
 Harun Baraki, Kurt Geihs, Axel Hoffmann,
 Christian Voigtmann, Romy Kniewel,
 Björn-Elmar Macek, Julia Zirfas

Towards Interdisciplinary
Design Patterns for
Ubiquitous Computing
Applications

Technical Reports 2

�

ITeG�Technical�Reports�

Band�2�
�

Herausgegeben�vom��
Zentrum�für�Informationstechnik�Gestaltung�(ITeG)��
an�der�Universität�Kassel�

�

�

Universität�Kassel��
ITeG�Zentrum�für�
Informationstechnik�Gestaltung��
Pfannkuchstraße�1��
D�34121�Kassel�

Towa
Comp

Harun�
Kniewe

ards�Inte
puting�A

Baraki,�K
el,�Björn�E

erdiscip
Applicat

urt�Geihs,
Elmar�Ma

plinary�D
tions��

,�Axel�Hof
cek,�and�J

Design�P

ffmann,�C
Julia�Zirfa

Patterns

hristian�V
s�

s�for�Ub

Voigtmann

biquitou

n,�Romy�

us�

Gestaltung�technisch�sozialer�Vernetzung�in�
situativen�ubiquitären�Systemen�(VENUS)

Gefördert�durch:

�

�

�
Bibliografische�Information�der�Deutschen�Nationalbibliothek�
Die�Deutsche�Nationalbibliothek�verzeichnet�diese�Publikation�in�der�Deutschen�
Nationalbibliografie;�detaillierte�bibliografische�Daten�sind�im�Internet�über�
http://dnb.dnb.de�abrufbar�
�
ISBN:�978�3�86219�557�2�
URN:�URN:�http://nbn�resolving.de/urn:nbn:de:0002�35572�
�
©�2014,�kassel�university�press�GmbH,�Kassel�
www.upress.uni�kassel.de�
�

Vorwort�

Der� vorliegende� Band� ist� ein� zweiter� Technischer� Bericht,� der� aus� dem� Forschungsschwerpunkt�
LOEWE�VENUS� hervorgegangen� ist.� Aufbauend� auf� Band� 1� der� ITeG� Technical� Reports,� der� die�
VENUS�Entwicklungsmethode� als� kompletten� Entwicklungszyklus� vorstellt,� wird� hier�
herausgearbeitet,� inwieweit� Ergebnisse� aus� der� Entwicklung� dieser� neuen� interdisziplinären�
Gestaltungsmethodik�bereits�als�Vorgaben�in�Form�von�Mustern�standardisiert�und�wiederverwendet�
werden� können.� Durch� diese� Muster� sozialverträglicher� Informationstechnikgestaltung� soll� der�
Aufwand�in�Entwicklungsprozessen�in�der�Praxis�erheblich�reduziert�werden.��

Wie�in�ITeG�TR�Band�1�beschrieben,�ist�das�Ziel�der�interdisziplinären�VENUS�Entwicklungsmethode,�
Software� für�Ubiquitous�Computing� (UC)�Systeme�systematisch�sozialverträglich�zu�entwerfen.�Dies�
erfordert� die� Einbeziehung� von� Experten� aus� unterschiedlichen� Disziplinen.� Um� die� praktische�
Anwendbarkeit�der�VENUS�Entwicklungsmethode�zu�verbessern,�hat�sich�eine�Arbeitsgruppe�auf�die�
Entwicklung� interdisziplinärer�Entwurfsmuster� für�UC�Anwendungen�konzentriert.� �Anhand�der�drei�
in� VENUS� entwickelten� Demonstratoren� Meet�U,� Connect�U� und� Support�U� wurden� konkrete�
interdisziplinäre� Software�Design�Pattern� für� Anwendungen� in� ubiquitären� Umgebungen�
herausgearbeitet� und� getestet.� Die� Muster� repräsentieren� wiederverwendbares� Best�Practice�
Wissen�und�ermöglichen�es�zukünftigen�Entwicklern���wenn�diese�vor�der�Herausforderung�stehen,�
vertrauenswürdige,� akzeptable� und� rechtsverträgliche� ubiquitäre� Systeme� zu� gestalten� –�
systematisch�während�der�Entwicklung�der�Software�auf�technische�und�sicherheitstechnische�sowie�
gleichzeitig� auf� rechtliche� Aspekte� und� die� Problematik� von� Akzeptanz� und� Gebrauchstauglichkeit�
einzugehen.��

Das� Besondere� für� die� hier� vorgeschlagenen� Entwurfsmuster� ist,� dass� sie� keine� einfachen�
Musterlösungen� für� rein� technische� Probleme� bieten,� sondern� ganz� bewusst� interdisziplinäre�
Aspekte� integrieren,� denn� gesucht� wurden� Lösungen,� die� sich� auf� die� „Programmierung“� einer�
nachhaltigen� Beziehung�Mensch�Technik� richten� und� auf� einem� ganzheitlichen� Entwicklungsansatz�
fußen.�Ausgehend�von�generellen�Anforderungen�wurden�konkrete�Gestaltungslösungen�entwickelt�
und� dabei� für� die� Akzeptanz� der� Resultate�wichtige� nicht�funktionale� Perspektiven� (Benutzbarkeit,�
Recht,� Vertrauen)� einbezogen.� Bereits� seit� den� 1990er� Jahren� haben� Forscher� versucht,� dieser�
gesellschaftlichen� Dimension� von� UC� beizukommen� und� Prinzipien� für� die� Entwicklung�
menschgerechter�IT�aufzustellen.�Im�LOEWE�VENUS�–Projekt�ist�es�nun�gelungen,�diese�Prinzipien�in�
konkreten�Szenarien�und�prototypischen�Beispielanwendungen�von�einer�abstrakten�Ebene�bis�hin�zu�
handhabbaren�musterhaften�Gestaltungslösungen�fortzuentwickeln.��

In�diesem�Sinne�hoffen�wir,�hier�Best�Practice�Lösungen�bieten�zu�können,�die�zukünftige�Entwickler�
ubiquitärer� Systeme� inspirieren� und� die� helfen,�Unzulänglichkeiten� und� Fehler� schon�während� des�
Entwicklungsprozesses� zu� vermeiden.� Entwurfsmuster� sind� Vorschläge,� die� sich� in� der� Praxis�
bewähren� müssen.� Wir� sehen� der� weiteren� Erprobung� der� Muster� mit� Spannung� entgegen� und�
freuen�uns�über�jedes�Feedback�hierzu.��

�

Prof.�Dr.�Kurt�Geihs�

(Sprecher�von�LOEWE�VENUS)�

Towards Interdisciplinary Design Patterns for
Ubiquitous Computing Applications

Technical Report

Harun Baraki, Kurt Geihs, Axel Hoffmann, Christian Voigtmann, Romy
Kniewel, Björn-Elmar Macek, and Julia Zirfas

University of Kassel
Zentrum für Informationstechnikgestaltung (ITeG)

Pfannkuchstraße 1, 34121 Kassel, Germany

Abstract. To draw on the full potential of Ubiquitous Computing (UC)
systems, they have to be designed with awareness for their social embed-
ding in order to increase the user acceptance. To this end, not only the
compliance with laws has to be ensured, but also usability-enhancing and
trust and confidence-building measures have to be applied. This makes
the development of UC applications a challenging task that involves ex-
perts from different disciplines. The main contribution of this report is
a set of design patterns for UC applications that specifically focus on
the interweaving and implementation of multidisciplinary requirements.
The patterns capture the design know-how of typical, recurring features
in context-aware adaptive UC applications with particular concern for
the sociotechnical requirements. First, we present a detailed discussion
of the related work on design patterns in the realm of UC. Afterwards,
we explain our research methodology and the template structure of our
pattern specifications. The core of the report consists of eight interdisci-
plinary UC design patterns. This initial list of patterns was derived from
several application case studies in the interdisciplinary research project
LOEWE-VENUS. We view this collection as a starting point for an evolv-
ing set of commonly accepted reusable design patterns that facilitate the
development of accepted and acceptable UC applications.

1 Introduction

Design patterns are about not re-inventing the wheel. They are meant to transfer
knowledge about how others viewed and solved recurring problems in engineering
tasks, and thus they should help to avoid potential mistakes. Another important
role of design patterns is providing a common vocabulary that lets experts com-
municate more easily about design questions. Design patterns emerged from the
work of Alexander et al. in the field of architecture [1]. Today design patterns
are known in many domains (e.g., [2,3,4,5,6,7]). In software engineering, a de-
sign pattern is an abstract, generally reusable solution to a commonly occurring
problem in the design of software systems. A design pattern is a template that

1

can be used in many different applications. Thus, design patterns are formalized
best practices that ease the job of the software developer [8].

This report is about interdisciplinary design patterns for ubiquitous computing
applications. In a nutshell, ubiquitous computing (UC) is a computing concept
where computing is everywhere around us while the computing devices are made
effectively invisible. The recent increase of smartphone and tablet computer us-
age has resulted in technology that is increasingly ”interwoven into the fabric
of everyday life” [9]. The multitude of pervasive applications running on these
devices are those which provide attractive services for our private as well as pro-
fessional needs. Key characteristics of ubiquitous systems are context awareness
and dynamic adaptation to context changes. These features require monitoring
the user’s environment and preferences in order to provide context-dependent
information and make appropriate adaptation decisions. While this tight inter-
weaving into the users’ everyday lives offers a wide range of exciting application
opportunities, it also demands the consideration of non-technical, social aspects
during system development. Questions of privacy, trust, usability, legal compli-
ance etc. have to be addressed [10]. Thus, user acceptance and general accept-
ability of the new technology must be overarching concerns in the development
process.

The presented design patterns have emerged from the interdisciplinary research
project VENUS. The overall goal of VENUS has been the definition and evalua-
tion of a comprehensive interdisciplinary development method for the design of
socially aware ubiquitous computing systems [11]. The project has focused par-
ticularly on design support for the social embedding of ubiquitous computing
technology, i.e. understanding the interactions between technology, individual
user and society, and translating abstract norms and rules into concrete techni-
cal requirements and design artifacts. Therefore, four disciplines are represented
in VENUS, i.e. computer science, trust research, ergonomics and law, contribut-
ing to the research of development methods and tools for ubiquitous applications
and taking into account theories, methods and tools described in the context of
socio-technical system design.

