
 Procedia Materials Science   3  ( 2014 )  2122 – 2127 

Available online at www.sciencedirect.com

2211-8128 © 2014 Elsevier Ltd. Open access under CC BY-NC-ND license. 
Selection and peer-review under responsibility of the Norwegian University of Science and Technology (NTNU), Department of Structural Engineering
doi: 10.1016/j.mspro.2014.06.343 

ScienceDirect

20th European Conference on Fracture (ECF20)

Crack paths at multiple-crack systems in anisotropic structures:

simulation and experiment

Paul O. Judta,∗, Andreas Ricoeura, Günter Lineka

aDepartment of Engineering Mechanics, Institute of Mechanics, University of Kassel, 34125 Kassel, Germany

Abstract

This paper is targeted on numerical methods for accurate crack tip loading analysis and crack path prediction. Those are based

on finite element calculations of the boundary value problem. Applying path-independent integrals to curved cracks in order to

accurately calculate the J-integral, energy release rate (ERR) or stress intensity factors (SIF) is still not state of the art. Contours

which are not confined to the crack tip require special analytical preparation and numerical treatment to supply results which are

sufficiently precise for reliable crack path prediction. Methods to improve the calculation of the J-integral and the interaction inte-

gral (I-integral) are presented. In particular, the latter has never been applied to strongly curved cracks. Also, efficient methods for

the loading analysis and crack growth simulation of multiple interacting cracks based on path-independent integrals are presented.

The anisotropy of fracture toughness is taken into account being a crucial part of the numerical model. Experiments are carried out

with specimens made of aluminum alloy Al-7075, comparing subcritically grown cracks with simulations.
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1. Introduction

Predicting the correct crack path in engineering structures is still a cumbersome procedure as many influencing

parameters have to be accounted for e.g. crack tip loading, crack deflection criteria, anisotropic and inelastic material

behavior. Many researchers of the recent years have focussed on the crack path predictions in plane structures apply-

ing different methods and theories and comparing their results to experimental findings (Miranda et al., 2003; Meyer

et al., 2006; Španiel et al., 2009). Path-independent integrals are widely applied to calculate loading quantities such

as the ERR (Griffith, 1921), SIF (Irwin, 1957), or the J-integral (Rice, 1968).

Budiansky and Rice (1973) extended Rices’ approach of J, which was limited to straight cracks, by a formulation of

the two-dimensional Jk-integral vector which is composed of the coordinate J1 = J and J2. It is well-known that the

calculation of the J2-integral is challenging since the numerical treatment of the singular stresses at the crack tip is

going along with problems finally leading to inaccurate results.
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The interaction integral is a conservation integral based on the superposition of two loading scenarios (Stern et al.,

1976), i.e. the physical (a) and an auxiliary loading (b). In general, the near tip solution is employed to obtain auxil-

iary fields originally limiting this method to straight cracks in homogeneous materials without interfaces.

After the introduction of path-independent integrals, two new methods for calculating accurate values of J2 valid for

straight and curved cracks are presented. Further, difficulties and solutions are pointed out for the calculation of the

Ik-interaction integral considering arbitrary curved crack faces. A second focus is directed at the crack loading analy-

sis of multiple cracks systems. Here, a new procedure is introduced, based on a global Ik-integral calculating accurate

loading quantities related to the i-th crack tip by fading out all other crack tips.

Anisotropy in fracture toughness has a strong influence on crack paths and is thus included in the model. A corre-

sponding crack deflection criterion is suggested based on the ERR. Crack paths are calculated and compared to those

resulting from experimental findings in rolled Al-7075 plates.

2. Path-independent contour integrals

Within the theory of Linear Elastic Fracture Mechanics (LEFM) the Jk-integral vector is a path-independent energy

conservation integral. Applying an integration contour Γε in the vicinity of the crack tip at a distance ε, the Jk-integral

is defined as

Jk = lim
ε→0

∫
Γε

Qk jn jds, Qk j =
1

2
σmnεmnδk j − σi jui,k, (1)

with Eshelby’s tensor Qk j, including the stress tensor σmn, the strain tensor εmn and the displacement derivatives ui,k.

