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Abstract
We propose employing a quantum heat engine as a sensitive probe for thermal baths. In particular,
we study a single-atom Otto engine operating in an open thermodynamic cycle. Owing to its cyclic
nature, the engine is capable of translating small temperature differences between two baths into a
macroscopic oscillation in a flywheel. We present analytical and numerical modeling of the
quantum dynamics of the engine and estimate it to be capable of detecting temperature differences
as small as 2 μK. This sensitivity can be further improved by utilizing quantum resources such as
squeezing of the ion motion. The proposed scheme does not require quantum state initialization
and is able to detect small temperature differences in a wide range of base temperatures.

1. Introduction

Preparation and manipulation of quantum systems require the ability to detect physical properties of their
environment with high precision. Many of the environment variables cannot be measured directly, as they
are not proper quantum observables and must instead be inferred from indirect measurements. The
temperature of a system is such a property; it can only be recovered from measurements of related
observables. In recent years, the field of quantum thermometry [1–3] has advanced tremendously due to its
broad implications for quantum technologies [4–8]. Using a small quantum system as a probe to measure
the temperature of a bath has the advantage of minimally perturbing the state of the bath. Furthermore, it
was suggested that quantum phenomena can be employed to enhance the precision of thermometry [9–11].

The emerging field of thermodynamics in the quantum regime [12–15] sheds new light on energy
exchange processes between small quantum systems and their environment. Manipulating the interactions
between the quantum system and the environment in a structured manner reveals simple laws that relate
properties of the environment to measurable observables of the quantum system. For example, the power
output of a quantum heat engine operating between two baths strongly depends on the temperatures of the
baths. While theoretical and experimental studies of quantum thermal devices have focused mainly on the
efficiency, power output, cooling rates, etc of the devices [12, 16–20] and their relation to quantum effects
[21–23], we wish to employ these results for parameter estimations of the baths. A similar idea was recently
proposed in reference [24] based on a quantum refrigerator model.

The central idea of this work is to employ a heat engine operating in open thermodynamic cycles to
evaluate the temperature difference between two thermal baths. As shown in figure 1(a), a common heat
engine takes in thermal energy from a hot bath, converts part of the energy into work and releases the rest
to a cold bath. A flywheel stores the work output in its oscillatory motion and can potentially drive an
external load [25, 26]. In cases where the coupling between the bath and the flywheel can be quantitatively
modeled, one can evaluate the properties of the baths by performing measurements on the flywheel (see
figure 1(b)). We consider, in particular, the experimental setup of the single-atom heat engine [27] but with
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Figure 1. (a) A heat engine takes in heat from a hot thermal bath, converts part of the thermal energy into mechanical work and
releases the rest to a cold bath. The work can be stored in a flywheel. (b) A calibrated heat engine can be employed to measure the
temperature difference between two baths by monitoring the energy in the flywheel. (c) A modified linear Paul trap with four
tapered blade electrodes facilitating the operation of a single-ion heat engine.

a non-damped flywheel. In this case, the energy in the flywheel grows quadratically with the number of
engine cycles and avoids the possible exponential growth of the fluctuations [25].

Operating the engine in the quantum regime permits the utilization of quantum resources such as
squeezing of the working medium. Theoretical and experimental studies of quantum engines operating
between non-thermal baths predict that the efficiency and power output may exceed the bounds set by
thermal engines [28–30]. While these results might not be entirely surprising, as an additional source of
energy can be exploited, we show that squeezing the working medium after the thermalizing strokes can
significantly amplify the energy stored in the flywheel. This enhances the sensitivity of the thermal probe,
enabling the detection of very small temperature differences which otherwise could not be resolved in
experiments.

The manuscript is structured as follows. In section 2, we present the single-ion heat engine model and
analyze its dynamics. In section 3, we introduce the measurement protocol and estimate the sensitivity
based on experimental parameters. Finally, in section 4 we discuss the possible extensions and limitations of
this scheme.

2. Dynamics of the single-ion heat engine

We start by introducing the experimental setup and a theoretical model which describes the dynamics of the
working medium and the flywheel of the engine.

