discussion will be, if not differently noted, based on median values of the

auPRC scorings (referred as “performance”).

k-NN performance is below the naive approach7, when ADASYN or CNN are applied.

CSS, as well as Tomek increase performance on cluster 1. On cluster 2, Tomek and OSS yield

the best results, while all other techniques perform significantly worse than the naive ap-

proach. This trend can also be observed on cluster 3, where OSS and Tomek techniques

yield comparing results (Tomek is yielding the same median, but more consistently high re-

sults). To summarize: k-NN performs best when combined with the Tomek technique. All

other techniques do not improve the performance.

LR performs on average lower compared to k-NN, independent on the used PT. The im-

pact of using any PT is extremely low (if measurable at all). The only exceptions are CSS and

SMOTE on cluster 3, that actually lower the performance.

OCC performance on cluster 1 is mostly unaffected, only SMOTE causes a slight increase.

Results from cluster 2 suggest that applying CSS, OSS, SMOTE, or Tomek improves the per-

formance. CSS and OSS should be preferred in this case, since the results are more consis-

tent. On cluster 3, all techniques yield similar results, with an exception being SMOTE and

ADASYN, which score slightly lower.

Performance of an RF is not increased by any PT. In fact, the opposite is true: Most PTs

decrease the performance. This especially holds true for CSS, SMOTE, and ADASYN.

WLR performance can be foremost increased by CSS and CNN on cluster 1. However,

these techniques tend to decrease the performance slightly on cluster 2, where Tomek and

OSS increase the performance. On cluster 3, ADASYN, OSS, and SMOTE tend to increase the

performance. On average, CSS is the only technique yielding improved results, however the

7“Naive” means that no PT is applied.

4.4. EVALUATION 87

other techniques don not do any harm regarding the auPRC.

WRF works great out of the box without any PT applied. This technique not only yields

the best results compared to all other classifiers compared in this chapter but also works well

with unprocessed data sets (naive). Tomek is the only technique that yields a tiny advantage

on one cluster (cluster 3), on every other cluster the performance is not improved by any PT.

To summarize the results in dependence on the cluster: On cluster one (low number of

samples, low BS2), no PT is able to yield consistently better results. Tomek is the only tech-

nique that does not noticeably decrease the performance. On cluster 2 (high BS2, medium

balance), OSS and Tomek yield an increased performance, while other techniques decrease

the performance. Cluster 3, although being different in terms of the number of samples

yields the same insights as cluster 2: Tomek and OSS are the only techniques that should be

considered.

The following insights were gained in dependence on the classifier: The RF and WRF

performance cannot be increased, they already yield the best classification performance in

terms of auPRC without any PT being used. While the performance of the LR is unaffected,

WLR can profit from applying CSS before training. An OCC can profit from any technique,

the most beneficial being SMOTE according to this study. k-NN can not be improved much,

but at least CSS and Tomek do not decrease performance.

Unlike concluded by Schlegel and Sick [108] the naive approach is not always outper-

formed when the performance is not measured in auROC but auPRC, and when hyperpa-

rameter tuning during CV is also performed using auPRC measure. On the contrary: Only

two combinations tend to improve performance: WLR in combination with CSS and OCC

combined with SMOTE. A possible explanation for this may be, that the auPRC is the more

suitable measure in imbalanced scenarios as elaborated in Section 2.3 with less room for im-

provements. Therefore, the well-founded selection of the measure to assess model perfor-

mance and to select hyperparameters (such as auPRC in the given scenario, see Section 2.3)

should be preferred over using a PT. This especially holds true when computational com-

plexity (as laid out in below, Section 4.4.4) is taken into consideration.

The following examines which PT can be statistically proven to be effective. The Student’s

t-test has been chosen using a significance level of α = 0.05. The t-test is possible since all

of the following requirements [17] are met: The error scores are ordinally scaled, the scores

are unrelated, the score populations have approximately normal distribution (see e.g. Fig-

88 CHAPTER 4. DEALING WITH IMBALANCE

Table 4.4: Statistical comparison of the cluster mean F1 from PTs compared to the naive
approach based on the p–value.

Method Cluster 1 Cluster 2 Cluster 3

CSS 1.000 1.000 1.000

SMOTE 0.014 0.999 0.653

ADASYN 0.287 0.999 0.968

OSS 0.175 0.578 0.430

CNN 0.968 0.991 0.128

Tomek 0.105 0.535 0.241

ure 4.15), and the populations have approximately equal variance.

0.0

0.5

1.0

1.5

2.0

0.00 0.25 0.50 0.75 1.00
auPRC

d
en

si
ty

Figure 4.15: Distributions of the tested error scores.

The null hypothesis is, that the model performance (assessed in auPRC, auROC, and F1)

after a PT was applied to the data set is less or equal to the performance when no pre-

processing took places (naive), H0 : µPT ≤ µnaive. The alternative hypothesis is therefore

H1 :µPT >µnaive.

The resulting p-values (p) for each cluster are given in Table 4.4, Table 4.5, and Table 4.6

for all three measures, respectively. The hyperparameters have been tuned using auPRC in

all three cases. If the p-value8 is smaller than the chosen significance level α= 0.05, H0 can

rejected. The cell is colored green in this case. This means that the PT indeed improves the

performance measured in the corresponding method.

The following results emerged:

8The p was generated using the function t.test(auc_array1, auc_array2, alternative = "

greater") available in R.

4.4. EVALUATION 89

Table 4.5: Statistical comparison of the cluster mean auROC from PTs compared to the naive
approach based on the p–value.

Method Cluster 1 Cluster 2 Cluster 3

CSS 0.873 0.930 0.017

SMOTE 0.000 0.084 0.000

ADASYN 0.000 0.014 0.000

OSS 0.120 0.635 0.332

CNN 0.024 0.979 0.182

Tomek 0.103 0.663 0.282

Table 4.6: Statistical comparison of the cluster mean auPRC from PTs compared to the naive
approach based on the p–value.

Method Cluster 1 Cluster 2 Cluster 3

CSS 0.999 0.911 0.995

SMOTE 0.922 0.998 0.876

ADASYN 1.000 1.000 0.985

OSS 0.692 0.207 0.639

CNN 0.929 1.000 0.831

Tomek 0.808 0.152 0.340

• When measured in auPRC (Table 4.6), none of the tested PTs yield an increase that can

be statistically proven.

• When measured in auROC (Table 4.6), CSS, SMOTE, ADASYN, and CNN are statisti-

cally proven to be effective. This is aligned with the results shown in Schlegel and Sick

[108], where (except for CNN) the same results were obtained. However, what should

be noted that the ps shown in Table 4.6 are even lower in comparison to the values

given in Schlegel and Sick [108]. Schlegel and Sick [108] tuned the hyperparameters in

respect to the auROC (in contrast to this chapter, where hyperparameters were tuned

in respect to auPRC).

• Using the F1, only SMOTE on cluster 1 can be proven to be effective.

Conversely, this means that the effectiveness of OSS and Tomek can not be proven sta-

tistically when the classifier performance is measured in terms of auROC. If the classifier

performance is measured in terms of auPRC, no PT can be statistically proven to be effective.

As mentioned earlier, hyperparameters were optimized in terms of auPRC in both cases.

90 CHAPTER 4. DEALING WITH IMBALANCE

4.4.4 Computational Complexity

1e+01

1e+03

1e+05

0 250000 500000 750000 1000000
Number of cells in the data set

C
o

m
p

u
ta

ti
o

n
ti

m
e

[m
s] Method

ADASYN

CNN

CSS (constant)

CSS (linear)

OSS

SMOTE

tomek

Figure 4.16: Computation time of different PTs.

Figure 4.16 shows the computation time of all examined PTs depending on the number

of cells (ncells = nsamples ·nfeatures) which varies across data sets. A clear trend can be observed

especially for the larger values of ncells. The bump for small values of ncells (e.g. when using

CNN) may be explained with specific characteristics of the data set that speed of the con-

version of the (iterative) CNN algorithm resulting into a faster identification of a consistent

subset. The naive approach is not displayed, since the processing time is zero (no prepro-

cessing takes place). Averaged over all numbers of cells, CNN is by far the most computation-

ally expensive method (µ = 37.35s), followed by ADASYN (µ = 10.83s). OSS (µ = 2.17s) and

Tomek (µ = 2.38s) yield similar results. This is not surprising since both techniques rely on

the same mathematical principles. With an average computation time of µ= 0.04s, SMOTE

is among the top three and only outperformed by both variants of CSS. The latter is clearly

the best scalable approach, both versions (linear µ = 0.02s, constant µ = 0.02s) achieve the

best performance in terms of computational complexity.

Figure 4.17 shows the mean training times for all evaluated classifiers based on the used

PT. This figure is not cluster-specific since the same observations can be made indepen-

dently from the cluster. SMOTE and ADASYN yield a strongly increased training time when

combined with an OCC or k-NN classifier. These combinations should be avoided if training

time is the only criterion. The increased training time can be explained by the additional,

synthetic samples these two methods add to the training set. In contrast, after the data set

4.5. LESSONS LEARNED AND CONCLUSIONS 91

has been reduced by CNN, the training time is reduced across all classifiers.

RF WLR WRF

KNN LR OCC

A
D

A
SY

N
C

N
N

C
SS

n
ai

ve
O

SS
SM

O
T

E
to

m
ek

A
D

A
SY

N
C

N
N

C
SS

n
ai

ve
O

SS
SM

O
T

E
to

m
ek

A
D

A
SY

N
C

N
N

C
SS

n
ai

ve
O

SS
SM

O
T

E
t o

m
ek

A
D

A
SY

N
C

N
N

C
SS

n
ai

ve
O

SS
SM

O
T

E
to

m
ek

A
D

A
SY

N
C

N
N

C
SS

n
ai

ve
O

SS
SM

O
T

E
to

m
ek

A
D

A
SY

N
C

N
N

C
SS

n
ai

ve
O

SS
SM

O
T

E
t o

m
ek

0

2500

5000

7500

10000

12500

0

2500

5000

7500

0

500

1000

0

2000

4000

6000

0

1000

2000

3000

4000

0

2500

5000

7500tr
ai

n
in

g
ti

m
e

[m
s]

Figure 4.17: Training time of various classifiers dependent on the preprocessing technique.

4.5 Lessons Learned and Conclusions

The performance gain in terms of AUC of different PTs compared to the naive approach does

not change across data sets with varying noise and class overlap (as measured with BS2, see

Section 4.1.2 for a detailled description) or imbalance levels. PTs that perform well, tend to

yield the same level of performance independent on the data set or cluster as shown in the

bottom row of Figure 4.14. Often OSS, CSS, and Tomek yield the best results (see Figure 4.14).

What separates the different PTs, is (1) their overall capability to positively influence the

resulting model classification performance (e.g., in terms of auPRC), (2) their computational

complexity, (3) their capability to lead to well generalizing models, and (4) their impact on

the classifiers’ training time .

(1) The positive effect on the achieved classification performance (auROC, auPRC) can

only be statistically proven based on auROC for SMOTE (clusters 1 and 3), ADASYN (all clus-

ters), CSS (cluster 3), and CNN (cluster 1). All other PTs do not result in an statistically sig-

92 CHAPTER 4. DEALING WITH IMBALANCE

nificant improvement of the achieved auROC according to the experiments layed out in this

chapter. However, there might be other data sets, where a PT has a stronger, positive influ-

ence. This is even more sobering when statistical testing is performed using auPRC: In this

case, not a single PT can be proven to have a positive impact on the resulting auPRC based

on the deducted experiments.

(2) CNN, Tomek, and OSS should only be used if explicitly required by the circumstances,

e.g., when the number of samples needs to be reduced due to storage restrictions (Fig-

ure 4.16). Although yielding similar results in terms of AUC (see Figure 4.14), ADASYN is way

more computationally expensive than SMOTE. CSS is in general the best scalable technique,

requiring the least computational effort. Also, SMOTE scales very well.

(3) According to Table 4.2, pairs that should be avoided due to overly optimistic training

auPRC and therefore the lack of model hyper-parameter tuning capabilities are: ADASYN

and SMOTE for all evaluated PTs, as well as WLR especially in combination with CSS, OSS,

and Tomek.

(4) While SMOTE and ADASYN tend to increase the training time (Figure 4.17), PTs that

pick a subset of samples such as CNN and OSS decrease the training time. Combinations,

where the training time is increased significantly by the PT, are OCC and RF in combination

with SMOTE and ADASYN. These should be avoided in any case.

Depending on the choice of metric to asses the classification grade, results as presented

in Section 4.4 may vary. E.g., the main metric used by Schlegel and Sick [108] was the au-

ROC, which led to the conclusion that applying a PT is helpful in many more classifier–PT

combinations in comparison to the results obtained in Section 4.4. On one hand, this might

be a sobering realization. On the other hand, this is an interesting observation: If the hy-

perparameters of a model are tuned with regards to the appropriate measure (auPRC), the

classifier may work well out of the box, even in imbalanced scenarios. In contrast, when us-

ing an unsuitable measure (such as the accuracy) or even the auROC, using a PT can yield

better testing performance. E.g., if accuracy is used, oversampling using SMOTE until the

data set is balanced would yield huge increases.

The performance of CSS may be improved by performing a clustering analysis before-

hand. This may be beneficial in scenarios where cluster centers are further apart than the

corresponding centers.

Therefore, readers are advised to extensively think about the proper evaluation metric

4.5. LESSONS LEARNED AND CONCLUSIONS 93

before applying a PT. Furthermore, some models, such as the WRF, outperform other ap-

proaches (even when paired with an PT) out of the box.

Chapter 5

Estimating the Remaining Useful Lifetime

While the previous chapters focused on predicting the correct countermeasure for a problem

that already occured, this chapter aims at predicting the Remaining Useful Lifetime (RUL).

This provides the opportunity to replace diagnosed parts or to perform suitable counter-

actions before issues arise. This can beneficially influence a products’ customer image, re-

duce costs otherwise caused by unplanned downtimes or off site repairs and has even the

potential to avoid safety critical situations (e.g. failing breaking systems).

Forecasting the future failure of a component inherently requires to estimate the RUL of

critical objects, parts or assets in general. In this chapter, four different algorithms to esti-

mate the RUL will be surveyed: A “naive” regressor that serves as a baseline, an algorithm that

scored first on the most cited RUL prediction data sets serving as benchmark, and two novel

approaches. The first being a “bucketed random forest” which is able to accurately predict

the RUL while requiring low computational effort once trained. Second, a similarity-based

approach with an adjustable memory footprint of the trained model and runtime complexity

for testing and training, which yielded very promising results.

All algorithms in this chapter are open sourced and evaluated for general validity on a va-

riety of different data sets originating from complex and interdependent technical systems.

Hereby, approaches are identified that offer the possibility to scale across various usage sce-

narios while requiring a minimized amount of manual effort.

The remainder of this chapter is structured as follows. In Section 5.2, the most popular

related RUL estimation approaches found in the existing literature are briefly highlighted.

A summary of data sets which are used in this chapter is presented in the Section 5.4. Sec-

tion 5.5 gives a detailed overview on the RUL estimation approaches implemented in this

94

5.1. NOTATION AND DEFINITIONS 95

work. In Section 5.6, an experimental evaluation is conducted. Finally, a conclusion is given

Section 5.7.

5.1 Notation and Definitions

In addition to the notation introduced in Section 2.1, the following symbols are needed to

express the time series data used in this chapter. In general:

• T refers the set of time series,

• with each time series tt ∈T consisting of L (length) samples: tt = (st,1,st,2, ...,st,L)T.

• The sample s is defined differently in this chapter: Instead of a Boolean target variable

ytl, the label or target variable in this chapter is continuous (y can be either the RUL

measured in hours, or a risk value r). All data sets except for the Automotive 1 hold

equidistant samples. Thus, for all data sets but Automotive 1, a sample stl is defined

as stl = (xtl, ytl). For Automotive 1, the samples are defined as stl = (xtl, ytl, tstl), with tstl

being the timestamp that allows to asses the temporal distance between two samples.

The risk for the l th sample of a given time series tt is defined as follows:

rtl =
max(RUL)−RULtl

max(RUL)
= 1− RULtl

max(RUL)
, (5.1)

with max(RUL) being the maximum RUL of the entire data set and RULtl being the current

RUL of sample l from the time series. Thus, the r equals to zero at the beginning of a asset

(turbofan, car, etc.) indicating a low risk, and rtl = 1 indicating a failure (RUL = 0).

The Health Indicator (HI) is defined formally as

HI = RULtl

max(RUL)
. (5.2)

5.2 State of the Art

Plenty of research has been conducted, that tries to predict the RUL. However, most existing

approaches share the following caveats: First, they are built and optimized for a particu-

lar problem (which makes their adaptation to different scenarios cumbersome). Second,

96 CHAPTER 5. REMAINING USEFUL LIFETIME

they are often based on proprietary software or closed source software, preventing other re-

searchers to use the algorithms out of the box.

The field of prognostics and health management (PHM) refers to a range of methodolo-

gies to tackle the challenge of predictively maintaining assets. A key requirement to be able

to do so is real-time health estimation of an asset – be it a fridge, a car, or a space station

– as well as the prediction of its future state [127, 49, 69]. Estimating the RUL is – as well

as monitoring the assets state and predicting future trends – an important prerequisite to

enable PHM. Known techniques for RUL estimation can be divided into three categories:

physics-based, data-driven, or combinations of both (surveys are presented in [111, 60, 116,

49, 69]).

Physics-based model approaches represent the behavior of a system by building a dy-

namic model, making use of underlying physics and system knowledge. The upside of the

resulting models is their usually high precision as well as their interpretability. On the other

hand, these models are tailored towards very specific use cases and very hard to obtain for

highly integrated and complex systems, such as cars [127, 60, 49, 69].

Data-driven approaches extract degradation behavior based on historical data from the

modeled asset. Predictive models are typically trained offline. The upside of this approach

is that a profound system knowledge including the underlying physics is not required (but

may of course be beneficial). Hence, the underlying techniques and methods are easier to

transfer to other scenarios or data sets, and therefore used for a wide range of RUL estimation

problems. However, this generic applicability poses a trade-off in terms of model accuracy

[127, 60, 49, 69].

Data-driven approaches usually involve the calculation of a HI or risk indicator (r) as

given in Equation (5.1) and Equation (5.2). Since the approaches in this chapter are mostly

data–driven machine learning approaches with some statistical concepts underneath, the

following review highlights the most popular algorithms for data-driven RUL estimation.

Common, data–driven approaches based on machine learning in combination with sta-

tistical algorithms include the concept of Yan et al. [142], who combined LR with an Au-

toregressive Moving Average Model (ARMA) model to estimate the RUL of an elevator door

motion system. In a three stage approach by van Tran et al. [128], an ARMA model and sup-

port vector regression was implemented to forecast the RUL of a low methane compressor in

a petrochemical plant. Göbel et al. [47] compared three different data-driven algorithms on

5.2. STATE OF THE ART 97

the same data set in order to assess their predictive capabilities. All approaches, a probabilis-

tic version of an SVM, a Gaussian Process Regression and an ANN-based approach yielded

“sound” RUL estimates, despite the sparse and noisy data set originating from aerospace

equipment with rotating parts.

Different architectures of ANNs are commonly used machine learning techniques for RUL

estimation. Especially Recurrent Neural Network (RNN), which feeds back knowledge from

the previous iterations to the next iteration works well to predict the RUL in dynamic set-

tings. Vachtsevanos and Wang [126] proposed an RNN based on wavelets to predict crack

evolution until the final failure of a rolling-element bearing. Heimes [59] used an RNN based

on proprietary software to tackle the 2008 PHM conference challenge problem. Close to the

results of Wang et al. [136] (see next paragraph), his approach achieved the second best re-

sult. Liu et al. [80] also proposed an RNN approach to predict the RUL of aging 18650-size

lithium-ion cells. Three different types of RNNs (classical, adaptive, neuro fuzzy) have been

applied on historical data to predict the RUL by an iterative one-step ahead procedure. More

recently, a deep learning approach has been proposed by Deutsch and He [37] to estimate

the RUL of rotating components. The authors chose a Deep Belief Feed-forward Neural Net-

work algorithm to predict the RUL several steps ahead. The input data was based on NASA

Glenn Spiral Bevel Gear Test Facility data.

Wang et al. [136] developed a similarity-based approach to solve the IEEE 2008 PHM con-

ference challenge problem, scoring first place. Therefore, this approach was re-implemented

and compared to the proposed approaches in Section 5.5. They deployed LR to generate an

offline pool of degradation patterns. Through a comparison of the test units with the offline

model pool (for a detailled description see Section 5.5.1), the current state of each test unit is

derived and thus a RUL is estimated. A more detailed explanation how this algorithm works

is given in Section 5.5.1.

A combination of LR and a relevance vector machine is proposed by Caesarendra et al.

[25]. Bearing defect degradation of simulated and experimental data serves as an input to

predict future failures and resulting RULs. Nuhic et al. [89] used Support Vector Regression

(SVR) with a specifically developed data processing method to estimate the RUL of lithium-

ion batteries. Battery data was gathered by investigating six high power lithium-ion cells for

automotive application.

Another approach of applying several techniques on lithium-ion battery and Turbofan

98 CHAPTER 5. REMAINING USEFUL LIFETIME

data (which was also used in this chapter, see Section 5.4) is shown by Mosallam et al. [85].

Methods for feature selection and extraction were utilized to create an offline database of

HIs and related RULs. A k-NN classifier determines the RUL by identifying the closest match

of the test HI in the offline database.

To summarize, the majority of data-driven approaches in literature are applied and opti-

mized on a single data set, which causes the approach by design to overfit a single scenario,

thus lacking the capability to generalize well accross different data sets. Also, the algorithms

proposed in literature and/ or the data sets used for evaluation are not publicly available.

Further, similarity-based approaches are often not suitable for lightweight devices due to

high memory and runtime complexity (as shown later), for both, training and inference.

5.3 Research Demand

Motivated by the state of the art just presented, this chapter includes the following contri-

butions: First, to tackle the above mentioned limitations, a generally applicable machine

learning approach and a memory-efficient similarity-based approach are introduced and

compared to the RUL prediction benchmarks of Wang [136].

