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Abstract India has the second largest population in the world and is characterized by a broad diversity in
climate, topography, flora, fauna, land use, and socioeconomic conditions. To help ensure food security in
the future, agricultural systems will have to respond to global change drivers such as population growth,
changing dietary habits, and climate change. However, alterations of how food is produced in the future may
conflict with other UN Sustainable Development Goals (SDGs), such as the protection of land resources
and climate change mitigation. It is crucial for decision‐makers to understand potential trade‐offs between
these goals to find a balance of human needs and environmental impacts. In this paper, we analyze pathways
of agricultural productivity, land use, and land‐cover changes in India until 2030 and their impacts on
terrestrial biodiversity and carbon storage. The results show that in order to meet future food production
demands, agricultural lands are likely to expand, and existing farmlands need to be intensified. However,
both processes will result in biodiversity losses. At the same time, the projections reveal carbon stock
increases due to intensification processes and decreases due to conversions of natural land into agriculture.
On balance, we find that carbon stocks increase with the scenarios of future agricultural productivity as
modeled here. In conclusion, we regard further agricultural intensification as a crucial element to help
ensure food security and to slow down the expansion of cropland and pasture. At the same time, policies are
required to implement this intensification in a way that minimizes biodiversity losses.

1. Introduction

By area, India is the world's seventh largest country along with a population of about 1.3 billion people in
2015 (FAO, 2017a; UN‐Pop, 2017). India is characterized by an immense diversity in climate, topography,
flora, fauna, land use, and socioeconomic conditions (FAO, 2017b). During the past 140 years, India has
experienced remarkable land use and land‐cover changes including deforestation, cropland changes, and
urban expansion (Roy et al., 2015; Tian et al., 2014). Over half of the territory is used as cropland, making
India one of the largest producing countries of agricultural commodities worldwide (FAO, 2017a;
Teluguntla et al., 2015). In 2016, the agricultural sector comprised 23% of the total economy, as measured
by the gross domestic product, and employed around 59% of the country's total labor force (FAO, 2017b).
Two thirds of the Indian population lives in rural areas (World Bank, 2016) and, with a relatively high pov-
erty rate, is home to one of the largest populations (175.7 million) living below theWorld Bank's poverty line
of $1.90 a day (World Bank, 2018).

India has experienced notable increases in agricultural productivity over the last decades (Chand &
Parappurathu, 2012; Pingali, 2012). Nevertheless, there are still significant yield gaps for many crops across
the countryside (Brahmanand et al., 2013; Sharma, 2016). The existence of yield gaps can be explained by
many confounding factors, such as the prevalence of subsistence farming and poor access to chemical
inputs, improved technology, and management techniques (Bhattacharyya et al., 2015; George, 2014;
ICAR, 2015). India's food production needs to be increased substantially in the coming decades due to an
expected population growth up to more than 1.6 billion in 2050 (UN‐Pop, 2017) along with changing
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dietary preferences like a higher demand for animal‐sourced products (Alexandratos & Bruinsma, 2012).
This is an extremely challenging issue. Currently, India provides food to 18% of the world's population but
occupies only 2.4% of the world's total land area (Bhattacharyya et al., 2015; Teluguntla et al., 2015).
Studies such as Mauser et al. (2015) see large potential in India for increasing agricultural productivity by
improving management practices and adopting new crop varieties. To realize these improvements, further
investments in research and development (R&D) in the agricultural sector are required.

At the same time, possible negative environmental impacts due to agricultural intensification cannot be
neglected (e.g., Ramankutty et al., 2018; Rockström et al., 2017; Springmann et al., 2018; Srivastava et al.,
2016; Tilman et al., 2017; Tilman & Clark, 2014). India is still one of the richest nations in terms of biodiver-
sity, and the remaining forest area (22% of the total area) represents a significant carbon stock that needs to
be conserved as a means of climate change mitigation (Nadagoudar, 2016; Roy et al., 2015; Swaminathan &
Bhavani, 2013; Tian et al., 2014). According to the IPCC (2014), India is likely to suffer from a higher fre-
quency of extreme temperature and precipitation events. The cyclical monsoon system has been identified
as one tipping element of the global climate system, which means that strong climate change might drasti-
cally change atmospheric circulation patterns globally (Lenton et al., 2008; Steffen et al., 2018). With such a
systemic shift, there could be significant impacts on India's agricultural sector.

Thus, one of the main challenges facing India today is to develop strategies to sustain and improve living
conditions of a growing population, while continuing to satisfy shifting consumption patterns and limit
negative environmental outcomes (Nadagoudar, 2016; Roy et al., 2015; Swaminathan & Bhavani, 2013;
Tian et al., 2014). The Sustainable Development Agenda of the United Nations (United Nations General
Assembly, 2015) recognizes the negative impacts of food insecurity, biodiversity loss, and climate change
on human development issues by including them as priorities in the Sustainable Development Goals
(SDGs). While SDG 2 (Zero Hunger) addresses food security, SDG 15 (Life on Land) demands, among other
things, the preservation of biodiversity and SDG 13 (Climate Action) focuses on climate adaptation and miti-
gation efforts. However, many scientific approaches that aim at informing policies to achieve the SDGs are
sector‐specific assessments and often disregard the interrelationships identified in multisectoral assessments
(Obersteiner et al., 2016; Tagar et al., 2016). First attempts to systematically analyze interactions and trade‐
offs between SDGs were conducted by Pradhan et al. (2017) and Gao and Bryan (2017).

Spatially explicit simulation models are useful tools to explore the dynamics of future agricultural develop-
ment, related land use change, and resulting environmental impacts (Alexander et al., 2017; Li et al., 2017;
Prestele et al., 2016). For India, Schaldach, Priess, et al. (2011) use a spatially explicit land usemodel to assess
the effects of biofuel development on land use change. While numerous global studies that include India as a
subregion tackle the effects of land use change on either biodiversity (e.g., Delzeit et al., 2017; Kok et al.,
2018; Newbold et al., 2016) or carbon storage (e.g., Popp et al., 2014), only a few studies are available that
address effects on both impact categories (e.g., Eitelberg et al., 2016; Molotoks et al., 2018).

In this paper, we analyze a set of scenarios of future agricultural development in India and assess potential
trade‐offs between food production to prevent hunger (SDG 2), climatemitigation (SDG 13), and biodiversity
(SDG 15). For our analysis we adapt and apply an integrated modeling framework that combines an eco-
nomic model with different spatially explicit models. Since the UN Agenda defines 2030 as a target year to
make substantial improvements in reaching the SDGs, we have chosen this year as the time horizon for
the scenarios. In the following section the applied models and the scenario assumptions are described.
This is followed by a section that describes our simulation results and a discussion of our main findings.

2. Materials and Methods
2.1. Modeling Framework

Components of the modeling framework (Figure 1) include the International Model for Policy Analysis of
Agricultural Commodities and Trade (IMPACT; Robinson et al., 2015), the spatially explicit land use model
LandSHIFT (Schaldach, Alcamo, et al., 2011), and two empirical models for the analysis of land use change
effects on biodiversity (Alkemade et al., 2009, 2013; Biggs et al., 2008; Jenkins et al., 2013; Scholes & Biggs,
2005) and carbon stock changes in soils and vegetation (European Commission, 2010; European Parliament
and Council, 2009; IPCC, 2006; JRC, 2010; Ruesch & Gibbs, 2008). This type of IMPACT‐LandSHIFT model
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coupling was already successfully implemented and applied for other scenario studies in Southeast Asia and
East Africa (e.g., Mason‐D'Croz et al., 2016; van Soesbergen et al., 2017). Both models are driven by exogen-
ous climate and socioeconomic scenario data.

The IMPACTmodel is used for projecting changes in agricultural production and crop yields in India due to
changing socioeconomic and climate conditions. IMPACT is an economic equilibriummodel that calculates
projections for global agricultural markets and trade and reflects changes of demands and production of
agricultural goods in India and other countries as well as net trade. Internally crop yield changes due to cli-
mate and technological change are determined by the DSSAT suite of cropmodels (Hoogenboom et al., 2017;
Jones et al., 2003) applied in MINK, a global gridded crop modeling approach (Robertson, 2017). The model
output is passed to LandSHIFT and comprises country‐level information on crop and livestock production as
well as crop‐specific yield changes. In the following, LandSHIFT translates this information into land use
patterns, which then serve as input to the environmental impact assessment models. In this study, land
use change is simulated on a raster with a cell size of 5 arcminutes (~9 × 9 km) at the equator. Table S0 in
the supporting information summarizes the data and models used for our analysis.

2.2. Scenarios and Economic Modeling

For our analysis, we use four global scenarios (Table 1) that were developed as part of the CGIAR Global
Futures and Strategic Foresight project, led by the International Food Policy Research Institute. The focus
of that scenario exercise was to evaluate the effectiveness of different investment strategies in the agricul-
tural sector with regard to food security under global change conditions up to the year 2050 (Rosegrant
et al., 2017). All scenarios follow the Shared Socioeconomic Pathway 2 (SSP2) “middle of the road” assump-
tions on population and economic growth (Kriegler et al., 2014; Moss et al., 2010; van Vuuren et al., 2014).
For this pathway, it is assumed that India's population will grow to more than 1.5 billion by the year 2030
while the economy is characterized by strong gross domestic product increases (Dellink et al., 2017; Samir
& Lutz, 2017). In addition, the International Food Policy Research Institute scenarios combine these drivers
with assumptions about different investments in R&D in the agricultural sector across the CGIAR research
portfolio. These measures are assumed to comprise investments in advanced breeding techniques, including
further advances in genomics as well as in efforts to increase the efficiency of scientific institutions to achieve
productivity gains (Rosegrant et al., 2017).

Figure 1. Modeling framework used for the scenario analysis.
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The first two scenarios serve as reference cases with R&D investments following current trends and there-
fore directly represent the SSP2 storyline. The REF_NoCC scenario uses constant climate conditions around
the year 2005 while the REF_HGEM scenario assumes climate change according to a RCP8.5 climate sce-
nario (van Vuuren et al., 2011). In addition, two investment scenarios are specified. The MED scenario
assumes an intermediate level of additional R&D investments by CGIAR centers while the HIGH+RE sce-
nario considers a high increase in CGIAR investment plus an increased CGIAR research efficiency. Both
investment scenarios assume climate change according to a RCP8.5 climate scenario. The crop modeling
component of the IMPACT model (DSSAT and MINK) translates the climate change scenarios into a clear
signal of what the impact of average climate change trends will be on crop yields. In addition, for each sce-
nario the R&D investments are translated into crop yield increases following a logistic adoption pathway,
based on historical trends and using expert judgment from regional CGIAR centers regarding the potential
of crop productivity development for each region modeled. Then, the four scenarios are simulated using the
IMPACT model. The scenario development process is described in detail in Robinson et al. (2015) and
Rosegrant et al. (2017).