2.1. Equations of motion
As depicted in figure 1(c), an atomic ion is trapped in a Paul trap consisting of four blade-shaped electrodes
and two endcap-electrodes [27]. In contrast to a conventional Paul trap, the blade electrodes are tilted with
respect to the axial symmetry axis by an angle θ. The four blade-electrodes are driven by radio-frequency
signals and the two endcap-electrodes are biased with positive DC voltages. The ponderomotive potential
formed by this trap can be approximated as harmonic in the radial (x, y) and axial (z) directions with a
variation of the radial trapping frequencies in the axial direction:

ωx,y(z) =
ωx0,y0

(1 + tan θ · z/r0)2
, (1)

with r0 the radial distance of the ion to the blade electrodes and ωx0,y0 the radial trapping frequencies at
z = 0. In an experiment, a small anisotropy of the radial potential is normally present, which lifts the
degeneracy of ωx0,y0. The confinement in the axial direction is much weaker compared to that of the radial
directions, signified by a smaller axial trapping frequency ωz ≈ ωx0,y0/10.

The Hamiltonian describing the motional state of an ion in this potential can be written as

Ĥ =
p̂2

x

2m
+

1

2
mω2

x x̂2 +
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y

2m
+

1

2
mω2

y ŷ2 +
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z

2m
+

1

2
mω2

z ẑ2, (2)

with m the mass of the ion, x̂, ŷ, ẑ and p̂x, p̂y, p̂z the position and momentum operators in the
corresponding directions. Viewed as a heat engine, the radial states represent the working medium which
thermalizes with external hot and cold baths periodically. The engine drives and amplifies a coherent
oscillation of the ion in the axial direction. The axial oscillator thus serves as a flywheel that stores the
energy output. In open-cycle operations, the flywheel is not actively damped. As we will show in later
sections, the energy stored in the flywheel grows quadratically with the number of engine cycles. In our
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analysis, we will treat the large-amplitude coherent oscillation in the axial direction as a classical oscillator,
while keeping a quantum mechanical description for the radial states. The Hamiltonian of the system can
then be rewritten as

Ĥ = �ωx0

(
â†xâx +

1

2

)
+ �ωy0

(
â†yây +

1

2

)
+

1

2
m(ω2

x0x̂2 + ω2
y0ŷ2)

(
1

(1 + γz)4 − 1

)
+

p2
z

2m
+

1

2
mω2

z z2,

(3)

where â†x (â†y) and âx(ây) represent the bosonic creation and annihilation operators of the phonons in x (y)
direction, respectively. The first two terms in equation (3) describe the energy stored in the working
medium. The third term represents the coupling of the working medium to the flywheel, where we define
γ = tan θ/r0. The last two terms denote the kinetic and potential energy in the flywheel, where pz and z are
the classical momentum and position of the ion in the axial direction.

As indicated by equation (3), the two radial directions contribute to the Hamiltonian independently. For
the sake of brevity, we consider only the x direction in our further analysis, while assuming that the
oscillator in the y direction is maintained at a low and constant temperature. We denote the creation and
annihilation operators in the x direction as â† and â. The equations of motion for the quantum harmonic
oscillator in the x direction read

d

dt
X̂(t) = 2

(
�ωx0 + 2g(t)

)
Ŷ(t),

d

dt
Ŷ(t) = −2

(
�ωx0 + 2g(t)

)
X̂(t) − 8g(t)N̂(t) − 4g(t),

d

dt
N̂(t) = −2g(t)Ŷ(t),

(4)

where we define

X̂(t) =
(
â†2(t) + â2(t)

)
Ŷ(t) = i

(
â†2(t) − â2(t)

)
N̂(t) = â†(t)â(t)

g(t) =
�ωx0

4

(
1

[1 + γz(t)]4
− 1

)
.