Second, both approaches are evaluated on a variety of data sets and modeling targets,

which is necessary to ensure applicability in the automotive context where the “shape” of the

data sets (in terms of the available number of features and samples) differs among targets. An

evaluation of the algorithms on several data sets (Section 5.4) and applications with different

characteristics has not been conducted yet.

The first of the proposed approaches is a similarity-based approach that yields extremely

fast training times. In addition, it is very lightweight in terms of the storage requirements

for the trained models and the lines of code used. Also, the model size can be parametrized

to trade-off prediction accuracy for required storage. This ensures applicability on low-cost

devices, making continuous RUL onboard monitoring in the car possible after the model has

been trained.

Third, there is very few literature where RFs have been utilized to RUL prediction in tech-

nical applications. Only Frisk et al. [45] used Random Survival Forests to predict a battery

lifetime function using fleet-management data from a heavy-duty truck manufacturer. RFs

will be utilized in the second proposed approach.

5.4. DATA SETS 99

Table 5.1: Overview on evaluation data sets.

Name
Samples for Number of

features

Average samples

per object

max(RUL)

[h]

Defect

ratio
Split

Pre-

clusteredTraining Testing

Turbofan [103] 45047 28883 21 206.6 377.0 100% 61%:39% yes

PHM08 [104] 45918 29820 21 210.6 356.0 100% 61%:39% yes

Weather [146] 2670 858 19 80.9 48.0 30% 76%:24% yes

Automotive 1 90031 532 27 3.7 4120.0 3% 99%:1% no

Automotive 2 184176 59 1780 67.0 243122.0 < 1% 100%:0% no

Fourth, the algorithms proposed in the following are publicly available on Github [106],

including an open source implementation of the approach by Wang [136]. This is in con-

trast to e.g. Heimes [59], where “proprietary” software makes it impossible to reproduce the

results.

Lastly, the Automotive data sets – although being technically time series from multiple

objects – are too short (e.g. on average 3.7 samples for Automotive 1) to apply classsical time

series techniques like windowing. Thus, the proposed approaches need to be capable to

work well with short time series.

5.4 Data Sets

Table 5.1 gives an overview of the data sets forming the testbed. Entries are sorted by their

defect ratio. The defect ratio indicates how many of the observed objects reached their End

Of Life (EOL) in the data sets. All data sets except for the “Automotive” data sets are publicly

available to enable other researchers to compare their results. To generate comparable re-

sults across data sets, the test-set is always filtered to only hold samples from objects that

will reach their end of life (EOL) eventually. All data sets have been standardized prior to

modeling. Unless predefined by the data set, a 75% : 25% training-test-split was used. All

data sets consist of time series that vary in their length.

2008 PHM Data Challenge: The PHM08 data set was originally published for the confer-

ence on prognostics and management by Saxena and Göbel [104]. Features represent sensor

measurements from not further specified objects. This data set consists of equally spaced

time series. The data set was split into three parts by Saxena and Göbel [104]: Training, test-

ing, and final-testing set. The training set holds all samples of every training-object until

failure (RUL = 0). The testing set holds only a subset: Records stop, before the RUL is zero.

100 CHAPTER 5. REMAINING USEFUL LIFETIME

The correct RULs of the test and final-test set are unknown. Predictions on the test data set

can be submitted to the NASA website which calculates the PHM score sPHM without reveal-

ing the actual RUL values. The final-test set can only be manually evaluated by sending an

Email. The score sPHM is defined as [102]

sPHM =

∑n

i=1 e−(d
a1

) −1 for d < 0∑n
i=1 e−(d

a2
) −1 for d ≥ 0

, (5.3)

with n being the number of unique tested units (objects), d = RULpred −RULreal, a1 = 13,

and a2 = 10, respectively. Through the asymmetry caused by a1 and a2, late predictions

are penalized higher. This score enhances the Root Mean Squared Error (RMSE) used for

evaluation (Section 5.6).

As proposed by Wang et al. [136], the data set has been preprocessed: The operation

mode (system state) is unambiguously identified by the first operational setting (which is

a feature in the data set), yielding six clusters (operation modes). These operation modes

were set manually prior to model building (column “Preclustered” in Table 5.1). The opera-

tion modes are thus discrete. The operation mode of a given object can change after every

sample of the time series. Also, instead of using algorithms to select or transform features

anonymously, Wang et al. [136] visually evaluated features by hand: Only features that had

a clear trend indicating the failure of the object have been used to create their model. The

following features were used: 2, 3, 4, 7, 11, 12, and 15. The features are non-further specified

“sensor measurements”.

NASA turbofan: The turbofan data set (Saxena and Göbel [103]) is similar to the PHM08

data set in terms of value ranges, features, clusters, and equally spaced time series. The

features are sensor readings from several turbofans. In contrast to the PHM08 data set, the

RUL of the last sample from every object is in a separate file. To ease the comparison with

the PHM08 results, the turbofan data set was modified as follows:

First, only data from FD002.txt and FD004.txt files (instead of all 4) were used, since only

these two yielded the same number of clusters (operation modes). Second, 218 objects for

both, the testing and training sets were randomly sampled to match the number of objects

in the PHM08 data set. This is necessary, since sPHM linearly grows with the number of evalu-

ated objects. Also, as pointed out in Section 5.4, the data set was manually preclustered into

six clusters and the same features were selected (except for Section 5.5.4).

5.5. PROPOSED SOLUTION 101

SML2010: Original aim of the Weather data set (Zamora-Martínez et al. [146]) was to fore-

cast the indoor temperature, based on temperature sensors located in- and outside, as well

as lightning-, wind-, and rain-sensors that are represented by 19 features. This data set was

modified to suit the needs for RUL prediction: The “critical” temperature (that corresponds

to RUL = 0) was defined as the 65% percentile of all inside temperatures measured. Days

were considered “objects”. The data was originally sampled every minute but smoothed to

15 minute intervals yielding equally spaced time series. The RUL is equivalent to the re-

maining time until the critical temperature is exceeded. This data set is available on the UCI

machine learning repository (Lichman [77]).

Automotive 1 and 2: Both “Automotive” data sets were collected from hybrid cars and

consist of non-personal data only. Python and sklearn [91] were not able to cope with the

vast amount of data on the available hardware. Therefore, the data sets were reduced using

the approach proposed in Chapter 3 to the dimensions given in Table 5.1. Automotive 2 has

a higher-dimensional feature space, and more samples per object than Automotive 1. Also,

the RUL has been scaled differently. Each data set represents a specific component failure,

which does only occur with a tiny fraction of examined cars (objects). A property worth to be

pointed out is the comparably small average number of samples per object (3.7) in Automo-

tive 1, since this represents a major challenge for methods that extensively rely on historical

data that lead to a failure. Another difference between Automotive 1 and Automotive 2 is that

while time series samples are distributed unevenly in Automotive 1, samples in Automotive

2 are distributed evenly since they are automatically transmitted using telematics.

5.5 Proposed Solution

As a baseline for an evaluation of the algorithms developed in this chapter, a naive approach

was implemented: In this case, a single RF is used to predict the RUL based on the normal-

ized features. Aside from using cluster information indicating a certain operating mode (if

available), no other optimizations were implemented.

Also, the similarity-based approach by Wang et al. [136] was implemented which is

known to yield very accurate RUL estimations. The approach is outlined in Section 5.5.1.

A more in depth explanation is presented in Wang et al. [136].

The novel approaches (Section 5.5.3 and Section 5.5.4) are in line with the generic re-

102 CHAPTER 5. REMAINING USEFUL LIFETIME

quirements: Both, Distribution-based Similarity Estimation v.2. (DBSE2), which is a com-

pletely newly implemented version inspired by the “Distribution-based Similarity Estima-

tion” approach proposed by Schlegel et al. [107], and the RF based Bucketized RUL regres-

sion with trend-based feature selection (BRR) algorithm described in Section 5.5.4 are able

to select features automatically based on a concept that is proposed in Section 5.5.2.

All approaches will be evaluated using the sPHM (see Section 5.4) and the RMSE defined

as [25]

RMSE =
(

1

n

n∑
t=1

(yt − ŷ2)2
)1/2

. (5.4)

5.5.1 Approach of Wang

The approach proposed by Wang et al. [136] won the IEEE 2008 PHM conference challenge

with a total score of sPHM = 5636.06 on the final test data set. The complete code imple-

mented in Python 3.6 as well as all parameters used in the algorithm can be reviewed in a

public GIT repository [106]. The approach consists of two stages. In the first (training) stage,

a database of degradation patterns is created. In the second (inference) stage, the observed

degradation is compared to all models in the database (similarity based approach). Training

involves the following steps:

1. Linear regression is used to map the (multi-dimensional) feature space (which repre-

sents the input of this modelling aproach) to a one-dimensional HI (Equation (5.2)).

Linear regression was deliberately preferred over LR: LR is considered unsuitable in

this case since it distorts the degradation pattern as the logit function is very flat when

its output is close to 0 or 1. Yan et al. [142] propose LR in their RUL estimation

pipelines, however, they do not model a continously scaled HI but a dichotomous tar-

get variable (“health” or “disease”).

2. For each object (or time series tt ∈T) in the training set, a representative degradation

model M is derived, which is essentially a function that maps a given HI to its respec-

tive RUL. This function can e.g. be an exponential function as proposed by Wang et al.

[136]. The function is fitted to all HIs of a given time series in combination with their

respective timestamps (RULs). Figure 5.1 shows a random time series (blue circles)

and the respective quadratic model which was derived from the displayed time series

(orange line).

5.5. PROPOSED SOLUTION 103

3. The above step is repeated for all available time series which forms a pool of models

M = {M1, M2, . . . , MT }, with T being the number of time series. This results into a pool

of models.

First sample Last sample before EOL

Fitted, quadratic model

0.00

0.25

0.50

0.75

1.00

200 150 100 50 0
RUL [h]

H
I

Figure 5.1: Example for a model which is derived from a time series.

0.0

0.3

0.6

0.9

1.2

200 150 100 50 0
RUL [h]

H
I

Figure 5.2: Visualization of mutliple models.

Estimation of a RUL for a given time series tt works as follows:

1. A Euclidean distance measure is defined d(τ,t, M), with τ being the number of hours

that the time series (test object history) t is shifted away from cycle zero to minimize

the distance d between the test object history and model M . “Shifting” can be best

explained visually: At first (see Figure 5.3), the history of the test object (represented

by the blue circles) would be aligned with the rightmost, dashed black line at RUL = 0.

The orange line in Figure 5.3 represents one model M ∈M of the model pool.

104 CHAPTER 5. REMAINING USEFUL LIFETIME

2. The history (blue circles) of the test object is now “shifted” (“moved”) to the left by

a certain amount of hours, to minimize the the distance d between the test object

history and the given model. Once the RMSE is minimized (yielding e.g. Figure 5.4),

the number of hours by which the test object history was shifted is equal to the RUL

prediction of this specific model. This is repeated for all models M ∈ M in the model

pool, created in the training stage. This is shown in Figure 5.2.

3. The final RUL is calculated using the weighted average (based on the distance d) across

all models. This way, all known failure progressions are taken into account.

First sample Most recent sample

History from test object

0.00

0.25

0.50

0.75

200 150 100 50 0
RUL [h]

H
I

Figure 5.3: Example for a model using Wangs technique before the history is shifted.

First sample Most recent sample

History from test object

RUL0.00

0.25

0.50

0.75

1.00

200 150 100 50 0
RUL [h]

H
I

Figure 5.4: Example for a model using Wangs technique after shifting the history by the op-
timum number of hours.

A visualization based on the the open source implementation by Schlegel et al. [106]

for an arbitrary time series T (that was mapped to a HI using linear regression) is given in

5.5. PROPOSED SOLUTION 105

Figure 5.4. The pictured samples (blue circles) represent points in time, where the features

already have been mapped to an HI. The orange line represents one model Mi ∈M from the

pool of available models. In the pictured case, the model Mi has a small distance d to the

observed time series T , since it is fitting the samples well. The intersection with the x–axis

represents HI = RUL = 0 and is used for prediction.

Although the hyperparameters of this approach can be tuned in theory, they were set

explicitly based on the the recommendations by Wang et al. [136]:

• Cmin and Cmax define the thresholds for the minimum (and maximum) RUL that cor-

respond to the minimum (and maximum) HI. As proposed by Wang et al. [136],

Cmax = −5 and Cmin = −300 were used for the Turbofan and PHM data set. To adapt

these values to other data sets, the corresponding RUL percentiles were identified:

2.612% (99.706%). Applying the percentiles to the range of RULs of the Weather data

set yielded e.g. Cmin =−22.75, Cmax =−1.

• maxcycles: During the inference stage, each time series is shifted over each model

from the model pool. maxcycles limits the maximum length of a time series which

is shifted over the models. This decreases the run-time complexity by reducing the

possible number of shifts. If the time series of a test object is longer than maxcycles,

the oldest samples are removed, since the HI values at the beginning of a time series

which is longer than maxcycles are mostly less informative. Based on the PHM08 data

sets and the recommendations by Wang et al. [136] the following heuristic was used:

maxcycles = 1.067 ·RULmax, with RULmax being the maximum RUL in the training data

set (1.067 was estimated based on Wang et al. [136] recommendations for the PHM08

data set).

5.5.2 Polynomial-Based Feature Selection

As shown by Schlegel and Sick [109] and as a consequence of the results presented in Sec-

tion 5.6, feature selection can positively influence machine learning: It can not only reduce

training time, but also increase the classification/regression performance.

To select features for the time series data at hand, Polynomial-Based Feature Grading

(PBFG) is proposed: As displayed in Figure 5.5, the HI ([0,1]) is plotted over all values of a

single feature (scaled to [0,1]). These are fitted by a first-order (f1(x) = a1x+b1) and a second-

106 CHAPTER 5. REMAINING USEFUL LIFETIME

oder-polynomial (f2(x) = a2x2 +b2x + c2). Since two polynomials were used, only the factor

of the highest order monomial was taken into account to avoid mutual information (Fuchs

et al. [46]).

This technique is visualized in Figure 5.5. On the left side, a non-informative (weak corre-

lation between the HI and the feature corr(HI ,bad) =−0.09) feature is displayed. In contrast

to right, where an informative feature (stronger correlation corr(HI ,good) = −0.64) is plot-

ted. The intuition is that the clearer a trend of a specific feature is (and thus the larger the

|ai |s), the more helpful is it to estimate the RUL. Since there are cases, where |ai | is large, but

the points are poorly represented by the fitted curve, the calculated feature specific weight

w takes the RMSE of the fitted polynomials into account, yielding the final formula to assess

the feature weight

w = |a1|+ |a2|
RMSE1 +RMSE2

, (5.5)

with RMSE1 being the error of the linear polynomial and RMSE2 of the quadratic polynomial,

respectively. The feature weight can be used for selecting the top npf features (as laid out in

Section 5.5.4) or to weight the risk prediction according to the feature importance w (as laid

out in Section 5.6.1).

bad feature good feature

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.0

0.3

0.6

0.9

0.00

0.25

0.50

0.75

1.00

Two different features scaled to [0,1]

H
I

order
1st
2nd

Figure 5.5: Example of two features holding different amounts of information.

5.5.3 Distribution-Based Similarity Estimation

DBSE2 is a density-based estimation technique which is able to incorporate knowledge from

a variable number of past samples from different operating modes after training was com-

pleted in addition to the most current sample. The basic idea is to generate a discretized

5.5. PROPOSED SOLUTION 107

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
1,570

1,580

1,590

1,600

1,610

risk

fe
at

u
re

(a) Subsampled (1 : 16) scatterplot of feature X3.

0.2 0.4 0.6 0.8 1 1.2
0

0.1

0.2

0.3

risk
p

ro
b

ab
ili

ty

(b) Risk distribution for X3 ≈ 1590.

risk

0.2

0.4

0.6

0.8

1.0

1.2

Feature

1565157015751580158515901595160016051610

0

100

200

300

400

500

600

(c) Model to map discretized feature values to risk distributions.

Figure 5.6: Visualization of the key ideas of DBSE2.

108 CHAPTER 5. REMAINING USEFUL LIFETIME

probability distribution that maps each feature value to less or more likely RULs.

The first step in the training phase is to linearly map all RUL values to a risk indicator

r (RUL 7→ r) to unify all following computations. A scatterplot for feature X3 of the NASA

Turbofan data set and corresponding risk values is shown in Figure 5.6a. Figuratively speak-

ing, a “model” in this case is a contourplot (or 2D histogram after discretization). The three

dimensions are:

1. The centered and scaled feature value x.

2. The risk r .

3. The occurrence distribution h(x,r), indicating how often feature value x and risk r

were present in the training set.

Such a model is created for each feature. The continuous distribution h(x,r) is then

binned into a grid h′(x,r) of size ngrid,feature × ngrid,risk (visually shown in for ngrid,feature =
ngrid,risk = 10 in Figure 5.6c as a 3D histogram). This representation is scaled such that∑ngrid,risk

j h′(xi ,r j) = 1 for all discretized ordinal feature levels i = [1,2, ...,ngrid,feature] (see Fig-

ure 5.6b).

Inference of a risk or RUL value for a given time series ti = {si ,1,si ,2, ...,si ,L} of length L

works as follows: For each time series element si,l = (xil1, xil2, ..., xilP) (P features) within that

time series, the corresponding model is polled. This yields a (discretized) risk probability

distribution (as shown in Figure 5.6b) for every feature indexed by p of every given sample

indexed by l part of ti and each time series indexed by i . The respective pseudo code is given

in Listing 5.1.

5.5. PROPOSED SOLUTION 109

1 # get empty array for float tuples
2 risk_preds := Array((float , float))
3 t := getATimeseries ()
4

5 # for each sample of the time series
6 for l:= 1 to L do
7 # get the sample
8 s := t[l]
9

10 # for each feature
11 for p:=1 to P do
12 # get the feature value
13 f_value := s[p]
14

15 r_raw := getRawRiskValueFromHistogram(f_value , p)
16

17 r_final := increaseRiskForPastSamples(r_raw , l)
18

19 # append the risk and the
20 # temporal proximity tuple to the array
21 risk_preds.append ((r_final , s))
22

23 prediction := predictAccordingToWTemp(risk_preds)

Listing 5.1: Pseudo Code to infer RUL values using the DBSE2 technique.

Every distribution of each feature of each sample of the time series yields a risk rpred,raw

based on the highest probability. However, the “raw” risk needs to be adjusted to account

for the passed time in case the sample under evaluation is not the most current of the re-

spective time series. To combine past samples with the most current one, the risk of past

samples needs to be raised to attribute for the passed time. Since this can be done for any

number of hours (or timespan in general), it is not necessary that subsequent observations

have the same time interval. E.g., the h′(xi (l−2)1,r) distribution for a sample 2.3 hours in the

past is shifted by adding ∆r = 2.3
max(RUL) . The value is added to yield the final predicted risk:

rpred,final = rpred,raw +∆r , which is appended to the array of inferred risk values.

The risk final prediction is – depending on the hyperparameters – either an average of

the aggregated risk array holding a rpred,final for every feature of every sample, a weighted

mean which linearly takes the temporal proximity to the most current sample into account,

a weighted mean which takes the feature importance according to PBFG (Section 5.5.2) into

account, or a combination of the latter two. The hyperparameters were heuristically tuned.

These are:

• nhist : The maximum number of historical samples to be considered (if less nhist are

110 CHAPTER 5. REMAINING USEFUL LIFETIME

available, the available number of historical samples is used) for the prediction (eval-

uated values were [1,4,8,16,32,64,128,256], depending of the data set specific maxi-

mum time series length),

• ngrid,feature: The number of bins to discretize the aforementioned distribution regard-

ing the feature values (evaluated values were [8,16,32,64,128,256,512]),

• ngrid,risk: The same as above, just for the risk dimension ([2,4,8,16,32,64,128,256]),

• wtemp: Weight risk values in the risk array according to their temporal proximity to the

most current sample (True or false), and

• wpoly: Weight features according to the PBFG technique (True or false).

If a data set contains different operation modes (e.g., Section 5.4 and Section 5.4), every

operation mode is treated as a separate data set during training and prediction. The inferred

risk values are aggregated the same way.

5.5.4 Bucketized RUL Regression

BRR combines three concepts: First, data is split into three parts based on the RUL. The split

into three parts poses a tradeoff between accuracy and performance. This leads to more

accurate results since every regressor can focus on the specific circumstances of a certain

RUL range1. Second, since an RF does not take temporal dependencies into account, the

features from the nhistory last samples of the same object are added as additional features.

Third, valuable features are selected using the built-in trend analysis as described below.

Bucketizing of Training Samples

As displayed in Figure 5.7, BRR splits the data set into three subsets. First, all samples, with

a RUL higher than pcrop ·max(RUL) are discarded and not used for training. This is due to

the fact, that the “real” features (Figure 5.7, right) do not reflect any degradation in the early

asset life. These indistinguishable samples provide no benefit for the classifier. Some wear

has to occur, before the classifier is able to pick up the degradation.

1E.g. feature Xi might be important to estimate the RUL between 100 and 200, while feature Y might be
important to distinguish RULs in the range between one and ten.

5.5. PROPOSED SOLUTION 111

The remaining samples are split into two groups: critical (EOL ≤ RUL ≤ RULcrit) and non-

critical (RULcrit ≤ RUL ≤ RULcrop). The threshold is set by the a percentage pcrit with respect

to the maximum RUL of the non-discarded samples (outside the cropped region marked

gray). pcrit is set explicitly before training. During training, an RF is trained to to distinguish

critical from non-critical samples (RFgroup).

Cropped area Cropped area

ideal real

0 25 50 75 100 0 25 50 75 100

EOL

RULcrit

RULcrop

time

R
U

L p
re

d

Figure 5.7: Different RUL areas.

Model

At total, three models are trained to estimate the RUL: The first, RFgroup, distinguishes crit-

ical (close to the EOL) from non-critical samples. Afterwards, another two models (RF)

are trained: One to classify critical samples (MDLcritical), and one for non-critical samples

(MDLuncritical). This yields a total number of three models. The RUL ranges of MDLcritical and

MDLuncritical do not overlap. To estimate the final RUL value, the predictions of MDLuncritical

and MDLcritical are combined in a weighted manner based on the criticality prediction of

RFgroup:

RULpred = RFgroup(x) ·MDLcritical(x)+ (1−RFgroup(x)) ·MDLuncritical(x), (5.6)

with x being the features of sample under evaluation, RFgroup(x) referring the criticality pre-

diction by the RF (which is naturally bounded by [0,1], see Equation (5.1)), MDLcritical(x)

refers the RUL prediction of the RF specialized on critical samples, and MDLuncritical(x) the

RUL prediction of the RF specialized on uncritical samples. This way, the RUL predictions of

MDLuncritical and MDLcritical are weighted according to the criticality prediction of RFgroup.

