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Introduction

In the present thesis, we consider the nonstationary nonlinear Navier-Stokes equa-
tions in (0, T )× Ω, where Ω ⊂ R3 is a bounded domain and 0 < T ∈ R:

∂tv − ν∆v +∇p+ v · ∇v = f in (0, T )× Ω,

∇ · v = 0 in (0, T )× Ω, (N0)

v|∂Ω
= 0 in [0, T ),

v|t=0
= v0 in Ω.

This system describes the motion of an incompressible, nonstationary, and viscous fluid
like water or oil [20, p. 1].

The external force density f , the initial velocity v0, and the kinematic viscosity constant
ν > 0 are given data, while the vector v denotes the unknown velocity and p some
unknown pressure function.

The system results from the balance of forces, including the conservation of momen-
tum, of mass, and of energy (compare Shinbrot [19, pp. 10–25, 102–111]). Here the
nonlinear convective term v · ∇v := (v · ∇) v results from the material derivative of the
velocity field v.

In the case Ω ⊂ R2 there exists a uniquely determined global (in time) solution of
the Navier-Stokes equations. In the present case Ω ⊂ R3 such result exists only
under smallness assumptions on the data. Without such smallness assumptions only
the existence of local (in time) strong solutions could be proved up to now. These
results were first proved by Ladyzhenskaya [12]. In addition, there always exist so
called weak solutions global in time, see Hopf [11]. Their regularity, however, does not
suffice to prove uniqueness.

In the present thesis, we combine the Navier-Stokes equations – which correspond to
the so-called Eulerian representation of fluid flow – with the Lagrangian description
of fluid flow.

The Lagrangian representation of fluid flow describes the motion of the particles of
the fluid. For a single particle in a given velocity field v starting at time t = s in xs ∈ Ω,
we can describe its trajectory by the mapping

t 7→ x(t) =: X(t, s, xs).

This mapping is a solution of the initial value problem

ẋ(t) = v(t, x(t)),

x(s) = xs.

For a stationary fluid flow the trajectories of the particles do not depend on the starting
time and coincide with the streamlines of the velocity field. Hence, for a particle starting
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at time t = 0 in x0 ∈ Ω, the trajectory is described by

t 7→ x(t) =: X(t, x0),

where x(t) is the solution of the autonomous initial value problem

ẋ(t) = v(x(t)),

x(0) = x0.

In the present thesis, we use a time discretisation with stepsize ε > 0 to transfer the
Navier-Stokes equations into a finite number of steady boundary value problems, the
solutions of which approximate v(t) at the grid points of the time grid. In these systems
we approximate the nonlinear term by using the Lagrangian representation.

A similar ansatz by combining these two representations was used by Varnhorn [22,
pp. 121–155] and by Asanalieva, Heutling & Varnhorn [5, pp. 213–229]. In
both papers, the Lagrangian representation is applied to the non-steady Navier-
Stokes equations. In contrast to previous works, using a particle method based on
unsteady velocity fields (compare e. g. Varnhorn [22,23]), here particle methods based
on steady velocity fields are used, which improves the convergence results and simplifies
the methods.

Parts of this thesis are based on the investigations of Shinbrot [19, pp. 159–179], who
considered a discretized Navier-Stokes system with vanishing external forces.

The thesis is organized as follows: In Chapter 1 we define our notation and the function
spaces used. We state the most important imbedding results and some elementary
inequalities. Finally, we consider weak convergence of functions and describe some
important properties of the Stokes operator.

In the second chapter we consider the Lagrangian representation of stationary fluid
flow. In particular, for a trajectory t 7→ x(t) =: X(t, x0) of a particle starting at
time t = 0 in x0 in a given velocity field v, we prove existence, uniqueness, and the
conservation of measure, which implies the important properties

‖f ◦X(t, ·)‖0,p = ‖f(·)‖0,p ,

〈f ◦X(t, ·), g ◦X(t, ·)〉 = 〈f, g〉 ,

valid for functions f ∈ Lp(Ω) or f, g ∈ L2(Ω), respectively. Here ‖·‖0,p denotes the

Lp-norm and 〈·, ·〉 the L2-scalar product.

In Chapter 3, we introduce a time discretisation for the Navier-Stokes equations
defining an equidistant time grid in [0, T ] with stepsize 0 < ε := T

N for some 2 ≤ N ∈ N.
For k = 0, . . . , N we denote the grid points by tk := kε.
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Now, restricting the Navier-Stokes equations (N0) to the time t = tk for k = 1, . . . , N ,
we modify the resulting steady system by approximating the terms in the following way:

We approximate the time derivative ∂tv(tk+1) by a backwards difference quotient

∂tv(tk+1) ≈ v(tk+1)− v(tk)

ε

and replace f(tk+1) by the average

f(tk+1) ≈ 1

ε

∫ tk+1

tk

f(τ) dτ =: fk+1.

Using a time delay, we approximate the nonlinear term v(tk+1) · ∇v(tk+1) by the lin-
earization

v(tk+1) · ∇v(tk+1) ≈ v(tk) · ∇v(tk+1).

Then we use the Lagrangian description of fluid flow to further simplify this term.
In particular, we use the central total (Lagrangian) difference quotient

Lkεv(tk+1, x) :=
1

2ε
{v(tk+1, Xk(ε, x))− v(tk+1, Xk(−ε, x))},

where the mapping Xk results from the solution of the initial value problem

ẋ(t) = v(tk, x(t)),

x(0) = x0.

Hence, we obtain the following approximation for the nonlinear term in t = tk+1,
k = 0, . . . , N − 1:

v(tk+1) · ∇v(tk+1) ≈ v(tk) · ∇v(tk+1)

≈ 1

2ε
{v(tk+1, Xk(ε, x))− v((tk+1, Xk(−ε, x))}

=: Lkεv(tk+1, x).

For k = 0, . . . , N − 1 this leads to the steady boundary value problem

vk+1 − εν∆vk+1 + εLkεv
k+1 + ε∇pk+1 = εfk+1 + vk in Ω,

∇ · vk+1 = 0 in Ω, (Nk
ε )

vk+1
|∂Ω

= 0,

where we set

Lkεv
k+1(x) :=

1

2ε
{vk+1(Xk(ε, x))− vk+1(Xk(−ε, x))},
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with mapping Xk resulting from the initial value problem

ẋ(t) = vk(x(t)),

x(0) = x0.

Assuming vk to be an approximation of the solution t 7→ v(t) of (N0) at time t = tk,
this system suggests vk+1 and pk+1 to be approximations of v(tk+1) and p(tk+1). Thus,
starting with v0 := v0 we obtain, successively for k = 0, . . . , N − 1, approximative
solutions vk+1 of v(tk+1) (compare Figure 1).

v(t)

t

v

−ε t0 = 0

q
v0 = v0

t1

qv1

t2

qv2

t3

qv3

t4

q
v4

t5

q
v5

t6

qv6

T

Figure 1: Approximative solutions vk+1 of v(tk+1) for k = 0, . . . , 5

In Chapter 4 we prove existence and uniqueness of a weak solution of (Nk
ε ) for fixed

k ∈ {0, . . . , N−1}. As in Heywood [10, pp. 650–653], we use a Galerkin ansatz based
on the eigenfunctions of the Stokes operator. We can prove that the whole sequence
of Galerkin approximations converges to a uniquely determined weak solution vk+1 of
(Nk

ε ) if vk ∈ C1(Ω) is divergence-free with vanishing values on the boundary. Finally,
we derive some a-priori estimates and some regularity statements of vk+1.

In the fifth Chapter, we use the steady weak solutions from Chapter 4 to define a
non-steady velocity field vε : [−ε, T ]→ R3 piecewise constant in time by

vε(t) :=

{
v0 , t ∈ [−ε, 0]

vk+1 , t ∈ (tk, tk+1], k = 0, . . . , N − 1

(compare Figure 2).
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q
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q

T

Figure 2: The non-steady velocity field vε on [−ε, t6]

We first prove, that for v0 ∈ C1(Ω) being divergence-free with vanishing values on the
boundary, vε is well defined. Then we derive some regularity properties and prove that
vε satisfies the energy equality at the gridpoints tk, k = 0, . . . , N . In addition, we
establish some a-priori estimates for vε.

In the last Chapter 6 we consider the function vε and proceed to the limit as ε → 0.
Here we construct a subsequence {vεN }N satisfying

vεN (t)
N→∞
−⇀ v(t) in H0(Ω) for all t ∈ [0, T ],

vεN
N→∞−→ v in L2(0, T ;H0(Ω)),

vεN
N→∞
−⇀ v in L2(0, T ;H1(Ω))

for some function

v ∈ L∞
(
0, T ;H0(Ω)

)
∩ L2

(
0, T ;H1(Ω)

)
.

These convergence properties suffice to prove that v is a weak solution of the Navier-
Stokes equations (N0), satisfying the energy inequality. Here the limit procedure in
the nonlinear term is the most crucial point.
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1 Preliminaries

At first we outline our notation. All definitions and results are contained in common
books about functional analysis, differential equations and Navier-Stokes equations.
In particular, we mostly use Alt [2], Werner [25], Evans [9], Schweizer [18], Adams
& Fournier [1], Sohr [20] and Temam [21].

By N we denote the natural numbers, where we set N0 := N∪{0}. By Q we denote the
rational and by R the real numbers.

For some real numbers a, b with a < b we define the intervals

[a, b] := {x ∈ R | a ≤ x ≤ b},

[a, b) := {x ∈ R | a ≤ x < b},

(a, b] := {x ∈ R | a < x ≤ b},

(a, b) := {x ∈ R | a < x < b}.

We consider the Euclidian space

R3 := {(x1, x2, x3) | xi ∈ R, i = 1, 2, 3}.

For x = (x1, x2, x3), y = (y1, y2, y3) ∈ R3, a scalar product is defined by

x · y :=

3∑
i=1

xiyi,

and

|x| :=
√
x · x =

√
x2

1 + x2
2 + x2

3

denotes the Euclidian norm.

Throughout this chapter, let Ω ⊂ R3 denote a bounded domain with smooth boundary
∂Ω at least of class C1. We set Ω := Ω ∪ ∂Ω.

We use the same symbols for scalar-valued and vector-valued real functions.

For some function v defined in Ω, by

∂iv :=
∂v

∂xi
, i = 1, 2, 3,

we denote the partial derivative with respect to the ith coordinate. Here ∂tv means the
partial derivative with respect to the time t. We also write

∂tv =
∂v

∂t
= v̇.
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For any multi-index α = (α1, α2, α3) ∈ N3
0 with length

|α| :=
3∑
i=1

αi,

we define

∂αv := ∂α1
1 ∂α2

2 ∂α3
3 v

as partial derivative of order |α|.
Using the gradient ∇ := (∂1, ∂2, ∂3), for a scalar function p : Ω → R we can define the
vector

∇p := (∂1, ∂2, ∂3)p = (∂1p, ∂2p, ∂3p),

and for vector functions v = (v1, v2, v3), v : Ω→ R3, we define the 3×3-matrix

∇v := (∂1, ∂2, ∂3)v = (∂ivj)ji, i, j = 1, 2, 3.

Here, for 3×3-matrices A = (aij)i,j=1,2,3 and B = (bij)i,j=1,2,3, the Frobenius scalar
product is defined by

A ·B :=

3∑
i,j=1

aijbij .

The divergence of a vector function v is defined by

∇ · v :=
3∑
i=1

∂ivi.

If ∇ · v = 0 in Ω we call v divergence-free or solenoidal.

Finally, we define the Laplace operator by

∆v := ∇ · ∇v = (∇ · ∇)v = (∂2
1 + ∂2

2 + ∂2
3)v.

If v : (t, x) 7→ v(t, x) is a function defined in [0, T ]×Ω, for t ∈ [0, T ] fixed we denote by
v(t) := v(t, ·) the function defined by x 7→ (v(t))(x) := v(t, x) in Ω. Similarly, for x ∈ Ω
fixed, by v(x) := v(·, x) we denote the function defined by t 7→ (v(x))(t) := v(t, x) in
[0, T ].

By v|∂Ω
we denote the restriction of v on ∂Ω and by v|t=a for a ∈ [0, T ] we mean v(a).

For two functions f, g : [0, T ]→ R and some value a ∈ [0, T ] we write

f ∈ o(g) as t→ a if lim
t→a

∣∣∣∣f(t)

g(t)

∣∣∣∣ = 0,

f ∈ O(g) as t→ a if lim sup
t→a

∣∣∣∣f(t)

g(t)

∣∣∣∣ <∞.
For any sequence α1, α2, α3, . . . we write {αi}i.
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1.1 Function spaces

1.1.1 Spaces of continuous functions

Let m ∈ N0. We define the function space Cm(Ω) of functions v continuous in Ω,
for which all partial derivatives ∂αv of order |α| ≤ m are continuous as well. We set
C(Ω) := C0(Ω) and

C∞(Ω) :=
∞⋂
m=0

Cm(Ω).

For 0 ≤ m ≤ ∞, by

CmB (Ω) := {v ∈ Cm(Ω) | v is bounded}

we denote the subspace of bounded functions in Cm(Ω).

Defining the support of some function v by

supp v := {x ∈ Ω | v(x) 6= 0},

we set

Cm0 (Ω) := {v ∈ Cm(Ω) | supp v is compact, supp v ⊂ Ω}

as function space of m-times continuously differentiable functions with compact support
in Ω.

By Cm(Ω) we denote the space of m-times continuously differentiable functions, for
which all partial derivatives of order |α| ≤ m can be extended continuously onto ∂Ω.
For both spaces Cm(Ω) and CmB (Ω), a norm is given by

‖v‖Cm := max
|α|≤m

sup
x∈Ω
|∂αv(x)|.

Additionally, for 1 ≤ m <∞ we define the space of m-times continuously differentiable
and divergence-free vector functions with compact support in Ω by

Cm0,σ(Ω) := {v ∈ Cm0 (Ω) | ∇ · v = 0},

and we set

C∞0,σ(Ω) :=

∞⋂
m=0

Cm0,σ(Ω).

1.1.2 Lebesgue spaces

For 1 ≤ p < ∞, by Lp(Ω) we denote the Banach space of Lebesgue-measurable
functions in Ω, i. e. functions with finite norm

‖v‖0,p :=

∫
Ω

|v(x)|p dx

 1
p

.
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By L∞(Ω) we denote the Banach space of all essentially bounded functions with finite
norm

‖v‖0,∞ := ess sup
x∈Ω

|v(x)|.

For 1 ≤ p ≤ ∞ we call Lp(Ω) a Lebesgue space. For a proof that all Lebesgue spaces
are Banach spaces, see [1, pp. 29f.].

The elements of Lp(Ω) are equivalence classes of functions which coincide a. e. in Ω. We
make no difference between equivalent functions and write v ∈ Lp(Ω) if ‖v‖0,p < ∞,
and v = 0 if v(x) = 0 a. e. in Ω.

The space C∞0 (Ω) is dense in Lp(Ω) for 1 ≤ p <∞ (see [7, p. 77]).

The space L2(Ω) is a Hilbert space (compare [1, p. 31]) with scalar product

〈u, v〉 :=

∫
Ω
u(x) · v(x) dx

and with norm

‖v‖ := ‖v‖0,2 =

∫
Ω

|v(x)|2 dx

 1
2

= 〈v, v〉
1
2 .

1.1.3 Sobolev spaces

Let α ⊂ N3
0 be a multi-index and let v ∈ L1(Ω). If there exists a function w ∈ L1(Ω)

satisfying ∫
Ω
v(x)∂αϕ(x) dx = (−1)|α|

∫
Ω
w(x)ϕ(x) dx

for all ϕ ∈ C∞0 (Ω), we call w the weak or distributional partial derivative of order |α|
of v and set ∂αv := w.

For m ∈ N0 and 1 ≤ p ≤ ∞ by Wm,p(Ω) we denote the Sobolev space of all functions
v ∈ Lp(Ω) for which all weak derivatives of order |α| ≤ m satisfy ∂αv ∈ Lp(Ω). For
1 ≤ p <∞

‖v‖m,p :=

 ∑
|α|≤m

‖∂αv‖p0,p

 1
p

denotes the corresponding norm and for p =∞ we set

‖v‖m,∞ := max
|α|≤m

‖∂αv‖0,∞ .
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By

Wm,p
0 (Ω) := C∞0 (Ω)

‖·‖m,p

we denote the closure of C∞0 (Ω) in Wm,p(Ω), and by

Hm,p(Ω) := Cm(Ω)
‖·‖m,p

we denote the closure of Cm(Ω) in Wm,p(Ω).

An important result of Meyers and Serrin [15, pp. 1055f.] states the equality

Wm,p(Ω) = Hm,p(Ω)

for m ∈ N0, 1 ≤ p <∞.

All above defined spaces are called Sobolev spaces equipped with the norm ‖·‖m,p and
‖·‖m,∞, respectively.

For m = 0 we have W 0,p(Ω) = Lp(Ω) by definition, and, since C∞0 (Ω) is dense in Lp(Ω),
it holds W 0,p

0 (Ω) = Lp(Ω). For all m ∈ N0, 1 ≤ p ≤ ∞ we find

Wm,p
0 (Ω) ⊂Wm,p(Ω) ⊂ Lp(Ω).

All Sobolev spaces are Banach spaces. A proof for Wm,p(Ω) can be found in [1, pp.
60f.]. The result holds true for Wm,p

0 (Ω), since this is a closed subspace of Wm,p.

For m ∈ N0, p = 2 the spaces Wm,2(Ω) and Wm,2
0 (Ω) are Hilbert spaces as closed

subspaces of L2(Ω) (compare [1, p. 61]) with scalar product

〈u, v〉m,2 :=
∑
|α|≤m

〈∂αu, ∂αv〉

and norm ‖v‖m,2 = 〈v, v〉
1
2
m,2. For m = 0 we use 〈·, ·〉 := 〈·, ·〉0,2 and ‖·‖ := ‖·‖0,2. We

also write

Hm(Ω) := Hm,2(Ω).

Since Ω is bounded, in W 1,p
0 (Ω) we also use the norms

‖∇v‖0,p :=

(
3∑
i=1

‖∂iv‖p0,p

) 1
p

for 1 ≤ p <∞ and

‖∇v‖0,∞ := max
i=1,2,3

‖∂iv‖0,∞

for p =∞. These norms are equivalent to ‖v‖1,p, and it holds

‖·‖p1,p = ‖·‖p0,p + ‖∇·‖p0,p (1.1)

for 1 ≤ p ≤ ∞.
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1.1.4 Divergence-free Sobolev spaces

We define the important spaces H0(Ω) and H1(Ω) as closures of C∞0,σ(Ω) with respect
to the norms ‖·‖ and the Dirichlet norm ‖∇·‖ := ‖∇·‖0,2, respectively.

All elements of H0(Ω) and H1(Ω) are divergence-free. In particular it holds

H0(Ω) :=
{
v ∈ L2(Ω) | ∇ · v = 0 ∧ v · ν|∂Ω

= 0
}
,

H1(Ω) :=
{
v ∈W 1,2

0 (Ω) | ∇ · v = 0
}
,

where v · ν|∂Ω
denotes the trace of the normal component of v (compare [21, pp. 11,

13]).

As closed subspace of L2(Ω), the space H0(Ω) is a Hilbert space with scalar product
〈·, ·〉 and norm ‖·‖.
H1(Ω) is a Hilbert space as closed subspace of W 1,2

0 (Ω) with scalar product

〈∇u,∇v〉 :=

∫
Ω
∇u · ∇v dx =

3∑
i,j=1

〈∂jui, ∂jvi〉

and Dirichlet norm ‖∇v‖ = 〈∇v,∇v〉
1
2 .

1.1.5 Bochner spaces

Now let B denote any Banach space with norm ‖·‖B, and let I denote any interval in
R. We consider the function v : I → B, t 7→ v(t). If

‖v(t)− v(t0)‖B
t→t0−→ 0

holds true for all t0 ∈ I, we call v continuous. By C(I;B) we denote the space of all
such continuous functions. If, in addition, these functions have compact support in I
we write C0(I;B).

C0(I;B) is a Banach space [18, p. 200] with norm

‖v‖C0(I;B) := max
t∈I
‖v(t)‖B .

A function v̇ ∈ C(I;B) is called the derivative of v, if it satisfies∥∥∥∥v(t+ h)− v(t)

h
− v̇(t)

∥∥∥∥
B

h→0−→ 0

for all t ∈ I, and by C1(I;B) we denote the subspace of C(I;B) consisting of functions
for which there exists a derivative v̇ ∈ C(I;B). For the subspace of functions in C1(I;B)
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with compact support in I we write C1
0 (I;B).

For 1 ≤ p <∞, we define Lp(I;B) as closure of C0(I;B) with respect to the norm

‖v‖Lp(I;B) :=

(∫
I
‖v(t)‖pB dt

) 1
p

.

L∞(I;B) is the space of all functions with essentially bounded norm ‖v(t)‖B and we
write

‖v‖L∞(I;B) := ess sup
t∈I

‖v(t)‖0,q .