The effects of climate change (e.g., temperature and precipitation changes) were projected by the Hadley
Centre Global Environment Model, version 2 (HadGEM2‐ES (HGEM); Jones et al., 2011). We have chosen
the RCP8.5 scenario and a reference case with 2005 climate conditions in order to investigate a broad corri-
dor of potential climate change impacts on crop yields and to assess the robustness of the different invest-
ment strategies under climate change. As pointed out in section 2.1, country‐level information that is
passed from IMPACT to LandSHIFT includes crop and livestock production as well as the crop‐specific yield
changes in India.

2.3. Land Use Modeling

The LandSHIFT model is used to calculate spatial and temporal land use change due to crop cultiva-
tion, grazing, and urbanization. It has been validated and tested for India in the context of biofuel
assessments (Schaldach, Alcamo, et al., 2011; Schaldach, Priess et al., 2011). The model is based on
the concept of land use systems (Turner et al., 2007) and couples components that represent anthropo-
genic and environmental subsystems. Drivers of land use change are specified on the country‐level,
while the spatially distributed land use modeling is carried out on a regular grid. Cell‐level information
comprises land use type, human population density, landscape characteristics (e.g., terrain slope, poten-
tial yields, road infrastructure), and land use restrictions (e.g. protected areas). Table S2 gives an over-
view of the data sets used as model inputs for our analyses. During the simulation, LandSHIFT
translates the country‐level model input into spatial land use patterns. At the beginning of every time
step, the suitability of each raster cell for the different land use types is determined based on the
cell‐level information. Thereafter, the model uses country‐level data to determine and to allocate the
land needed for each crop type, pasture, and settlement in the most suitable cells. The model results
are raster maps that depict the spatial and temporal patterns of land use change until 2030 in 5‐year
time steps. Grid‐level information on crop yields in the base year that are required for the spatial allo-
cation of cropland is determined by the LPJmL model (Bondeau et al., 2007). In course of the scenario
simulations, these values are adjusted according to the country‐level information on crop‐specific yield
changes provided by the crop modeling component of the IMPACT model.

Table 1
Main Characteristics of the Scenarios

Scenario grouping Scenario Scenario description

Reference REF_HGEM Reference scenario with RCP8.5 future climate using the HadGEM2‐ES
(HGEM)

REF_NoCC Alternative reference with no climate change (constant 2005 climate)
Productivity
enhancement

MED Medium increase in R&D investments across CGIAR portfolio; RCP8.5
future climate

HIGH+RE High increase in R&D investments across CGIAR portfolio
plus increased research efficiency; RCP8.5 future climate

Note. See also Rosegrant et al. (2017).
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2.4. Model Initialization

LandSHIFT is initialized with a gridded land use map representing the year 2005. This base map is produced
by merging of land‐cover data from the GlobCover 2009 data set with data on the physical extent of different
crop types and permanent meadows and pastures from the UN Food and Agricultural Organization FAO
(ESA, 2010; FAO, 2017a). In contrast to the land‐cover data set, the base map distinguishes 12 different crop
types and includes a spatial allocation of pastureland. The information on the relative share of the various
crop types in the total cropland area per country is derived from the input data on harvested area on coun-
try‐level for the year 2005 from IMPACT. The conversion from harvested area of a crop, as specified by
IMPACT, to its physical area allocated in the base map is done on a per‐country basis and is kept constant
for the simulation period. For this purpose, harvested area is multiplied by the ratio of total physical crop-
land area (FAO) over total harvested area of all crops (as derived from IMPACT). Hence, LandSHIFT
assumes the same cropping intensity for all crop groups in a country, which is a clear simplification of
our modeling approach as intensities may vary between cropping systems. In this study, all cropping systems
have an intensity factor of 0.63, which is kept constant during the simulation period. For pasture, initializa-
tion data, that is, livestock numbers and permanent area of meadows and pasture, are taken from FAO.
Table S3 shows the mapping of the GlobCover 2009 land‐cover types to the land use types in the
LandSHIFT model and the area that they occupy in the base map.

An important outcome from the data merging process is that the cropland area depicted in GlobCover 2009
strongly exceeds the physical cropland area given in the statistical data. As a consequence, excess cropland
cells are classified as set‐aside in the base map. To further specify the actual land use, we overlay the base
map with a regional land‐cover product (Roy et al., 2015) at a spatial resolution of 30 m × 30 m and calcu-
lated the mean fraction of different land‐cover types within the 5‐arcmin cells. As a result of this GIS analy-
sis, we characterize these cells as a mosaic of less intensive subsistence farming with higher field margin
vegetation and/or agroforestry (20%) and fallow land/natural vegetation, especially lightly used forests
and secondary forests (80%).

2.5. Assessment of Impacts on Biodiversity

We use the Biodiversity Intactness Index (BII) for quantifying the impact of land use change on biodiversity.
The BII is an indicator of the average abundance of a large and diverse set of organisms in a given geogra-
phical area, relative to reference populations in the preindustrial period (Scholes & Biggs, 2005). The BII
was originally developed for analyses in Southern Africa (e.g., Biggs et al., 2008). In recent publications
related to the Planetary Boundary concept, it has been proposed as a suitable indicator to measure the loss
of species diversity in large‐scale assessments (Steffen et al., 2015) and applied for continental and global
analyses (Koch et al., 2019; Newbold et al., 2016).

Calculations of the BII are carried out for the land use maps generated by LandSHIFT. Here, each cell repre-
sents an ecosystem with its areal extent being the cell size and its species richness described by the sum of
bird, mammal, and amphibian species. Spatially explicit data on species richness is derived from the global
data set by Jenkins et al. (2013). The BII at the country‐level is determined by summing up the individual
grid cell values (equation (1)).

BII ¼ ∑i∑j∑kRijAjkIijk
∑i∑j∑kRijAjk

(1)

According to equation (1) (based on Scholes & Biggs, 2005), the BII on the country‐level is defined as the
average impact across taxa i, ecosystems j, and land use types k. The impact Iijk is defined as the population
abundance of a given species or group of species relative to the reference state, weighted by the areal extent
of each land use Ajk and the intrinsic species richness of the ecosystems affected Rij. A BII close to 100% indi-
cates that species abundance is at a preindustrial level, while values close to zero indicate that most species
have become extinct or that their abundance has fallen to minimal levels compared to the
undisturbed habitat.

For estimating the impact I of a particular land use type on species abundance, we use information from the
GLOBIO model (Alkemade et al., 2009, 2013) that specifies the respective reduction of Mean Species

10.1029/2019EF001287Earth's Future

HINZ ET AL. 5 of 19



Abundance (MSA). Urban land reduces the original MSA by 95%.
Cultivated land was further subdivided into low‐intensity agriculture with
a reduction factor of 70% and high‐intensity agriculture with a reduction
factor of 90%. Table 2 summarizes the MSA values used for the analysis.
The proportions of low‐ and high‐intensity agriculture are based on
Alkemade et al. (2009). For India the share of intensive agriculture is
57%. Similar to cropland, pasture is subdivided into intensive grazing
and man‐made pastures. As there was no specific data available about
the areal distribution of both types, intensive grazing and man‐made pas-
tures are assumed to have the same area share as the cropland types
(Table 3).

BII changes over time are driven by land conversion and intensification of
crop cultivation and pasture management. To portray the effect of agricul-
tural intensification, the fractions of low input and intensive cropland, as
well as the fractions of intensive grazing and man‐made pastures, are

changed over the simulation period. We assume that the projected yield increases depicted in the scenarios
will be accomplished to a large extend by the expansion of intensive agriculture that is characterized by the
cultivation of high productive crop varieties that successively become available until 2030 (see section 2.2),
but very likely also by high inputs of mineral fertilizer, improved pest control and a strong degree of mechan-
ization with negative effects on biodiversity (e.g., Bhattacharyya et al., 2015; Srivastava et al., 2016). At the
same time, we assume that these measures are accompanied by an improved soil carbon management in
order to decrease soil erosion and to prevent loss of soil fertility as a prerequisite to increase crop yields in
the long term (see section 2.6).

The fraction of intensive cropland in 2030 is estimated as follows: For the REF_NoCC scenario we assume
that this fraction increases by the mean yield growth rate of all crops between 2010 and 2030 from 57% to
85% (see section 3.1). Since the REF_HGEM scenario is characterized by similar changes of agricultural
management practices (resulting in lower crop yield under climate change), the fraction of intensive crop-
land has the same value as under the REF_NoCC case. For the two investment scenarios that are both char-
acterized by higher yield increases, we assume a further gradual increase of the fraction of intensive
cropland to 90% under MED and 95% under HIGH+RE (Table 3).

In contrast, the fraction of man‐made pastures in 2030 is determined bymultiplying half of the livestock den-
sity growth rate of each scenario from 2010 to 2030 with the relative proportion of man‐made pastures in
2010. Half of the growth rate is used because we assume that livestock systems in India will change to more
intensive systems with higher proportions of animal housing that cause less grazing pressure (Table 3).

2.6. Assessment of Carbon Storage Changes

Land use change within the simulation period is determined by comparing the scenario‐specific raster maps
for 2010 and 2030 generated by LandSHIFT. Land use change occurs if the land use type of a cell in 2030 is

Table 3
Shares of Intensive and Low Input Cropland (Alkemade et al., 2009) and Intensive Grazing andMan‐Made Pastures in 2010
and in the Scenarios 2030 (Own Assumptions)

2010

REF_HGEM REF_NoCC MED HIGH+RE

2030 2030 2030 2030

Cropland
Low input 43% 15% 15% 10% 5%
Intensive 57% 85% 85% 90% 95%
Grazing land
(pasture)

Intensive grazing 43% 29% 29% 25% 5%
Man‐made pastures 57% 71% 71% 75% 95%

Table 2
Mean Species Abundance Under Different Land Use Types

Land use type MSA

Cropland
Low input 0.3
Intensive 0.1

Grazing land
Extensive grazing (grassland) 0.7
Intensive grazing (pasture) 0.3
Man‐made pastures (pasture) 0.1

Forest 1.0
Other natural vegetation 1.0
Set‐aside (tree cover/other natural vegetation/cropland) 0.5
Urban 0.05

Note. The parameter values are taken from Alkemade et al. (2009, 2013).
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different from its land use type in 2010. The resulting annualized CO2 emissions (el) are calculated according
to equation (2).

el ¼ CSR−CSAð Þ*F* 1
Y
; (2)

where
el = annualized emissions from carbon stock change due to land use change [tCO2/a],
CSR = carbon stock in soil and vegetation on cell‐level in 2010 [tC],
CSA = carbon stock in soil and vegetation on cell‐level in 2030 [tC],
F = factor for the conversion of C to CO2 (default = 3.664), and
Y = annualizing of carbon stock changes over a 20‐year period [a].

