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Abstract
The RMSE of validation (RMSEV) and ratio of the interquartile range to RMSEV

(RPIQV) are key quality parameters in diffuse reflectance infrared (IR) spectroscopy

studies, but the effects of different factors on these parameters are often not suffi-

ciently considered. Our objectives were to reveal the effects of range of contents,

sample size, data pretreatment, wavenumber region selection, and algorithms on the

evaluation of IR spectra in the wavenumber range from 1,000 to 7,000 cm−1 (mid- and

long-wave near IR) estimations. Contents of soil organic C (SOC), N, clay, and sand

and pH values were determined for surface soils of an arable field in India, and IR

spectra were recorded for four samples consisting of 71–263 soils. For each of the four

samples, five random partitions into calibration and validation datasets were carried

out, and partial least squares regression (PLSR) or support vector machine regres-

sion was performed. A plot of the RMSEV values against the interquartile ranges of

measured values for the validation samples (IQRV) indicated that the IQRV was a

key parameter for all soil properties: a sufficiently high IQRV—which is affected by

sample size and random partitioning—resulted in generally good estimation accura-

cies (RPIQV ≥ 2.70). Optimized data pretreatment and wavenumber region selection

improved estimation accuracy for SOC and pH. Support vector machine regression

was superior to PLSR for the estimation of SOC, clay, and sand, but worse for pH.

Overall, this study indicates that multiple partitioning of the data is essential in IR

studies and suggests that RPIQV and RMSEV need to be interpreted in the context of

the respective IQRV values.

Abbreviations: DRIFT, diffuse reflectance infrared Fourier transform;

IQR, interquartile range; IR, infrared; MIR, mid-infrared; MIRS,

mid-infrared spectroscopy; NIR, near-infrared; PLSR, partial least squares

regression; RPIQ, ratio of performance to interquartile distance; SOC, soil

organic carbon; SVMR, support vector machine regression; visNIR, visible-

and near-infrared; visNIRS, visible to near-infrared spectroscopy.
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1 INTRODUCTION

Mid-infrared (MIR, range: 2,500–25,000 nm, 4,000–

400 cm−1) and visible to near-infrared (visNIR, range:

400–2,500 nm, 25,000–4,000 cm−1) spectroscopy (MIRS

and visNIRS, respectively) have proven to be useful tech-

niques for the simultaneous estimation of a number of

chemical and physical soil properties (Gholizadeh, Boruvka,
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Saberioon, & Vasat, 2013; Hutengs, Ludwig, Jung, Eisele,

& Vohland, 2018; Kuang et al., 2012; O’Rourke, Minasny,

Holden, & McBratney, 2016; Pallottino et al., 2019; Soriano-

Disla, Janik, Viscarra Rossel, Macdonald, & McLaughlin,

2014). Their application may be especially beneficial in

terms of reduction of analytical costs and time in studies

that require large datasets (O’Rourke, Argentati, & Holden,

2011); for example, where the focus is on spatial or temporal

monitoring of soil properties.

The usefulness of MIRS and visNIRS for accurate esti-

mations of soil organic C (SOC) and total N content is

well established (Baldock, Hawke, Sanderman, & Macdon-

ald, 2013; Bellon-Maurel & McBratney, 2011; Reeves, 2010),

and important vibrations are those related to alkyl groups, pro-

tein amides, carboxylic acids, water-associated groups, car-

boxylate anions, and aromatic groups (Soriano-Disla et al.,

2014). For SOC and N, a marked overlap in the MIR band

assignments have been reported (Vohland, Ludwig, Thiele-

Bruhn, & Ludwig, 2014). Overall, it cannot be ruled out

that N contents are estimated to some extent indirectly in

the spectral range under investigation. In a laboratory spec-

troscopy study with different additions of wheat (Triticum
aestivum L.) straw and clover (Trifolium spp.) residues to

soils, Greenberg, Linsler, Vohland, and Ludwig (2020) sum-

marized that based on the loadings of partial least squares

regression (PLSR) components, the predictive mechanisms

for SOC and N appear to be quite similar for visNIRS, but

the important wavelengths were less aligned for MIRS.

Important vibrations for the accurate estimation of clay and

sand are those associated with kaolinite (3,690–3,620 cm−1),

smectite and illite (3,630–3,620 and 3,400–3,300 cm−1,

respectively), and quartz (1,100–1,000 cm−1; Soriano-Disla

et al., 2014).

The RMSE of validation (RMSEV), ratio of SD to RMSEV

(RPDV), and ratio of the interquartile range (IQR) to RMSEV

(RPIQV) are key quality parameters in infrared (IR) studies

to describe the performance (accuracy and precision) of a

spectroscopic model (Bellon-Maurel, Fernandez-Ahumada,

Palagos, Roger, & McBratney, 2010; Soriano-Disla et al.,

2014). The RMSEV (consisting of bias and imprecision) is

commonly used to describe the predictive ability in IR studies

and appears as an averaged error recorded on the validation

sample according to Bellon-Maurel et al. (2010). The RPDV

is used to compare the model performance across datasets

(Soriano-Disla et al., 2014) but is appropriate only for nor-

mally distributed soil properties. Bellon-Maurel et al. (2010)

thus suggested calculation of RPIQV values instead. The IQR

in the numerator gives the range that accounts for 50% of the

population around the median, and thus the RPIQV better

describes the spread of the population for typical cases of non-

normally distributed soil properties (Bellon-Maurel et al.,

2010). The factors affecting RMSEV and RPIQV (which has

the RMSEV in the denominator) are manifold for spectrally

Core Ideas
∙ Multiple partitioning of the data is essential in

infrared studies.

∙ The interquartile range (IQR) of measured data was

a key parameter affecting the evaluation.

∙ A sufficiently high IQR resulted in generally good

estimation accuracies in this field study.

∙ SVMR was slightly superior to PLSR for the esti-

mation of SOC, clay, and sand.