For 1 ≤ p ≤ ∞ the Bochner space Lp(I;B) is a Banach space [18, p. 192]. If the
interval I has borders a, b ∈ R, a < b, we also write Lp(a, b;B).

1.2 Imbeddings

At first we define the notion of an imbedding as in Adams [1, p. 9]: For two Banach
spaces X ⊂ Y with norms ‖·‖X and ‖·‖Y , let i : X → Y be the identity operator
satisfying ix = x for all x ∈ X. We say X is (continuously) imbedded in Y , and write
X → Y , if i is continuous.

If, additionally, i is compact (for each bounded sequence {xn}n in X there exists a
subsequence {xnk}k such that {ixnk}k converges in Y ) we say X is compactly imbedded
in Y and write X ↪→ Y .

Since the identity operator i is linear, its continuity is equivalent to the existence of
some constant M such that

‖ix‖Y ≤M ‖x‖X

holds true for all x ∈ X [1, p. 9].

We often use the following well-known imbedding results:

Lemma 1.1 Let Ω ⊂ Rn be a bounded domain with smooth boundary ∂Ω of class C1.
Then

1. for 1 ≤ q ≤ p ≤ ∞ we have

Lp(Ω)→ Lq(Ω),

2. if ∂Ω is of class Cm, m ∈ N, and if k ∈ N0 with m ≥ k + 2, it holds

Wm,2(Ω)→ Ck(Ω),
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3. for j,m ∈ N0 with j < m we have the compact imbedding

Wm,2(Ω) ↪→W j,2(Ω).

Proof: A proof of the fist and second imbedding can be found in Adams & Fournier
[1, pp. 28, 85f.]. The compact imbedding is proved in Wloka [26, p. 118]. �

Now we quote the fundamental Sobolev Imbedding Theorem [1, pp. 85f.]:

Theorem 1.2 (Sobolev Imbedding Theorem) Let Ω ⊂ R3 be a bounded domain
with smooth boundary ∂Ω of class C1 and let j ∈ N0, m ∈ N, 1 ≤ p <∞.

1. If either mp > 3 or m = 3, p = 1, then

W j+m,p(Ω)→ CjB(Ω).

Moreover, it holds

W j+m,p(Ω)→W j,q(Ω) for p ≤ q ≤ ∞,

and, in particular,

Wm,p(Ω)→ Lq(Ω) for p ≤ q ≤ ∞.

2. If mp = 3, then

W j+m,p(Ω)→W j,q(Ω) for p ≤ q <∞,

and, in particular,

Wm,p(Ω)→ Lq(Ω) for p ≤ q <∞.

3. For mp < 3 and p̃ := 3p
3−mp it holds

W j+m,p(Ω)→W j,q(Ω) for p ≤ q ≤ p̃,

and, in particular,

Wm,p(Ω)→ Lq(Ω) for p ≤ q ≤ p̃.
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1.3 Elementary inequalities

At first, we state the Poincaré inequality. A proof can be found in Evans [9, pp.
279f.].

Proposition 1.3 (Poincaré inequality) Let Ω ⊂ R3 be a bounded domain and let
1 ≤ p ≤ ∞. Then each v ∈W 1,p

0 (Ω) satisfies

‖v‖0,p ≤ cp ‖∇v‖0,p . (1.2)

Moreover, for 1 ≤ p < 3 and q ∈ [1, p̃] with p̃ := 3p
3−p , it holds

‖v‖0,q ≤ cp ‖∇v‖0,p . (1.3)

Here the constant cp is the Poincaré constant, depending only on p, q and Ω.

Proofs for the following elementary inequalities can be found in Evans [9, pp. 706–709].
For p =∞ we set 1

p := 0.

Proposition 1.4 (Hölder inequality) Let Ω ⊂ R3 be a bounded domain. Let 1 ≤
p ≤ ∞, 1 ≤ q ≤ ∞ and 1

p + 1
q = 1. Then for all scalar functions u ∈ Lp(Ω), v ∈ Lq(Ω),

it holds uv ∈ L1(Ω) with

‖uv‖0,1 ≤ ‖u‖0,p ‖v‖0,q . (1.4)

The same also holds true for vector functions, and in this case we have

‖u · v‖0,1 ≤ ‖u‖0,p ‖v‖0,q . (1.5)

The following corollary states a general version of the Hölder inequality (compare
Zanger [27, pp. 7f.]).

Corollary 1.5 (General Hölder inequality) Let Ω ⊂ R3 be a bounded domain. Let

m ∈ N, 1 ≤ r <∞ and 1 ≤ pk ≤ ∞ for k = 1, . . . ,m with

m∑
k=1

1

pk
=

1

r
.

Then for all functions uk ∈ Lpk(Ω), k = 1, . . . ,m, it holds
m∏
k=1

uk ∈ Lr(Ω) with

∥∥∥∥∥
m∏
k=1

uk

∥∥∥∥∥
0,r

≤ c
m∏
k=1

‖uk‖0,pk . (1.6)

Here the constant c only depends on p, q.

The Hölder inequality even holds true for matrices (see Zanger [27, pp. 7f.]):
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Proposition 1.6 (Hölder inequality for gradients) Let Ω ⊂ R3 be a bounded do-
main. Let 1 ≤ r < ∞, 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞ and 1

p + 1
q = 1

r . Then for all vector

functions u ∈ Lp(Ω), v ∈W 1,q(Ω), it holds

‖u · ∇v‖0,r ≤ c ‖u‖0,p ‖∇v‖0,q . (1.7)

If, additionally, u ∈W 1,p(Ω), it holds

‖(∇u)(∇v)‖0,r ≤ c ‖∇u‖0,p ‖∇v‖0,q . (1.8)

Here the constants c only depend on p, q.

Proposition 1.7 (Cauchy-Schwarz inequality) Let X denote a normed space with

inner product 〈u, v〉X and associated norm ‖v‖X := 〈v, v〉
1
2
X . Then it holds

|〈u, v〉X |
2 ≤ 〈u, u〉X 〈v, v〉X = ‖u‖2X ‖v‖

2
X . (1.9)

Proposition 1.8 (Young inequality) Let 1 < p <∞, 1 < q <∞, and let 1
p + 1

q = 1.
Then for a, b ≥ 0 it holds

ab ≤ ap

p
+
bq

q
. (1.10)

In the following we state a simplified version of Gronwall’s inequality. A proof can
be found in Evans [9, pp. 708f.].

Proposition 1.9 (Gronwall inequality) Let I = [t1, t2] ⊂ R denote an interval and
let a ∈ R, b ∈ [0,∞). Then for any function u : I → R satisfying

u(t) ≤ a+ b

∫ t

t1

u(τ) dτ,

it holds

u(t) ≤ a+ ab

∫ t

t1

eb(t−τ) dτ = aeb(t−t1)

for each t ∈ I.

Now we consider the Friedrich inequality to estimate a solenoidal function by its
gradient, where the weight of the gradient can be made as small as desired.

Lemma 1.10 (Friedrich inequality) Let Ω ⊂ R3 be a bounded domain. There exists
a sequence {ωj}j of vector functions wj ∈ C∞0,σ(Ω) depending only on Ω and satisfying
the following property: For each δ > 0, there exists an Mδ ∈ N such that the estimate

‖v‖2 ≤ δ ‖∇v‖2 +

Mδ∑
j=1

|〈v, ωj〉|2

holds true for all v ∈ H1(Ω).
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For a proof of the case v ∈W 1,2
0 (Ω) and wj ∈ C∞(Ω), j ∈ N see [19, pp. 147f.].

Finally, we state the Green formulas for the Laplace operator [9, p. 712], which are
a direct consequence of the Gauß Theorem (see [9, pp. 711f.]).

Proposition 1.11 (Green formulas) Let Ω ⊂ R3 be a bounded domain with smooth
boundary ∂Ω of class C1, let ν : ∂Ω → R3 denote the exterior unit normal vector and
let dS denote the surface element. Then for u ∈ C1(Ω) and v ∈ C2(Ω) it holds∫

Ω
∆v dx =

∫
∂Ω
∂νv dS,∫

Ω
u∆v +∇u · ∇v dx =

∫
∂Ω
u∂νv dS.

If, additionally, u ∈ C2(Ω) we find∫
Ω
u∆v − v∆u dx =

∫
∂Ω
u∂νv − v∂νu dS.

Let us remark that on the left hand side of the second equation, by ∇u · ∇v we have a
Frobenius scalar product of two matrices, if we assume u, v to be vector functions.

Due to density arguments, the Green formulas hold true for Sobolev functions.

For functions u satisfying u|∂Ω
= 0, thus for functions u, v ∈ W 1,2

0 (Ω) with v ∈ H2(Ω),
we obtain the often used equality

〈∇u,∇v〉 = −〈u,∆v〉 . (1.11)

1.4 Weak convergence

Before we define the weak convergence, we need to define a dual space.

Definition 1.12 (Dual space) As dual space X ′ of a normed space X, we denote the
space of all bounded linear functionals x′ : X → R. A norm on X ′ is defined by∥∥x′∥∥

X′
= sup
‖x‖≤1

|x′(x)|.

The dual space X ′ of a normed space X is a Banach space [25, p. 47].

Definition 1.13 (Weak convergence) Let X denote a normed space with dual space
X ′ and let x ∈ X. A sequence {xn}n in X converges weakly to x in X if

x′(xn)
n→∞−→ x′(x) for all x′ ∈ X ′.

In this case we write

xn
n→∞
−⇀ x in X.
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1.4.1 Weak convergence in reflexive spaces

Definition 1.14 (Reflexive Banach space) A Banach space X with dual space X ′

and with X ′′ := (X ′)′ is called reflexive, if the mapping

i : X → X ′′,

(i(x))(x′) = x′(x)

is surjective.

Each closed subspace of a reflexive space is reflexive again, and each Banach space is
reflexive if and only if its dual space is reflexive [25, p. 105].

In any Banach space – it does not necessarily have to be reflexive – each weakly
convergent sequence is bounded [18, pp. 72f.]. For reflexive Banach spaces, we can
state the following central result about the weak convergence of bounded sequences [25,
pp. 107f.]:

Proposition 1.15 Let X denote a reflexive Banach space, let {xn}n be a bounded
sequence in X. Then there exists a subsequence {xnk}k of {xn}n and some element
x ∈ X such that

xnk
k→∞
−⇀ x in X. (1.12)

1.4.2 Weak convergence in Hilbert spaces

At first we quote the Riesz Representation Theorem [7, pp. 30f.] to redefine the weak
convergence for Hilbert spaces.

Theorem 1.16 (Riesz Representation Theorem) Let H denote a Hilbert space
with scalar product 〈·, ·〉H and dual space H ′. Then H ′ can be canonically identified with
H. This means that for each u′ ∈ H ′ there exists an unique û ∈ H satisfying

u′(u) = 〈u, û〉H for all u ∈ H.

Now we can rewrite the definition of weak convergence for Hilbert spaces as follows:

Definition 1.17 (Weak convergence in Hilbert spaces) Let H denote a Hilbert
space with scalar product 〈·, ·〉H . Let u ∈ H. A sequence {un}n in H converges weakly
to u in H if

〈un, û〉H
n→∞−→ 〈u, û〉H for all û ∈ H.

The Riesz Representation Theorem immediately implies that each Hilbert space H is
reflexive [2, p.220], hence all results of the last section hold true for Hilbert spaces. In
addition, we prove the following statements about weakly convergent sequences, which
partly hold true even for Banach spaces (see [9, p. 723], [7, p. 56]).
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Proposition 1.18 Let H denote a Hilbert space with scalar product 〈·, ·〉H and as-

sociated norm ‖·‖H := 〈·, ·〉
1
2
H . Let {un}n be a sequence in H and let u, ũ ∈ H. Then

the following statements hold true:

un
n→∞
−⇀ u in H ∧ un

n→∞
−⇀ ũ in H ⇒ u = ũ, (1.13a)

un
n→∞−→ u in H ⇒ un

n→∞
−⇀ u in H, (1.13b)

un
n→∞
−⇀ u in H ⇒ ‖u‖H ≤ lim inf

n→∞
‖un‖H , (1.13c)

un
n→∞
−⇀ u in H ∧ ‖u‖H ≥ lim sup

n→∞
‖un‖H ⇒ un

n→∞−→ u in H. (1.13d)

Proof: To prove the uniqueness of the weak limit function (1.13a), assume un
n→∞
−⇀

u in H and un
n→∞
−⇀ ũ in H with u 6= ũ. Then for each û ∈ H it holds

〈u− ũ, û〉H = 〈u, û〉H − 〈ũ, û〉H = lim
n→∞

〈un, û〉H − lim
n→∞

〈un, û〉H = 0.

In particular, this holds true for û := u− ũ. It follows 〈u− ũ, u− ũ〉H = ‖u− ũ‖2H = 0,
hence u = ũ, which contradicts our assumption.

To prove the second statement (1.13b), assume un
n→∞−→ u in H and let û ∈ H. The

assertion follows immediately from

| 〈un, û〉H − 〈u, û〉H | = | 〈un − u, û〉H | ≤ ‖un − u‖H ‖û‖H
n→∞−→ 0.

For un
n→∞
−⇀ u in H we obtain the third assertion (1.13c), using 〈un, u〉H

n→∞−→ ‖u‖2H .

Consider a subsequence {unk}k of {un}n satisfying ‖unk‖H
k→∞−→ lim inf

n→∞
‖un‖H . Then

we obtain

‖u‖2H = lim
k→∞

〈unk , u〉H
(1.9)

≤ lim
k→∞

‖unk‖H ‖u‖H = lim inf
n→∞

‖un‖H ‖u‖H ,

which implies (1.13c).

To prove (1.13d) let un
n→∞
−⇀ u in H and ‖u‖H ≥ lim sup

n→∞
‖un‖H . It follows

‖u‖H
(1.13c)

≤ lim inf
n→∞

‖un‖H ≤ lim sup
n→∞

‖un‖H ≤ ‖u‖H ,

hence ‖un‖H
n→∞−→ ‖u‖H , which implies the assertion. �

1.4.3 Weak convergence in Lebesgue, Sobolev and Bochner spaces

To apply the above results, we firstly consider the reflexivity of the function spaces
used in this thesis: For 1 < p < ∞ and m ∈ N0 the Lebesgue spaces Lp(Ω) and the
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Sobolev spaces Wm,p(Ω) are reflexive [1, pp. 45, 61]. In addition, if B is reflexive, the
Bochner space Lp(I;B) is reflexive [18, p. 195].

For completeness, we remind that the spaces L2(Ω), Wm,2(Ω), Wm,2
0 (Ω), H0(Ω) and

H1(Ω) are Hilbert spaces.

For all spaces which are no Hilbert spaces, we need the dual space to consider weak
convergence.

For 1 ≤ p <∞ and p′ := p
p−1 if p > 1, p′ :=∞ if p = 1, the dual space of the Lebesgue

space Lp(Ω) is Lp
′
(Ω) [2, pp. 159–161].

Now let 1 < p < ∞ with p′ defined as above. For any interval I and some reflexive
Banach space B with dual space B′, the dual space of the Bochner space Lp(I;B)
is Lp

′
(I;B′) [18, p. 195].

If B is a Hilbert space, we can rewrite the definition of weak convergence in the
Bochner space Lp(I;B) [18, p. 198]:

Definition 1.19 (Weak convergence in Bochner spaces) Let 1 < p < ∞ with
p′ = p

p−1 , let I be an interval and let H denote a Hilbert space with scalar product
〈·, ·〉H . Then a sequence of functions {un}n with un ∈ Lp(I;H) converges weakly in
Lp(I;H) to some function u ∈ Lp(I;H), if

〈un, û〉 :=

∫
I
〈un(t), û(t)〉H dt

n→∞−→
∫
I
〈u(t), û(t)〉H dt =: 〈u, û〉

holds true for all functions û ∈ Lp′(I;H).

Now let 1 ≤ p <∞ and j,m ∈ N0 with j < m. Let {un}n be a sequence satisfying un ∈
Wm,p(Ω) for all n ∈ N and let un

n→∞
−⇀ u in Wm,p(Ω) for some function u ∈ Wm,p(Ω).

Since {un}n is bounded in Wm,p(Ω) it is bounded in W j,p(Ω). Thus, using Proposition
1.15, there exists a subsequence {unk}k satisfying

unk
k→∞
−⇀ u in W j,p(Ω).

Due to the compactness of the imbeddings

Wm,2(Ω) ↪→W j,2(Ω)

for p = 2 and j,m ∈ N0, j < m (compare Lemma 1.1), the following much stronger
result holds true [2, p. 244]:

Proposition 1.20 Let Ω ⊂ R3 be a bounded domain with smooth boundary ∂Ω of class
C1, and let j,m ∈ N0 with j < m. Let {un}n be a sequence with un ∈ Hm(Ω) for all

n ∈ N and let u ∈ Hm(Ω). If un
n→∞
−⇀ u in Hm(Ω), it follows

un
n→∞−→ u in Hj(Ω).

Obviously, for this sequence it even holds un
n→∞
−⇀ u in Hj(Ω).
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1.5 Navier-Stokes equations and Stokes operator

Let Ω ⊂ R3 denote a bounded domain with sufficiently smooth boundary ∂Ω. For
0 < T ∈ R we consider the nonlinear and nonstationary Navier-Stokes equations,
which describe the motion of a viscous and incompressible fluid in (0, T )× Ω:

∂tv − ν∆v +∇p+ v · ∇v = f in (0, T )× Ω,

∇ · v = 0 in (0, T )× Ω, (N0)

v|∂Ω
= 0 in [0, T ),

v|t=0
= v0 in Ω.

In this system, the external force density f : (0, T ) × Ω → R3, the initial velocity
v0 : Ω → R3, and the kinematic viscosity constant 0 < ν ∈ R are given data. The
velocity vector v = (v1, v2, v3) : (0, T ) × Ω → R3 as well as the pressure function
p : (0, T )× Ω→ R are unknown functions.

The first equation of (N0) describes the balance of forces. Here v · ∇v is the non-
linear convective term resulting from the total time derivative of the velocity field v.
The second equation is the incompressibility condition and states that the velocity is
solenoidal. The third equation is the no-slip boundary condition which ensures that no
particle reaches the boundary of the domain. The last equation is the initial condition:
At time t = 0 the velocity should coincide with a given initial velocity v0. [5, pp. 213f.]

The nonlinear convective term v · ∇v is defined as follows [20, p. 5]:

v · ∇v = (v · ∇)v

:= (v1∂1 + v2∂2 + v3∂3)v

= (v1∂1vi + v2∂2vi + v3∂3vi)i=1,2,3 .

For divergence-free functions v it can be written as

v · ∇v = (v1∂1 + v2∂2 + v3∂3)v

= (∂1(v1v) + ∂2(v2v) + ∂3(v3v))− (∂1v1 + ∂2v2 + ∂3v3) v

= (∂1(v1v) + ∂2(v2v) + ∂3(v3v))− (∇ · v) v

= (∂1(v1v) + ∂2(v2v) + ∂3(v3v))

=: ∇ · (vv).

In this thesis, the mathematical approach for the Navier-Stokes equations is based
on the use of the Stokes operator −P∆ in H0(Ω).

To define −P∆, we first consider the space

G(Ω) :=
{
w ∈ L2(Ω) | w = ∇q for some q ∈ H1(Ω)

}
,
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which satisfies the so-called Helmholtz decomposition (compare Sohr [20, pp. 81–83])

L2(Ω) = H0(Ω)⊕G(Ω), (1.14)

where ⊕ denotes the direct sum of vector spaces.

The resulting orthogonal projection operator

P : L2(Ω)→ H0(Ω) (1.15)

is called the Helmholtz projection. It is a linear operator, projecting divergence-free
functions to itself and eliminating the gradients, i. e. it holds

Pv = v, v ∈ H0(Ω),

P∇p = 0, p ∈ H1(Ω).

Now, let ∂Ω ∈ C2. The linear operator

−P∆ : H2(Ω) ∩H1(Ω)→ H0(Ω) (1.16)

is called the Stokes operator. Its domain H2(Ω) ∩ H1(Ω) is dense in H0(Ω) [20, pp.
128–131]. For u, v ∈ H2(Ω) ∩H1(Ω) it satisfies

〈−P∆v, v〉 = 〈−∆v, Pv〉 = 〈−∆v, v〉 (1.11)
= 〈∇v,∇v〉 = ‖∇v‖2 ≥ 0

and

〈−P∆u, v〉 (1.11)
= 〈∇u,∇v〉 (1.11)

= 〈u,−P∆v〉 ,

hence it is positive and self-adjoint.

Now we state a fundamental result of Cattabriga [6, p. 311] concerning the Stokes
operator.

