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Abstract. Very recently, Masjed-Jamei & Koepf [Some summation the-
orems for generalized hypergeometric functions, Axioms, 2018, 7, 38,
10.3390/axioms 7020038] established some summation theorems for the
generalized hypergeometric functions. The aim of this paper is to estab-
lish extensions of some of their summation theorems in the most general
form. As an application, several Eulerian-type and Laplace-type integrals
have also been given. Results earlier obtained by Jun et al. and Koepf et
al. follow special cases of our main findings.
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1. Introduction

The well-known and useful Pochhammer symbol (or the shifted or the raised
factorial, since (1)n = n!) denoted by (a)n for any complex number a is defined
by

(a)n =
{
a(a + 1) . . . (a + n − 1) ; (n ∈ N and a ∈ C)
1 ; (n = 0 and a ∈ C \ {0}) (1.1)
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In terms of the Gamma function, it is defined by

(a)n =
Γ(a + n)

Γ(a)
(1.2)

where Γ(x) is the well-known Gamma function defined by

Γ(x) =
∫ ∞

0

e−zzx−1dz

for Re(x) > 0. Thus, we may define the generalized hypergeometric function
pFq with p numerator parameters and q denominator parameters as follows
[1,4,15,17–19].

pFq [a1, a2, . . . , ap; b1, b2, . . . , bq;x] = pFq

⎡
⎣a1, . . . , ap

; x
b1, . . . , bq

⎤
⎦

=
∞∑

n=0

(a1)n . . . (ap)n
(b1)n . . . (bq)n

xn

n!
. (1.3)

By the well-known ratio test [2], it can be easily verified that the series defined
by (1.3) is convergent for all p ≤ q. Also, the series (1.3) converges in | z |< 1
for p = q + 1 and converges everywhere for p < q + 1 and converges nowhere
(z �= 0) for p > q+1. Further, for p = q+1, the series (1.3) converges absolutely

for |z| = 1 provided Re

⎛
⎝ q∑

j=1

bj −
p∑

j=1

aj

⎞
⎠ > 0, and is converges conditionally

for | z |= 1 and z �= 1 if −1 < Re

⎛
⎝ q∑

j=1

bj −
p∑

j=1

aj

⎞
⎠ ≤ 0 and diverges for

|z| = 1 if Re

⎛
⎝ q∑

j=1

bj −
p∑

j=1

aj

⎞
⎠ ≤ −1. In this regard, for more details about

this function, we refer to the standard text [15].
For p = 2, q = 1 and p = 1, q = 1, we get two very important series,

known in the literature as the hypergeometric function and the confluent hy-
pergeometric function, respectively. For applications, we refer to [2,13].

In the theory of hypergeometric series, the following classical summation
theorems play a key role.

Gauss summation theorem [6]

2F1

⎡
⎣a, b

; 1
c

⎤
⎦ =

Γ (c) Γ (c − a − b)
Γ (c − a) Γ (c − b)

(1.4)

provided Re(c − a − b) > 0.
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Gauss second summation theorem [6]

2F1

⎡
⎣ a, b

; 1
2

1
2 (a + b + 1)

⎤
⎦ =

Γ
(
1
2

)
Γ

(
1
2a + 1

2b + 1
2

)
Γ

(
1
2a + 1

2

)
Γ

(
1
2b + 1

2

) (1.5)

Kummer summation theorem [6]

2F1

⎡
⎣ a, b

;−1
1 + a − b

⎤
⎦ =

Γ
(
1 + 1

2a
)
Γ (1 + a − b)

Γ (1 + a) Γ
(
1 + 1

2a − b
) (1.6)

Bailey summation theorem [6]

2F1

⎡
⎣a, 1 − a

; 1
2

b

⎤
⎦ =

Γ
(
1
2b

)
Γ

(
1
2b + 1

2

)
Γ

(
1
2b + 1

2a
)
Γ

(
1
2b − 1

2a + 1
2

) (1.7)

Remark. 1. For interesting results by employing the above mentioned clas-
sical summation theorems, we refer to a paper by Bailey [3].

2. For generalizations of the above mentioned classical summation theorems
(1.5), (1.6) and (1.7), we refer to research papers by Lavoie, et al. [9–11]
and Rakha and Rathie [16].

In 2010, Kim et al. [8] extended the above mentioned classical summation
theorems in the following form.