112 CHAPTER 5. REMAINING USEFUL LIFETIME

X1 X2

1 3
2 4

(a) Original data set.

X1 X2 X1,1 X2,1 X1,2 X2,2

1 3 1 3 1 3
2 4 1 3 1 3

(b) Data set for nhistory = 2 and
“Copy”.

X1 X2 X1,1 X2,1 X1,2 X2,2

1 3 0 0 0 0
2 4 1 3 0 0

(c) Data set for nhistory = 2 and “Zero”.

Table 5.2: Example for different nhistory modes.

Optimization

Preceding experiments have shown that the following hyperparametervalues yield promis-

ing results in terms of a small average and minimum sPHM and RMSE. These will be evaluated

in greater detail in the following.

• pcrop: Cropping of RUL, recommended values 0%−50%.

• drop: If True, RULs above the threshold defined RULcrop·pcrop will be dropped, if False

RULs will be set to the threshold value.

• pcrit : Threshold for a sample to be considered critical, recommended values 0%−50%.

• nhistory: Adding of features from nhistory past samples from the same object, recom-

mended values 0−5 (0 will not add any historical features).

• mode: Two different initialization modes are available to fill the feature vector x of the

first sample of an object when the available history is shorter than nhistory: “Copying”

replicates the current feature values to the past ones, “zero” initializes the vector with

zeros. An example for both modes is given in Table 5.2. As shown e.g. in Table 5.2c, if

nhistory exceeds the number of available samples by more than 1, the values set initially

in dependence on the “mode” can propagate to consecutive samples. The RUL of pre-

vious steps is not included as a lagged variable, since this value is unknown and would

require nhistory inference computations.

• npf : Select the npf highest ranked features according to PBFG (Section 5.5.2), recom-

mended values 5−15.

5.6. EVALUATION 113

5.6 Evaluation

This section will evaluate the techniques introduced in Section 5.5 in greater detail. After

tuning the hyperparameters for each novel technique, respectively, a comparison between

all techniques will be laid out. The latter will compare all introduced techniques based on

all data sets in terms of regression grade (RMSE and sPHM) and run-time complexity for the

training and testing stage.

All experiments in this section have been conducted on an HP™ Z-840 equipped with two

Intel® Xeon® E5-2640 v3 2.60GHz CPUs and 96GB of RAM. A total number of 9503 models

have been evaluated to substantiate the results of this chapter.

5.6.1 Hyperparameters of Distribution-based Similarity Estimation

Hyperparameter tuning of DBSE2 was solely performed on the Turbofan and Weather data

sets. The reasons for this are three-fold: First, sPHM scores on the automotive data sets ex-

ceeded the representable number range. This is due to the higher, maximum RUL values

(the maximum observed RUL in the Automotive 2 data set is ≈ 644 times larger than the

maximum RUL of the Turbofan data set). Second, evaluating the entire hyperparameter grid

was computationally infeasible on the automotive data set due to the higher data set size.

Third, the actual RUL values of the PHM08 test data set are not available.

The first evaluated hyperparameter is wpoly. If set to True, all risks are weighted accord-

ing to the respective feature weight returned by the PBFG algorithm to generate the final,

“averaged” mean risk. Thus, risk values from features with a high PBFG weight will have a

higher influence on the final risk prediction. Figure 5.8 shows boxplots of the corresponding

sPHM and RMSE scores in dependence on whether PBFG-based feature weighting was used.

While the median RMSE and sPHM on the Weather data set were unaffected, both error scores

were reduced by PBFG on the Turbofan data set. The median being at the top of the box for

performing no PBFG on Weather data set in terms of RMSE might seem surprising. This can

be explained by the fact that 67.86% of the evaluated RMSEs for this boxplot have the same

(highest) value.

This may be explained by the fact that Turbofan contains demonstrably unhelpful fea-

tures (which were manually sorted out by Wang et al. [136]), which might not be the case for

the Weather data set. It is also to note that, unlike most machine learning algorithms (such

114 CHAPTER 5. REMAINING USEFUL LIFETIME

Turbofan Weather

R
M

SE
sP

H
M

n
o

P
B

F
G

P
B

F
G

u
se

d

n
o

P
B

F
G

P
B

F
G

u
se

d

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Figure 5.8: Effects of performing PBFG for DBSE2.

as the RF used in BRR), DBSE2 has no other inbuilt feature selection or weighting mecha-

nism. Furthermore, since training and testing times were almost not affected by PBFG, it is

in general recommended to use this technique.

Next, ngrid,feature and ngrid,risk are evaluated. Figure 5.9 shows the achieved RMSE and

sPHM scores for the Weather and Turbofan data set based on the used number of bins for

discretizing the feature (ngrid,feature) and the risk (ngrid,risk). Refer to Figure 5.9 for the corre-

sponding sPHM scores. Again, the scores were scaled to a range between 0 and 1 for better

visualization. While the score is color coded (black indicates a low/ good score), orange a

bad score, the best score is marked by a bigger point. This represents the optimum.

On Turbofan, a higher number of bins for discretizing the feature is required (the opti-

mum is reached with ngrid,feature = 64) than on the Weather data set, were the optimum is

reached with ngrid,feature = 8. It is to note though, that the achieved scores were not strongly

affected by the ngrid,feature. E.g., the mean of all (scaled to [0,1]) RMSEs of the Weather data

set for ngrid,feature = 64 is 0.462 and thus only 1.99% larger than the best achieved value of

5.6. EVALUATION 115

0.453 (for ngrid,feature = 8). Therefore, the recommendation is generally to try low values first

(e.g. ngrid,feature = {32,64}), as these will usually be sufficient – even if higher values do not

have a significant negative influence. However it should be noted that the optimum value of

ngrid,feature is strongly dependent on the given scenario and its surrounding conditions such

as the number of features or samples.

Regarding ngrid,risk, however, a completely different picture emerges: On both exten-

sively evaluated data sets a surprisingly low value of ngrid,risk yields the best results in terms

of normalized RMSE and sPHM score. While experiments on the Weather data set suggest

ngrid,risk = 4, on the Turbofan data set even two bins are sufficient to yield the best results.

Considering historical samples of the same object (nhist > 0) lowers both scores on both

data sets. This is shown in Figure 5.10: Especially on the Turbofan data set, where not only

the percentiles but also the median decreases with increasing values of nhist . On the Weather

data set, the median is unaffected due to the high number of experiments that yielded a sim-

ilarly high error score in relation to the low number of experiments that yielded a lower error

score. However, up to nhist = 32 the boxplots indicate that more experiments yielded a lower

error score. Based on the Turbofan data set, nhist = 32 can be recommended as well: Both

scores are plateauing for 8 ≤ nhist ≤ 64. Thus, nhist = 32 is recommended as default value for

other applications. Different applications, especially if the timespan between samples var-

ries, may require different values. It is to note however, that nhist should always be smaller

than the maximum time series length of the data set.

Similarly to wpoly, where risk values are weighted based on the respective feature weight

to generate the final prediction, wtemp can be used to weight risk values, too: In the latter

case, weighting of risk values in the risk array is performed in accordance to their temporal

proximity to the most current sample. However, as shown in Figure 5.11, temporal weighting

does not lower the error scores based on the experiments on the Turbofan and Weather data

sets.

5.6.2 Hyperparameters of Bucketized RUL Regression

The detailed evaluation of BRR is solely based on the Weather and Turbofan data sets for the

same reasons given in Section 5.6.1. However, the gained insights were successfully trans-

ferred to the other data sets, where they yielded promising results (see Table 5.3).

First, pcrop and drop are evaluated. Figure 5.12 shows boxplots based on the achieved,

116 CHAPTER 5. REMAINING USEFUL LIFETIME

Turbofan Weather

2 4 8 16 32 64 12
8

25
6 2 4 8 16 32 64 12
8

25
6

8

16

32

64

128

256

512

ngrid,risk

n
gr

id
,f

ea
tu

re

0.00

0.25

0.50

0.75

RMSE

(a) Evaluation for RMSE.

Turbofan Weather

2 4 8 16 32 64 12
8

25
6 2 4 8 16 32 64 12
8

25
6

8

16

32

64

128

256

512

ngrid,risk

n
gr

id
,f

ea
tu

re

0.0

0.2

0.4

0.6

0.8
sPHM

(b) Evaluation for sPHM .

Figure 5.9: Evaluation of different ngrid combinations.

5.6. EVALUATION 117

Turbofan Weather

R
M

SE
sP

H
M

1 4 8 16 32 64 12
8 1 4 8 16 32 64 12
8

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

nhist

Figure 5.10: Influence of nhist .

scaled RMSE and sPHM scores. For values of pcrop > 0 an additional, the orange boxplot is

plotted: This indicates that samples with a RUL above the RULcrop (see Figure 5.7) are dis-

carded and not used for training (drop = True). As mentioned above, drop = False indicates,

that RUL values above RULcrop were set to RULcrop.

Two interesting facts can be observed: First, cropping in general can be considered a use-

ful technique: The most obvious trend can be observed in terms of sPHM on the Weather data

set. Here, the error score was significantly reduced by this technique. The lowest scores were

achieved by pcrop = 0.5. In terms of RMSE, lower and more consistent result can be achieved

with pcrop = 0.5 as well (note the smaller box and the overall lower median). This consistency

can be observed on the Turbofan data set as well in terms of RMSE. However, in terms of

sPHM the trend is much clearer (upper left in Figure 5.12): pcrop = 0.5 yields a much more

consistently low error score with far less outliers. The benefical impact of cropping may be

explained by the fact that every asset produces a lot of data before it eventually fails (if it fails

at all) which inherently causes a high imbalance in most RUL estimation data sets. Crop-

118 CHAPTER 5. REMAINING USEFUL LIFETIME

Turbofan Weather

R
M

SE
sP

H
M

w
te

m
p
=

0

w
te

m
p
=

1

w
te

m
p
=

0

w
te

m
p
=

1

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Figure 5.11: Influence of weighting risk values based on temporal proximity.

ping the early (healthy) life of an asset reduces this imbalance of healthy to failure-related

samples to some extent.

The second interesting observation from Figure 5.12 is that dropping (drop =True) the

cropped values never yields lower error scores: The orange boxplots always indicate higher

error scores. While cropping is recommended in general, dropping should be avoided. Thus,

pcrop = 0.5 and drop =False will be used in the following.

The next hyperparameter which will be evaluated is pcrit . As shown in Figure 5.13, no

clear trend can be observed. Based on the sPHM scores of the Weather data set, pcrit = 0.3 is

yielding best results, however this contradicts the results based on RMSE: Here, pcrit = 0.3 is

yielding the worst results while pcrit = 0 yields the best results. This result is aligned with the

results on the Turbofan data set, where pcrit = 0 is also yielding the best results. Thus, setting

pcrit = 0 is recommended in general. This means, that only a single RF is trained based on

the non-cropped samples (ranging from RUL = 0 to RULcrop in Figure 5.7).

The next examined hyperparameter is nhistory which will be evaluated in combination

5.6. EVALUATION 119

Turbofan Weather

sP
H

M
R

M
SE

0

0.
3

0.
5 0

0.
3

0.
5

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

pcrop

Sc
o

re drop
False
True

Figure 5.12: Effects of discarding samples based on their RUL.

with mode that determines how missing values are imputed which happens if nhistory exceeds

the available number of available historical samples. For mode “Copy”, the first feature val-

ues of the time series will be used again, for mode “Zero” zeros will be used (an example is

given in Table 5.2).

As shown in Figure 5.14, adding no historical samples (nhistory = 0) is outperformed in

any case. However, too many historical samples (nhistory > 5 for Turbofan and nhistory > 1 for

Weather) can increase the error scores. Thus, adding a small number of historical samples

(results based on the Weather data set suggest nhistory = 1, Turbofan results based on the sPHM

suggest nhistory = 2) is recommended. Regarding the mode, no clear winner can be identified,

although the results are consistent across both data sets: On the Weather data set, copying

always yields the lower error score, on the Turbofan data set, adding zeros always results into

lower error scores.

Since nhistory adds new features to the data set, it will be also evaluated in combination

with npf : For npf > 0, the top npf features are selected based on the PBFG ranking. For

120 CHAPTER 5. REMAINING USEFUL LIFETIME

Turbofan Weather

sP
H

M
,n

orm
R

M
SE

n
orm

0

0.
3

0.
5 0

0.
3

0.
5

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

pcrit

sc
o

re

Figure 5.13: Effects of splitting the training according the RUL.

npf = 0, all features are used. On the Turbofan data set, selecting features according to Wang

et al. [136] is plotted as npf = −1 in Figure 5.15. This however only works on the NASA Tur-

bofan and PHM08 data sets and was done manually (in contrast to PBFG which is calculated

automatically).

Figure 5.15 shows the best achieved sPHM scores for all evaluated nhistory and npf combi-

nations. On the Turbofan data set, neither PBFG nor performing manual feature selection as

proposed by Wang et al. [136] is able to lower the error score. A potential explanation for this

might be that the RFs used by BRR are inherently able to identify and focus on relevant fea-

tures. However, on the Weather data set, PBFG yields a lower error score (npf = 10) in com-

parison to when no feature selection takes place (npf = 0). This means, that the proposed

polynomial feature selection is an adequate technique to select features for RUL prediction

using RFs. However it should be noted that strongly differing results are close to each other

in Figure 5.15. The expressiveness may thus be limited.

Additionally it should be noted, that performing PBFG-based feature selection (e.g.,

5.6. EVALUATION 121

Turbofan Weather

sP
H

M
,n

orm
R

M
SE

n
orm

0 1 2 5 15 0 1 2 5 15

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

nhistory

sc
o

re mode
Zero
Copy

Figure 5.14: Effects of adding historical samples to the feature space on RMSE and sPHM .

Turbofan Weather

0.
0

2.
5

5.
0

7.
5

10
.0 0 10 20 30 40 50

0

1

2

3

4

5

0

5

10

15

npf

n
h

is
to

ry

sPHM
0.00
0.25
0.50
0.75

1.00

Figure 5.15: Effects of using polynomial feature selection on sPHM .

122 CHAPTER 5. REMAINING USEFUL LIFETIME

Table 5.3: Performance comparison of all algorithms in terms of RMSE and sPHM on all data
sets.

Automotive 1 Automotive 2 PHM08 Turbofan Weather

sPHM RMSE sPHM RMSE sPHM sPHM RMSE sPHM RMSE

BRR Inf 1647.65 Inf 1876.45 3514.52* 6463.76 52.51 3.8 14.47

DBSE2 Inf 528.25 Inf 1898.24 35022.24* 26538.31 33.71 30.76 16.76

Naive Inf 3355.21 Inf 2466.39 127290.08* 23605.99 54.77 97.45 15.25

Wang Inf 846.78 na na 1291.27* 27944.4 25.71 2.26 2.5

when using npf =∈ {5,10}) speeds up training by 2.21 times and testing by 1.36 times on

average.

Also, adding feature derivatives as additional features was evaluated, without improving

the performance.

5.6.3 Summary

Table 5.3 and Table 5.4 show the results on the test data set for each technique-data set pair

(e.g. BRR-Automotive 1). RMSE for the PHM08 dataset is not available since this value was

not returned by the evaluation website. Since the hyperparameters of the Wang approach

were explicitly set using the guidelines provided by Wang et al. [136], no hyperparameter

tuning was necessary and only a single model was trained for each data set. The “best” model

for all other combinations has been selected based on the lowest sPHM score during training.

If sPHM exceeded the representable number range, the RMSE achieved during training was

used. The scores for the PHM08 data set (marked by an asterisk) have been obtained by

submitting the predicted RULs of the test data set to the online-test-tool2.

Table 5.3 shows the achieved sPHM and RMSE scores. An “na” is indicating missing re-

sults. This is due to memory constraints (Automotive 2, Wang). “Inf” is indicating that the

number exceeded the representable range of numbers. This only affects the sPHM score. For

the PHM08 data set, no RMSE is given, since the website used for evaluation did only return

the sPHM .

The naive RF approach marks a solid baseline that is outperformed in terms of sPHM and

RMSE in most cases. Exceptions are the sPHM score on the Turbofan data set and the RMSE

on the Weather data set: In both cases, DBSE2 was outperformed slightly. DBSE2 models for

2Available underhttps://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/,
last accessed 07/11/2018.

https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/

5.6. EVALUATION 123

Table 5.4: Training and testing time of the best performing model for all technique-data set
pairs.

Automotive 1 Automotive 2 PHM08 Turbofan Weather

ttrain[s] ttest[s] ttrain[s] ttest[s] ttrain[s] ttest[s] ttrain[s] ttest[s] ttrain[s] ttest[s]

BRR 32.96 0.16 158.83 0.14 428.33 2.94 181.05 1.19 36.79 0.25

DBSE2 4.4 5.26 382.06 6.02 7.99 15.47 6.76 12.39 2 0.97

Naive 145.19 0.2 4335.48 0.14 124.05 1.11 120.39 1.01 35.5 0.24

Wang 1.2 1200.03 na na 5.18 539.36 4.67 592.84 0.95 1.12

the Turbofan data set that scored sPHM = 110416.057 exist, however, these yielded a higher

train error and were thus not selected according to the above mentioned strategy.

BRR yields the best results on the Automotive 2 and Turbofan (in terms of sPHM) data

sets and always outperforms the naive approach. Especially the low error score on largest

evaluated data set (Automotive 2) is noteworthy.

DBSE2 yields very promising results on the automotive data sets: It yielded the lowest

error score on the Automotive 1 data set, a very close to the lowest score on Automotive 2.

Wang’s approach resulted in a MemoryError on Automotive 2 data set due to the many

nested for loops, e.g., required to shift each test time series over each cycle in the trained of-

fline model pool. Table 5.3 and 5.4 are therefore void in the corresponding cells. As expected,

Wang outperforms all other algorithms on the PHM08 data set. By adopting the hyperparam-

eters as described in Section 5.5.1, this approach also yielded the best results on the Weather

data set. On the Turbofan data set Wang approach yielded the best RMSE score. The ap-

proach proposed by Wang et al. [136] turned out to be a powerful and surprisingly versatile

technique. Other researchers are encouraged to try out the open source implementation by

Schlegel et al. [106].

All training and testing times given in seconds are shown in Table 5.4 to allow for a relative

comparison: BRR yields the slowest training times in general. Only the naive approach takes

longer to train on the Automotive data sets. However, testing times are significantly lower by

multiple orders of magnitude in comparison to DBSE2 and especially Wang across all data

sets. In terms of testing time, the naive approach always ranks similar. This is clearly due to

the fact, that both approaches rely on a single RF (naive) or three RFs (BRR).

Wang, on the other hand, is extremely fast to train. This is due to the way the approach

works: During training, no iterative optimization problems need to be solved. Instead, the

training stage only involves fitting polynomials to the data points for each time series of each

124 CHAPTER 5. REMAINING USEFUL LIFETIME

object. However, testing is extremely slow due too the many nested for loops. It is important

to note, that the Wang approach takes longer to test than any other approach takes for train-

ing and testing combined. This might render high frequency RUL monitoring on embedded

hardware unfeasible.

DBSE2 shares the property of training extremely fast since training essentially consists

only of creating a 3D-risk-feature histogram for each feature, respectively. The reason that

training takes longer in comparison to Wang is that training also involves “testing”: Due to

the tunable hyperparameters offered by DBSE2, a testing score is required (which involves

prediction). However, this is currently done single-threaded. E.g., the model used for Tur-

bofan data set took 0.390s to create the 3D histogram and 6.371s to predict the RUL for all

training samples (which is equal to 94.23% of the total training time). Major speedups can

be expected when performing the prediction multi-threaded.

5.7 Conclusion and Outlook

This chapter presented one entirely new approach which has been implemented from

scratch (DBSE2), a novel RF-based approach (BRR), and an open source implementation by

Schlegel et al. [106] based on Wang et al. [136]. All approaches were evalatuated in compari-

sion to a naive baseline approach consisting of a single RF on five different publicly available

and proprietary data sets to ensure generalizability of the evaluated algorithms. In addition,

all techniques were open sourced [106].

BRR leads to promising results and yielded consistently low error scores across all data

sets. This indicates a broad applicability. While the training time is (except for the Auto-

motive 2 data set) the slowest, testing time is the fastest and on par with the naive aproach.

Especially Wang but also DBSE2 are outperformed in terms of prediction time by multiple

orders of magnitude. This enables new areas of application, such as continuous monitoring

in the vehicle if the model is trained offboard beforehand. Future work should evaluate ad-

vanced bucketing techniques that take the class balance (the number of elements per RUL

range) into consideration, and the evaluation of other regression models such as Bayesian

regression to replace the RF. Also, a version of DBSE2 where no discretization (factorization)

of the features is required and instead a distribution is fitted seems promising.

DBSE2 is a promising similarity-based approach which yields extremely fast training

5.7. CONCLUSION AND OUTLOOK 125

times, and it is very lightweight in terms of code size and memory footprint during appli-

cation. The inference step includes only matrix multiplications and additions which enables

this algorithm to be deployed even in lowest cost Internet of Things (IoT) devices. Addition-

ally, by reducing the number of bins used for discretizing features and risk levels, the mem-

ory footprint of the model can be further reduced since less feature-risk pairs need to be

stored. This, however, trades off regression accuracy. Future research may evaluate different

forms of RUL cropping (e.g., discarding samples with a high RUL for training). Also, instead

of binned 2D histograms, parametric density models may yield good results. Lastly, the RUL

estimation is currently performed single threaded. Parallelizing might result into major per-

formance increases where multiple time series need to be evaluated (e.g. during training).

Also, features that are already discretized before entering the model may be exluded from

the built-in discretization algorithm.