In the course of the VENUS project three demonstrators have been designed
and implemented by separate development teams in different application do-
mains, i.e. mobile computing, social networking, and ambient assisted living.
The VENUS development method helped them in realizing the applications
and supported the different disciplines to work together in a structured way.
Nonetheless, it remains a time-consuming and complex task to develop socially
compatible UC applications. For example, domain experts from different dis-
ciplines such as law, ergonomics and trust research, have to find out first the
normative requirements that are relevant for the intended application. Then,
the normative requirements have to be translated to technical design goals. Be-
sides that, the requirements can conflict with each other and, hence, have to be
coordinated and balanced. Although the VENUS development method assists
throughout the whole development process, it can be quite costly to create so-

2

cially acceptable UC applications. We studied related work to find supportive
design patterns that address different disciplinary concerns and that give ad-
vice about their implementation. However, most works consider either privacy
or usability issues, but not both at the same time [4,12,13]. In addition, none of
them covers the same spectrum of disciplines as VENUS does. To facilitate and
speed up the development of socially acceptable UC applications, we analyzed
the demonstrators for recurrent design questions and solutions that were related
to interdisciplinary concerns about how to achieve certain aspects of the social
embedding of the applications. In an iterative process we consolidated the dis-
covered candidate design patterns and created the collection of patterns that is
presented in this report.

Section 2 of this report discusses the related work. Section 3 explains the struc-
ture of our design patterns. In Section 4 we present our design patterns that focus
exclusively on interdisciplinary, cross-cutting design aspects. Section 5 concludes
the report with a general reflection on the significance of our design patterns and
an outlook to future work.

2 Related Work

Interdisciplinary design patterns for ubiquitous computing applications is a re-
search field that has received limited attention so far. We believe that this is due
to the fact that the technology itself is still under development and constantly
evolving and that the socio-technical implications of using this new technology
are becoming apparent and understood only recently with the actual deployment
and usage of ubiquitous computing technologies.

There are pattern-related publications that focus on specific technical features
of UC such as enabling application adaptivity or context-awareness, but do not
consider cross-cutting aspects like transparency, trust, privacy and informational
self-determination. For example, concerning adaptivity the authors of [14] an-
alyze 30 open-source and research projects and identify 12 patterns in these
projects. Their patterns support the software developer in designing and imple-
menting features for monitoring, adaptation decision-making and reconfiguration
in order to realize adaptivity. Likewise, the authors of [7] describe four patterns
that are helpful for certain adaptation problems in context-aware applications.
However, non-functional requirements, that can restrict the appliance of such
patterns, are not taken into account.

Other works deal in fact with non-functional requirements and how they can be
translated to design artifacts through patterns. Since the term non-functional
requirements is a wide ranging notion, a distinction must be made between re-
quirements that address more conventional quality of software attributes (e.g.
performance, reusability, maintainability), and requirements that address con-
cerns cross-cutting through various disciplines and stimulate considerations re-
lated to law, trust and usability. An example of the former can be found in [15].

3

Our main interest is on the latter kind of requirements. Thus, in the following we
focus primarily on related work that adopts a clear interdisciplinary viewpoint.

Langheinrich proposes in [13], which is one of the first publications looking at
privacy and ubiquitous computing together, a set of guidelines to design privacy-
aware ubiquitous computing systems. He claims that the most fundamental prin-
ciple is the principle of openness, which he also calls the principle of notice. The
user has to be informed by announcements first and foremost if data is collected
about him, particularly what type of data is collected. For example, if the user
enters a room equipped with microphones and cameras, he has to be notified
about audio and video recordings. Further information like the purpose of use,
the recipients of the data and the data retention period can be listed in the
announcement, too. The notice principle is inspired by the Platform for Privacy
Preferences project (P3P) [16] where a web site can prescribe in a machine read-
able form which data will be collected, whether it will be anonymized, and for
what purpose and for how long the data will be retained. Langheinrich considers
the notice principle as the bottom-line of any privacy-aware UC system.

In P3P the user may also configure, e.g. in his browser, which web site policies
should be accepted or declined automatically. For this purpose, Langheinrich in-
troduces the choice and consent principle which he considers as appertaining to
the notice principle. The user has to consent explicitly to the use and collection
of personal data. Both the notice and the choice and consent principles were
justified on the basis of the EU Data Protection Directive 95/46/EC (It should
be noted that the Directive will be replaced soon by the General Data Protec-
tion Regulation (GDRP)). As an alternative to the aforementioned guidelines
the author proposes to use anonymity in case that only certain types of data are
gathered. As a result, user consent is not required anymore, because anonymous
data is no longer considered as personal data. If authentication or some kind of
personalization is needed, then pseudonymity could be a solution. A user may
change the pseudonym at any time to be not traceable. Nonetheless, the author
points out that pseudonyms might be linkable under certain circumstances and
warns against data-mining applications which could assemble such data into a
single coherent picture. He recognizes that the implementation of this guide-
line might be too difficult and presents to this end the principle of proximity
and locality and the principle of access and recourse. The principle of proximity
and locality can be considered as a practical solution to the notice and consent
problem in certain situations. The user’s consent is assumed as long as he is in
proximity to the corresponding device. For instance, recording and playing back
of the user’s voice is only allowed if the user’s presence is detected. The principle
of locality implies that data is not dissiminated indefinitely, but stays, for exam-
ple, within a geographic boundary or local network. By applying the principle
of locality the unauthorized use of personal data, for instance for surveillance
purposes, may be impeded. With the principle of access and recourse the author
addresses the implementation of specific legal requirements such as collection
and use limitation and mechanisms for non-repudiation in case of legal disputes.
For instance, a protocol derived from the P3P protocol can be augmented with

4

digital signatures, and special privacy-aware storage technologies can enable the
use of personal data in compliance with the declared privacy practices. In this
connection the data collector should stick to the fair information practice princi-
ples (FIPP) that were first described in the Privacy Act of 1974 (5 U.S.C. 552a
as amended). These require primarily that the data collector gathers only rele-
vant data for the well-defined purpose and keeps it only as long as necessary for
the purpose. Furthermore, the user has to be able to find out what information
is recorded about him and how it is used. This is also known as individual par-
ticipation. For that reason, Langheinrich proposes usage logs similar to call-lists
of phone bills [17].

In summary, Langheinrich’s work is oriented towards the fair information prac-
tice principles and considers them from the perspective of ubiquitous computing.
The suggested solutions were formulated in a general manner. As the title of the
work implies, he proposes principles, but not design patterns that support their
implementation. In addition, at that time (2001) no smartphones were available
which nowadays provide not only new opportunities but also new challenges.
Nevertheless, his work can be considered as an excellent introduction to the
discussions about UC patterns.

In [12] Lahlou et al. propose nine guidelines, called European Disappearing Com-
puter Privacy Design Guidelines. The first two, i.e. the Openness and the Privacy
Razor guideline, are geared to the principles introduced by the OECD [18]. They
are similar to the openness, the data quality and the use limitation principles of
the OECD. The Third Party Guarantee guideline advises the developer to let the
user choose whether third parties may be included or not. The Consider Time
guideline requires that data should have set an expiry date as default setting.
When applying the Make Risky Operations Expensive guideline, privacy-sensitive
operations are made costly for everyone, including the system, the user and third
parties. Systematic costs may be small time delays, small amounts of money or
obligations of tracing records. According to the authors, this should discourage
potential abuse. The Avoid Surprise guideline recommends notifying the user
if a user’s action influences the system or if significant state changes are about
to take place. Regarding this, the authors propose to find a trade-off between
cognitive overflow and awareness, and hence to enable the customization of ac-
knowledgements. Other guidelines proposed by the authors, i.e. Think Before
Doing, Good Privacy Is Not Enough and Re-visit Classic Solutions, give some
clues which thoughts developers should take up in general. Altogether, Lahlou et
al. indicate problems and challenges developers have to tackle. The nine guide-
lines are described very briefly and only a few provide reasonable solutions. Many
of them can be considered indeed as motivation for design patterns, but not as
intelligible instructions developers can apply.

Ruiz-López et al. propose in [19] various patterns to address non-functional re-
quirements in ubiquitous computing systems. Most of them refer to adaptivity,
reliability and security, but two of them, i.e. the Pseudonymity and the Human
Factor patterns, are classified as patterns concerning ethics. Their notion of

5

pseudonymity is not the same as in many other works. The Pseudonymity pat-
tern describes a hierarchical structure where the top node contains all private
data and the bottom node none. The nodes in-between have different amounts of
information. The user can configure his preferences concerning the disclosure of
data according to the trustworthiness of the situation and the context variables
required. The authors do not go into detail and do not explain which informa-
tion the intermediate nodes may or should retain or how the trustworthiness of a
context can be estimated. The Human Factor pattern is a hybrid approach that
allows the user to perform certain activities on his own instead of leaving it up
to the software. According to this pattern, developers should consider the possi-
bility to only assist users or to let users do things on their own to improve their
well-being, for instance. Here again, detailed information about the pattern and
possible scenarios and examples are missing. In fact, Ruiz-López et al. present
an excellent analysis, but their conclusions are formulated on a very abstract
level and without concrete connections to interdisciplinary design guidelines.

In [4] Chung et al. propose 45 design patterns for ubiquitous systems, grouped
into the four groups Ubiquitous Computing Genres, Physical-Virtual Spaces, De-
veloping Successful Privacy, and Designing Fluid Interactions. The patterns are
called pre-patterns since the patterns are not yet in common use by the design
community and end-users. Their intention is to provide an initial list of design
patterns that can be enhanced and extended. In the context of this work we are
particularly interested in the fifteen design patterns devoted to privacy and the
eleven patterns related to fluid interactions. The technically oriented patterns
will be omitted in the following sections.

