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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract 

Detailed energy monitoring and benchmarking at the individual component level is necessary to increase energy efficiency in complex production 
systems. Non-intrusive load monitoring (NILM) provides an economical solution for operational state detection and load disaggregation without 
the need for large-scale use of fine-grained energy meters. Existing supervised NILM approaches require detailed training data including control 
information about individual devices. Unsupervised approaches, on the other hand, often require high measurement resolution and are faced with 
the problem of detecting continuous states. This paper proposes a simple step-by-step, completely unsupervised NILM approach that distinguishes 
between almost constant and non-constant segments with flexible segment lengths. Taking into account various electrical parameters and their 
statistical moments, hierarchical density-based spatial clustering of applications with noise (HDBScan) is applied to constant segments. The 
analysis of non-constant segments is based on agglomerative hierarchical clustering and dynamic time warping. Based on real energy monitoring 
from a gear manufacturing system we show the applicability of our methodology and discuss how it can be combined with existing NILM 
techniques. 
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1. Introduction 

While energy efficiency has played a minor role in the 
production and operation of machine tools in the past, it has 
become increasingly important in recent years due to rising 
energy prices and stricter political guidelines [1]. Large 
companies in particular are increasingly integrating energy and 
media demand queries into their specifications, and component 
suppliers are adding more efficient functional modules to their 
portfolio [2]. Since the energy saving potential is 
fundamentally dependent on the operational state and a large 
part of the energy demand is accounted for by auxiliary 
machine units in particular, the current research focus is on 
corresponding energy efficiency measures (e.g. [3–5]). 
 
 

Nomenclature  

maxVar          maximum allowable variance within a segment  
SQ#$%              sum of the squared deviation of segment seg 

with segment length n#$% 
SQ#$%'(          sum of the squared deviation of segment seg 

with segment length n#$%+1 
maxSQDiff     maximum increase of the sum of the squared 

deviation 
minSeg           minimum segment length 

 
Flick et al. (2018) suggest various ways of determining the 
energy demand of individual plants or components by means of 
measurements or physical calculations in the event of 
incomplete information [6]. 
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3.1. Identification of nearly constant segments 

When dividing the power factor curve into approximately 
constant and non-constant segments, it is important that 
approximately constant segments contain varying values, but 
these may neither exceed a certain variance nor exhibit a rising 
or falling trend. An explicit specification of the number of 
segments is not necessary, but is based on the successive 
extension of the detected segments by one data point in 
compliance with the following three criteria:  

1. maximum allowable variance within a segment 
(maxVar)  

2. maximum increase of the sum of the squared deviation 
(maxSQDiff)  

3. minimum segment length (minSeg)  

The maximum allowable segment variance specifies the 
extent to which varying values are still regarded as 
approximately constant. It defines which segment is regarded 
as constant and declared as such by the algorithm. 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ≥ 	 (
6789:(

∑ (𝑥𝑥= − 𝑥̅𝑥@AB)²
6789
=E(                              (1) 

In addition to the first criterion, a gradient criterion is 
introduced. This avoids that relatively weakly rising and falling 
tendencies, which are not recognized by the maxVar criterion 
due to the growing segment length, are mistakenly identified as 
constant segments. This problem is illustrated by the exemplary 
schematic progression in Fig. 2. The variances of the individual 
segments A, B, C and C' are below the given maxVar and are 
thus considered to be approximately constant, although 
segment C is obviously not a constant segment. 

For segments A and B this declaration would be acceptable. 
Segment C, however, obviously includes a large peak and must 
not be filtered out as a constant segment. For this reason, a 
maximum allowable increase of the sum of the squared 
deviation (SQ) between segment seg and the one-data point 
extended segment seg+1 is introduced. This second criterion 
reacts more sensitively than maxVar criterion to a slight 
increase or decrease in the curve. With the help of the sum of 
the squared deviation, only the core area of the constant 
segments is filtered out, as is the case with segment C'. 