∙ Optimum pretreatments and wavenumber region

selection were useful for SOC and pH estimations.

active soil properties, and the relationships are not always

simple. The RMSEV and (thus also) RPIQV are instrument

related (signal to noise ratios differ between instruments), soil

property related (see, e.g., Kuang et al., 2012; Soriano-Disla

et al., 2014), and dependent on the soil treatment prior to the

scanning (e.g., Hutengs, Ludwig, Oertel, Seidel, and Vohland

[2019] found RMSEV to be greatly affected by drying and

grinding). Furthermore, Stenberg, Viscarra Rossel, Mouazen,

and Wetterlind (2010) showed a positive approximately linear

relationship between RMSE and SD for SOC predictions,

demonstrating that RMSE is also affected by data variability.

Moreover, they also noted that RMSE for SOC may be

dependent on the clay contents.

Additionally, a number of studies have focused on

optimizing several chemometric factors to achieve high

RPIQ and low RMSE values, including the algorithms

applied, mathematical pretreatments, and the use of specific

wavenumbers or wavenumber regions (Dotto, Dalmolin,

Grunwald, ten Caten, & Filho, 2017; Ludwig, Murugan,

Parama, & Vohland, 2019). Unfortunately, results have

been variable for different properties and in the different

studies. Regarding the algorithm, it is well established in

spectroscopy that the linear approach PLSR is superior to

multiple linear regression, since it appropriately handles the

multicollinearity of spectral data (Wehrens, 2011). Several

authors suggested that nonlinear approaches, such as support

vector machine regression (SVMR) with a radial kernel,

may be more appropriate to analyze spectral data, especially

for datasets containing a high level of nonlinearities (Xu,

Lu, Baldea, Edgar, & Nixon., 2018). For instance, Deiss,

Margenot, Culman, and Demyan (2020) reported in a MIR

study that SVMR outperformed PLSR for estimations of clay,

sand, pH, SOC, and permanganate oxidizable C in calibration

and validation samples and emphasized that tuning of the

hyperparameters is important. In a NIR study on potentially

toxic elements in soils, it was suggested that SVMR is the best

solution for handling the calibration (Gholizadeh et al., 2015).

In contrast, Nawar, Buddenbaum, Hill, Kozak, and Mouazen



548 LUDWIG ET AL.

(2016) reported, also for a NIR study, cases where PLSR

outperformed SVMR in the validation. Explanations in

cases of superior performances of PLSR over SVMR may

refer to a tendency of SVMR to produce overfitted models

(Grunwald, Yu, & Xiong, 2018). A number of different

spectral preprocessing approaches has also been favored by

different research groups for use in conjunction with certain

algorithms for the estimation of specific soil properties (see,

e.g., the overview provided by Bellon-Maurel and McBratney

[2011] for SOC estimation).

Several studies indicated that the factors given above might

need to be studied in the context of the variability present in

the sample. For instance, Clingensmith, Grunwald, and Wani

(2019) found application of subsetting strategies to increase

the variability of soil parameters and/or spectra in the cali-

bration dataset had a greater influence on model performance

than the algorithm applied. For the field of soil C mapping,

Somarathna, Minasny, and Malone (2017) summarized that

their results showed that the accuracy of spatial prediction of

soil C was more sensitive to training sample size compared

to the model type used. Recently, IR results on the relation-

ship between variability and optimal algorithm showed that

the usefulness of SVMR over PLSR generally decreased with

decreasing sample size used for the calibration (thus decreas-

ing the information provided), and PLSR partly outperformed

SVMR in the validation (Ludwig et al., 2019). In a visNIR

study estimating total C with 216 soils from an Italian forested

area, the required minimum number of soils in the calibration

sample was 72 for SVMR and 130 for PLSR in order to have

nonsignificant differences in the validation sample RMSEV

compared with the best model (SVMR using the full calibra-

tion sample size of 144) (Lucà et al., 2017). For the estima-

tion of clay contents and exchangeable Ca2+, Ramirez-Lopez

et al. (2014) reported that for all the sampling algorithms in

both datasets and for calibration sample sizes <200, a general

trend was observed in which the training RMSE, the normal-

ized training RMSE, and the RMSEV decreased considerably

as the calibration sample size increased. The generalizabil-

ity of these findings with respect to the various soil proper-

ties, scales (field, regional, or global), and locations, however,

remains unresolved.

Several problems and contradictions reported above

have also been encountered in scientific fields other than

spectroscopy. Cawley and Talbot (2010) emphasized that

overfitting and variability are key issues for machine learn-

ing algorithms. If algorithms have different numbers of

parameters to be optimized, they might perform differently,

especially with a limited supply of available data. In order to

advance knowledge, Cawley and Talbot (2010) recommended

investment in sufficient processor time in order to evaluate

performance over a wide range of datasets, using multiple

randomized partitions of the available data, with model

selection performed separately in each trial.

Objectives were thus to quantify the effects of range of con-

tents, sample size, spectral preprocessing, wavenumber region

selection, and algorithms on the accuracies of IR estimates in

the wavenumber range from 1,000 to 7,000 cm−1 (mid- and

long-wave NIR) for SOC, N, pH, clay, and sand using mul-

tiple partitions of surface soils from an arable field in Ban-

galore (India). We hypothesized that a relationship between

algorithm performance and sample size exists, with increas-

ing sample size resulting in (a) higher robustness (i.e., lower

variability of estimation accuracies) across model partitions

of respective algorithms and (b) more pronounced benefits

of SVMR over PLSR across the studied soil properties, as

reported by Ludwig et al. (2019).

2 MATERIALS AND METHODS

2.1 Soils

Soils from an arable field trial in Bangalore were investigated.

The soils of this trial were red sandy soils (Kandic Paleustalfs

or Dystric Nitisols) derived from granite rock. Two sampling

campaigns were carried out. In July 2016, after the estab-

lishment of the trial, 144 surface soils (0–5 cm), hereafter

referred to as sample S144, were sampled on a 79-m × 41-m

grid consisting of 16 rows and nine columns, resulting in aver-

age distance of 4.7 m between sample units (Ludwig, Muru-

gan, Parama, & Vohland, 2018, 2019; see map in Moeckel

et al., 2018) (Table 1). In December 2016, the sampling plan

had to be revised to work around other measurements being

collected simultaneously on the experimental field. For this

reason, the sampled region of the field expanded on three sides

to a grid size of 90 m × 60 m. Sample S119 was collected on

a grid consisting of 12 rows and 10 columns (resulting in 119

surface soils as one of the 120 soils was lost), with an average

distance of 6.7 m between sample units. A random subsample

S71 was taken from S119 in order to study the performance of

the algorithms for a small sample. Sample S263 consisted of

the combined samples S144 and S119 (Table 1).