Extended Gauss summation theorem

3F2

⎡
⎣ a, b, d + 1

; 1
c + 1, d

⎤
⎦ =

Γ (c + 1) Γ (c − a − b)
Γ (c − a + 1) Γ (c − b + 1)

[
(c − a − b) +

ab

d

]

(1.8)

provided Re(c − a − b) > 0.
For d = c, it reduces to Gauss summation theorem (1.4).
Extended Gauss second summation theorem

3F2

⎡
⎣ a, b, d + 1

; 1
2

1
2 (a + b + 3), d

⎤
⎦ =

Γ
(
1
2

)
Γ

(
1
2a + 1

2b + 3
2

)
Γ

(
1
2a − 1

2b − 1
2

)
Γ

(
1
2a − 1

2b + 3
2

)

×
{ (

1
2 (a + b − 1) − ab

d

)
Γ

(
1
2a + 1

2

)
Γ

(
1
2b + 1

2

) +

(
1
d (a + b + 1) − 2

)
Γ

(
1
2a

)
Γ

(
1
2b

)
}
. (1.9)

For d = 1
2 (a + b + 1), it reduces to Gauss second summation theorem (1.5).
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Extended Kummer summation theorem

3F2

⎡
⎣ a, b, d + 1

;−1
2 + a − b, d

⎤
⎦ =

Γ
(
1
2

)
Γ (2 + a − b)

2a(1 − b)

{ (
1
d (1 + a − b) − 1

)
Γ

(
1
2a

)
Γ

(
1
2a − b + 3

2

)

+

(
1 − a

d

)
Γ

(
1
2a + 1

2

)
Γ

(
1 + 1

2a − b
)
}
. (1.10)

For d = 1 + a − b, it reduces to Kummer summation theorem (1.6).
Extended Bailey summation theorem

3F2

⎡
⎣ a, 1 − a, d + 1

; 1
2

b + 1, d

⎤
⎦ =

Γ
(
1
2

)
Γ (b + 1)

2b

{ (
2
d

)
Γ

(
1
2 b + 1

2a
)
Γ

(
1
2b − 1

2a + 1
2

)

+

(
1 − b

d

)
Γ

(
1
2 b + 1

2a + 1
2

)
Γ

(
1
2 b − 1

2a + 1
)
}
. (1.11)

For d = b, it reduces to Bailey summation theorem (1.7).
Very recently, Masjed-Jamei and Koepf [12] generalized the classical sum-

mation theorems (1.4) to (1.7) in the following form for m ∈ N.

3F2

⎡
⎣a, b, 1

; 1
c, m

⎤
⎦ =

Γ (m) Γ (c) Γ (1 + a − m) Γ (1 + b − m)
Γ (a) Γ (b) Γ (1 + c − m)

×
⎧⎨
⎩

Γ (1 + c − m) Γ (c − a − b + m − 1)
Γ (c − a) Γ (c − b)

−
(m−2)

2F1

⎡
⎣1 + a − m, 1 + b − m

; 1
1 + c − m

⎤
⎦

⎫⎬
⎭ . (1.12)

For m = 1, it reduces to Gauss’ summation theorem (1.4).

3F2

⎡
⎣ a, b, 1

; 1
2

1
2 (a + b + 1), m

⎤
⎦ =

2m−1Γ (m) Γ
(
1
2a + 1

2b + 1
2

)
Γ (a) Γ (b)

× Γ (1 + a − m) Γ (1 + b − m)
Γ

(
1
2a + 1

2b + 3
2 − m

)
⎧⎨
⎩

Γ
(
1
2

)
Γ

(
1
2a + 1

2b + 3
2 − m

)
Γ

(
1
2a − 1

2m + 1
)
Γ

(
1
2b − 1

2m + 1
)

−
(m−2)

2F1

⎡
⎣ 1 + a − m, 1 + b − m

; 1
2

1
2 (a + b + 3) − m

⎤
⎦

⎫⎬
⎭ . (1.13)
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For m = 1, it reduces to Gauss’ second summation theorem (1.5).

3F2

⎡
⎣ a, b, 1

;−1
m + a − b, m

⎤
⎦ =

(−1)m−1Γ (m) Γ (m + a − b)
Γ (a) Γ (b)

× Γ (1 + a − m) Γ (1 + b − m)
Γ (1 + a − b)

⎧⎨
⎩

Γ (1 + a − b) Γ
(
3
2 + 1

2a − 1
2m

)
Γ (2 + a − m) Γ

(
1
2a − b + 1

2m + 1
2

)

−
(m−2)

2F1

⎡
⎣1 + a − m, 1 + b − m

;−1
1 + a − b

⎤
⎦

⎫⎬
⎭ . (1.14)

For m = 1, it reduces to Kummer’s summation theorem (1.6).