Proposition 1.21 (Cattabriga Inequality) Let m ∈ N0, let Ω ⊂ R3 be a bounded
domain with smooth boundary ∂Ω of class Cm+2, and let f ∈ Hm(Ω). Then there
exist a unique solution v ∈ Hm+2(Ω) ∩ H1(Ω) with corresponding uniquely determined
pressure gradient ∇p ∈ Hm(Ω) satisfying the Stokes system

−∆v +∇p = f in Ω,

∇ · v = 0 in Ω,

v = 0 on ∂Ω,

and the estimate

‖v‖m+2,2 ≤ cc ‖f‖m,2 ,

where the constant cc only depends on m and Ω.
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Now we consider the inverse of the Stokes operator

(−P∆)−1 : H0(Ω)→ H0(Ω),

which, again, is linear, positive and self-adjoint, and, additionally, bounded (see [20, pp.
128–131]). Its image space is H2(Ω) ∩H1(Ω) ⊂ H0(Ω), hence, due to the compactness
of the imbedding H2(Ω) ↪→ L2(Ω), the operator (−P∆)−1 is even compact.

SinceH0(Ω) is a Hilbert space, we can use the following theorem about the eigenvalues
of linear, compact and self-adjoint operators [17, pp. 268f.] on (−P∆)−1.

Theorem 1.22 (Hilbert-Schmidt Theorem) Let H be a Hilbert space and let
K : H → H denote a linear, compact and self-adjoint operator. Then there is a
sequence of real eigenvalues {λi}i, such that

|λ1| ≥ |λ2| ≥ · · · > 0

with

lim
i→∞

λi = 0.

Furthermore, the sequence {ϕi}i of corresponding eigenfunctions is an orthonormal basis
for the image space of K, satisfying

Kϕi = λiϕi for i ∈ N.

This theorem together with the positivity of (−P∆)−1 implies the existence of a de-
creasing sequence of positive, nonzero eigenvalues {µi}i of (−P∆)−1, tending to 0 as
i→∞.

The corresponding sequence of eigenfunctions {ei}i is an orthonormal basis of H2(Ω)∩
H1(Ω), thus – since H2(Ω) ∩H1(Ω) is dense in H0(Ω) – in H0(Ω). It holds

(−P∆)−1ei = µiei for i ∈ N,

v ∈ H0(Ω)⇒ v =

∞∑
i=1

〈v, ei〉 ei,

〈ei, ej〉 = δij for i, j ∈ N,

where δij :=

{
1 , i = j
0 , i 6= j

.

Bootstrapping the result of Cattabriga and using the imbedding Hm+2(Ω)→ Cm(Ω),
we obtain ei ∈ C∞(Ω) for i ∈ N. In fact, since ei ∈ H0(Ω), it even holds

ei ∈ C∞0,σ(Ω) for i ∈ N.
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Finally, for −P∆, by λi := 1
µi

, i ∈ N we have a sequence {λi}i of positive, real eigen-
values, satisfying

0 < λ1 ≤ λ2 ≤ · · · → ∞

and

−P∆ei = −P∆λiµiei = λi(−P∆)(−P∆)−1ei = λiei for i ∈ N.

Thus, the orthonormal basis {ei}i of H0(Ω) from above consists of the corresponding
eigenfunctions of −P∆, and we shall use ist later for a Galerkin procedure.
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2 Trajectories of steady flow

Throughout this section, let Ω ⊂ R3 be a bounded domain with sufficiently smooth
boundary ∂Ω, and let u : Ω→ R3 be a given velocity field.

For some fixed x0 ∈ Ω, consider the following autonomous initial value problem:

ẋ(t) = u(x(t)),

x(0) = x0.
(2.1)

If u is continuous in Ω, then by the Peano Existence Theorem (see [24, p. 99]) there
exists at least one local solution x : (−ε,+ε)→ Ω for some ε > 0 sufficiently small.

If, in addition, u = 0 on ∂Ω, then the solutions t 7→ x(t) exist globally for all t ∈ R
(see [16, p. 190]).

If, moreover, u ∈ C1(Ω), then certainly u satisfies a Lipschitz condition (see [24, p.
97]), which implies uniqueness of the solution of (2.1) for all x0 ∈ Ω (see the Picard-
Lindelöf Theorem in [24, p. 97]), and it holds x ∈ C1(R) in this case.

Now, let u ∈ C1(Ω) with u = 0 on ∂Ω. Then, using the above results and denoting the
unique solution t 7→ x(t) also by t 7→ X(t, x0) to express the dependence on the initial
value x0, for every t ∈ R the mapping

X(t, ·) :

{
Ω → Ω

x0 7→ X(t, x0)
(2.2)

is well defined.

Due to the uniqueness, the composition rule

X(t, ·) ◦X(−t, x) = X(t,X(−t, x)) = X(t− t, x) = X(0, x) = x (2.3)

holds true for all t ∈ R and x ∈ Ω. It follows that

X−1(t, ·) := X(−t, ·) (2.4)

is the inverse function of X(t, ·), hence X(t, ·) is a diffeomorphism in Ω. Using u(x) = 0
for x ∈ ∂Ω, we obtain

X(t,Ω) = Ω (2.5)

for all t ∈ R.

Now consider Liouville’s differential equation (see e. g. [4, p. 31–33] for a complete
proof)

∂t det∇X(t, x) = det∇X(t, x) (∇X · u(X(t, x)))

concerning the Jacobian determinant det∇X(t, x). Here ∇X · u(X) denotes the di-
vergence of X 7→ u(X) with respect to its argument X.
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If, in addition,∇·u = 0 in Ω, then the above differential equation yields that det∇X(t, x)
does not depend on time, hence

det∇X(t, x) = det∇X(0, x) = det∇x = 1 (2.6)

holds true for all t ∈ R and x ∈ Ω.

This important property of the mappings X : Ω → Ω is called the conservation of
measure.

Using that X(t, ·) : Ω→ Ω is a diffeomorphism, this implies the identitiy

‖f(X(t, ·))‖0,p = ‖f(·)‖0,p (2.7)

for all t ∈ R and f ∈ Lp(Ω), 1 ≤ p ≤ ∞.

For 1 ≤ p <∞ this follows by substitution (compare [3, p. 211]) from

‖f(X(t, ·))‖p0,p =

∫
Ω
|f(X(t, x))|p dx

(2.5)
=

∫
X(t,Ω)

|f(X(t, x))|p dx

=

∫
Ω
|f(X(t,X(−t, x)))|p · | det∇X(−t, x)| dx

(2.3),(2.6)
=

∫
Ω
|f(x)|p dx = ‖f‖p0,p .

For p =∞, we obtain the property immediately by X(t,Ω) = Ω.

This implies, in particular,

〈f ◦X(t, ·), g ◦X(t, ·)〉 = 〈f, g〉 ,

〈f, g ◦X(t, ·)〉 =
〈
f ◦X−1(t, ·), g

〉 (2.8)

for f, g ∈ L2(Ω), where 〈·, ·〉 denotes the scalar product in L2(Ω).
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3 Time discretisation of the Navier-Stokes equations

In this section, we consider the nonstationary nonlinear Navier-Stokes equations

∂tv − ν∆v +∇p+ v · ∇v = f in (0, T )× Ω,

∇ · v = 0 in (0, T )× Ω, (N0)

v|∂Ω
= 0 in [0, T ),

v|t=0
= v0 in Ω,

where 0 < T <∞ and Ω ⊂ R3 is a bounded domain with sufficiently smooth boundary
∂Ω. This system describes the motion of a viscous, incompressible, nonstationary fluid:
The vector v = v(t, x) = (v1(t, x), v2(t, x), v3(t, x)) denotes the velocity and p = p(t, x)
some pressure function, while f , v0 and the kinematic viscosity constant ν > 0 are given
data.

Using a time discretisation with stepsize ε > 0, we transfer the Navier-Stokes equa-
tions (N0) into a finite number N of steady boundary value problems (Nk

ε ) (k =
0, . . . , N − 1), the solution of which approximates the velocity v and the pressure p at
the grid point tk+1 = (k+ 1)ε. Here in addition, the convective term v(tk+1) · ∇v(tk+1)
will be linearized and treated with the method described in Chapter 2.

To explain our approach, let 0 < T <∞, 2 ≤ N ∈ N, and define a stepsize ε := T
N > 0.

Setting tk := kε (k = 0, . . . , N), this establishes a time grid with equidistant grid points
in [0, T ].

Restricting the Navier-Stokes equations (N0) to the time t = tk+1, we find

∂tv(tk+1)− ν∆v(tk+1) +∇p(tk+1) + v(tk+1) · ∇v(tk+1) = f(tk+1),

and these equations will be modified as follows:

We approximate the time derivative ∂tv(tk+1) by a backwards difference quotient:

∂tv(tk+1) ≈ v(tk+1)− v(tk)

ε
.

Using a time delay, we approximate the nonlinear term v(tk+1) ·∇v(tk+1) by a lineariza-
tion:

v(tk+1) · ∇v(tk+1) ≈ v(tk) · ∇v(tk+1).

Finally, we replace f(tk+1) by the average

f(tk+1) ≈ 1

ε

∫ tk+1

tk

f(τ) dτ =: fk+1.

Inserting these modifications into (N0), for every k = 0, . . . , N − 1 we obtain a steady
boundary value problem of the following type:
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vk+1 − vk

ε
− ν∆vk+1 +∇pk+1 + vk · ∇vk+1 = fk+1 in Ω,

∇ · vk+1 = 0 in Ω, (Ñk
ε )

vk+1
|∂Ω

= 0.

Here vk is a given function satisfying ∇ · vk = 0 in Ω and vk|∂Ω
= 0.

To further simplify the linearized convective term vk · ∇vk+1, we take into account
its physical deduction: The term results from the total derivative of the velocity field
v(t, x), hence so-called total or Lagrangian difference quotients could be used for
approximation. In the following, these quotients are introduced.

Definition 3.1 Let Ω ⊂ R3 be a bounded domain with sufficiently smooth boundary ∂Ω.
Let u ∈ C1(Ω) be divergence-free in Ω with vanishing values on ∂Ω, and, for ε ∈ R,
let X(ε, ·) : Ω→ Ω denote the mapping (2.2) constructed from the initial value problem

ẋ(t) = u(x(t)),

x(0) = x0 ∈ Ω.

Then for every function v : Ω→ R3 the quotients

L+
ε v(x) :=

1

ε
{v(X(ε, x))− v(x)},

L−ε v(x) :=
1

ε
{v(x)− v(X(−ε, x))}

are well defined in x ∈ Ω and called a forward and a backward total (Lagrangian)
difference quotient, respectively. Averaging both quotients leads to the central total
(Lagrangian) difference quotient

Lεv(x) :=
1

2ε
{v(X(ε, x))− v(X(−ε, x))}.

Remark 3.2 If, in addition, v ∈ C1(Ω), then all the above defined difference quotients
converge to u · ∇v as ε→ 0. For example, for the forward quotient, using a mean value
theorem and the fundamental theorem of calculus, we find

L+
ε v(x) =

1

ε
{v(X(ε, x))− v(x)}

=
1

ε
{v(X(ε, x))− v(X(0, x))}

=
1

ε

ε∫
0

∂τX(τ, x) · ∇Xv(X(τ, x)) dτ

=
1

ε

ε∫
0

u(X(τ, x)) · ∇Xv(X(τ, x)) dτ
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=
1

ε

ε∫
0

(u · ∇v) ◦X(τ, x) dτ

= (u · ∇v) ◦X(τ0, x) for some τ0 with 0 ≤ |τ0| ≤ ε
ε→0−→ (u · ∇v) ◦X(0, x) = u(x) · ∇v(x).

It is well known (see [21, p. 109]) that for functions u ∈ H1(Ω) and v, w ∈ H1
0 (Ω) the

relations

〈u · ∇v, w〉 = −〈u · ∇w, v〉 ,

〈u · ∇v, v〉 = 0

hold true. Hopf (see [11]) used these important relations to prove the global in time
existence of weak solutions of the Navier-Stokes equations (N0). The following ana-
logue of these relations can be proved for the central total (Lagrangian) difference
quotient:

Lemma 3.3 Let the assumptions of Definition 3.1 be satisfied, and let v, w ∈ L2(Ω).
Then for the central total ( Lagrangian) difference quotient the following relations
hold true:

〈Lεv, w〉 = −〈v, Lεw〉 , (3.1a)

〈Lεv, v〉 = 0. (3.1b)

Proof: Using the conservation of measure (2.8), for the mapping X := X(ε, ·) we
obtain

〈Lεv, w〉 =
1

2ε

(
〈v ◦X,w〉 −

〈
v ◦X−1, w

〉)
(2.8)
=

1

2ε

(〈
v ◦X ◦X−1, w ◦X−1

〉
−
〈
v ◦X−1 ◦X,w ◦X

〉)
= −

〈
v,

1

2ε

(
w ◦X − w ◦X−1

)〉
= −〈v, Lεw〉 ,

which is equivalent to the first relation (3.1a). The second relation (3.1b) follows im-
mediately setting w = v. �

Remark 3.4 From Lemma 3.3 it follows that sufficiently regular solutions of a system
regularized by central total differences satisfy the energy equality (see Proposition 5.4).
As seen from the proof above, this important equation does not hold true if a one-sided
total difference quotient is used. Thus, the central total (Lagrangian) difference
quotient should be preferred for approximation of the convective term.
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In the following, we shall use the above results to approximate the linearized convective
term vk · ∇vk+1 in (Ñk

ε ) as follows:

vk(x) · ∇vk+1(x) ≈ 1

2ε

{
vk+1(Xk(ε, x))− vk+1(X−1

k (ε, x))
}

=: Lkεv
k+1(x).

Here the mappings Xk, X
−1
k have to be constructed from the solution t 7→ x(t) =:

Xk(t, x0) of the initial value problem

ẋ(t) = vk(x(t)),

x(0) = x0.

For k := 0, . . . , N − 1 this leads to the following boundary value problem:

vk+1 − εν∆vk+1 + εLkεv
k+1 + ε∇pk+1 = εfk+1 + vk in Ω,

∇ · vk+1 = 0 in Ω, (Nk
ε )

vk+1
|∂Ω

= 0.

Assuming vk to be an approximation of the solution t 7→ v(t) of (N0) at time t = tk,
this system suggests vk+1 and pk+1 to be approximations of v(tk+1) and p(tk+1).

In the next chapter we will show under which assumptions on the data vk and f , the
solutions vk+1, pk+1 of (Nk

ε ) can be constructed.
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4 A boundary value problem of Navier-Stokes-type

In this chapter, we consider the boundary value problem (Nk
ε ), which was derived in

Chapter 3, for fixed ε > 0 and fixed k ∈ {0, . . . , N − 1}. We prove existence and
uniqueness of a weak solution and derive some regularity statements.

For simplicity, we replace the solutions vk+1 by v and pk+1 by p, and denote the given
functions by u := vk and g := fk+1. Thus, for a bounded domain Ω ⊂ R3 with
sufficiently smooth boundary ∂Ω, we obtain the system

v − εν∆v + εLuεv + ε∇p = εg + u in Ω,

∇ · v = 0 in Ω, (Nu
ε )

v|∂Ω
= 0,

where ε > 0 and Luεv is defined by

Luεv(x) :=
1

2ε

{
v(X(ε, x))− v(X−1(ε, x))

}
with mappings X, X−1 constructed from the solution t 7→ x(t) =: X(t, x0) of the initial
value problem

ẋ(t) = u(x(t)),

x(0) = x0.
(4.1)

Here u ∈ C1(Ω) is a given function, which is divergence-free in Ω with vanishing values
on the boundary ∂Ω.

In order to show the existence of a weak solution v of (Nu
ε ), we assume ∂Ω ∈ C2 and

use a Galerkin approximation based on the eigenfunctions ei, i ∈ N, of the Stokes
operator −P∆ (compare (1.16)).

Applying the Helmholtz projection

P : L2(Ω)→ H0(Ω)

(compare (1.15)) on the first equation of (Nu
ε ), since u, v are divergence-free functions,

we obtain the projected system

v − ενP∆v + εPLuεv = εPg + u. (4.2)

Let us remind on the properties of the Stokes operator (compare pages 22–24): It is
a positive and self-adjoint operator with eigenvalues

0 < λ1 ≤ λ2 ≤ · · · → ∞.

The corresponding sequence {ei}i of eigenfunctions ei ∈ C∞0,σ(Ω) of −P∆ defines a

complete orthonormal system in H0(Ω) satisfying

v ∈ H0(Ω)⇒ v =

∞∑
i=1

〈v, ei〉 ei, (4.3a)
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− P∆ei = λiei in Ω (i ∈ N), (4.3b)

〈ei, ej〉 = δij (i, j ∈ N), (4.3c)

where δij :=

{
1 , i = j
0 , i 6= j

.

Now, for n ∈ N let Vn := span{e1, . . . , en} ⊂ C∞0,σ(Ω)n and define a Galerkin ansatz
function vn ∈ Vn (compare [8, pp. 110f.]) in the form

vn :


Ω→ R3

x 7→ vn(x) :=
n∑
j=1

cjnej(x), cjn ∈ R.
(4.4)

To determine the unknown coefficients cjn (j = 1, . . . , n) in (4.4), we replace v by vn in
(4.2), multiply the resulting equation by ei (i = 1, . . . , n), and integrate over Ω. Thus,
from (4.2) for i = 1, . . . , n we obtain the equation

〈vn, ei〉 − εν 〈P∆vn, ei〉+ ε 〈PLuεvn, ei〉 = 〈εPg + u, ei〉 =: Fni , (4.5)

where Luεv
n is defined by

Luεv
n(x) :=

1

2ε

{
vn(X(ε, x))− vn(X−1(ε, x))

}
with ε > 0 and mappings X, X−1 constructed from the initial value problem (4.1).

Using the above mentioned properties (4.3a)–(4.3c) of the eigenfunctions ei ∈ C∞0,σ(Ω),
i ∈ N, and setting X := X(ε) we find

〈vn, ei〉 =
n∑
j=1

cjn 〈ej , ei〉
(4.3c)

=
n∑
j=1

cjnδij = cin,

−εν 〈P∆vn, ei〉 = εν 〈vn,−P∆ei〉
(4.3b)

= ενλi 〈vn, ei〉 = ενλicin,

ε 〈PLuεvn, ei〉 = ε 〈Luεvn, P ei〉 = ε 〈Luεvn, ei〉
(3.1a)

= −ε 〈vn, Luεei〉

= 〈vn,−εLuεei〉 =

〈
vn,−1

2

{
ei ◦X − ei ◦X−1

}〉
=

n∑
j=1

cjn

〈
ej ,

(
1

2
ei ◦X−1 − 1

2
ei ◦X

)〉
(2.8)
=

n∑
j=1

(
1

2
〈ej ◦X, ei〉 −

1

2
〈ei ◦X, ej〉

)
cjn.

So for i = 1, . . . , n, from (4.5) it follows

(1 + ενλi)cin +
n∑
j=1

(
1

2
〈ej ◦X, ei〉 −

1

2
〈ei ◦X, ej〉

)
cjn = Fni .
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This is a linear algebraic system of the type

(D +A)cn = Fn, (4.6)

where D = (dij) is an n×n diagonal matrix with diagonal elements dii = 1 + ενλi > 1
(i = 1, . . . , n), where A = (aij) is an n×n skew-symmetric (aji = −aij) matrix with
elements aij = 1

2 〈ej ◦X, ei〉−
1
2 〈ei ◦X, ej〉, and where Fn := (Fn1 , . . . , F

n
n )T is the given

right hand side. Due to the special structure of the matrices D and A, there is a unique
solution cn = (c1n, . . . , cnn)T of the system (4.6). This follows by contradiction: Let us
assume that there exists a second solution c̃n 6= cn ∈ Rn of (4.6). Then x := cn−c̃n ∈ Rn
satisfies x 6= 0 and (D +A)x = 0. Since A is skew-symmetric we find

xTAx =
n∑

i,j=1

xiaijxj =
n∑

i,j=1

−xjajixi = −xTAx,

hence xTAx = 0. It follows

0 = (D +A)x = xT (D +A)x = xTDx+ xTAx = xTDx =
n∑
i=1

diix
2
i ,

and since dii > 0 for i = 1, . . . , n we obtain x = 0, which contradicts our assumption.
Thus (4.6) is uniquely solvable.

Definition 4.1 (Galerkin approximation) Let Ω ⊂ R3 be a bounded domain with
boundary ∂Ω ∈ C2. For n ∈ N, the function

vn :


Ω→ R3

x 7→ vn(x) :=
n∑
j=1

cjnej(x)

is called a Galerkin approximation of order n. Here the coefficients cjn (j = 1, . . . , n)
represent the unique solution of the linear algebraic system (4.6), and the functions
ej ∈ C∞0,σ(Ω), j = 1, . . . , n are the eigenfunctions of the Stokes operator −P∆.

In the following we shall establish some a-priori estimates for the Galerkin approxi-
mations.

Lemma 4.2 Let Ω ⊂ R3 be a bounded domain with boundary ∂Ω ∈ C2, let ε > 0,
g ∈ L2(Ω), and let u ∈ C1(Ω) be divergence-free in Ω with u = 0 on ∂Ω.