2.2 Laboratory analyses and IR
spectroscopy

Soils were air dried, sieved to <2 mm, ground, and stored

in plastic vials at room temperature before analysis. Con-

tents of total C (interpreted as SOC because carbonates were

absent) and N were analyzed by dry combustion (Elemen-

tar Vario El, Heraeus). The pH was determined according

to DIN ISO 10390 (2005) with 10 g field-moist soil (i.e., at

50% of its water holding capacity) in 25 ml of 0.01 M CaCl2.

Soil texture was determined with the pipet method (DIN ISO

11277, 2002). Table 1 shows descriptive statistics of these

properties.
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T A B L E 1 Descriptive statistics and results of the Shapiro–Wilk tests for the soil organic C (SOC) content, N content, pH, and soil texture of

samples containing 71, 119, 144, and 263 soils (S71, S119, S144, and S263, respectively)

Property Sample Min. Max. Median
Interquartile
range p (Shapiro–Wilk)

SOC, g kg−1 S263 3.0 14.4 10.0 1.61 1.3 × 10−9

S144 8.0 13.1 10.6 1.09 .12

S119 3.0 14.4 9.3 1.52 2.3 × 10−6

S71 3.3 11.3 9.2 1.41 5.9 × 10−6

N, g kg−1 S263 0.29 1.2 0.90 0.13 4.5 × 10−10

S144 0.72 1.2 0.93 0.083 .17

S119 0.29 1.2 0.84 0.16 4.8 × 10−4

S71 0.33 1.2 0.83 0.15 1.5 × 10−3

pH S263 4.75 7.10 5.23 0.58 8.8 × 10−15

S144 4.86 6.38 5.11 0.19 1.1 × 10−12

S119 4.75 7.10 5.70 0.80 .094

S71 4.75 6.77 5.64 0.69 .53

Clay, % S263 7.88 33.69 27.68 5.35 1.2 × 10−11

S144 22.61 33.69 29.59 3.34 .027

S119 7.88 31.18 24.65 5.02 7.3 × 10−7

S71 10.42 30.85 24.62 4.87 8.9 × 10−4

Sand, % S263 49.60 87.85 58.54 4.19 <2.2 × 10−16

S144 52.67 64.26 57.53 2.43 .0013

S119 49.60 87.85 61.02 5.09 1.2 × 10−10

S71 54.41 82.58 61.50 3.62 2.6 × 10−7

Soils were ground to <0.2 mm and stored in a desiccator

until the diffuse reflectance IR Fourier transform (DRIFT)

measurements. The DRIFT spectra of the soils (∼1.5 g) were

recorded using a Bruker-TENSOR 27 IR spectrometer with

a diffuse-reflectance accessory (Ulbricht-Kugel) in the MIR

region from 370 to 4,000 cm−1, as well as the long-wave part

of NIR from 4,000 to 7,000 cm−1 (1,430–2,500 nm). No KBr

was added to the soils. Each spectrum was recorded at ∼2-

cm−1 intervals with 200 scans, which resulted in 3,438 data

points per spectrum. For each soil, the average of two mea-

surements was taken and the reflectance spectra were trans-

formed to absorbance spectra [log(1/reflectance)] (Figure 1).

F I G U R E 1 Mid-infrared absorbance spectra (4,000–1,000 cm−1) for 263 soils. Parts of the near-infrared region (7,000–4,000 cm−1) are also

shown. Dashed lines separate the nine wavenumber regions used for chemometric modeling
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2.3 Preprocessing and wavenumber region
selection

We used the statistical software R versions 3.5.3 (PLSR cal-

culations on a PC) and 3.6.0 (SVMR calculations on a LINUX

computing cluster) (R Core Team, 2019) for the mathemati-

cal treatments of the spectra. The prospectr package (miscel-

laneous functions for processing and sample selection of dif-

fuse reflectance data; Stevens & Ramirez-Lopez, 2020) was

used for spectral preprocessing. The region <1,030 cm−1 was

removed from the spectra to decrease noise and the remaining

region contained 3,094 data points.

For each property, 18,396 PLSR models were calculated in

order to test the usefulness of pre-processing and wavenum-

ber region selection and are assigned to variants A (1 regres-

sion model), B (510 models), C (35 models), and D (17,850

models):

∙ Variant A: control variant consisting of all 3,094 data

points (i.e., no wavenumber region selection and no

preprocessing).

∙ Variant B: use of optimized wavenumber regions with an

automatic selection approach and without preprocessing.

The spectra were split into nine wavenumber regions (Lud-

wig et al., 2019) using R in a similar way as implemented

in the Bruker OPUS Quant chemometric software, ranging

from 6,998 to 6,336 (Region 1), 6,336 to 5,671 (Region 2),

5,671 to 5,009 (Region 3), 5,009 to 4,346 (Region 4), 4,346

to 3,682 (Region 5), 3,682 to 3,021 (Region 6), 3,021 to

2,359 (Region 7), 2,359 to 1,694 (Region 8), and 1,694 to

1,030 cm−1 (Region 9) (Figure 1). The automatic testing

of all wavenumber region combinations resulted in 510 (29

regions − 2) tested PLS regression models per property for

variant B. The implemented automatic selection of spectral

ranges has some similarities to interval PLS (iPLS), where

the focus is also on use of important spectral regions and

the removal of interference from other regions (Zou, Zhao,

Povey, Holmes, & Mao, 2010).

∙ Variant C: use of optimized preprocessing without

wavenumber region selection. Preprocessing methods

included calculation of moving averages (calculated over

17 data points), resampling (keeping every second data

point because of collinearity), and the use of the Savitzky–

Golay algorithm for the reduction of noise. The PLSR

models calculated with the original absorbance spectra

(i.e., without the Savitzky–Golay algorithm) included three

variants: use of moving averages, use of moving averages

with resampling, and use of resampling without moving

averages. The Savitzky–Golay algorithm was applied to the

full spectra (with and without calculated moving averages

and with or without resampling) as follows: the polynomial

(PG) degree was set to 2, the order of derivative (DER)

ranged from 1 to 2 (PG–DER: 2–1, 2–2), and the window

size for smoothing was set to 5, 11, 17, or 23. Thus, variant

C consisted of 3 + 2 × 2 × 2 × 4 = 35 PLSR models per

property.