A different issue which affects all RUL estimation techniques is that usually not all ob-

served time series within a data set eventually encounter an error. This raises the question,

what the true RUL labels for these non-faulty time series are, since the “ground truth” is un-

known. In this chapter, the RUL of the oldest (first) sample snf ,1 of a non-faulty time series tnf

was manually set to 1.5 times the maximum RUL encountered in the whole data set yield-

ing RULnf ,1 = 1.5 ·max(RULdataset). All subsequent samples are relabelled accordingly: Let

∆T (s1,s2) be a function that returns the time passed between samples s1 and s2. Now, after

the RUL of the first sample snf ,1 was set manually, the RUL of the subsequent sample snf ,2 is

defined as follows: RULnf ,2 = RULnf ,1 −∆T (snf ,1,snf ,2). E.g., the RUL of sample st2 is equal to

the RUL of the previous sample (st1) subtracted the timespan which passed between the two

samples. Better strategies may exist and need to be identified.

Trends such as IoT offer the chance to use RUL-based predictive maintenance for com-

pletely new areas that go far beyond automotive applications. The methods – now publicly

available – presented in this chapter are leightweight, generalizable machine learning based

solutions to pave the way for high product quality and reliability in upcoming technologies

and systems.

Chapter 6

Apache Spark and Application

Without explicitly disclosing, the Automotive 1 and 2 data sets used in the previous chap-

ter were transformed and preprocessed by Apache Spark. Especially Automotive 2, which is

essentially a subset of the Automotive 2L data set (which is introduced later in this chapter),

was not processable in-memory using conventional single-node frameworks such as pandas

or dplyr. However, being able to perform calculations in-memory is an extremely desirable

state, as this speeds up calculations considerably. Incremental online learning can only be

used to a limited extent, since it is generally desirable to deemphasize older samples, which

are based, for example, on an outdated software version, over time or not to use them at all.

In contrast to single-node setups, a cluster offers the possibility to scale up the avail-

able memory (Random Access Memory (RAM)) by adding more relatively cheap nodes built

with commodity hardware. The by far most popular, de-facto standard in-memory clus-

ter computing framework today is Apache Spark (“Spark”). Other, more streaming focused

in-memory cluster computing frameworks include Apache Flink [130], Apache Heron [131],

Onyx [133], and Apache Apex ™[129].

Since the existing data sets are overstraining single-node frameworks today and the data

sets will become even larger in the future, Apache Spark will be evaluated in this chapter. For

that to be possible, results and insights from the previous chapters are blended into a single

machine learning pipeline, implemented entirely using Scala and Apache Spark, with the

goal of being as generic as possible (and not tailored towards a specific application). This

pipeline is then evaluated regarding the following questions: Which obstacles occur when

training models on large amounts of data using Spark and how can these be avoided? Also,

how the most promising feature selection methods and techniques to cope with imbalance

126

6.1. STATE OF THE SPARK 127

perform in a decentralized cluster setup on large data sets will be evaluated. Also, the scala-

bility of the implemented pipeline and Spark will be evaluated. In order to build the bridge

to the application, this chapter will also present a prototypical user interface and provide

insights that may be taken into account in order to use the predictions of the pipeline as

profitably as possible.

Section 6.1 will provide fundamental information regarding the design of Apache Spark,

which is crucial for understanding the following sections. After defining the questions to

be researched (Section 6.2), a complete pipeline is proposed (Section 6.3). The proposed

pipeline starts with the extraction of key-value pair formatted data sets out of a relational

database. Afterwards, the data sets are transformed (Section 6.3.1) into a columnar layout

suitable for machine learning while paying attention to the specifics of the various feature

types used. The machine learning models (Section 6.3.2) are then created autonomously,

and the results served to an end user in an optically appealing way (Section 6.3.4).

The comprehensive evaluation starts with discussing pitfalls and caveats that emerged

during the implementation of the aforementioned pipeline, and tries to provide helpful hints

how to avoid them for fellow researchers whenever possible. A more in depth evaluation laid

out in Section 6.4 evaluates the modeling grade (primarily in terms of auPRC) and whether

the high expectations regarding the computing power and scalability of Apache Spark were

fulfilled. Section 6.5 provides mental impulses regarding economic aspects, before deploy-

ing the machine learning pipeline discussed in the following to production. Section 6.6 will

conclude by summarizing the key findings.

6.1 State of the Spark

This section aims to briefly introduce the concepts used in the following. Spark offers a rich

set of classes and design patterns. It is to note though that Spark is still in an early develop-

ment phase, and Application Programmable Interfaces (APIs) are likely to change in future

versions. Spark was implemented in Scala and provides APIs in Python, Java, R, and Scala.

Debugging Spark applications is simplified by using the native Scala API, which was used

for this work.

Spark is divided into multiple libraries which can be independently combined based on

the requirements. Spark “Core” forms the basis, the “MLlib” offers classes to implement

128 CHAPTER 6. APACHE SPARK AND APPLICATION

Cluster Manager

User Code

Spark Session

DriverProcess

Executor

Executor

Executor

Executor

Executor

Executor

ExecutorProcesses

Figure 6.1: The Spark cluster architecture.

complete machine learning pipelines, “SQL” offers advanced data manipulation based on

a syntax similar to Structured Query Language (SQL). These were the libraries used for this

chapter. Other available libraries are “GraphX” (enabling distributed graph processing) and

“Streaming” (enabling work flows for continuous data streams).

Figure 6.1 shows the main components of the Spark architecture based on Zaharia

and Chambers [143]. Spark applications consist of one DriverProcess and a set of

ExecutorProcesses. The DriverProcess is launched on a master node in the cluster. Its

tasks include: responding to an users inputs, and managing the cluster in terms of schedul-

ing and distributing work to the ExecutorProcesses. The DriverProcess forms the heart

of a Spark application and maintains all relevant state information during the complete life-

time of an application. It manifests as a SparkSession to the user. This represents the entry

point to perform all actions on the cluster. ExecutorProcesses, on the other hand, perform

the actual computations and report state information as well as the final result back to the

DriverProcess.

Spark has APIs to many other tools available in the Apache big data software stack. An

extensive survey can be found in Kamburugamuve et al. [66]. One of the most common use

cases is to use Spark in combination with Yet Another Resource Negotiator (YARN) [135] to

allocate resources such as cores and RAM. However, this is optional, since Spark can also

be launched using Spark’s standalone cluster manager (most likely requesting almost all re-

sources, see Section 6.3.3 for further thoughts on this matter). Also, Spark has rich Hadoop

Distributed Filesystem (HDFS) [115] support which ensures data locality.

6.1. STATE OF THE SPARK 129

Many of the concepts described in the following aim to perform successful parallel com-

putations in a cluster setting on commodity hardware, even if nodes fail (this and the follow-

ing sections are based on [144]). Another core feature of Spark is to be able to distribute data

across the cluster. This way, even data sets that are too large to be stored on a single machine

can be persisted.

Data sets are typically divided into partitions, which are distributed across the execu-

tors. Partitions are essentially chunks of a larger data set that were split priorly by the

DriveProcess. Operations are performed with respect to the partitions’ location on the

corresponding executor (and node). Processing the data in-memory is one of the key opti-

mizations for the speedup of Apache Spark for small, iterative workloads such as machine

learning [145].

The programming model includes the following concepts: Immutable data sets

(Section 6.1.1), lazy evaluation (Section 6.1.2), and ephemeral intermediate results (Sec-

tion 6.1.4).

6.1.1 Immutable Data Sets

Spark offers different data types to store and interact with data. The Re-

silient Distributed Data Set (RDD) is the fundamental, typed, and parallel col-

lection, the higher abstractions rely on. The latter are DataFrames, which

are dynamically typed, carry a schema and can also be used for nested data

(e.g., originating from a JSON file). They can be optimized for computations.

Datasets share all properties of a DataFrame but are statically typed, thus offering

compile-time type safety.

These core classes for holding data cannot be altered after creation. Sparks Programming

Model refers to this as immutability.

6.1.2 Actions and Lazy Transformations

Spark offers two types of operations to be performed on DataFrames: Transformations and

actions. They differ with regards to where they are executed and whether or not they trigger

an execution.

Transformations only require work on the executors. Narrow transformations such as

.filter(), .map(), and .zip() only require data which is locally available. Wide trans-

130 CHAPTER 6. APACHE SPARK AND APPLICATION

formations such as .groupBy() or .repartition() are likely to require data which is dis-

tributed across several executors and/or redistribute the data. This shuffling can be very

expensive, because transferring data over the network may be required.

Actions perform work on the executors and return the (often aggregated) results to the

driver. Thus, the result has to fit into the RAM available to the driver process.

Spark executes all operations in a lazy manner. This means, that all transformations are

collected in a Directed Acyclic Graph (DAG) until data is requested by the driver. The latter

corresponds to actions, such as .count(). This enables Spark to optimize the execution plan

prior to the actual computation.

6.1.3 Estimators and Transformers

Similar to sklearn [91], Spark has adopted the pipeline concept, which allows the user to

chain multiple pre-modeling and a modeling stages into a single workflow. An important

distinction between PipelineStages is whether it is an Estimator or a Transformer.

Transformers process the passed data set in a distinct and priorly set way. Estimators,

on the other hand, infer knowledge (and thus always offer a .fit() method) from the data

set and return a Transformer afterwards, also referred as PipelineModel.

6.1.4 Ephemeral Intermediate Results

Intermediate results are not persisted after transformations unless the user explicitly re-

quests Spark to do so (the Spark Programming Model refers this as ephemeral). However, per-

sisting intermediate results can yield major performance increases, if the result (DataFrame,

Dataset, RDD) of an expensive computation is again required after completion of the current

task. Yet, this causes increased storage cost. Spark keeps lineage of all previous operations

which led to a certain partition, to satisfy the fail safe requirement. Thus, being able to re-

compute the partition after node failure.

6.2 Research Demand

The automotive data sets used for the evaluation of the proposed algorithms in the previous

chapters, already push libraries which run on a single-node such as pandas (Python) and

dplyr (R) to their limits. In case of the “Automotive 2” data set from Section 5.4, the data set

6.3. APACHE SPARK PIPELINE 131

needed to be reduced prior to processing. Also, the transformation from the original key-

value pair format returned by the database into the columnar layout (required for machine

learning) was only practicably by Apache Spark. This was not possible on any other single-

node framework.

Thus, a multi-node framework which is able to work with large scale data sets that are

expected to grow further in the future, needs to be identified and evaluated. The framework

is subject to the priorly elaborated requirements, such as the generic applicability, and the

suitability for imbalanced and heterogeneous data sets. In addition, the evaluation also as-

sesses the scalability of the framework.

Also, potential pitfalls and corresponding countermeasures need to be identified.

6.3 Apache Spark Pipeline

The complete data-processing and machine learning pipeline is depicted in Figure 6.2. The

following notations are used: Blue marks all elements that do not rely on any Spark library,

orange is used whenever this processing step or storage is enabled by Spark. Also, thick

black arrows indicate large scale data transfer, whereas thin gray arrows indicate lightweight

communication such as the mean µ and standard deviation σ for the feature scaler or the

actual “model” holding the tuned parameters after training.

The pipeline starts by extracting available information from a relational database. Infor-

mation currently includes, among others (as denoted in Section 3.1.1), DTCs, MVs, parts, etc.

It is to note, that this list can be extended without requiring any manual modification thanks

to the overall generic design of the pipeline. The information is stored “as is” in a key-value

buffer. This step is necessary to perform daily deltaloads (that only query the data that was

added since the last query) instead of complete dumps. As mentioned earlier, this format is

unsuitable for machine learning tasks. Thus, it is transformed into a columnar layout. This is

the first step to utilize Spark. And, depending on the size of the data set, this is a step, where

all other data manipulation frameworks such as pandas (Python) or dplyr (R) fail according

to own experiments.

This columnar layout (stored as a parquet file, which is a common columnar storage for-

mat in the Hadoop ecosystem) is imported by Spark as a DataFrame (see Section 6.1.1). Strat-

ified splitting is performed to ensure that the training and test set share approximately the

132 CHAPTER 6. APACHE SPARK AND APPLICATION

same class balance ratio (this chapter exclusively focusses on classification). Afterwards,

following the training path, techniques for imbalanced learning are applied as evaluated in

Chapter 4 and described in Section 6.3.1 regarding the specifics of Spark. Afterwards, strings

are encoded numerically (e.g. using One Hot Encoding (OHE)), and discrete and continuous

features are normalized. The identified values for the mean and the standard deviation are

stored to be used later on for testing and inference. After applying feature selection (Sec-

tion 6.3.2) the actual model training takes place. The output is, aside from the tuned model

parameters, meta information that, e.g. allowing to assess the model quality.

Imbalanced

learning

String

Indexing
OHE

Feature

Selection

Standard

scaling
Modeling

Stratified

splitting

Train set

Test setMappingScaling
Selecting

Features
Evaluation

Model

Meta

Relational

DWH

Server

Key-Value

Buffer

Columnar

Buffer
Extraction

Transfor-

mation

End-User

Mapping
𝜎, 𝜇FeaturesModel

Figure 6.2: Overview over the pipeline.

6.3.1 Preprocessing

Although briefly noted throughout the previous chapters, preprocessing is explained in more

in detail here. The fundamental task to tackle is a binary one-versus-rest classification. Since

the ingested DataFrame holds all available features and targets, the following logic is applied:

The TARGET column is set in a “1-vs-all” manner: It is 1 if and only if the modeled target was

observed at this sample (e.g. “the part was switched”) and 0 else. All other features of the

same type are removed (e.g. if the target is a DTC, all other DTCs are dropped), as well as

all other potential targets such as parts, actions, and DCs. Also, “Metacolumns”, holding

6.3. APACHE SPARK PIPELINE 133

information such as the readout ID are kept for later usage (such as presenting information

to the end-user, see Section 6.3.4) but not used for training.

Another goal of the preprocessing step is to convert the DataFrame with one column of

each feature into a format that is required by MLlib. MLlib requires all features to be con-

tained in a single VectorColumn. Each cell of this column holds a vector of discrete, continu-

ous, and Boolean features. The TARGET column is required to be a discrete (for classification)

type column as well.

As shown in Figure 6.2, the DataFrame is now split into a training and a test set. In this

chapter, a fixed value of trainPercentage = 0.7 was used. Since the Automotive data sets is

highly imbalanced, this split is performed stratified. This ensures, that the balance between

minority and majority classes is approximately the same in the training and testing set. Not

performing a stratified split yields serious problems this poses the risk that not a single mi-

nority sample makes its way into the testing set. Although this is less likely, a training set

without a single positive sample can cause the training to fail entirely.

Imbalanced Learning

Based on the insights gained in Chapter 4, the most promising approach (SMOTE) as well as

Random Under-Sampling (RUS) were used.

RUS was performed in any case to speed up computation. The variable samplingRatio

was used to set the ratio of majority class samples in relation to minority class samples (e.g.,

samplingRatio= 5 refers a training set, where five times as many majority class samples are

present compared to the number of minority class samples).

String Indexing

String indexing is necessary to make string encoded information such as the color “black”

(that might affect the thermal behavior of a car due to its higher absorption) accessible to

the model. To do so, the PipelineStage called StringIndexer was used, yielding a nom-

inal column where every unique string was replaced by a number. The Spark DataFrame

internally marks the feature as a nominal feature. This way, it is ensured that the feature

is not treated as a ordinal, discrete, or continuous feature. Since the StringIndexer is an

Estimator, and therefore needs to be trained using the fit() method on the data set, spe-

cial care is needed: If a string occurs in the testing set which was not present in the training

134 CHAPTER 6. APACHE SPARK AND APPLICATION

set, a dummy number is assigned.

Special Treatment of Important Features

The Spark API allows to define User defined functions (UDFs). These are handy to perform

a certain task for all values of a column or feature respectively. UDFs were defined to pro-

cess two string typed columns, that were important for the diagnostic use case and would

not have been represented properly by the other techniques discussed in this section. The

first one is the dealership number, which is unique to every dealer worldwide. It is an nom-

inally encoded integer (a dealer that is “one unit away” is not necessarily located in close

distance). The interesting, geographical information (enabling inferences regarding to the

climate, gasoline quality, etc.) is hidden by default. Therefore, a UDF was defined to trans-

form the dealer number to longitudinal and latitudinal coordinates (Section 3.4.1). The other

variable where manual effort was invested is the version number. This string consists of two

parts: The version itself, incrementing over time, and a maturity grade metric. Since a new

version might fix a known issue on one hand, but might introduce a new issues due to the low

maturity, these two informations were extracted into two separate, continuous and discrete

features.

“Special treatment” seems to contradict the generic claim of this chapter and this work

as a whole. Due to the outstanding importance, especially of the used software version, and

the fact that both of the specially treated features are one of the few features available across

the whole fleet, this decision is inevitable.

One Hot Encoding

Nominal features (such as produced by a StringIndexer) can be misleading to the model,

since they suggest a linear relation where none exists. To tackle this, a OneHotEncoder was

used. The idea is to transform a nominal feature where, e.g. “black” is represented by a 0

and “white” is represented by a 1 into two binary columns: A “is black” column, which is 1

if and only if the nominal column was 0 and a “is white” column which is 1 if and only if the

nominal column was 1. After one hot encoding, the original, nominal column is dropped.

6.3. APACHE SPARK PIPELINE 135

Standard Scaling

For reasons discussed in Section 3.1.3 (improving convergence and allowing weight-based

feature importance assessment based on L1 LR), scaling is performed on all continuous fea-

tures if an LR model was used. The StandardScaler PipelineStage was used to create

zero mean µ= 0 and standard deviation σ= 1 features. RF-based models do not require this

step, which is why this PipelineStage is skipped in the latter case.

Assembling the Vector

As noted earlier, MLlib requires the features to be encoded in a VectorColumn. Fortunately,

the Spark API offers a PipelineStage that makes this as easy as one line of code: The

VectorAssembler transforms all inputCols to a VectorColumn. Aside from the actual fea-

ture values, metadata is stored along with it. This is important to be able to assess feature

importances after training. Also, the TARGET column is casted to double. Now, the data set

is ready for training.

6.3.2 Modeling

After the preprocessing completed, the actual modeling takes place. First, relevant features

are selected. Second, the model hyperparameter space is evaluated using CV.

Feature Selection

Spark MLlib natively offers only χ2-test-based feature selection, which was identified in

Chapter 4 as the most promising technique. Thus, other promising techniques from Chap-

ter 3 were implemented as Spark PipelineStages by Kaminski and Schlegel [67] based on

the theoretical foundations given in Section 3.1.

These are a CorrelationSelector, a GiniSelector, an InfoGainSelector, an RF-

based ImportanceSelector and an L1 regularized LRSelector.

Since the Gini coefficient as introduced in Section 3.1.2 and used throughout Chap-

ter 3 was the worst performing filter measure in terms of “contribution” (see Table 3.7), the

GiniSelector (referred as “Gini”) in the remainder of this chapter will evaluate the “Gini

gain”1 as proposed by Kononenko and Matjaž [72] and Čehovin and Bosnić [26] based on the

1Originally, the measure was called “Gini index” by Čehovin and Bosnić. However, this name conflicts with
the Gini index as proposed by Breiman [20].

136 CHAPTER 6. APACHE SPARK AND APPLICATION

Gini index proposed by Breiman [20]. For a feature Xp the Gini gain is defined as follows [26]:

Ginigain =
1−

∑
x∈DXp

P (Xp = x)
∑

y∈DY

P (Y = y |Xp = x)2

−
(

1−
∑

y∈DY

P (Y = y)2

)
. (6.1)

P (Xp = x) refers the probability of feature Xp taking value x, P (Y = y |Xp = x) refers the

probability of the sample belonging to class y given that the feature Xp has value x, and

P (Y = y) refers the probability of a sample belonging to class y when being randomly drawn

from the data set. The first part of Equation (6.1) (left of the second minus sign) calculates

multiple Gini indices for every distinct (binned) sub-data set where feature Xp has only a

single value and averages the Gini indices in a weighted manner according the probability

of feature Xp taking the respective value. The second part calculates the Gini index for the

original dataset. Finally, a “gain” is calculated by subtracting the second from the first part.

The χ2 test required extra work, since it only works on discrete random variables.

MLlibs QuantileDiscretizer PipelineStage is a built-in method to transform contin-

uous features (columns) into ordinal features (columns). This, however does not work for

VectorColumns, which is why this class had to be extended. Each feature was binned into 8

discrete levels, as this provided a good trade-off between classification grade and computa-

tional complexity.

Based on the ranking from all aforementioned measures, the top percentile% features

were selected for further processing.

Cross-Validation

The built-in CrossValidator PipelineStage was used to tune the models hyperparame-

ters. The best hyperparameter combination was selected based on the best auPRC during

training (averaged across all folds). It is to note though, that only model hyperparameters

were tuned using CV. Other, hyperparameters such as the training-test-split, used sampling

ratios, or settings of different upstream PipelineStages were selected based on the exam-

inations laid out in the previous chapters. The tuning grid was created using the built-in

helper object HyperParameterGrid. Tuned hyperparameters for the RF are:

• numTrees: The number of trees in the forest.

• maxDepth: The maximum depth of each tree.

6.3. APACHE SPARK PIPELINE 137

• numBins: The number of bins to discretize the feature space.

• impurity: The split criterion to perform the impurity based branching.

For the L1 regularized LR, the following hyperparameters were optimized (the

elasticNetParam was set to L1):

• regParam: The regularization parameterα according to Equation (2.7), withα= 1
C (see

Equation (2.12)).

• maxIter or tol: Whichever applies first, defines when the algorithm considers itself

converged. tol refers the minimum loss reduction that is required to happen on ev-

ery iteration, maxIter is naive upper bound for the number of iterations that usually

indicates that the model failed to converge.

6.3.3 Cluster Setup

At the time of the experiments, Apache Spark was still a relatively new framework. Thus, no

up-to-date hosted version was already available. Therefore, a prototypical Spark 2.1 cluster

including an HDFS was set up using two workstations WS1 and WS2. WS1 had 32 CPU cores

clocked at 2GHz and 92GB of memory. WS2 is the same workstation that was used for the

experiments laid out in the previous chapters (32 CPU cores at 2GHz, 96GB RAM). The work-

stations were connected using a point-to-point Gigabit Ethernet connection.

The resources of a Spark cluster are shared between a single Driver process and multi-

ple Executor processes. While the Executors perform the actual work (e.g. transforming

key-value into columnar layout) and are distributed across potentially multiple nodes, the

DriverProcessis located on a single node. It is responsible for to an users program, main-

taining state information, distributing the work the the ExecutorProcesses, etc.