 

Fig. 2. Influence of the second criterion on segmentation quality. 

 

 

For the second criterion, therefore, the two partial formulas 
result: 

𝑆𝑆𝑆𝑆HAB = 	∑ (𝑥𝑥= − 𝑥̅𝑥@AB)²
6789
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𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ≥ 	𝑆𝑆𝑆𝑆HAB'( − 𝑆𝑆𝑆𝑆HAB                                 (2b) 

The definition of a minimum segment length as a third 
criterion prevents a too detailed subdivision of the overall 
power factor curve. Without this criterion, even very small 
segments would be filtered out as constant and thus 
characteristic structures would possibly be overlooked that 
indicate certain machine activities. 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑛𝑛@AB                                                                (3) 

3.2. Feature extraction of nearly constant segments 

For the suitability of the cluster analysis, the statistical 
parameters mean value, standard deviation, kurtosis and 
skewness derived from the available electrical parameters are 
examined, whereby the features kurtosis and skewness have 
always led to worse results in our calculations and are therefore 
ignored in the following. The segment length is not used as a 
feature, since in particular the constant operational states can 
vary strongly in their duration (e.g. standby phases of different 
lengths). This could result in similar operational phases being 
divided into different clusters due to their different lengths. 

With the help of the segmentation algorithm it is possible to 
first extract long approximately constant operational states in 
two successive steps by temporarily increasing the criteria and 
then to carry out a fine segmentation of the rest of the total 
power factor curve. 

3.3. Clustering of nearly constant segments 

Before clustering, the number of principal components 
containing 95% of the variance is taken from the features using 
the PCA.  

The clustering of the principal components takes place with 
the density-based method HDBScan. This has the following 
advantages over other clustering methods such as K-Means++ 
and agglomerative hierarchical clustering: 
• no need to specify the number of clusters k 
• detection of outliers 
• is suitable for large amounts of data 
• is suitable for the determination of complex cluster 

forms 
In order to determine the best parameter settings, the 

silhouette coefficient is used, since it does not require ground 
truth. The silhouette coefficient is a measure of the quality of 
clustering that is independent of the number of clusters and has 
a real value range of -1 to +1. 
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Since the energy demand of a machine tool in operation 
sometimes deviates significantly from calculated or design 
values, detailed information on the energetic behavior of 
individual machine components based on real measured values 
is required for the systematic implementation of energy 
efficiency measures [7]. In order to obtain the most 
comprehensive possible picture of the condition of a machine 
tool, monitoring in practice should take a range of parameters 
into account [8]. An energy monitoring approach that is easier 
to implement in practice concentrates on the electrical power 
demand curve. While with Intrusive Load Monitoring (ILM) 
each component is equipped with a sensor, with NILM only one 
central measuring device is required for the aggregated total 
power consumption P(t), from which the power consumption of 
n devices pi(t) is extracted. [9]. For this purpose, supervised 
NILM techniques use, among other information, available 
control signals or information about the process steps of the 
machine tool [10], or extensive experimental algorithm training 
is carried out [11]. If this additional information and extensive 
training data are not available, either cost-intensive additional 
measurement sensors have to be installed or fully unsupervised 
NILM procedures are used.  

Bernard & Marx (2016) present an approach with a 
household case study in which, in addition to active power, 
other electrical parameters such as reactive and apparent power, 
the total power transient and the phase angle of the first 
harmonics are used [12]. Using the algorithm, completely 
unknown device clusters can be detected on the basis of the 
measured parameters and assigned a unique ID, which is stored 
in an initially empty database. An event detector continuously 
checks whether a switching event occurs. If this is the case, the 
device features are analyzed before and after the event, 
compared with the device feature database and either assigned 
to the best device signature fit or newly stored. However, on the 
one hand no continuous loads are considered and on the other 
hand very high sampling rates (about 500kHz) are necessary for 
good results. Likewise, the algorithm of [13] has problems with 
the numerous variable loads and the relatively high complexity 
and number of machine tool components. 

