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Abstract
Within the framework of Kirchhoff–Love plate theory, we analyze a variational model
for elastic plates with rigid inclusions and interfacial cracks. The main feature of the
model is a fully coupled nonpenetration condition that involves both the normal com-
ponent of the longitudinal displacements and the normal derivative of the transverse
deflection of the crack faces. Without making any artificial assumptions on the crack
geometry and shape variation, we prove that the first-order shape derivative of the
potential deformation energy is well defined and provide an explicit representation
for it. The result is applied to derive the Griffith formula for the energy release rate
associated with crack extension.

Keywords Kirchhoff–Love elastic plate · Rigid inclusion · Interfacial crack ·
Variational model · Shape derivative of energy · Griffith formula
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Introduction

Recent and ongoing advances in engineering and material science have increased
the need for mathematical tools in order to design and optimize in an efficient way
three-dimensional highly inhomogeneous thin structures.

In this paper, we confine our attention to the model of a composite Kirchhoff–
Love plate proposed in [17]. More precisely, we consider an elastic plate containing
a partially debonded rigid inclusion of regular shape. The displacement field of the
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inclusion is specified by an equality constraint and determined completely by six
unknown constants. In order to eliminate nonphysical interpenetration of the crack
faces, an inequality constraint that involves both the normal component of the longitu-
dinal displacements and the normal derivative of the transverse deflection of the crack
faces is imposed. This implies a full coupling between the longitudinal displacements
and transverse deflection of the plate. Our interest is in investigating the differentia-
bility of the potential deformation energy with respect to the shape variations of the
reference configuration and in finding an explicit form of the corresponding first-order
shape derivative. The motivation for such a study lies in the fact that this derivative
can be used to calculate efficiently the energy release rates associated with variation
of defects, which are utmost of importance to predict crack propagation [4,5,12,20].

The principal difficulty in the problem at hand comes from the equality and inequal-
ity constraints, which do not preserve their structure under domain variations. To
overcome this difficulty, we develop an approach that is purely based on the minimiz-
ing properties of variational solutions. The most important idea behind our technique
originates from [40], where the Griffith formula for the energy release rate associated
with crack extension was deduced in a rigorous way for two-dimensional elastic bod-
ies with curvilinear cracks subjected to the Signorini conditions. Following this idea,
in the case of Signorini-type constraints imposed on crack faces, general results on
the shape differentiability of the potential deformation energy supported by explicit
formulae for the first-order shape derivative were derived in [41] for linear elastic
materials, in [32] for a Mindlin–Timoshenko elastic plate model, and in [42] for a
Kirchhoff–Love elastic plate model. Another approach to the shape differentiability
of the potential deformation energy based on primal-dual Lagrange formulations of
the nonlinear crack problems goes back to [25,26] and the subsequent [15]. Recent
developments of the primal-dual shape sensitivity analysis in smooth domains and
some applications to fluid mechanics problems with divergence-free constraints were
given in [7,13,28,47]. We finally refer to [1,24] for a derivation of the Griffith formula
for elastic materials with cracks by using the Piola transform.We stress here that all of
the cited works related to solid mechanics, except [42], tackle inequality constraints
on the crack faces that do not involve the gradient of displacement fields, while in
the model under consideration the nonpenetration condition depends on the normal
derivative of the transverse deflection. This additional difficulty essentially affects the
computation of the shape derivative of the potential deformation energy.

In the context of Kirchhoff–Love plate theory, the nonpenetration condition for
vertical cracks was put forward in [16]. A dimension reduction from 3D to 2D in the
Kirchhoff–Love energy scaling regime for rate-independent fracture processes has
been the subject of research in two past decades. To our best knowledge, all of the
results are restricted to the use of the notion of global energetic solutions [34]; here
we just mention a couple of them. With the help of evolutionary �-convergence [35],
a two-dimensional model for the propagation of a single crack in a plate from a three-
dimensional linearly elastic model involving a Barenblatt-like cohesive crack surface
energy was obtained in [8]. A similar scenario for deriving two-dimensional models
in the cases of Griffith-type delamination and an adhesive contact was performed in
[9]. The advantages of the energetic formulation are that the initial problems and their
two-dimensional counterparts have a derivative-free form and hence do not require

123



Applied Mathematics & Optimization (2021) 84:2775–2802 2777

any formulae for the energy release rate associated with crack extension; moreover,
the crack path is not prescribed in advance.