Further information on how to setup a Spark cluster and launch a application are given

in Appendix A.

6.3.4 Graphical User Interface and Backend

The Graphical User Interface (GUI) aims to serve three different use cases:

1. Simplifying the development, e.g., by easing the debugging process.

138 CHAPTER 6. APACHE SPARK AND APPLICATION

2. Assisting workshop staff in the future.

3. Providing additional information to asses model quality and important features to

BMW engineers in the future.

It was implemented based on the Model-View-Controller pattern: The front end (view)

was implemented using AngularJS [50] and Boostrap [132]. AngularJS is a JavaScript-based

framework for single page web applications. Bootstrap is a toolkit that offers a rich set of

predefined controls, layouts, and other GUI components. The program logic (controller)

was implemented using the Play framework [78]. This was the obvious choice, since it is the

most popular web-framework that offers a native ScalaAPI which eases integration with the

Scala implementation of the proposed Spark pipeline.

An example of the user interface is shown in Figure 6.3. In the top right corner, a search

input is available. This can be used to input a Vehicle Identification Numbers (VINs), or spe-

cific readout IDs. In both cases, the Backend is queried for all readouts of the corresponding

car. Multiple readouts can be selected at the same time. This way, changes are traceable

over time. In Figure 6.3, three readouts from the four available are selected (on the left of

the depicted car). For each readout, all available models are evaluated. For each model, a

score is calculated (details on how this score is calculated are given in Section 6.5). Tapping

on the model brings up a screen that shows additional information such as the auPRC or the

important features used (not displayed).

An issue, also discussed in Section 6.4.1, is the long inference time. The upside is, that

the prediction of a score approximately takes the same time, independent on the number of

passed samples – be it 10, 100, or 1000. However, the time for loading and applying a model is

≈ 10s. This makes it unfeasible to calculate a high number of model (each representing a dis-

tinct part, action, etc.) rankings upon request by the GUI. Pre-calculating and caching might

solve this issue. However, the current implementation of Spark cannot be recommended for

workloads where a high number of models is applied to a small number of samples.

6.4 Evaluation

This section briefly evaluates the proposed pipeline. The focus is explicitly on the suitability

of Spark itself (Section 6.4.1), the computational complexity, and scalability (Section 6.4.3).

6.4. EVALUATION 139

Figure 6.3: Prototypical implementation of the user interface.

Techniques, already discussed in greater detail (Chapter 3: feature selection, Chapter 4: tack-

ling imbalance), are not re-evaluated here. The minimum number of positive samples for a

target to be modeled was 20 throughout this chapter.

6.4.1 Limitations of Apache Spark

Through the extensive examination of Apache Spark in a real world scenario, the following

interesting insights surfaced.

Persisting Intermediate Results

Transformations in Spark are ephemeral, which denotes the circumstance that intermedi-

ate results are discarded upon completion of the task. An “intermediate result” is, e.g., a

DataFrame that already includes all features and targets in a columnar layout after all pre-

processing steps, as described in Section 6.3.1. A “task” consists e.g., of all steps necessary

to build a model for a certain part. Discarding the aforementioned DataFrame after the task

140 CHAPTER 6. APACHE SPARK AND APPLICATION

has been completed would require that exactly the same (or at least a similar) DataFrame is

recomputed for the following modeling target.

To avoid this, the Spark API offers two methods to persist (keep) intermediate results:

DataFrame.cache() and DataFrame.persist(). While cache() uses the default storage

level, this can be explicitly set with persist(). At total, 12 different storage levels are avail-

able, differing in the location (RAM versus disk), compression, redundancy level, etc. Select-

ing the right storage level is crucial to ensure fast computation. cache() should be avoided,

since it typically uses a slow combination of RAM and disc. By default, intermediate results

should be persisted to RAM only. If this is no option, the following options can be consid-

ered (in this order): The usage of compression, applying sampling to reduce the data set, or

organizing a more capable cluster. Storing on disc should be avoided in any case: Dean [16]

examined that disc latency is up to 1500 times slower than RAM (even with Solid State Drive

(SSD)).

Coping with High Dimensionality

Spark 2.1 is surprisingly unsuitable to work with high-dimensional data sets with more than

approximately 3000 columns independent on the hardware. Due to the lazy nature of Spark

(see Section 6.1.2), an execution plan is created until results are requested. Among other

things, this execution plan includes all features’ names before and after each transformation.

The storage complexity of the execution plan thus increases by O(ntransformations ·nfeatures).

Therefore, multiple, consecutive DataFrame.withColumn() method calls, which are

usually used to create new columns, should be avoided. The reason is, that every call in-

creases ntransformations by one. Instead, bundling multiple column creations into a single

transformation using DataFrame.select() is advised.

The execution plan is optimized before any computation is executed. Optimization, e.g.,

by moving transformations which reduce the amount of data to the front, is in general a

good idea. However, the execution plan optimizer creates many constant variables during

optimization. The Java Virtual Machine (JVM), which is used by Spark, restricts constant

variables to be no larger than 216 − 1 Bytes (or in this case pure American Standard Code

for Information Interchange (ASCII) chars). This limit is quickly exceeded when working

with high dimensional DataFrames. This issue, however, is known [40] and has been fixed in

Spark 2.3. Which again underlines the importance of having an up-to-date Spark cluster to

6.4. EVALUATION 141

the disposal.

A workaround was to split the pipeline into smaller steps. This, however, increased the

runtime. Transforming features into a different feature space (e.g. using PCA) would have

been another possibility, but was not feasible due to the requirement of an interpretable

feature space.

The Bottlenecks of Optimization

As discussed earlier, Spark evaluates all transformations in a lazy manner and optimizes the

DAG before execution. As beneficial this might be for the actual computation on one hand,

as time consuming the process of optimization can be on the other hand: This process is

unfortunately single-threaded. Especially a large amount of transformations (≈ 1000) per-

formed on many features (≈ 2000) can cause this optimization to take multiple hours.

Concurrent Model Building

One might assume that Spark enables highly parallel model building given the plentiful re-

sources of cores and RAM available. However, this is not exactly true. While Spark distributes

transformations, and the training of a single model across the cluster, is not possible to train

different models at the same time out of the box. To do so, instantiating multiple master

nodes would be required, which is not aligned with the point of having a big cluster made

accessible by a single entry point that distributes workload automatically. Thus, training

models on a single and potent workstation is still faster in most cases, since the overhead for

synchronization and task distribution is basically zero. Also, if multiple threads are launched

in the DriverProcess, these threads are competing for the ressources. In this scenario,

timeouts occur regularly causing tasks to finish only rarely.

Inference

The downsides of training models with Spark was already discussed. Prediction based on

the trained models using Spark is also cumbersome, since a fully featured SparkContext is

required to do so. Having a possibility to load and use serialized models that were trained by

Spark would have made the whole process more practicable. Spark is able to export models

to Predictive Model Markup Language (PMML) files (which is basically a file holding, e.g.,

all inferred model parameters), but as of today there is no execution or modeling framework

142 CHAPTER 6. APACHE SPARK AND APPLICATION

which is capable of importing PMML files. A lightweight version of Spark, which does not

require a running cluster infrastructure, would be another option to tackle this, but is not

available as of today. Packages such as mlleap [139] claim to ease deployment of a Spark

pipeline, but require the re-implementation of custom PipelineStages, which would have

been very cumbersome due to the high proportion of custom code.

The Right Number of Partitions

Setting the right number of partitions is crucial. The number of partitions can be set explic-

itly by DataFrame.repartition(), which is absolutely necessary for Spark to parallelize

well. Unfortunately, this is not done automatically (e.g., based on a heuristic). Typically,

when a Comma Separated File (CSV) is loaded from disk – which happens regularly in the

proposed pipeline (see Section 6.3) – the number of partitions defaults to a single partition,

which essentially disables parallelization. The number of partitions needs to be increased.

However, some stages are easy to compute. In this case, reducing the number of parti-

tions of the DataFrame passed from the previous stage can increase the performance. The

same task is depicted in Figure 6.4a and Figure 6.4b, respectively, for different numbers of

partitions. Figure 6.4a shows the computation times for the different computations of a sin-

gle stage. The bar consists of two different parts: The actual computation (green, marked

by a blue box), and the overhead (all other fractions), including the scheduler delay, task

de-serialization time, etc. In Figure 6.4a, the DataFrame is partitioned into 1120 partitions.

This yields massive amounts of overhead: Only ≈ 1% of the total time are used for the actual

computation yielding a total computation time of 1.8min. The amount of overhead can be

reduced, by reducing the number of partitions to 56. The share of actual computation is this

way increased to 10%, yielding a total computation time of 8s.

Rapid Development

Due to the fast pace of Spark development (a new version adding new features is released

every six months [134]), big cooperate surroundings tend to be several versions behind. This

can be particularly obstructive when the new version introduces essential features. An ex-

ample for this is model serialization which has been introduced with Spark v.2.0 [118]. If

model persistence is a requirement, and the companies infrastructure lacks this update, the

developer is forced to instantiate and manage an own cluster.

6.4. EVALUATION 143

(a) SparkUI with 56 partitions.

(b) SparkUI for the same task with 1120 partitions.

Figure 6.4: Performance comparison for different numbers of partitions.

6.4.2 Data Sets

Similar to the corresponding Automotive data sets introduced in Section 5.4, the data sets

used for evaluating the techniques proposed in this chapter are similar, yet larger (note the

L suffix), thanks to greater computing power offered by Spark. The data sets are shown in

Table 6.1. Note that a battery related DTC in Automotive 2L was actually used as the (only)

target. That is, all other DTCs have been dropped.

Automotive 1L

Automotive 1L was collected during workshop sessions from 30000 hybrid vehicles and con-

sists of non-personal data only. It was collected between the end of 2013 and mid of 2017 and

offers a variety of potential targets. Each car was sampled four times on average. It consists

144 CHAPTER 6. APACHE SPARK AND APPLICATION

Table 6.1: Details on large Automotive data sets.

Data set Samples Targets Features Number of
TA SP DC DTC RO CP EE EC MV Features

Automotive 1L 121900 529 1109 462 380 13 20 202 146 243 3107
Automotive 2L 5130616 0 0 0 1 8 20 297 25 1428 1781

Credit Card 284807 - - - - - - - - - 30
NIPS 1,2 100000 - - - - - - - - - 1000
NIPS 3,4 100000 - - - - - - - - - 2000

of 1004 features and 2100 potential targets. In the Automotive 1L data set, TA, SP, and DC

were used as targets. Only ≈ 21.0% of the potential target DCs, and 20.6% of the SPs and TAs

exceed the above mentioned requirement of at least 20 or more positive samples. A number

of 20 positive samples yields a balance ratio of 0.000164 (roughly 1 : 6100).

Automotive 2L

Automotive 2L was collected from 95000 hybrid vehicles and consists of non-personal data

only during the same period. Each car was sampled 54 times on average in this data set, with

an average distance of 11.05 days between the samples. This data set is interesting since it

already hints the growing amount of available data and therefore underlines the necessity to

identify a scalable solution for data-driven workshop diagnostics. The balance ratio of this

data set is 0.0000663 (roughly 1 : 15000). This data set is used to evaluate if Spark is scalable

to deal with even large-scale data sets. In this data set, the single DTC was used as target

(class), all other feature groups were used as features.

Credit Card

In the Credit Card data set [34] each sample is an anonymous credit card transaction from

European cardholders performed in September 2013. The 30 features include time of the

transaction and the transferred amount. The remaining features have been transformed us-

ing PCA for privacy reasons. The target is to predict whether the transaction was fraudulent

(1) or not (0). This data set was selected for several reasons: First, using a non-automotive

data set ensures general applicability. Second, the high number of samples and the imbal-

ance ratio of 0.00173 (roughly 1 : 577) are in the same region of Automotive 1L, ensuring

transferability of the gained insights. Third, this data set enables the identification of promis-

ing hyperparameters in a more timely manner due to the lower number of dimensions.

6.4. EVALUATION 145

Synthetic Data Set (NIPS)

The evaluate the feature selection algorithms, multiple synthetic data sets were used. This

allows to set the number of relevant features explicitly. To do so, the make_classification

() method provided by sklearn was used to generate a CSV file that was then imported by

Spark. The used generation algorithm was proposed by Guyon [53] to create data sets for the

Conference on Neural Information Processing Systems (NIPS) held in 2003. Four different

data sets NIPS 1-4 were created with varying amounts of overall features including a certain

number of informative features.

The latter are the only ones to carry helpful information to predict the class. This data

set, unlike any other data set used in this work, was perfectly balanced. Also, each class con-

sisted of 10 clusters, which is another parameter (n_clusters_per_class) of the described

method make_classification() to create a more realistic and challenging data set.

Table 6.2: Details on the NIPS data set.

Name samples features informative

NIPS1 100000 1000 10
NIPS2 100000 1000 100
NIPS3 100000 2000 10
NIPS4 100000 2000 100

6.4.3 Experiments

For all experiments, a 70% to 30% test-train split was used. Hyperparameters were tuned

using a 3 fold CV on training data. The two major pipeline hyperparameters, influencing the

scalability most (which is the major concern of this chapter), are

• the used model type, being either LR or RF, and

• the sampling ratio which defines the ratio between the number of negative (majority

class) samples and positive (minority class) samples in the data set. A sample ratio of

5 indicates that the majority class samples in the training set are sampled down such

that there are “5” times as many majority class samples as minority class samples in

the training data set.

Other tunable hyperparameters are not optimized in the following but rely on the in-

sights gained in Chapter 3 and Chapter 4. Instead, the most promising techniques will be

146 CHAPTER 6. APACHE SPARK AND APPLICATION

evaluated regarding their cost (in terms of computational complexity) and beneficial influ-

ences on the classification performance (in terms of auPRC) in a cluster computing setup. To

reduce the hyperparameter space before the evaluation of feature selection and imbalance

techniques, optimum values for model type and sampling ratio are identified based on the

Credit Card data set.

Figure 6.5 shows the achieved auPRC in dependence on the used model type and the

used sampling ratio. Multiple, interesting observations can be derived: First, the LR tends to

yield a higher testing auPRC for higher sampling ratios. However, this effect fades away as

the sampling ratio increases. Second, the RF yields higher auPRC performance, independent

of the sampling ratio. This might be explained with the linear nature of the LR, which is not

able to reflect the actual (nonlinear) decision boundary. Third, a sampling ratio above 5 only

yields a drastic increase of the variance of the achieved test auPRC when an RF was used and

should thus be avoided.

LR RF

1 2 5 10 1 2 5 10

0.4

0.5

0.6

0.7

0.8

sampling ratio

au
P

R
C

Figure 6.5: Evaluation of different sampling ratios based on auPRC on the Credit Card data
set.

The training times depicted in Figure 6.6 show a very clear trend for the LR classifier: The

larger the used sampling ratio, the lower the training time. This is counter-intuitive, and may

be explained with the way an LR is trained (optimized). A higher sampling ratio results into

more data available for training, which in case of the LR clearly yields better classifiers (Fig-

ure 6.5). This may cause the iterative training algorithm to stop earlier, since the minimum

classification grade improvement required to start the next iteration is undershot earlier.

The training times of the RF are only slightly increasing with higher sampling ratios and

in general lower (faster) in comparison to the LR. This contradicts the insights gained in

6.4. EVALUATION 147

Section 4.4: According to Figure 4.17, training of an LR was 5 to 15 times faster in com-

parison to training an RF. Even after taking the size of the tuning grid into consideration

(LR: 12, RF: 6) this can only be explained with the better parallelizability of an RF. This may

be explained conceptually: An RF involves training multiple trees. Each subtree or branch

can be trained independently on a separate isolated thread or even worker. Thus, less com-

munication overhead is necessary in comparison to LR, where mini-batch gradient descent

or limited-memory Broyden-Fletcher-Goldfarb-Shannon [87] require more communication

between threads or worker to share, e.g., weight updates of the LR.

LR RF

1 2 5 10 1 2 5 10

100

200

300

400

500

sampling ratio

Tr
ai

n
in

g
ti

m
e

[s
]

Figure 6.6: Evaluation of different sampling ratios regarding the training time on the Credit
Card data set.

Therefore, to evaluate the feature selection and imbalance techniques in the following, a

sample ratio of 5 to reduce the size of the training data set will be used in combination with

an RF. The testing data set will not be subsampled.

Feature Selection

As argued above, feature selection techniques will be mainly evaluated on the NIPS data

sets. Wrapper measures as introduced in Section 3.1.3 were not considered, they are too time

consuming in the given cluster computing scenario. For comparison, the results visualized

in Figure 6.7 are enhanced by the Automotive 1L data set (which uses a different scaling of

the ordinate). Due to the limited computing power available, 40 representative modeling

targets from the Automotive 1L were selected2.

2Aside from the above mentioned requirement of 20 positive samples, the strategy was as follows: First, all
remaining potential targets were divided in four quartiles in dependence on the number of available samples.
Then, from each quartile, ten samples were randomly chosen.

148 CHAPTER 6. APACHE SPARK AND APPLICATION

Auto. 1L NIPS1 NIPS2 NIPS3 NIPS4

1% 10
%

10
0% 1% 10

%

10
0% 1% 10

%

10
0% 1% 10

%

10
0% 1% 10

%

10
0%

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.05

0.10

0.15

Percentage of selected features

au
P

R
C

Figure 6.7: Influence of feature selection on the auPRC of an RF.

If only the 1% highest ranked features are selected, the classification grade (auPRC) cleary

suffers in multiple cases (Automotive 1L, NIPS2, NIPS4). This can be explained by the fact

that many of actual informative features do not make it into the training set, thus wasting

information. The other extreme, selecting all features (100%) and not performing any feature

selection at all, can also harm the classification grade. This can be observed on the NIPS1,

NIPS3, and NIPS4 data sets. This is an important thing to note which underpins the results

from Chapter 3. Neither selecting all features, nor only 1% can be advised. Thus, selecting

10% marks the best trade-off in terms of auPRC since this value yields consistent high auPRC

scores across all evaluated data sets. However, this can only be applied to other scenarios to

a limited extent. Instead, it is recommended to follow the procedure described in Chapter 3.

Next, the influence on the training duration is investigated. Figure 6.8 shows the training

durations for both classifiers, different selection percentages, the computation time of the

various feature selection techniques, and (if available) the individual computation times of

the selection techniques. Please note the different ordinate scales: The LR is faster on the

NIPS data sets in terms of training duration. However, on the Automotive 1L data set, the

training durations are roughly equal. This is an interesting observation: While the LR pro-

vided by the MLlib is unaffected the number of features, MLlibs implementation of the RF

requires more time for training as the number of features increases. Combining LR with fea-

ture selection techniques makes no sense from the training time perspective: Mainly due

to the correlation based (Section 3.1.2) filter, the overall time it takes to create a model is

always lower, if no feature selection takes place. The time it takes for the feature selection

techniques to compute does not outweigh the savings in terms of model training time.

6.4. EVALUATION 149

However, feature selection speeds up RF training: Computing feature rankings and train-

ing the model on the 1% or 10% subset of the features, is always faster on the NIPS data sets.

Thus, combining an RF with feature selection can influence the model creation positively.

Auto. 1L NIPS1 NIPS2 NIPS3 NIPS4

LR
R

F

1% 10
%

10
0% 1% 10

%

10
0% 1% 10

%

10
0% 1% 10

%

10
0% 1% 10

%

10
0%

0

100

200

300

400

500

0

500

1000

1500

2000

Percentage of selected features

Tr
ai

n
in

g
ti

m
e

[s
]

χ2

Correlation
Discretizer
Information

Gini
All

Training

Figure 6.8: Influence of feature selection on the training time.

Figure 6.8 also shows, that the correlation takes significantly longer to compute than all

other filter measures. The respective proportions, averaged over all NIPS data sets are visu-

alized in Figure 6.9. Calculating the correlation measure takes 152s on average. This equals

to 89% of the 171s total average time to compute all filter measures. For comparison, the

training takes 149s (991s) on average for the LR (RF). Unlike “Information” (MI) and the Gini

Measure, which were calculated using discretized features, this was not the case for correla-

tion. Thus, every value of every feature-target combination had to be compared, causing a

lot of communication overhead and slowing down the computation.

150 CHAPTER 6. APACHE SPARK AND APPLICATION

0 50 100 150
Average computation time [s]

χ2 Correlation Discretizer Information Gini

Figure 6.9: Timings of various filter measures in Spark.

Imbalance

This section briefly evaluates SMOTE [29] in a big data setup. SMOTE is currently the by far

most popular (in terms of citations) and most promising (according to Section 4.1.1) tech-

nique to tackle imbalanced data sets.

Figure 6.10 shows the percentage of models on the ordinate that performed above a given

threshold on the abscissa. Both, auPRC and auROC values are plotted for comparison. Also,

the random strategy (where only random subsampling takes place) is compared to a com-

bination of upsampling by SMOTE and random subsampling. SMOTE consistently yields a

slightly higher percentage of models that perform above the respective threshold. This holds

true for any given threshold and both measures, although the influence is more visible and

more meaningful based on the auPRC measure.

0.00

0.25

0.50

0.75

1.00

0.
00

0.
25

0.
50

0.
75

1.
00

Threshold auC

Pe
rc

en
ta

ge
ab

ov
e

th
re

sh
o

ld

Strategy
Random
SMOTE+Random

Measure
auPRC
auROC

Figure 6.10: Evaluation of Automotive 1L data set.

Although measurable, the classification performance improvements caused by SMOTE

are not in any relation to the drastically increased processing times. On average, models

trained without SMOTE based on Automotive 1L took 210s. If SMOTE is applied, “SMOTing”

and training of a RF yielded a combined training time of 511s, which is more than doubled.

6.5. BRIEF ECONOMIC ANALYSIS 151

This effect is further worsened by the fact that that “SMOTing” itself raises the sampling time

by 42s on average in comparison to just performing undersampling (14s).

A Brief Note on Scalability

This section briefly elaborates, whether Spark is suitable to process the by far biggest auto-

motive diagnostic data set used in this work (Automotive 2L). The aforementioned computa-

tion times (see, e.g., Figure 6.6, Figure 6.8, or Figure 6.9) suggest that tuning hyperparameters

on a data set of this size is not feasible. Although slow, processing and model creation were

possible and yielded the following durations:

Table 6.3: Durations on Automotive 2L data set.