(5)

The classical equations of motion for the flywheel can be written as

ż(t) = pz(t)/m

ṗz(t) = F(t), (6)

with F the force acting on the axial oscillator. In the mean-field approximation, F can be expressed as

F(t) = −∂〈Ĥ〉
∂z

= −mω2
z z(t) + F(t), (7)

which is the sum of the restoring force of the harmonic potential and the force F resulting from the
radial–axial coupling

F(t) =
γ�ωx0R(t)

(1 + γz(t))5 − �ωx0

4

∂R

∂z

(
1

(1 + γz(t))4 − 1

)
. (8)

Here, we define R(t) = 〈
(

â†(t) + â(t)
)2〉. We note that, one could alternatively assume the same

temperature of the two radial modes, which would result in doubling of the force F. In typical experimental
scenarios [27], the small axial displacement z(t) � r0 holds, leading to γz(t) � 1. This allows the
approximation

F(t) = −mω2
z z(t) + γ�ωx0R(t), (9)

with

R(t) = 〈X̂(t) + 2 ˆN(t) + 1〉 (10)

= 1 + 2N0 + X0 cos (2ωx0t) + Y0 sin (2ωx0t) ,

and X0, Y0, N0 the expectation values of X̂(t), Ŷ(t) and N̂(t) at t = 0.
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Figure 2. (a) Upper: illustration of the radial state and axial position of the ion that undergoes one four-stroke (A–B–C–D)
cycle. The areas covered by dashed (solid) lines represent the radial state at the start (end) of each stroke. Red and blue colors
illustrate the radial state after interaction with the hot and cold baths, respectively. At the end of one engine cycle, the ion does
not restore its initial axial position, which is indicated by the dashed black line. Lower panels show the density matrix elements cij

of the radial state in phonon number n basis at the end of each stroke. Only the first 20 levels are displayed. (b)
Energy–frequency diagram of the radial state. The cycle is not closed due to the accumulation of energy in the flywheel. (c) Blue
line shows a close-up of the axial trajectory of the ion as a function of time with Tc = 1.0 mK, Th = 1.2 mK and z0 = −1.1 μm.
The oscillation amplitude grows linearly with the number of engine cycles. Inset: the full axial trajectory over four engine cycles.
Red and blue shaded areas denote interaction with the hot and cold baths, respectively. The results from numerical simulations
(solid blue) and analytical calculations using equation (15) (dashed red) show excellent agreement. (d) Energy in the working
medium (blue) and the flywheel (red) under the same condition as in (c).

2.2. Thermodynamic cycle
The model can be cast to describe the dynamics of a four-stroke Otto engine [31–34]. One engine cycle, as
shown in figures 2(a) and (b), can be described as follows: hot isochore [A]: the radial trapping frequency is
kept constant at ωh and the working medium is in contact with a hot bath at temperature Th. After a time
of τh, the working medium thermalizes at this temperature. The time scale of the interaction is much
shorter than the half period of the axial oscillation τz = π/ωz. During this stroke, the axial displacement of
the ion and the change of the radial trapping frequency are negligible. Isentropic expansion [B]: the ion is
isolated from the baths and evolves in the trapping potential. After a time of τ z, the radial trapping
frequency changes from ωh to ωc due to the displacement in the axial direction. This trapping frequency
change may be either adiabatic or engineered using optimal control techniques [35] that also allow for the
minimization of different sources of error in the variation of ωx [36, 37]. The dynamics describing this
process is unitary and the entropy of the working medium remains constant. Cold isochore [C]: the radial
trapping frequency remains constant at ωc. The ion is coupled to a cold bath and its radial state thermalizes
to the temperature Tc (Tc < Th) after time τ c (τ c ≈ τh � τ z). Isentropic compression [D]: in the last
stroke, the ion is again isolated from the baths and evolves isentropically in the trapping potential for
another time of τ z. In reference [27], the isochoric strokes were realized by coupling the ion to a laser or
external electric fields, which emulate the cold and hot baths, respectively. The cold bath is realized by
exposing the ion to a laser beam red detuned from the 2S1/2 –2P1/2 transition of the calcium ion. The hot
bath is emulated by applying noises to the external DC electrodes, while simultaneously exposing the ion to
the cooling laser. The noise is generated and timed by arbitrary waveform generators. The two baths
provide an accessible temperature range of 1 mK to 4 K for the working medium.

In the following, we analyze the dynamics of the engine, presenting both the approximated analytical
and the full numerical solutions of the Hamiltonian. We establish a numerical routine using a combination
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of propagation of the radial wavefunctions following the Liouville–von-Neumann equation [38, 39] and
classical trajectory simulation in the axial direction with partitioned Runge–Kutta method [40]. This
numerical platform allows us to simulate the dynamics of the engine driven by thermal and non-thermal
baths. Details about this numerical routine are given in appendix A.