The novelty of this study is to reduce this complexity 
through automated operational state detection and to simplify 
further analysis with a robust process. It can be assumed that a 
machine tool has the same or a very similar component 
configuration at different times in its recorded operational state 
[14]. In order to filter out typical operational states of existing 
machines in industrial practice, we have developed a time series 
segmentation algorithm, which first divides the total power 
factor curve of the three-phase power supply of a machine tool 
into approximately constant and non-constant phases and then 
clusters the detected segments. A constant interval implies that 
there are no serious changes in the operating behavior of the 
machine tool - for example, in the form of switching 
components on or off. This case distinction is therefore 
particularly important against the background of NILM. 

Chapter 2 deals with previous approaches for the detection 
of operational states from energy data of machine tools with an 
intermediate sampling rate (around 1HZ), followed in Chapter 
3 by the methodology of this paper. Chapter 4 contains a case 
study with real energy monitoring data of two exemplary 

machine tools (milling and grinding). Finally, chapter 5 
summarizes the results, discusses further fields of application 
and points out the need for further research. 

2. Operational state detection in electric load profiles 

In [15] a supervised learning procedure is developed and in 
[16] applied to a milling machine tool in a revised form, in 
which the algorithm is learned with training data of individual 
components so that operational states and component activities 
can be detected from the total power curve by means of an 
event detector similar to the one in [12]. 

Also according to the methodology of [17] numerous 
process-specific boundary conditions and threshold values 
must be specified in order to recognize the operational states. 
In [18] operational states are detected from energy data using 
information about planned process times. However, the 
algorithm only works with constantly different power demands 
between different operational states. A hydraulic storage tank 
loading in operational readiness, for example, or a power drop 
due to brake force recovery of the spindle drive in machining 
lead to incorrect results unless machine-specific mathematical 
boundary conditions are specified. A more general approach is 
taken by Oette et al. (2015), which divides any performance 
curve into fixed time segments and assigns them to different 
segment clusters using Bayesian classifiers. Apart from the fact 
that a threshold value must also be specified here, the division 
with a fixed length has the disadvantage, however, that 
significant patterns occur especially in different segment 
lengths and may be unfavorably separated by the intersection 
points [19]. For this reason, some approaches are presented in 
[20] that perform a suitable segmentation dynamically and 
flexibly. A well-known method, the Fisher's Natural Breaks 
Classification, divides the time series into a given optimal 
number of segments with a flexible segment length in which 
the values fluctuate as little as possible around the mean value. 
A drawback is the need to specify the number of segments in 
advance, which is difficult and time-consuming to predict or 
purely intuitive [21]. 

In the following, we therefore present a methodology for 
time series segmentation and clustering of machine tools in 
which neither process-specific threshold values and boundary 
conditions nor segment length and number of segments have to 
be specified in advance. 

3. Methodology 

The methodology for identifying and characterizing 
machine tool operational states consists of several steps that 
build on each other. These are illustrated in Fig. 1. The main 
focus of this work consists of the steps segmentation and 
clustering, which are explained in detail below. 

 

 

Fig. 1. Unsupervised state detection based on time series segmentation and 
clustering. 
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summarizes the results, discusses further fields of application 
and points out the need for further research. 

2. Operational state detection in electric load profiles 

In [15] a supervised learning procedure is developed and in 
[16] applied to a milling machine tool in a revised form, in 
which the algorithm is learned with training data of individual 
components so that operational states and component activities 
can be detected from the total power curve by means of an 
event detector similar to the one in [12]. 