∙ Variant D: use of optimized preprocessing and wavenumber

region selection. Thus, the combined use of optimized pre-

processing (35 PLSR models per property) and optimized

wavenumber region selection (29 regions − 2) resulted in

17,850 models that were tested per property.

2.4 Chemometric approaches: PLSR and
SVMR

The PLSR models were calculated using the kernel algo-

rithm (Wehrens, 2011) provided in the pls package (partial

least squares and principal component regression; Mevik,

Wehrens, & Liland, 2019). No outlier elimination was carried

out. The maximum number of factors was set to 10 in all cases.

Leave-one-out (LOO) cross-validation was used to identify

the best PLSR model for each model variant A to D—defined

as the model that achieved the highest RPIQ in the cross-

validations (RPIQCV)—with an optimum number of latent

variables (Table 2). These optimal models were then tested

using independent validations. Additional tests using 10-fold

cross-validations instead of LOO cross-validations did not

result in improved validation accuracies (data not shown).

The SVMR models with a radial kernel were calculated

using the caret package (classification and regression training;

Kuhn et al., 2019), which calls the kernlab package (Kernel-

Based Machine Learning Laboratory; Karatzoglou, Smola,

& Hornik, 2018). The cost function C and the smoothing

parameter sigma were optimized in the tuning process by grid

searches: C was set to 2n, with n varying from 0 to 15 by a

step of 1 and sigma to 2−n with n varying between 25 and 0

by a step of 5. Since the result of each SVMR model depends

on its initialization, 100 different initializations were tested for

each calculation using the set.seed(i) command, with i varying

from 1 to 100. The SVMR models were calculated for variant

A (full spectra without pretreatments) and variants B–D with

the optimized pretreatments and region selections obtained in

the respective PLSR optimizations. Thus, 400 SVMR models

were calculated for each property in each partitioning step dis-

cussed below. Ten-fold cross-validations were carried out to

identify the models which maximized RPIQCV for each model

variant A–D, and these optimal models were then tested using

independent validation discussed below.

2.5 Performance measures

The RPIQ (i.e., IQR of laboratory results divided by the

RMSE of cross-validation [RMSECV] or RMSE of validation

[RMSEV]) (Bellon-Maurel et al., 2010) was used as a quality
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T A B L E 2 Parameterization of the partial least squares regression (PLSR) and support vector machine regression (SVMR, with a radial kernel)

models resulting from five partitions of the samples for prediction of soil organic C (SOC) content, N content, pH, and soil texture for variants A

(original full spectrum absorption data) and D (optimal preprocessing approach and automatic selection of wavenumber ranges) for the samples

containing 71, 119, 144, and 263 soils (S71, S119, S144, and S263, respectively)

PLSR SVMR

Property Sample Variant Approach and math treatmenta
Wavenumber
regionsb Factors Cost Sigma