We consider typical experimental parameters of a 40Ca+ ion with m = 40 amu confined in a tapered
Paul trap with θ = π/6, r0 = 1 mm and trapping frequencies of ωx0 = 2π × 1 MHz and ωz = 2π × 0.1
MHz. Before starting the engine, all the motional states are initialized using Doppler cooling to a thermal
state at 1 mK. This results in more than 200 average phonon occupation in the axial oscillator, which
justifies a classical treatment in this direction. After the initialization and at time t = 0, the ion is at an axial
position z0 with axial velocity vz0 = pz0/m. At this time, a hot thermal bath of temperature βh = 1/kBTh is
switched on. The working medium thermalizes to this temperature and has
X0 = Y0 = 0, N0 = (eβh�ωx0 − 1)−1. The force due to the radial–axial coupling in the small axial
displacement limit becomes

Fh = γ�ωx0Rh, (11)

with

Rh = coth

(
βh�ωx0

2

)
. (12)

This force leads to a displacement of the axial potential toward the open end of the taper. After the
interaction with the bath, the radial state expands isentropically in the potential. The classical trajectory of
the ion in the z direction can be solved by integrating the equations of motion (6). After τ z, the ion reaches
the position z1 at t = τ z with velocity vz1. At this point, a cold bath with temperature βc = 1/kBTc is
switched on and cools the radial state to this temperature. This process is again isochoric. After the cooling
process, the force is reduced to

Fc = γ�ωx0Rc, (13)

where Rc is given by equation (12) and exchanging βh → βc. The ion experiences a displaced axial potential
toward the narrower end of the trap. For the next half axial oscillation period, the ion evolves again
isentropically in the displaced potential. At the end of a completed engine cycle t = 2τ z, the flywheel does
not restore the original (z0, vz0) point but ends at (z2, vz2) due to the work done by the forces Fh and Fc. The
energy–frequency diagram for the radial states undergoing one engine cycle is illustrated in figure 2(b).

In figures 2(c) and (d) we present the results of numerical simulations with Th = 1.2 mK and
Tc = 1.0 mK. The blue line in figure 2(c) shows a close-up of the axial trajectory of the ion as a function of
time. The oscillation amplitude grows linearly with the number of engine cycles. The inset displays the full
axial trajectory over four engine cycles, where the blue line shows the numerical simulation of the exact
Hamiltonian in equation (3) and the dashed red line represents the approximated analytical solution using
equations (11) and (13). The analytical and numerical results show excellent agreement. Figure 2(d)
displays the evolution of the energy in the flywheel (red curve) and the working medium (blue curve). As a
result of the linear growth of the axial oscillation amplitude, the energy in the flywheel increases
quadratically with the number of engine cycles.

3. Singe-ion heat engine as a sensitive thermal probe

In contrast to reference [27], where laser cooling of the flywheel was applied to reach closed-cycle
operations, the engine presented here operates in open cycles where the work is stored in the flywheel. By
virtue of this cyclic cumulative nature, small temperature differences can be translated to a macroscopic
oscillation in the flywheel. Here, we propose using this engine as a probe for temperature differences
between thermal baths. In the following, we introduce the measurement protocol and evaluate its sensitivity
based on realistic experimental parameters.

3.1. Temperature difference estimation
The measurement protocol is illustrated in figure 3. To begin with, all the motional states are initialized by
Doppler cooling to a thermal distribution of temperature T0 = 1.0 mK. The initial axial position z0 and
velocity vz0 of the ion follow the Boltzmann distribution f (z0, vz0) ∝ exp[−m(v2

z0 + ω2
z z2

0)/2kBT0]. After the
initialization, the engine is set to the four-stroke operation driven by two baths of temperature T1 and T2,
respectively. The position of the ion upon its nth interaction with the baths can be obtained by integrating
the equations of motion in equation (6) stroboscopically. In a typical experimental scenario, where the axial
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Figure 3. (a) Measurement protocol. After initialization with Doppler cooling, the engine is set to operate under the driving of
the two baths. After a number of N engine cycles, measurements are performed to determine the extrema of the axial location.
The measurements are realized by illuminating the ion with a short laser pulse of duration τ z/10, at times τ z and 2τ z after the
2Nth bath interaction, respectively. The physical separation of the ion’s image on the camera directly translates to the axial
oscillation amplitude 2N ·Δz. It is necessary to repeat the protocol many times in order to precisely determine the amplitude.
(b) The photons emitted by the 40Ca+ ion at 397 nm are collected by an objective and focused on a camera.