The methodology, derived from the EU Renewable Energy Directive, is based on the 2006 IPCC Guidelines
for Tier 1 calculation of land carbon stocks (European Parliament and Council, 2009; IPCC, 2006). In the first
step, the carbon stocks in soil and vegetation for each raster cell in the years 2010 (CSR) and 2030 (CSA) are
determined. Information regarding soil, climate, and land use type, as well as the related values for soil
organic carbon and vegetation carbon stocks, is derived from the data presented by (European
Commission (2010), IPCC (2006), JRC (2010) and Ruesch & Gibbs (2008). In the second step, the change
in carbon stocks during the simulation period is obtained by subtracting CSA from CSR. In the last step,
the annual emissions related to these carbon stock changes are calculated for a time frame of 20 years by
dividing total emissions into 20 equal parts. A positive sign indicates the release of CO2 to the atmosphere
while a negative sign stands for uptake of CO2 from the atmosphere.

Equation (3) illustrates the rule for the calculation of carbon stocks, which takes into account organic carbon
inmineral soils and in the above and belowground vegetation compartments (European Commission, 2010):

CSR=A ¼ SOCST*FLU*FMG*FI þ CVEG*A; (3)

where
CSR/A = carbon stock in soil and vegetation on cell‐level associated with the reference/actual land use

[tC],
SOCST = standard soil organic carbon in the 0‐ to 30‐cm topsoil layer [tC/ha],
FLU = land use factor reflecting the difference in soil organic carbon associated with the type of land

use compared to the standard soil organic carbon [−],
FMG = management factor reflecting the difference in soil organic carbon associated with the principal

management practice compared to the standard soil organic carbon [−],
FI = input factor reflecting the difference in soil organic carbon associated with different levels of

carbon input to soil compared to the standard soil organic carbon [−],
CVEG = above and belowground vegetation carbon stock [tC/ha], and
A = factor scaling to the area concerned [ha].

The carbon stock estimates for SOCST and CVEG, as well as the land use factor FLU, are defined by the specific
land use, climate, and soil type on each cell. Furthermore, the selection of the values used for the FMG and FI
factors is based on expert knowledge from scientists of the Institute for Social and Economic Change and on
descriptions of land management systems in India given by Bhattacharyya et al. (2015). To calculate not only
the carbon stock changes due to land use conversions but also the modifications of C stocks due to manage-
ment practice changes on the remaining agricultural land, the factors FMG and FI are changed over the simu-
lation period for the different scenarios. Tables S4–S6 in the supporting material include the values used for
the respective factors in our study. In the starting year of our simulations, both intensive and low input crop-
land is subject to full tillage and low residue return after harvest. This reflects current management practices
in the Indian agricultural sector with a high share of small farm holders who often have limited access to
equipment and technology. In many cases, these farmers are not able to afford costly inputs and often make
use of suboptimal agricultural practices due to poor agricultural education, such as excessive tillage,
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unbalanced use of mineral fertilizer and pesticides, and inadequate crop residue inputs (Bhattacharyya et al.,
2015; ICAR, 2015). As pointed out in the previous section, in our scenarios, the successive intensification of
cropland with higher yields is supported by advancements in soil management that in consequence lead to
increasing soil carbon stocks (see Lal, 2004). The reference scenarios (REF_HGEM and REF_NoCC) both
assume full tillage but in combination with medium input of crop residues. Crop cultivation in the MED
scenario is carried out with reduced tillage and medium input of crop residues while the HIGH+RE
scenario combines reduced tillage with high residue inputs.

In the scenario exercise with the IMPACT model (Rosegrant et al., 2017), yield growth for perennial crops,
not being a focus of that analysis, are held constant and result in a production‐weighted average increase in
yield of about 10%. Therefore, we assume for all scenarios similar changes in FMG and FI from medium
inputs in 2010 to high inputs of crop residues in 2030.

In the case of pasture, the methodology employed allows changes in management inputs only for improved
grassland, which is defined as “sustainably managed land with moderate grazing pressure” (European
Commission, 2010). Input changes for pasture are not included in this study because of the high grazing den-
sities simulated in all scenarios. Increases in livestock densities are assumed to lead to higher rates of land
degradation (FMG changes).

Figure 2. Changes in (a) crop production in % and (b) increases in crop yields in % due to investments in agricultural R&D
and climate change between 2010 and 2030 under the four scenarios for India. Simulation results from the IMPACT
model.
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3. Results
3.1. Agricultural Development Until 2030

Changes in agricultural production and crop yields are simulated using the IMPACTmodel. Crop yields, dri-
ven by investments in agricultural R&D and climate change, as well as crop production, driven by popula-
tion growth and changes in global and regional demand, are projected to increase in all scenarios (Figure 2).

The comparison of the reference scenarios (REF_HGEM and REF_NoCC) illustrates that, looking at India
as a whole, climate change has a negative effect on the yields of nearly all modeled crops. Exceptions are
temperate roots and tubers, which benefit from the changing climate. Spatially aggregated yields of all crops
show a lower growth rate from 2010 to 2030 for the climate change scenario (+41%) compared to the no cli-
mate change scenario (+48%). A similar trend can be observed when looking at the growth rates of total crop
production. Under climate change, less is produced (+43%) than under a no climate change pathway
(+50%). Considering the futures for different crop groups under both scenarios, some crops will become
increasingly important while others will be less cultivated. Increases in yields and production are greatest
for cash crops, such as vegetables and cotton, as well as for wheat.

In contrast, the investment scenarios, which follow the climate assumptions of REF_HGEM but with an
accelerated level of investments in agricultural R&D, result in higher yield increases compared to the
NoCC reference scenario. Out to 2030, the yields of crops in aggregate for theMED and HIGH+RE scenarios
increase by 43% and 54%, respectively. Total production is projected to increase by 46% and 55% forMED and
HIGH+RE, respectively, compared to the base year 2010. Especially in the HIGH+RE scenario, increases in

Figure 3. Land use map for the base year 2010 (a) and maps depicting the expansion of cropland and pasture between 2010 and 2030 for (b) the REF_NoCC sce-
nario and (c) the HIGH+RE scenario. For better visualization, the 12 crop types are aggregated to one land use type “Cropland.”
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yield and production for maize and wheat are especially strong. Comparing the reference scenarios with the
MED scenario, we see that the modestly higher investments in agricultural R&D are not able to curb all
negative effects of climate change. The HIGH+RE scenario, however, more than mitigates the adverse
climate change impacts on agriculture.

By 2030, the production of livestock in India increases drastically under all scenarios. In the reference sce-
narios, we find an increase from 4.56 million livestock units (LU) in 2010 up to 12.45 million LU under
REF_HGEM and 12.62 million LU under REF_NoCC, respectively. In contrast under MED, livestock num-
bers increase to 14.91 million LU while under HIGH+REwe find 24.78 million LU. However, it is important
to note that livestock production is not only dependent on free‐roaming grazing on rangelands and pasture.
Mixed or industrial livestock systems include the feeding of livestock with crops or crop byproducts and the
keeping of livestock in stables (Alkemade et al., 2013).

3.2. Land Use Change by 2030

The extent and spatial pattern of land use change are calculated with the LandSHIFT model. Figure 3a
shows the land use pattern in the base year 2010 aggregated to seven major classes. Figures 3b and 3c depict
the expansion of cropland and pasture until 2030 for the REF_NoCC and the HIGH+RE scenarios.

Cropland and pasture areas expand in all scenarios (Figure 4). Most of the expansion takes place on land pre-
viously covered by set‐aside land (Table S7–S10). This land use type accounts for a large proportion of the
total land area in India and is mainly located in Central andWest India. The largest increase of cropland area
occurs in the REF_HGEM scenario, with an increase from 2010 to 2030 of 35,302 km2 (2.1%) to a total of
1,730,990 km2. The higher crop productivity in the REF_NoCC scenario, assuming a constant 2005 climate,
allows future food demands to be met with an expansion of cropland area of only 22,990 km2. Also, in both
investment scenarios, cropland expansion is lower than under REF_HGEM, with absolute increases of
30,672 km2 (MED) and 15,605 km2 (HIGH+RE). The key reason behind this moderate expansion of crop-
land area in all scenarios is the projected increase of crop yields due to agricultural intensification.

Pasture area grows from 59,964 km2 in 2010 to an extent ranging from 119,823 km2 (+99.8%) under
REF_HGEM and 152,913 km2 (+155%) for the HIGH+RE scenario in 2030. Stocking density increases from
63 LU/km2 in 2010 up to 93 LU/km2 under REF_HGEM and 94 LU/km2 under REF_NoCC. Under the
investment scenarios, this increase is even higher with 103 LU/km2 (MED) and 148 LU/km2 (HIGH+RE).
Total decreases of set‐aside area until 2030 due to cropland and pasture expansion are in a range between
113,724 km2 (HIGH+RE) and 89,294 km2 (REF_NoCC).

Figure 4. Area change from 2010 to 2030 for the four studied scenarios in km2.
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For all scenarios, the losses of forest and other natural land are relatively small. The forest area decreases by
264 km2, while other natural land is reduced by 786 km2. Urban area grows in all scenarios by more than
6.9%, equal to an absolute increase of 6,220 km2.

3.3. Impacts of Land Use Change on Biodiversity

The BII for India in the year 2010 is 41.67%. Changes of BII in our scenarios are driven by the conversion of
natural and set‐aside land to cropland, pasture, and urban area as well as by the intensification of cropland
and pasture. Figure 5a gives an overview of BII changes due to these impacts.

The impacts of the expansion of agricultural and urban land on the BII are relatively small across all scenar-
ios. Under REF_NoCC, the scenario with the lowest expansion of agricultural area, the BII decreases by
1.01%, followed by the REF_HGEM scenario with a decrease of 1.13%. The two investment scenarios show
significantly higher expansion rates, especially of pasture, into set‐aside areas leading to larger decreases of
the BII (MED: −1.19%; HIGH+RE: −1.29%).

Figure 5. (a) Change in Biodiversity Intactness Index (BII) due to converted natural land and agricultural intensification
from 2010 to 2030 for all scenarios. (b) Annualized CO2 emissions in million metric tons [Mt/a] from land use change and
agricultural intensification for all scenarios during the period 2010 to 2030.
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Moreover, due to the different assumptions regarding agricultural intensification, there are further decreases
of the BII across all scenarios. Increases in crop yields are assumed to be realized e.g. with high productive
crop varieties and improved nutrient and soil management (see section 2.5) whereas increasing livestock
density results in higher pressures on grassland ecosystems. Due to its high fraction of intensive cropland
and man‐made pastures, the strongest decrease of BII due to agricultural intensification can be found in
the HIGH+RE scenario with −4.48%. In contrast, the REF_NoCC scenario shows the lowest decrease of
BII by −3.14% and is characterized (together with REF_HGEM) by the smallest fraction of intensive crop-
land and man‐made pasture.

Summarizing the effect of both processes, we see that the HIGH+RE scenario exerts the highest pressure on
species abundance of amphibians, birds, and mammals for the year 2030 in India with the BII decreasing
to 35.9%.

3.4. Impacts of Land Use Change on Carbon Storage

Similar to the biodiversity losses, carbon stock changes are driven both by processes of land conversion, such
as conversion from forest to agriculture, and by the intensification of agricultural management.