SOC S263 (A) n–n–0–0–0 1–9 7–9 8/12/13 2−15/2−20

(D) 17–n/y–0/2–0/1–0/23 4, 5, 7, 8 10 8/10/13 2−15

S144 (A) n–n–0–0–0 1–9 6–10 5/10/12 2−15/2−20

(D) 17–n–0–0–0 3–5, 7–9 9–10 13/14/15 2−20

S119 (A) n–n–0–0–0 1–9 6–10 10/11/15 2−20/2−25

(D) n/17–y–0/2–0/1–0/17/23 4, 5, 7, 8 10 7/8/11/13/15 2−15/2−20

S71 (A) n–n–0–0–0 1–9 7–9 11/15 2−25

(D) n/17–n/y–2–1–17/23 2, 4–8 4–10 11/12/15 2−20/2−25

N S263 (A) n–n–0–0–0 1–9 7–8 7/9/12 2−15/2−20

(D) n–y–0/2–0/1–0/23 1–9 7–10 7/9/12 2−15/2−20

S144 (A) n–n–0–0–0 1–9 6–10 10/11/12 2−20

(D) n–y–0–0–0 2–9 9–10 9/13/14 2−15/2−20

S119 (A) n–n–0–0–0 1–9 6–10 11/12/13/15 2−20/2−25

(D) n/17–n/y–0/2–0/1–0/5/17/23 1, 3–5, 7–9 5–10 7/11/14/15 2−15/2−20/2−25

S71 (A) n–n–0–0–0 1–9 6–10 11/15 2−20/2−25

(D) n/17–n/y–0/2–0/1–0/11/23 2–5, 7–9 5–10 10/11/13/14 2−20

pH S263 (A) n–n–0–0–0 1–9 8–10 6/14/15 2−15/2−25

(D) 17–y–2–1–23 4, 5, 7–9 8–10 7/8/11/13 2−10/2−15

S144 (A) n–n–0–0–0 1–9 7–10 10/12/15 2−20/2−25

(D) n/17–n/y–0–0–0 1–9 7–9 12/13/14 2−20

S119 (A) n–n–0–0–0 1–9 10 13 2−20

(D) n/17–n/y–0–0–0 7,8 9–10 14/15 2−15

S71 (A) n–n–0–0–0 1–9 8–10 11/12/13 2−20

(D) 17–n/y–0/2–0/1–0/23 2–4, 6–9 9–10 11/13/15 2−15/2−20

Clay S263 (A) n–n–0–0–0 1–9 7–10 5/8 2−15

(D) n/17–n/y–0/2–0/1–0/5/17 1, 3–8 5–10 3/4/5/9/12 2−15/2−20

S144 (A) n–n–0–0–0 1–9 7–10 11/12/15 2−20/2−25

(D) n–y–0–0–0 1–8 6–10 7/8/12/13 2−15/2−20

S119 (A) n–n–0–0–0 1–9 1–9 5/7/10/15 2−15/2−20/2−25

(D) n/17–n/y–2–1/2–5/11/17/23 1–9 7–10 5/6/11/15 2−15/2−20/2−25

S71 (A) n–n–0–0–0 1–9 1–5 6/11/13/14 2−15/2−25

(D) n/17–n/y–0/2–0/1/2–0/11/17/23 1–9 4–10 4/5/9/14/15 2−10/2−15/2−20/2−25

Sand S263 (A) n–n–0–0–0 1–9 5–8 4/5/6/9/10 2−15/2−20

(D) 17–n/y–0/2–0/1–0/11/17 3–8 5–10 7/9/11/13 2−15/2−20

S144 (A) n–n–0–0–0 1–9 4–6 4/6/14 2−15/2−25

(D) n/17–n/y–0/2–0/1–0/17 2–9 5–10 3/4/6/12/15 2−15/2−20/2−25

S119 (A) n–n–0–0–0 1–9 1–2 5/6/15 2−15/2−20/2−25

(D) n/17–n/y–0/2–0/1/2–0/5/17 2–8 3–10 6/12/13/15 2−15/2−20/2−25

S71 (A) n–n–0–0–0 1–9 2–10 7/8/9/10/11 2−20/2−25

(D) n/17–n/y–0/2–0/1–0/5/11 1, 4–9 4–10 5/6/11/13 2−15/2−20/2−25

aNo use of moving averages (n) or averaging over 17 data points (17)–no resampling (n) or resampling (y) –polynomial degree–derivative–smoothing window size.

Different optimal pretreatments for models produced from the five partitions of each sample are indicated by slashes.
bWavenumber regions (defined in Section 2) were selected in at least one of the models produced from the five partitions of each sample.
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T A B L E 3 Performance measures (mean of the five partitions of the samples) for partial least squares regression (PLSR) and support vector

machine regression (SVMR) models with a radial kernel for the variants A (original full spectrum absorption data) and D (optimal preprocessing

approach and automatic selection of wavenumber ranges)

PLSR SVMR
Property Sample Variant RMSECV RPIQCV RMSEV RPIQV RMSECV RPIQCV RMSEV RPIQV

SOC, g kg−1 S263 (A) 0.43 3.8 0.40 3.7 0.56 2.9 0.57 2.7

(D) 0.38 4.4 0.37 3.9 0.34 4.6 0.37 4.6

S144 (A) 0.44 2.3 0.49 2.3 0.45 2.4 0.52 2.1

(D) 0.38 2.7 0.44 2.6 0.39 2.7 0.41 2.7

S119 (A) 0.38 3.8 0.41 3.9 0.46 3.4 0.50 2.9

(D) 0.22 6.6 0.28 5.7 0.25 6.2 0.28 5.3

S71 (A) 0.46 2.9 0.44 3.6 0.51 2.5 0.58 2.8

(D) 0.20 7.0 0.27 5.9 0.32 4.1 0.31 5.3

N, g kg−1 S263 (A) 0.05 2.7 0.05 2.5 0.06 2.2 0.06 2.1

(D) 0.05 2.8 0.06 2.3 0.05 2.6 0.06 2.3

S144 (A) 0.03 2.4 0.04 2.4 0.04 2.2 0.04 2.0

(D) 0.03 2.5 0.04 2.4 0.03 2.4 0.04 2.3

S119 (A) 0.06 2.4 0.06 2.5 0.06 2.7 0.07 2.2

(D) 0.06 2.7 0.07 2.2 0.05 3.0 0.06 2.4

S71 (A) 0.07 2.1 0.07 1.8 0.06 2.3 0.08 1.8

(D) 0.05 2.9 0.07 1.8 0.04 2.9 0.07 2.0

pH S263 (A) 0.30 2.0 0.29 2.0 0.34 1.8 0.34 1.7

(D) 0.22 2.7 0.23 2.5 0.18 3.3 0.22 2.4

S144 (A) 0.14 1.4 0.15 1.3 0.13 1.5 0.15 1.4

(D) 0.13 1.5 0.15 1.3 0.12 1.5 0.13 1.6

S119 (A) 0.42 1.9 0.36 2.3 0.42 1.8 0.47 1.7

(D) 0.22 3.7 0.22 3.9 0.26 2.8 0.27 3.2

S71 (A) 0.39 1.8 0.37 1.5 0.38 1.7 0.45 1.3

(D) 0.22 3.1 0.30 1.9 0.24 2.8 0.47 1.3

Clay, % S263 (A) 1.6 3.4 1.6 3.2 1.6 3.4 1.6 3.3

(D) 1.5 3.7 1.8 2.9 1.5 3.5 1.6 3.2

S144 (A) 1.2 2.7 1.3 2.6 1.2 3.1 1.3 2.2

(D) 1.2 2.8 1.3 2.5 1.2 3.1 1.3 2.3

S119 (A) 1.6 3.0 1.9 2.8 1.6 3.3 1.8 2.8

(D) 1.4 3.5 2.3 2.2 1.7 3.0 1.9 2.6

S71 (A) 1.5 3.3 1.5 2.6 1.4 3.0 1.5 3.0

(D) 1.2 4.2 1.7 2.3 1.4 3.0 1.8 2.6

Sand, % S263 (A) 1.7 2.5 1.8 2.3 1.7 2.4 1.9 2.2

(D) 1.5 2.8 1.7 2.4 1.6 2.6 1.6 2.8

S144 (A) 1.1 2.2 1.1 2.1 1.0 2.5 1.1 2.0

(D) 1.0 2.5 1.2 2.1 1.0 2.6 1.1 2.0

S119 (A) 2.1 2.2 2.4 2.2 1.9 2.7 2.6 1.9

(D) 1.9 2.4 2.7 1.9 1.9 2.5 2.7 1.8

S71 (A) 1.5 2.9 1.8 1.7 1.4 2.2 1.8 2.8

(D) 1.3 3.5 2.0 1.6 1.4 2.2 2.0 2.5

SOC, soil organic C; RMSECV and RMSEV, RMSE of cross-validation and prediction; RPIQCV and RPIQV, ratios of the interquartile range to RMSECV and RMSEV.