3F2

⎡
⎣a, 2m − a − 1, 1

; 1
2

b, m

⎤
⎦ =

2m−1Γ (m) Γ (b)
Γ (a) Γ (2m − a − 1)

× Γ (1 + a − m) Γ (m − a)
Γ (1 + b − m)

⎧⎨
⎩

Γ
(
1
2b − 1

2m + 1
2

)
Γ

(
1
2b − 1

2m + 1
)

Γ
(
1
2a + 1

2b − m + 1
)
Γ

(
1
2b − 1

2a + 1
2

)

−
(m−2)

2F1

⎡
⎣1 + a − m, m − a

; 1
2

1 + b − m

⎤
⎦

⎫⎬
⎭ . (1.15)

For m = 1, it reduces to Bailey’s summation theorem (1.7).

Remark 1.1. For interesting applications of the results (1.12) to (1.15) in the
evaluations of Laplace-type integrals and Eulerian-type integrals, we refer to
recent papers by Jun et al. [5], Koepf et al. [7].

The paper is organised as follows. In Sects. 2, 3, 4 and 5, we shall establish
the extensions of the summation theorems (1.12) to (1.15) due to Masjed-Jamei
and Koepf [12] together with their derivations and special cases (known and
unknown as well). As an applications, in Sect. 6, we evaluate Eulerian-type
integrals involving generalized hypergeometric function, while Sect. 7, deals
with Laplace-type integrals. Results obtained earlier by Jun et al. [5] and
Koepf et al. [7] follow special cases of our main findings. For this, we shall
require the following general result recorded in [14]:

pFq

⎡
⎣a1, . . . , ap−1, 1

; z
b1, . . . , bq−1, m

⎤
⎦

=
Γ(b1) . . .Γ(bq−1)
Γ(a1) . . .Γ(ap−1)

Γ(1 + a1 − m) . . .Γ(1 + ap−1 − m)
Γ(1 + b1 − m) . . .Γ(1 + bq−1 − m)

(m − 1)!
zm−1
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×
⎧⎨
⎩ p−1Fq−1

⎡
⎣1 + a1 − m, . . . , 1 + ap−1 − m,

; z
1 + b1 − m, . . . , 1 + bq−1 − m,

⎤
⎦

−
(m−2)

p−1Fq−1

⎡
⎣1 + a1 − m, . . . , 1 + ap−1 − m,

; z
1 + b1 − m, . . . , 1 + bq−1 − m,

⎤
⎦

⎫⎬
⎭ (1.16)

where
(m)

pFq is the finite sum of the hypergeometric series defined by

(m)

pFq

⎡
⎣a1, . . . , ap,

; z
b1, . . . , bq,

⎤
⎦ =

m∑
n=0

(a1)n . . . (ap)n
(b1)n . . . (bq)n

zn

n!
, (1.17)

where for instance
(−1)

pFq [z] = 0,
(0)

pFq[z] = 1,
(1)

pFq[z] = 1 + a1...ap

b1...bq
z.

2. Extension of Gauss’ Summation Theorem

In this section, we shall establish the extension of Gauss summation theorem
(1.4) asserted in the following theorem.

Theorem 2.1. For m ∈ N and Re(c − a − b + m − 1) > 0, the following result
holds true.

4F3

⎡
⎣ a, b, d + 1, 1

; 1
c + 1, d, m

⎤
⎦

=
Γ(m)Γ(c + 1)Γ(d)Γ(1 + a − m)Γ(1 + b − m)Γ(d − m + 2)

Γ(a)Γ(b)Γ(d + 1)Γ(c − m + 2)Γ(d − m + 1)

×
⎧⎨
⎩

Γ(c − m + 2)Γ(c − a − b − 1 + m)
Γ(c − a + 1)Γ(c − b + 1)

×
[
(c − a − b − 1 + m) +

(a − m + 1)(b − m + 1)
(d − m + 1)

]

−
(m−2)

3F2

⎡
⎣a − m + 1, b − m + 1, d − m + 2

; 1
c − m + 2, d − m + 1

⎤
⎦

⎫⎬
⎭

= Ω1. (2.1)
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Proof. In (1.16), set p = 4, q = 3, a1 = a, a2 = b, a3 = d + 1, b1 = c + 1,
b2 = d, z = 1, we have

4F3

⎡
⎣ a, b, d + 1, 1

; 1
c + 1, d, m

⎤
⎦

=
Γ(m)Γ(c + 1)Γ(d)Γ(1 + a − m)Γ(1 + b − m)Γ(d − m + 2)

Γ(a)Γ(b)Γ(d + 1)Γ(c − m + 2)Γ(d − m + 1)

×
⎧⎨
⎩ 3F2

⎡
⎣a − m + 1, b − m + 1, d − m + 2

; 1
c − m + 2, d − m + 1

⎤
⎦

−
(m−2)

3F2

⎡
⎣a − m + 1, b − m + 1, d − m + 2

; 1
c − m + 2, d − m + 1

⎤
⎦

⎫⎬
⎭ .