Chung et al. number their patterns consecutively such that lower-numbered pat-
terns are more abstract than higher-numbered ones. Hence, the first privacy pat-
tern is the most abstract one and reflects mainly the fair information practices
mentioned above. The second pattern is about trust between the sensed and the
sensing and collecting party. To strengthen the user’s trust the authors propose,
for example, to respect the fair information practices, to involve potential users
in the design process and to let people know what is sensed and what is not.
Pattern number 3 is also emphasizing trust and credibility and distinguishes be-
tween the relationship of two individuals and that between an individual and a
company or organization. For both of them the authors recommend the appli-
ance of the fourth and the fifth pattern which prescribe how to allow users to
control the sharing of their data and to enable them to check what information
is visible and collected by whom. In case of direct exchange of data between two
individuals the patterns do not have to be implemented as strictly as in case of
data exchange with a company or organization. The sixth pattern shall support
the implementation of the previous patterns by privacy-sensitive architectures.
To this end, it refers to pattern number 15 which proposes to keep personal data
on personal devices. Furthermore, pattern six advises to apply encryption or
to use a trusted computing base. A further solution to realize privacy-sensitive
architectures is to create physical privacy zones by deploying sensors only in
appropriate places and to inform the users about these. The authors clarify this

6

in their eighth pattern. Pattern seven is called Partial Identification and deals
with the fact that not every application requires the full identity of the user.
Keys, tickets, passwords or sensor data like the weight or the size of a person
may be sufficient for certain applications. In this connection, pattern nine can
be incorporated too. It proposes to blur specific personal data by providing data
at a coarser granularity or by aggregating multiple pieces of data. Pattern ten
and eleven relate to pattern four and, thus, try to put the user in a position to
control the sharing of their data. Pattern ten recommends limiting the access
to personal data by identity access. Alternatively, spatial or temporal access
control can be used in certain situations. For instance, the user’s location may
be only visible during working hours. The eleventh pattern makes an invisible
mode available to the user so that the flow of data to others will be stopped. An
instant messenger would indicate, for example, that the user is off-line. Pattern
thirteen and fourteen are part of pattern five that supplies the user with privacy
feedback, more precisely with feedback about what is monitored and accessed by
whom. Consequently, pattern thirteen suggests options to inform a user appro-
priately. One is to notify the user immediately when an access occurs, the other
is to give notice after the access. The authors recommend the former if the user
is allowed to accept or deny a request. The fourteenth pattern, called Privacy
Mirrors, displays whom, what and how the system is monitoring. In general, it
should provide useful information without distracting the user too much. The
last pattern in the privacy group aims at limited data retention. Collecting and
storing too much data facilitates revealing patterns of behaviour and increases
the risk of outdated personal data. A solution might be to keep a limited number
of entries in the history or, if possible and reasonable, to store only the latest
information that is relevant. For example, in case of website administration it is
often sufficient to store the time of the last visit of the user and the total number
of his visits.

The eleven patterns devoted to fluid interactions are arranged in the same man-
ner as the privacy patterns. Thus, the first patterns are the more abstract ones
and may be applied to a wider range. The first pattern is called Scale of Inter-
action and addresses different classes of devices and the type and complexity
of interaction with them. According to this pattern, people will interact in the
future with many small or embedded devices, several personalized devices and
few personal computers. The interaction with small devices has to be extremely
simple or nonexistent since users will not be willing to learn the usage of every
single device. Personalized devices like PDAs or phones may require simple in-
teractions and low to medium user complexity and attention as the interactions
will be for a short period of time. The highest attention can be expected when
the user is interacting with a personal computer. In this case, the complexity
of interaction can range from low to high. The second pattern, which is named
Sensemaking of Services and Devices, exposes the problem of service discovery
in ubiquitous computing. The authors present therefore three ideas and their
issues. The first idea is to make services available everywhere. However, this
would make little sense to services with a local focus. Furthermore, scalability

7

problems could appear due to the large number of services. Alternatively, the
services can be made discoverable through the network. For this purpose, the
services should be described in a standard digital format so that, for example, a
browser can be used to explore them. The last idea concerning this is to relieve
the user by consuming the services as autonomously and maintenance free as
possible. The subsequent pattern is the Streamlining Repetitive Tasks Pattern.
It suggests to automate simple tasks like setting up a clock to the current time
or switching to DVD input if the DVD player’s Play button is hit. Nonetheless,
errors and unexpected results may lead to users feeling helpless. So, the main
prerequisite is that the task is highly predictable. Otherwise, the user must be
enabled to automate his tasks. Further issues designers have to consider are
exception handling and accountability, for instance, in the case of autonomous
cars crashing into another. The authors do not go into detail but refer to the
following Active Teaching and the Serendipity in Exploration pattern as alter-
natives. The Active Teaching Pattern proposes to show helpful hints to the user
and to teach him subtly instead of automating a task. The patterns Serendipity
in Exploration and Keeping Users in Control are both about keeping the user
in control. The aforementioned active teaching could be one option, but in case
the user is not demanding for guidance but for freedom to explore and to leave
pre-determined courses, then the applications have to be designed controllable
and flexible. One possibility is to allow user-created content. Another option,
especially in the context of navigation systems, is to provide different paths.
The Context-Sensitive I/O Pattern recommends that input and output mecha-
nisms has to adapt according to the user’s context. For instance, the silent mode
of a smartphone has to be activated when the user enters a theatre. However,
the user has to be kept in control such that he can override undesired adapta-
tions. In this connection, the Resolving Ambiguity Pattern can be helpful, too.
In general, it advises to display the user what the system knows and what it is
going to perform. If the system’s inference is an erroneous conclusion, the user
is able to give appropriate feedback. In case of ambiguity in sensed data, the
system has to ask the user unobtrusively to resolve the ambiguity. The Ambient
Displays Pattern proposes to support the user to understand and process the
flood of information without requiring his full attention. For example, the stock
market’s performance can be indicated by colors; green for positive and red for
negative. The Follow-me Displays Pattern deals with moving the user’s work-
ing settings, personal information and workspace to that computer the user is
currently working with. Chung et al. mention that designers should pay in such
scenarios particular attention to privacy issues since no-one wants to publish his
data on another computer without his knowledge. The last pattern the authors
present suggests a convenient way to share data across devices. It proposes to
use a drag-and-drop operation between two devices. Accordingly, the pattern’s
name is Pick and Drop.

In contrast to our approach, this very comprehensive set of pre-patterns did not
emerge from the authors own software projects but from studying the relevant
related literature. For example, the Fair Information Practices pattern lists the

8

aforementioned practices of the 1970s as solution and refers to Langheinrich’s
work [13]. Other patterns reproduce principles like the choice and consent prin-
ciple, but do not provide clear instructions how to put them into practice. Ac-
cording to the authors and their evaluation, the patterns related to privacy did
not help designers significantly to handle these issues; they realized that their
privacy patterns are too vague to be helpful at the design stage. Regarding the
patterns for fluid interaction, the evaluation with eight designers using patterns
and ten designers not applying them, showed that particularly novice designers
benefit from these patterns. The designs of the participants were assessed by
three HCI designers. In case of designers with high experience they found no
improvements concerning the quality of the designs. But in general, the pat-
terns helped in generating new ideas and communicating them. Furthermore,
they supported the designers speeding up their work. According to the authors,
this is due to the fact that patterns represent solutions that others have already
thought through.

Landay et al. detected in their work [20] the following patterns for ubiquitous
computing: Context-Sensitive I/O, Physical-Virtual Associations, Global Data,
Proxies for Devices, Follow-Me Display, Appropriate Levels of Attention, and
Anticipation. Only the patterns Context-Sensitive I/O and Physical-Virtual As-
sociations are described in detail in their article. The former one is already
mentioned above since Chung et al. also refer to the work of Landay et al. and
their context-sensitive I/O. The latter pattern aims at sharing information be-
tween several devices. The authors propose to simplify connecting devices and
sharing information over the life of a session if users are near one another. In
particular, the time to configure the devices appropriately shall be reduced.
Landay et al. also wonder about validating and evaluating design patterns for
ubiquitous computing. The rule they follow is that a pattern has to be found
in at least three good implementation examples before it can be identified as a
design pattern. We tried to be in compliance with this rule and to determine
patterns that were present in all of our own three ubiquitous computing appli-
cations. Unfortunately, Landay et al. do not specify where their patterns were
applied.

Other authors consider privacy enhancing technologies (PET) from a more gen-
eral viewpoint. In [21] Hafiz proposes twelve patterns to support developing PET.
The twelve patterns aim at enabling anonymity in various domains but do not
bridge trust gaps nor do they inform users to enable them taking appropriate
decisions. Besides, most of the patterns, such as Layered Encryption, Covered
Traffic, Chaining, Anonymity Set and so forth, require a lot of additional comput-
ing resources and might be not suitable for resource-scarce ubiquitous computing
devices. The authors concede that they describe design decisions to implement a
mix-based system. In such systems messages are encoded and decoded and sent
via several so-called mixes. Mixes are proxies that enable hard-to-trace commu-
nications.

9

Likewise, other works related to PET cannot be applied on ubiquitous systems
without further considerations. Most of them focus on pure Internet applica-
tions or on traditional application areas. The characteristics of ubiquitous sys-
tems, especially their restrictions and their differentiating capabilities, necessi-
tate adapted or new design patterns.

3 Pattern Definition

The interdisciplinary design patterns proposed in this work have emerged from
the VENUS project. VENUS aimed at developing and evaluating an interdisci-
plinary method for designing socially aware ubiquitous computing systems. For
evaluation purposes the three demonstrators Meet-U, Support-U and Connect-U
were implemented by three separate teams. These demonstrators are also used
in the pattern descriptions to show possible solutions and, therefore, will be
described here briefly.

Meet-U is a mobile application that supports users to organize meetings. After
installation and registration a user can invite other users to participate in an
event or create events on his own initiative. It is also possible to take part in
public events or to purchase tickets. The specific feature of Meet-U is its context
awareness and adaptivity. For example, navigation will be started automatically
depending on the time required to arrive at the event and depending on the user’s
preferences concerning transportation. Reaching the destination the application
will connect to the local Web service of the event organizer and will show helpful
information like the indoor map of the location to the user [22].

Support-U is an application in the field of Ambient Assisted Living (AAL) that
supports elderly people in their everyday life. To this end, unobtrusively deployed
sensors are reporting on the status of the flat and provide information such
as activated electrical consumers, opened windows and doors and the current
temperature, humidity and light intensity. The blood pressure, the pulse and
the movement intensity of the person are transmitted by sensors attached to
him or her. Family members or care workers who look after this person can
display any information received in a clearly arranged overview on their tablet
computer. Easy-to-understand colors and symbols facilitate the perception of
important information. In this way, on-the-spot checks by the caring person can
be reduced and the elderly person may enjoy home or any other assisted living
accomodations for a longer time instead of residing in a nursing home [23].

Connect-U is an application assisting conference participants in organizing their
schedule, in recalling their social contacts they had during the conference and
in sharing information with their colleagues. At first, the participants create
a profile and register it with the Connect-U website. During the conference the
participants are wearing RFID tags that recognize whether two persons are com-
municating with each other. RFID readers in every room detect where the par-
ticipants sojourn currently. On the Connect-U website the participants can check

10

which lectures and talks they are going to visit, which ones they attended and
with whom they talked already in the conference. They can ask for more infor-
mation about their dialogue partner by invoking his profile. If two participants
accept each other as friends on Connect-U, they can even look up the other’s
current position [24].