Units are given in the first column.
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parameter for the cross-validations (RPIQCV) and validations

(RPIQV). Equations for the RMSE and RPIQ are

RMSE =

√∑𝑁

𝑖 = 1
(
𝑦̂𝑖 − 𝑦𝑖

)2
𝑁

(1)

RPIQ =
IQR𝑦

RMSE
, (2)

where ŷ is the estimated value, y is the measured value, N is the

sample size, and IQRy is the IQR for the measured y values.

The ranking system by Chang, Laird, Mausbach, and Hur-

burgh (2001), which was developed for the ratio of perfor-

mance to deviation (RPD) values, is used for the ranking

of RPIQ values by additionally considering that the IQR of

a normal distribution equals 1.34896 × SD (Ludwig et al.,

2019). Thus, the threshold for an unsuccessful estimation

is RPIQ < 1.89 (RPD < 1.4) and good estimations have

RPIQ ≥ 2.70 (RPD ≥ 2.0). However, it has to be noted that the

thresholds proposed by Chang et al. (2001) were not based on

any theory or experiment (for a normally distributed variable

and large sample size, RPD < 1.4 corresponds to R2 < .5),

and the usefulness of a model is always defined in its specific

context.

2.6 Multiple partitioning into random
calibration and validation samples

Since multiple partitioning of the data is essential in stud-

ies which focus on estimation accuracies (Cawley & Talbot,

2010), we created five different random partitions of the data

into calibration (2/3 of the respective samples S71 to S263) and

validation (1/3 of the samples) using the set.seed() command

in R with different seed numbers. The optimal mathematical

pretreatment, wavenumber regions, and number of factors for

the PLSR models as well as the optimal values for cost and

sigma for the SVMR models thus depended on the random

split. Parameterizations of the PLSR and SVMR models in

variants A and D are shown in Table 2.

3 RESULTS AND DISCUSSION

3.1 Spectra and wavenumber regions

The spectra of the entire sample S263 (263 soils), which cov-

ers the MIR region (4,000–1,000 cm−1) and also the long-

wave part of the NIR region (7,000–4,000 cm−1), are shown

in Figure 1. The spectra were separated into nine regions,

which were used in the chemometric modeling. Regions 2–

9 (6,336–1,030 cm−1) contain—besides soil-matrix-related

information—some organic matter-related spectral informa-

tion (Soriano-Disla et al., 2014; Viscarra Rossel, Walvoort,

McBratney, Janikc, & Skjemstad, 2006). Important spec-

tral information for organic matter in the visNIR range

include peaks around 6,250 and 5,882 cm−1 (Region 2),

5,556 cm−1 (Region 3), 5,000 cm−1, and the area from 4,167

to 4,545 cm−1 (Regions 4 and 5) (Soriano-Disla et al., 2014).

Absorbance in Region 6 (3,682–3,021 cm−1) around 3,410–

3,300 cm−1 is associated with OH in water (Johnston & Aochi,

1996), but also with phenols, alcohols, acids, hydrochinons,

and inorganic hydroxides. Overlapping with that region, O–

H, N–H, and C–H stretching results in various peaks in the

3,500- to 3,000-cm−1 region (Baes & Bloom, 1989). Regions

7 (3,021–2,359 cm−1), 8 (2,359–1,694 cm−1), and 9 (1,694–

1,030 cm−1) are important because of aliphatic CH stretching

(2,930–2,850 cm−1), vibrations related to carboxylic groups

(1,720 cm−1), protein amide (1,670 and 1,530 cm−1), asso-

ciated water (1,630 cm−1), carboxylate groups (1,600 and

1,400 cm−1), and aromatic groups (1,600–1,570 cm−1) (Baes

& Bloom, 1989; Senesi, D’Orazio, & Ricca, 2003; Skoog and

Leary,1992; Soriano-Disla et al., 2014). The same importance

of the Regions 2 to 9 can be expected for the N contents, not

only because of the existence of a large number of C-N and N-

H vibrations in these regions (Soriano-Disla et al., 2014), but

also due to the high Spearman rank correlation coefficients

(rs) between SOC and N ranging from .90 to .94 for the sam-

ples S71 to S263.

For the prediction of clay contents, Regions 4–6 (5,009–

3,021 cm−1) and 9 (1,694–1,030 cm−1) may be especially

important because of the vibrations associated with kaolinite

(4,545 and 3,690–3,620 cm−1), and smectite and illite (4,545,

4,274, 4,090, 3,630–3,620, 3,400–3,300, and 1,630 cm−1;

Kuligiewicz, Derkowski, Szczerba, Gionis, & Chryssikos,

2015; Soriano-Disla et al., 2014). For the prediction of sand

contents, Regions 7–9 (3,021–1,030 cm−1) may be impor-

tant because of the vibrations associated with quartz (2,500–

1,500 and 1,100–1,000 cm−1, Soriano-Disla et al., 2014;

Wood, 1960). Moreover, Region 6 (3,682–3,021 cm−1) pro-

vides information on sand, since it contains the signature for

kaolinite which often forms sand-sized grains or particles and

is not associated with quartz.

In the absence of carbonates, pH prediction may be indi-

rectly estimated based on the presence of proton-rich clays,

Al oxyhydroxide minerals and sulfides, oxidizable ammo-

nium and organic N as amides, and carboxylic acids and phe-

nols (Leenen, Welp, Gebbers, & Pätzold, 2019; Soriano-Disla

et al., 2014); therefore, many of the abovementioned regions

could be useful for pH prediction.

All regions (1–9) were used in at least one of the optimal

models with wavenumber region selection (variants B and D)

for each soil parameter, indicating the broad spread of useful

information for direct or indirect estimation of soil parameters

across the spectral region from 7,000 to 1,030 cm−1.
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F I G U R E 2 Ratio of the interquartile range to the RMSE of validation (RPIQV) and RMSE of validation (RMSEV) (units are given at the top)

values for soil organic C (SOC), N, pH, clay and sand for different sample sizes (orange: 71; green: 119; blue: 144; purple: 263) and mathematical

treatments and wavenumber regions (A: no pretreatment, all regions; B: no pretreatment, optimum regions; C: optimum pretreatment, all regions; D:

optimum pretreatment and regions). Means and standard deviations for five different partitions are shown. Unsuccessful estimation accuracies

(RPIQV < 1.89) are below the solid red line. Good estimation accuracies (RPIQV ≥ 2.70) are on and above the dotted red line. PLSR, partial least

squares regression; SVMR, support vector machine regression

3.2 Effects of mathematical pretreatments
and selection of wavenumber regions for the
multiple partitions

The accuracies of validations (as indicated by RPIQV) slightly

decreased compared with those of the cross-validations for the

soil properties of all samples S71 to S263 in all variants A to

D. Mean decreases of RPIQ (RPIQCV − RPIQV) were 0.4 for

PLSR and 0.3 for SVMR in variants A and D (Table 3).