The Kronecker identity tensor is denoted as δk j. In LEFM the coordinates of Eq. (1) are related directly to the SIF:

J1 =
K2

I
+ K2

II

E′
, J2 = −2

KI KII

E′
. (2)

For plane stress E′ = E and for plane strain E′ = E/
(
1 − ν2

)
. If the Jk-integral is calculated, assuming two different

superimposed loading scenarios (a) and (b) for an arbitrary crack configuration, one obtains the following expression:

J
(a)+(b)

k
= lim
ε→0

∫
Γε

Q
(a)+(b)

k j
n jds = lim

ε→0

∫
Γε

(
Q

(a)

k j
+ Q

(b)

k j
+ Q

(a/b)

k j

)
n jds = J

(a)

k
+ J

(b)

k
+ J

(a/b)

k
. (3)

The third term of Eq. (3) is the interaction integral vector J
(a/b)

k
and will be denoted from now on as Ik,

Ik = lim
ε→0

∫
Γε

Q
(a/b)

k j
n jds, Q

(a/b)

k j
=

1

2

(
σ(a)

mnε
(b)
mn + σ

(b)
mnε

(a)
mn

)
δk j −

(
σ

(a)

i j
u

(b)

i,k
+ σ

(b)

i j
u

(a)

i,k

)
(4)

with Q
(a/b)

k j
being Eshelby’s tensor related to the interaction integral. For straight crack faces, the near-tip solution

yields valid fields εmn, σmn, ui,k associated to an auxiliary loading configuration and is therefore usually applied as

auxiliary field. The relation between the coordinates of Eq. (4) and SIF is as follows:

I1 = 2
K

(a)

I
K

(b)

I
+ K

(a)

II
K

(b)

II

E′
, I2 = −2

K
(a)

I
K

(b)

II
+ K

(a)

II
K

(b)

I

E′
. (5)

Auxiliary fields are generally chosen according to an unit mode-I (K
(b)

I
= 1, K

(b)

II
= 0) or unit mode-II (K

(b)

I
=

0, K
(b)

II
= 1) loading. If finite integration contours Γ0 are considered, see Fig. 1,the coordinates of Jk and Ik in general

become path-dependent (Judt and Ricoeur, 2013b). In case of straight crack faces subjected to mixed-mode loading

the path-dependence is restricted to the second coordinates J2 and I2 if crack surface loads are neglected. If curved

crack faces are considered, both coordinates of Jk and Ik are depending on the chosen integration contour Γ0. To

hold path-independence, crack face integrals have to be introduced, describing the jump of Eshelby’s tensor across

the physical crack faces dΓ+c = −dΓ−c = dΓc and the fictitious crack faces dΓ+
f
= −dΓ−

f
= dΓf , see Fig. 1(a):
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Fig. 1. (a): Integration contours, physical and fictitious crack faces Γc and Γf for path-independent Jk and Ik-integrals; (b), (c): example of two

cracks system and integration contours Γ0, Γ
(n)
c and Γ

(m)

f
applied to the calculation of loading quantities.

Jk =

∫
Γ0

Qk jn jds +

∫
Γc

�
Qk j

�+
−n jds (6a)

Ik =

∫
Γ0

Q
(a/b)

k j
n jds +

∫
Γc

�
Q

(a/b)

k j

�+
− n jds +

∫
ΓF

�
Q

(a/b)

k j

�+
− n jds. (6b)

The asymptotic crack tip solutions are selected to be the corresponding auxiliary fields and thus, the fictitious crack

faces Γf and the physical ones Γc always coincide at the crack tip. The integration in the vicinity of the crack tip

based on numerical values provided from the FE-calculation is challenging. As the numerical representation of the

singularity in stresses and strains deviates strongly from analytic solutions, the calculation of crack face integrals

needs a special treatment (Judt and Ricoeur, 2013a) which is usually circumvented applying small contours at the

crack tip.

3. Approaches for the accurate calculation of J2 and I2

The analytic expression for crack face integrals along a small segment dΓc = δ in the vicinity of the crack tip,

where crack faces are approximately straight ϕ = ±π and n j = −�e2, is

Jc
k =

∫
δ

�
Qk j

�+
−n jds = 8

T11KII

√
δ

E′
√

2π
�e2 = Jc

2, Ic
k =

∫
δ

�
Q

(a/b)

k j

�+
−n jds = 8

T
(a)

11
K

(b)

II

√
δ

E′
√

2π
�e2 = Ic

2. (7)

The constant T-stress T11 at a small distance to the crack tip follows from the representation of tangential normal stress

on the crack faces:

T11 =
1

2

(
σ11 (δ,+π) + σ11 (δ,−π)

)
. (8)

Those parts of Jk and Ik which are based on reliable numerical data are calculated from Eqs. (6) where a small part

δ at the crack faces is excluded. The remaining part of the integrals is expressed analytically by Eqs. (7). Here, the

analytic part Ic
k

is directly calculated applying T11 according to Eq. (8). In contrast, Jc
k

is evaluated by an iterative

procedure, as the analytic integral depends on the values of Jk. This becomes obvious, as the unknown value KII is

calculated from the coordinates Jk by rearranging Eqs. (2).