All three demonstrators are UC applications that make use of sensor data and
personal data and process them on servers or devices that do not belong to the
person observed. Aspects like privacy, trust and usability have a considerably
large impact on the design and implementation of UC applications and should
be included and considered throughout the entire development process. The
method created in VENUS supports interdisciplinary teams that include, inter
alia, lawyers and trust and usability engineers, to work together in an efficient
and structured manner [25].

The core of the VENUS approach is an iterative development consisting of the
phases: analysis of needs, requirements management, conceptual design, soft-
ware design with implementation and in-situ evaluation. In addition to the in-
situ evaluation there are evaluations in the analysis (application scenarios) and
the implementation phase (functions and prototypes). In the requirement man-
agement phase the approach considers, besides usual functional und quality re-
quirements, requirements for legal compatibility, usability and trustworthiness.
Experts derive these requirements from normative sources by concretizing the
provision regarding the technical system [25].

We applied the VENUS development method [26] to the three demonstrator
projects mentioned above and recognized that certain solutions were present
in more than one demonstrator. Since the method encompasses requirements,
design and implementation, we subdivided the recurrent structures into require-
ment patterns and design patterns. The former are not part of this work, but
will be introduced briefly in one of the following chapters as they are referred
to by the interdisciplinary design patterns. Furthermore, we will touch on HCI
design patterns. They also assist developers to apply our design patterns. Before
that, we present the structure of our design patterns.

3.1 Structure of the Interdisciplinary Design Patterns

In contrast to requirement patterns, which focus particularly on normative and
functional requirements and have to be seen as a tool for requirement engi-
neering, interdisciplinary design patterns deal with their technical realization.
However, they should not be thought of as patterns targeted only at software
developers. The design patterns are linked strongly to abstract normative re-
quirements and criteria. Thus, the intention is also to support the development
team to tackle and to concretize the abstract non-functional requirements and
criteria they have defined for their application.
We will describe the design patterns by using a template with eight sections.

11

These include, inter alia, typical pattern fields such as intent, motivation, so-
lution, forces and context, and consequences of the pattern. But while other
pattern collections address single topics unilaterally and from an isolated view,
our patterns comprise the abstract as well as the concrete aspects. The solution
section of our patterns presents concrete approaches for design and implementa-
tion, while the other parts, particularly the forces and context section, emphasize
the abstract layers. These may encompass laws, norms, normative goals and fur-
ther non-functional criteria. The sections of the template are:

– Name: A memorable, descriptive name is chosen that can be connected easily
to the pattern’s main feature. This will help to recall the pattern. Further-
more, it will simplify and speed up the collaboration between developers and
experts from different areas. We will use the pattern’s name as the title of
its description.

– Intent : The Intent indicates concisely when the pattern should be applied.
Hence, the problem that is handled by the pattern is described. Note that our
proposed patterns focus on normative provisions and non-functional criteria.
Besides, the Intent points out in one or two sentences how the problem can
be solved. This section supports users in browsing the patterns efficiently. In
total, the Intent section should not exceed five sentences.

– Motivation: The Motivation illustrates the problem by giving an example.
This example should be representative for the situation and the broad class
of scenarios the pattern is addressing.

– Forces and Context : The forces and context section highlights the non-
functional aspects that would come off badly in practice if the pattern would
not be applied. In particular, it names the conflicting sets of goals, especially
if a functional requirement encounters normative policies. The fundamental
task of the pattern is to solve this conflict in the best possible way. We will
name the normative goals explicitly and will justify the pattern’s use by
them.

– Solution: The solution section is divided into two parts. The first part pro-
poses a general approach and is not limited to a certain application example.
The level of detail is not too high since the concrete implementation depends
on the actual application and because it would be out of scope of a pattern
collection. However, the description is sufficiently complete for software de-
signers and software developers to put it into concrete design goals. The
second part of the solution section shows the application of the pattern to
our demonstrators.

– Consequences : The main consequences of the application of the pattern are
subsumed in this section. These may include positive as well as negative con-
sequences. We will point usually to consequences related to non-functional
aspects. Indeed, we may mention technical consequences if it is of key im-
portance that the development team has to be aware of it.

– Related Requirement Patterns : Mostly patterns only refer to other related
patterns in the same pattern collection or to patterns dedicated to the same

12

subject and domain. Our patterns may also point to requirement patterns
they can be associated with. They support developers in the requirements
management phase.

– Related HCI Patterns : The HCI patterns we link to shall support developers
in applying the design pattern. The supportive HCI patterns listed were not
developed in the VENUS project. We will refer to the collections and works
where they are explained and originated from.

What is special about the documentation is not only that the patterns’ users
are lead from an abstract layer to a concrete solution, but also that it looks at
and justifies a solution from a variety of different non-functional perspectives,
including trust, usability and legal policies. That means that a holistic approach
is adopted for common problems in UC.

Table 1. Example of a trust-based requirement pattern (excerpt)

Requirement Pattern: Signalling the Function Status

Metadata

Goal The user is able to recognize which functions the
system executes right now, and knows why something
happens and how it happens.

Antecedent Transparency
Relations Provide Comprehensible Functionality,

Information of Functions

Template:
Display of
Execution

Standardized The system shall display running tasks to the users.
Requirement

Extension
The system shall display < tasks > to the users.
Parameter Values
< tasks > Running tasks, Background tasks,

User tasks

3.2 Requirement Patterns

Requirement patterns are an approach to reuse recurring requirements [27]. It
helps requirement analysts to identify and document software requirements [28].
The use of patterns for defining requirements is quite a new development. They
are applied for eliciting and analysing requirements. Requirement patterns are a
collection of knowledge and experience, which can be reused in current projects
by adaptation [29]. According to the example in table 1 requirement patterns
contain templates to describe a standardized requirement and other relevant in-
formation in tabular form [30]. These are, for example, the goal of the standard-
ized requirement and relations to other patterns. To ease adaptation, attributes
can be defined with usable content. However, only content that already has
been elaborated and tested carefully should be predefined. Here, the principle of
reuse is applied, because already created and successfully applied requirements
are reused.

13

Table 2. Requirement Patterns and Related Design Patterns

Requirement Pattern Design Pattern

Information About Functions On Demand Explanation
Explanation of Processes Abridged Terms and Conditions
Signaling the Function Status Trust and Transparency

Control of Autonomous Adaptation
Level of Automation of Functions Control of Autonomous Adaptation
Control of Processes Control of Autonomous Adaptation

Emergency Button
Agreement to Functionality Emergency Button

Enable/Disable Functions
Configurability Enable/Disable Functions
Assessment of the Output Context State Indication
Logging Processes Data Access Log

In accordance with the VENUS development method, the requirement patterns
address socio-technical enablers [31]. These enablers are requirements regarding
legal-compatibility, usability and trustworthiness. To derive these requirements
the aforementioned VENUS method, which incorporates experts from the re-
spective domains and provides them techniques to derive requirements from
normative provisions, was applied [10]. We documented recurring requirements
as requirement patterns [32,33,34]. We developed trust-based requirement pat-
terns that aim at increasing the users’ trust in the application before the system
is used the first time [32]. That comprises of aspects like the provider’s and
application’s reputation, the privacy statement of the provider and guarantees
that third parties are providing. Furthermore, we developed requirement pat-
terns which were targeted at increasing the user’s trust in the application while
using it [33]. Additionally, we also developed requirement patterns based on re-
curring requirements from legal-compatibility [34]. Table 2 shows some of the
requirement patterns and their associated interdisciplinary design patterns.

3.3 HCI Patterns

Human-Computer Interaction (HCI) design patterns facilitate the development
of user interfaces. The main goal of these patterns is to support designers in
developing usable and ergonomic user interfaces [35]. Usability is a demanded
quality of user interfaces. It can be defined as the ”extent to which a prod-
uct can be used by specified users to achieve specified goals with effectiveness,
efficiency and satisfaction in a specified context of use” [36]. An HCI design pat-
tern describes a recurring user interface design problem together with a proven
solution.

According to van Welie et al. [37] an HCI design pattern should consist at least
of the main elements problem, context, solution and examples. Furthermore,
HCI design patterns should be focused on the user. For example, the problem

14

element describes a usability problem of the system in use. It is related to the
usage of the system and relevant to the user. It should be user task oriented.
However, the form or structure of HCI patterns varies a lot according to the
authors’ preferences [38]. Several additional elements might be used for a bet-
ter understanding of the design idea. An HCI design pattern can be part of a
collection or a pattern language. If so, a pattern may have references to other
patterns in that collection or language.

Similar to patterns for software engineering, HCI design patterns originated from
Alexander’s concept of design patterns and pattern languages. Kruschitz et al.
[38] date the first appearance of HCI design patterns in the year 1996 when
Coram et al. [39] published the first design patterns of a pattern language for
user interface designers to support them in building graphical user interfaces
which are pleasurable and productive to use. Since then several other pattern
collections and pattern languages have been published. The first HCI pattern
collections were compiled by Tidwell [40] [38].

Today, there exists a vast amount of patterns written by many different authors,
published on Web repositories [35], in scientific papers, and books [41,42,43].
Moreover, there are patterns written for several domains, such as desktop appli-
cations, websites [44] and recently mobile applications [45]. Our interdisciplinary
design patterns will mainly refer to the HCI design patterns of Tidwell [40,43]
and Hoober et al. [45].

4 Interdisciplinary Design Patterns

Each subsection of this chapter describes a particular design pattern. Since the
area of UC is very broad and because the number of projects we examined
is still rather small, this initial collection is bound to evolve. We will extend
it when working on further UC projects and we hope that other development
teams share their experiences about these patterns with us or probably generate
new patterns. The overall goal is to provide a comprehensive list that does not
only speed up and simplify the interdisciplinary development process, but also
supports developers who cannot afford a full team of different domain experts,
to create proper socio-technical systems.

4.1 Enable/Disable Functions

Intent The goal of the pattern is to enable the user to explicitly agree or dis-
agree to certain functions provided by the UC application. This choice should
be offered to the user by the application at start-up time.

Motivation Consider users living in an Ambient Assisted Living environment:
these users are surrounded by various sensors such as video cameras, motion sen-
sors or electrical current sensors that are used to monitor the actual situation of

15

a person. Another example are the acceleration sensors included in smartphones.
A UC system can recommend places of interest to the user by considering the
gathered movement behaviours. With regard to these examples it becomes obvi-
ous that sensors often unobtrusively collect highly critical and personal context
data of users. Hence, the proposed pattern enables the user to decide which
functions she is willing to use and which function the user renounces because
she does not want to provide the context data needed by the required function.