Also according to the methodology of [17] numerous 
process-specific boundary conditions and threshold values 
must be specified in order to recognize the operational states. 
In [18] operational states are detected from energy data using 
information about planned process times. However, the 
algorithm only works with constantly different power demands 
between different operational states. A hydraulic storage tank 
loading in operational readiness, for example, or a power drop 
due to brake force recovery of the spindle drive in machining 
lead to incorrect results unless machine-specific mathematical 
boundary conditions are specified. A more general approach is 
taken by Oette et al. (2015), which divides any performance 
curve into fixed time segments and assigns them to different 
segment clusters using Bayesian classifiers. Apart from the fact 
that a threshold value must also be specified here, the division 
with a fixed length has the disadvantage, however, that 
significant patterns occur especially in different segment 
lengths and may be unfavorably separated by the intersection 
points [19]. For this reason, some approaches are presented in 
[20] that perform a suitable segmentation dynamically and 
flexibly. A well-known method, the Fisher's Natural Breaks 
Classification, divides the time series into a given optimal 
number of segments with a flexible segment length in which 
the values fluctuate as little as possible around the mean value. 
A drawback is the need to specify the number of segments in 
advance, which is difficult and time-consuming to predict or 
purely intuitive [21]. 

In the following, we therefore present a methodology for 
time series segmentation and clustering of machine tools in 
which neither process-specific threshold values and boundary 
conditions nor segment length and number of segments have to 
be specified in advance. 

3. Methodology 

The methodology for identifying and characterizing 
machine tool operational states consists of several steps that 
build on each other. These are illustrated in Fig. 1. The main 
focus of this work consists of the steps segmentation and 
clustering, which are explained in detail below. 

 

 

Fig. 1. Unsupervised state detection based on time series segmentation and 
clustering. 
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Table 2. Clustering of constant segments with evaluation figure silhouette 
coefficient (SC). 

Data specification SC 

grinding machine 

Cluster analysis based on mean and standard deviation of 
the following electrical parameters: 
apparent power, active power, total power factor, current 
unbalance, current, first/second/third phase current 

0.573 

grinding machine 

Cluster analysis based on mean and standard deviation of 
the total power factor 

0.646 

milling machine 

Cluster analysis based on mean and standard deviation of 
the following electrical parameters: 

apparent power, active power, total power factor, 
first/second/third phase power factor 

0.563 

milling machine 

Cluster analysis based on mean and standard deviation of 
the total power factor 

0.357 

Fig. 5 shows in detail clustered constant and non-constant 
segments in the power curve of the grinding machine. The 
constant phase within the machining cycle, which can also be 
found in Fig. 4, is represented by cluster c1.  

Between each machining cycle there is usually also a 
constant segment with the cluster ID c2 or c3. Between the 
segment clusters c2 and c3 there is a power difference of about 
1-2 kW. Energy measurement on single component level 

revealed that this is caused by a two-point controlled cooling 
unit. Thus a typical processing cycle is symbolized by the 
cluster sequence "nc1-c1-nc2-c2" or "nc1-c1-nc2-c3".  

However, due to process fluctuations or measurement 
deviations, this constant phase within the machining cycle is 
not always recognized as a constant segment. This is the reason 
for a third cluster of non-constant segments (cluster nc3). 

4.2. Non-constant segments 

The seemingly arbitrary segmentation illustrated in Fig. 5 
leads to an obviously more complicated clustering procedure 
for the non-constant segments. In Fig. 5 only three different 
clusters of non-constant segments are identified. If there are 
frequently machining cycles without a constant phase within 
the machining cycle (identified as c1), and if in some cases 
there is no constant phase between two cycles (identified as c2 
or c3), any number of non-constant segment clusters could be 
found. These detected and clustered non-constant segments 
have a wide range of segment lengths. In Fig. 4, for example, 
only two constant segments are detected. As a result, there are 
relatively long non-constant segments between these captured 
constant segments. Initial analyses have shown that a pre-
division of the segments according to time lengths is 
advantageous in terms of accuracy and interpretability for 
clustering over DTW distance measures. 