oscillation amplitude is much smaller compared to the radial dimension of the trap (z � r0), we arrive at

zn = z0 +
n�ωx0γ(R2 − R1)

mω2
z

for n = 0, 2, 4 . . .

zn = −z0 +
2�ωx0γR1 − (n − 1)�ωx0γ(R2 − R1)

mω2
z

for n = 1, 3, 5 . . . ,

(14)

where R1 and R2 are given by equation (12) with the corresponding temperatures T1,2. The change in the
axial oscillation amplitude of two consecutive peaks (see figure 2(c))

Δz = zn+2 − zn =
2�ωx0γ

mω2
z

(R2 − R1), (15)

which in the limit of �ωx0 � kBT simplifies to

Δz =
4kBγ

mω2
z

ΔT, (16)

where ΔT = T2 − T1. We note that the assumptions on the axial oscillation amplitude and the bath
temperatures are only made to arrive at the analytical solutions of the equations of motion. The function
principle of the thermal probe remains valid out of these limits and the equations of motion can be solved
numerically.

As shown in equation (16), Δz carries the same sign with T2 − T1. After N(N � z0/Δz) engine cycles,
the energy fed by the engine dominates over the initial energy in the flywheel. The axial oscillation will thus
be brought in phase with the bath interactions. The ion travels to the open side of the tapered potential
(z > 0) when put in contact with the bath of lower temperature, and vice versa. The temperature difference
between the two baths can be determined by measuring the axial oscillation amplitude. We propose two sets
of triggered measurements as follows. The first set of measurements is performed by illuminating the ion
with a short laser pulse of duration τ z/10 and at a time τ z after the 2Nth bath interaction (see upper panel
of figure 3(a)). Fluorescent light from the ion is collected by a microscope objective and imaged on a
camera (see figure 3(b)). The duration of the laser pulse is chosen to be much shorter than the axial
oscillation period to minimally disturb the position of the ion. To obtain a significant signal-to-noise ratio,
the measurement has to be reproduced M times with a restart of the engine each time. The mean position
of the ion is determined by performing single-particle localization analysis [41] on the integrated
fluorescent image. We note that each restart of the engine samples a random z0 and vz0 from the Boltzmann
distribution. As shown in figure 4(a), the influence of the distribution of z0 averages out due to a large
number of sampling. The measured mean axial position of the ion is thus

z2N =
2N�ωx0γ(R2 − R1)

mω2
z

. (17)

The second set of measurements is performed following the same procedure but at a time 2τ z after the 2Nth
bath interaction, while the (2N + 1)th bath interaction is skipped (see lower panel of figure 3(a)). The
measured mean axial position is then

z′2N = −2N�ωx0γ(R2 − R1)

mω2
z

, (18)
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Figure 4. (a) Distribution of the axial positions of the ion after N = 105 number of cycles for the two sets of measurements.
M = 2 × 105 initial positions were drafted randomly from the Boltzmann distribution with temperature T0 = 1 mK. (b) The
oscillation amplitude z2N − z′2N after N = 105 engine cycles versus temperature difference ΔT between the two baths. Green
circles and red crosses represent the results obtained from numerical simulations with Tc = 1.0 mK, 0.2 mK, respectively. The
solid black line shows the prediction of equation (19).

leading to the difference between the two positions

z2N − z′2N = 2NΔz, (19)

which is a linear function of the temperature differences ΔT.
Figure 4(a) displays a simulated distribution of the axial positions of the ion upon the two sets of

measurements with ΔT = 0.1 mK, T0 = 1.0 mK, N = 105 and M = 2 × 105. Figure 4(b) shows the linear
dependence of z2N − z′2N with the temperature difference ΔT for N = 105. The black line displays the
results of the approximated analytic solution. The green circles and red crosses display the same value
deduced from numerical simulations performed at Tc = 1.0 mK and 0.2 mK, respectively. The good
agreement of the numerical simulations confirms the validity of equation (16) at different base
temperatures.