Forces and Context

– Informational self-determination: The pattern considers a user’s basic right
of informational self-determination. This is due to the fact that a user is
able to explicitly agree or disagree to a certain function depending on the
context data needed by the function. Therefore, the user has direct control of
the context data collection process. This satisfies the principles of necessity,
transparency, giving consent and responsibility. They are part of the user’s
right of informational self-determination and are described in detail in [46]
and [47].

– Trust: The pattern increases a user’s trust in the application by offering the
possibility to prevent the collection and inference of certain personal context
data. Hence, a user can be sure that personal data that is critical to her is
not gathered, stored or further processed by third parties.

– Transparency: The pattern provides transparency to the user by giving an
overview, which function needs which personal context data of a user to work
properly. For this reason a user is aware of the context data that is gathered
by the sensors that surround her.

Solution A solution is given if the user can explicitly agree or disagree to certain
functions. For this purpose, the UC system has to display every function and its
required context data. A possible way of displaying these functions and the used
context data may be the use of the privacy consent form, which is included in
every application.

– Support-U: Figure 1 displays the privacy consent of the Support-U applica-
tion. In the shown privacy consent form each function, which utilises personal
context information, is listed. Furthermore, the user is able to activate or to
deactivate the functions, e.g., to enable a live stream or to enable predicting
her next context.

– Meet-U: Meet-U provides several functions that make use of localization
mechanisms and the personal data the user supplies. That includes the user’s
interests, buddy list and his preferred means of transportation. For indoor
navigation a RFID sensor attached to the user is exploited. The user can
now switch off the navigation function so that neither the indoor nor the
outdoor localization continue to operate. The user’s preferences concerning
transportation will be no longer available. Further functions can be disabled

16

correspondingly. Turning off, for example, the advanced search engine would
stop using the user’s interests.

Fig. 1. The privacy consent form enables the user to agree or disagree to certain func-
tions of the Support-U application.

Consequences By enabling the user to explicitly agree or disagree to certain
functions, a context aware application like Support-U might not be able to pro-
vide all of its possible functionalities to the user anymore. However, the usage
of this pattern in the development process of context-aware applications might
additionally strengthen the user’s confidence in the usage of UC systems.

Related Requirement Patterns

– Configurability: The application shall enable users to activate or deactivate
functions.

– Agreement to Functionality: The application shall ask for users’ consent
regarding the functionality before use. The application should enable users
to alter their consent regarding the functionality.

17

Related HCI Patterns

– Choice from a Small Set: ”Show all the possible choices up front, show clearly
which choice(s) have been made, and indicate unequivocally whether one or
several values can be chosen.” [40]

4.2 Trust and Transparency

Intent The intent of the Trust and Transparency Pattern is to visualize hardware
sensors or even inferred context information that surrounds a user, and that are
used by a UC system. Furthermore, the intention of this pattern is to reduce the
unobtrusiveness of current sensor technology if needed.

Motivation Various sensors pervade our daily life and affect us in different sit-
uations and areas. Mostly, gathered sensor data and inferred user contexts are
provided to the user without visualizing the sensors used by the UC system.
For example, in the field of health care, possibilities were elaborated to give pa-
tients the opportunity to be monitored even if they are outside of a hospital using
ubiquitous sensors built into smartphones [48]. So-called smart homes and smart
rooms adapt their services to the lifestyle habits of occupants and the working
routines of clerks by observing and learning their behaviour patterns [49,50].
The automotive application domain represents another area which is strongly
influenced by ubiquitous sensors. Sensors such as infrared, radar, laser or GPS
sensors may help to prevent possible collisions between a car and a pedestrian
[51]. With the aid of smart badges conference attendees can be grouped by their
interests. They can be automatically informed about similar activities of other
members [6]. Furthermore, RFID sensors can be used to detect whether confer-
ence attendees are talking to each other, how long their conversation took, and
which talks participants have visited. Based on that, helpful information about
other interesting talks at the conference can be provided to the user. Including
additionally the user profiles of other attendees, those with similar interests can
be displayed to a participant [3].

Forces and Context

– Trust: The pattern increases a user’s trust in using UC systems by visualizing
the context sources, respectively the sensors that surround the user.

– Transparency: The pattern provides transparency from a legal perspective,
not from a technical perspective. Hence, the user possibly gets a better un-
derstanding of her environment. This means that a user is enabled to see
what sensor technology surrounds her in her daily environment.

Solution A general solution is to add a view that provides augmented reality in
a context-aware application. A user can, for example, use the camera view of
her smartphone to visualize the sensors that surround her.

18

Fig. 2. The example presents how the application of the Trust and Transparency Pat-
tern can look like. All hidden sensors and inferred context information are depicted.

– Support-U: With regard to the Support-U application, which offers a view
directly in the flat of an elderly person, an overlay functionality is proposed
that visualizes the sensors installed in the ubiquitous environment. These
overlays enable the user to recognize easily the type of sensor that is installed,
e.g., in his living or working place. In addition, the user is able to access
the current data of the sensor and its data history by simply clicking the
overlay that represents the sensor. An example of the implementation of the
proposed pattern is given in fig. 2.

– Meet-U: Meet-U’s indoor navigation incorporates RFID tags and readers to
be able to localize the user without depending on a GPS signal. The user can
view on the map of the building where nearby RFID readers are installed.
The same view indicates that the user is localized by means of a RFID tag
instead of using GPS.

Consequences By enabling the user to detect the sensors surrounding her, her
confidence will potentially increase and transparency will be provided. Further-
more, the user is able to access additional information that has not been visible
and accessible to her before.

19

Related Requirement Patterns

– Signaling the Function Status: The application shall show the users the sta-
tus of the functions.

Related HCI Patterns

– Tooltip: ”You need to add a small label, descriptor, or additional piece of
information in order to explain a piece of page content, a component, or a
control.” [45]

– Annotation: ”You must be able to attach additional information to a data
point within a dense array of information, without leaving the original dis-
play context. Any interactive infographic that demands such additional in-
formation can generally support an Annotation. Layered display is easy to
add to almost any platform, but some attention must be paid to precise
location ability when used in Infinite Area and similar displays.” [45]

4.3 Abridged Terms and Conditions

Intent The Abridged Terms and Conditions pattern shall enable the user to
easily understand and overlook the terms and conditions (TAC) of the context-
aware application. This can be achieved by displaying only the most important
facts of the complete TAC in a condensed way such that it fits on one page.

Motivation Very often, lengthy TACs that are displayed at the first start of an
application are ignored, respectively, browsed only very quickly by the user. The
reason for this can be the representation, size and complexity of the TACs that
may overwhelm the user. TACs can comprise up to 20 or sometimes more pages.
In addition, the TACs are mostly not comprehensible to the user because they
are written in legal language. Legal terminologies are utilised by companies in
order to ensure that they are legally safeguarded.

Forces and Context

– Trust: Due to the fact that the TACs of an application are condensed to a
size that is easily comprehensible, a user’s trust in the application can be
increased.

– Transparency: The usage of the pattern ensures a greater transparency to
the user since possible implications for the user, which may result through
the usage of the application, can be recognized more easily beforehand.

Solution A solution to provide comprehensible TACs to the user is the conden-
sation of the TAC to the most relevant points. These have to be prepared from
the user’s perspective and not from the company’s perspective. Therefore, the
abstract should only include facts that affect the user. To enable the company to

20

stay legally safeguarded a full version of the TAC must be offered, too. Users can
optionally select the full version if they need further information. The abridged
version of the TAC may not exceed one screen page.

– Support-U: An example of an abridged TAC is given in fig. 3. The figure
shows the results of the abridged TAC pattern used for the Support-U ap-
plication.

– Connect-U: The user has to sign a license agreement of the size of one page
in A4 format. On this page the agreement about the data usage is described
in clear detail.

– Meet-U: The key points of TAC that affect the user’s privacy the most, are
displayed on one screen. Hence, the gathering and processing of data are
addressed and summarized briefly. The long version of the TAC is linked.
The user has to agree on that before continuing with the application.

Fig. 3. The abridged TAC fits exactly on one screen. The long version can be accessed
manually.

Consequences The pattern influences the way TAC are presented to the user.
Instead of displaying all possible information to users, only those clauses will be
presented using the abridged TAC pattern that are most relevant. If the user is

21

interested in the long version or needs further details she has to manually select
the long version of the TAC. Moreover, a user can comply to the TAC by only
reading the abridged version of the TAC.

Related Requirement Patterns

– Explanation of Processes: The application shall inform users on demand
about processes.

Related HCI Patterns

– Extras on Demand: ”Show the most important content up front, but hide
the rest. Let the user reach it via a single, simple gesture.” [43]

4.4 Context State Indication

Intent The intent of the Context State Indication Pattern is to ensure that all
UC applications provide a similar way in how they handle, present and make im-
portant context information available to the user. Therefore, the pattern should
advise the developer how context data can be categorized and how context data
provided by an application can be indicated in a suitable way.

Motivation It can be quite a challenge to provide a good presentation of con-
text data because context data is multifarious and is generated very frequently
by sensors installed in UC environments or by services that infer context data
directly from sensor data. Providing a good presentation supports the usability
of the application and increases a user’s confidence and trust in the applica-
tion and its provider. Finally, a uniform concept for context data presentation
and context access increases the recognition of certain functionalities in different
applications.

Forces and Context

– Controllability: After starting the application, the user can easily obtain
an overview of the relevant information. A quick overview supports her in
making decisions faster.

– Effectiveness: The user does not has to interpret certain context data on her
own but the user is supported by using usual indicators such as symbols,
tones and colours, which automatically categorize a given context.

– Comprehensibility: The classification of contexts enhances a user’s trust by
preventing the user misinterpreting a certain context information, which
would be visualized, e.g., only as a number.

22

Solution A solution to provide a clear presentation of context data that simul-
taneously enables the user to use the application more efficiently is given by a
categorisation of context data, by a prominent placement of context data and
finally by an easily accessible visualisation of the context information and its
changes over time. The idea of categorising context data is to simplify the usage
and speed up the interpretation of context data. In contrast to plain text, which
has to be read first, the user can interpret known symbols, colours and tones
within a very short time.

– Support-U: The categorisation of context data is defined by means of differ-
ent colours. Green colour signals to the user that the context has a positive
status, yellow colour means that the user should have a closer look to a
particular context and red colour alerts the user. The most relevant context
data is always displayed on the first screen of the application. This ensures
that a user cannot miss it. Context changes are indicated by a fixed status
bar, irrespective of whether or not the user is currently using the overview.
An example of the usage of the proposed pattern is given in fig. 4. In the
example the status of the person is marked as positive (green). The status
of the TV is highlighted in blue, which indicates a neutral situation.