Fig. 5. Active power and power factor curve of grinding machine  
with clustered constant segments (c1-c3) and clustered non-constant segments (nc1-nc3). 
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3.4. Feature extraction and clustering of non-constant 
segments 

The non-constant segments, which are obtained by filtering 
out the constant segments, are clustered using merely a distance 
measure between the different segments. Since the Dynamic 
Time Warping (DTW) method can also be used for time series 
of different lengths, it has the advantage over the Euclidean 
distance measure that the data points are not compared rigidly 
in time, but flexibly. Cluster analysis based on DTW can be 
performed either within segment groups of similar length or on 
the overall data. The agglomerative hierarchical method has 
proven to be the most suitable cluster method for the non-
constant segments. 

4. Case Study 

The methodology described is explained using two typical 
machine tools in vehicle construction - a vertical grinding 
machine from the manufacturer Buderus 
Schleifmaschinentechnik GmbH and a milling machine from 
Gleason-Pfauer Maschinenfabrik GmbH. A selection of 
electrical parameters was collected over a period of one day in 
which the typical machine operational states "in machining", 
"operational readiness" or "warm-keeping mode" as well as 
standby operation are mapped. The different operational states 
have different characteristics with regard to the courses of the 
electrical parameters. The operating mode "in machining" as 
well as the “warm-keeping mode” typical for the grinding 
machine are characterized by varying values, while in 
particular the "operational readiness" of the milling machine as 
well as the standby phase show approximately constant values.  

The universal parameters listed in Table 1 have been defined 
for all incoming load profiles with seconds measurement data 
resolution. 

Table 1. Parameter settings of case study. 

Extraction type maxVar maxSQDiff minSeg 

Long nearly constant segments 0,000008 0,000008 180 

Any other nearly constant 
segments 

0,0000002 0,0000002 10 

4.1. Constant segments 

In the first step, the long nearly constant phase of the milling 
machine's operational readiness is extracted (see the red break 
points in Fig. 3, which delimit the long constant segment).  

After the preceding extraction of long, nearly constant 
phases, the finer subdivision takes place in the remaining part. 
With the milling machine, the long and short operational 
readiness times (2) between the machining cycles (1) are thus 
detected without any problems, as an approximately constant 
power factor curve is present in these operational readiness 
phases. The detected non-constant segments thus include the 
machining cycles, acceleration and deceleration times, set-up 
times, etc.  

 

 

Fig. 3. Scaled Power factor curve of milling machine with break points 
marking of constant segments and two operational states: machining (1), and 
operational readiness (2). 

The grinding machine differs significantly from the milling 
machine in its operating behavior. Fig. 4 shows that no 
approximately constant segments are detected during 
operational readiness times (1). However, constant segments 
are detected within the machining cycles (5). Although the 
"machining phase" of the grinding machine is characterized by 
strongly varying values of the electrical parameters, short 
constant phases are also present here. Shorter standby periods 
are also detected.  

 

Fig. 4. Scaled Power factor curve of grinding machine with break point 
marking of a long constant segment and five operational states: operational 
readiness (1), power down (2), stand by (3), power up (4) and machining (5). 

The necessity of smoothing the measured data series 
depends on the measured resolution and on whether the power 
meter transmits an instantaneous value or an average value 
calculated from 1000 values per second to the monitoring 
system. The machines examined by us in the monitoring 
system have instantaneous values per second. The results of the 
analysis of the unsmoothed and the smoothed are similar in this 
case, which is why the smoothed profiles are shown in Fig.3 & 
4 and the unsmoothed profile in Fig. 5.  

Within the resulting segment groups "nearly constant" and 
"non-constant", a separate cluster analysis is performed. Table 
2 shows an example of the results of clustering the constant 
segments on the basis of different data from the grinding and 
milling machine. It is shown that a good SC can also be 
achieved with only the power factor characteristic.  
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Fig. 5 shows in detail clustered constant and non-constant 
segments in the power curve of the grinding machine. The 
constant phase within the machining cycle, which can also be 
found in Fig. 4, is represented by cluster c1.  

Between each machining cycle there is usually also a 
constant segment with the cluster ID c2 or c3. Between the 
segment clusters c2 and c3 there is a power difference of about 
1-2 kW. Energy measurement on single component level 

revealed that this is caused by a two-point controlled cooling 
unit. Thus a typical processing cycle is symbolized by the 
cluster sequence "nc1-c1-nc2-c2" or "nc1-c1-nc2-c3".  