The precision in determining ΔT is limited by experimental uncertainties in measuring the amplitude
2NΔz. In single-particle localization analysis, the uncertainty in the center position is given by the
signal-to-noise ratio of the camera image. This is determined by the illumination time of the laser, the
efficiency of photon collection, the quantum efficiency, and the background noise of the camera. In
reference [27], an objective with a numerical aperture of 0.26 was used to collect the fluorescent photons at
397 nm and to form an image on an intensified charge-coupled-device sensor. At each oscillation phase,
2 × 105 repeated measurements were necessary to obtain a localization precision of ±250 nm [42].
Assuming the same measurement conditions and using equations (16) and (19), we arrive at an uncertainty
of ±2 μK in determining ΔT.

We note that in the limit of �ωx � kBT1,2, the outcome of the measurement depends only on the
temperature difference between the two baths and is independent of their absolute temperature. The
protocol is particularly suitable for detecting small temperature differences at high base temperatures. On
the other hand, when using a bath of well-characterized temperature as a reference, the absolute
temperature of an unknown bath can be determined.

3.2. The squeezed engine: enhancing sensitivity using quantum resources
The amplitude of the measured signal can be amplified by exploiting quantum resources such as squeezing
of the working medium. Here, we show that by squeezing the working medium after the isochoric strokes, a
significant amplification of the oscillation amplitude can be obtained. Using this method, temperature
differences smaller than ±2 μK can be detectable in experiments.

We assume no prior knowledge of the bath temperatures. The squeezing operations described by the
operator Ŝ(ξ) = exp

(
1
2 (ξ∗â2 − ξâ†2)

)
are applied to the radial state right after each of the two isochoric

strokes, as such, the temperatures of the baths remain unchanged. After the squeezing operation, the state of

the working medium is described by a squeezed thermal state, Ŝ(ξ)ρthŜ
†
(ξ). In this case, as X0 �= 0, Y0 �= 0,

R(t) becomes time-dependent (see equation (10)). The growth of the axial oscillation amplitude between
two consecutive peaks reads

Δz′ =
4κγ�

mωz

(
cosh(2r) + sinh(2r) cos(α)/(4κ2 − 1)

)
(n1

th − n2
th), (20)
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Figure 5. Amplification factor A as a function of the amplitude of squeezing r. Green circles show the results obtained from the
numerical simulations. The solid line represents the outcome of equation (22). The dashed black line indicates the value
r = 0.77, and the shaded area denotes the region where the squeezing operations brings the working medium into the quantum
regime.

with κ = ωx0/ωz, n1,2
th = (eβ1,2�ωx0 − 1)−1, r and α the amplitude and phase of the squeezing parameter

following ξ = r eiα. Note that Δz′ is maximized when α = 0. Considering the limit of �ωx0 � kBT, we
obtain

Δz′ =
4γ�

mω2
z

(
cosh(2r) + sinh(2r)/(4κ2 − 1)

)
ΔT. (21)

To evaluate the impact of squeezing the working medium on the temperature difference resolution, we
define the squeezing amplification factor

A =
Δz′

Δz
= cosh(2r) + sinh(2r)/(4κ2 − 1), (22)

where Δz denotes the growth of the amplitude without squeezing. The dependence of the amplification
factor on the squeezing parameter is depicted in figure 5, where the system was numerically simulated for
different squeezing parameters with T1 = 0.11 mK, T2 = 0.1 mK and κ = 10. The squeezing operations
amplify the oscillation growth by an order of magnitude favoring the detection of small temperature
differences. More details about the numerical simulations are presented in appendix B.

The quantum regime is attained when the squeezing operation generates a state in which the
fluctuations are reduced below the symmetric quantum limit in one of the quadrature components. This
comes at the expense of increasing fluctuations in the canonical conjugate component, such that the
uncertainty principle is still satisfied. In other words, the quantum limit is reached when the variance of one
of the quadratures is smaller than 1/4, which implies that there is a phase in which the Glauber–Sudarshan
distribution turns negative [43, 44]. This condition is given by

1

4
(2nth + 1)e±2r <

1

4
. (23)

In the example considered in figure 5, violation of equation (23) corresponds to a value of r > 0.77, as
indicated by the vertical dashed line and the shaded region. The white region, on the other hand, points out
that even when the fluctuations are not reduced below the symmetric quantum limit, the amplification
factor is greater than one. However, to obtain a significant amplification one is forced to enter the quantum
regime.