As shown in Figure 5b, the calculated annual CO2 emissions have negative values under all scenarios repre-
senting a net uptake of CO2 from the atmosphere. As a result, soil carbon stocks are increasing. The
REF_HGEM scenario shows the lowest annual uptake of CO2 (−35.42 MtCO2/a), followed by the
REF_NoCC scenario (−46.35 MtCO2/a). As the assumptions regarding increases in agricultural manage-
ment and livestock grazing in both scenarios were similar, differences in CO2 uptake can be attributed to
the different expansion rates of agricultural land. In the REF_HGEM scenario, more set‐aside land with rela-
tively high carbon stocks in vegetation and soil are converted to cropland and pasture due to depressed yields
under climate change conditions.

Under the investment scenarios, the additional improvements of agricultural management, including
reduced tillage practices, have a significantly positive effect on the rates of CO2 uptake. Under the MED sce-
nario, the annual uptake is 92.93 MtCO2/a while the HIGH+RE increases this to 246.76 MtCO2/a.

In summary, under our scenario assumptions regarding the improvements in agricultural management
practices on cropland, we calculate a strong uptake of carbon from the atmosphere. As this uptake is higher
than carbon losses due to the conversion of set‐aside and natural land, we find a net carbon sink in
agricultural soils.

4. Discussion and Conclusions

Socioeconomic factors, such as population and economic growth, are main drivers for increasing future food
demands in India. Under the different scenarios modeled here, the projected crop production growth ranges
from 43% to 55% between 2010 and 2030. At the same time, livestock production is projected to more than
double. These results are supported by the findings of other studies, like the “Vision 2050” done by the
Indian Council of Agricultural Research (ICAR, 2015). Food provision in India will face problems similar
to those in China, the other major player in Asia in that significant changes of agricultural policies and man-
agement practices are required to realize the necessary production increases in a more sustainable way (Yu
&Wu, 2018). Our results also highlight that climate change affects Indian food supply in a negative manner
and that higher future R&D investments in the agricultural sector can trigger food production increases that
will offset these losses in productivity.

To meet the future crop production demands and SDG 2 (Zero Hunger), our study shows that, in India, crop
yields must increase and cultivated lands must expand. In addition, the huge increases in demand for animal
products require additional pastureland. The results suggest that most conversions to cropland and pasture
take place on set‐aside land that, according to our GIS‐analysis, consists of a mosaic of extensive farming and
remaining natural vegetation (Roy et al., 2015; Tian et al., 2014). However, when comparing crop production
growth with agricultural land expansion, it becomes apparent that in all scenarios more than 90% of the pro-
jected crop production growth comes from increasing crop yields. The HIGH+RE scenario projects the high-
est yield increases and lowest cropland expansion. Since climate change has negative impacts on the yield of
nearly all modeled crops, the REF_NoCC scenario projects higher yields than the climate change scenario,
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REF_HGEM. Modest investment increases in agricultural R&D under the MED scenario are not enough to
counteract climate impacts by 2030, but the stronger investment scenario in HIGH+REmore than compen-
sates for the climate change effects and will also help bolster livelihood resilience. Compared to cropland,
pasture requires not only much more land but also intensification in the form of higher stocking densities,
which helps to limit the expansion of this land use type.

The modeled trend toward less agricultural land expansion and concurrent improvements in crop yields per
ha is confirmed by Bhattacharyya et al. (2015) and ICAR (2015). As India is a land scarce country, only a few
options for the expansion of agricultural land are available. Today, small‐scale mixed farming (e.g. as part of
the set‐aside land category) is the most important agricultural system. Compared to other countries like
China or Brazil, productivity is low. As these small‐scale farmers often do not have access to technologies
and the financial resources necessary for further investments, a shift to more commercial‐orientated farming
systems or the organization of small farmers into producer companies is likely. Importantly, India should be
recognized as a special case when considering future scenarios of agricultural intensification. Since there is
little land into which agriculture can expand (see above), expanding production will come almost solely from
closing yield gaps (GYGA, 2019). The scenarios modeled here use growth trends that are in line with gener-
ally accepted yield trends that will not exceed biophysical limits (Robinson et al., 2014; Rosegrant et al.,
2017). In regions such as Sub‐Saharan Africa and Latin America, there are critical land use considerations
(Pellegrini & Fernández, 2018) that we generally will not encounter in India. In these other regions, the land
use effects of agricultural intensification need to be addressed through appropriate policy measures
(Kreidenweis et al., 2018; Popp et al., 2017). While we regard the results of our assessment to be specific
to India, the model‐based approach we have developed can be adapted to other country‐level and even
global studies.

Although our study focused on agricultural development, we could demonstrate that urban sprawl
dynamics will also play an important role in future land use change in India. Urban expansion is pro-
jected to take place on every land use type, including forest areas and cropland. According to ICAR
(2015), more than 50% of India's population will reside in cities by 2050. Here a more detailed assess-
ment is required.

The analysis of potential trade‐offs between achieving future food demands, the protection of biodiversity,
and biological carbon storage as a means of climate change mitigation is strongly related to the 2030
Agenda of Sustainable Development. In our study, we concentrated on the effects of future land use change
in India, triggered by the aim to provide food for all (SDG 2) while at the same time conserving biodiversity
(SDG 15) and carbon storage (SDG 13). Using empirical modeling approaches, we could assess selected
environmental effects from cropland and pasture expansion as well as from agricultural intensification. It
is important to note that the scope of our trade‐off analysis is far from being comprehensive and that future
research should incorporate a larger set of SDGs (e.g., Gao & Bryan, 2017). Here we see two aspects with a
direct relation to agricultural development that are particular important for India. First to mention are trade‐
offs between irrigation water requirements for crop cultivation and water requirements for households of
the steadily growing urban population (Flörke et al., 2018) that can be linked to SDG 6 (Clean Water and
Sanitation) and SDG 11 (Sustainable Cities and Communities). The second example is the impact of intensive
agriculture on water pollution and eutrophication due to the input of pesticides and nutrients to water
bodies and groundwater (Agrawal et al., 2010; Bhagowati & Ahamad, 2018), related to SDG 6 and SDG 14
(Life Below Water).

The results of the biodiversity impact assessment indicate that both agricultural land expansion and inten-
sification lead to a decreasing BII. The strongest impact can be observed in the HIGH+RE scenario. The
expansion of pasture into set‐aside (mosaic) land is calculated to have the highest area change impact on bio-
diversity. The decrease can be explained due to the fact that the species richness of set‐aside areas with a
mosaic of extensive cropland and nature areas is likely to be higher than on intensively used pasture and
cropland (Brooker et al., 2016). The strongest negative impact on biodiversity is generated by agricultural
intensification. The modeled pasture intensification concurs with studies from Alkemade et al. (2013) and
Tscharntke et al. (2005), who identify the removal of biomass, trampling and destruction of root systems,
and replacement of wild grazers by livestock as important driving factors. Cropland intensification, as
Tscharntke et al. (2005) point out, promotes monocultures of high‐yield varieties and increasing input of
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fertilizers and pesticides, which are the main factors for the loss of important habitat functions within
agricultural areas.

In consequence, according to the selected scenarios and the methodology used in our study, we can identify
a clear trade‐off between the increasing food production in India and the protection of biodiversity. The cal-
culated BII is below the values from Hill et al. (2018) and Newbold et al. (2016) who determine a BII of 0.485
for South Asia, though it is still of the same magnitude, so we feel confident it is a reasonable estimate. Also,
the decrease of BII in our scenarios is larger than projected by Hill et al. (2018) under an SSP2 scenario in
combination with RCP4.5 for that region. The REF_HGEM scenario follows the relatively more severe
RCP8.5 as represented by the HadGEM model, so these stronger climate change impacts on BII appear rea-
sonable. However, these differences could have several explanations. For example, the values describing the
impact of each land use type, especially regarding different intensity levels, on biodiversity that were used to
calculate the BII may be imprecise or could be oversimplified. Hui et al. (2008) identify this factor as a main
component of uncertainty for determining the BII. The proportions of low input and intensively used agri-
culture in the year 2010 based on the regional estimates for South Asia fromAlkemade et al. (2009) are in the
same order of magnitude as data from the Indian national statistical office. According to that, 44% of agricul-
tural land is currently cultivated by small and marginal farmers (Kumar et al., 2018) corresponding well to
the 43% of low input farming in that we assume in our study. In contrast, the assumption concerning the
fractional increases of intensive agriculture during the scenario period represents only one possible way to
estimate future developments. We feel this was a conservative approach, however. At last, it is important
to note that (1) our study takes into account only vertebrate diversity and neglects, for example, insects, soil
biota, and plants, which are crucial components of the ecosystem, and (2) that the BII has only a limited per-
spective on biodiversity as it, for example, does not consider functional aspects (e.g., Steffen et al., 2015). In
consequence we suggest that future analyses should be expanded to other taxa and apply a mixture of differ-
ent indicators to give a more complete picture of human pressures and impacts (e.g., Hill et al., 2016; Mace
et al., 2014).

Under all scenarios, we find an annual net CO2 uptake from the atmosphere. These results can be explained
by (1) the expansion of new agricultural land predominantly into mosaic land cover with a relatively low car-
bon content and (2) the projected immense intensification of all farming systems in India. Indeed, most area
conversions from natural land to human‐modified land—such as cropland, pasture, and urban land—lead
to decreasing carbon stocks and net CO2 emissions (Arneth et al., 2017). However, due to our assumptions
regarding increased sustainable soil management in agriculture, India has the potential to achieve high car-
bon accumulations in cropland soils. Higher inputs in the form of manure or crop residues improve soil fer-
tility and increase soil organic pools. At the same time, changes toward reduced tillage practices lead to less
soil disturbance and thus diminished releases of carbon to the atmosphere (Lal, 2004; Liao et al., 2015;
Srivastava et al., 2016; Tittonell & Giller, 2013). In contrast to the identified trade‐offs between food produc-
tion (SDG 2) and biodiversity (SDG 15), these newly created carbon sinks directly contribute to climate
changemitigation (SDG 13), indicating synergies with food production. A clear limitation of our study is that
we only considered CO2 and neglected other greenhouse gas emissions from agriculture, for example, CH4

emissions from livestock management and paddy rice cultivation as well as N2O emissions from fertilizer
applications (IPCC, 2006), which may counteract the benefits seen in this scenario analysis.