However, due to process fluctuations or measurement 
deviations, this constant phase within the machining cycle is 
not always recognized as a constant segment. This is the reason 
for a third cluster of non-constant segments (cluster nc3). 

4.2. Non-constant segments 

The seemingly arbitrary segmentation illustrated in Fig. 5 
leads to an obviously more complicated clustering procedure 
for the non-constant segments. In Fig. 5 only three different 
clusters of non-constant segments are identified. If there are 
frequently machining cycles without a constant phase within 
the machining cycle (identified as c1), and if in some cases 
there is no constant phase between two cycles (identified as c2 
or c3), any number of non-constant segment clusters could be 
found. These detected and clustered non-constant segments 
have a wide range of segment lengths. In Fig. 4, for example, 
only two constant segments are detected. As a result, there are 
relatively long non-constant segments between these captured 
constant segments. Initial analyses have shown that a pre-
division of the segments according to time lengths is 
advantageous in terms of accuracy and interpretability for 
clustering over DTW distance measures. 

Fig. 5. Active power and power factor curve of grinding machine  
with clustered constant segments (c1-c3) and clustered non-constant segments (nc1-nc3). 
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3.4. Feature extraction and clustering of non-constant 
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The non-constant segments, which are obtained by filtering 
out the constant segments, are clustered using merely a distance 
measure between the different segments. Since the Dynamic 
Time Warping (DTW) method can also be used for time series 
of different lengths, it has the advantage over the Euclidean 
distance measure that the data points are not compared rigidly 
in time, but flexibly. Cluster analysis based on DTW can be 
performed either within segment groups of similar length or on 
the overall data. The agglomerative hierarchical method has 
proven to be the most suitable cluster method for the non-
constant segments. 

4. Case Study 

The methodology described is explained using two typical 
machine tools in vehicle construction - a vertical grinding 
machine from the manufacturer Buderus 
Schleifmaschinentechnik GmbH and a milling machine from 
Gleason-Pfauer Maschinenfabrik GmbH. A selection of 
electrical parameters was collected over a period of one day in 
which the typical machine operational states "in machining", 
"operational readiness" or "warm-keeping mode" as well as 
standby operation are mapped. The different operational states 
have different characteristics with regard to the courses of the 
electrical parameters. The operating mode "in machining" as 
well as the “warm-keeping mode” typical for the grinding 
machine are characterized by varying values, while in 
particular the "operational readiness" of the milling machine as 
well as the standby phase show approximately constant values.  

The universal parameters listed in Table 1 have been defined 
for all incoming load profiles with seconds measurement data 
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Table 1. Parameter settings of case study. 

Extraction type maxVar maxSQDiff minSeg 
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4.1. Constant segments 

In the first step, the long nearly constant phase of the milling 
machine's operational readiness is extracted (see the red break 
points in Fig. 3, which delimit the long constant segment).  

After the preceding extraction of long, nearly constant 
phases, the finer subdivision takes place in the remaining part. 
With the milling machine, the long and short operational 
readiness times (2) between the machining cycles (1) are thus 
detected without any problems, as an approximately constant 
power factor curve is present in these operational readiness 
phases. The detected non-constant segments thus include the 
machining cycles, acceleration and deceleration times, set-up 
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The grinding machine differs significantly from the milling 
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approximately constant segments are detected during 
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are detected within the machining cycles (5). Although the 
"machining phase" of the grinding machine is characterized by 
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The necessity of smoothing the measured data series 
depends on the measured resolution and on whether the power 
meter transmits an instantaneous value or an average value 
calculated from 1000 values per second to the monitoring 
system. The machines examined by us in the monitoring 
system have instantaneous values per second. The results of the 
analysis of the unsmoothed and the smoothed are similar in this 
case, which is why the smoothed profiles are shown in Fig.3 & 
4 and the unsmoothed profile in Fig. 5.  