We now observe that the first 3F2 appearing on the right-hand side can be
evaluated with the help of the extended Gauss summation theorem (1.8), and
we easily arrive at the right-hand side of (2.1). This completes the proof of
(2.1). �

Remark. For d = c, result (2.1) reduces to the result (1.12).

Corollary 2.2. (a) For m = 1, the result (2.1) exactly gives the extended
Gauss summation theorem (1.8).

(b) In (2.1), if we take m = 2, 3, we get the following results

4F3

⎡
⎣ a, b, d + 1, 1

; 1
c + 1, d, 2

⎤
⎦ =

c(d − 1)
d(a − 1)(b − 1)

[
Γ(c)Γ(c − a − b + 1)

Γ(c − a + 1)Γ(c − b + 1)
{

(c − a − b + 1) +
(a − 1)(b − 1)

(d − 1)

}
− 1

]
, (2.2)

and

4F3

⎡
⎣ a, b, d + 1, 1

; 1
c + 1, d, 3

⎤
⎦ =

2c(c − 1)(d − 2)
d(a − 1)(a − 2)(b − 1)(b − 2)

[
Γ(c − 1)Γ(c − a − b + 2)
Γ(c − a + 1)Γ(c − b + 1)

{
(c − a − b + 2) +

(a − 2)(b − 2)
(d − 2)

}

−
{

1 +
(a − 2)(b − 2)(d − 1)

(c − 1)(d − 2)

}]
. (2.3)

In particular, in (2.2) and (2.3), if we take d = c, we recover known results
due to Masjed-Jamei and Koepf [12]. Similarly, other results can be obtained.
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3. Extension of Gauss’ Second Summation Theorem

In this section, we shall establish the extension of Gauss’ second summation
theorem (1.5) asserted in the following theorem.

Theorem 3.1. For m ∈ N, the following result holds true.

4F3

⎡
⎣ a, b, d + 1, 1

; 1
2

1
2 (a + b + 3), d, m

⎤
⎦

=
2m−1Γ(m)Γ(d)Γ(1 + a − m)Γ(1 + b − m)Γ(d − m + 2)Γ

(
1
2 (a + b + 3)

)
Γ(a)Γ(b)Γ(d + 1)Γ

(
1
2 (a + b + 5) − m

)
Γ(d − m + 1)

×
⎧⎨
⎩k −

(m−2)

3F2

⎡
⎣ a − m + 1, b − m + 1, d − m + 2

; 1
2

1
2 (a + b + 5) − m, d − m + 1

⎤
⎦

⎫⎬
⎭

= Ω2 (3.1)

where

k =
Γ

(
1
2

)
Γ

(
1
2 (a + b + 5) − m

)
Γ

(
1
2 (a − b − 1)

)
Γ

(
1
2 (a − b + 3)

)
⎧⎨
⎩

[
1
2 (a + b − 2m + 1) − (a−m+1)(b−m+1)

(d−m+1)

]
Γ

(
1
2a + 1 − 1

2m
)
Γ

(
1
2b + 1 − 1

2m
)

+

[
(a+b−2m+3)
(d−m+1) − 2

]
Γ

(
1
2a + 1

2 − 1
2m

)
Γ

(
1
2b + 1

2 − 1
2m

)
⎫⎬
⎭ .

Proof. In (1.16), set p = 4, q = 3, a1 = a, a2 = b, a3 = d+1, b1 = 1
2 (a+ b+3),

b2 = d, z = 1
2 , we have

4F3

⎡
⎣ a, b, d + 1, 1

; 1
2

1
2 (a + b + 3), d, m

⎤
⎦

=
2m−1Γ(m)Γ(d)Γ(1 + a − m)Γ(1 + b − m)Γ(d − m + 2)Γ

(
1
2 (a + b + 3)

)
Γ(a)Γ(b)Γ(d + 1)Γ

(
1
2 (a + b + 5) − m

)
Γ(d − m + 1)

×
⎧⎨
⎩ 3F2

⎡
⎣ a − m + 1, b − m + 1, d − m + 2

; 1
2

1
2 (a + b + 5) − m, d − m + 1

⎤
⎦

−
(m−2)

3F2

⎡
⎣ a − m + 1, b − m + 1, d − m + 2

; 1
2

1
2 (a + b + 5) − m, d − m + 1

⎤
⎦

⎫⎬
⎭

We now observe that the first 3F2 appearing on the right-hand side can be
evaluated with the help of the extended Gauss’ second summation theorem
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(1.9), and we easily arrive at the right-hand side of (3.1). This completes the
proof of (3.1). �

Remark. For d = 1
2 (a + b + 1), result (3.1) reduces to the result (1.13).