Training strategy Sampling time [s] Training time [s]

Random 703.4 1664.8

SMOTE+Random 2062.9 3757.4

As Table 6.3 shows, model building is possible, despite being slow. Artificially upsampling

the minority class to five times the samples using SMOTE raises the sampling time by about

1359s. In both cases (Random and SMOTE+Random), the majority class is subsampled as

described above (the class balance is 1 : 5 in both cases). Upsampling the minority class also

increases the time it takes to create the RF model to model the target DTC of Automotive 2

by more than 100%.

6.5 Brief Economic Analysis

All measures introduced in Section 2.3 aim to assess the classifiers’ ability to distinguish be-

tween classes, but do not consider economic aspects. However, this is an important step

before deploying a machine learning system [31]. This section aims to provide fundamental

thoughts that should be considered when investigating this matter further (which is outside

the scope of this work).

In general, accurately measuring the cost assigned to prediction is very hard in the given

scenario. Customer dissatisfaction caused by wrong or too expensive repairs is hard to mea-

sure, laws differ between countries which can cause sometimes the company and sometimes

the customer to be liable for the same issue, etc. Also, the proposed techniques aim at per-

forming multiple binary classifications for all potential parts and actions. While a single error

152 CHAPTER 6. APACHE SPARK AND APPLICATION

(predicting a slightly lower score to the part that should be switched) does not do any harm

when being evaluated in isolation, but may cause a different outcome if combined with other

errors (predicting a slightly higher score on the wrong part).

Based on Table 2.1, predictions can be separated into the following categories:

• FP: Predicting a defect to be present although it is not.

• TP: Predicting a defect to be present which is indeed the case.

• FN: Predicting a defect not to be present although it is.

• TN: Predicting a defect not to be present which is indeed the case.

These categories can be further refined based on whether the defect was noticeable by

the customer or latent (not noticeable), which is shown in Table 6.4, where + is referring a

positive cost, − is referring a negative cost (cost savings), and · is referring no cost:

Type cost
noticeable latent

FP ++ +
TN − −
FN + ·
TP − −

Table 6.4: Cost assessment of different prediction outcomes.

Predicting a FP when a defect is noticeable is most costly outcome: Both, switching the

wrong part and leaving a dissatisfied customer needs to be avoided. If it is a latent defect, the

cost reduces to just switching the wrong part. Predicting TP and TN is desirable, reducing the

overall cost. A FN yields costs for potentially dissatisfied customers if the defect is noticeable

and no costs for a latent error.

This can be formalized as follows: FPs are the most expensive errors. Thus, using the

auPRC to assess the classification performance as laid out in Section 2.3 seems suitable be-

cause it penalizes a high number of FPs (via the precision). To identify the economically

most viable repair, the following formula is proposed:

score = predrepair ·
(

1− crepair∑R
i (ci)

)
· auPRC −auPRCmin

1−auPRCmin
, (6.2)

6.5. BRIEF ECONOMIC ANALYSIS 153

with predrepair being the prediction for the currently evaluated repair, crepair the cost that is

caused by performing the repair,
∑R

i (ci) the summed cost for all possible repairs, followed by

the auPRC scaled to a [0,1] interval to allow comparison of different data sets with difference

balance ratios. Equation (6.2) formalized the following intuitions to identify the economi-

cally best repair (highest score):

1. A high predrepair : This indicates that the corresponding action or part is likely to resolve

the issue.

2. A low cost of the repair crepair : The lower the cost, the better. If, e.g., two actions are

equally likely to resolve the issue (predrepair), the action with lower associated cost

should be preferred.

3. A reliable model indicated by auPRC: The higher the auPRC during testing, the more

trustworthy the predictions of the model are. However, since the auPRC is dependent

on the balance ratio ℵ = NI

N of the data set (NI is the number of minority class sam-

ples, see Chapter 4), special care is needed.

To make the auPRC ratings of multiple models comparable, the auPRC must be normal-

ized since the auPRC depends on the class balance ratio (which varies across data sets). To

do so, the minimum possible auPRC is required for each data set, respectively. The minimum

possible auPRC is defined using the balance ratio ℵ= NI

N (NI is the number of minority class

samples, see Chapter 4) [18]:

auPRCmin = 1+ (1−ℵ)(ln(1−ℵ))

ℵ (6.3)

This can be explained as follows (for more details, please refer Boyd et al. [18]): Recall

and precision both depend on the number of TPs (known from the confusion matrix). Thus,

not every point in the precision-recall space is reachable based on a valid confusion matrix

(e.g., all values need to be positive). The following inequality holds for the dependence of

precision and recall [18]:

precision ≤ ℵ· recall

1−ℵ+ℵ· recall
. (6.4)

The above inequality implies that, for a given balance ratio ℵ, every model must produce a

PRC that lies above the minimum possible PRC [18].

154 CHAPTER 6. APACHE SPARK AND APPLICATION

6.6 Conclusion

This chapter evaluated the suitability of the most popular in-memory cluster computing

framework available today regarding its suitability to drive a complete large scale machine

learning pipeline. The pipeline was designed to satisfy the generic requirement. The pipeline

included all steps, from the extraction of the data set from a relational database, to model

building, and finally presenting the gained insights to an end user.

This prototypical, but comprehensive implementation yielded several interesting im-

pressions. On the one hand, Spark has made it possible to work with large scale data sets

that simply would not have been processable with conventional single-node frameworks.

This applies in particular to the transformation of large data sets from key-value into the

columnar layout required for machine learning. However, the the downsides should not be

underestimated.

First and foremost, Spark’s architecture is not suitable to evaluate a single sample using a

high magnitude of models. Currently, each sequential classification of a single sample takes

≈ 10s. Parallelizing the classification is currently not possible using the native Spark APIs and

would require to instantiate multiple master nodes. This, however, contradicts the idea of

having a single entry point to utilize the computing power of a whole cluster. Another option

to tackle this issue is to create one multi-class model instead of multiple two-class models.

However, this poses new challenges in terms of the (economic) evaluation of classification

quality for future research.

Also, the extensive manual tuning required to ensure the computations to finish in a

timely manner should be noted. Decisions regarding the optimal number of partitions, when

and how to persist, etc. should be well considered. To ease the development, future research

should examine how to perform more of the just mentioned decisions automatically.

In general, it can not be recommended to use Spark for extracting, transformating, or

modeling unless computations fail or are impossible due to memory constraints on single-

node frameworks. Doing transformation, feature selection and downsampling on the clus-

ter, and machine learning on a workstation should be considered as a viable option.

In a nutshell: Spark is trading off performance for scalability when compared to single-

node frameworks.

Chapter 7

Summary and Recommendations for

Future Work

This chapter aims to summarize what was done and to point out the most important results.

Also, the findings will be discussed and recommendations for further research derived.

7.1 Summary, Conclusions, and Discussion

Chapter 2, or more specifically Section 2.3, compared two promising measures to assess

the classification performance in imbalanced scenarios in great detail: The auROC and the

auPRC. The auPRC turned out be more meaningful and sensitive according to own tests on

artificial data, and is also considered to be the better measure in literature [101, 57, 36]: A

classifier, that dominates in terms of auPRC will always dominate in terms of auROC. This

does not hold vice versa. The auPRC yielded promising results in the following chapters,

even rendering techniques to tackle imbalance are superfluous, that would have been re-

quired if other measures were used. Therefore, objective 1 (the definition of a meaningful

error score for imbalanced scenarios) can be considered done. However, the auPRC is de-

pendent on the balancedness of the data set. Thus, if the performance on multiple data sets

of different balancedness shall be compared, special care is required: In this case, the auPRC

either needs to be normalized as described in Section 6.5 or an otherwise inferior (according

to Section 2.3) metric such as the auROC must be used.

In Chapter 3, a feature selection pipeline with multiple layers of differing run-time com-

plexity was proposed. A wide range of classifier independent filter measures, and classifier

155

156 CHAPTER 7. SUMMARY

dependent wrapper measures were evaluated in respect to the achieved auPRC and the run-

time complexity. The χ2 filter is best suited to identify important features in a reasonable

time. The LR wrapper also delivered promising results. However, it should be noted that

certain combinations do not reduce the overall training time: If, for example, LR is used, a

single χ2 filter requires more time to select the features than the model training itself. How-

ever, this ratio can be tilted if the model training is repeated multiple times after a single

feature selection, or if slower models, such as an RF, are used. The pipeline achieved perfect

classification or comparable results without manual adjustment on publicly available data

sets, so objective 2 (the combination and adaptation of techniques that are able to select rel-

evant features from a high dimensional feature space) can be considered completed. It has

to be noted that this chapter focused on feature subset selection only, to ensure that final

models are interpretable by experts. Techniques that transform the features into a different

feature space such as PCA were not evaluated but may yield promising results.

In total, five of the most popular techniques to tackle imbalanced data sets and a novel

approach were evaluated in Chapter 4. All existing techniques focus on upsampling the mi-

nority class, or removing noisy samples. In contrast, the proposed approach aims to reduce

noise close to the decision boundary by scaling samples to their corresponding class cen-

ter, which is multiple orders of magnitude faster. The evaluation was laid out in terms of

modeling grade (primarily auPRC) and run-time complexity on nine publicly available and

one proprietary automotive data set. According to the experiments, SMOTE is yielding good

results in terms of auROC and a reasonably low computation time. SMOTE, and the novel

approach were the only approaches, where the beneficial influence on the auROC was prov-

able and the computation time reasonable. This satisfies objective 3 (the development and

comparison of techniques to tackle the high imbalance of the automotive and other, pub-

licly available data sets). However, if model hyperparameters are tuned with respect to the

auPRC (as discussed in Section 2.3) and the final modeling grade is also assessed in auPRC,

no technique can be proven to be effective based on the experiments laid out in Section 4.4.

This suggests that selecting the optimal measure may be the better option in general.

For Chapter 5, two novel RUL estimation techniques were designed, implemented and

evaluated in comparison to a naive, RF based approach and an approach proposed by Wang

et al. [136]. The approach by Wang scored first place in a competition on one of the most

popular RUL data sets and thus marks the baseline. The novel techniques are based on cas-

7.1. SUMMARY, CONCLUSIONS, AND DISCUSSION 157

caded RFs and on density based estimation. Especially the density based approach was ex-

tremely promising and has not been published yet: It yielded the lowest error scores on both

diagnostic data sets1 and the by far fastest times if solely training is considered. Also, the RF

based and Wangs approach dominated on some data sets. Unfortunately, the current imple-

mentation of Wangs approach is very slow. The fact that the code used in this work was open

sourced allows other researchers to optimize it. According to the experiments, the density

based approach in particular copes very well with short and varying length time series. In

addition, the insights obtained in this chapter make it possible to select the appropriate ap-

proach depending on the application. All in all, objective 4 (the development of techniques

to accurately estimate the RUL based on short, variable length time series) can thus be con-

sidered satisfied.

Chapter 6 strongly builds on the knowledge gained so far. The most promising tech-

niques for feature selection and tackling imbalance were implemented using Scala to cre-

ate an end-to-end machine learning pipeline based on Apache Spark. Despite being an

in-memory, cluster computing framework, data set transformation and model training are

much slower in comparison to single node frameworks2. In addition, many caveats surfaced

that reduce the usefulness further. It has to be noted though, that the largest data set used in

this work was only transformable from its original key-value pair into the columnar layout

required for machine learning using Apache Spark. Due to the slower computation and the

many caveats, Spark can only be recommended if the data set can not be processed by con-

ventional means. Even then, after the transformation, further processing on a single PC with

a conventional single-node framework should be considered. As concluded in Chapter 6:

“Spark is trading off performance for scalability when compared to single-node frameworks.”

(objective 5, the identification and adaptation of a multi node in-memory computing frame

work to deal with large data volumes).

All techniques discussed above were evaluated on a variety of data sets to satisfy objec-

tive 6 (solutions shall not be restricted to a single scenario) and compared regarding their

classification performance and computational complexity as demanded by objective 7.

1On other data sets comparing scores were achieved.
2This is subject to the condition that the data fits into the RAM of a single computer.

158 CHAPTER 7. SUMMARY

7.2 Recommendations for Further Work

Detailed recommendations regarding future research directions for the topics addressed in

the previous chapters are already given in the respective concluding sections respectively.

This section will thus focus on the proposed solutions that are more broadly applicable.

Currently, labels for training the models are created by using existing workshop processes

as ground truth. However, this can be misleading, since, e.g., the exchange of a wrong part

cannot be excluded. The customer concerned will return promptly and ask for the prob-

lem to be rectified, which means that the right action dominates the data in the long term.

This process, however, is not optimal, as it generates additional profits for the workshop and

unnecessary costs for the manufacturer (provided the part is under warranty). Thus, a new

form of incentivisation is required, that not only encourages workshop staff to perform the

most cost-effective countermeasure but also reward them if helpful feedback such as “this

was the wrong repair” is provided to increase the overall label and thus data quality.

Apart from Chapter 5, this work has dealt with the isolated classification of workshop

operations. In the future, however, the trend towards more data will also find its way into

the automotive industry. Due to the availability of data with a higher sampling rate, i.e. a

smaller time interval between observation points, time series techniques (as already indi-

cated in Chapter 5) will become applicable. The consideration of the temporal progressions

of individual vehicles has the potential to add great value and should therefore be investi-

gated. Chapter 5 can provide clues. Also, applying Deep Learning may become feasible.

In the context of Deep Learning – where in general more training samples are required

due to the higher number of tunable model parameters in comparison to conventional

learning – a different approach how to utilize the available data may be worth to be investi-

gated: Currently, e.g., each part or maintenance action is modeled based on a subset of data

which originates only from cars of the same model with the same engine. This, however,

causes two major caveats: First, summed over the whole fleet, more models need to be built

(since the same part is modeled for each car–engine combination individually). Second,

since the data set is split into multiple sub-data sets, less data is available for each model

training process. It is therefore recommended to examine which models can be trained

across multiple vehicles and engines. This increases the amount of training data and re-

duces the number of models.

Section 6.5 already laid out a brief economic analysis. This, however, should be evaluated

7.2. RECOMMENDATIONS FOR FURTHER WORK 159

in much greater detail before deploying an autonomous, machine learning based diagnostic

system into productive use. The cost of different classification outcomes, customer satisfac-

tion, etc. is hard to assess and should be further investigated and quantified.

Appendix A

Spark Cluster Setup and Application

Launch

Applications are started on the cluster using the spark-submit Command Line Interface

(CLI). Aside from the --master argument (specifying the IP of the clusters masternode), and

executable (.jar) to start, additional parameters are required to define the resources that

will be used for the job. The parameters (and the used values) are:

• driver-cores: Number of cores reserved for the Driver process (5).

• executor-cores: Number of cores for each Executor process (5).

• num-executors: The total number of Executor processes (11)1.

• spark.driver.memory: RAM reserved for the Driver process in GB (15).

• executor-memory: RAM assigned to each Executor process in GB (14).

• spark.driver.maxResultSize: Since actions fail, if spark.driver.maxResultSize

is exceeded by the result size, this number was increased. It has to be smaller than

spark.driver.memory, though (10).

This way, based on the 92GB+96GB = 188GB available RAM, 14 ·11GB+15GB = 169GB

(89.9%) were used. Also, given 11 ·5+5 = 60 (93.8%) of the 64 cores were used. The above

mentioned values were determined based on the following guidelines:

1For experiments on a single machine, only num-executors was reduced to 6.

160

161

• If executor-cores is too high, HDFS throughput is reduced because the HDFS has

trouble with too many concurrent threads. HDFS achieves full write throughput with

5 tasks per executor [51].

• 2 cores and 5GB are reserved on each machine for the operating systems, HDFS and

the various daemons to run smoothly.

• Spark lives within the JVM. If the amount of memory for each Executor process is

too big, Garbage Collection (GC) takes up a considerable amount of time. Using the

settings described above, GC always took less than 10% of the total execution time.

List of Figures

2.1 Example of a DT. 12

2.2 Model that identifies the 100 real positives samples without error. Imbalance

1 : 1000. 19

2.3 Poor model. Imbalance 1 : 1000. 19

2.4 Worse than poor model. Imbalance 1 : 100. 20

2.5 Catastrophic model. Imbalance 1 : 10. 20

3.1 The χ2 distribution. 31

3.2 Overview of the feature selection pipeline. 38

3.3 Example why standard outlier filters fail, µ is marked as solid, 3 ·σ as dashed line. 40

3.4 Average model performance depending on target type. 44

3.5 Number of features used in final model above threshold. 51

3.6 Computation time: k-NN, RF, LR, and all filter measures. 53

4.1 Comparison of the original data set before and after applying SMOTE. 67

4.2 Comparison of the original data set before and after applying ADASYN. 69

4.3 Comparison of the original data set before and after the removal of Tomek links. 70

4.4 Comparison of the original data set and the consistent subset according to CNN. 71

4.5 Comparison of the original data set and the consistent subset according to OSS. 72

4.6 Demonstration of CSS with artificial data. 74

4.7 CSS on Vowel data set. 75

4.8 Comparison of the original data set and scaled data set. 76

4.9 Comparison of different CSS modes based on auPRC calculated during CV. . . 80

4.10 Comparison of different CSS modes based on auPRC averaged across all clas-

sifiers. 81

4.11 Clustering of data sets. 82

162

LIST OF FIGURES 163

4.12 Comparison of a robust and non–robust PT-classifier combination. 83

4.13 Test versus train auPRC of SMOTE and CNN. 84

4.14 Achieved auPRC based on the data set cluster, PT, and classifier. 85

4.15 Distributions of the tested error scores. 88

4.16 Computation time of different PTs. 90

4.17 Training time of various classifiers dependent on the preprocessing technique. 91

5.1 Example for a model which is derived from a time series. 103

5.2 Visualization of mutliple models. 103

5.3 Example for a model using Wangs technique before the history is shifted. 104

5.4 Example for a model using Wangs technique after shifting the history by the

optimum number of hours. 104

5.5 Example of two features holding different amounts of information. 106

5.6 Visualization of the key ideas of DBSE2. 107

5.7 Different RUL areas. 111

5.8 Effects of performing PBFG for DBSE2. 114

5.9 Evaluation of different ngrid combinations. 116

5.10 Influence of nhist . 117

5.11 Influence of weighting risk values based on temporal proximity. 118

5.12 Effects of discarding samples based on their RUL. 119

5.13 Effects of splitting the training according the RUL. 120

5.14 Effects of adding historical samples to the feature space on RMSE and sPHM . . . 121

5.15 Effects of using polynomial feature selection on sPHM 121

6.1 The Spark cluster architecture. 128

6.2 Overview over the pipeline. 132

6.3 Prototypical implementation of the user interface. 139

6.4 Performance comparison for different numbers of partitions. 143

6.5 Evaluation of different sampling ratios based on auPRC on the Credit Card data

set. 146

6.6 Evaluation of different sampling ratios regarding the training time on the Credit

Card data set. 147

6.7 Influence of feature selection on the auPRC of an RF. 148

164 LIST OF FIGURES

6.8 Influence of feature selection on the training time. 149

6.9 Timings of various filter measures in Spark. 150

6.10 Evaluation of Automotive 1L data set. 150

List of Tables

1.1 Example data set for automotive diagnostics. 4

2.1 Confusion matrix. 17

3.1 Examples for different feature values and their corresponding Gini coefficients. 27

3.2 Sample data. 30

3.3 Contingency table. 30

3.4 Expected frequencies. 30

3.5 Chi-square points. 30

3.6 Feature group importance. 46

3.7 Filter measure performance. 48

3.8 Influence of the wrapper algorithm on the pipeline performance. 50

3.9 Influence of nFAF on pipeline performance. 51

3.10 Influence of nFAW on model performance and training time. 52

3.11 Influences of NPR on the pipeline performance and training time. 52

3.12 Overview over the layer runtimes in seconds depending on the number of pro-

cessed features. 55

3.13 Performance of the pipeline on the golub data set. 56

3.14 Performance of the pipeline on the secom data set. 56

3.15 Overview of pipeline performance and runtime using an RF wrapper and auROC. 58

3.16 Overview of pipeline performance and runtime using an RF wrapper and auPRC. 58

3.17 Overview of pipeline performance and runtime using an RF wrapper and F1. . 58

3.18 Overview of pipeline performance and runtime using an LR wrapper and auROC. 58

3.19 Overview of pipeline performance and runtime using an LR wrapper and auPRC. 59

3.20 Overview of pipeline performance and runtime using an LR wrapper and F1. . 59

165

166 LIST OF TABLES

4.1 Overview of the evaluated data sets. 77

4.2 RMSD of training and test auPRC. 84

4.3 RMSD of training and test auROC. 86

4.4 Statistical comparison of the cluster mean F1 from PTs compared to the naive

approach based on the p–value. 88

4.5 Statistical comparison of the cluster mean auROC from PTs compared to the

naive approach based on the p–value. 89

4.6 Statistical comparison of the cluster mean auPRC from PTs compared to the

naive approach based on the p–value. 89

5.1 Overview on evaluation data sets. 99

5.2 Example for different nhistory modes. 112

5.3 Performance comparison of all algorithms in terms of RMSE and sPHM on all

data sets. 122

5.4 Training and testing time of the best performing model for all technique-data

set pairs. 123

6.1 Details on large Automotive data sets. 144

6.2 Details on the NIPS data set. 145

6.3 Durations on Automotive 2L data set. 151

6.4 Cost assessment of different prediction outcomes. 152

Acronyms

ADASYN ADaptive Synthetic Sampling Approach. 69–71, 79, 81, 87, 88, 90, 92–96, 168

ANN Artificial Neural Network. 23, 66, 100

API Application Programmable Interface. 131, 132, 138, 139, 142, 144, 160

ARMA Autoregressive Moving Average Model. 100

ASCII American Standard Code for Information Interchange. 145

auPRC area under Precision Recall Curve. 18, 20, 43, 45, 52–55, 58, 60–63, 82–93, 95, 96, 131,

141, 143, 151–155, 158, 159, 161, 162, 168–172

auROC area under Receiver Operating Characteristics Curve. 18–20, 45, 52, 54, 60, 61, 83,

87, 88, 91–93, 95, 96, 155, 161, 162, 171, 172

bagging bootstrap aggregating. 12

BRR Bucketized RUL regression with trend-based feature selection. 105, 113, 114, 117, 121,