Within the resulting segment groups "nearly constant" and 
"non-constant", a separate cluster analysis is performed. Table 
2 shows an example of the results of clustering the constant 
segments on the basis of different data from the grinding and 
milling machine. It is shown that a good SC can also be 
achieved with only the power factor characteristic.  
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5. Conclusion and Outlook 

To achieve the overall goal of an improved unsupervised 
NILM at machine tool component level, existing approaches 
must be optimized to handle variable loads and an intermediate 
sampling rate (<1S/s). The most accurate unsupervised NILM 
approaches use state-based event detection methods and hidden 
Markov models [11, 12]. The segmentation of the power factor 
profile into constant and non-constant phases and the 
subsequent extraction of typical operational states can therefore 
serve as preparation for possible automatic device number 
recognition and load disaggregation at machine level in 
industrial applications.  

Our algorithm for time series segmentation can be 
automated in practice without time-consuming manual 
adjustments on all machine tools and their time series. A 
determination of concrete universal values for very different 
machine tool types was shown in the case study of this paper. 

Long constant phases as well as shorter constant segments 
can be clearly assigned to repeating operational states. Hence, 
on the one hand, operational state-based and self-adaptive 
condition monitoring is possible. On the other hand, the 
detected operational states provide information about the 
energy demand and the duration of value-adding and non-
value-adding states of the machine tool. This helps to evaluate 
energy saving potentials like component dimensioning, standby 
control or efficient energy supply by heat pump storage systems 
that link heat sources and sinks in manufacturing systems [22].  

In certain operational states, such as those of the grinding 
machine, the power factor profiles fluctuate relatively strongly. 
In this case, the determination of the non-constant segments 
depends somewhat arbitrarily on the extraction of the constant 
segments. Therefore, part of future research will consist of 
grouping the non-constant segment clusters according to 
segment length. The group(s) of the relatively short non-
constant segment clusters then function as sub-patterns. In the 
longer non-constant segments with strongly varying segment 
lengths, these sub-patterns are to be searched for by means of a 
sliding window and Euclidean distance. In this way, the load 
curve can be further broken down systematically. To 
investigate the most frequent non-constant patterns, the 
implementation of MOTIF detection methods with variable 
lengths is also part of further research [23, 24].  

 
References 

[1] Song, B., Ao, Y., Xiang, L., Lionel, K.Y.N., 2018. Data-driven Approach 
for Discovery of Energy Saving Potentials in Manufacturing Factory. 
Procedia CIRP 69, 330–335. 

[2] Schudeleit, T., Züst, S., Weiss, L., Wegener, K., 2016. The Total Energy 
Efficiency Index for machine tools. Energy 102, 682–693. 

[3] Cai, Y., Shi, X., Shao, H., Wang, R., Liao, S., 2018. Energy efficiency 
state identification in milling processes based on information reasoning 
and Hidden Markov Model. Journal of Cleaner Production 193, 397–413. 

[4] Denkena, B., Helmecke, P., Hülsemeyer, L., 2014. Energy Efficient 

Machining with Optimized Coolant Lubrication Flow Rates. Procedia 
CIRP 24, 25–31. 

[5] Triebe, M.J., Mendis, G.P., Zhao, F., Sutherland, J.W., 2018. 
Understanding Energy Consumption in a Machine Tool through Energy 
Mapping. Procedia CIRP 69, 259–264. 

[6] Flick, D., Kuschicke, F., Schweikert, M., Thiele, T., Panten, N., Thiede, 
S., Herrmann, C., 2018. Ascertainment of Energy Consumption 
Information in the Age of Industrial Big Data. Procedia CIRP 72, 202–
208. 

[7] Gutowski, T., Murphy, C., Allen, D., Bauer, D., Bras, B., Piwonka, T., 
Sheng, P., Sutherland, J., Thurston, D., Wolff, E., 2005. Environmentally 
benign manufacturing: Observations from Japan, Europe and the United 
States. Journal of Cleaner Production 13 (1), 1–17. 