– Meet-U: One of Meet-U’s functionalities is to inform the user in due time
about his next step, such as the next appointment or event. To this end,
Meet-U incorporates the user’s location to estimate the time required to
reach the destination. A yellow notification points out that the user has to
start to arrive on time. In contrast, a red one indicates that he will be most
likely too late.

Consequences The most relevant context information and the corresponding
status levels have to be identified at design time. Furthermore, the navigation
through the application is affected by the pattern and has to be adapted as well.

Related Requirement Patterns

– Assessment of the Output: The application shall offer users on demand an
assessment of the output.

Related HCI Patterns

– Home & Idle Screens: ”You must display a default set of information and
actions once the device has started, and to return to when all other user
activities are exited or completed.” [45]

– Extras on Demand: ”Show the most important content up front, but hide
the rest. Let the user reach it via a single, simple gesture.” [43]

– Zoom & Scale: ”You must provide a method for users to change the level of
detail in dense information arrays, such as charts, graphs, and maps. Design
a zooming function or metaphor to provide this control.” [45]

23

– Overview plus Detail: ”Place an overview of the graphic next to a zoomed
”detail view.” As the user drags a viewport around the overview, show that
part of the graphic in the detail view.” [43]

Fig. 4. The example shows the application of the Context State Indication Pattern in
the Support-U application.

4.5 Control of Autonomous Adaptation

Intent Autonomous adaptations can result in usability problems. The goal of
the pattern is to prevent the feeling of loss of control. Users may sense a loss
of control if the behaviour of an application is not comprehensible or if the
behaviour disturbs the current interaction with the application. The pattern
helps to create understandable autonomous adaption and prevents the feeling of
loss of control.

Motivation For example, consider the smartphone application Meet-U that sup-
ports the user during the preparation and planning of an event, while traveling
to an event, and while participating in the event. The application features au-
tonomous adaptation to provide always the best service to the user. Therefore,

24

the application adapts to the navigation mode if the user needs to depart. If
this autonomous adaptation occurs during a user interaction, e.g. the user is
inputting a new event or changes his profile picture, the interaction will be dis-
turbed. In this case the user should be in control whether the adaptation is to
be performed.

Forces and Context

– Informational self-determination: To support the user’s self-determination in
case of autonomous adaptation, the ultimate decision-making authority has
to remain with the user - otherwise the system can adapt to unintended and
irreversible states.

– Transparency: By showing the user the next adaptation step and giving him
the possibility to revert an adaptation, the autonomous adaptation is no
longer a pure black-box concept. The user gains not only control, but also
an overview about the different states and steps.

Solution The user should be enabled to keep control of autonomous adaptations.
This prevents the feeling of loss of control. Two cases have to be distinguished:

1. The user is currently interacting with the application. In this case the ap-
plication should notify the user about the upcoming adaptation and enable
the user to determine if the application should adapt. The user should have
a choice to accept, decline or delay the adaptation.

2. The user is currently not interacting with the application. This means that
the adaptation can be performed. However, the application needs to provide
the user an option to revert the adaptation.

Adaptations with substantial effects on the system should be recorded in a his-
tory. Such a change may be the switching off of a surveillance system or of a
ringtone. The adaptation design needs to be tailored to the application domain,
development platform, and target user group. The cooperation with a usability
engineer and/or a trust engineer is recommended.

– Meet-U: Since Meet-U is a smartphone application there exist several meth-
ods to inform the user about already performed or upcoming adaptations.
Possible HCI patterns to create notifications are listed below. Figure 5 gives
an impression of how the adaptation notifications and control interfaces may
look like.

– Support-U: In Support-U an autonomous adaption takes place by the auto-
mated selection of the room view that shows the room the person is currently
located in. If the room view is manually selected by the user and Support-U
wants to automatically adapt the view to the current location of the person,
the user receives a notification by the application. The notification informs
the user that an autonomous adaption of the room view will take place. The
user is able to refuse the adaption.

25

Fig. 5. Two examples in Meet-U for adaptation notifications.

Consequences The pattern is influenced by and influences the user interface
design of the application. The adaptation notifications need to be integrated
into the user interface design.

Related Requirement Patterns

– Signaling the Function Status: The application shall show the users the sta-
tus of the functions.

– Level of Automation of Functions: The application shall allow the users to
select the level of automation for the functions.

– Control of Processes: The application shall confirm successful completion of
processes for users. The application shall make it possible for users to undo
processes. The application shall confirm input to users.

Related HCI Patterns

– Notifications: ”You must provide a method to notify the user of any notifi-
cations, of any priority, without unduly interfering with existing processes.”
[45]

26

4.6 Emergency Button

Intent This pattern should be applied if the application collects and uses personal
data. It enables the user to halt collection and use of his personal data in a simple
manner at any time.

Motivation Many UC systems use sensors to collect context information in order
to reason about the user’s current environment and situation. This implies that
sensitive personal data is collected. For example, a smartphone application may
support the user during navigation to a meeting with a group of friends. The
application displays the user’s own position and the position of his friends who
are heading to the same destination. An easily accessible emergency button
should be available in the user interface. By pressing the button the user can
force the application to stop collecting and sharing his position.

Forces and Context

– Informational self-determination: The appliance of this pattern supports the
user’s right to informational self-determination by disabling any use or gath-
ering of personal data by the application. This right has been derived from
the basic personal right (Art. 2 Para. 1 and Art. 1 Para. 1 Basic Law of
Germany) and gives every individual the authority to determine, when and
within which limits private data should be used or communicated to oth-
ers. Basically, it enables the user to maintain control of his/her own data.
(BVerfGE 65, 1 (43) population census decision).

– Trust: By providing a mechanism to the user to disable the collection and
use of personal data, the user’s acceptance and trust into the application can
increase. This holds especially true in that situations where the user wants
to be invisible to the application.

Solution The implementation and the user interface design of an emergency
button depend on the application domain and development platform. The button
should be easily accessible at all times. It is important to give a feedback to the
user after activating the button.

After pressing the emergency button the system stops immediately collecting
and using personal data. Herein, all data from which other personal data can be
inferred is included. If pressing the button impairs application functionalities,
the application needs to highlight these functions to provide visual feedback to
the user.

– Meet-U: In case of a smartphone application the button can be placed in the
context menu of the application. The application receives personal data only
through a proxy or manager class. The manager class is used to encapsulate
the access to personal data and to prevent unwanted access. After activating
the emergency button, the manager class stops providing personal data.

27

Furthermore, the application is not allowed to use personal data anymore.
The application informs the user via a pop-up window which functionalities
cannot be provided without restrictions. Besides, an icon in the notification
bar may inform the user that the emergency button is activated.

– Support-U: In the case the person whose personal data are utilised by an
ubiquitous computing application is not the person that has control over the
application, a so called ”button-on-the-wall” is needed. An example of such
a monitoring application is given by Support-U that transmits the collected
data to a person who takes care of an elderly person living under observation.
After the ”button-on-the-wall” has been pushed, the context data collection
process, the processing of already gathered context data as well as the pro-
vision respectively the transmission to the monitoring party is interrupted.
Furthermore, Support-U notifies both parties that the ”button-on-the-wall”
has been pushed and therefore no context data can be further displayed by
the Support-U application.

Consequences When pressing the button, all functionalities, which require per-
sonal data, need to be deactivated to prevent errors at runtime. The Emergency
Button Pattern can be combined with the Enable/Disable Functions Pattern
which addresses similar concerns.

Related Requirement Patterns

– Agreement to Functionality: The application shall ask for users’ consent
regarding the functionality before use. The application should enable users
to alter their consent regarding the functionality.

– Control of Processes: The application shall confirm successful completion of
processes for users. The application shall make it possible for users to undo
processes. The application shall confirm input to users.

Related HCI Patterns

– Button: ”You must allow the user to initiate actions, submit information, or
force a state change, from within any context.” [45]

– Convenient Environment Actions: ”Group these actions together, label them
with words or pictures whose meanings are unmistakable, and put them
where the user can easily find them regardless of the current state of the
artifact. Use their design and location to make them impossible to confuse
with anything else.” [40]

4.7 Data Access Log

Intent The usage, processing and gathering of personal data by an application
have to be traceable and comprehensible for the user. This means that the user

28

must be able to find out when, by whom and for what purpose the data was
collected. Hence, this pattern should be applied if personal data is collected,
used or processed. Even in case of pseudonymized data the application of this
pattern is recommended since linked data sets may enable drawing inferences
about the user or his environment.

Motivation It is common that UC systems collect personal data to reason about
the user’s situation and provide appropriate adaptive services. In most of these
systems the user has to grant the respective rights to the requesting application.
However, in order to prevent a misuse of these rights or to be at least able to
identify that, the access to personal data and its use should be logged. Let us
assume an application is asking for access rights to collect some personal data
like the location of the user, allegedly to set up the date format and language of
the application appropriately. In case the application does not directly provide
any location-based services, the gathering of location data remains questionable.
The user can trust the application blindly or verify the usage of the collected
data by checking the log files provided by an implementation of this pattern. The
frequency of gathering location data can already indicate a misuse of the granted
right. Further information listed in the log file may concretize this suspicion. This
applies not only to location data but also to other sensor information or personal
data.

Forces and Context

– Transparency: Using this pattern the user is put in a position to test whether
the application sticks to the principle of data avoidance and to the intended
purpose of use.

– Informational self-determination: A key pillar of informational self-determination
is to know first which data is actually collected about you. On this basis, fur-
ther patterns or methods can be applied to influence the use and processing
of the data.

– Trust: By enabling transparency the pattern may strengthen the user’s trust
in the application. Besides, the user can cite the logged data as proof in case
of legal disputes.

Solution The user has to consent first that the data is recorded with a tamper-
proof method to the local storage. This can be done, for instance, during the
installation, but before any personal data is submitted. However, the user should
also be given the option to install the application with deactivated logging and
to activate it if necessary afterwards. In case of activated logging the access to
and the use of personal data and exchanges of them with remote or third parties
are recorded in a tamper-proof manner to the user’s device. It is important to
ensure that the log files are copy protected and that a user has access only to
his own log file. For that reason, the files should be encrypted and protected by
passwords.