In trapped ion experiments, squeezing of the motional states can be realized by fast trap voltage control
[45–47] or dynamic optical forces [48–50]. Both methods lead to a modulation of the motional state at
twice the harmonic oscillation frequency. In a recent experimental demonstration of a quantum absorption
refrigerator [50], squeezing operations with r up to 2 were realized with two detuned laser fields.

One should note that the optimal performance of a squeezed Otto cycle is obtained when squeezing is
performed after the interaction of the working medium with the hot bath [28]. In this case, the amplitude
growth is typically greater than applying squeezing after both isochoric strokes, enhancing the amplitude
resolution of the flywheel. Although the simple linear relation Δz ∝ ΔT will not be satisfied, this scheme
can be applied to evaluate the hot bath temperature given that the temperature of the cold bath is known.
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4. Discussions and outlook

To summarize, we propose using an open-cycle heat engine as a sensor for temperature differences between
thermal baths. Starting from a quantitative model of the heat engine, we estimate it to be capable of
measuring temperature differences as small as 2 μK. Further enhancement of the signal can be achieved
utilizing quantum resources such as applying squeezing operations on the working medium. Our scheme
only requires initializing the engine by Doppler cooling, thus avoiding quantum state initialization
processes. When one of the baths has a well-characterized temperature, the absolute temperature of an
unknown bath can be determined. In the limit of �ωx0 � kBT, this scheme is independent of the base
temperature of the baths, making it particularly adept at detecting small differences at a high background
temperature.

The scheme can be further extended to characterize non-thermal baths, where physical properties other
than temperature can be measured in a similar fashion. Note that the bath property which governs the
dynamics of the engine is imprinted on R(t) (see equation (10)) of the working medium. If a bath, for
example, leads to displacement or squeezing of the working medium, the relevant displacement or
squeezing parameter can be evaluated quantitatively. In this respect, the indirect measurement feature at the
core of this scheme avoids projective measurements on the bath and thus preserves its quantum features.

In analyzing the dynamics of the engine, we have assumed the coupling of the working medium to the
baths is strong enough to achieve fast thermalization. This is applicable for baths such as laser or external
electric noises [51, 52], where the coupling strength can be controlled by the power of the applied fields. In
experiments with calcium ions, the Doppler cooling limit (T ≈ 0.5 mK) is typically reached within 2 ms of
continuous cooling [53]. Nevertheless, shorter Doppler cooling pulses with duration below 10 μs would
mimic thermal baths of higher temperatures [27] as the interaction timescale is given by the lifetime of the
2P1/2 state (∼7 ns). For the noise bath, the same timescale would apply since the heating is accompanied by
laser cooling for attaining baths of finite temperatures. In the next step, we plan to extend the scheme to
physical thermal ensembles, such as ion Coulomb crystals [54] or clouds of cold neutral atoms [55]. To
understand the engine dynamics driven by these baths, the coupling mechanism of the ion to the baths has
to be studied quantitatively and finite time effects such as non-equilibrium dynamics must be taken into
consideration. Nevertheless, the scheme may be of immediate interest for applications such as optimization
of fast laser cooling schemes [56, 57]. By adapting the heat engine to micro-segmented or surface ion traps
[58], the proposed scheme may also be utilized to probe local heating of ion motion due to neighboring
surfaces.
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Appendix A. Numerical methods

We use a combination of classical and quantum mechanical simulations to verify the analytical formulas of
section 2. In order to describe the dynamics of an unbounded quantum harmonic oscillator, a truncation of
the Hilbert space is necessary [59]. This truncation has to be chosen carefully to avoid reflections at the
boundaries.

A.1. Strömer–Verlet method
We employ the Strömer–Verlet method [40] for propagating the classical oscillator in the axial direction.