Corollary 3.2. (a) For m = 1, the result (3.1) exactly gives the extended
Gauss’ second summation theorem (1.9).

(b) In (3.1), if we take m = 2, 3; we get the following results

4F3

⎡
⎣ a, b, d + 1, 1

; 1
2

1
2 (a + b + 3), d, 2

⎤
⎦ =

(d − 1)(a + b + 1)
d(a − 1)(b − 1)

×
⎧⎨
⎩

Γ
(
1
2

)
Γ

(
1
2 (a + b + 1)

)
Γ

(
1
2 (a − b − 1)

)
Γ

(
1
2 (a − b + 3)

)
⎡
⎣

{
1
2 (a + b − 3) − (a−1)(b−1)

(d−1)

}
Γ

(
1
2a

)
Γ

(
1
2b

)

+

{
(a+b−1)
(d−1) − 2

}
Γ

(
1
2a − 1

2

)
Γ

(
1
2b − 1

2

)
⎤
⎦ − 1

⎫⎬
⎭ . (3.2)

and

4F3

⎡
⎣ a, b, d + 1, 1

; 1
2

1
2 (a + b + 3), d, 3

⎤
⎦ =

2(d − 2)(a + b + 1)(a + b − 1)
d(a − 2)2(b − 2)2

×
{
k1 −

[
1 +

(d − 1)(a − 2)(b − 2))
(d − 2)(a + b − 1)

]}
. (3.3)

where

k1 =
4 Γ

(
1
2

)
Γ

(
1
2 (a + b − 1)

)
(a − b + 1)(a − b − 1)

×
⎧⎨
⎩

[
1
2 (a + b − 5) − (a−2)(b−2)

(d−2)

]
Γ

(
1
2a − 1

2

)
Γ

(
1
2b − 1

2

) +

[
a+b−3
d−2 − 2

]
Γ

(
1
2a − 1

)
Γ

(
1
2b − 1

)
⎫⎬
⎭

In particular, in (3.2) and (3.3), if we take d = 1
2 (a + b + 1), we

recover known results due to Masjed-Jamei and Koepf [12]. Similarly,
other results can be obtained.

4. Extension of Kummer’s Summation Theorem

In this section, we shall establish the extension of Kummer’s summation the-
orem (1.6) asserted in the following theorem.
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Theorem 4.1. For m ∈ N, the following result holds true.

4F3

⎡
⎣ a, b, d + 1, 1

;−1
1 + a − b + m, d, m

⎤
⎦

=
(−1)m−1Γ(m)Γ(d)Γ(1 + a − m)Γ(1+b − m)Γ(d − m + 2)Γ (1 + a − b + m)

Γ(a)Γ(b)Γ(d + 1)Γ (2+a − b) Γ(d − m + 1)

×
⎧⎨
⎩k −

(m−2)

3F2

⎡
⎣a − m + 1, b − m + 1, d − m + 2

;−1
2 + a − b, d − m + 1

⎤
⎦

⎫⎬
⎭

= Ω3 (4.1)

where

k =
Γ

(
1
2

)
Γ (2 + a − b)

2a−m+1(m − b)

⎡
⎣

(
a−b−d+m
1+d−m

)
Γ

(
1
2a + 1

2 − 1
2m

)
Γ

(
1
2a − b + 1

2m + 1
)

+

(
d−a

1+d−m

)
Γ

(
1
2a + 1 − 1

2m
)
Γ

(
1
2a − b + 1

2m + 1
2

)
⎤
⎦ .

Proof. In (1.16), set p = 4, q = 3, a1 = a, a2 = b, a3 = d+1, b1 = 1+a−b+m,
b2 = d, z = −1, we have

4F3

⎡
⎣ a, b, d + 1, 1

;−1
1 + a − b + m, d, m

⎤
⎦

=
(−1)m−1Γ(m)Γ(d)Γ(1 + a − m)Γ(1 + b − m)Γ(d − m + 2)Γ (1 + a − b + m)

Γ(a)Γ(b)Γ(d + 1)Γ (2 + a − b) Γ(d − m + 1)

×
⎧⎨
⎩ 3F2

⎡
⎣a − m + 1, b − m + 1, d − m + 2

;−1
2 + a − b, d − m + 1

⎤
⎦

−
(m−2)

3F2

⎡
⎣a − m + 1, b − m + 1, d − m + 2

;−1
2 + a − b, d − m + 1

⎤
⎦

⎫⎬
⎭ .

We now observe that the first 3F2 appearing on the right-hand side can be
evaluated with the help of the extended Kummer’s summation theorem (1.10),
and we easily arrive at the right-hand side of (4.1). This completes the proof
of (4.1). �

Remark. For d = a − b + m, result (4.1) reduces to the result (1.14).