Mathematical pretreatments and wavenumber region selec-

tions had pronounced effects on the estimation accuracy of

SOC contents using PLSR for small sample sizes and using

SVMR for all sample sizes. The RPIQV values (means and

standard deviations from the five partitions) of the PLSR

models increased for small sample sizes from 3.6 ± 0.3 (S71)

and 3.9 ± 0.7 (S119) in variant A (no pretreatment, full spec-

trum) to 5.4 ± 1.0 (S71) and 5.9 ± 0.8 (S119) in variant B (no-

pretreatment, optimum region) (Figure 2). Variant B and C

(optimum pretreatment, full region) were similarly success-

ful, but there was no combined benefit for variant D (optimum

pretreatment and region). For higher sample sizes, the multi-

ple partitions indicated no benefit of the variants B to D over A

for the PLSR models. For SVMR, the gain in SOC estimation

performance as indicated by increasing RPIQV values and

decreasing RMSEV values was not restricted to small sample

sizes, and combined benefits of optimizing the mathematical

pretreatment and the region selection are evident. However,

performance variability between partitions also increased for

the combined optimization of pretreatment and wavenumber

regions (Figure 2).

For pH, which had either no or only weak Spearman cor-

relations with SOC (data not shown), the benefits of pre-

treatments and wavenumber region selections were less pro-

nounced: PLSR estimation accuracy improved with both

mathematical pretreatments and wavenumber region selection

for sample S71 (variant A vs. D mean and standard deviation

of RPIQV of 1.5 ± 0.4 vs. 1.9 ± 0.7), S119 (2.3 ± 0.5 vs.

3.9 ± 1.5), and S263 (2.0 ± 0.1 vs. 2.5 ± 0.3), whereas SVMR



LUDWIG ET AL. 555

only notably improved for S119 (1.7 ± 0.3 vs. 3.2 ± 1.0) and

S263 (1.7 ± 0.1 vs. 2.4 ± 0.3) from variant A to D. Combined

mathematical pretreatments and wavenumber region selection

improved sand estimation accuracy only by SVMR for S263

(from 2.2 ± 0.4 to 2.8 ± 0.3 for variant A vs. D), had little

effect on N estimation accuracy with either algorithm (despite

close correlations to SOC), and even a negative effect in some

cases for clay estimation accuracy (decrease in RPIQV from

variant A and D by PLSR for S119 from 2.8 ± 0.6 to 2.2 ± 0.4

and SVMR for S71 from 3.0 ± 0.8 to 2.6 ± 0.7).

Application of spectral pretreatments and wavenumber

region selection are known to be especially helpful in improv-

ing variable, noisy spectra, enhancing weak spectral signals,

and removing nonlinearities (Stenberg et al., 2010). Thus, the

lack of a consistent benefit of these measures in the present

study may be a result of the already good quality of labo-

ratory (dried, ground) IR spectra and prior removal of the

noisy region below 1,000 cm−1. Furthermore, hand selec-

tion of regions or wavelengths may result in more robust

validations than automatic wavenumber region selection by

retaining information of importance for direct spectral esti-

mation and removing spectral information used for indirect

estimation.

3.3 Effects of sample size and algorithms

Relating RMSEV to median values of each soil parameter in

each sample and calculating average values across all opti-

mal models, relative RMSEV was lowest for the homogeneous

S144 (relative RMSEV = 3.5%), intermediate for the com-

bined sample S263 (relative RMSEV = 4.9%), and higher for

the smaller and more heterogeneous S119 (RMSEV = 5.9%)

and S71 (RMSEV = 6.0%). In contrast with this ranking,

average RPIQV values across all optimal models show very

good average performance for S119 (RPIQV = 2.86) and

S263 (RPIQV = 2.73), and satisfactory performance for S71

(RPIQV = 2.52) and S144 (RPIQV = 2.11). Therefore, we see

in this study that differences in performance were related

to sample variability, with opposite effects on RMSEV and

RPIQV (i.e., higher error but also higher RPIQV with increas-

ing IQR of the validation sample [IQRV]), whereas larger

sample size (S263) generally improved both performance mea-

sures (Figure 2).

The PLSR and SVMR always resulted in successful

validation estimates for clay when the sample size was 144

or greater (Figure 2). However, for sand, the sample size

needed to be 263 to obtain successful validations. For this

sample size, only one partitioning resulted in an unsuccessful

validation in the SVMR (which can be seen on the standard

deviation being below the threshold of 1.89 in variant A,

Figure 2). Median validation estimation accuracies of the

five partitions indicated higher success of SVMR for SOC

estimation (RPIQV = 4.81) over PLSR in variant D for

S263 (Figure 3). However, for the other soil properties,

differences in RPIQV were less between the algorithms

(Figure 3). These effects of sample size on RPIQV can be

attributed to the combined effect of spectral information in

the cross-validation and spatial autocorrelation (Guo, Chen,

et al., 2017; Guo, Zhao, et al., 2017), since both increase with

increasing sample size in this field-scale study.

3.4 Synopsis: Importance of the studied
factors

A plot of RMSEV against IQRV shows the importance of

the various factors studied, where the colors indicate increas-

ing sample sizes from S71 (orange) to S263 (purple) and the

letters A (no pretreatment, full spectrum) to D (optimized

pretreatments and region selections) refer to the variants of

data pretreatment and wavenumber region selection. In each

plot, the red solid and dotted lines have an intercept of 0 and

slopes of 1/1.89 and 1/2.70, respectively, and thus all sym-

bols above the red solid lines refer to unsuccessful estimations

(RPIQV < 1.89, based on Chang et al. [2001] for RPD with

the additional accounting for the relationship between SD and

IQR [Ludwig et al., 2019]), and all symbols below the red dot-

ted lines refer to good estimation accuracies (RPIQV ≥ 2.70).