29

In general, the user should be enabled to detect infringements of the applica-
tions against national data protection laws. The appendix of section 9 of the
German Federal Data Protection Act (BDSG) prescribes, for instance, various
requirements to comply with the data protection law formulated in section 9 (§9,
BDSG). The requirements concern, inter alia, the access, the use and the trans-
fer of data. By being capable to uncover offenses against these requirements, the
user is able to supervise the application’s compliance with the data protection
law to a certain extent. Nevertheless, it would be advantageous if every access,
use and exchange of personal data would be logged. This is to firstly ensure that
the application sticks to the principle of data avoidance and to the intended pur-
pose of use, and secondly to be independent of national regulations. However,
limited resources like the available storage and the principle of proportionality
may restrict this. Depending on the application and its context a trade-off be-
tween the extent of data logging, its usefulness and its complexity and cost has
to be determined.

– Meet-U: To implement the data logging pattern for smartphone applications
a proxy can be used that notes down automatically the time of access, the
collected personal data and the name of the invoking application. Further
information like the dependent functionality or whether the data is processed
remotely or by a third party have to be transmitted to the proxy by the in-
voking application. To save storage the proxy should summarize or aggregate
frequent information, especially frequent sensor data. Besides, it is advisable
that the user can define the maximum size of the log file. For inexperienced
users a default value should be predefined.

– Support-U: To fulfill the data logging pattern, Support-U stores collected
context data and data derived by context recognition or prediction algo-
rithms to a data base. The information that has been stored in the data
base can be accessed using Support-U.

– Connect-U: Concerning context data Connect-U measures the face-to-face
proximity between users and the position of users by incorporating RFID
readers and tags. Further information like the user profile and the conferences
he or she attended can be combined with data from social networks such as
BibSonomy and Twitter to recommend experts for certain topics. By using
explanation aware computing [52,5,53], users can gain an insight into the
inferences derived from the data.

Consequences By incorporating a tamper-proof recording the log file could be
used as evidence in court. However, the question arises whether the data has
been recorded truthfully. A solution would be to certify the data logging or to

30

integrate a certified third party that records the applications’ access, use and
processing of personal data.

Related Requirement Patterns

– Logging Processes: The application shall inform users on demand about pro-
cesses carried out by the application.

Related HCI Patterns

– Interaction History: ”Record the sequence of interactions as a ’history’.” [40]

4.8 On Demand Explanation

Intent The user receives a detailed description about how the system reacts on
his or her inputs. It is especially important to transparently inform the user how
the data entered by him or her is employed by the system. When applying this
pattern, the user is more aware of the consequences of his or her actions. This
increases the usability and the user’s trust in the system at the same time.

Motivation Functions, buttons and settings like the privacy options are often not
as clear and understandable as they should be. For example, it may be unclear
for a user in a social network, even after configuring the settings, if his or her
location, pictures and social relations are visible to third parties or not. It should
be unambiguous at any time to whom the personal data is visible, how it will be
used and which functionality is depending on that. This will also apply to other
forms of inputs and interactions the user performs.

Forces and Context

– Transparency: The provided explanations point out what is affected by the
action the user performs and how it is effected.

– Controllability: After understanding the meaning and impact of the different
functions and settings, the user is able to use and configure them according
to his preferences.

Solution Whenever the user accesses functions, settings or other forms of interac-
tive elements, a detailed description of the available options should be provided.
This applies especially to settings related to privacy. The explanations should
be displayed without violating important ergonomic constraints. Particular at-
tention has to be paid to small display sizes. In certain cases the explanations
need to be displayed permanently or in a triggered way including the push of an
”interface-help-button” such as F1 on desktop computers.

31

Fig. 6. The example shows the application of the On Demand Explanation Pattern.
The picture outlines the possibility for the user to gain additional, detailed information.
The HCI pattern used here is called Tooltip.

– Connect-U: According to the example in fig. 6 every interactive GUI element
in Connect-U uses a tooltip to explain its functionality: this ranges from user
interactions to detailed explanations for privacy options. Using tooltips no
additional space is needed within the user interface.

– Meet-U: Certain settings and functions that may be unclear to the user at
first sight, provide a question mark icon next to the according button or
input field. As soon as the user clicks on them, a help text is popping up. In
case of the user’s settings concerning the privacy options and the user profile
auxiliary texts inform him or her about the required data, the purpose of
collecting them and whether the data is processed locally or remotely.

32

Consequences The explanations should also mention inferred data and data that
is transferred to third parties.

Related Requirement Patterns

– Information About Functions: The application shall inform users before car-
rying out a function.

Related HCI Patterns

– Input Hints: Beside an empty text field, place a sentence or example that
explains what is required. [43]

– Short Description: ”Show a short (one sentence or shorter) description of a
thing, in close spatial and/or temporal proximity to the thing itself.” [40]

– Tooltip: ”You need to add a small label, descriptor, or additional piece of
information in order to explain a piece of page content, a component, or a
control.” [45]

5 Conclusions

This report has presented a set of interdisciplinary design patterns for UC sys-
tems that were derived from three different case studies. While we are not the
first to deliver design patterns for UC, our contribution is unique because it puts
specific emphasis on concerns related to the inevitable social embedding of the
technology. This social awareness is especially important for UC systems that
collect, store and process a large amount of highly personal user data. Due to
the criticality of such data our proposed design patterns reflect abstract require-
ments stemming from law, ergonomics, and user trust considerations. Thus, they
go beyond earlier pattern languages for UC that have concentrated mainly on
functional and security-related concerns.

The presented pattern collection is not meant to be the final word on design
patterns for UC applications. The usefulness of our patterns has to be evaluated
in further application studies. Probably more and different kinds of patterns will
emerge in other scenarios. Perhaps our pattern specifications are not concrete
enough for other development teams in order to directly derive an implemen-
tation from the specification. It is not clear yet how much the inherently inter-
disciplinary approach raises conflicts with established software design principles
such as ”separation of concerns” and ”modularity”. Actually, our patterns are
the opposite of separation of concerns because they merge concerns from differ-
ent disciplines into combined design proposals. More research and development
experience is needed.

However, working on the definition of the interdisciplinary patterns and studying
their implementations in the three UC case studies Meet-U, Connect-U, and
Support-U has revealed already major benefits of a pattern-based approach:

33

The interdisciplinary nature of the patterns makes development teams aware
and reminds them of requirements and concerns from other disciplines even if
the respective discipline experts are not present in the team. Thus, conflicting
disciplinary requirements can be resolved early in the development process. The
patterns support the re-use of important design know-how. Thus, they reduce
the likelihood of repeating mistakes, speed up the development process, and
lower the design effort. Last but not least, the patterns facilitate the discussions
among the discipline experts by creating a common conceptual foundation. We
are confident that these benefits will be confirmed in future development projects
that make use of our pattern collection.

Acknowledgement

Funded by the federal state of Hesse within its LOEWE program for promoting
cutting-edge research (from 2010 to 2013).

References

1. C. Alexander, S. Ishikawa, and M. Silverstein, A Pattern Language: Towns, Build-
ings, Construction, ser. Center for Environmental Structure Berkeley, Calif: Center
for Environmental Structure series. OUP USA, 1977.

2. M. Atzmüller, M. Becker, S. Doerfel, M. Kibanov, A. Hotho, B.-E. Macek, F. Mit-
zlaff, J. Mueller, C. Scholz, and G. Stumme, “Ubicon: Observing social and physical
activities,” in Proc. 4th IEEE Intl. Conf. on Cyber, Physical and Social Computing
(CPSCom 2012), 2012.

3. M. Atzmüller, D. Benz, S. Doerfel, A. Hotho, R. Jäschke, B. E. Macek, F. Mitzlaff,
C. Scholz, and G. Stumme, “Enhancing social interactions at conferences,” it -
Information Technology, vol. 53, no. 3, pp. 101–107, May 2011. [Online]. Available:
http://dx.doi.org/10.1524/itit.2011.0631

4. E. S. Chung, J. I. Hong, J. Lin, M. K. Prabaker, J. A. Landay, and A. L. Liu, “De-
velopment and evaluation of emerging design patterns for ubiquitous computing,”
in Proceedings of the 5th conference on Designing interactive systems: processes,
practices, methods, and techniques. ACM, 2004, pp. 233–242.

5. B. Forcher, S. Agne, A. Dengel, M. Gillmann, and T. Roth-Berghofer, “Semantic
logging: Towards explanation-aware das,” in ICDAR. IEEE, 2011, pp. 1140–1144.

6. J. A. Paradiso, J. Gips, M. Laibowitz, S. Sadi, D. Merrill, R. Aylward, P. Maes,
and A. Pentland, “Identifying and facilitating social interaction with a wearable
wireless sensor network,” Personal and Ubiquitous Computing, vol. 14, no. 2, pp.
137–152, February 2010.

7. G. Rossi, S. Gordillo, and F. Lyardet, “Design patterns for context-aware adapta-
tion,” in SAINT 2005, Workshop on Context-aware Adaptation and Personaliza-
tion for the Mobile Internet. IEEE, 2005, pp. 170–173.

8. E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1995.

9. M. Weiser, “The computer for the 21st century,” Scientific American, vol. 265,
no. 3, pp. 66–75, Sep. 1991.

34

http://dx.doi.org/10.1524/itit.2011.0631

10. A. Hoffmann, M. Söllner, A. Fehr, H. Hoffmann, and J. M. Leimeister, “Towards
an approach for developing socio-technical ubiquitous computing applications,” in
Sozio-technisches Systemdesign im Zeitalter des Ubiquitous Computing (SUBICO
2011) im Rahmen der Informatik 2011 - Informatik schafft Communities, vol. GI-
Edition - Lecture Notes in Informatics (LNI), P-175. Bonner Köllen Verlag, 2011,
p. 180.

11. K. David, K. Geihs, J. M. Leimeister, A. Roßnagel, L. Schmidt, G. Stumme,
and A. Wacker, Eds., Socio-technical Design of Ubiquitous Computing Systems.
Springer, 2014.

12. S. Lahlou and F. Jegou, “European disappearing computer privacy design guide-
lines, version 1.1,” 2004, ambient Agora-s IST 2000-25134.

13. M. Langheinrich, “Privacy by designprinciples of privacy-aware ubiquitous sys-
tems,” in Ubicomp 2001: Ubiquitous Computing. Springer, 2001, pp. 273–291.

14. A. J. Ramirez and B. H. Cheng, “Design patterns for developing dynamically adap-
tive systems,” in Proceedings of the 2010 ICSE Workshop on Software Engineering
for Adaptive and Self-Managing Systems. ACM, 2010, pp. 49–58.

15. D. Gross and E. Yu, “From non-functional requirements to design through pat-
terns,” Requirements Engineering, vol. 6, no. 1, pp. 18–36, 2001.