The key objective of our study was to contribute to gaining a better understanding of trade‐offs between the
different SDGs in India and to unravel the underlying mechanisms and interdependencies between agricul-
tural development, land use change, and environmental impacts. For this purpose, we have developed a rela-
tively simple but, as we believe, transparent and easy to follow study design. Starting with SSP2 as a
background scenario, we vary investments in agricultural R&D to obtain three clearly defined future path-
ways with different levels of agricultural intensification that in the next step are analyzed in regard of their
consequences for the considered SDGs. A broader type of analysis, for example, to investigate how the
depicted investment strategies would play out in different SSP worlds, was beyond the scope of this paper.
Our motivation for the selection of only two climate scenarios was similar. As pointed out earlier, the inten-
tion was to investigate a large corridor of potential climate change in the year 2030, in our case defined by an
RCP8.5 scenario with a clear negative impact on crop yields and a no climate change scenario without con-
siderable changes. In this sense, uncertainties of future development trends are addressed by exploring the
defined scenario space using the presented modeling framework.
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Our study does not systematically quantify uncertainties of the structure and parameters of the applied mod-
els, which limits its usefulness as an information source for real‐world decision making processes or risk
assessments (Uusitalo et al., 2015). Parameter and data uncertainties exist on all levels of our model chain.
Regarding the modeling of land use change processes with LandSHIFT, Göpel et al. (2018) show for a case
study in Brazil how the utilized satellite‐based land‐cover products as well as the method used to estimate
model parameters affect the calculated land use patterns. For addressing uncertainties in the structure of
the crop and climate models, ensembles that apply multiple data sets and simulation models would be a pro-
mising route to further refine our study design (e.g., Semenov & Stratonovitch, 2010; Rosenzweig et al., 2013;
Wallach et al., 2018). Sources of uncertainties in determining the parameters of the two empirical environ-
mental impact models were already summarized in the previous paragraphs, and in further studies these
should be systematically assessed by means of sensitivity and uncertainty analysis (Crosetto et al., 2000;
Gao et al., 2017). In the field of social‐ecological systems modeling, the paper of Gao et al. (2016) demon-
strates how a variance‐based global sensitivity analysis method can be applied to assessing uncertainties
from a set of global change scenarios. However, it is important to note that a full uncertainty analysis would
require taking into account the propagation of uncertainties through the different levels of our model chain,
which would be a demanding task that was beyond the scope of this paper. In addition to conducting a
numerical uncertainty analysis, we regard collecting and using more detailed regional specific soil and bio-
diversity data as a crucial step for further improving the reliability of our model results. A first step in that
direction was done by the integration of knowledge from Indian field experts into our analysis, for example,
regarding the classification of set‐aside land.

Another promising field for future research is the refinement of the structure of our modeling framework
that is currently based on a linear coupling of separate models. This effort should include the implementa-
tion of a mutual feedback mechanism between land use change processes on grid‐level (LandSHIFT) and
economic processes on country‐level (IMPACT) in order to simulate effects such as the influence of reduced
land availability due to urbanization on landmanagement or onmarket prices and trade of agricultural com-
modities more realistically (see Long & Qu, 2018). In addition, a process‐based ecosystem model could
replace the IPCC Tier 1 approach to allow for more detailed analysis of soil management and climate effects
of soil carbon storage (e.g., Del Grosso et al., 2016). At this point it is important to note that more sophisti-
cated models typically require input data in a high level of detail that is often not available in large‐scale stu-
dies (Ruane et al., 2017).

In conclusion, considering its limitations, it is important to emphasize that the results of our study should
not be interpreted as forecasts but as potential development pathways under the assumptions made in the
underlying scenarios. In this light, they can provide valuable new insights on how the agricultural sector
and land use in India may evolve during the coming decade, and on the consequences for conflicts and
synergies between the investigated SDGs. Our findings indicate that the intensification of agriculture will
play a crucial role in improving food security in India (SDG 2). It is likely that this intensification will lead
to a significant change of the farm structures as small subsistence farms will be transformed into larger units.
Nevertheless, this pathway seems to be inevitable in order to countervail the expansion of cropland and pas-
ture. Consequently, Indian agricultural and environmental policies should aim at supporting farmers in the
implementation of sustainable intensification measures to minimize biodiversity losses and to foster soil car-
bon sequestration as a means to improve soil fertility and to reduce greenhouse gas emissions
from agriculture.

References
Agrawal, A., Pandey, R. S., & Sharma, B. (2010). Water pollution with special reference to pesticide contamination in India. Journal of

Water Resource and Protection, 2(05), 432.
Alexander, P., Prestele, R., Verburg, P. H., Arneth, A., Baranzelli, C., Batista e Silva, F., et al. (2017). Assessing uncertainties in land cover

projections. Global Change Biology, 23(2), 767–781. https://doi.org/10.1111/gcb.13447
Alexandratos, N., & Bruinsma, J. (2012). World agriculture towards 2030/2050: The 2012 revision (ESA Working Papers). ESA Working

Paper No. 12‐03, Agricultural Development Economics Division, Food and Agriculture Organization of the United Nations. Rome.
Alkemade, R., Reid, R. S., van den Berg, M., de Leeuw, J., & Jeuken, M. (2013). Assessing the impacts of livestock production on biodiversity

in rangeland ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 110(52), 20900–20905. https://
doi.org/10.1073/pnas.1011013108

Alkemade, R., Van Oorschot, M., Miles, L., Nellemann, C., Bakkenes, M., & Ten Brink, B. (2009). GLOBIO3: A framework to investigate
options for reducing global terrestrial biodiversity loss. Ecosystems, 12(3), 374–390. https://doi.org/10.1007/s10021‐009‐9229‐5

10.1029/2019EF001287Earth's Future

HINZ ET AL. 15 of 19

Acknowledgments
This study was conducted as part of the
master's thesis of the main author
Roman Hinz at the University of Kassel
in 2017. In particular, he thanks the
International Center for Development
and Decent Work (ICDD) for providing
a research scholarship under the DAAD
program “Higher Education Excellence
in Development Cooperation – exceed”
and the Centre for Ecological
Economics and Natural Resources
(CEENR), Institute for Social and
Economic Change (ISEC) in Bangalore
(India) for hosting his research stay and
fieldwork in India. Simulations with the
IMPACT and LandSHIFT models were
funded by the United States Agency for
International Development Contract
AID‐BFS‐G‐11‐00002‐11. This analysis
builds on the work of the Global
Futures and Strategic Foresight pro-
gram, a CGIAR initiative led by IFPRI
in collaboration with all 15 CGIAR
centers, supported by the CGIAR
Research Program on Policies,
Institutions, and Markets (PIM), the
CGIAR Research Program on Climate
Change, Agriculture and Food Security
(CCAFS), and the Bill and Melinda
Gates Foundation. Calculated land use
maps from the LandSHIFT model,
results from the environmental impact
analysis, and parameter descriptions
are available online (https://figshare.
com/collections/Agricultural_
Development_and_Land‐Use_
Change_in_India_A_Scenario_
Analysis_of_Trade‐Offs_Between_UN_
Sustainable_Development_Goals_
SDGs_/4713647).

https://doi.org/10.1111/gcb.13447
https://doi.org/10.1073/pnas.1011013108
https://doi.org/10.1073/pnas.1011013108
https://doi.org/10.1007/s10021-009-9229-5
https://figshare.com/collections/Agricultural_Development_and_Land-Use_Change_in_India_A_Scenario_Analysis_of_Trade-Offs_Between_UN_Sustainable_Development_Goals_SDGs_/4713647
https://figshare.com/collections/Agricultural_Development_and_Land-Use_Change_in_India_A_Scenario_Analysis_of_Trade-Offs_Between_UN_Sustainable_Development_Goals_SDGs_/4713647
https://figshare.com/collections/Agricultural_Development_and_Land-Use_Change_in_India_A_Scenario_Analysis_of_Trade-Offs_Between_UN_Sustainable_Development_Goals_SDGs_/4713647
https://figshare.com/collections/Agricultural_Development_and_Land-Use_Change_in_India_A_Scenario_Analysis_of_Trade-Offs_Between_UN_Sustainable_Development_Goals_SDGs_/4713647
https://figshare.com/collections/Agricultural_Development_and_Land-Use_Change_in_India_A_Scenario_Analysis_of_Trade-Offs_Between_UN_Sustainable_Development_Goals_SDGs_/4713647
https://figshare.com/collections/Agricultural_Development_and_Land-Use_Change_in_India_A_Scenario_Analysis_of_Trade-Offs_Between_UN_Sustainable_Development_Goals_SDGs_/4713647
https://figshare.com/collections/Agricultural_Development_and_Land-Use_Change_in_India_A_Scenario_Analysis_of_Trade-Offs_Between_UN_Sustainable_Development_Goals_SDGs_/4713647


Arneth, A., Sitch, S., Pongratz, J., Stocker, B. D., Ciais, P., Poulter, B., et al. (2017). Historical carbon dioxide emissions caused by land‐use
changes are possibly larger than assumed. Nature Geoscience, 10(2), 79–84. https://doi.org/10.1038/ngeo2882

Bhagowati, B., & Ahamad, K. U. (2018). A review on lake eutrophication dynamics and recent developments in lake modeling.
Ecohydrology & Hydrobiology.

Bhattacharyya, R., Ghosh, B., Mishra, P., Mandal, B., Rao, C., Sarkar, D., et al. (2015). Soil degradation in India: Challenges and potential
solutions. Sustainability, 7(4), 3528–3570. https://doi.org/10.3390/su7043528

Biggs, R., Simons, H., Bakkenes, M., Scholes, R. J., Eickhout, B., van Vuuren, D., & Alkemade, R. (2008). Scenarios of biodiversity loss in
southern Africa in the 21st century. Global Environmental Change, 18(2), 296–309. https://doi.org/10.1016/j.gloenvcha.2008.02.001

Bondeau, A., Smith, P. C., Zaehle, S., Schaphoff, S., Lucht, W., Cramer, W., et al. (2007). Modelling the role of agriculture for the 20th
century global terrestrial carbon balance. Global Change Biology, 13(3), 679–706. https://doi.org/10.1111/j.1365‐2486.2006.01305.x

Brahmanand, P. S., Kumar, A., Ghosh, S., Chowdhury, S. R., Singandhupe, R. B., Singh, R., et al. (2013). Challenges to food security in
India. Current Science, 841–846.

Brooker, R. W., Karley, A. J., Newton, A. C., Pakeman, R. J., & Schöb, C. (2016). Facilitation and sustainable agriculture: A mechanistic
approach to reconciling crop production and conservation. Functional Ecology, 30(1), 98–107. https://doi.org/10.1111/1365‐2435.12496

Chand, R., & Parappurathu, S. (2012). Temporal and spatial variations in agricultural growth and its determinants. Economic and Political
Weekly, 47(26–27), 55–64. https://doi.org/10.1016/B978‐0‐12‐088782‐8.50006‐1

Crosetto, M., Tarantola, S., & Saltelli, A. (2000). Sensitivity and uncertainty analysis in spatial modelling based on GIS. Agriculture,
Ecosystems & Environment, 81(1), 71–79.

Del Grosso, S. J., Gollany, H. T., Reyes‐Fox, M. (2016). Simulating soil organic carbon stock changes in agroecosystems using CQESTR,
DayCent, and IPCC Tier 1 methods. Synthesis and Modeling of Greenhouse Gas Emissions and Carbon Storage in Agricultural and
Forest Systems to Guide Mitigation and Adaptation, (advagricsystmodel6), 89‐110.