Then the Galerkin approximation vn from Definition 4.1 exists for each n ∈ N, and
the sequence {vn}n is bounded in H2(Ω). In particular, the following a-priori estimates

‖vn‖2 + ‖vn − u‖2 + εν ‖∇vn‖2 ≤ ‖u‖2 +
εc2
p

ν
‖g‖2 , (4.7a)
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‖∇vn‖2 + ‖∇vn −∇u‖2 + εν ‖P∆vn‖2 ≤ ‖∇u‖2 +
2ε

ν
‖g‖2 +

2

εν
‖vn‖2

≤ ‖∇u‖2 +

(
2ε

ν
+

2c2
p

ν2

)
‖g‖2 +

2

εν
‖u‖2 ,

(4.7b)

‖∇vn‖2 + ‖∇vn −∇u‖2 +
1

εν
‖vn − u‖2 ≤ ‖∇u‖2 +

2ε

ν
‖g‖2 +

2

εν
‖vn‖2

≤ ‖∇u‖2 +

(
2ε

ν
+

2c2
p

ν2

)
‖g‖2 +

2

εν
‖u‖2 ,

(4.7c)

hold true, where cp is the Poincaré constant and the right hand sides do not depend
on n.

Proof: The difference quotients

Luεv
n(x) :=

1

2ε

{
vn ◦X(ε, x)− vn ◦X−1(ε, x)

}
,

with mappings X, X−1 resulting from the solutions of (4.1) are well defined, and X,
X−1 are measure conserving mappings, since u ∈ C1(Ω),∇·u = 0 in Ω, and u = 0 on ∂Ω.
Thus, the algebraic system (4.6) is uniquely solvable and the Galerkin approximation
vn is well defined for each n ∈ N.

Now let n ∈ N be fixed. To prove (4.7a), we multiply the equation (4.5) by cin and
afterwards sum up for i = 1, . . . , n. Setting X := X(ε), this gives us

〈vn, vn〉 − 〈u, vn〉︸ ︷︷ ︸
=:a1

− εν 〈P∆vn, vn〉︸ ︷︷ ︸
=:a2

= −1

2

〈
P
{
vn ◦X − vn ◦X−1

}
, vn
〉

︸ ︷︷ ︸
=:a3

+ ε 〈Pg, vn〉︸ ︷︷ ︸
=:a4

. (4.8)

For a1 we have

a1 = 〈vn, vn〉 − 〈u, vn〉

=
1

2
(〈vn, vn〉 − 2 〈vn, u〉+ 〈u, u〉+ 〈vn, vn〉 − 〈u, u〉)

=
1

2
(〈vn − u, vn − u〉+ 〈vn, vn〉 − 〈u, u〉)

=
1

2

(
‖vn − u‖2 + ‖vn‖2 − ‖u‖2

)
.
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Since vn ∈ C∞0,σ(Ω) and ∂Ω ∈ C1, for a2 we find

a2 = −εν 〈P∆vn, vn〉 = −εν 〈∆vn, Pvn〉

= −εν 〈∆vn, vn〉 (1.11)
= εν 〈∇vn,∇vn〉 = εν ‖∇vn‖2 .

For a3 we use (3.1b) from Lemma 3.3 and obtain

a3 = −ε 〈PLuεvn, vn〉 = −ε 〈Luεvn, Pvn〉 = −ε 〈Luεvn, vn〉
(3.1b)

= 0.

For a4, using Hölder, Young and the Poincaré inequality, we find

a4 = ε 〈g, Pvn〉 = ε 〈g, vn〉 = ε

∫
Ω
g · vn dx

≤ ε

∫
Ω
|g · vn| dx

(1.5)

≤ ε ‖g‖ ‖vn‖
(1.2)

≤ ε ‖g‖ cp ‖∇vn‖

=
εcp√
εν
‖g‖
√
εν ‖∇vn‖

(1.10)

≤
εc2
p

2ν
‖g‖2 +

εν

2
‖∇vn‖2 .

Now we can apply these estimates on (4.8) and obtain

1

2
‖vn‖2 +

1

2
‖vn − u‖2 + εν ‖∇vn‖2 ≤ 1

2
‖u‖2 +

εc2
p

2ν
‖g‖2 +

εν

2
‖∇vn‖2 .

Eliminating εν
2 ‖∇v

n‖ on the right hand side and multiplying by 2, this leads to

‖vn‖2 + ‖vn − u‖2 + εν ‖∇vn‖2 ≤ ‖u‖2 +
εc2
p

ν
‖g‖2 .

To prove (4.7b), we multiply the equation (4.5) by λicin, where λi denotes the ith

eigenvalue of the Stokes operator. Thus, using the relation −P∆ei = λiei from (4.3b),
summing up for i = 1, . . . , n, and setting X := X(ε), we obtain

〈vn,−P∆vn〉 − 〈u,−P∆vn〉︸ ︷︷ ︸
=:b1

− εν 〈P∆vn,−P∆vn〉︸ ︷︷ ︸
=:b2

= −1

2

〈
P
{
vn ◦X − vn ◦X−1

}
,−P∆vn

〉
︸ ︷︷ ︸

=:b3

+ ε 〈Pg,−P∆vn〉︸ ︷︷ ︸
=:b4

.

Here, similar to the estimates of ai above, we have

b1 = 〈vn,−∆vn〉 − 〈u,−∆vn〉 (1.11)
= 〈∇vn,∇vn〉 − 〈∇u,∇vn〉

=
1

2

(
‖∇vn‖2 + ‖∇vn −∇u‖2 − ‖∇u‖2

)
,

b2 = εν ‖P∆vn‖2 ,
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b3 =
1

2

〈
vn ◦X − vn ◦X−1, P∆vn

〉 (1.5)

≤ 1

2

∥∥vn ◦X − vn ◦X−1
∥∥ ‖P∆vn‖

≤ 1

2

(
‖vn ◦X‖+

∥∥vn ◦X−1
∥∥) ‖P∆vn‖ (2.7)

= ‖vn‖ ‖P∆vn‖

=

√
2

εν
‖vn‖

√
εν

2
‖P∆vn‖

(1.10)

≤ 1

εν
‖vn‖2 +

εν

4
‖P∆vn‖2 ,

b4 = ε 〈g,−P∆vn〉
(1.5)

≤ ε

√
2

εν
‖g‖

√
εν

2
‖P∆vn‖

(1.10)

≤ ε

ν
‖g‖2 +

εν

4
‖P∆vn‖2 .

These estimates lead to

1

2
‖∇vn‖2 +

1

2
‖∇vn −∇u‖2 + εν ‖P∆vn‖2

≤ 1

2
‖∇u‖2 +

ε

ν
‖g‖2 +

εν

4
‖P∆vn‖2 +

1

εν
‖vn‖2 +

εν

4
‖P∆vn‖2 .

Eliminating εν
2 ‖P∆vn‖2 of the right hand side and multiplying by 2, we obtain

‖∇vn‖2 + ‖∇vn −∇u‖2 + εν ‖P∆vn‖2 ≤ ‖∇u‖2 +
2ε

ν
‖g‖2 +

2

εν
‖vn‖2

(4.7a)

≤ ‖∇u‖2 +

(
2ε

ν
+

2c2
p

ν2

)
‖g‖2 +

2

εν
‖u‖2 .

Finally, to prove (4.7c), again setting X := X(ε), we consider

〈vn, vn − u〉 − 〈u, vn − u〉︸ ︷︷ ︸
=:c1

− εν 〈P∆vn, vn − u〉︸ ︷︷ ︸
=:c2

= −1

2

〈
P
{
vn ◦X − vn ◦X−1

}
, vn − u

〉
︸ ︷︷ ︸

=:c3

+ ε 〈Pg, vn − u〉︸ ︷︷ ︸
=:c4

.

Here we have

c1 = 〈vn − u, vn − u〉 = ‖vn − u‖2 ,

c2 = −εν 〈∆vn, vn − u〉 (1.11)
= εν 〈∇vn,∇vn −∇u〉

= εν 〈∇vn −∇u,∇vn〉 =
εν

2

(
‖∇vn‖2 + ‖∇vn −∇u‖2 − ‖∇u‖2

)
,

c3 = −1

2

〈
vn ◦X − vn ◦X−1, vn − u

〉 (1.5)

≤ 1

2

∥∥vn ◦X − vn ◦X−1
∥∥ ‖vn − u‖

≤ 1

2

(
‖vn ◦X‖+

∥∥vn ◦X−1
∥∥) ‖vn − u‖ (2.7)

= ‖vn‖ ‖vn − u‖
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=
√

2 ‖vn‖ 1√
2
‖vn − u‖

(1.10)

≤ ‖vn‖2 +
1

4
‖vn − u‖2 ,

c4 = ε 〈g, vn − u〉
(1.5)

≤ ε
√

2 ‖g‖ 1√
2
‖vn − u‖

(1.10)

≤ ε2 ‖g‖2 +
1

4
‖vn − u‖2 .

These estimates lead to

εν

2
‖∇vn‖2 +

εν

2
‖∇vn −∇u‖2 + ‖vn − u‖2

≤ εν

2
‖∇u‖2 + ε2 ‖g‖2 +

1

4
‖vn − u‖2 + ‖vn‖2 +

1

4
‖vn − u‖2 .

Eliminating 1
2 ‖v

n − u‖2 of the right hand side and multiplying by 2
εν , we obtain

‖∇vn‖2 + ‖∇vn −∇u‖2 +
1

εν
‖vn − u‖2 ≤ ‖∇u‖2 +

2ε

ν
‖g‖2 +

2

εν
‖vn‖2

(4.7a)

≤ ‖∇u‖2 +

(
2ε

ν
+

2c2
p

ν2

)
‖g‖2 +

2

εν
‖u‖2 .

These estimates immediately imply the boundedness of {vn}n in H2(Ω). �

Now we define a weak solution for the discretized Navier-Stokes-equations (Nu
ε )

(compare e. g. Shinbrot [19, p. 160]).

Definition 4.3 Let Ω ⊂ R3 be a bounded domain with boundary ∂Ω ∈ C2, let ε > 0,
g ∈ L2(Ω), and let u ∈ C1(Ω) be divergence-free in Ω with u = 0 on ∂Ω. A function
v ∈ H1(Ω) is called a weak solution of (Nu

ε ), if

〈v, ϕ〉+ εν 〈∇v,∇ϕ〉+ ε 〈Luεv, ϕ〉 = ε 〈g, ϕ〉+ 〈u, ϕ〉 (4.9)

holds true for all test functions ϕ ∈ C∞0,σ(Ω).

Using the estimates of the Galerkin approximations vn derived in Lemma 4.2, we are
able to prove existence and uniqueness of a weak solution of (Nu

ε ).

Theorem 4.4 Let Ω ⊂ R3 be a bounded domain with boundary ∂Ω ∈ C2, let ε > 0
and g ∈ L2(Ω), and let u ∈ C1(Ω) be divergence-free in Ω with u = 0 on ∂Ω.

Then there exists a uniquely determined weak solution v ∈ H1(Ω) ∩H2(Ω) of (Nu
ε ).

Proof: By Lemma 4.2, the Galerkin approximation vn exists for every n ∈ N. More-
over, using the estimate (4.7b), we find

‖P∆vn‖ ≤ c,

where c is independent of n ∈ N.
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With help of Cattabriga’s estimate

‖u‖2,2 ≤ cc ‖P∆u‖

for the solution of the steady Stokes system (compare Proposition 1.21), this implies
that the sequence {vn}n of the Galerkin approximations vn ∈ C∞0,σ(Ω) is bounded in

H2(Ω). Thus there exists a subsequence which converges weakly in H2(Ω) and – due to
the compactness of the imbedding H2(Ω) ↪→ H1(Ω) for bounded Ω – strongly in H1(Ω)
(compare Propositions 1.15 and 1.20). We denote this subsequence again by {vn}n,
and its limit function by v, where v ∈ H1(Ω) ∩H2(Ω) since vn ∈ H1(Ω) ∩H2(Ω), and
H1(Ω) is a closed subspace of H1(Ω).

Thus, for every i ∈ N, in (4.5) we can pass to the limit n→∞, obtaining

〈v, ei〉 − εν 〈P∆v, ei〉+ ε 〈PLuεv, ei〉 = ε 〈Pg, ei〉+ 〈u, ei〉 , (4.10)

where, in particular, setting X := X(ε) we use

ε 〈PLuε (vn − v), ei〉 =

〈
1

2

{
(vn − v) ◦X − (vn − v) ◦X−1

}
, ei

〉
(1.5)

≤ 1

2

(
‖(vn − v) ◦X‖+

∥∥(vn − v) ◦X−1
∥∥) ‖ei‖

(2.7)
= ‖vn − v‖ n→∞−→ 0.

The corresponding sequence {ei}i of eigenfunctions of the Stokes operator represents
a complete orthonormal system in H0(Ω). Thus, for each test function ϕ ∈ C∞0,σ(Ω) ⊂
H0(Ω) there exists a sequence {µi}i with µi ∈ R for i ∈ N and

ϕ =

∞∑
i=1

µiei.

Using Green’s formula (1.11) on (4.10), multiplying by µi and summing up over i, this
implies

〈v, ϕ〉+ εν 〈∇v,∇ϕ〉+ ε 〈PLuεv, ϕ〉 = ε 〈Pg, ϕ〉+ 〈u, ϕ〉

for all ϕ ∈ C∞0,σ(Ω) ⊂ H1(Ω), i. e. v ∈ H1(Ω) ∩H2(Ω) is a weak solution of (Nu
ε ) in the

sense of Definition 4.3.

To prove the uniqueness, let ṽ ∈ H1(Ω) ∩ H2(Ω) be a second weak solution of (Nu
ε ),

and denote by w := v − ṽ the difference of these two solutions. It follows

w − ενP∆w + εPLuεw = 0 in H0(Ω),

and scalar multiplication in L2(Ω) with w implies

〈w,w〉 − εν 〈P∆w,w〉+ ε 〈PLuεw,w〉
(1.11)

= ‖w‖2 + εν ‖∇w‖2 = 0,

since 〈PLuεw,w〉
(3.1b)

= 0. Thus it follows ‖w‖ = 0, hence w(x) = 0 in x ∈ Ω, which
implies the asserted uniqueness. �
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Remark 4.5 Consider any other accumulation point ṽ obtained by extracting some
different subsequence in the proof of Theorem 4.4. Then ṽ is a weak solution of (Nu

ε ),
and – due to the uniquenes of the weak solution v derived in Theorem 4.4 – we obtain
v = ṽ. Thus, there exists only one accumulation point v, and the whole sequence of
Galerkin approximations {vn}n converges to v in the corresponding norms.

To derive some a-priori estimates for the weak solution v ∈ H2 ∩ H1(Ω) of (Nu
ε ), we

consider the decompositions

v = v − vn + vn,

∇v = ∇v −∇vn +∇vn.

Here – due to the strong convergence vn
n→∞−→ v in H1(Ω) – we can use

‖v − vn‖ n→∞−→ 0,

‖∇v −∇vn‖ = ‖∇(v − vn)‖
(1.1)

≤ ‖v − vn‖1,2
n→∞−→ 0.

Thus we can extend the a-priori estimates (4.7a) and (4.7c) of vn from Lemma 4.2 to
v. This leads to

Corollary 4.6 Let the assumptions of Theorem 4.4 be satisfied. Then the weak solution
v of (Nu

ε ) satisfies

‖v‖2 + ‖v − u‖2 + εν ‖∇v‖2 ≤ ‖u‖2 +
εc2
p

ν
‖g‖2 , (4.11a)

‖∇v‖2 + ‖∇v −∇u‖2 +
1

εν
‖v − u‖2 ≤ ‖∇u‖2 +

(
2ε

ν
+

2c2
p

ν2

)
‖g‖2 +

2

εν
‖u‖2 ,

(4.11b)

where cp is the Poincaré constant.

In the following, we will prove the equivalent of estimate (4.7b) in Lemma 4.2:

Proposition 4.7 Let the assumptions of Theorem 4.4 be satisfied. Then the weak
solution v of (Nu

ε ) satisfies

‖∇v‖2 + ‖∇v −∇u‖2 + εν ‖P∆v‖2 ≤ ‖∇u‖2 +

(
2ε

ν
+

2c2
p

ν2

)
‖g‖2 +

2

εν
‖u‖2 , (4.11c)

where cp is the Poincaré constant.

Proof: The weak solution v of (Nu
ε ), which we derived in Theorem 4.4, satisfies

v − u− ενP∆v + εPLuεv = εPg in H0(Ω),
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and scalar multiplication in L2(Ω) with −P∆v ∈ H0(Ω) implies

〈v,−P∆v〉 − 〈u,−P∆v〉︸ ︷︷ ︸
=:a1

− εν 〈P∆v,−P∆v〉︸ ︷︷ ︸
=:a2

= −ε 〈PLuεv,−P∆v〉︸ ︷︷ ︸
=:a3

+ ε 〈Pg,−P∆v〉︸ ︷︷ ︸
=:a4

.

Now we can proceed as in the proof of estimate (4.7b) in Lemma 4.2. We obtain

a1
(1.11)

=
1

2

(
‖∇v‖2 + ‖∇v −∇u‖2 − ‖∇u‖2

)
,

a2 = εν ‖P∆v‖2 ,

and using the conservation of measure (2.7), Hölder (1.5) and the Poincaré inequal-
ity (1.2), we have

a3 ≤
1

εν
‖v‖2 +

εν

4
‖P∆v‖2 ,

a4 ≤
ε

ν
‖g‖2 +

εν

4
‖P∆v‖2 .

These estimates lead to

‖∇v‖2 + ‖∇v −∇u‖2 + εν ‖P∆v‖2 ≤ ‖∇u‖2 +
2ε

ν
‖g‖2 +

2

εν
‖v‖2

(4.11a)

≤ ‖∇u‖2 +

(
2ε

ν
+

2c2
p

ν2

)
‖g‖2 +

2

εν
‖u‖2 .

�

In the next chapter, we define a non-steady velocity field vε : [−ε, T ] → R3 piecewise
constant in time, using the steady solution of the boundary value problem (Nu

ε ). For
this purpose we need the following regularity of the weak solution. Here parts of the
proof are motivated by Asanalieva, Heutling & Varnhorn [5, pp. 345–346]):

Proposition 4.8 Let the assumptions of Theorem 4.4 be satisfied. In addition, let
∂Ω ∈ C3 and g ∈ H1(Ω). Then, the weak solution v of (Nu

ε ) satisfies

v ∈ H3(Ω) ∩H1(Ω).

Proof: We consider the system (4.2) in the form

−P∆v =
1

εν

(
(u− v)︸ ︷︷ ︸

:=a1

−1

2
P
{
v ◦X − v ◦X−1

}
︸ ︷︷ ︸

:=a2

+ εPg︸︷︷︸
:=a3

)
, (4.12)

where X := X(ε, x).

Using Cattabriga’s estimate

‖v‖3,2 ≤ cc ‖P∆v‖1,2
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(compare Proposition 1.21), we obtain v ∈ H3(Ω) if the right hand side in (4.12) is in
H1(Ω).

By Theorem 4.4 we know v ∈ H2(Ω). Thus, together with the assumptions of this
proposition, we obtain immediately that a1 = (u− v) ∈ H1(Ω) and a3 = εPg ∈ H1(Ω).

To prove a2 ∈ H1(Ω) we use the conservation of measure. For X := X(ε, x), and,
analogously, for X−1 := X−1(ε, x), we have

‖P (v ◦X)‖ = ‖v ◦X‖ (2.7)
= ‖v‖ ,

hence v ◦X ∈ L2(Ω).

For the gradient ‖∇(v ◦X)‖ we obtain

‖∇(v ◦X)‖ = ‖((∇Xv) ◦X)(∇X)‖
(1.8)

≤ c ‖(∇Xv) ◦X‖ ‖∇X‖0,∞
(2.7)

≤ c ‖∇v‖ ‖∇X‖0,∞ .

To estimate ‖∇X‖0,∞ we observe

d

dt
‖∇X(t, x)‖0,∞ ≤ ‖∇∂tX(t, x)‖0,∞ = ‖∇(u ◦X(t, x))‖0,∞

= ‖((∇Xu) ◦X)(∇X)‖0,∞
(1.8)

≤ c ‖(∇Xu) ◦X‖0,∞ ‖∇X‖0,∞
(2.7)
= c ‖∇u‖0,∞ ‖∇X‖0,∞

(∗)
≤ c1 ‖∇X‖0,∞ ,

where in (∗) we use u ∈ C1(Ω), which implies ∇u ∈ C(Ω), thus ∇u is bounded by its
maximum max

x∈Ω
|∇u(x)|.

Setting ϕ(t) := ‖∇X(t, x)‖0,∞, this yields the differential inequality

d

dt
ϕ(t) ≤ c1ϕ(t),

hence

ϕ(t) ≤ ϕ(0) + c1

∫ t

0
ϕ(τ) dτ,

where

ϕ(0) = ‖∇X(0, x)‖0,∞ = ‖∇x‖0,∞ = 1.