Corollary 4.2. (a) For m = 1, the result (4.1) exactly gives the extended
Kummer summation theorem (1.10).
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(b) In (4.1), if we take m = 2, 3, we get the following results

4F3

⎡
⎣ a, b, d + 1, 1

;−1
3 + a − b, d, 2

⎤
⎦ =

(d − 1)(2 + a − b)
d(a − 1)(b − 1)

×
⎧⎨
⎩1 − Γ

(
1
2

)
Γ (2 + a − b)

2a−1(2 − b)

⎡
⎣

(
2+a−b−d

d−1

)
Γ

(
1
2a − 1

2

)
Γ

(
2 + 1

2a − b
)

+

(
d−a
d−1

)
Γ

(
1
2a

)
Γ

(
3
2 + 1

2a − b
)
⎤
⎦

⎫⎬
⎭ (4.2)

and

4F3

⎡
⎣ a, b, d + 1, 1

;−1
4 + a − b, d, 3

⎤
⎦ =

2(2 + a − b)(3 + a − b)(d − 2)
d(a − 1)(a − 2)(b − 1)(b − 2)

×
⎧⎨
⎩

Γ
(
1
2

)
Γ (2 + a − b)

2a−2(3 − b)

⎡
⎣

(
3+a−b−d

d−2

)
Γ

(
1
2a − 1

)
Γ

(
1
2a − b + 5

2

)

+

(
d−a
d−2

)
Γ

(
1
2a − 1

2

)
Γ

(
1
2a − b + 2

)
⎤
⎦ −

[
1 − (a − 2)(b − 2)(d − 1)

(d − 2)(2 + a − b)

]⎫⎬
⎭ . (4.3)

In particular, in (4.2) and (4.3), if we take d = 2 + a − b, we recover
known results due to Masjed-Jamei and Koepf [12]. Similarly, other results
can be obtained.

5. Extension of Bailey’s Summation Theorem

In this section, we shall establish the extension of Bailey’s summation theorem
(1.7) asserted in the following theorem.

Theorem 5.1. For m ∈ N, the following result holds true.

4F3

⎡
⎣ a, 2m − a − 1, d + 1, 1

; 1
2

b + 1, d, m

⎤
⎦

=
2m−1Γ(m)Γ(b + 1)Γ(d)Γ(m − a)Γ(1 + a − m)Γ(d − m + 2)

Γ(a)Γ(d + 1)Γ (2m − a − 1) Γ(2 + b − m)Γ(1 + d − m)

×
⎧⎨
⎩k −

(m−2)

3F2

⎡
⎣a − m + 1, m − a, 2 + d − m

; 1
2

2 + b − m, 1 + d − m

⎤
⎦

⎫⎬
⎭

= Ω4 (5.1)
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where

k =
Γ

(
1
2

)
Γ (2 + b − m)
2b−m+1

⎡
⎣

(
2

1+d−m

)
Γ

(
1
2b + 1

2a − m + 1
)
Γ

(
1
2b − 1

2a + 1
2

)

+

(
1 − 1+b−m

1+d−m

)
Γ

(
1
2b + 1

2a − m + 3
2

)
Γ

(
1
2b − 1

2a + 1
)
⎤
⎦ .

Proof. In (1.16), set p = 4, q = 3, a1 = a, a2 = 2m − a + 1, a3 = d + 1,
b1 = b + 1, b2 = d, z = 1

2 , we have

4F3

⎡
⎣ a, 2m − a − 1, d + 1, 1

; 1
2

b + 1, d, m

⎤
⎦

=
2m−1Γ(m)Γ(b + 1)Γ(d)Γ(m − a)Γ(1 + a − m)Γ(d − m + 2)

Γ(a)Γ(d + 1)Γ (2m − a − 1) Γ(2 + b − m)Γ(1 + d − m)

×
⎧⎨
⎩ 3F2

⎡
⎣a − m + 1, m − a, 2 + d − m

; 1
2

2 + b − m, 1 + d − m

⎤
⎦

−
(m−2)

3F2

⎡
⎣a − m + 1, m − a, 2 + d − m

; 1
2

2 + b − m, 1 + d − m

⎤
⎦

⎫⎬
⎭ .

We now observe that the first 3F2 appearing on the right-hand side can be
evaluated with the help of the extended Bailey’s summation theorem (1.11),
and we easily arrive at the right-hand side of (5.1). This completes the proof
of (5.1). �

Remark. For d = b, result (5.1) reduces to the result (1.15).

Corollary 5.2. (a) For m = 1, the result (5.1) exactly gives the extended
Bailey’s summation theorem (1.11).