Dellink, R., Chateau, J., Lanzi, E., & Magné, B. (2017). Long‐term economic growth projections in the Shared Socioeconomic Pathways.
Global Environmental Change, 42, 200–214. https://doi.org/10.1016/J.GLOENVCHA.2015.06.004

Delzeit, R., Zabel, F., Meyer, C., & Václavík, T. (2017). Addressing future trade‐offs between biodiversity and cropland expansion to
improve food security. Regional Environmental Change, 17(5), 1429–1441. https://doi.org/10.1007/s10113‐016‐0927‐1

Eitelberg, D. A., van Vliet, J., Doelman, J. C., Stehfest, E., & Verburg, P. H. (2016). Demand for biodiversity protection and carbon storage as
drivers of global land change scenarios. Global Environmental Change, 40, 101–111. https://doi.org/10.1016/J.
GLOENVCHA.2016.06.014

ESA (2010). GlobCover Land Cover Maps. Retrieved September 21, 2017, from http://due.esrin.esa.int/page_globcover.php
European Commission (2010). Commission decision of 10 June 2010 on guidelines for the calculation of land carbon stocks for the purpose

of annex V to Directive 2009/28/EC. OJ L, 151, 19–41. Retrieved from https://eur‐lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:
L:2010:151:0019:0041:EN:PDF

European Parliament and Council (2009). Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the
promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/
EC. OJ L, 140, 16–62. Retrieved from http://eur‐lex.europa.eu/legal‐content/EN/TXT/PDF/?uri=CELEX:32009L0028&from=EN

FAO (2017a). FAOSTAT: Food and agricultural data. Retrieved September 25, 2017, from http://www.fao.org/faostat/en/#home
FAO (2017b). India at a glance. Retrieved May 14, 2019, from http://www.fao.org/india/fao‐in‐india/india‐at‐a‐glance/en/
Flörke, M., Schneider, C., & McDonald, R. I. (2018). Water competition between cities and agriculture driven by climate change and urban

growth. Nature Sustainability, 1(1), 51.
Gao, L., & Bryan, B. A. (2017). Finding pathways to national‐scale land‐sector sustainability. Nature, 544(7649), 217–222. https://doi.org/

10.1038/nature21694
Gao, L., Bryan, B. A., Liu, J., Li, W., Chen, Y., Liu, R., & Barrett, D. (2017). Managing too little and too much water: Robust mine‐water

management strategies under variable climate and mine conditions. Journal of Cleaner Production, 162, 1009–1020.
Gao, L., Bryan, B. A., Nolan, M., Connor, J. D., Song, X., & Zhao, G. (2016). Robust global sensitivity analysis under deep uncertainty via

scenario analysis. Environmental modelling & software, 76, 154–166.
George, T. (2014). Why crop yields in developing countries have not kept pace with advances in agronomy. Global Food Security, 3(1),

49–58. https://doi.org/10.1016/J.GFS.2013.10.002
Göpel, J., de Barros Viana Hissa, L., Schüngel, J., & Schaldach, R. (2018). Sensitivity assessment and evaluation of a spatially explicit land‐

use model for Southern Amazonia. Ecological Informatics, 48, 69–79. https://doi.org/10.1016/j.ecoinf.2018.08.006
GYGA (2019). Global Yield Gap and Water Productivity Atlas. Available URL: www.yieldgap.org (accessed on: 10, 20)
Hill, S. L. L., Gonzalez, R., Sanchez‐Ortiz, K., Caton, E., Espinoza, F., Newbold, T., et al. (2018). Worldwide impacts of past and projected

future land‐use change on local species richness and the Biodiversity Intactness Index. BioRxiv, 311787. https://doi.org/10.1101/311787
Hill, S. L. L., Harfoot, M., Purvis, A., Purves, D. W., Collen, B., Newbold, T., et al. (2016). Reconciling biodiversity indicators to guide

understanding and action. Conservation Letters, 9(6), 405–412. https://doi.org/10.1111/conl.12291
Hoogenboom, G., Porter, C. H., Shelia, V., Boote, K. J., Singh, U., White, J. W., et al. (2017). Decision Support System for Agrotechnology

Transfer (DSSAT) Version 4.7. . Gainesville: DSSAT Foundation. Retrieved from. https://dssat.net
Hui, D., Biggs, R., Scholes, R. J., & Jackson, R. B. (2008). Measuring uncertainty in estimates of biodiversity loss: The example of biodiversity

intactness variance. Biological Conservation, 141(4), 1091–1094. https://doi.org/10.1016/J.BIOCON.2008.02.001
ICAR (2015). Vision 2050. New Delhi. Retrieved from http://www.icar.org.in/files/Vision‐2050‐ICAR.pdf
IPCC (2006). 2006 IPCC Guidelines for National Greenhouse Gas Inventories. (Eggleston H.S., Buendia L., Miwa K., Ngara T., & Tanabe K.,

Eds.). Hayama, Kanagawa: IGES. Retrieved from https://www.ipcc‐nggip.iges.or.jp/public/2006gl/
IPCC (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the

Intergovernmental Panel on Climate Change. (Core Writing Team, R. K. Pachauri, & L. Meyer, Eds.). Geneva. https://doi.org/10.1017/
CBO9781107415324.004

Jenkins, C. N., Pimm, S. L., & Joppa, L. N. (2013). Global patterns of terrestrial vertebrate diversity and conservation. Proceedings of the
National Academy of Sciences of the United States of America, 110(28), E2602–E2610. https://doi.org/10.1073/PNAS.1302251110

Jones, C. D., Hughes, J. K., Bellouin, N., Hardiman, S. C., Jones, G. S., Knight, J., et al. (2011). The HadGEM2‐ES implementation of CMIP5
centennial simulations. Geoscientific Model Development, 4(3), 543–570. https://doi.org/10.5194/gmd‐4‐543‐2011

Jones, J. W., Hoogenboom, G., Porter, C. H., Boote, K. J., Batchelor, W. D., Hunt, L. A., et al. (2003). The DSSAT cropping system model.
European Journal of Agronomy, 18(3–4), 235–265. https://doi.org/10.1016/S1161‐0301(02)00107‐7

JRC (2010). Support to renewable energy directive. Retrieved February 16, 2017, from https://esdac.jrc.ec.europa.eu/content/support‐
renewable‐energy‐directive#tabs‐0‐description=0

10.1029/2019EF001287Earth's Future

HINZ ET AL. 16 of 19

https://doi.org/10.1038/ngeo2882
https://doi.org/10.3390/su7043528
https://doi.org/10.1016/j.gloenvcha.2008.02.001
https://doi.org/10.1111/j.1365-2486.2006.01305.x
https://doi.org/10.1111/1365-2435.12496
https://doi.org/10.1016/B978-0-12-088782-8.50006-1
https://doi.org/10.1016/J.GLOENVCHA.2015.06.004
https://doi.org/10.1007/s10113-016-0927-1
https://doi.org/10.1016/J.GLOENVCHA.2016.06.014
https://doi.org/10.1016/J.GLOENVCHA.2016.06.014
http://due.esrin.esa.int/page_globcover.php
https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:151:0019:0041:EN:PDF
https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:151:0019:0041:EN:PDF
http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32009L0028&from=EN
http://www.fao.org/faostat/en/#home
http://www.fao.org/india/fao-in-india/india-at-a-glance/en/
https://doi.org/10.1038/nature21694
https://doi.org/10.1038/nature21694
https://doi.org/10.1016/J.GFS.2013.10.002
https://doi.org/10.1016/j.ecoinf.2018.08.006
http://www.yieldgap.org
https://doi.org/10.1101/311787
https://doi.org/10.1111/conl.12291
https://dssat.net
https://doi.org/10.1016/J.BIOCON.2008.02.001
http://www.icar.org.in/files/Vision-2050-ICAR.pdf
https://www.ipcc-nggip.iges.or.jp/public/2006gl/
https://doi.org/10.1017/CBO9781107415324.004
https://doi.org/10.1017/CBO9781107415324.004
https://doi.org/10.1073/PNAS.1302251110
https://doi.org/10.5194/gmd-4-543-2011
https://doi.org/10.1016/S1161-0301(02)00107-7
https://esdac.jrc.ec.europa.eu/content/support-renewable-energy-directive#tabs-0-description=0
https://esdac.jrc.ec.europa.eu/content/support-renewable-energy-directive#tabs-0-description=0


Koch, J., Schaldach, R., & Göpel, J. (2019). Can agricultural intensification help to conserve biodiversity? A scenario study for the African
continent. Journal of environmental management, 247, 29–37. https://doi.org/10.1016/j.jenvman.2019.06.015

Kok, M. T. J., Alkemade, R., Bakkenes, M., van Eerdt, M., Janse, J., Mandryk, M., et al. (2018). Pathways for agriculture and forestry to
contribute to terrestrial biodiversity conservation: A global scenario‐study. Biological Conservation, 221, 137–150. https://doi.org/
10.1016/J.BIOCON.2018.03.003

Kreidenweis, U., Humpenöder, F., Kehoe, L., Kuemmerle, T., Bodirsky, B. L., Lotze‐Campen, H., & Popp, A. (2018). Pasture intensification
is insufficient to relieve pressure on conservation priority areas in open agricultural markets. Global change biology, 24(7), 3199–3213.
https://doi.org/10.1111/gcb.14272

Kriegler, E., Edmonds, J., Hallegatte, S., Ebi, K. L., Kram, T., Riahi, K., et al. (2014). A new scenario framework for climate change research:
The concept of shared climate policy assumptions. Climatic Change, 122(3), 401–414. https://doi.org/10.1007/s10584‐013‐0971‐5

Kumar, S., Bhatt, B. P., Dey, A., Shivani Kumar, U., Idris, M., Mishra, J. S., & Kumar, S. (2018). Integrated farming system in India: Current
status, scope and future prospects in changing agricultural scenario. Indian Journal of Agricultural Sciences, 88(11), 13–27.