Using the Lemma of Gronwall (see Proposition 1.9) we obtain ϕ(t) ≤ etc1 , i. e.

‖∇X(ε, x)‖0,∞ ≤ e
εc1 <∞.

Thus, by ‖v ◦X‖21,2
(1.1)
= ‖v ◦X‖2 + ‖∇(v ◦X)‖2, we have a2 ∈ H1(Ω), which proves

the assertion. �
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Corollary 4.9 Let Ω ⊂ R3 be a bounded domain with boundary ∂Ω ∈ C3, let ε > 0
and g ∈ H1(Ω). Then for any function

u ∈ H3(Ω) ∩H1(Ω),

the weak solution v of (Nu
ε ) exists, is uniquely determined and satisfies

v ∈ H3(Ω) ∩H1(Ω).

In particular, all results of this chapter for the weak solution v hold true.

Proof: Using Lemma 1.1, the regularity u ∈ H3(Ω) implies

u ∈ C1(Ω),

and ∇ · u = 0 in Ω with u = 0 on ∂Ω follows from u ∈ H1(Ω).

Hence all assumptions of Theorem 4.4 and all additional assumptions of Proposition
4.8 are satisfied, which proves the assertion. �
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5 An approximate Navier-Stokes solution

In this chapter we use the weak solution of the boundary value problem (Nu
ε ) from

Chapter 4 to define a uniquely determined weak solution vk+1 of the discretized Navier-
Stokes equations (Nk

ε ), k = 0, . . . , N − 1, formulated at the end of Chapter 3.

Let Ω ⊂ R3 be a bounded domain with boundary ∂Ω ∈ C3, and let 0 < T < ∞. For
2 ≤ N ∈ N, as in Section 3 we define a time grid in [0, T ] with N + 1 equidistant grid
points tk := kε (k = 0, . . . , N) of stepsize ε := T

N > 0.

If now vk := u is given for some k ∈ {0, . . . , N − 1}, then vk+1 := v can be constructed
according to Corollary 4.9. More precisely, defining Lkεv

k+1 by

Lkεv
k+1(x) :=

1

2ε

{
vk+1(Xk(ε, x))− vk+1(X−1

k (ε, x))
}

with mappings Xk, X
−1
k constructed from the solution t 7→ x(t) =: Xk(t, x0) of the

initial value problem

ẋ(t) = vk(x(t)),

x(0) = x0,
(5.1)

we have

Proposition 5.1 Let Ω ⊂ R3 be a bounded domain with boundary ∂Ω ∈ C3, and let
0 < T < ∞. For 2 ≤ N ∈ N let ε := T

N > 0 and set tk := kε (k = 0, . . . , N). Let
f ∈ L2(0, T ;H1(Ω)) with

fk+1 :=
1

ε

∫ tk+1

tk

f(τ) dτ, k = 0, . . . , N − 1, (5.2)

and let v0 := v0 ∈ C1(Ω) be divergence-free in Ω with v0 = 0 on ∂Ω.

Then the system

vk+1 − εν∆vk+1 + εLkεv
k+1 + ε∇pk+1 = εfk+1 + vk in Ω,

∇ · vk+1 = 0 in Ω, (Nk
ε )

vk+1
|∂Ω

= 0,

is, successively for k = 0, . . . , N−1, uniquely solvable and the weak solutions v1, v2, . . . , vN

with the corresponding uniquely determined pressure gradients ∇p1,∇p2, . . . ,∇pN sat-
isfy

vj ∈ H3(Ω) ∩H1(Ω), ∇pj ∈ H1(Ω), j = 1, . . . , N.

Proof: Let k ∈ {0, . . . , N−1}. Using f ∈ L2(0, T ;H1(Ω)) we have f ∈ L1(0, T ;H1(Ω))
and it follows fk+1 ∈ H1(Ω) since∥∥∥fk+1

∥∥∥
1,2

=

∥∥∥∥1

ε

∫ tk+1

tk

f(τ) dτ

∥∥∥∥
1,2

≤ 1

ε

∫ tk+1

tk

‖f(τ)‖1,2 dτ <∞.
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Now let k = 0. By Theorem 4.4 and Proposition 4.8, there exists a uniquely determined
weak solution v1 of (N0

ε ) satisfying

v1 ∈ H3(Ω) ∩H1(Ω).

Then, successively for k = 1, . . . , N −1, using Corollary 4.9, we obtain vk+1 as uniquely
determined weak solution of (Nk

ε ) with

vk+1 ∈ H3(Ω) ∩H1(Ω).

The statement concerning the pressure gradients follows from the Helmholtz decom-
position (1.14) by using the Projection Theorem (compare [7, pp. 31f.]). �

Corollary 5.2 Let the assumptions of Proposition 5.1 be satisfied and let vk+1 denote
the weak solution of the system (Nk

ε ), k = 0, . . . , N − 1. Then it holds∥∥∥vk+1
∥∥∥2

+
∥∥∥vk+1 − vk

∥∥∥2
+ εν

∥∥∥∇vk+1
∥∥∥2

≤
∥∥∥vk∥∥∥2

+
εc2
p

ν

∥∥∥fk+1
∥∥∥2
, (5.3a)

∥∥∥∇vk+1
∥∥∥2

+
∥∥∥∇vk+1 −∇vk

∥∥∥2
+

1

εν

∥∥∥vk+1 − vk
∥∥∥2

≤
∥∥∥∇vk∥∥∥2

+

(
2ε

ν
+

2c2
p

ν

)∥∥∥fk+1
∥∥∥2

+
2

εν

∥∥∥vk∥∥∥2
, (5.3b)

∥∥∥∇vk+1
∥∥∥2

+
∥∥∥∇vk+1 −∇vk

∥∥∥2
+ εν

∥∥∥P∆vk+1
∥∥∥2

≤
∥∥∥∇vk∥∥∥2

+

(
2ε

ν
+

2c2
p

ν

)∥∥∥fk+1
∥∥∥2

+
2

εν

∥∥∥vk∥∥∥2
, (5.3c)

where cp is the Poincaré constant.

Proof: These estimates follow immediately from Corollary 4.6 and Proposition 4.7 for
v := vk+1, u := vk, and g := fk+1. �

Using the steady solutions vk+1 (k = 0, . . . , N − 1) constructed above we define a
corresponding step function in [0, T ]:

Definition 5.3 Let the assumptions of Proposition 5.1 be satisfied and let vk+1 denote
the solution of the system (Nk

ε ), k = 0, . . . , N − 1. Then we define a non-steady step
function vε : [−ε, T ]→ R3 by

vε(t) :=

{
v0 , t ∈ [−ε, 0]

vk+1 , t ∈ (tk, tk+1], k = 0, . . . , N − 1.
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We shall see that the step function vε, ε > 0, in a certain sense represents an ap-
proximate solution of the Navier-Stokes equations. In the following, we prove some
important properties of this function.

Proposition 5.4 Let the assumptions of Proposition 5.1 be satisfied. Then the function
vε from Definition 5.3 satisfies

vε ∈ L∞
(
0, T ;H3(Ω) ∩H1(Ω)

)
.

The energy equality

‖vε(tk)‖2 +
1

ε

∫ tk

0
‖vε(τ)− vε(τ − ε)‖2 dτ + 2ν

∫ tk

0
‖∇vε(τ)‖2 dτ

= ‖v0‖2 + 2

∫ tk

0
〈f(τ), vε(τ)〉 dτ

(5.4)

holds true for all grid points tk = kε (k = 0, . . . , N).

Proof: The energy equality is trivial at time t0 = 0. Now consider the grid points
tk+1 for k = 0, . . . , N − 1. Then – by construction of vε (compare Proposition 5.1 and
Definition 5.3) – we know vε(tk+1) = vk+1 is a weak solution of the boundary value
problem (Nk

ε ), satisfying

vk+1 − εν∆vk+1 + εLkεv
k+1 = εfk+1 + vk in H0(Ω).

Scalar multiplication with vk+1 in L2(Ω) implies〈
vk+1, vk+1

〉
−
〈
vk, vk+1

〉
︸ ︷︷ ︸

=:a1

− εν
〈

∆vk+1, vk+1
〉

︸ ︷︷ ︸
=:a2

+ ε
〈
Lkεv

k+1, vk+1
〉

︸ ︷︷ ︸
=:a3

= ε
〈
fk+1, vk+1

〉
︸ ︷︷ ︸

=:a4

.

For the left hand side of this equation – similar to the proof of the first equation (4.7a)
in Lemma 4.2 – we obtain

a1 =
1

2

(∥∥∥vk+1
∥∥∥2
−
∥∥∥vk∥∥∥2

+
∥∥∥vk+1 − vk

∥∥∥2
)
,

a2
(1.11)

= εν
∥∥∥∇vk+1

∥∥∥2
,

a3
(3.1b)

= 0.

Using (5.2) and Fubini, for a4 we have

a4 = ε
〈
fk+1, vk+1

〉
=

∫
Ω

∫ tk+1

tk

f(τ) dτ · vk+1 dx

=

∫ tk+1

tk

∫
Ω
f(τ) · vk+1 dx dτ =

∫ tk+1

tk

〈
f(τ), vk+1

〉
dτ.
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This leads to

1

2

(∥∥∥vk+1
∥∥∥2
−
∥∥∥vk∥∥∥2

)
+

1

2

∥∥∥vk+1 − vk
∥∥∥2

+ εν
∥∥∥∇vk+1

∥∥∥2

=

∫ tk+1

tk

〈
f(τ), vk+1

〉
dτ

for k = 0, . . . , N − 1. Setting j = k and summing up for j = 0, . . . , k, we obtain

k∑
j=0

(∥∥vj+1
∥∥2 −

∥∥vj∥∥2
)

+

k∑
j=0

∥∥vj+1 − vj
∥∥2

+ 2εν

k∑
j=0

∥∥∇vj+1
∥∥2

= 2
k∑
j=0

∫ tj+1

tj

〈
f(τ), vj+1

〉
dτ.

Hence, using Definition 5.3 regarding the step function vε, it holds

‖vε(tk+1)‖2 +
1

ε

∫ tk+1

0
‖vε(τ)− vε(τ − ε)‖2 dτ + 2ν

∫ tk+1

0
‖∇vε(τ)‖2 dτ

= ‖v0‖2 + 2

∫ tk+1

0
〈f(τ), vε(τ)〉 dτ

for all k = 0, . . . , N − 1. This implies the asserted energy equality.

To prove the regularity vε ∈ L∞
(
0, T ;H3(Ω) ∩H1(Ω)

)
, let t ∈ (0, T ], be fixed. Then

we have vε(t) = vk+1 for some k ∈ {0, . . . , N − 1} as weak solution of (Nk
ε ), satisfying

vk ∈ H3(Ω) ∩ H1(Ω) (compare Proposition 5.1). Setting c := max
0≤k≤N−1

∥∥vk+1
∥∥

3,2
we

obtain

ess sup
t∈[0,T ]

‖vε(t)‖3,2 = max
t∈(0,T ]

‖vε(t)‖3,2 ≤ c,

which proves the assertion. �

Proposition 5.5 Let the assumptions of Proposition 5.1 be satisfied. Then the function
vε from Definition 5.3 satisfies the estimate

‖vε(t)‖2 +
1

ε

∫ t

0
‖vε(τ)− vε(τ − ε)‖2 dτ + ν

∫ t

0
‖∇vε(τ)‖2 dτ

≤ ‖v0‖2 +
c2
p

ν

∫ tk+1

0
‖f(τ)‖2 dτ

(5.5)

for all t ∈ [0, T ]. Here tk+1 is the smallest grid point with t ≤ tk+1.

Proof: Before we prove the assertion, we consider
∥∥f j+1

∥∥ for some j ∈ {0, . . . , N − 1}.
We find ∥∥f j+1

∥∥2
=

∥∥∥∥∥1

ε

∫ tj+1

tj

f(τ) dτ

∥∥∥∥∥
2
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=
1

ε2

∫
Ω

∣∣∣∣∣
∫ tj+1

tj

f(τ) dτ

∣∣∣∣∣
2

dx

≤ 1

ε2

∫
Ω

(∫ tj+1

tj

1 · |f(τ)| dτ

)2

dx

(1.4)

≤ 1

ε2

∫
Ω

(∫ tj+1

tj

|1|2 dτ

) 1
2
(∫ tj+1

tj

|f(τ)|2 dτ

) 1
2

2

dx

=
1

ε2

∫
Ω
ε

∫ tj+1

tj

|f(τ)|2 dτ dx

=
1

ε

∫ tj+1

tj

∫
Ω
|f(τ)|2 dx dτ

=
1

ε

∫ tj+1

tj

‖f(τ)‖2 dτ. (5.6)

For t = 0, the assertion is trivial. For t ∈ (0, T ] we have vε(t) = vk+1 for some
k ∈ {0, . . . , N − 1} as weak solution of (Nk

ε ) satisfying (5.3a). Setting j = k and
summing up for j = 0, . . . , k we obtain

k∑
j=0

(∥∥vj+1
∥∥2 −

∥∥vj∥∥2
)

+
k∑
j=0

∥∥vj+1 − vj
∥∥2

+ εν
k∑
j=0

∥∥∇vj+1
∥∥2

(5.3a)

≤
εc2
p

ν

k∑
j=0

∥∥f j+1
∥∥2

(5.6)

≤
c2
p

ν

k∑
j=0

∫ tj+1

tj

‖f(τ)‖2 dτ,

which leads to(
‖vε(t)‖2 − ‖v0‖2

)
+

1

ε

∫ tk+1

0
‖vε(τ)− vε(τ − ε)‖2 dτ + ν

∫ tk+1

0
‖∇vε(τ)‖2 dτ

≤
c2
p

ν

∫ tk+1

0
‖f(τ)‖2 dτ.

Since t ≤ tk+1 and all integrands on the left hand side are non-negative, this implies
the inequality (5.5). �

In Chapter 6, we will derive some limit function v of vε as ε→ 0. In order to show that
v is a weak solution of (N0), we proceed as in Shinbrot [19, pp. 164–173] and firstly
prove that vε satisfies equation (5.7) of Lemma 5.7. For this, we need to estimate the
difference between the time derivative and its difference quotient:
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Lemma 5.6 Let Ω ⊂ R3 be a bounded domain. Let 0 < T <∞, ϕ ∈ C1([0, T ];C∞0,σ(Ω)),
and let ε > 0. Then for each t ∈ [0, T ) it holds∥∥∥∥ϕ̇(t)− ϕ(t+ ε)− ϕ(t)

ε

∥∥∥∥ = o(1) as ε→ 0.

Proof: Let t ∈ [0, T ). Setting

rt(ε) :=
(εϕ̇(t)− ϕ(t+ ε)) + ϕ(t)

ε

and applying the rule of de l’Hospital we find

lim
ε→0

rt(ε) = lim
ε→0

ϕ̇(t)− ϕ̇(t+ ε)

1
= 0.

�

To precisely formulate the next lemma, for t ∈ (tk, tk+1], k = 0, . . . , N − 1, we set

f̃(t) := fk+1 :=
1

ε

∫ tk+1

tk

f(τ) dτ

and define

Lε(t)ϕ(t, x) := Lkεϕ(t, x)

:=
1

2ε

{
ϕ(t) ◦Xk(ε, x)− ϕ(t) ◦X−1

k (ε, x)
}
.

Here the mappings Xk, X
−1
k are constructed from the solution τ 7→ x(τ) =: Xk(τ, x0)

of the initial value problem (5.1):

ẋ(τ) = vk(x(τ)),

x(0) = x0.

Lemma 5.7 Let the assumptions of Proposition 5.1 be satisfied. Then the function vε

from Definition 5.3 satisfies

−
∫ T

0
〈vε(t), ϕ̇(t)〉 dt+ ν

∫ T

0
〈∇vε(t),∇ϕ(t)〉 dt−

∫ T

0
〈vε(t), Lε(t)ϕ(t)〉 dt

= 〈v0, ϕ(0)〉+

∫ T

0

〈
f̃(t), ϕ(t)

〉
dt+ o(1)

(5.7)

for all ϕ ∈ C1
0 ([0, T );C∞0,σ(Ω)).

Proof: For fixed t ∈ (0, T ] we have vε(t) = vk+1 for some k ∈ {0, . . . , N − 1} as weak
solution of (Nk

ε ). Hence it holds

〈vε(t), ϕ(t)〉+ εν 〈∇vε(t),∇ϕ(t)〉+ ε 〈Lε(t)vε(t), ϕ(t)〉 = ε
〈
f̃(t), ϕ(t)

〉
+ 〈vε(t− ε), ϕ(t)〉
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for each ϕ ∈ C1
0 ([0, T );C∞0,σ(Ω)). Integrating over t, we find∫ T

0
〈vε(t), ϕ(t)〉 dt+ εν

∫ T

0
〈∇vε(t),∇ϕ(t)〉 dt+ ε

∫ T

0
〈Lε(t)vε(t), ϕ(t)〉 dt

= ε

∫ T

0

〈
f̃(t), ϕ(t)

〉
dt+

∫ T

0
〈vε(t− ε), ϕ(t)〉 dt.

(5.8)

Since, for t ∈ (tk, tk+1]

ε 〈Lε(t)vε(t), ϕ(t)〉 = ε
〈
Lkεv

ε(t), ϕ(t)
〉

=
1

2

〈
vε(t) ◦Xk(ε, ·)− vε(t) ◦X−1

k (ε, ·), ϕ(t)
〉

=
1

2
〈vε(t) ◦Xk(ε, ·), ϕ(t)〉 − 1

2

〈
vε(t) ◦X−1

k (ε, ·), ϕ(t)
〉

(2.8)
=

1

2

〈
vε(t), ϕ(t) ◦X−1

k (ε, ·)
〉
− 1

2
〈vε(t), ϕ(t) ◦Xk(ε, ·)〉

= −1

2

〈
vε(t), ϕ(t) ◦Xk(ε, ·)− ϕ(t) ◦X−1

k (ε, ·)
〉

= −ε
〈
vε(t), Lkεϕ(t)

〉
= −ε 〈vε(t), Lε(t)ϕ(t)〉 , (5.9)

we obtain from (5.8)∫ T

0

〈
vε(t)− vε(t− ε)

ε
, ϕ(t)

〉
dt+ ν

∫ T

0
〈∇vε(t),∇ϕ(t)〉 dt−

∫ T

0
〈vε(t), Lε(t)ϕ(t)〉 dt

=

∫ T

0

〈
f̃(t), ϕ(t)

〉
dt.

Thus everything is proved if only∫ T

0

〈
vε(t)− vε(t− ε)

ε
, ϕ(t)

〉
dt = −

∫ T

0
〈vε(t), ϕ̇(t)〉 dt− 〈v0, ϕ(0)〉 − o(1). (5.10)

To prove (5.10), in a first step we pass the difference quotient of vε on the test function
ϕ. We find∫ T

0

〈
vε(t)− vε(t− ε)

ε
, ϕ(t)

〉
dt

=
1

ε

∫ T

0
〈vε(t), ϕ(t)〉 dt− 1

ε

∫ T

0
〈vε(t− ε), ϕ(t)〉 dt
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=

∫ T

0

〈
vε(t),

ϕ(t)− ϕ(t+ ε)

ε

〉
dt+

1

ε

∫ T

0
〈vε(t), ϕ(t+ ε)〉 dt

− 1

ε

∫ T

0
〈vε(t− ε), ϕ(t)〉 dt

(∗)
= −

∫ T

0

〈
vε(t),

ϕ(t+ ε)− ϕ(t)

ε

〉
dt+

1

ε

∫ T−ε

0
〈vε(t), ϕ(t+ ε)〉 dt

− 1

ε

∫ T−ε

−ε
〈vε(t), ϕ(t+ ε)〉 dt

= −
∫ T

0

〈
vε(t),

ϕ(t+ ε)− ϕ(t)

ε

〉
dt− 1

ε

∫ 0

−ε
〈vε(t), ϕ(t+ ε)〉 dt, (5.11)

where in (∗) we use ϕ(t) = 0 for t ≥ T , since ϕ has compact support in [0, T ).

In a second step we add a zero to the term (5.11) and obtain∫ T

0

〈
vε(t)− vε(t− ε)

ε
, ϕ(t)

〉
dt

(5.11)

= −
∫ T

0

〈
vε(t),

ϕ(t+ ε)− ϕ(t)

ε

〉
dt− 1

ε

∫ 0

−ε
〈vε(t), ϕ(t+ ε)〉 dt

−
∫ T

0
〈vε(t), ϕ̇(t)〉 dt− 〈v0, ϕ(0)〉

+

∫ T

0
〈vε(t), ϕ̇(t)〉 dt+ 〈v0, ϕ(0)〉

= −
∫ T

0
〈vε(t), ϕ̇(t)〉 dt− 〈v0, ϕ(0)〉

+

∫ T

0
〈vε(t), ϕ̇(t)〉 dt−

∫ T

0

〈
vε(t),

ϕ(t+ ε)− ϕ(t)

ε

〉
dt︸ ︷︷ ︸

=:a1(ε)

+ 〈v0, ϕ(0)〉 − 1

ε

∫ 0

−ε
〈vε(t), ϕ(t+ ε)〉 dt︸ ︷︷ ︸

=:a2(ε)

.