(b) In (5.1), if we take m = 2, 3, we get the following results

4F3

⎡
⎣ a, 3 − a, d + 1, 1

; 1
2

b + 1, d, 2

⎤
⎦ =

2b(1 − d)
d(1 − a)(2 − a)

×
⎧⎨
⎩

Γ
(
1
2

)
Γ (b)

2b−1

⎡
⎣

(
2

d−1

)
Γ

(
1
2b + 1

2a − 1
)
Γ

(
1
2b − 1

2a + 1
2

)

+

(
d−b
d−1

)
Γ

(
1
2b + 1

2a − 1
2

)
Γ

(
1
2b − 1

2a + 1
)
⎤
⎦ − 1

⎫⎬
⎭ (5.2)
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and

4F3

⎡
⎣ a, 5 − a, d + 1, 1

; 1
2

b + 1, d, 3

⎤
⎦ =

8b(b − 1)(d − 2)
d(a − 4)(a − 3)(a − 2)(a − 1)

×
⎧⎨
⎩

Γ
(
1
2

)
Γ (b − 1)

2b−2

⎡
⎣

(
2

d−2

)
Γ

(
1
2b + 1

2a − 2
)
Γ

(
1
2b − 1

2a + 1
2

)

+

(
d−b
d−2

)
Γ

(
1
2b + 1

2a − 3
2

)
Γ

(
1
2b − 1

2a + 1
)
⎤
⎦ −

[
1 − (a − 2)(a − 3)(d − 1)

2(b − 1)(d − 2)

]⎫⎬
⎭ .

(5.3)

In particular, in (5.2) and (5.3), if we take d = b, we recover known
results due to Masjed-Jamei and Koepf [12]. Similarly, other results can
be obtained.

6. Eulerian-type Single Integrals

As an application of the results established in sections 2 to 5, this section deals
with a new class of Eulerian-type integrals involving generalized hypergeomet-
ric functions.

First Integral For m ∈ N, Re(b) > 0, Re(c− b) > −1 and Re(c− a− b−
d + m) > 0, the following result holds true.

∫ 1

0

xb−1(1 − x)c−b
3F2

⎡
⎣a, d + 1, 1

;x
d, m

⎤
⎦ dx =

Γ(b)Γ(c − b + 1)
Γ(c + 1)

Ω1 (6.1)

where Ω1 is the same as given in (2.1).
Second Integral For m ∈ N, Re(b) > 0 and Re(a − b + 3) > 0, the

following result holds true.

∫ 1

0

xb−1(1 − x)
1
2 (a−b+1)

3F2

⎡
⎣a, d + 1, 1

; 1
2x

d, m

⎤
⎦ dx

=
Γ(b)Γ

(
1
2 (a − b + 3)

)
Γ

(
1
2 (a + b + 3)

) Ω2 (6.2)

where Ω2 is the same as given in (3.1).
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Third Integral For m ∈ N, Re(b) > 0 and Re(a − 2b + m) > −1, the
following result holds true.

∫ 1

0

xb−1(1 − x)a−2b+m
3F2

⎡
⎣a, d + 1, 1

;−x
d, m

⎤
⎦ dx

=
Γ(b)Γ(1 + a − 2b + m)

Γ(1 + a − b + m)
Ω3 (6.3)

where Ω3 is the same as given in (4.1).
Fourth Integral For m ∈ N, Re(a) > 0 and Re(b−a) > −1, the following

result holds true.
∫ 1

0

xa−1(1 − x)b−a
3F2

⎡
⎣2m − a − 1, d + 1, 1

; 1
2x

d, m

⎤
⎦ dx =

Γ(a)Γ(1 + b − a)
Γ(1 + b)

Ω4

(6.4)

where Ω4 is the same as given in (5.1).

Proof. In order to evaluate the integral (6.1), we proceed as follows. Denoting
the left-hand side of (6.1) by I, we have

I =
∫ 1

0

xb−1(1 − x)c−b
3F2

⎡
⎣a, d + 1, 1

;x
d, m

⎤
⎦ dx.

Now, expressing 3F2 as a series and changing the order of integration and
summation which is easily seen to be justified due to the uniform convergence
of the series involved in the process, we have

I =
∞∑

n=0

(a)n(d + 1)n(1)n
(d)n(m)nn!

∫ 1

0

xb+n−1(1 − x)c−bdx.

Evaluating the beta integral and using the result (1.2) we get, after some
simplification

I =
Γ(b)Γ(c − b + 1)

Γ(c + 1)

∞∑
n=0

(a)n(b)n(d + 1)n(1)n
(c + 1)n(d)n(m)nn!

.

Summing up the series, we have

I =
Γ(b)Γ(c − b + 1)

Γ(c + 1) 4F3

⎡
⎣ a, b, d + 1, 1

; 1
c + 1, d, m

⎤
⎦ .