A second approach for the accurate calculation of Jc
k

is the extrapolation of tangential normal stresses and strains on

the crack faces. The crack face integral incorporates the jump of the strain energy density across the positive and
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negative crack faces [[u]]+−, with u = (σ11ε11) /2. Investigations show that values of tangential normal stresses σ11 and

strains ε11 on the crack faces related to a mode-I loading should reach a constant value at the crack tip. In contrast,

values related to a mode-II loading are singular there. Numerically calculated values of σ11 and ε11, respectively,

become highly inaccurate approaching the crack tip. The values related to the single mode cases are separated as

follows:

σI
11 =

1

2

(
σ
Γ+

C

11
+ σ

Γ−
C

11

)
, σII±

11 = σ
Γ±

C

11
− σI

11, εI
11 =

1

2

(
ε
Γ+

C

11
+ ε
Γ−

C

11

)
, εII±

11 = ε
Γ±

C

11
− εI

11. (9)

Mode-I values σI
11

and εI
11

within the region [0, δ] are replaced by those calculated from a linear regression based on

values at r > δ. The integral is calculated classically according to Eq. (6a) considering the extrapolated values.

4. Global approach for crack tip loading analyses in multiple cracks systems

In LEFM the ERR G(n) of a crack n equals the projection of the Jk-integral vector onto the unit vector of crack

propagation zk:

− 1

B

dΠ

da(n)
= G(n) = J

(n)

k
z

(n)

k
. (10)

The width B of the specimen will be dropped from now on whereupon the ERR has the unit J/m and must be divided

by B to obtain the physical quantity. The virtual change of the total potential energy equals the product of the ERR

and the virtual crack extension δa:

δΠ =
dΠ

da
δa = −Gδa. (11)

Taking into account that δa(n) = δa for all crack tips, the change of potential energy of a system with N cracks reads

δΠ = −
N∑

n=1

G(n)δa(n) = −
N∑

n=1

G(n)δa. (12)

It becomes clear from Eq. (12), that the total energy release of a system with N cracks is the sum of individual ERRs

for each single crack n, according to

G̃ = −dΠ

da
=

N∑
n=1

G(n) =

N∑
n=1

J
(n)

k
z

(n)

k
(13)

where G̃ is a global ERR. Within a local crack tip coordinate system �e
(n)

k
related to the n-th crack, see Figs. 1(b)

and 1(c), the first coordinate J
(n)

1
is related to the ERR G(n) in case of a self-similar crack propagation z

(n)

k
= �e (n)

1
.

Consistent with Eq. (13) and considering Eq. (5) the interaction integral of multiple cracks systems equals the sum of

the interaction integrals related to each crack tip:

G̃(a/b) = Ĩ1 =

N∑
n=1

I
(n)

1
=

2

E′

N∑
n=1

[
(a)K

(n)

I
(b)K

(n)

I
+ (a)K

(n)

II
(b)K

(n)

II

]
. (14)

A global interaction integral approach according to Eq. (14) basically has to deal with interacting auxiliary fields

and thus additional terms in Eq. (4). The integration path Γ0 is including all crack tips, thus the approach is denoted

as ”global”. In Eq. (14) 2N SIF of the physical problem are unknown. To determine these values, the choice of

SIF related to the auxiliary fields is similar as explained in Sec. 2 for the single-crack problem. Now, all SIF of the

auxiliary fields (b)KI/II are chosen to be zero except for the m-th crack. In this case, the global interaction integral

according to Eq. (14) simplifies and for auxiliary unit mode-I (superscript I) and unit mode-II loadings (superscript

II) reads:

ĨI
1 = I

(m)

1
=

2

E′
(a)K

(m)

I
, ĨII

1 = I
(m)

1
=

2

E′
(a)K

(m)