The classical oscillator is described by the Hamiltonian H(z, v) = v2

2m +Φ(z), where Φ(z) denotes a
potential which is solely dependent on the position of the particle. The canonical equations of motion can
be written as zn+1 − 2zn + zn+1 = −Δt(q/m)∂zΦ(z) and vn = (zn+1 − xn−1)/2Δt, with the time step

9
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Figure A1. Flowchart of the implemented algorithm.

Δt = tn+1 − tn. The following recursion relations are used [40]

vn+ 1
2
= vn +

Δt

2

q

m
∂zΦ(zn, tn) (A.1)

zn+1 = zn +Δtvn+ 1
2

(A.2)

zn+1 = vn+ 1
2
+

Δt

2

q

m
∂zΦ(zn, tn). (A.3)

A.2. Newton propagator
The time evolution of the radial quantum oscillator is described by the Liouville–von Neumann equation

L [ρ̂(t)] = dρ̂(t)/dt = − i

�

[
Ĥ(t), ρ̂(t)

]
+ iLD [ρ̂] , (A.4)

with the Liouvillian L, the Hamiltonian Ĥ(t) and the Lindbladian LD. The Liouvillian is expanded in
Newton polynomials in order to numerically integrate the Liouville–von Neuman equation. An arbitrary
function f(x) with x ∈ C can be represented in terms of Newton polynomials Rn(x) with a set of sampling
points {x}

f (x) ≈
N−1∑
n=0

anRn(x) with Rn(x) =
n−1∏
=0

(x − x). (A.5)

The coefficients an are computed by the recursion relation

an =
f (xn) −

∑n−1
=0 a

∏−1
m (xn − xm)


∏−1

m (xn − xm)
, (A.6)

which is referred to as divided differences [60]. The first two coefficients are obtained by imposing the
interpolation condition

a0 = f (x0) and a1 = f (x1) − f (x0). (A.7)

With f(x) = e−ixdt and x = L/�, the time evolution of the density matrix can be expressed as

ρ̂(dt) = e−
i
�
Ldt ρ̂(0) ≈

N−1∑
n

an (L− xn𝟙) ρ̂(0). (A.8)
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Figure B1. (a) Amplification of the axial oscillation amplitude by squeezing the working medium after interaction with both
baths. The simulations are performed with Th = 0.11 mK and Tc = 0.1 mK. The blue, orange, and green curves represent the
trajectories for r = 0, 0.5 and 1.5, respectively. (b)–(d) Excerpt of the density matrices after interacting with the hot bath and the
squeezing operation, where the color encodes the phase of the entries arg(cij).

For the simulations presented in this paper, we used the python implementation of the Newton propagator
[39]. Details about the numerical methods can be found in reference [38].

A.3. Algorithm for the simulation of classical and quantum trajectories
Description of the engine dynamics requires a combination of the classical and quantum equations of
motion. At every step of the propagation, the density matrix of the radial state, the position z and velocity v

of the axial oscillator, and the force F needs to be updated. For each iteration, R(t) is computed and the
force F is updated according to equation (9). The axial oscillator is then propagated by Δt using the
Strömer–Verlet method. The newly obtained position z(t +Δt) is used to update the Hamiltonian of our
system described by equation (3) and the Liouvillian is computed. The Newton propagator [39] is called
and the state ρ̂(t) is propagated for the finite time step Δt. This finishes one step of the propagation. After
t = π

ωz
the state is coupled to the hot or cold bath. We describe the thermalization process by updating the

density matrix to the bath temperature in one step of propagation. This algorithm is illustrated in figure A1.

Appendix B. Squeezing the working medium

In figure 5 of the manuscript, we presented the amplification of the axial oscillation amplitude by applying
squeezing operations on the working medium. In figure B1(a) the simulated axial trajectories for r = 0, 0.5
and 1.5 are displayed. The squeezing operations are applied after the thermalization with the cold and hot
baths. For the clarity of the signal, the initial position and velocity is chosen to be zero. The corresponding
density matrices after interacting with the hot bath and the squeezing operation are depicted in
figures B1(b)–(d). The phase of the entries of the density matrices arg(cij) is indicated by the color scale.
The applied squeezing yields a higher occupation number and excitation of the off-diagonal elements.
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