Lal, R. (2004). Soil carbon sequestration in India. Climatic Change, 65(3), 277–296. https://doi.org/10.1023/B:CLIM.0000038202.46720.37
Lenton, T. M., Held, H., Kriegler, E., Hall, J. W., Lucht, W., Rahmstorf, S., & Schellnhuber, H. J. (2008). Tipping elements in the Earth's

climate system. Proceedings of the National Academy of Sciences of the United States of America, 105(6), 1786–1793. https://doi.org/
10.1073/pnas.0705414105

Li, X., Chen, G., Liu, X., Liang, X., Wang, S., Chen, Y., et al. (2017). A new global land‐use and land‐cover change product at a 1‐km
resolution for 2010 to 2100 based on human–environment interactions. Annals of the American Association of Geographers, 107(5),
1040–1059. https://doi.org/10.1080/24694452.2017.1303357

Liao, Y., Wu, W. L., Meng, F. Q., Smith, P., & Lal, R. (2015). Increase in soil organic carbon by agricultural intensification in northern
China. Biogeosciences, 12(5), 1403–1413. https://doi.org/10.5194/bg‐12‐1403‐2015

Long, H., & Qu, Y. (2018). Land use transitions and land management: A mutual feedback perspective. Land Use Policy, 74, 111–120.
Mace, G. M., Reyers, B., Alkemade, R., Biggs, R., Chapin, F. S. III, Cornell, S. E., et al. (2014). Approaches to defining a planetary boundary

for biodiversity. Global Environmental Change, 28, 289–297. https://doi.org/10.1016/J.GLOENVCHA.2014.07.009
Mason‐D'Croz, D., Vervoort, J., Palazzo, A., Islam, S., Lord, S., Helfgott, A., et al. (2016). Multi‐factor, multi‐state, multi‐model scenarios:

Exploring food and climate futures for Southeast Asia. Environmental Modelling & Software, 83, 255–270. https://doi.org/10.1016/J.
ENVSOFT.2016.05.008

Mauser, W., Klepper, G., Zabel, F., Delzeit, R., Hank, T., Putzenlechner, B., & Calzadilla, A. (2015). Global biomass production potentials
exceed expected future demand without the need for cropland expansion. Nature Communications,
6(8745). https://doi.org/10.1038/ncomms9946

Molotoks, A., Stehfest, E., Doelman, J., Albanito, F., Fitton, N., Dawson, T. P., & Smith, P. (2018). Global projections of future cropland
expansion to 2050 and direct impacts on biodiversity and carbon storage. Global Change Biology, 24(12), 5895–5908. https://doi.org/
10.1111/gcb.14459

Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K., van Vuuren, D. P., et al. (2010). The next generation of scenarios
for climate change research and assessment. Nature, 463(7282), 747–756. https://doi.org/10.1038/nature08823

Nadagoudar, S. V. (2016). A critical analysis of law relating to biodiversity conservation and forest ecosystem management in India. In S.
Nautiyal, R. Schaldach, K. V. Raju, H. Kächele, B. Pritchard, & K. S. Rao (Eds.), Climate change challenge (3C) and social‐economic‐
ecological interface‐building (pp. 121–130). Cham: Springer. https://doi.org/10.1007/978‐3‐319‐31014‐5_9

Newbold, T., Hudson, L. N., Arnell, A. P., Contu, S., de Palma, A., Ferrier, S., et al. (2016). Has land use pushed terrestrial biodiversity
beyond the planetary boundary? A global assessment. Science, 353(6296), 288–291. https://doi.org/10.1126/science.aaf2201

Obersteiner, M., Walsh, B., Frank, S., Havlik, P., Cantele, M., Liu, J., et al. (2016). Assessing the land resource‐food price nexus of the
Sustainable Development Goals. Science Advances, 2(9). https://doi.org/10.1126/sciadv.1501499

Pellegrini, P., & Fernández, R. J. (2018). Crop intensification, land use, and on‐farm energy‐use efficiency during the worldwide spread of
the green revolution. Proceedings of the National Academy of Sciences of the United States of America, 115(10), 2335–2340. https://doi.org/
10.1073/pnas.1717072115

Pingali, P. L. (2012). Green Revolution: Impacts, limits, and the path ahead. Proceedings of the National Academy of Sciences of the United
States of America, 109(31), 12302–12308. https://doi.org/10.1073/pnas.0912953109

Popp, A., Calvin, K., Fujimori, S., Havlik, P., Humpenöder, F., Stehfest, E., et al. (2017). Land‐use futures in the shared socio‐economic
pathways. Global Environmental Change, 42, 331–345. https://doi.org/10.1016/j.gloenvcha.2016.10.002

Popp, A., Humpenöder, F., Weindl, I., Bodirsky, B. L., Bonsch, M., Lotze‐Campen, H., et al. (2014). Land‐use protection for climate change
mitigation. Nature Climate Change, 4(12), 1095–1098. https://doi.org/10.1038/nclimate2444

Pradhan, P., Costa, L., Rybski, D., Lucht, W., & Kropp, J. P. (2017). A systematic study of Sustainable Development Goal (SDG) interactions.
Earth's Future, 5(11), 1169–1179. https://doi.org/10.1002/2017EF000632

Prestele, R., Alexander, P., Rounsevell, M. D. A., Arneth, A., Calvin, K., Doelman, J., et al. (2016). Hotspots of uncertainty in land‐use and
land‐cover change projections: a global‐scale model comparison. Global Change Biology, 22(12), 3967–3983. https://doi.org/10.1111/
gcb.13337

Ramankutty, N., Mehrabi, Z., Waha, K., Jarvis, L., Kremen, C., Herrero, M., & Rieseberg, L. H. (2018). Trends in global agricultural land
use: Implications for environmental health and food security. Annual Review of Plant Biology, 69(1), 789–815. https://doi.org/10.1146/
annurev‐arplant‐042817‐040256

Robertson, R. D. (2017). Mink: Details of a global gridded crop modeling system. Washington, DC: International Food Policy Research
Institute (IFPRI). Retrieved from http://ebrary.ifpri.org/cdm/ref/collection/p15738coll2/id/131406

Robinson, S., Mason d'Croz, D., Islam, S., Sulser, T. B., Robertson, R. D., Zhu, T., et al. (2015). The International Model for Policy Analysis
of Agricultural Commodities and Trade (IMPACT): Model description for Version 3 (IFPRI Discussion Paper No. 1483). Washington,
DC: International Food Policy Research Institute (IFPRI). Retrieved from http://ebrary.ifpri.org/cdm/singleitem/collection/
p15738coll2/id/129825/rec/1

Robinson, S., van Meijl, H., Willenbockel, D., Valin, H., Fujimori, S., Masui, T., et al. (2014). Comparing supply‐side specifications in
models of global agriculture and the food system. Agricultural Economics, 45(1), 21–35. https://doi.org/10.1111/agec.12087

Rockström, J., Williams, J., Daily, G., Noble, A., Matthews, N., Gordon, L., et al. (2017). Sustainable intensification of agriculture for human
prosperity and global sustainability. Ambio, 46(1), 4–17. https://doi.org/10.1007/s13280‐016‐0793‐6

Rosegrant, M. W., Sulser, T. B., Mason‐D'croz, D., Cenacchi, N., Nin‐Pratt, A., Dunston, S., et al. (2017). Quantitative foresight modeling to
inform the CGIAR research portfolio. Project Report. Washington, DC: International Food Policy Research Institute (IFPRI). Retrieved
from http://ebrary.ifpri.org/utils/getfile/collection/p15738coll2/id/131144/filename/131355.pdf

10.1029/2019EF001287Earth's Future

HINZ ET AL. 17 of 19

https://doi.org/10.1016/j.jenvman.2019.06.015
https://doi.org/10.1016/J.BIOCON.2018.03.003
https://doi.org/10.1016/J.BIOCON.2018.03.003
https://doi.org/10.1111/gcb.14272
https://doi.org/10.1007/s10584-013-0971-5
https://doi.org/10.1023/B:CLIM.0000038202.46720.37
https://doi.org/10.1073/pnas.0705414105
https://doi.org/10.1073/pnas.0705414105
https://doi.org/10.1080/24694452.2017.1303357
https://doi.org/10.5194/bg-12-1403-2015
https://doi.org/10.1016/J.GLOENVCHA.2014.07.009
https://doi.org/10.1016/J.ENVSOFT.2016.05.008
https://doi.org/10.1016/J.ENVSOFT.2016.05.008
https://doi.org/10.1038/ncomms9946
https://doi.org/10.1111/gcb.14459
https://doi.org/10.1111/gcb.14459
https://doi.org/10.1038/nature08823
https://doi.org/10.1007/978-3-319-31014-5_9
https://doi.org/10.1126/science.aaf2201
https://doi.org/10.1126/sciadv.1501499
https://doi.org/10.1073/pnas.1717072115
https://doi.org/10.1073/pnas.1717072115
https://doi.org/10.1073/pnas.0912953109
https://doi.org/10.1016/j.gloenvcha.2016.10.002
https://doi.org/10.1038/nclimate2444
https://doi.org/10.1002/2017EF000632
https://doi.org/10.1111/gcb.13337
https://doi.org/10.1111/gcb.13337
https://doi.org/10.1146/annurev-arplant-042817-040256
https://doi.org/10.1146/annurev-arplant-042817-040256
http://ebrary.ifpri.org/cdm/ref/collection/p15738coll2/id/131406
http://ebrary.ifpri.org/cdm/singleitem/collection/p15738coll2/id/129825/rec/1
http://ebrary.ifpri.org/cdm/singleitem/collection/p15738coll2/id/129825/rec/1
https://doi.org/10.1111/agec.12087
https://doi.org/10.1007/s13280-016-0793-6
http://ebrary.ifpri.org/utils/getfile/collection/p15738coll2/id/131144/filename/131355.pdf


Rosenzweig, C., Jones, W., Hatfield, J. L., Ruane, A. C., Boote, K. J., Thorburn, P., et al. (2013). The Agricultural Model Intercomparison
and Improvement Project (AgMIP): Protocols and pilot studies. Agricultural and Forest Meteorology, 170, 166–182. https://doi.org/
10.1016/j.agrformet.2012.09.011

Roy, P., Roy, A., Joshi, P., Kale, M., Srivastava, V., Srivastava, S., et al. (2015). Development of Decadal (1985–1995–2005) Land use and land
cover database for India. Remote Sensing, 7(3), 2401–2430. https://doi.org/10.3390/rs70302401

Ruane, A. C., Rosenzweig, C., Asseng, S., Boote, K. J., Elliott, J., Ewert, F., et al. (2017). An AgMIP framework for improved agricultural
representation in IAMs. Environmental Research Letters, 12(12), 125003. https://doi.org/10.1088/1748‐9326/aa8da6

Ruesch, A., & Gibbs, H. K. (2008). New IPCC Tier‐1 global biomass carbon map for the year 2000. Retrieved March 6, 2017, from https://
cdiac.ess‐dive.lbl.gov/epubs/ndp/global_carbon/carbon_documentation.html

Samir, K., & Lutz, W. (2017). The human core of the shared socioeconomic pathways: Population scenarios by age, sex and level of edu-
cation for all countries to 2100. Global Environmental Change, 42, 181–192. https://doi.org/10.1016/J.GLOENVCHA.2014.06.004

Schaldach, R., Alcamo, J., Koch, J., Kölking, C., Lapola, D. M., Schüngel, J., & Priess, J. A. (2011). An integrated approach to modelling
land‐use change on continental and global scales. Environmental Modelling & Software, 26(8), 1041–1051. https://doi.org/10.1016/j.
envsoft.2011.02.013

Schaldach, R., Priess, J. A., & Alcamo, J. (2011). Simulating the impact of biofuel development on country‐wide land‐use change in India.
Biomass and Bioenergy, 35(6), 2401–2410. https://doi.org/10.1016/j.biombioe.2010.08.048