Thus it remains to prove a1(ε) = o(1) and a2(ε) = o(1) as ε→ 0. Concerning a1(ε) we
find

|a1(ε)| =

∣∣∣∣∫ T

0
〈vε(t), ϕ̇(t)〉 dt−

∫ T

0

〈
vε(t),

ϕ(t+ ε)− ϕ(t)

ε

〉
dt

∣∣∣∣
=

∣∣∣∣∫ T

0

〈
vε(t), ϕ̇(t)− ϕ(t+ ε)− ϕ(t)

ε

〉
dt

∣∣∣∣
(1.5)

≤
∫ T

0
‖vε(t)‖

∥∥∥∥ϕ̇(t)− ϕ(t+ ε)− ϕ(t)

ε

∥∥∥∥ dt
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(∗∗)
≤
∫ T

0
‖vε(t)‖ dt

∥∥∥∥ϕ̇(t̃)− ϕ(t̃+ ε)− ϕ(t̃)

ε

∥∥∥∥
5.6
= o(1)

∫ T

0
‖vε(t)‖ dt as ε→ 0,

where in (∗∗) we use ϕ ∈ C1
0 ([0, T );C∞0,σ(Ω)) and choose t̃ ∈ [0, T ) such that∥∥∥∥ϕ̇(t̃)− ϕ(t̃+ ε)− ϕ(t̃)

ε

∥∥∥∥ = max
t∈[0,T ]

∥∥∥∥ϕ̇(t)− ϕ(t+ ε)− ϕ(t)

ε

∥∥∥∥ .
Since ∫ T

0
‖vε(t)‖ dt

(5.5)

≤ T

(
‖v0‖2 +

c2
p

ν

∫ T

0
‖f(τ)‖2 dτ

) 1
2

<∞,

we have a1(ε) = o(1) as ε→ 0. Using vε(t) = v0 in [−ε, 0], for a2(ε) we obtain

|a2(ε)| =

∣∣∣∣〈v0, ϕ(0)〉 − 1

ε

∫ 0

−ε
〈vε(t), ϕ(t+ ε)〉 dt

∣∣∣∣
=

∣∣∣∣−1

ε

∫ 0

−ε
〈v0, ϕ(t+ ε)− ϕ(0)〉 dt

∣∣∣∣
=

∣∣∣∣1ε
∫ 0

−ε

〈
v0,

∫ t+ε

0
ϕ̇(τ) dτ

〉
dt

∣∣∣∣
=

∣∣∣∣1ε
∫ 0

−ε

∫ t+ε

0
〈v0, ϕ̇(τ)〉 dτ dt

∣∣∣∣
(1.5)

≤ 1

ε

∫ 0

−ε

∫ t+ε

0
‖v0‖ ‖ϕ̇(τ)‖ dτ dt

≤ 1

ε
‖v0‖ max

τ∈[0,ε]
‖ϕ̇(τ)‖

∫ 0

−ε

∫ t+ε

0
dτ dt

≤ ε

2
‖v0‖ max

τ∈[0,T ]
‖ϕ̇(τ)‖ ,

which even implies a2(ε) = O(ε) as ε→ 0. Thus everything is proved. �
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6 A weak solution of the Navier-Stokes equations

Throughout this chapter, let Ω ⊂ R3 be a bounded domain with boundary ∂Ω ∈ C3,
and let 0 < T <∞. For 2 ≤ N ∈ N we consider an equidistant time grid in [0, T ] with
stepsize ε := T

N > 0 and grid points tk := kε, k = 0, . . . , N .

Now let f ∈ L2(0, T ;H1(Ω)), and let v0 := v0 ∈ C1(Ω) be divergence-free in Ω with
v0 = 0 on ∂Ω. By vk+1, k = 0, . . . , N−1, we denote the weak solution of (Nk

ε ) (compare
Proposition 5.1). In this chapter, we consider the step function

vε(t) :=

{
v0 , t ∈ [−ε, 0]

vk+1 , t ∈ (tk, tk+1], k = 0, . . . , N − 1

from Definition 5.3 and investigate the limit as ε→ 0.

To do so, we first prove that for ε := εN := T
N → 0, i. e. N → ∞, there exists an

accumulation point v of {vεN }N that satisfies an energy inequality. In Section 6.2 we
shall prove that v is a weak solution of (N0).

6.1 Convergence properties of {vεN}N

Before we investigate the limit behaviour of the sequence {vεN }N as N → ∞, in the
next lemma we prove the weak equicontinuity of this sequence. This important property
is needed to prove the weak convergence of a subsequence of {vεN (t)}N in H0(Ω) for
all t ∈ [0, T ].

Lemma 6.1 Let Ω ⊂ R3 be a bounded domain with boundary ∂Ω ∈ C3, and let 0 <
T < ∞. For fixed 2 ≤ N ∈ N we set ε := T

N > 0 and tk := kε (k = 0, . . . , N). In
addition, let f ∈ L2(0, T ;H1(Ω)) and let v0 := v0 ∈ C1(Ω) be divergence-free in Ω with
v0 = 0 on ∂Ω.

Then, for each ϕ ∈ C∞0,σ(Ω), the step function vε from Definition 5.3 satisfies

|〈vε(t)− vε(s), ϕ〉| ≤ c
(
|t− s|+

∣∣∣∣∫ t

s
‖f(τ)‖2 dτ

∣∣∣∣)+ o(1) as ε→ 0 (6.1)

for all s, t ∈ [0, T ], where c does not depend on s, t, ε, and where o(1) does not depend
on s, t.

Proof: Let ϕ ∈ C∞0,σ(Ω) and let vk+1 denote the weak solution of (Nk
ε ) for k =

0, . . . , N − 1. Using (4.9) for v := vk+1, u := vk, g := fk+1 := 1
ε

∫ tk+1

tk
f(τ) dτ and

εν
〈
∇vk+1,∇ϕ

〉
(1.11)

= −εν
〈
vk+1,∆ϕ

〉
,

ε
〈
Lkεv

k+1, ϕ
〉

(5.9)
= −ε

〈
vk+1, Lkεϕ

〉
,
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we find 〈
vk+1 − vk, ϕ

〉
= εν

〈
vk+1,∆ϕ

〉
+ ε

〈
vk+1, Lkεϕ

〉
+ ε

〈
fk+1, ϕ

〉
(6.2)

for k = 0, . . . , N − 1.

Now let s, t ∈ (0, T ]. Then there are numbers ks, kt ∈ {0, . . . , N − 1} such that vε(s) =
vks+1 and vε(t) = vkt+1. For s = t = 0 as well as for ks = kt the left side of (6.1) is 0,
thus the assertion is trivial. Now let s, t ∈ [0, T ] with ks < kt (where for the case s = 0
we set ks := −1). Then we have

〈vε(t)− vε(s), ϕ〉 =
〈
vkt+1 − vks+1, ϕ

〉
=

kt∑
k=ks+1

〈
vk+1 − vk, ϕ

〉
(6.2)
=

kt∑
k=ks+1

(
εν
〈
vk+1,∆ϕ

〉
+ ε

〈
vk+1, Lkεϕ

〉
+ ε

〈
fk+1, ϕ

〉)
.

This implies

|〈vε(t)− vε(s), ϕ〉|
(1.5)

≤ ε
(
ν(kt − ks) ‖∆ϕ‖ max

i∈{ks+1,...,kt}

∥∥vi+1
∥∥︸ ︷︷ ︸

=:a1

+ max
i∈{ks+1,...,kt}

∥∥vi+1
∥∥ kt∑
k=ks+1

∥∥∥Lkεϕ∥∥∥︸ ︷︷ ︸
=:a2

+ ‖ϕ‖
kt∑

k=ks+1

∥∥∥fk+1
∥∥∥︸ ︷︷ ︸

=:a3

)
.

Due to tkt < t and s− ε ≤ tks , hence −tks ≤ −s+ ε, we have

ε(kt − ks) = tkt − tks < t− s+ ε, (6.3)

and to estimate max
i∈{ks+1,...,kt}

∥∥vi+1
∥∥ independently of ks, kt, ε, we use

max
i∈{ks+1,...,kt}

∥∥vi+1
∥∥ ≤ max

i∈{0,...,N−1}

∥∥vi+1
∥∥

(5.5)

≤

(
‖v0‖2 +

c2
p

ν

∫ T

0
‖f(τ)‖2 dτ

) 1
2

=: M.

Hence, for εa1 we find

εa1

(6.3)
< νM ‖∆ϕ‖ (t− s+ ε)

=: νM ‖∆ϕ‖ |t− s|+O(ε) as ε→ 0.



6 A WEAK SOLUTION OF THE NAVIER-STOKES EQUATIONS 54

To estimate εa2, we first consider

Lkεϕ(x) :=
1

2ε

{
ϕ ◦Xk(ε, x)− ϕ ◦X−1

k (ε, x)
}
,

with mappings Xk, X
−1
k constructed from the solution t 7→ x(t) =: Xk(t, x0) of the

initial value problem (5.1):

ẋ(t) = vk(x(t)),

x(0) = x0.

For ϕ ◦Xk(ε, x)− ϕ(x) we can use the fundamental theorem of calculus and obtain

ϕ ◦Xk(ε, x)− ϕ(x) = ϕ ◦Xk(ε, x)− ϕ ◦Xk(0, x)

=

∫ ε

0
∂τϕ(Xk(τ, x)) dτ

=

∫ ε

0
∂τXk(τ, x) · ∇Xϕ(Xk(τ, x)) dτ

=

∫ ε

0
vk ◦Xk(τ, x) · ∇Xϕ(Xk(τ, x)) dτ

=

∫ ε

0
[vk · ∇Xϕ] ◦Xk(τ, x) dτ. (6.4)

Analogously, we have

ϕ(x)− ϕ ◦X−1
k (ε, x) =

∫ ε

0
[vk · ∇Xϕ] ◦X−1

k (τ, x) dτ.

Thus, we can use the conservation of measure to estimate
∥∥Lkεϕ∥∥ and obtain∥∥∥Lkεϕ∥∥∥ =

1

2ε

∥∥ϕ ◦Xk(ε, ·)− ϕ ◦X−1
k (ε, ·)

∥∥
=

1

2ε

∥∥∥(ϕ ◦Xk(ε, ·)− ϕ(·)
)

+
(
ϕ(·)− ϕ ◦X−1

k (ε, ·)
)∥∥∥

≤ 1

2ε
‖ϕ ◦Xk(ε, ·)− ϕ(·)‖+

1

2ε

∥∥ϕ(·)− ϕ ◦X−1
k (ε, ·)

∥∥
(6.4)
=

1

2ε

∥∥∥∥∫ ε

0
[vk · ∇Xϕ] ◦Xk(τ, ·) dτ

∥∥∥∥+
1

2ε

∥∥∥∥∫ ε

0
[vk · ∇Xϕ] ◦X−1

k (τ, ·) dτ

∥∥∥∥
(∗)
≤ 1

2
√
ε

(∫ ε

0

∥∥∥[vk · ∇Xϕ] ◦Xk(τ, ·)
∥∥∥2

dτ

) 1
2

+
1

2
√
ε

(∫ ε

0

∥∥∥[vk · ∇Xϕ] ◦X−1
k (τ, ·)

∥∥∥2
dτ

) 1
2

(2.7)
=

1√
ε

(∫ ε

0

∥∥∥vk · ∇ϕ∥∥∥2
dτ

) 1
2 (1.7)

≤ c
∥∥∥vk∥∥∥ ‖∇ϕ‖0,∞ ≤ cM ‖∇ϕ‖0,∞ , (6.5)
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where (∗) is proved similar to (5.6). This yields an estimate of
∥∥Lkεϕ∥∥ independent of

k and ε, hence we obtain

εa2 ≤ cM2 ‖∇ϕ‖0,∞ ε(kt − ks)

(6.3)
< cM2 ‖∇ϕ‖0,∞ (t− s+ ε)

=: cM2 ‖∇ϕ‖0,∞ |t− s|+O(ε) as ε→ 0.

For εa3 we use 2ab ≤ a2 + b2 for a, b ∈ R, which implies

εa3 = ε ‖ϕ‖
kt∑

k=ks+1

∥∥∥fk+1
∥∥∥ =

ε

2
‖ϕ‖

kt∑
k=ks+1

2 · 1 ·
∥∥∥fk+1

∥∥∥
≤ ε

2
‖ϕ‖

kt∑
k=ks+1

(
1 +

∥∥∥fk+1
∥∥∥2
)

=
ε

2
‖ϕ‖ (kt − ks) +

ε

2
‖ϕ‖

kt∑
k=ks+1

∥∥∥fk+1
∥∥∥2

(∗)
≤ 1

2
‖ϕ‖ (t− s+ ε) +

1

2
‖ϕ‖

kt∑
k=ks+1

∫ tk+1

tk

‖f(τ)‖2 dτ,

where in (∗) we use (5.6) and (6.3). Hence, setting f(τ) = 0 for τ > T and using
s ≤ tks+1 and tkt+1 < t+ ε, we obtain

εa3 ≤ 1

2
‖ϕ‖

(
t− s+ ε+

∫ t+ε

s
‖f(τ)‖2 dτ

)

≤ 1

2
‖ϕ‖

(
t− s+ ε+

∫ t

s
‖f(τ)‖2 dτ + ess sup

σ∈[0,T ]

∫ σ+ε

σ
‖f(τ)‖2 dτ

)

=:
1

2
‖ϕ‖

(
|t− s|+

∫ t

s
‖f(τ)‖2 dτ

)
+O(ε) + o(1) as ε→ 0.

For ks > kt everything works analogously, thus the assertion is proved. �

The following theorem states an important result about the convergence behaviour of
{vεN }N as N → ∞. Some parts of the proof are motivated by Shinbrot [19, pp.
169–173].

Theorem 6.2 Let Ω ⊂ R3 be a bounded domain with boundary ∂Ω ∈ C3, and let
0 < T <∞. For fixed 2 ≤ N ∈ N we set ε := εN := T

N > 0 and tk := kε (k = 0, . . . , N).
In addition, let f ∈ L2(0, T ;H1(Ω)), let v0 ∈ C1(Ω) be divergence-free in Ω with v0 = 0
on ∂Ω, and let vε be the step function from Definition 5.3.

Then, there exists a subsequence {vεNk}k of {vεN }N and a function v ∈ L2
(
0, T ;H1(Ω)

)
with the following properties:
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vεNk (t)
k→∞
−⇀ v(t) in H0(Ω) for all t ∈ [0, T ], (6.6a)

vεNk
k→∞−→ v in L2(0, T ;H0(Ω)), (6.6b)

vεNk
k→∞
−⇀ v in L2(0, T ;H1(Ω)). (6.6c)

Proof: To prove (6.6a), let t ∈ [0, T ] be fixed. By Propositions 5.4 and 5.5 we have
vε(t) ∈ H3(Ω) ∩H1(Ω) for all t ∈ (0, T ] with

‖vε(t)‖2 ≤ ‖v0‖2 +
c2
p

ν

∫ T

0
‖f(τ)‖2 dτ

for all ε = εN > 0. Hence {vεN (t)}N is bounded in H0(Ω). This implies the existence
of a subsequence {vεNk (t)}k and of a function v(t) ∈ H0(Ω) satisfying

vεNk (t)
k→∞
−⇀ v(t) in H0(Ω)

(compare Proposition 1.15). Of course, the subsequence {Nk}k of {N}N depends on t,
i. e. we have Nk = Nk(t).

Next we construct a subsequence {Nk}k of {N}N independent of t, i. e. satisfying

vεNk (t)
k→∞
−⇀ v(t) in H0(Ω) for all t ∈ [0, T ]. This construction is carried out in two

steps.

In a first step we consider t ∈ [0, T ]∩Q =: {t1, t2, . . . }, i. e. t is contained in a countable
set of rational numbers. In this case, the above procedure for t = t1 yields a subsequence

{Nk(t1)}k of {N}N satisfying vεNk(t1)(t1)
k→∞
−⇀ v(t1) in H0(Ω).

Since {vεNk(t1)(t2)}k is bounded in H0(Ω), there exists a subsequence {Nk(t2)}k of

{Nk(t1)}k satisfying vεNk(t2)(t1)
k→∞
−⇀ v(t1) in H0(Ω) as well as vεNk(t2)(t2)

k→∞
−⇀ v(t2) in

H0(Ω).

Repeating this procedure for all rational points t1, t2, t3, . . . , the usual diagonal argu-
ment leads to a subsequence {Nk}k of {N}N such that

vεNk (t)
k→∞
−⇀ v(t) in H0(Ω)

for all t ∈ [0, T ] ∩Q, where v(t) ∈ H0(Ω).

For simplicity, throughout this proof we denote this subsequence {Nk}k again by {N}N .

Now, in the second step, let t ∈ [0, T ] be non-rational and let t̃ ∈ [0, T ] ∩ Q. To prove
the weak continuity of vεN (t) in H0(Ω), we use the decomposition
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|〈vεN (t), ϕ〉 − 〈vεM (t), ϕ〉| ≤
∣∣〈vεN (t), ϕ〉 −

〈
vεN (t̃), ϕ

〉∣∣︸ ︷︷ ︸
=:a1

+
∣∣〈vεN (t̃), ϕ

〉
−
〈
vεM (t̃), ϕ

〉∣∣︸ ︷︷ ︸
=:a2

+
∣∣〈vεM (t̃), ϕ

〉
− 〈vεM (t), ϕ〉

∣∣︸ ︷︷ ︸
=:a3

.

Here it suffices to consider ϕ ∈ C∞0,σ(Ω) since this set is dense in H0(Ω).

Using Lemma 6.1, for a1 we find

a1 ≤ c
(
|t− t̃|+

∣∣∣∣∫ t

t̃
‖f(τ)‖2 dτ

∣∣∣∣)+ o(1) as N →∞,

where the constant c does not depend on t, t̃, N , hence the term a1 can be made as
small as desired by choosing N large enough and |t− t̃| small enough. Analogously we
can make a3 as small as desired by choosing M large enough and |t− t̃| small enough.

The remaining term a2 is getting small for sufficiently large N and M since t̃ ∈ Q.

It follows that {〈vεN (t), ϕ〉}N is a Chauchy sequence also for t ∈ [0, T ]\Q, hence we
obtain

vεN (t)
N→∞
−⇀ v(t) in H0(Ω) for all t ∈ [0, T ]

for some function v : [0, T ]→ H0(Ω).

To prove (6.6c) we use the subsequence {εN}N from above, providing weak convergence

vεN (t)
N→∞
−⇀ v(t) in H0(Ω) for all t ∈ [0, T ]. By Proposition 5.5, setting t = T in (5.5),

we have ∫ T

0
‖∇vεN (t)‖2 dt

(5.5)

≤ 1

ν

(
‖v0‖2 +

c2
p

ν

∫ T

0
‖f(τ)‖2 dτ

)
, (6.7)

where the right hand side does not depend on ε, hence the sequence {vεN }N is bounded
in L2(0, T ;H1(Ω)). Thus there exists a subsequence – here denoted by {vεN }N again –
satisfying

vεN
N→∞
−⇀ v in L2(0, T ;H1(Ω)).

Of course, here v ∈ L2(0, T ;H1(Ω)) is the same limit function as for the weak conver-
gence pointwise in H0(Ω).

To prove (6.6b), again we start with the subsequence {εN}N constructed above and
satisfying (6.6a) and (6.6c). Using Proposition 1.18 and Proposition 5.5, for the limit
function v ∈ L2(0, T ;H1(Ω)) we obtain

‖v(t)‖2 + ν

∫ t

0
‖∇v(τ)‖2 dτ

(1.13c)

≤ lim inf
N→∞

‖vεN (t)‖2 + ν lim inf
N→∞

∫ t

0
‖∇vεN (τ)‖2 dτ
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= lim inf
N→∞

(
‖vεN (t)‖2 + ν

∫ t

0
‖∇vεN (τ)‖2 dτ

)
(5.5)

≤ lim inf
N→∞

(
‖v0‖2 +

c2
p

ν

∫ tj(N)

0
‖f(τ)‖2 dτ

)

= ‖v0‖2 +
c2
p

ν

∫ t

0
‖f(τ)‖2 dτ, (6.8)

where, for all N ∈ N, tj(N) denotes the smallest grid point with t ≤ tj(N), hence

tj(N)
N→∞−→ t.

In addition, using the Poincaré inequality from Proposition 1.3 on (6.7), the weak
convergence of {vεN }N in L2(0, T ;H1(Ω)) immediately implies the weak convergence in
L2(0, T ;H0(Ω)) for some subsequence, again denoted by {vεN }N .

To prove the strong convergence in L2(0, T ;H0(Ω)), we need to show∫ T

0
‖vεN (t)− v(t)‖2 dt

N→∞−→ 0.