16. L. Cranor, M. Langheinrich, M. Marchiori, M. Presler-Marshall, and J. Reagle,
“The platform for privacy preferences 1.0 (p3p1. 0) specification,” W3C recom-
mendation, vol. 16, 2002.

17. M. Langheinrich, “A privacy awareness system for ubiquitous computing environ-
ments,” in UbiComp 2002: Ubiquitous Computing. Springer, 2002, pp. 237–245.

18. OECD, O. for Economic Co-operation, and Development, Privacy Online: OECD
Guidance on Policy and Practice. OECD Publishing, 2003. [Online]. Available:
http://books.google.de/books?id=GlXGYFJ6ANgC

19. T. Ruiz-López, M. Noguera, M. J. R. Fórtiz, and J. L. Garrido, “Requirements
systematization through pattern application in ubiquitous systems,” in Ambient
Intelligence-Software and Applications. Springer, 2013, pp. 17–24.

20. J. A. Landay and G. Borriello, “Design patterns for ubiquitous computing,” IEEE
Computer, vol. 36, no. 8, pp. 93–95, 2003.

21. M. Hafiz, “A pattern language for developing privacy enhancing technologies,”
Software: Practice and Experience, vol. 43, no. 7, pp. 769–787, 2013. [Online].
Available: http://dx.doi.org/10.1002/spe.1131

22. D. Comes, C. Evers, K. Geihs, A. Hoffmann, R. Kniewel, J. M. Leimeister, S. Niem-
czyk, A. Roßnagel, L. Schmidt, T. Schulz, M. Söllner, and A. Witsch, “Designing
socio-technical applications for ubiquitous computing,” in Distributed Applications
and Interoperable Systems, ser. Lecture Notes in Computer Science, K. M. Göschka
and S. Haridi, Eds. Springer Berlin Heidelberg, 2012, vol. 7272, pp. 194–201.

23. S. Hoberg, L. Schmidt, A. Hoffmann, M. Söllner, J. M. Leimeister, C. Voigtmann,
K. David, J. Zirfas, and A. Roßnagel, “Socially acceptable design of a ubiquitous
system for monitoring elderly family members,” in Sozio-technisches Systemdesign
im Zeitalter des Ubiquitous Computing (SUBICO), ser. Lecture Notes in Informat-
ics (LNI), U. Goltz, M. Magnor, H.-J. Appelrath, H. K. Matthies, W.-T. Balke,
and L. Wolf, Eds., vol. P-208, Bonn, 2012, pp. 349–364.

24. M. Atzmüller, B. E. Macek, A. Hoffmann, M. Kibanov, C. Scholz, M. Söllner, and
G. Stumme, Connect-U Development of Ubiquitous Systems for Enhancing Social
Networking. Springer (im Erscheinen), o.J.

25. K. Geihs, S. Niemczyk, A. Roßnagel, and A. Witsch, “On the socially aware de-
velopment of self-adaptive ubiquitous computing applications,” it - Information
Technology, vol. 56, no. 1, pp. 1–41, 2014.

35

http://books.google.de/books?id=GlXGYFJ6ANgC
http://dx.doi.org/10.1002/spe.1131

26. A. Hoffmann and S. Niemczyk, Eds., Die VENUS-Entwicklungsmethode. Eine
interdisziplinäre Methode für soziotechnische Softwaregestaltung. kassel university
press GmbH, 2014. [Online]. Available: http://www.uni-kassel.de/upress/online/
OpenAccess/978-3-86219-550-3.OpenAccess.pdf

27. X. Franch, C. Palomares, C. Quer, S. Renault, and F. Lazzer, “A metamodel for
software requirement patterns,” in Requirements Engineering: Foundation for Soft-
ware Quality, ser. Lecture Notes in Computer Science, R. Wieringa and A. Persson,
Eds. Springer Berlin Heidelberg, 2010, vol. 6182, pp. 85–90.

28. S. Robertson and J. Robertson, Mastering the requirements process. Boston:
Addison-Wesley Professional, 2006.

29. C. Wahono, “On the requirements pattern of software engineering,” in Proceedings
of the Temu Ilmiah XI, 2002, pp. 1–7.

30. A. D. Toro, B. B. Jiménez, A. R. Cortés, and M. T. Bonilla, “A requirements
elicitation approach based in templates and patterns,” in Workshop em Engenharia
de Requisitos, 1999, pp. 17–29.

31. K. Geihs, J. M. Leimeister, A. Roßnagel, and L. Schmidt, “On socio-technical
enablers for ubiquitous computing applications,” in The 12th IEEE/IPSJ Interna-
tional Symposium on Applications and the Internet (SAINT). IEEE, 2012, pp.
405–408.

32. A. Hoffmann, H. Hoffmann, and M. Söllner, “Fostering initial trust in applications
- developing and evaluating requirement patterns for application websites,” in 21th
European Conference on Information Systems (ECIS), 2013.

33. A. Hoffmann, M. Söllner, H. Hoffmann, and J. M. Leimeister, “Deriving require-
ment patterns to increase users trust in sociotechnical systems,” Transaction on
Management Information Systems (under review), o.J.

34. A. Hoffmann, T. Schulz, J. Zirfas, H. Hoffmann, A. Roßnagel, and J. M. Leimeister,
“Rechtsverträglichkeit als Eigenschaft soziotechnischer Systeme - Ziele und An-
forderungsmuster,” Wirtschaftsinformatik — Business and Information Systems
Engineering (under Review), o.J.

35. M. van Welie. (2008) Patterns in interaction design. [Online]. Available:
http://www.welie.com/patterns/

36. I. O. for Standardization, ISO 9241-11: Ergonomic Requirements for Office Work
with Visual Display Terminals (VDTs): Part 11: Guidance on Usability. ANSI,
1998.

37. M. Van Welie, G. C. Van Der Veer, and A. Eliëns, “Patterns as tools for user
interface design,” in Tools for Working with Guidelines. Springer, 2001, pp. 313–
324.

38. C. Kruschitz and M. Hitz, “Analyzing the hci design pattern variety,” in Proceed-
ings of the 1st Asian Conference on Pattern Languages of Programs. ACM, 2010,
p. 6.

39. T. Coram and J. Lee. (1996) Experiences - a pattern language for user interface
design. [Online]. Available: http://www.maplefish.com/todd/papers/experiences/
Experiences.html

40. J. Tidwell, “A pattern language for human-computer interface design,”
Washington University Tech. Report WUCS-98-25, 1998. [Online]. Available:
http://www.mit.edu/∼jtidwell/common ground.html

41. J. O. Borchers, “A pattern approach to interaction design,” AI & SOCIETY,
vol. 15, no. 4, pp. 359–376, 2001.

42. I. Graham, A pattern language for web usability. Addison-Wesley Longman Pub-
lishing Co., Inc., 2002.

36

http://www.uni-kassel.de/upress/online/OpenAccess/978-3-86219-550-3.OpenAccess.pdf
http://www.uni-kassel.de/upress/online/OpenAccess/978-3-86219-550-3.OpenAccess.pdf
http://www.welie.com/patterns/
http://www.maplefish.com/todd/papers/experiences/Experiences.html
http://www.maplefish.com/todd/papers/experiences/Experiences.html
http://www.mit.edu/~jtidwell/common_ground.html

43. J. Tidwell, Designing interfaces. O’Reilly Media, Inc., 2005.
44. D. K. Van Duyne, J. A. Landay, and J. I. Hong, The design of sites: patterns, prin-

ciples, and processes for crafting a customer-centered Web experience. Addison-
Wesley Professional, 2003.

45. S. Hoober and E. Berkman, Designing mobile interfaces. O’Reilly Media, Inc.,
2011.

46. C. Kuner, European Data Protection Law, Corporate Compliance and Regulation.
Oxford University Press, 2007.

47. G. Hornung and C. Schnabel, “Data protection in germany: The population cen-
sus decision and the right to informational self-determination,” Computer Law &
Security Review, vol. 25, no. 1, pp. 84–88, 2009.

48. S. L. Lau, I. König, K. David, B. Parandian, C. Carius-Düssel, and M. Schultz,
“Supporting patient monitoring using activity recognition with a smartphone,”
in The Seventh International Symposium on Wireless Communication Systems
(ISWCS’10), York, UK, 2010.

49. R. Andrich, V. Gower, A. Caracciolo, G. D. Zanna, and M. D. Rienzo, “The dat
project: A smart home environment for people with disabilities.” in ICCHP, ser.
Lecture Notes in Computer Science, K. Miesenberger, J. Klaus, W. L. Zagler, and
A. I. Karshmer, Eds., vol. 4061. Springer, 2006.

50. M. Danninger and R. Stiefelhagen, “A context-aware virtual secretary in a smart
office environment,” in MM ’08: Proceeding of the 16th ACM international confer-
ence on Multimedia. New York, NY, USA: ACM, 2008, pp. 529–538.

51. K. David and A. Flach, “An innovative car-2-x system concept for pedestrian
safety,” IEEE VTC Journal, pp. 70–76, mar 2010.

52. C. S. Sauer, A. Hundt, and T. Roth-Berghofer, “Explanation-aware design of mo-
bile mycbr-based applications,” in ICCBR, ser. Lecture Notes in Computer Science,
B. Dı́az-Agudo and I. Watson, Eds., vol. 7466. Springer, 2012, pp. 399–413.

53. B. Forcher, T. Roth-Berghofer, M. Sintek, and A. Dengel, “Explanation-aware
software design of the semantic search engine koios.” in ExaCt, T. Roth-Berghofer,
N. Tintarev, D. B. Leake, and D. Bahls, Eds. University of Lisbon, Portugal,
2010, pp. 13–24. [Online]. Available: http://dblp.uni-trier.de/db/conf/exact/
exact2010.html#ForcherRSD10

37

http://dblp.uni-trier.de/db/conf/exact/exact2010.html#ForcherRSD10
http://dblp.uni-trier.de/db/conf/exact/exact2010.html#ForcherRSD10

	TechReport
	Towards Interdisciplinary Design Patterns for Ubiquitous Computing Applications
	Introduction
	Related Work
	Pattern Definition
	Structure of the Interdisciplinary Design Patterns
	Requirement Patterns
	HCI Patterns

	Interdisciplinary Design Patterns
	Enable/Disable Functions
	Trust and Transparency
	Abridged Terms and Conditions
	Context State Indication
	Control of Autonomous Adaptation
	Emergency Button
	Data Access Log
	On Demand Explanation

	Conclusions