Scholes, R. J., & Biggs, R. (2005). A biodiversity intactness index. Nature, 434(7029), 45–49. https://doi.org/10.1038/nature03289
Semenov, M. A., & Stratonovitch, P. (2010). Use of multi‐model ensembles from global climate models for assessment of climate change

impacts. Climate research, 41(1), 1–14.
Sharma, B. P. (2016). Present position of agriculture in India. International Journal of Science and Research (IJSR), 5(4), 240–243. Retrieved

from. https://www.ijsr.net/archive/v5i4/NOV162488.pdf
Springmann, M., Clark, M., Mason‐D'Croz, D., Wiebe, K., Bodirsky, B. L., Lassaletta, L., et al. (2018). Options for keeping the food system

within environmental limits. Nature, 562(7728), 519–525. https://doi.org/10.1038/s41586‐018‐0594‐0
Srivastava, P., Singh, R., Tripathi, S., & Singh Raghubanshi, A. (2016). An urgent need for sustainable thinking in agriculture—An Indian

scenario. Ecological Indicators, 67, 611–622. https://doi.org/10.1016/j.ecolind.2016.03.015
Steffen, W., Richardson, K., Rockström, J., Cornell, S. E., Fetzer, I., Bennett, E. M., et al. (2015). Planetary boundaries: Guiding human

development on a changing planet. Science, 347(6223). https://doi.org/10.1126/science.1259855
Steffen, W., Rockström, J., Richardson, K., Lenton, T. M., Folke, C., Liverman, D., et al. (2018). Trajectories of the Earth System in the

Anthropocene. Proceedings of the National Academy of Sciences of the United States of America, 115(33), 8252–8259. https://doi.org/
10.1073/pnas.1810141115

Swaminathan, M. S., & Bhavani, R. V. (2013). Food production & availability—Essential prerequisites for sustainable food security. The
Indian Journal of Medical Research, 138(3), 383–391. Retrieved from. http://www.ncbi.nlm.nih.gov/pubmed/24135188

Tagar, H. K., Ali, S., Amir, S., Tagar, A. A., & Tagar, A. J. (2016). Sustainable development goals: The usefulness of conceptual framework of
growth & economic development as an implementing tool for policy planners and development managers. International Journal of
Innovative Research & Development, 5(6), 428–435.

Teluguntla, P. G., Thenkabail, P. S., Xiong, J. N., Gumma, M. K., Giri, C., Milesi, C., et al. (2015). Global Cropland Area Database (GCAD)
derived from remote sensing in support of food security in the twenty‐first century: Current achievements and future possibilities. In P.
S. Thenkabail (Ed.), Remote sensing handbook. Volume II, Land resources monitoring, modeling, and mapping with remote sensing (Chap.
7, p. 849), Chapter 7. Boca Raton: CRC Press.

Tian, H., Banger, K., Bo, T., & Dadhwal, V. K. (2014). History of land use in India during 1880‐2010: Large‐scale land transformations
reconstructed from satellite data and historical archives. Global and Planetary Change, 121, 78–88. https://doi.org/10.1016/j.
gloplacha.2014.07.005

Tilman, D., & Clark, M. (2014). Global diets link environmental sustainability and human health. Nature, 515(7528), 518–522. https://doi.
org/10.1038/nature13959

Tilman, D., Clark, M., Williams, D. R., Kimmel, K., Polasky, S., & Packer, C. (2017). Future threats to biodiversity and pathways to their
prevention. Nature, 546(7656), 73–81. https://doi.org/10.1038/nature22900

Tittonell, P., & Giller, K. E. (2013). When yield gaps are poverty traps: The paradigm of ecological intensification in African smallholder
agriculture. Field Crops Research, 143, 76–90. https://doi.org/10.1016/j.fcr.2012.10.007

Tscharntke, T., Klein, A. M., Kruess, A., Steffan‐Dewenter, I., & Thies, C. (2005). Landscape perspectives on agricultural intensification and
biodiversity—Ecosystem service management. Ecology Letters, 8(8), 857–874. https://doi.org/10.1111/j.1461‐0248.2005.00782.x

Turner, B. L., Lambin, E. F., & Reenberg, A. (2007). The emergence of land change science for global environmental change and sus-
tainability. Proceedings of the National Academy of Sciences of the United States of America, 104(52), 20666–20671. https://doi.org/
10.1073/pnas.0704119104

United Nations General Assembly (2015). Transforming our world: The 2030 agenda for sustainable development. Retrieved from http://
www.un.org/ga/search/view_doc.asp?symbol=A/RES/70/1&Lang=E

UN‐Pop (2017). World Population Prospects: The 2017 Revision, Online Demographic Profiles. Retrieved November 26, 2018, from https://
population.un.org/wpp/Graphs/DemographicProfiles/

Uusitalo, L., Lehikoinen, A., Helle, I., & Myrberg, K. (2015). An overview of methods to evaluate uncertainty of deterministic models in
decision support. Environmental Modelling & Software, 63, 24–31.

van Soesbergen, A., Arnell, A. P., Sassen, M., Stuch, B., Schaldach, R., Göpel, J., et al. (2017). Exploring future agricultural development and
biodiversity in Uganda, Rwanda and Burundi: A spatially explicit scenario‐based assessment. Regional Environmental Change, 17(5),
1409–1420. https://doi.org/10.1007/s10113‐016‐0983‐6

van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., et al. (2011). The representative concentration path-
ways: An overview. Climatic Change, 109(1‐2), 5–31. https://doi.org/10.1007/s10584‐011‐0148‐z

van Vuuren, D. P., Kriegler, E., O'Neill, B. C., Ebi, K. L., Riahi, K., Carter, T. R., et al. (2014). A new scenario framework for Climate Change
Research: Scenario matrix architecture. Climatic Change, 122(3), 373–386. https://doi.org/10.1007/s10584‐013‐0906‐1

Wallach, D., Martre, P., Liu, B., Asseng, S., Ewert, F., Thorburn, P. J., et al. (2018). Multimodel ensembles improve predictions of crop–
environment–management interactions. Global change biology, 24(11), 5072–5083. https://doi.org/10.1111/gcb.14411

World Bank (2016). Rural population (% of total population)|Data. Retrieved July 15, 2017, from https://data.worldbank.org/indicator/SP.
RUR.TOTL.ZS?end=2016&locations=IN&start=1960

World Bank (2018). Poverty & equity data portal. Retrieved March 6, 2019, from http://povertydata.worldbank.org/poverty/country/IND

10.1029/2019EF001287Earth's Future

HINZ ET AL. 18 of 19

https://doi.org/10.1016/j.agrformet.2012.09.011
https://doi.org/10.1016/j.agrformet.2012.09.011
https://doi.org/10.3390/rs70302401
https://doi.org/10.1088/1748-9326/aa8da6
https://cdiac.ess-dive.lbl.gov/epubs/ndp/global_carbon/carbon_documentation.html
https://cdiac.ess-dive.lbl.gov/epubs/ndp/global_carbon/carbon_documentation.html
https://doi.org/10.1016/J.GLOENVCHA.2014.06.004
https://doi.org/10.1016/j.envsoft.2011.02.013
https://doi.org/10.1016/j.envsoft.2011.02.013
https://doi.org/10.1016/j.biombioe.2010.08.048
https://doi.org/10.1038/nature03289
https://www.ijsr.net/archive/v5i4/NOV162488.pdf
https://doi.org/10.1038/s41586-018-0594-0
https://doi.org/10.1016/j.ecolind.2016.03.015
https://doi.org/10.1126/science.1259855
https://doi.org/10.1073/pnas.1810141115
https://doi.org/10.1073/pnas.1810141115
http://www.ncbi.nlm.nih.gov/pubmed/24135188
https://doi.org/10.1016/j.gloplacha.2014.07.005
https://doi.org/10.1016/j.gloplacha.2014.07.005
https://doi.org/10.1038/nature13959
https://doi.org/10.1038/nature13959
https://doi.org/10.1038/nature22900
https://doi.org/10.1016/j.fcr.2012.10.007
https://doi.org/10.1111/j.1461-0248.2005.00782.x
https://doi.org/10.1073/pnas.0704119104
https://doi.org/10.1073/pnas.0704119104
http://www.un.org/ga/search/view_doc.asp?symbol=A/RES/70/1&Lang=E
http://www.un.org/ga/search/view_doc.asp?symbol=A/RES/70/1&Lang=E
https://population.un.org/wpp/Graphs/DemographicProfiles/
https://population.un.org/wpp/Graphs/DemographicProfiles/
https://doi.org/10.1007/s10113-016-0983-6
https://doi.org/10.1007/s10584-011-0148-z
https://doi.org/10.1007/s10584-013-0906-1
https://doi.org/10.1111/gcb.14411
https://data.worldbank.org/indicator/SP.RUR.TOTL.ZS?end=2016&locations=IN&start=1960
https://data.worldbank.org/indicator/SP.RUR.TOTL.ZS?end=2016&locations=IN&start=1960
http://povertydata.worldbank.org/poverty/country/IND


Yu, J., & Wu, J. (2018). The sustainability of agricultural development in China: The agriculture–environment Nexus. Sustainability, 10(6),
1776. https://doi.org/10.3390/su10061776

References From the Supporting Information
Balk, D., Pozzi, F., Yetman, G., Deichmann, U., & Nelson, A. (2005). The distribution of people and the dimension of place: Methodologies

to improve the global estimation of urban extents. In Proceedings of the Urban Remote Sensing Conference. Retrieved from http://www.
csiss.org/gispopsci/workshops/2005/PSU/docs/balk_urs.pdf

CIESIN, & ITOS (2013). Global Roads Open Access Data Set, Version 1 (gROADSv1). NASA Socioeconomic Data and Applications Center
(SEDAC). https://doi.org/10.7927/H4VD6WCT

IIASA & FAO (2000). GAEZ: Global Agro‐Ecological Zones. Retrieved September 26, 2017, from http://www.fao.org/nr/gaez/en/
Lehner, B. (2005). Hydrological data and maps based on SRTM elevation derivatives at multiple scales. Retrieved September 25, 2017, from

http://adsabs.harvard.edu/abs/2005AGUSM.H33A..03L
Mitchell, T. D., & Jones, P. D. (2005). An improvedmethod of constructing a database of monthly climate observations and associated high‐

resolution grids. International Journal of Climatology, 25(6), 693–712. https://doi.org/10.1002/joc.1181
UNEP‐WCMC, & IUCN (2013). Protected planet: The World Database on Protected Areas (WDPA) [On‐line]. Cambridge: UNEP‐WCMC

and IUCN. Retrieved from www.protectedplanet.net

10.1029/2019EF001287Earth's Future

HINZ ET AL. 19 of 19

https://doi.org/10.3390/su10061776
http://www.csiss.org/gispopsci/workshops/2005/PSU/docs/balk_urs.pdf
http://www.csiss.org/gispopsci/workshops/2005/PSU/docs/balk_urs.pdf
https://doi.org/10.7927/H4VD6WCT
http://www.fao.org/nr/gaez/en/
http://adsabs.harvard.edu/abs/2005AGUSM.H33A..03L
https://doi.org/10.1002/joc.1181
http://www.protectedplanet.net