Let {wj}j with wj ∈ C∞0,σ(Ω) be the sequence of functions from Lemma 1.10. Since

vεN (t) − v(t) ∈ H1(Ω) for almost all t ∈ [0, T ], the lemma states that for all δ > 0 we
find an M = Mδ ∈ N with

‖vεN (t)− v(t)‖2 ≤ δ ‖∇(vεN (t)− v(t))‖2 +

Mδ∑
j=1

|〈vεN (t)− v(t), ωj〉|2

for almost all t ∈ [0, T ].

Integrating over [0, T ], we obtain∫ T

0
‖vεN (t)− v(t)‖2 dt

≤ δ
∫ T

0
‖∇vεN (t)−∇v(t)‖2 dt︸ ︷︷ ︸

=:b1

+

Mδ∑
j=1

∫ T

0
|〈vεN (t)− v(t), ωj〉|2 dt︸ ︷︷ ︸

=:b2

.

Using 2ab ≤ a2 + b2, we can estimate the term b1 by

b1 ≤ δ

∫ T

0
‖∇vεN (t)‖2 dt+ δ

∫ T

0
‖∇v(t)‖2 dt+ δ

∫ T

0
2 ‖∇vεN (t)‖ ‖∇v(t)‖ dt

≤ 2δ

∫ T

0
‖∇vεN (t)‖2 dt+ 2δ

∫ T

0
‖∇v(t)‖2 dt

(∗)
≤ 4δ

ν

(
‖v0‖2 +

c2
p

ν

∫ T

0
‖f(τ)‖2 dτ

)
,
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where in (∗) we use (5.5) and (6.8). Here we can choose δ as small as desired.

Once δ is fixed, also M = Mδ ∈ N is fixed, and, due to the weak convergence vεN
N→∞
−⇀ v

in L2(0, T ;H0(Ω)), we can make b2 as small as desired by choosing N sufficiently large.
This leads to

vεN
N→∞−→ v in L2(0, T ;H0(Ω)),

and the proof is finished. �

Corollary 6.3 Let the assumptions of Theorem 6.2 be satisfied. Then the limit function
v of {vεN }N from Theorem 6.2 satisfies

‖v(t)‖2 + ν

∫ t

0
‖∇v(τ)‖2 dτ ≤ ‖v0‖2 +

c2
p

ν

∫ t

0
‖f(τ)‖2 dτ (6.9)

for all t ∈ [0, T ].

Proof: The above estimate was shown in (6.8) in the proof of Theorem 6.2. �

In the following Proposition we transfer the energy equality of vε to v and obtain the
energy inequality for v.

Proposition 6.4 Let the assumptions of Theorem 6.2 be satisfied. Then the limit
function v of {vεN }N from Theorem 6.2 satisfies

v ∈ L∞
(
0, T ;H0(Ω)

)
∩ L2

(
0, T ;H1(Ω)

)
.

In addition, the energy inequality

‖v(t)‖2 + 2ν

∫ t

0
‖∇v(τ)‖2 dτ ≤ ‖v0‖2 + 2

∫ t

0
〈f(τ), v(τ)〉 dτ (6.10)

holds true for all t ∈ [0, T ].

Proof: From Theorem 6.2 we have v ∈ L2(0, T ;H1(Ω)) and by

ess sup
t∈[0,T ]

‖v(t)‖
(6.9)

≤ ess sup
t∈[0,T ]

(
‖v0‖2 +

c2
p

ν

∫ T

0
‖f(τ)‖2 dτ

) 1
2

=

(
‖v0‖2 +

c2
p

ν

∫ T

0
‖f(τ)‖2 dτ

) 1
2

<∞

we find v ∈ L∞(0, T ;H0(Ω)) ∩ L2(0, T ;H1(Ω)).
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To prove the energy inequality, for N ∈ N, t ∈ [0, T ] let tj(N) denote the smallest grid
point satisfying t ≤ tj(N). Then – using vεN (t) = vεN (tj(N)) and the energy equality of
vεN from Proposition 5.4 – we obtain

‖v(t)‖2 + 2ν

∫ t

0
‖∇v(τ)‖2 dτ

(1.13c)

≤ lim inf
N→∞

(
‖vεN (t)‖2 + 2ν

∫ t

0
‖∇vεn(τ)‖2 dτ

)
≤ lim inf

N→∞

(∥∥vεN (tj(N))
∥∥2

+ 2ν

∫ tj(N)

0
‖∇vεN (τ)‖2 dτ

)
(5.4)

≤ lim inf
N→∞

(
‖v0‖2 + 2

∫ tj(N)

0
〈f(τ), vεN (τ)〉 dτ

)
= lim inf

N→∞

(
‖v0‖2 + 2

∫ t

0
〈f(τ), vεN (τ)− v(τ)〉 dτ

+ 2

∫ t

0
〈f(τ), v(τ)〉 dτ + 2

∫ tj(N)

t
〈f(τ), vεN (τ)〉 dτ

)
= ‖v0‖2 + 2

∫ t

0
〈f(τ), v(τ)〉 dτ

+ 2 lim inf
N→∞

∫ t

0
〈f(τ), vεN (τ)− v(τ)〉 dτ︸ ︷︷ ︸

=:a1

+ 2 lim inf
N→∞

∫ tj(N)

t
〈f(τ), vεN (τ)〉 dτ︸ ︷︷ ︸
=:a2

.

Thus the assertion is proved, if only a1 = a2 = 0.

Using the convergence vεN
N→∞−→ v in L2(0, T ;H0(Ω)) from Theorem 6.2, we obtain the

estimate

|a1| = lim inf
N→∞

∣∣∣∣∫ t

0
〈f(τ), vεN (τ)− v(τ)〉 dτ

∣∣∣∣
(1.5)

≤ lim inf
N→∞

∫ t

0
‖f(τ)‖ ‖vεN (τ)− v(τ)‖ dτ

≤ lim inf
N→∞

∫ T

0
‖f(τ)‖ ‖vεN (τ)− v(τ)‖ dτ

(1.4)

≤ lim inf
N→∞

(∫ T

0
‖f(τ)‖2 dτ

) 1
2
(∫ T

0
‖vεN (τ)− v(τ)‖2 dτ

) 1
2

(6.6b)
= 0.

Using Proposition 5.5, for a2 we find∣∣∣∣∫ tj(N)

t
〈f(τ), vεN (τ)〉 dτ

∣∣∣∣ (1.5)

≤
∫ tj(N)

t
‖f(τ)‖ ‖vεN (τ)‖ dτ
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(1.4)

≤
(∫ tj(N)

t
‖f(τ)‖2 dτ

) 1
2
(∫ tj(N)

t
‖vεN (τ)‖2 dτ

) 1
2

(5.5)

≤ c
√
tj(N) − t

(∫ tj(N)

t
‖f(τ)‖ dτ

) 1
2

,

where c is independent of t and ε. Hence, by tj(N)
N→∞−→ t, we have

a2 = lim inf
N→∞

∫ tj(N)

t
〈f(τ), vεN (τ)〉 dτ = 0

and the energy inequality is proved. �

6.2 Existence of a weak solution of (N0)

In this section, we prove that the function v from Theorem 6.2 is a weak solution of the
Navier-Stokes equations

∂tv − ν∆v +∇p+ v · ∇v = f in (0, T )× Ω,

∇ · v = 0 in (0, T )× Ω, (N0)

v|∂Ω
= 0 in [0, T ),

v|t=0
= v0 in Ω.

Let us first define the notion of a weak solution in the sense of Leray-Hopf (compare
Hopf [11, p. 220] and Leray [13], [14])

Definition 6.5 Let Ω ⊂ R3 be a bounded domain, let f ∈ L2(0, T ;L2(Ω)) and let
v0 ∈ H0(Ω). A function

v ∈ L∞(0, T ;H0(Ω)) ∩ L2(0, T ;H1(Ω)) (6.11a)

is called a weak solution of (N0), if it satisfies

T∫
0

(
− 〈v, ϕ̇〉+ ν 〈∇v,∇ϕ〉 − 〈v · ∇ϕ, v〉

)
dt = 〈v0, ϕ(0)〉+

T∫
0

〈f, ϕ〉 dt (6.11b)

for all test functions ϕ ∈ C1
0 ([0, T );C∞0,σ(Ω)), and if the energy inequality

‖v(t)‖2 + 2ν

∫ t

0
‖∇v(τ)‖2 dτ ≤ ‖v0‖2 + 2

∫ t

0
〈f(τ), v(τ)〉 dτ (6.11c)

holds true for all t ∈ [0, T ].

Now our main result is stated as follows:
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Theorem 6.6 Every accumulation point v of the sequence {vεN }N constructed as in
Theorem 6.2 is a weak solution of the Navier-Stokes equations (N0), i. e. it satisfies
(6.11a), (6.11b) and (6.11c).

Proof: Let the assumptions of Theorem 6.2 be satisfied and let {vεN }N denote any
subsequence satisfying

vεN (t)
N→∞
−⇀ v(t) in H0(Ω) for all t ∈ [0, T ], (6.12a)

vεN
N→∞−→ v in L2(0, T ;H0(Ω)), (6.12b)

vεN
N→∞
−⇀ v in L2(0, T ;H1(Ω)). (6.12c)

By Proposition 6.4, we know that v satisfies

v ∈ L∞
(
0, T ;H0(Ω)

)
∩ L2

(
0, T ;H1(Ω)

)
and the energy inequality

‖v(t)‖2 + 2ν

∫ t

0
‖∇v(τ)‖2 dτ ≤ ‖v0‖2 + 2

∫ t

0
〈f(τ), v(τ)〉 dτ

for all t ∈ [0, T ]. Thus (6.11a) and (6.11c) are proved.

To prove (6.11b), we consider (5.7) from Lemma 5.7:

−
∫ T

0
〈vεN (t), ϕ̇(t)〉 dt− 〈v0, ϕ(0)〉︸ ︷︷ ︸

=:aN1

+ ν

∫ T

0
〈∇vεN (t),∇ϕ(t)〉 dt︸ ︷︷ ︸

=:aN2

−
∫ T

0
〈LεN (t)ϕ(t), vεN (t)〉 dt︸ ︷︷ ︸

=:aN3

=

∫ T

0

〈
f̃(t), ϕ(t)

〉
dt︸ ︷︷ ︸

=:aN4

+ o(1) as N →∞,

(5.7)

where for t ∈ (tk, tk+1] we have

f̃(t) := fk+1 :=
1

εN

∫ tk+1

tk

f(τ) dτ

and

LεN (t)ϕ(t, x) := LkεNϕ(t, x)

:=
1

2ε

{
ϕ(t) ◦Xk(εN , x)− ϕ(t) ◦X−1

k (εN , x)
}
,
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with mappings Xk, X
−1
k constructed from the solution τ 7→ x(τ) =: Xk(τ, x0) of the

initial value problem (5.1):

ẋ(τ) = vk(x(τ)),

x(0) = x0.

Now let ϕ ∈ C1
0 ([0, T );C∞0,σ(Ω)). To prove that v is a weak solution of (N0) we shall

show that v satisfies

−
∫ T

0
〈v(t), ϕ̇(t)〉 dt− 〈v0, ϕ(0)〉︸ ︷︷ ︸

=:b1

+ ν

∫ T

0
〈∇v(t),∇ϕ(t)〉 dt︸ ︷︷ ︸

=:b2

−
∫ T

0
〈v(t) · ∇ϕ(t), v(t)〉 dt︸ ︷︷ ︸

=:b3

=

∫ T

0
〈f(t), ϕ(t)〉 dt︸ ︷︷ ︸

=:b4

by proving

aNi
N→∞−→ bi, i = 1, . . . , 4.

Due to the weak convergence of {vεN }N in L2(0, T ;H0(Ω)) and in L2(0, T ;H1(Ω)) we
obtain

lim
N→∞

∫ T

0
〈vεN (t), ϕ̇(t)〉 dt

(6.12b)
=

∫ T

0
〈v(t), ϕ̇(t)〉 dt,

lim
N→∞

∫ T

0
〈∇vεN (t),∇ϕ(t)〉 dt

(6.12c)
=

∫ T

0
〈∇v(t),∇ϕ(t)〉 dt,

i. e. aN1
N→∞−→ b1 and aN2

N→∞−→ b2 are proved.

To show aN3
N→∞−→ b3 means to prove

lim
N→∞

∫ T

0
〈LεN (t)ϕ(t), vεN (t)〉 dt =

∫ T

0
〈v(t) · ∇ϕ(t), v(t)〉 dt.

This is the most crucial point, and therefore it will be shown separately in the next
Theorem 6.7.

The last statement

lim
N→∞

aN4 = b4

can be proved as follows: Let M := M(N) := T
εN

be the number of positive grid points
in [0, T ] for the stepsize εN . Then we find∫ T

0

〈
f̃(t), ϕ(t)

〉
dt =

M−1∑
k=0

∫ tk+1

tk

〈
fk+1, ϕ(t)

〉
dt
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=
M−1∑
k=0

∫ tk+1

tk

〈
1

εN

∫ tk+1

tk

f(τ) dτ, ϕ(t)

〉
dt

=
1

εN

M−1∑
k=0

∫ tk+1

tk

∫ tk+1

tk

〈f(τ), ϕ(t)〉 dτ dt

=
1

εN

M−1∑
k=0

∫ tk+1

tk

∫ tk+1

tk

〈f(τ), ϕ(t)− ϕ(τ)〉 dτ dt︸ ︷︷ ︸
=:cN1

+
1

εN

M−1∑
k=0

∫ tk+1

tk

∫ tk+1

tk

〈f(τ), ϕ(τ)〉 dτ dt︸ ︷︷ ︸
=:cN2

.

We can estimate cN1 by

cN1
(1.5)

≤
M−1∑
k=0

∫ tk+1

tk

∫ tk+1

tk

‖f(τ)‖
∥∥∥∥ϕ(t)− ϕ(τ)

εN

∥∥∥∥ dτ dt

(∗)
≤

M−1∑
k=0

∫ tk+1

tk

∫ tk+1

tk

‖f(τ)‖ ‖ϕ̇(σk)‖ dτ dt

≤
M−1∑
k=0

∫ tk+1

tk

∫ tk+1

tk

‖f(τ)‖ max
σ∈[0,T ]

‖ϕ̇(σ)‖ dτ dt

=: cεN

M−1∑
k=0

∫ tk+1

tk

‖f(τ)‖ dτ

= cεN

∫ T

0
‖f(τ)‖ dτ

(1.4)

≤ cεN
√
T

(∫ T

0
‖f(τ)‖2 dτ

) 1
2

N→∞−→ 0,

where for the estimate (∗) we use a mean value theorem.

Concerning cN2 we find

cN2 =
M−1∑
k=0

∫ tk+1

tk

〈f(τ), ϕ(τ)〉 dτ

=

∫ T

0
〈f(τ), ϕ(τ)〉 dτ

= b4,
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hence

lim
N→∞

∫ T

0

〈
f̃(t), ϕ(t)

〉
dt =

∫ T

0
〈f(t), ϕ(t)〉 dt,

i. e. lim
N→∞

aN4 = b4 is proved. �

We still need to show the statement aN3
N→∞−→ b3. This is the most challenging part.

It means that the weak limit procedure to the nonlinear term is possible if only the
sequence of approximate solutions is strongly convergent in L2(0, T ;H0(Ω)) and weakly
convergent in L2(0, T ;H1(Ω)). To precisely formulate this statement, let us recall: For
t ∈ (tk, tk+1], k = 0, . . . ,M − 1, where M := T

εN
denotes the number of positive grid

points, we have

LεN (t)ϕ(t, x) := LkεNϕ(t, x)

:=
1

2εN

{
ϕ(t) ◦Xk(εN , x)− ϕ(t) ◦X−1

k (εN , x)
}
.

(6.13)

Here the mappings Xk, X
−1
k are constructed from the solution τ 7→ x(τ) =: Xk(τ, x0)

of the initial value problem (5.1):

ẋ(τ) = vk(x(τ)),

x(0) = x0.

Some parts of the following proof correspond to the investigation of Asanalieva,
Heutling & Varnhorn [5, pp. 349–353].

Theorem 6.7 For every accumulation point v of a sequence {vεN }N constructed as
in Theorem 6.2 it holds

lim
N→∞

∫ T

0
〈LεN (t)ϕ(t), vεN (t)〉 dt =

∫ T

0
〈v(t) · ∇ϕ(t), v(t)〉 dt (6.14)

for all ϕ ∈ C1
0 ([0, T );C∞0,σ(Ω)).

Proof: Let the assumptions of Theorem 6.2 be satisfied and let {vεN }N denote any
subsequence satisfying (6.12a)–(6.12c). To prove (6.14), we show

lim
N→∞

∫ T

0

(
〈LεN (t)ϕ(t), vεN (t)〉 − 〈v(t) · ∇ϕ(t), v(t)〉

)
︸ ︷︷ ︸

=:IN (t)

dt = 0.

For t ∈ (tk, tk+1], k = 0, . . . , N − 1, setting Xk := Xk(εN ), the Integrand IN (t) is
decomposed as follows:
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IN (t) =
〈
LkεNϕ(t), vεN (t)

〉
− 〈v(t) · ∇ϕ(t), v(t)〉

=
〈
LkεNϕ(t), vεN (t)

〉
−
〈
LkεNϕ(t), v(t)

〉
+
〈
LkεNϕ(t), v(t)

〉
︸ ︷︷ ︸

=0

−〈v(t) · ∇ϕ(t), v(t)〉

=
〈
LkεNϕ(t), vεN (t)− v(t)

〉
+
〈
LkεNϕ(t)− v(t) · ∇ϕ(t), v(t)

〉
=
〈
LkεNϕ(t), vεN (t)− v(t)

〉
+

〈
1

2εN

{
ϕ(t) ◦Xk − ϕ(t) ◦X−1

k

}
− v(t) · ∇ϕ(t), v(t)

〉
=
〈
LkεNϕ(t), vεN (t)− v(t)

〉
+

〈
1

2εN

{
ϕ(t) ◦Xk−ϕ(t) + ϕ(t)︸ ︷︷ ︸

=0

−ϕ(t) ◦X−1
k

}
− v(t) · ∇ϕ(t), v(t)

〉

=
〈
LkεNϕ(t), vεN (t)− v(t)

〉
︸ ︷︷ ︸

=:aN1 (t)

+
1

2

〈
1

εN

(
ϕ(t) ◦Xk − ϕ(t)

)
− v(t) · ∇ϕ(t), v(t)

〉
︸ ︷︷ ︸

=:aN2 (t)

+
1

2

〈
1

εN

(
ϕ(t)− ϕ(t) ◦X−1

k

)
− v(t) · ∇ϕ(t), v(t)

〉
︸ ︷︷ ︸

=:aN3 (t)

.

To estimate the integral over aN1 (t) we use the strong convergence vεN
N→∞−→ v in

L2(0, T ;H0(Ω)), see (6.12b), and the boundedness of
∥∥LkεN (t)ϕ(t)

∥∥, which can be de-
rived from (6.5) with ϕ ∈ C1

0 ([0, T );C∞0,σ(Ω)), which implies

‖∇ϕ(t)‖0,∞ ≤ max
τ∈[0,T ]

‖∇ϕ(τ)‖0,∞ ≤ c (6.15)

for some constant c independent of t. We obtain∣∣∣∣∫ T

0
aN1 (t) dt

∣∣∣∣ =

∣∣∣∣∫ T

0
〈LεN (t)ϕ(t), vεN (t)− v(t)〉 dt

∣∣∣∣
(1.5)

≤
∫ T

0
‖LεN (t)ϕ(t)‖ ‖vεN (t)− v(t)‖ dt

(1.4)

≤
(∫ T

0
‖LεN (t)ϕ(t)‖2 dt

) 1
2
(∫ T

0
‖vεN (t)− v(t)‖2 dt

) 1
2
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(6.5)

≤ c
(∫ T

0
‖vεN (t)− v(t)‖2 dt

) 1
2

N→∞−→ 0.

The integrals over aN2 (t) and aN3 (t) can be treated in exactly the same way. Therefore
we restrict our investigations to the integral over aN2 (t), only.