[8] Snatkin, A., Eiskop, T., Karjust, K., Majak, J., 2015. Production 
monitoring system development and modification. Proc. Estonian Acad. 
Sci. 64 (4S), 567. 

[9] Hart, G.W., 1992. Nonintrusive appliance load monitoring. Proc. IEEE 
80 (12), 1870–1891. 

[10] Eberspächer, P., Schraml, P., Schlechtendahl, J., Verl, A., Abele, E., 
2014. A Model- and Signal-based Power Consumption Monitoring 
Concept for Energetic Optimization of Machine Tools. Procedia CIRP 15, 
44–49. 

[11] Kelly, J., Knottenbelt, W., 2015. Neural NILM, in: Proceedings of the 2nd 
ACM International Conference on Embedded Systems for Energy-
Efficient Built Environments - BuildSys '15, Seoul, South Korea, pp. 55–
64. 

[12] Bernard, T., Marx, M., 2016. Unsupervised learning algorithm using 
multiple electrical low and high frequency features for the task of load 
disaggregation, in: Proceedings of the 3rd International Workshop on 
NILM, Vancouver, BC, Canada, pp. 14–15. 

[13] Jia, R., Gao, Y., Spanos, C.J., 2015. A fully unsupervised non-intrusive 
load monitoring framework, in: IEEE International Conference on Smart 
Grid Communications (SmartGridComm), Miami, FL, USA, pp. 872–
878. 

[14] Putz, M., Frieß, U., Wabner, M., Friedrich, A., Zander, A., Schlegel, H., 
2017. State-based and Self-adapting Algorithm for Condition Monitoring. 
Procedia CIRP 62, 311–316. 

[15] O'Driscoll, E., Kelly, K., O'Donnell, G.E., 2015. Intelligent energy based 
status identification as a platform for improvement of machine tool 
efficiency and effectiveness. Journal of Cleaner Production 105, 184–
195. 

[16] Sihag, N., Sangwan, K.S., Pundir, S., 2018. Development of a Structured 
Algorithm to Identify the Status of a Machine Tool to Improve Energy 
and Time Efficiencies. Procedia CIRP 69, 294–299. 

[17] Lu, Z., Peng, T., Chen, W. Automated Process State Identification for 
Metal Additive Manufacturing based on Power Data, in: IEEE 14th 
International Conference on Automation Science and Engineering 
(CASE), Munich, Germany, pp. 1587–1592. 

[18] Teiwes, H., Blume, S., Herrmann, C., Rössinger, M., Thiede, S., 2018. 
Energy Load Profile Analysis on Machine Level. Procedia CIRP 69, 271–
276. 

[19] Oette, C., Küfner, T., Reger, A., Boehner, J., 2016. Lean Data Services: 
Detection of Operating States in Energy Profiles of Intralogistics Systems 
by Using Big Data Analytics. AMM 856, 73–81. 

[20] Fu, T.-c., 2011. A review on time series data mining. Engineering 
Applications of Artificial Intelligence 24 (1), 164–181. 

[21] Fisher, W.D., 1958. On Grouping for Maximum Homogeneity. Journal of 
the American Statistical Association 53 (284), 788–798. 

[22] Seevers, J.-P., Schlosser, F., Peesel, R.-H., Hesselbach, J., 2018. 
Dimensioning of Heat Pump Systems Based on Pinch Analysis and 
Energy Monitoring Data. Chemical Engineering Transactions (70), 787–
792. 

[23] Gao, Y., Lin, J., 2018. Efficient Discovery of Variable-length Time Series 
Motifs with Large Length Range in Million Scale Time Series. CoRR 
abs/1802.04883. 

[24] Linardi, M., Zhu, Y., Palpanas, T., Keogh, E., 2018. Matrix Profile X, in: 
Proceedings of the International Conference on Management of Data - 
SIGMOD '18, Houston, TX, USA, pp. 1053–1066.

 