The black solid lines refer to the average regression lines of

the RMSEV against the IQRV without an intercept, and the

RPIQV values given in subfigures are the reciprocals of the

slopes (Figure 4).

Our hypothesis of a pronounced improved accuracy of

SVMR over PLSR with increasing sample size holds only to

some extent for SOC (for variant D, average RPIQV for S263

was 3.9 for PLSR vs. 4.6 for SVMR, whereas SVMR was

comparable or worse than PLSR for smaller samples) and to

some extent for clay (for variant D, average RPIQV for S263

was 2.9 for PLSR vs. 3.2 for SVMR, whereas for S144, average

RPIQV was 2.5 for PLSR vs. 2.3 for SVMR), but the findings

are not robust (i.e., they vary across the different partitions;

Figures 2 and 4).

In contrast with our hypothesis, the key variable affecting

the accuracy of the validation estimations for all soil proper-

ties in this field-scale study is the IQRV, which is dependent

on the sample size and specific partitioning. For almost all

subfigures in Figure 4, there is an IQRV threshold (black ver-

tical dotted lines) for which all RPIQV values are ≥ 2.70. For

SOC, all partitions, pretreatments and sample sizes with an

IQRV ≥ 1.3 g kg−1 (PLSR) or 1.8 g kg−1 (SVMR) had good

estimation accuracies. The IQRV threshold for SOC in SVMR

only in variant D is much smaller than 1.8 g kg−1 (Figure 4),

which points to the importance of the combined mathemati-

cal pretreatment and region selection for SVMR in the SOC

modeling.
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F I G U R E 3 Estimated against measured soil properties for sample S263 in the variant D (optimum pretreatment and region). Results refer to the

respective partition with median accuracy in the partial least squares regression (PLSR) and support vector machine regression (SVMR). The ratio of

the interquartile range to RMSE of validation (RPIQV) values and 1:1 lines are also given

F I G U R E 4 The RMSE of validation (RMSEV) values for soil organic C (SOC), N, pH, clay, and sand for different sample sizes (orange: 71;

green: 119; blue: 144; purple: 263) and mathematical treatments and wavenumber regions (A: no pretreatment, all regions; B: no pretreatment,

optimum regions; C: optimum pretreatment, all regions; D: optimum pretreatment and region) against the interquartile ranges of the validation

samples (IQRV) for partial least squares regression (PLSR) and support vector machine regression (SVMR) models. Values above the red solid red

lines refer to unsuccessful validation estimates (the ratio of the interquartile range to RMSE of validation [RPIQV] < 1.89) and values on and below

the red dotted lines refer to good validation estimation accuracies (RPIQV ≥ 2.70). Black solid lines are the average regression lines of the RMSEV

against the interquartile range without an intercept, and the given RPIQV values are the reciprocals of the slopes. Vertical lines give interquartile

range thresholds above which all RPIQV values are satisfactory (>1.89, solid lines) or good (>2.70, dotted lines)

For N, the IQRV thresholds are 0.19 g kg−1 (PLSR)

and 0.18 g kg−1 (SVMR) for good estimation accuracies.

For pH, the IQRV threshold for good estimation accura-

cies is 1 for PLSR, whereas for SVMR, only an IQRV

threshold of 0.9 for satisfactory estimation accuracies

(RPIQV ≥ 1.89) exists. Support vector machine regres-

sion performed better for clay estimations than PLSR as

indicated by the smaller IQRV threshold for good esti-

mation accuracies of 5% in SVMR compared with 6%

in PLSR (Figure 4). The same was noted for the sand

estimations: for PLSR only a satisfactory IQRV threshold

exists at 5% sand (RPIQV ≥ 1.89), whereas for SVMR,

an IQRV threshold for good estimation accuracies is 6.6%

(Figure 4).
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Compared with other samples, S144 had low RMSEV

and tightly clustered performance across model variants

and partitions for all parameters besides SOC (Figure 4),

suggesting that a relatively homogeneous sample can produce

well-calibrated, consistent models, but performance may be

satisfactory to poor according to RPIQV due to the narrow

IQRV. The largest sample, S263, also resulted in models with

relatively tightly clustered performance across variants and

partitions, supporting our hypothesis that larger samples have

higher robustness.

It is also notable that of all the factors studied in this

experiment (i.e., multiple partitions, sample, algorithm, and

pretreatment and wavenumber region selection), the sample

caused the largest difference between minimum and maxi-

mum RPIQV of the factors levels (S71, S119, S144, and S263)

for estimation of all soil parameters, whereas the algorithm

(PLSR or SVMR) caused the smallest differences in RPIQV

for all soil parameters except sand (Figure 2). Thus, the

random partitions caused more variability in model perfor-

mance than the algorithm applied for SOC, N, pH, and clay

estimation. This supports the findings of Clingensmith et al.

(2019) and Somarathna et al. (2017) that the characteristics

and division of the sample into training and test sets affect

model performance to a greater extent than the algorithm

applied.

4 CONCLUSIONS

Multiple partitioning of the data is essential in IR studies,

which focus on estimation accuracies. Considerable variations

in estimation accuracies were found between the different par-

titions and indicated an expected range of accuracies for future

sampling campaigns. However, despite the variations, some

advantages of SVMR over PLSR could be detected as indi-

cated by smaller IQRV thresholds for good estimation accu-

racies for clay and sand, whereas the benefits of SVMR for

SOC were dependent on spectral preprocessing and suffi-

ciently large sample size. In this field-scale study, the effects

of sample size can be attributed to the combined effect of

spectral information in the cross-validation and spatial auto-

correlation.

Our field-scale results showed for all five soil proper-

ties studied that the IQRV—which is, among other factors,

affected by the sample size and specific partitioning—is a key

parameter affecting the estimation accuracy as indicated by

RPIQV. If these results also hold for other field- and larger-

scale studies, then RPIQV and RMSEV values for spectrally

active soil properties in IR studies should not be interpreted

independently, but in the context of the respective IQRV

values.
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