We use the construction of the mappings Xk to replace the term ϕ(t) ◦Xk(εN )− ϕ(t)
(compare (6.4) in the proof of Lemma 6.1) and obtain

aN2 (t) =
1

2

〈
1

εN

(
ϕ(t) ◦Xk(εN )− ϕ(t)

)
− v(t) · ∇ϕ(t), v(t)

〉
(6.4)
=

1

2

〈
1

εN

∫ εN

0
[vεN (tk) · ∇Xϕ(t)] ◦Xk(τ) dτ − v(t) · ∇ϕ(t), v(t)

〉
=

1

2εN

∫ εN

0
〈[vεN (tk) · ∇Xϕ(t)] ◦Xk(τ)− v(t) · ∇ϕ(t), v(t)〉 dτ

(2.8)
=

1

2εN

∫ εN

0

( 〈
vεN (tk) · ∇ϕ(t), v(t) ◦X−1

k (τ)
〉

−
〈
vεN (t) · ∇ϕ(t), v(t) ◦X−1

k (τ)
〉

+
〈
vεN (t) · ∇ϕ(t), v(t) ◦X−1

k (τ)
〉︸ ︷︷ ︸

=0

−
〈
v(t) · ∇ϕ(t), v(t) ◦X−1

k (τ)
〉

+
〈
v(t) · ∇ϕ(t), v(t) ◦X−1

k (τ)
〉︸ ︷︷ ︸

=0

− 〈v(t) · ∇ϕ(t), v(t)〉
)

dτ

=
1

2εN

∫ εN

0

〈
(vεN (tk)− vεN (t)) · ∇ϕ(t), v(t) ◦X−1

k (τ)
〉

dτ︸ ︷︷ ︸
=:bN1 (t)

+
1

2εN

∫ εN

0

〈
(vεN (t)− v(t)) · ∇ϕ(t), v(t) ◦X−1

k (τ)
〉

dτ︸ ︷︷ ︸
=:bN2 (t)

− 1

2εN

∫ εN

0

〈
v(t) · ∇ϕ(t), v(t)− v(t) ◦X−1

k (τ)
〉

dτ︸ ︷︷ ︸
=:bN3 (t)

.

To estimate bN1 (t) we use (6.15) on ‖∇ϕ(t)‖0,∞ and the energy inequality from Propo-
sition 6.4 on ‖v(t)‖, hence

∣∣bN1 (t)
∣∣ =

1

2εN

∣∣∣∣∫ εN

0

〈
(vεN (tk)− vεN (t)) · ∇ϕ(t), v(t) ◦X−1

k (τ)
〉

dτ

∣∣∣∣
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(1.7)

≤ c

2εN

∫ εN

0
‖vεN (tk)− vεN (t)‖ ‖∇ϕ(t)‖0,∞

∥∥v(t) ◦X−1
k (τ)

∥∥ dτ

(2.7)
=

c

2εN

∫ εN

0
‖vεN (tk)− vεN (t)‖ ‖∇ϕ(t)‖0,∞ ‖v(t)‖ dτ

=
c

2
‖vεN (tk)− vεN (t)‖ ‖∇ϕ(t)‖0,∞ ‖v(t)‖

(6.9),(6.15)

≤ c1 ‖vεN (tk)− vεN (t)‖ .

To estimate ‖vεN (tk)− vεN (t)‖ we use

‖u− w‖2 = 〈u− w, u+ w − 2w〉

= 〈u− w, u+ w〉 − 2 〈u− w,w〉

= ‖u‖2 − ‖w‖2 − 2 〈u− w,w〉 ,

which implies the decomposition

‖vεN (tk)− vεN (t)‖2 = ‖vεN (tk)‖2 − ‖vεN (t)‖2

− 2

〈
vεN (tk)− vεN (t), vεN (t)−v(t) + v(t)︸ ︷︷ ︸

=0

〉

= ‖vεN (tk)‖2 − ‖vεN (t)‖2︸ ︷︷ ︸
=:cN1 (t)

− 2 〈vεN (tk)− vεN (t), vεN (t)− v(t)〉︸ ︷︷ ︸
=:cN2 (t)

− 2 〈vεN (tk)− vεN (t), v(t)〉︸ ︷︷ ︸
=:cN3 (t)

.

Concerning cN1 (t) we can use Corollary 5.2, since vεN (t) = vεN (tk+1) for t ∈ (tk, tk+1].
Setting f(τ) = 0 for τ > T we find

|cN1 (t)| =
∣∣∣‖vεN (tk+1)‖2 − ‖vεN (tk)‖2

∣∣∣
(5.3a)

≤
εNc

2
p

ν

∥∥∥fk+1
∥∥∥2

(5.6)

≤
c2
p

ν

∫ tk+1

tk

‖f(τ)‖2 dτ

≤
c2
p

ν
ess sup
σ∈[0,T ]

∫ σ+εN

σ
‖f(τ)‖2 dτ,
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hence

lim
N→∞

∣∣∣∣∫ T

0
cN1 (t) dt

∣∣∣∣ ≤ c2
p

ν
lim
N→∞

∫ T

0
ess sup
σ∈[0,T ]

∫ σ+εN

σ
‖f(τ)‖2 dτ dt

=
c2
pT

ν
lim
N→∞

ess sup
σ∈[0,T ]

∫ σ+εN

σ
‖f(τ)‖2 dτ

= 0.

To estimate cN2 (t) we use Proposition 5.5 and find

|cN2 (t)|
(1.5)

≤ 2 (‖vεN (tk)‖+ ‖vεN (t)‖) ‖vεN (t)− v(t)‖
(5.5)

≤ c ‖vεN (t)− v(t)‖ .

Due to the strong convergence (6.12b) of vεN in L2(0, T ;H0(Ω)) we have

lim
N→∞

∣∣∣∣∫ T

0
cN2 (t) dt

∣∣∣∣ ≤ c lim
N→∞

∫ T

0
1 · ‖vεN (t)− v(t)‖ dt

(1.4)

≤ c1 lim
N→∞

(∫ T

0
‖vεN (t)− v(t)‖2 dt

) 1
2

(6.12b)
= 0.

To estimate cN3 (t) we approximate the function v ∈ L2(0, T ;H0(Ω)) by a sequence {vn}n
of smooth functions

vn(t, x) :=
n∑
i=1

cin(t)ai(x) , n ∈ N.

Here cin ∈ C∞0 ((0, T )) and {ai}i with ai ∈ C∞0,σ(Ω) denotes a complete orthonormal

system in H0(Ω).

Now we decompose

cN3 (t) = 2

〈
vεN (t)− vεN (tk), v(t)− vn(t) + vn(t)︸ ︷︷ ︸

=0

〉

= 2 〈vεN (t)− vεN (tk), v(t)− vn(t)〉︸ ︷︷ ︸
=:dN1 (t)

+ 2 〈vεN (t)− vεN (tk), v
n(t)〉︸ ︷︷ ︸

=:dN2 (t)

.
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The term dN1 (t) can be estimated analogously to cN2 (t), hence we find

lim
N→∞

∣∣∣∣∫ T

0
dN1 (t) dt

∣∣∣∣ (1.4)

≤ c1

(∫ T

0
‖v(t)− vn(t)‖2 dt

) 1
2

,

and the integral on the right hand side can be made as small as desired by choosing
n ∈ N large enough.

Since vn(t) ∈ C∞0,σ(Ω) we can use Lemma 6.1 for dN2 (t). Setting f(τ) = 0 for τ > T we
find

|dN2 (t)| = 2 〈vεN (t)− vεN (tk), v
n(t)〉

(6.1)

≤ c

(
(t− tk) +

∫ t

tk

‖f(τ)‖2 dτ

)
+ o(1) as N →∞

≤ c

(
εN + ess sup

σ∈[0,T ]

∫ σ+εN

σ
‖f(τ)‖2 dτ

)
+ o(1) as N →∞

= cεN + o(1) as N →∞,

where o(1) does not depend on t, hence

lim
N→∞

∣∣∣∣∫ T

0
dN2 (t) dt

∣∣∣∣ ≤ cT lim
N→∞

(εN + o(1)) = 0.

Collecting the above estimates we find

lim
N→∞

∣∣∣∣∫ T

0
bN1 (t) dt

∣∣∣∣ ≤ lim
N→∞

∫ T

0
c1 ‖vεN (tk)− vεN (t)‖ dt

(1.4)

≤ lim
N→∞

c1

√
T

(∫ T

0
‖vεN (tk)− vεN (t)‖2 dt

) 1
2

= lim
N→∞

c1

√
T

(∫ T

0
cN1 (t) + cN2 (t) + cN3 (t) dt

) 1
2

= 0.

For bN2 (t) we use the conservation of measure to eliminate X−1
k (τ), which implies

|bN2 (t)| =
1

2εN

∫ εN

0

〈
(vεN (t)− v(t)) · ∇ϕ(t), v(t) ◦X−1

k (τ)
〉

dτ

(1.7)

≤ c

2εN

∫ εN

0
‖vεN (t)− v(t)‖ ‖∇ϕ(t)‖0,∞

∥∥v(t) ◦X−1
k (τ)

∥∥ dτ
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(2.7)
=

c

2εN

∫ εN

0
‖vεN (t)− v(t)‖ ‖∇ϕ(t)‖0,∞ ‖v(t)‖ dτ

=
c

2
‖∇ϕ(t)‖0,∞ ‖v(t)‖ ‖vεN (t)− v(t)‖ .

Now, as before, using the boundedness of ‖∇ϕ(t)‖0,∞ from (6.15) together with Propo-
sition 6.4, the convergence property (6.12b) implies

lim
N→∞

∣∣∣∣∫ T

0
bN2 (t) dt

∣∣∣∣
≤ c

2
lim
N→∞

∫ T

0

(
‖∇ϕ(t)‖0,∞ ‖v(t)‖

)
‖vεN (t)− v(t)‖ dt

(1.4)

≤ c

2
lim
N→∞

(∫ T

0
‖∇ϕ(t)‖20,∞ ‖v(t)‖2 dt

) 1
2
(∫ T

0
‖vεN (t)− v(t)‖2 dt

) 1
2

(6.9),(6.15)

≤ c1 lim
N→∞

(∫ T

0
‖vεN (t)− v(t)‖2 dt

) 1
2

(6.12b)
= 0.

Finally, we estimate bN3 (t). Similar to (6.4) in the proof of Lemma 6.1 we find

v(t)− v(t) ◦X−1
k (τ) = v(t) ◦Xk(0)− v(t) ◦Xk(−τ)

=

∫ 0

−τ
[vεN (tk) · ∇Xv(t)] ◦Xk(σ) dσ (6.16)

for each τ ∈ [0, εN ]. Thus, for bN3 (t) we obtain

|bN3 (t)| =
1

2εN

∣∣∣ ∫ εN

0

〈
v(t) · ∇ϕ(t), v(t)− v(t) ◦X−1

k (τ)
〉

dτ
∣∣∣

(6.16)
=

1

2εN

∣∣∣ ∫ εN

0

〈
v(t) · ∇ϕ(t),

∫ 0

−τ
[vεN (tk) · ∇Xv(t)] ◦Xk(σ) dσ

〉
dτ
∣∣∣

=
1

2εN

∣∣∣ ∫ εN

0

∫ 0

−τ
〈v(t) · ∇ϕ(t), [vεN (tk) · ∇Xv(t)] ◦Xk(σ)〉 dσ dτ

∣∣∣
(1.7)

≤ c

εN

∫ εN

0

∫ 0

−τ
‖v(t)‖0,6 ‖∇ϕ(t)‖0,∞ ‖v

εN (tk) ◦Xk(σ)‖0,3 ‖∇Xv(t) ◦Xk(σ)‖ dσ dτ

(2.7)
=

c

εN

∫ εN

0

∫ 0

−τ
‖v(t)‖0,6 ‖∇ϕ(t)‖0,∞ ‖v

εN (tk)‖0,3 ‖∇v(t)‖ dσ dτ

= c1εN ‖v(t)‖0,6 ‖∇ϕ(t)‖0,∞ ‖v
εN (tk)‖0,3 ‖∇v(t)‖

(6.15)

≤ c2εN ‖v(t)‖0,6 ‖v
εN (tk)‖0,3 ‖∇v(t)‖ .
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Using the Sobolev Imbedding Theorem 1.2 for m = 1, p = 2, we find

W 1,2(Ω)→ Lq(Ω) for 1 ≤ q ≤ 6, (6.17)

and, together with the Poincaré inequality 1.3, this implies

‖u‖0,p
(6.17)

≤ c ‖u‖1,2
(1.1)
= c

(
‖u‖2 + ‖∇u‖2

) 1
2

≤ c (‖u‖+ ‖∇u‖)
(1.2)

≤ c1 ‖∇u‖ (6.18)

for u = v(t) and for u = vεN (tk) and we obtain

|bN3 (t)|
(6.18)

≤ cεN ‖∇vεN (tk)‖ ‖∇v(t)‖2 .

For k = 0 we have

‖∇vεN (0)‖2 = ‖∇v0‖2 ≤ c,

since v0 ∈ C1(Ω). For k = 1, . . . ,M − 1 with M := T
εN

we can use Proposition 5.5 and
obtain

εN ‖∇vεN (tk)‖2 =

∫ tk

tk−1

‖∇vεN (τ)‖2 dτ

≤
∫ tk

0
‖∇vεN (τ)‖2 dτ

(5.5)

≤ c,

hence for all grid points it holds

‖∇vεN (tk)‖ ≤ c1ε
− 1

2
N .

Thus it follows ∣∣bN3 (t)
∣∣ ≤ cε

1
2
N ‖∇v(t)‖2 ,

and, integrating over t, we find

lim
N→∞

∣∣∣∣∫ T

0
bN3 (t) dt

∣∣∣∣ ≤ lim
N→∞

cε
1
2
N

∫ T

0
‖∇v(t)‖2 dt

(6.9)

≤ lim
N→∞

c1ε
1
2
N

= 0.
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Thus we have

lim
N→∞

∣∣∣∣∫ T

0
aN2 (t) dt

∣∣∣∣ = 0,

which proves the theorem. �

Finally, we prove some important properties of the weak solution v.

Proposition 6.8 Let v be a weak solution of (N0) constructed as in Theorem 6.2.
Then v satisfies

v : [0, T ]→ H0(Ω) is weakly continuous,

lim
0<t→0

‖v(t)− v0‖ = 0.

Proof: Let the assumptions of Theorem 6.2 be satisfied, and let {vεN }N denote any
subsequence satisfying (6.12a)–(6.12c).

Let ϕ ∈ C∞0,σ(Ω). Since, for t ∈ (tk, tk+1], the function vεN (t) = vk+1 is a weak solution

of (Nk
εN

), we have〈
vk+1, ϕ

〉
−
〈
vk, ϕ

〉
= εNν

〈
vk+1,∆ϕ

〉
− εN

〈
LkεN v

k+1, ϕ
〉

+ εN

〈
fk+1, ϕ

〉
(3.1a)

= εNν
〈
vk+1,∆ϕ

〉
+ εN

〈
vk+1, LkεNϕ

〉
+ εN

〈
fk+1, ϕ

〉
.

Setting j = k and summing up for j = 0, . . . , k, we obtain

k∑
j=0

(〈
vj+1, ϕ

〉
−
〈
vj , ϕ

〉)

= εNν

k∑
j=0

〈
vj+1,∆ϕ

〉
+ εN

k∑
j=0

〈
vj+1, LjεNϕ

〉
+ εN

k∑
j=0

〈
f j+1, ϕ

〉
,

and this implies for t ∈ (tk, tk+1] the identity

〈vεN (t), ϕ〉 − 〈v0, ϕ〉

= ν

∫ tk+1

0
〈vεN (τ),∆ϕ〉 dτ +

∫ tk+1

0
〈vεN (τ), LεN (τ)ϕ〉 dτ +

∫ tk+1

0

〈
f̃(τ), ϕ

〉
dτ

= ν

∫ t

0
〈vεN (τ),∆ϕ〉 dτ +

∫ t

0
〈vεN (τ), LεN (τ)ϕ〉 dτ +

∫ t

0

〈
f̃(τ), ϕ

〉
dτ

+ ν

∫ tk+1

t
〈vεN (τ),∆ϕ〉 dτ︸ ︷︷ ︸

=:aN1 (t)

+

∫ tk+1

t

〈
vεN (τ), LkεNϕ

〉
dτ︸ ︷︷ ︸

=:aN2 (t)

+

∫ tk+1

t

〈
fk+1, ϕ

〉
dτ︸ ︷︷ ︸

=:aN3 (t)

.

(6.19)
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Here for τ ∈ (tj , tj+1], j = 0, . . . , k, we set LεN (τ) := LjεN (compare (6.13) on page 65)

and f̃(τ) := f j+1 := 1
εN

∫ tj+1

tj
f(t) dt.

Next we prove that the remainders aNi (t) for i = 1, 2, 3 vanish as N → ∞. Since
t ∈ (tk, tk+1] we find, due to Proposition 5.5 and the boundedness of

∥∥LkεNϕ∥∥,

|aN1 (t)|
(1.5)

≤ ν

∫ tk+1

tk

‖vεN (τ)‖ ‖∆ϕ‖ dτ

(5.5)

≤ cεN
N→∞−→ 0,

|aN2 (t)|
(1.5)

≤
∫ tk+1

tk

‖vεN (τ)‖
∥∥∥LkεNϕ∥∥∥ dτ

(5.5),(6.5)

≤ cεN
N→∞−→ 0.

For aN3 (t) we use the estimate (5.6) and find

|aN3 (t)|
(1.5)

≤
∫ tk+1

tk

∥∥∥fk+1
∥∥∥ ‖ϕ‖ dτ

= εN ‖ϕ‖
∥∥∥fk+1

∥∥∥
(5.6)

≤ cεN

(
1

εN

∫ tk+1

tk

‖f(τ)‖2 dτ

) 1
2

≤ cε
1
2
N

(∫ T

0
‖f(τ)‖2 dτ

) 1
2

N→∞−→ 0.

Using the weak convergence vεN (t)
n→∞
−⇀ v(t) in H0(Ω) for all t ∈ [0, T ], we have

〈vεN (t), ϕ〉 N→∞−→ 〈v(t), ϕ〉

for all ϕ ∈ C∞0,σ(Ω), and, analogously to the proof of Theorem 6.6, we obtain

ν

∫ t

0
〈vεN (τ),∆ϕ〉 dτ

(1.11)
= −ν

∫ t

0
〈∇vεN (τ),∇ϕ〉 dτ

N→∞−→ −ν
∫ t

0
〈∇v(τ),∇ϕ〉 dτ,

∫ t

0
〈vεN (τ), LεN (τ)ϕ〉 dτ

N→∞−→
∫ t

0
〈v(τ), v(τ) · ∇ϕ〉 dτ,
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∫ t

0

〈
f̃(τ), ϕ

〉
dτ

N→∞−→
∫ t

0
〈f(τ), ϕ〉 dτ.

From (6.19) this implies

〈v(t), ϕ〉 = 〈v0, ϕ〉 − ν
∫ t

0
〈∇v(τ),∇ϕ〉 dτ

+

∫ t

0
〈v(τ), v(τ) · ∇ϕ〉 dτ +

∫ t

0
〈f(τ), ϕ〉 dτ

(6.20)

for all ϕ ∈ C∞0,σ(Ω).

To prove the weak continuity in H0(Ω), we need so show that

lim
[0,T ]3t̃→t

〈
v(t)− v(t̃), ϕ

〉
= 0

holds true for each t ∈ [0, T ] and each ϕ ∈ H0(Ω).

For ϕ ∈ C∞0,σ(Ω) the assertion is trivial, since the right hand side of (6.20) is continuous
with respect to t.

Now let ϕ ∈ H0(Ω). Since C∞0,σ(Ω) is dense in H0(Ω), for each h > 0 we find some
ϕ̃ ∈ C∞0,σ(Ω) such that ‖ϕ− ϕ̃‖ ≤ h. Now we consider the decomposition〈

v(t)− v(t̃), ϕ
〉

=
〈
v(t)− v(t̃), ϕ− ϕ̃

〉︸ ︷︷ ︸
=:b1(t)

+
〈
v(t)− v(t̃), ϕ̃

〉︸ ︷︷ ︸
=:b2(t)

,

where we can estimate b1 by

|b1(t)| = |
〈
v(t)− v(t̃), ϕ− ϕ̃

〉
|

(1.5)

≤
∥∥v(t)− v(t̃)

∥∥ ‖ϕ− ϕ̃‖
≤
(
‖v(t)‖+

∥∥v(t̃)
∥∥) ‖ϕ− ϕ̃‖

(6.9)

≤ ch.

Thus we can make b1(t) as small as desired by choosing h small enough. Once h
is chosen, ϕ̃ ∈ C∞0,σ(Ω) can be determined. Since we already know that 〈v(t), ϕ̃〉 is
continuous, we can make b2(t) as small as desired by reducing the distance between t
and t̃.

Finally we prove the strong continuity in t = 0. From (6.20) we immediately obtain

〈v(0), ϕ〉 = 〈v0, ϕ〉

for ϕ ∈ C∞0,σ(Ω), and with a usual density argument we obtain

v(0) = v0.
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Using (1.13d) from Proposition 1.18, it suffices to prove

‖v0‖2 ≥ lim sup
0<t→0

‖v(t)‖2

to obtain the continuity in t = 0. Thus assume ‖v0‖2 < lim sup
0<t→0

‖v(t)‖2. Then there

exists a sequence {tn}n
n→∞−→ 0 satisfying

‖v0‖2 + h ≤ ‖v(tn)‖2

for some h > 0 fixed and all n ∈ N. Using

‖v(tn)‖2
(6.9)

≤ ‖v0‖2 +
c2
p

ν

∫ tn

0
‖f(τ)‖2 dτ

from Corollary 6.3, this implies

h ≤
c2
p

ν

∫ tn

0
‖f(τ)‖2 dτ

n→∞−→ 0,

which contradicts the assumption, thus the assertion is proved. �
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