II
. (15)
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This choice equals the procedure of defining only one auxiliary field related to the m-th crack tip. Thus, the inter-

action of multiple auxiliary fields and therefore additional terms in the Ik-integral calculation according to Eq. (4) is

prevented as these terms are canceled out. Now that all cracks except one are faded out, the integration contour may

be chosen on a global level, i.e. all crack tips are included. The integration contours chosen for this global approach,

are exemplarily shown in Figs. 1(b) and 1(c) for a system with N = 2 cracks. The general formulation of the path

invariant Ik-integral thus considers integrations along the external contour Γ0 and along all N physical and fictitious

crack faces, Γ
(n)
c and Γ

(n)

f
. As the auxiliary fields are inserted according to the above discussed choice of the auxiliary

SIF, according to which all are zero except for the m-th crack, the Ik-integral simplifies as follows:

I
(m)

k
=

∫
Γ0

Q
(a/b)

k j
n jds +

N∑
n=1

∫

Γ
(n)
c

�
Q

(a/b)

k j

�+
−n jds +

∫

Γ
(m)

f

�
Q

(a/b)

k j

�+
−n jds. (16)

5. Comparison of experimental and numerical crack paths

The concepts presented in the previous sections are applied to accurate crack path predictions. The Jk- and Ik-

integrals are implemented as post processors into the commercial FE code ABAQUS. The simulation of stable and

subcritical crack growth is realized by an incremental extensions of the crack faces. In the past, many crack deflection

criteria were presented e.g. by Erdogan and Sih (1963) or Hussain et al. (1974). The deviation of crack paths derived

from different deflection criteria is negligible for small mixed-mode ratios |KII/KI| < 0.1.

The J-integral criterion assumes that the crack always grows in the direction of the Jk-vector, as the ERR is maximized

in that case. According to Eq. (10) the ERR can be expressed as a quantity depending on the crack deflection angle α

G (α) = J1 cosα + J2 sinα. (17)

Most fracture criteria assume isotropic critical parameters KIc or Gc which are independent of the crack growth direc-

tion. Gc is related to the fracture toughness KIc by

Gc =
K2

Ic

E
. (18)

Due to rolling process during production, plates of Al-7075 show anisotropic effects in fracture toughness which must

be considered in the modeling and prediction of crack growth. In general, the fracture toughness in rolling direction

(RD) KRD
Ic

is smaller than in transversal direction (TD) KT D
Ic

. Kfouri (1996) presented an elliptical interpolation

function describing the fracture toughness as a function of the orientation angle α with respect to the RD:

(
1

Kc (α)

)2
=

(
cosα

KRD
c

)2
+

(
sinα

KTD
c

)2
,

1

Gc (α)
=

cos2 α

GRD
c

+
sin2 α

GTD
c

. (19)

Besides Gc (α) the loading quantity G (α) depends on the crack deflection angle. On the one hand, the system attempts

to minimize the total potential energy and therefore maximize the energy release rate during the crack advance G (α)
!
=

max. On the other hand, the crack tends to grow into the direction of the minimum material resistance Gc (α)
!
= min.

The ratio of ERR and crack resistance according to Eqs. (17) and (19) is defined as

GR (α) =
G (α)

Gc (α)
=

J1 cos3 α + J2 sinα cos2 α

GRD
c

+
J1 cosα sin2 α + J2 sin3 α

GTD
c

. (20)

It is assumed, that the crack grows in the direction of maximum GR, thus ∂GR/∂α = 0 and ∂2GR/∂α
2 < 0. Numerically

predicted crack paths for different ratios of anisotropy χ = KT D
Ic
/KRD

Ic
are presented in Fig. 2 and compared with

experiments. Experiments with CT specimens were carried out for rolled Al-7075 providing a ratio of χ = 1.14.

Comparing crack paths in Fig. 2(a) it is obvious that the anisotropy of fracture toughness is crucial for crack path

prediction although the ratio χ = 1.14 slightly overestimates the crack deflection by the hole.
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Fig. 2. Comparison of crack growth experiment and simulations for plate of Al-7075

6. Closure

New approaches have been presented for the accurate calculation of crack face contribution to Jk- and Ik-integrals

enabling the application of remote integration contours. This leads to efficient simulations of crack problems consid-

ering internal boundaries or multiple crack faces. A new method for the separation of loading quantities at multiple

cracks systems based on global Ik-integrals is presented. It is shown that the fracture toughness anisotropy has a

strong impact on crack paths and must be considered in numerical models. Experiment and prediction are in good

agreement.
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