Finally, using the summation theorem (2.1), we easily arrive at the right-hand
side of (6.1). This completes the proof of (6.1). �

In exactly the same manner, the integrals (6.2) to (6.4) can be evaluated
with the help of the summation theorems (3.1), (4.1) and (5.1), respectively.
We leave this as an exercise to the interested reader.
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6.1. Special Cases

(1) In (6.1), if we take d = e, we get a known result due to Jun et al. [5].
(2) In (6.2), if we take d = 1

2 (a+ b+ 1), we get a known result due to Jun et
al. [5].

(3) In (6.3), if we take d = a − b + m, we get a known result due to Jun et
al. [5].

(4) In (6.4), if we take d = b, we get a known result due to Jun et al. [5].

We conclude this section by remarking that the integrals (6.1) to (6.4) are of
very general nature because of the presence of m ∈ N. So by giving values to
m, we can obtain a large number of integrals, which may be potentially useful.

7. Laplace-type Integrals

In this section, we shall establish a new class of Laplace-type integrals involving
generalized hypergeometric functions.

First Integral For m ∈ N, Re(s) > 0, Re(b) > 0 and Re(c−a−b+m) > 1,
the following result holds true.

∫ ∞

0

e−sttb−1
3F3

⎡
⎣ a, d + 1, 1

; st
c + 1, d, m

⎤
⎦ dt = Γ(b)s−bΩ1 (7.1)

where Ω1 is the same as given in (2.1).
Second Integral For m ∈ N, Re(s) > 0 and Re(a) > 1, the following

result holds true.
∫ ∞

0

e−stta−1
3F3

⎡
⎣ b, d + 1, 1

; 1
2st

1
2 (a + b + 3), d, m

⎤
⎦ dt = Γ(a)s−aΩ2 (7.2)

where Ω2 is the same as given in (3.1).
Third Integral For m ∈ N, Re(s) > 0 and Re(b) > 0, the following result

holds true.
∫ ∞

0

e−sttb−1
3F3

⎡
⎣ a, d + 1, 1

;−st
1 + a − b + m, d, m

⎤
⎦ dt = Γ(b)s−bΩ3 (7.3)

where Ω3 is the same as given in (4.1).
Fourth Integral For m ∈ N, Re(s) > 0 and Re(a) > 1, the following

result holds true.
∫ ∞

0

e−stta−1
3F3

⎡
⎣2m − a − 1, d + 1, 1

; 1
2st

b + 1, d, m

⎤
⎦ dt = Γ(a)s−aΩ4 (7.4)

where Ω4 is the same as given in (5.1).
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Proof. In order to evaluate the integral (7.1), we proceed as follows. Denoting
the left-hand side of (7.1) by I, we have

I =
∫ ∞

0

e−sttb−1
3F3

⎡
⎣ a, d + 1, 1

; st
c + 1, d, m

⎤
⎦ dt.

Now, express 3F2 as a series, change the order of integration and summation
which is justified due to the uniform convergence of the series, we have

I =
∞∑

n=0

(a)n(d + 1)n(1)n
(c + 1)n(d)n(m)nn!

∫ ∞

0

e−sttb+n−1dt.

Evaluating the Gamma integral and using the result (1.2) we have

I =
Γ(b)
sb

∞∑
n=0

(a)n(b)n(d + 1)n(1)n
(c + 1)n(d)n(m)nn!

.

Summing up the series, we have

I =
Γ(b)
sb

4F3

⎡
⎣ a, b, d + 1, 1

; 1
c + 1, d, m

⎤
⎦ .

Finally, using the summation theorem (2.1), we easily arrive at the right-hand
side of (7.1). This completes the proof of (7.1). �

In exactly the same manner, the integrals (7.2) to (7.4) can be evaluated
with the help of the summation theorems (3.1), (4.1) and (5.1) respectively.

7.1. Special Cases

(1) In (7.1), if we take d = c, we get a known result due to Koepf et al. [7].
(2) In (7.2), if we take d = 1

2 (a+ b+ 1), we get a known result due to Koepf
et al. [7].

(3) In (7.3), if we take d = a− b+m, we get a known result due to Koepf et
al. [7].

(4) In (7.4), if we take d = b, we get a known result due to Koepf et al. [7].

The Laplace-type integrals (7.1) to (7.4) established in this section are
of very general nature because of the presence of m ∈ N. So by giving values
to m, we can obtain a large number of integrals in terms of Gamma functions,
which may be useful in application point of view. We however prefer to omit
the details.

We conclude this paper by remarking that the results established in this
paper (including special cases) have been verified numerically using MATHE-
MATICA.
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