124, 126–128

CLI Command Line Interface. 166

CNN Condensed Nearest Neighbor. 72–74, 87, 88, 90, 92–96, 168, 169

CP Car Parameter. 4, 38, 39, 47, 48, 149

CSS Class Sensitive Scaling. 65, 74–77, 83–85, 87, 88, 90–92, 94–96, 168, 169

CSV Comma Separated File. 147, 150

CV Cross-Validation. 17, 75, 80, 82–84, 86, 91, 139, 141, 150, 168

167

168 Acronyms

DAG Directed Acyclic Graph. 134, 145

DBSE2 Distribution-based Similarity Estimation v.2.. 105, 110–112, 116–118, 126–128, 169

DC Diagnostic Code. 37, 45, 149

DC Diagnostic Code. 5, 137

DT Decision Tree. 11–13, 168

DTC Diagnostic Trouble Code. 4, 24, 37, 38, 47, 48, 135, 137, 148, 149, 157

EC Environmental condition. 4, 38, 47, 149

ECU Electrical Control Unit. 4, 24, 37, 40

EE Extra Equipment. 4, 38, 39, 47, 149

EOL End Of Life. 102, 114

F1 Fβ=1. 17, 20, 45, 52–55, 58, 60–62, 83, 91–93, 171, 172

FG feature group. 46–48

FN False Negative. 18, 157, 158

FP False Positive. 18, 55, 157, 158

GC Garbage Collection. 167

GLM Generalized Linear Model. 14

GUI Graphical User Interface. 142, 143

HDFS Hadoop Distributed Filesystem. 133, 142, 167

HI Health Indicator. 98, 99, 101, 105–109

IBU International Bitter Unit. 12

IoT Internet of Things. 129

IPA India Pale Ale. 12

Acronyms 169

JVM Java Virtual Machine. 145, 167

k-NN k-nearest neighbors. 16, 17, 34, 36, 43, 44, 52, 55, 56, 58–60, 64, 65, 74, 82, 83, 88, 90,

91, 94, 101, 168

KDB Knowledge Database. 3

LR Logistic Regression. 14, 15, 17, 23, 34–36, 42–44, 46, 47, 49, 52, 53, 55–62, 79, 82, 83, 90,

100, 105, 106, 139, 141, 151, 152, 154, 162, 168, 171, 172

MDL Minimum Description Length. 27

MI Mutual Information. 24, 25, 27, 31, 51, 56, 154

MLE maximum likelihood estimation. 14

MV Measurement Value. 5, 38, 46–48, 135, 149

NID noisy, imbalanced data set. 65–67, 76, 78

NTF No Trouble Found. 3

OCC One-Class Classifier. 65, 66, 82, 90, 91, 94, 96

OEM Original Equipment Manufacturer. 3, 4, 6

OHE One Hot Encoding. 136

OSS One-Sided Selection. 73, 75, 79, 87, 88, 90, 93, 95, 96, 168

PBFG Polynomial-Based Feature Grading. 109, 113, 116–118, 124, 169

PCA Principal Component Analysis. 23, 76, 145, 150, 162

PHM prognostics and health management. 99, 100, 103, 105

PMML Predictive Model Markup Language. 146

PRC Precision Recall Curve. 18–20, 159

PT preprocessing technique. 65, 78, 79, 83, 86–96, 169, 172

170 Acronyms

RAM Random Access Memory. 130, 132, 134, 144–146, 163, 166

RDD Resilient Distributed Data Set. 133

RF Random Forest. iii, 11–13, 23, 34, 35, 43, 44, 52, 55, 56, 58–63, 79, 82, 83, 90, 96, 102, 105,

114, 115, 117, 123, 124, 126–128, 139–141, 151–154, 156, 157, 162, 163, 168, 170, 171

RMSD Root-Mean-Square Difference. 86–88, 172

RMSE Root Mean Squared Error. 103, 105, 107, 109, 115–118, 121–123, 125–127, 169, 172

RNN Recurrent Neural Network. 100

RO Readout data. 4, 38, 39, 47, 48, 149

ROC Receiver Operating Characteristic. 18–20

RUL Remaining Useful Lifetime. iii, 6–9, 97–110, 112–117, 121, 122, 124, 126, 128, 129, 163,

169

RUS Random Under-Sampling. 137

SMOTE Synthetic Minority Oversampling TEchnique. 68–70, 78, 83, 87, 90–96, 137, 154–156,

162, 168, 169

SP Switched Part. 5, 45, 149

SQL Structured Query Language. 132

SSD Solid State Drive. 145

SVM Support Vector Machine. 66, 82, 100

SVR Support Vector Regression. 101

TA Taken Action. 5, 45, 149

TN True Negative. 18, 55, 157, 158

TP True Positive. 18, 157–159

UDF User defined function. 138

Acronyms 171

VIN Vehicle Identification Number. 142

WLR Weighted Logistic Regression. 82, 90, 91, 96

WRF Weighted Random Forest. 82, 90, 96

YARN Yet Another Resource Negotiator. 132

Bibliography

[1] R. Ahmed, M. E. Sayed, S. A. Gadsden, J. Tjong, and S. Habibi. “Automotive Internal-

Combustion-Engine Fault Detection and Classification Using Artificial Neural Net-

work Techniques”. In: IEEE Transactions on Vehicular Technology 64.1 (2015), pp. 21–

33.

[2] M. Aminanto, R. Choi, H. C. Tanuwidjaja, P. D. Yoo, and K. Kim. “Deep Abstraction

and Weighted Feature Selection for Wi-Fi Impersonation Detection”. In: IEEE Trans-

actions on Information Forensics and Security 13.3 (2018), pp. 621–636.

[3] F. Arif, N. Suryana, and B. Hussin. “A Data Mining Approach for Developing Quality

Prediction Model in Multi-Stage Manufacturing”. In: International Journal of Com-

puter Applications 69.22 (2013), pp. 35–40.

[4] A. Azarian and A. Siadat. “A global modular framework for automotive diagnosis”. In:

Advanced Engineering Informatics 26 (2012), pp. 131–144.

[5] S. Barua, M. M. Islam, X. Yao, and K. Murase. “MWMOTE–majority weighted minority

oversampling technique for imbalanced data set learning”. In: IEEE Transactions on

Knowledge and Data Engineering 26.2 (2014), pp. 405–425.

[6] G. E. A. P. A. Batista, A. L. C. Bazzan, and M. C. Monard. Balancing Training Data

for Automated Annotation of Keywords: a Case Study. 2003. URL: http://www.inf.

ufrgs.br/maslab/pergamus/pubs/balancing-training-data-for.pdf (visited

on 07/16/2018).

[7] BearingPoint GmbH. Global Automotive Warranty Survey Report. URL: https://www.

bearingpoint.com/files/AutoWarrantyReport_final_web.pdf (visited on

01/01/2009).

[8] C. M. Bishop. Pattern recognition and machine learning. Information science and

statistics. New York: Springer, 2006. ISBN: 978-0387310732.

172

http://www.inf.ufrgs.br/maslab/pergamus/pubs/balancing-training-data-for.pdf
http://www.inf.ufrgs.br/maslab/pergamus/pubs/balancing-training-data-for.pdf
https://www.bearingpoint.com/files/AutoWarrantyReport_final_web.pdf
https://www.bearingpoint.com/files/AutoWarrantyReport_final_web.pdf

BIBLIOGRAPHY 173

[9] BMW A.G. BMW Geschäftsbericht 2011. URL: https://www.bmwgroup.com/con

tent/dam/bmw- group- websites/bmwgroup_com/ir/downloads/de/2011/

bericht2011.pdf (visited on 07/16/2018).

[10] BMW A.G. BMW Geschäftsbericht 2012. URL: https://www.bmwgroup.com/con

tent/dam/bmw- group- websites/bmwgroup_com/ir/downloads/de/2012/

bericht2012.pdf (visited on 07/16/2018).

[11] BMW A.G. BMW Geschäftsbericht 2013. URL: https://www.bmwgroup.com/con

tent/dam/bmw- group- websites/bmwgroup_com/ir/downloads/de/2013/

geschaeftsbericht2013.pdf (visited on 07/16/2018).

[12] BMW A.G. BMW Geschäftsbericht 2014. URL: https://www.bmwgroup.com/content

/dam/bmw-group-websites/bmwgroup_com/ir/downloads/de/2014/12507_GB_

2014_de_Finanzbericht_Online.pdf (visited on 07/16/2018).

[13] BMW A.G. BMW Geschäftsbericht 2015. URL: https://www.bmwgroup.com/content

/dam/bmw-group-websites/bmwgroup_com/ir/downloads/de/2015/12784_GB_

2015_dt_Finanzbericht_Online.pdf (visited on 07/16/2018).

[14] BMW A.G. BMW Geschäftsbericht 2016. URL: https://www.bmwgroup.com/content

/dam/bmw-group-websites/bmwgroup_com/ir/downloads/de/2017/GB/13044_

BMW_GB16_de_Finanzbericht.pdf (visited on 07/16/2018).

[15] V. Bolón-Canedo, N. Sánchez-Maronno, and A. Alonso-Betanzos. “A review of feature

selection methods on synthetic data”. In: Knowledge and Information Systems 34.3

(2005), pp. 483–519.

[16] J. Bonér. Latency Comparison Numbers. 2016. URL: https://gist.github.com/

jboner/2841832 (visited on 07/16/2018).

[17] S. Boslaugh. Statistics in a Nutshell, 2nd Edition. O’Reilly Media, Incorporated, 2012.

ISBN: 9781449361129. URL: https://books.google.de/books?id=s1llAQAACAAJ.

[18] K. Boyd, V. S. Costa, J. Davis, and C. D. Page. “Unachievable region in precision-recall

space and its effect on empirical evaluation”. In: Proceedings of the International Con-

ference on Machine Learning (2012), p. 349.

[19] L. Breiman. “Random forests”. In: Machine Learning 45.1 (2001), pp. 5–32.

https://www.bmwgroup.com/content/dam/bmw-group-websites/bmwgroup_com/ir/downloads/de/2011/bericht2011.pdf
https://www.bmwgroup.com/content/dam/bmw-group-websites/bmwgroup_com/ir/downloads/de/2011/bericht2011.pdf
https://www.bmwgroup.com/content/dam/bmw-group-websites/bmwgroup_com/ir/downloads/de/2011/bericht2011.pdf
https://www.bmwgroup.com/content/dam/bmw-group-websites/bmwgroup_com/ir/downloads/de/2012/bericht2012.pdf
https://www.bmwgroup.com/content/dam/bmw-group-websites/bmwgroup_com/ir/downloads/de/2012/bericht2012.pdf
https://www.bmwgroup.com/content/dam/bmw-group-websites/bmwgroup_com/ir/downloads/de/2012/bericht2012.pdf
https://www.bmwgroup.com/content/dam/bmw-group-websites/bmwgroup_com/ir/downloads/de/2013/geschaeftsbericht2013.pdf
https://www.bmwgroup.com/content/dam/bmw-group-websites/bmwgroup_com/ir/downloads/de/2013/geschaeftsbericht2013.pdf
https://www.bmwgroup.com/content/dam/bmw-group-websites/bmwgroup_com/ir/downloads/de/2013/geschaeftsbericht2013.pdf
https://www.bmwgroup.com/content/dam/bmw-group-websites/bmwgroup_com/ir/downloads/de/2014/12507_GB_2014_de_Finanzbericht_Online.pdf
https://www.bmwgroup.com/content/dam/bmw-group-websites/bmwgroup_com/ir/downloads/de/2014/12507_GB_2014_de_Finanzbericht_Online.pdf
https://www.bmwgroup.com/content/dam/bmw-group-websites/bmwgroup_com/ir/downloads/de/2014/12507_GB_2014_de_Finanzbericht_Online.pdf
https://www.bmwgroup.com/content/dam/bmw-group-websites/bmwgroup_com/ir/downloads/de/2015/12784_GB_2015_dt_Finanzbericht_Online.pdf
https://www.bmwgroup.com/content/dam/bmw-group-websites/bmwgroup_com/ir/downloads/de/2015/12784_GB_2015_dt_Finanzbericht_Online.pdf
https://www.bmwgroup.com/content/dam/bmw-group-websites/bmwgroup_com/ir/downloads/de/2015/12784_GB_2015_dt_Finanzbericht_Online.pdf
https://www.bmwgroup.com/content/dam/bmw-group-websites/bmwgroup_com/ir/downloads/de/2017/GB/13044_BMW_GB16_de_Finanzbericht.pdf
https://www.bmwgroup.com/content/dam/bmw-group-websites/bmwgroup_com/ir/downloads/de/2017/GB/13044_BMW_GB16_de_Finanzbericht.pdf
https://www.bmwgroup.com/content/dam/bmw-group-websites/bmwgroup_com/ir/downloads/de/2017/GB/13044_BMW_GB16_de_Finanzbericht.pdf
https://gist.github.com/jboner/2841832
https://gist.github.com/jboner/2841832
https://books.google.de/books?id=s1llAQAACAAJ

174 BIBLIOGRAPHY

[20] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and Regression

Trees. Vol. 19. CRC Press, 1984. ISBN: 978-0412048418.

[21] L. Breiman. “Bagging predictors”. In: Machine Learning 24.2 (1996), pp. 123–140.

[22] L. Breiman. “Technical Note: Some properties of splitting criteria”. In: Machine

Learning 24.1 (1996), pp. 41–47.

[23] S. Breker, A. Claudi, and B. Sick. “Capacity of Low-Voltage Grids for Distributed Gen-

eration: Classification by Means of Stochastic Simulations”. In: IEEE Transactions on

Power Systems 30.2 (2015), pp. 689–700.

[24] P. Bruce and A. Bruce. Practical Statistics for Data Scientists: 50 Essential Concepts.

Boston: O’Reilly Media, Inc, 2017. ISBN: 978-1491952962.

[25] W. Caesarendra, A. Widodo, and B.-S. Yang. “Application of relevance vector machine

and logistic regression for machine degradation assessment”. In: Mechanical Systems

and Signal Processing 24.4 (2010), pp. 1161–1171.

[26] L. Čehovin and Z. Bosnić. “Empirical evaluation of feature selection methods in clas-

sification”. In: Intelligent Data Analysis 14.3 (2010), pp. 265–281.

[27] B. Chandra and R. K. Sharma. “Exploring autoencoders for unsupervised feature se-

lection”. In: International Joint Conference on Neural Networks (2015), pp. 1–6.

[28] N. V. Chawla, N. Japkowicz, and A. Kotcz. “Editorial: special issue on learning from

imbalanced data sets”. In: ACM Sigkdd Explorations Newsletter 6.1 (2004), pp. 1–6.

[29] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer. “SMOTE: Synthetic

minority over-sampling technique”. In: Journal of Artificial Intelligence Research 16

(2002), pp. 321–357.

[30] N. V. Chawla, A. Lazarevic, L. O. Hall, and K. W. Bowyer. “SMOTEBoost: Improving

prediction of the minority class in boosting”. In: Lecture Notes in Computer Science

(2003), pp. 107–119.

[31] J. Cleve and U. Lämmel. Data Mining. Berlin, Boston: De Gruyter Oldenbourg, 2016.

ISBN: 978-3110456752.

[32] P. Cortez and A. J. R. Morais. “A data mining approach to predict forest fires using

meteorological data”. In: Proceedings of the Portuguese Conference on Artificial Intel-

ligence 13 (2007), pp. 512–523.

BIBLIOGRAPHY 175

[33] H. Cramer. Mathematical methods of statistics. Princeton University Press, 1946.

ISBN: 978-0691005478.

[34] A. Dal Pozzolo, O. Caelen, R. A. Johnson, and G. Bontempi. “Calibrating probabil-

ity with undersampling for unbalanced classification”. In: IEEE Symposium Series on

Computational Intelligence (2015), pp. 159–166.

[35] C. Damgaard and J. Weiner. “Describing inequality in plant size or fecundity”. In:

Ecology 81.4 (2000), pp. 1139–1142.

[36] J. Davis and M. Goadrich. “The relationship between Precision-Recall and ROC

curves”. In: Proceedings of the 23rd international conference on Machine learning

(2006), pp. 233–240.

[37] J. Deutsch and D. He. “Using Deep Learning-Based Approach to Predict Remaining

Useful Life of Rotating Components”. In: IEEE Transactions on Systems, Man, and

Cybernetics: Systems 48.1 (2017), pp. 1–10.

[38] P. M. Dixon, J. Weiner, T. Mitchell-Olds, and R. Woodley. “Bootstrapping the Gini co-

efficient of inequality”. In: Ecology 68.5 (1987), pp. 1548–1551.

[39] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern classification. 2nd ed. New York: Wiley,

2001. ISBN: 978-0471056690.

[40] A. Eskilson. Apache Spark JIRA 18016. 2016. URL: https://issues.apache.org/

jira/browse/SPARK-18016 (visited on 07/16/2018).

[41] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. “LIBLINEAR: A Library

for Large Linear Classification”. In: Journal of Machine Learning Research 9 (2008),

pp. 1871–1874.

[42] U. Fayyad and K. Irani. “Multi-interval discretization of continuous-valued attributes

for classification learning”. In: Thirteenth International Joint Conference on Artificial

Intelligence (1993), pp. 1022–1027.

[43] C. Ferri, J. Hernández-Orallo, and R. Modroiu. “An experimental comparison of per-

formance measures for classification”. In: Pattern Recognition Letters 30.1 (2009),

pp. 27–38.

[44] J. Friedman, T. Hastie, and R. Tibshirani. The elements of statistical learning. Vol. 1.

Series in Statistics. New York, USA: Springer, 2001. ISBN: 978-0387848570.

https://issues.apache.org/jira/browse/SPARK-18016
https://issues.apache.org/jira/browse/SPARK-18016

176 BIBLIOGRAPHY

[45] E. Frisk, M. Krysander, and E. Larsson. “Data-Driven Lead-Acid Battery Prognos-

tics Using Random Survival Forests”. In: Annual Conference Of The Prognostics and

Health Management Society (2014), pp. 92–101.

[46] E. Fuchs, T. Gruber, H. Pree, and B. Sick. “Temporal data mining using shape space

representations of time series”. In: Neurocomputing 74.1 (2010), pp. 379–393.

[47] K. Goebel, B. Saha, and A. Saxena. “A comparison of three data-driven techniques for

prognostics”. In: 62nd Meeting of the Society for Machinery Failure Prevention Tech-

nology (2008), pp. 119–131.

[48] T. Golub, D. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. Mesirov, H. Coller, M.

Loh, J. Downing, and M. Caligiuri. “Molecular classification of cancer: class discov-

ery and class prediction by gene expression monitoring”. In: Science 286.5439 (1999),

pp. 531–537.

[49] R. Gouriveau, K. Medjaher, and N. Zerhouni. From prognostics and health systems

management to predictive maintenance 1: Monitoring and prognostics. Reliability of

multiphysical systems set. London: ISTE, Wiley, 2016. ISBN: 978-1848219373.

[50] B. Green and S. Seshadri. AngularJS. 1st ed. Sebastopol: O’Reilly & Associates, 2013.

ISBN: 978-1449344856.

[51] M. Grover and T. Malaska. Top 5 Mistakes when writing Spark applications. URL: ht

tps://databricks.com/session/top-5-mistakes-when-writing-spark-

applications (visited on 07/16/2018).

[52] H. Guo and H. L. Viktor. “Learning from imbalanced data sets with boosting and data

generation: the databoost-im approach”. In: ACM Sigkdd Explorations Newsletter 6.1

(2004), pp. 30–39.

[53] I. Guyon. Design of experiments of the NIPS 2003 variable selection benchmark. 2003.

URL: http://clopinet.com/isabelle/Projects/NIPS2003/Slides/NIPS2003-

Datasets.pdf (visited on 07/16/2018).

[54] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. “Gene Selection for Cancer Classifica-

tion using Support Vector Machines”. In: IEEE Machine Learning 46.1 (2002), pp. 389–

422.

https://databricks.com/session/top-5-mistakes-when-writing-spark-applications
https://databricks.com/session/top-5-mistakes-when-writing-spark-applications
https://databricks.com/session/top-5-mistakes-when-writing-spark-applications
http://clopinet.com/isabelle/Projects/NIPS2003/Slides/NIPS2003-Datasets.pdf
http://clopinet.com/isabelle/Projects/NIPS2003/Slides/NIPS2003-Datasets.pdf

BIBLIOGRAPHY 177

[55] H. Han, W.-Y. Wang, and B.-H. Mao. “Borderline-SMOTE: a new over-sampling

method in imbalanced data sets learning”. In: International Conference on Intelligent

Computing (2005), pp. 878–887.

[56] P. Hart. “The condensed nearest neighbor rule (Corresp.)” In: IEEE transactions on

information theory 14.3 (1968), pp. 515–516.

[57] H. He and E. A. Garcia. “Learning from imbalanced data”. In: IEEE Transactions on

Knowledge and Data Engineering 21.9 (2009), pp. 1263–1284.

[58] H. He, Y. Bai, E. A. Garcia, and S. Li. “ADASYN: Adaptive synthetic sampling approach

for imbalanced learning”. In: IEEE International Joint Conference on Neural Networks

(2008), pp. 1322–1328.

[59] F. O. Heimes. “Recurrent neural networks for remaining useful life estimation”. In:

IEEE International Conference on Prognostics and Health Management (2008), pp. 1–

6.

[60] A. Heng, S. Zhang, A. C. Tan, and J. Mathew. “Rotating machinery prognostics: State of

the art, challenges and opportunities”. In: Mechanical Systems and Signal Processing

23.3 (2009), pp. 724–739.

[61] O. Hryniewicz and J. Karpinski. “Prediction of reliability: the pitfalls of using Pearson’s

correlation”. In: Eksploatacja i Niezawodność 16.3 (2014), pp. 472–483.

[62] C. Huertas and R. Juárez-Ramírez. “Filter feature selection performance comparison

in high-dimensional data: A theoretical and empirical analysis of most popular algo-

rithms”. In: IEEE 17th International Conference on Information Fusion (2014), pp. 1–

8.

[63] N. Japkowicz, C. Myers, and M. Gluck. “A novelty detection approach to classifica-

tion”. In: Proceedings of the international joint conference on Artificial intelligence

1.14 (1995), pp. 518–523.

[64] N. Japkowicz and S. Stephen. “The class imbalance problem: A systematic study”. In:

Intelligent Data Analysis 6.5 (2002), pp. 429–449.

[65] M. V. Joshi, R. C. Agarwal, and V. Kumar. “Predicting rare classes: Can boosting make

any weak learner strong?” In: Proceedings of the eighth ACM SIGKDD international

conference on Knowledge discovery and data mining (2002), pp. 297–306.

178 BIBLIOGRAPHY

[66] S. Kamburugamuve, G. Fox, D. Leake, and J. Qiu. Survey of apache big data stack.

2013. URL: http://grids.ucs.indiana.edu/ptliupages/publications/survey

_apache_big_data_stack.pdf (visited on 07/16/2018).

[67] M. Kaminski and B. Schlegel. Feature Selection for Apache Spark. 2017. URL: https:

//github.com/MarcKaminski/spark-FeatureSelection (visited on 06/17/2018).

[68] S. S. Khan and M. G. Madden. “A survey of recent trends in one class classification”.

In: Irish Conference on Artificial Intelligence and Cognitive Science (2009), pp. 188–

197.

[69] N.-H. Kim, D. An, and J.-H. Choi. Prognostics and Health Management of Engineering

Systems. Basel: Springer International Publishing, 2017. ISBN: 978-3319447407.

[70] K. Kira and L. A. Rendell. “The feature selection problem: Traditional methods and a

new algorithm”. In: Machine Learning Proceedings 2 (1992), pp. 129–134.

[71] I. Kononenko. “Estimating Attributes: Analysis and Extensions of RELIEF”. In: Lecture

Notes in Computer Science 784 (2005), pp. 171–182. (Visited on 07/06/2016).

[72] I. Kononenko and M. Kukar. Machine learning and data mining: introduction to prin-

ciples and algorithms. Chichester: Horwood Publishing, 2007. ISBN: 978-1904275213.

[73] M. Kubat, R. C. Holte, and S. Matwin. “Machine learning for the detection of oil spills

in satellite radar images”. In: Machine Learning 30.2-3 (1998), pp. 195–215.

[74] M. Kubat and S. Matwin. “Addressing the curse of imbalanced training sets: one-

sided selection”. In: International Conference on Machine Learning 97 (1997),

pp. 179–186.

[75] G. Lemaitre, F. Nogueira, and C. K. Aridas. “Imbalanced-learn: A Python Toolbox to

Tackle the Curse of Imbalanced Datasets in Machine Learning”. In: Journal of Ma-

chine Learning Research 18.17 (2017), pp. 1–5.

[76] C. Leys, C. Ley, O. Klein, P. Bernard, and L. Licata. “Detecting outliers: Do not use

standard deviation around the mean, use absolute deviation around the median”.

In: Journal of Experimental Social Psychology 49.4 (2013), pp. 764–766.

[77] M. Lichman. UCI Machine Learning Repository. 2013. URL: https://archive.ics.

uci.edu/ml/index.php (visited on 06/17/2018).

http://grids.ucs.indiana.edu/ptliupages/publications/survey_apache_big_data_stack.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/survey_apache_big_data_stack.pdf
https://github.com/MarcKaminski/spark-FeatureSelection
https://github.com/MarcKaminski/spark-FeatureSelection
https://archive.ics.uci.edu/ml/index.php
https://archive.ics.uci.edu/ml/index.php

BIBLIOGRAPHY 179

[78] Lightbend. Play Framework Documentation. 2018. URL: https://www.playframewo

rk.com/documentation/2.6.x/Home (visited on 07/16/2017).

[79] H. Liu and H. Motoda. Computational methods of feature selection. Boca Raton: CRC

Press, 2007. ISBN: 978-1584888789.

[80] J. Liu, A. Saxena, K. Goebel, B. Saha, and W. Wang. An Adaptive Recurrent Neural Net-

work for Remaining Useful Life Prediction of Lithium-ion Batteries. 2010. URL: http:

//www.dtic.mil/dtic/tr/fulltext/u2/a562707.pdf (visited on 07/16/2018).

[81] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to Information Retrieval.

New York, NY, USA: Cambridge University Press, 2008. ISBN: 978-0521865715.

[82] S. Marsland. Machine learning: An algorithmic perspective. Chapman & Hall/CRC

machine learning & pattern recognition series. Boca Raton: CRC Press, 2009. ISBN:

978-1420067187.

[83] C. E. Metz. “Basic Principles of ROC Analysis”. In: Seminars in Nuclear Medicine 8.4

(1978), pp. 283–298.

[84] I. Mitov, K. Ivanova, K. Markov, V. Velychko, P. Stanchev, and K. Vanhoof. “Compari-

son of discretization methods for preprocessing data for pyramidal growing network

classification method”. In: New trends in intelligent technologies, sofia (2009), pp. 31–

39.

[85] A. Mosallam, K. Medjaher, and N. Zerhouni. “Data-driven prognostic method based

on Bayesian approaches for direct remaining useful life prediction”. In: Journal of

Intelligent Manufacturing 27.5 (2016), pp. 1037–1048.

[86] T. C. Müller, O. Krieger, A. Breuer, K. Lange, and T. Form. “A Heuristic Approach for

Offboard-Diagnostics in Advanced Automotive Systems”. In: SAE International Jour-

nal of Passenger Cars - Electronic and Electrical Systems 2 (2009), pp. 344–351.

[87] K. P. Murphy. Machine learning: a probabilistic perspective. Cambridge: The MIT

Press, 2012. ISBN: 978-0262018029.

[88] A. Ng. “Feature selection, L 1 vs. L 2 regularization, and rotational invariance”. In:

Twenty-first international conference on Machine learning (2004), p. 78.

https://www.playframework.com/documentation/2.6.x/Home
https://www.playframework.com/documentation/2.6.x/Home
http://www.dtic.mil/dtic/tr/fulltext/u2/a562707.pdf
http://www.dtic.mil/dtic/tr/fulltext/u2/a562707.pdf

180 BIBLIOGRAPHY

[89] A. Nuhic, T. Terzimehic, T. Soczka-Guth, M. Buchholz, and K. Dietmayer. “Health

diagnosis and remaining useful life prognostics of lithium-ion batteries using data-

driven methods”. In: Journal of Power Sources 239 (2013), pp. 680–688.

[90] R. Pearson, G. Goney, and J. Shwaber. “Imbalanced clustering for microarray time-

series”. In: International Conference on Machine Learning 3 (2003), pp. 1–8.

[91] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,

P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M.

Brucher, M. Perrot, and E. Duchesnay. “Scikit-learn: Machine Learning in Python”.

In: Journal of Machine Learning Research 12 (2011), pp. 2825–2830.

[92] K. M. Prabhu. Window functions and their applications in signal processing. Boca Ra-

ton: CRC Press, 2013. ISBN: 978-1138076136.

[93] R. Prytz, S. Nowaczyk, T. Rögnvaldsson, and S. Byttner. “Predicting the need for ve-

hicle compressor repairs using maintenance records and logged vehicle data”. In:

Engineering Applications of Artificial Intelligence 41 (2015), pp. 139–150.

[94] B. Raskutti and A. Kowalczyk. “Extreme re-balancing for SVMs: a case study”. In: ACM

Sigkdd Explorations Newsletter 6.1 (2004), pp. 60–69.

[95] R. Razavi-Far, M. Farajzadeh-Zanjani, S. Chakrabarti, and M. Saif. “Data-driven prog-

nostic techniques for estimation of the remaining useful life of lithium-ion batteries”.

In: IEEE International Conference on Prognostics and Health Management (2016),

pp. 1–8.

[96] K. Rieck. Machine learning for application-layer intrusion detection. 2009. URL: http

s://www.depositonce.tu-berlin.de/bitstream/11303/2496/2/Dokument_

38.pdf (visited on 07/16/2018).

[97] J. Rissanen. “Modeling by shortest data description”. In: Automatica 14.5 (1978),

pp. 465–471.

[98] M. Robnik-Šikonja and I. Kononenko. “An adaptation of Relief for attribute estima-

tion in regression”. In: Machine Learning: Proceedings of the Fourteenth International

Conference (1997), pp. 296–304.

[99] P. Romanski and L. Kotthoff. Package FSelector. 2016. URL: https://cran.r-projec

t.org/web/packages/FSelector/FSelector.pdf (visited on 06/17/2018).

https://www.depositonce.tu-berlin.de/bitstream/11303/2496/2/Dokument_38.pdf
https://www.depositonce.tu-berlin.de/bitstream/11303/2496/2/Dokument_38.pdf
https://www.depositonce.tu-berlin.de/bitstream/11303/2496/2/Dokument_38.pdf
https://cran.r-project.org/web/packages/FSelector/FSelector.pdf
https://cran.r-project.org/web/packages/FSelector/FSelector.pdf

BIBLIOGRAPHY 181

[100] Y. Saeys, I. Inza, and P. Larranaga. “A review of feature selection techniques in bioin-

formatics”. In: Bioinformatics 23.19 (2007), pp. 2507–2517.

[101] T. Saito and M. Rehmsmeier. “The precision-recall plot is more informative than the

ROC plot when evaluating binary classifiers on imbalanced datasets”. In: Public Li-

brary of Science ONE 10.3 (2015), pp. 1–21.

[102] A. Saxena and K. Goebel. Phm08 challenge data set. 2008. URL: https://ti.arc.

nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/ (visited on

07/16/2018).

[103] A. Saxena and K. Goebel. Turbofan engine degradation simulation data set. 2008. URL:

https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic- data-

repository/ (visited on 07/16/2018).

[104] A. Saxena, K. Goebel, D. Simon, and N. Eklund. “Damage propagation modeling for

aircraft engine run-to-failure simulation”. In: IEEE International Conference on Prog-

nostics and Health Management (2008), pp. 1–9.

[105] B. Schlegel and M. Kaminski. Next Generation Workshop Car Diagnostics at BMW

Powered by Apache Spark. 2017. URL: https://www.youtube.com/watch?v=aVK-

5QFmZDo& (visited on 06/17/2018).

[106] B. Schlegel, P. Wolf, and A. Mrowca. RUL Estimation Code. 2017. URL: https://gith

ub.com/BernhardSchlegel/rul-estimation (visited on 07/16/2018).

[107] B. Schlegel, A. Mrowca, P. Wolf, B. Sick, and S. Steinhorst. “Generalizing application

agnostic remaining useful life estimation using data-driven open source algorithms”.

In: IEEE 3rd International Conference on Big Data Analysis (2018), pp. 102–111.

[108] B. Schlegel and B. Sick. “Dealing with Class Imbalance the Scalable Way: Evaluation of

Various Techniques Based on Classification Grade and Computational Complexity”.

In: IEEE International Conference on Data Mining Workshops (2017), pp. 69–78.

[109] B. Schlegel and B. Sick. “Design and optimization of an autonomous feature selection

pipeline for high dimensional, heterogeneous feature spaces”. In: IEEE Symposium

Series on Computational Intelligence (2016), pp. 1–9.

https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/
https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/
https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/
https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/
https://www.youtube.com/watch?v=aVK-5QFmZDo&
https://www.youtube.com/watch?v=aVK-5QFmZDo&
https://github.com/BernhardSchlegel/rul-estimation
https://github.com/BernhardSchlegel/rul-estimation

182 BIBLIOGRAPHY

[110] B. Schölkopf, R. C. Williamson, A. J. Smola, and Others. “Support vector method for

novelty detection”. In: Advances in neural information processing systems 12 (1999),

pp. 582–588.

[111] M. Schwabacher and K. Goebel. A Survey of Artificial Intelligence for Prognostics. URL:

http://www.aaai.org/Papers/Symposia/Fall/2007/FS-07-02/FS07-02-

016.pdf (visited on 07/06/2018).

[112] C. Seiffert, T. M. Khoshgoftaar, J. van Hulse, and A. Napolitano. “Resampling or

reweighting: A comparison of boosting implementations”. In: IEEE International

Conference on Tools with Artificial Intelligence 20 (2008), pp. 445–451.

[113] A. Sen. On economic inequality. Oxford University Press, 1973. ISBN: 978-0198281931.

[114] C. E. Shannon. “A Mathematical Theory of Communication”. In: Bell System Techni-

cal Journal 27 (1948), pp. 623–656.

[115] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. “The hadoop distributed file sys-

tem”. In: IEEE 26th symposium on Mass storage systems and technologies (2010), pp. 1–

10.

[116] X.-S. Si, W. Wang, C.-H. Hu, and D.-H. Zhou. “Remaining useful life estimation – A

review on the statistical data driven approaches”. In: European Journal of Operational

Research 213.1 (2011), pp. 1–14.

[117] J. P. Siebert. Vehicle recognition using rule based methods. Ed. by Turing Institute.

1987.

[118] Spark Developers. Spark Release 2.0.0: Change log. 2016. URL: https://spark.apac

he.org/releases/spark-release-2-0-0.html (visited on 06/17/2018).

[119] P. Struss. “Model-based problem solving”. In: Foundations of Artificial Intelligence 3

(2008), pp. 395–465.

[120] D. M. J. Tax and R. P. W. Duin. “Support vector data description”. In: Machine Learning

54.1 (2004), pp. 45–66.

[121] The German Association of the Automotive Industry. Largest automobile markets

worldwide between January and December 2016, based on new car registrations (in

1,000s). 2017. URL: https://www.statista.com/statistics/269872/largest-

http://www.aaai.org/Papers/Symposia/Fall/2007/FS-07-02/FS07-02-016.pdf
http://www.aaai.org/Papers/Symposia/Fall/2007/FS-07-02/FS07-02-016.pdf
https://spark.apache.org/releases/spark-release-2-0-0.html
https://spark.apache.org/releases/spark-release-2-0-0.html
https://www.statista.com/statistics/269872/largest-automobile-markets-worldwide-based-on-new-car-registrations/

BIBLIOGRAPHY 183

automobile-markets-worldwide-based-on-new-car-registrations/ (visited

on 07/16/2018).

[122] J.-H. Thomas and B. Dubuisson. “A Diagnostic Method using Wavelets Networks: Ap-

pication to Engine Knock Detection”. In: IEEE International Conference on Systems,

Man, and Cybernetics 1 (1996), pp. 244–249.

[123] Z. Tian. “An artificial neural network method for remaining useful life prediction of

equipment subject to condition monitoring”. In: Journal of Intelligent Manufacturing

(2012), pp. 227–237.

[124] I. Tomek. “Two modifications of CNN”. In: IEEE Trans. Systems, Man and Cybernetics

6 (1976), pp. 769–772.

[125] P. D. Turney. “Robust classification with context-sensitive features”. In: arXiv preprint

cs/0212041 (2002), pp. 268–176.

[126] G. Vachtsevanos and P. Wang. “Fault prognosis using dynamic wavelet neural net-

works”. In: IEEE Systems Readiness Technology Conference AUTOTESTCON Proceed-

ings (2001), pp. 857–870.

[127] G. Vachtsevanos. Intelligent fault diagnosis and prognosis for engineering systems.

Hoboken, Weinheim: Wiley, 2006. ISBN: 978-0471729990.

[128] T. van Tran, H. Thom Pham, B.-S. Yang, and T. Tien Nguyen. “Machine performance

degradation assessment and remaining useful life prediction using proportional haz-

ard model and support vector machine”. In: Mechanical Systems and Signal Process-

ing 32 (2012), pp. 320–330.

[129] Various. Apache Apex. 2018. URL: https://github.com/apache/apex-core (visited

on 06/17/2018).

[130] Various. Apache Flink. 2018. URL: https://github.com/apache/flink (visited on

06/17/2018).

[131] Various. Apache Heron. 2018. URL: https://github.com/apache/incubator-

heron (visited on 06/17/2018).

[132] Various. Bootstrap Documentation. 2018. URL: https://getbootstrap.com/docs/

4.0/getting-started/introduction/ (visited on 07/16/2018).

https://www.statista.com/statistics/269872/largest-automobile-markets-worldwide-based-on-new-car-registrations/
https://www.statista.com/statistics/269872/largest-automobile-markets-worldwide-based-on-new-car-registrations/
https://github.com/apache/apex-core
https://github.com/apache/flink
https://github.com/apache/incubator-heron
https://github.com/apache/incubator-heron
https://getbootstrap.com/docs/4.0/getting-started/introduction/
https://getbootstrap.com/docs/4.0/getting-started/introduction/

184 BIBLIOGRAPHY

[133] Various. Onyx. 2018. URL: https://github.com/onyx-platform/onyx (visited on

06/17/2018).

[134] Various. Spark Versioning Policy. 2018. URL: https://spark.apache.org/version

ing-policy.html (visited on 06/17/2018).

[135] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar, R. Evans, T. Graves,

J. Lowe, H. Shah, S. Seth, and Others. “Apache hadoop yarn: Yet another resource

negotiator”. In: Proceedings of the annual Symposium on Cloud Computing 4 (2014),

p. 5.

[136] T. Wang, J. Yu, D. Siegel, and J. Lee. “A similarity-based prognostics approach for re-

maining useful life estimation of engineered systems”. In: IEEE International Confer-

ence on Prognostics and Health Management (2008), pp. 1–6.

[137] S. Watanabe. “Feature compression”. In: Advances in information systems science

(1970), pp. 63–111.

[138] G. M. Weiss. “Mining with rarity: a unifying framework”. In: ACM Sigkdd Explorations

Newsletter 6.1 (2004), pp. 7–19.

[139] H. Wilkins, A. Sarb, and M. Semeniuj. mleap. 2018. URL: https://github.com/

combust/mleap (visited on 07/16/2018).

[140] K. S. Woods, C. C. Doss, K. W. Bowyer, J. L. Solka, C. E. Priebe, and W. P. Kegelmeyer

Jr. “Comparative evaluation of pattern recognition techniques for detection of mi-

crocalcifications in mammography”. In: International Journal of Pattern Recognition

and Artificial Intelligence 7.06 (1993), pp. 1417–1436.

[141] K. Xu, M. Xie, L. C. Tang, and S. L. Ho. “Application of neural networks in forecasting

engine systems reliability”. In: Applied Soft Computing 2.4 (2003), pp. 255–268.

[142] J. Yan, M. Koc, and J. Lee. “A prognostic algorithm for machine performance assess-

ment and its application”. In: Production Planning & Control 15.8 (2004), pp. 796–

801.

[143] M. Zaharia and B. Chambers. Spark: The Definitive Guide. Sebastopol: O’Reilly Media,

Inc, 2017. ISBN: 978-1491912201.

https://github.com/onyx-platform/onyx
https://spark.apache.org/versioning-policy.html
https://spark.apache.org/versioning-policy.html
https://github.com/combust/mleap
https://github.com/combust/mleap

BIBLIOGRAPHY 185

[144] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave, X. Meng, J. Rosen,

S. Venkataraman, M. J. Franklin, A. Ghodsi, J. Gonzalez, S. Shenker, and I. Stoica.

“Apache Spark: A Unified Engine for Big Data Processing”. In: Communications of

the ACM 59.11 (2016), pp. 56–65.

[145] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. “Spark: Cluster

Computing with Working Sets”. In: HotCloud’10 Proceedings of the 2nd USENIX con-

ference on Hot topics in cloud computing (2010), p. 10.

[146] F. Zamora-Martínez, P. Romeu, P. Botella-Rocamora, and J. Pardo. “On-line learning

of indoor temperature forecasting models towards energy efficiency”. In: Energy and

Buildings 83 (2014), pp. 162–172.

[147] Z. Zheng, X. Wu, and R. Srihari. “Feature selection for text categorization on imbal-

anced data”. In: ACM Sigkdd Explorations Newsletter 6.1 (2004), pp. 80–89.

[148] M. Zieba, S. K. Tomczak, and J. M. Tomczak. “Ensemble boosted trees with synthetic

features generation in application to bankruptcy prediction”. In: Expert Systems with

Applications 58 (2016), pp. 93–101.

9 783737 607384

ISBN 978-3-7376-0738-4

	Preface
	Acknowledgment
	Abstract
	Zusammenfassung
	Contents
	Introduction
	Motivation
	Data Sources
	Problem Formulation
	Objectives
	Structure of this Thesis
	List of Relevant Publications

	Preliminary Considerations
	Notation
	Machine Learning Models
	Random Forests
	Logistic Regression
	K-nearest Neighbor

	Measuring Classification Performance in Imbalanced Scenarios

	Feature Selection
	State of the Art
	Diagnostics
	Filter Measures
	Wrapper and Embedded Measures

	Research Demand
	Data Sets
	Diagnostic Automotive Data
	Publicly Available Data Sets

	Proposed Solution
	Preparation Layer
	Filter Layer
	Wrapper Layer
	Model Layer
	Hyperparameters

	Evaluation
	Detailed Look on Feature Group Importance
	Filter Layer Evaluation
	Wrapper Layer Evaluation
	Remaining Hyperparameters
	Evaluation on Publicly Available Data

	Summary and Conclusion

	Dealing with Imbalance
	State of the Art
	Preprocessing Techniques for Imbalanced Data Sets
	Objective Feature Noise, Borderline, and Overlap Measure

	Research Demand
	Data Sets
	Evaluation
	Preliminary Investigations
	Robustness
	Influence of Preprocessing Techniques on the Classification Performance
	Computational Complexity

	Lessons Learned and Conclusions

	Remaining Useful Lifetime
	Notation and Definitions
	State of the Art
	Research Demand
	Data Sets
	Proposed Solution
	Approach of Wang
	Polynomial-Based Feature Selection
	Distribution-Based Similarity Estimation
	Bucketized RUL Regression

	Evaluation
	Hyperparameters of Distribution-based Similarity Estimation
	Hyperparameters of Bucketized RUL Regression
	Summary

	Conclusion and Outlook

	Apache Spark and Application
	State of the Spark
	Immutable Data Sets
	Actions and Lazy Transformations
	Estimators and Transformers
	Ephemeral Intermediate Results

	Research Demand
	Apache Spark Pipeline
	Preprocessing
	Modeling
	Cluster Setup
	Graphical User Interface and Backend

	Evaluation
	Limitations of Apache Spark
	Data Sets
	Experiments

	Brief Economic Analysis
	Conclusion

	Summary
	Summary, Conclusions, and Discussion
	Recommendations for Further Work

	Spark Cluster Setup and Application Launch