In the presence of a preexisting interfacial crack between strongly dissimilar mate-
rials, it is natural to assume that the interface is the weakest fracture path and to apply
the Griffith criterion [12] in order to describe propagation of the crack along the pre-
scribed path. We recall that the Griffith criterion states: a crack is stationary if the
energy release rate associated with crack extension is less than the fracture toughness
of a material, and otherwise the crack grows. The main result of the present study
gives a closed formula for the first-order shape derivative of the potential deformation
energy (Theorem 2.2), and its application consists in deducing the Griffith formula
for the energy release rate associated with extension of the crack along the interface,
under minimal assumptions on the regularity of the crack path (Remark 2.11). Recent
results in the same spirit of our work are [29,39,43,45].

Fracture behavior depends on many factors, among them the mutual dislocation
and interaction of inclusions and cracks. In a series of papers [23,30,31,44], this issue
was treated by an optimization technique based on regular shape variations. A more
delicate shape-topological analysis of the nonlinear crack problems aimed at retarding
or avoiding the crack propagation process was carried out in [22,27,33,49]. Inverse
problems for the nondestructive determination of elastic and rigid inclusions embedded
in Kirchhoff–Love bending elastic plates were investigated in [3,36,37].

The layout of the paper is as follows. In Sect. 1, we discuss the mechanical model
and present the functional framework used to assert the existence of the variational
solutions. After the necessary preliminaries regarding the velocity method, which we
employ to describe shape variations of the reference configuration, we formulate and
prove in Sect. 2 our main result. The paper closes with a short discussion of the case
when the elastic properties of the plate are inhomogeneous and an application of the
result to fracture mechanics: we derive the Griffith formula for the energy release rate
associated with crack extension.

1 Formulation of the Problem

We consider a composite plate, which is a planar thin-walled structure, within the
confines of linear Kirchhoff–Love theory. The 3D undamaged plate in the reference
configuration is the right cylinder

�3D =
{

(x1, x2, x3) ∈ R
3 : x = (x1, x2) ∈ �, x3 ∈ (−h, h)

}
,

where� ⊂ R
2 defines the midsurface of the plate and 2h denotes the thickness, which

we assume to be constant. The midsurface � is a bounded simply connected domain
with boundary ∂� of classC1,1, and letω0 be a compact simply connected subdomain
of � (i.e., ω0 � �), with boundary ∂ω0 of class C1,1. The boundary ∂ω0 is the union
of two disjoint simple curves γ0 and ∂ω0 \ γ0, where γ0 is a relatively open set. The
outward pointing unit normal to ∂ω0 as well as to ∂� is denoted by ν0 = (ν01, ν02)

T.
Figure1 provides a schematic visualization of the setup.
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Fig. 1 Schematic of the
midsurface of the plate

We make also the following assumption on the geometry of the non-Lipschitz
domain �0 = � \ γ 0:

G1 There exist two domains �1 and �2 with Lipschitz boundaries such that �1 ∪
�2 = �, γ0 ⊂ ∂�1 ∩ ∂�2, andH1(∂�i ∩ ∂�) > 0, i = 1, 2, whereH1 stands
for the one-dimensional Hausdorff measure.

The region (� \ ω0)
3D is occupied by a linearly elastic homogeneous material whose

properties are characterizedby a fourth-order tensorC3D that is supposed to bepositive,
that is, there exists cC3D > 0 such that

C
3DX : X ≥ cC3D |X |2 for all X ∈ R

3×3
sym ,

symmetric

C
3D
i jkl = C

3D
i jlk = C

3D
kli j , i, j, k, l = 1, 2, 3,

and monoclinic symmetric with respect to the (x1, x2)-plane, which implies

C
3D
i jk3 = C

3D
i333 = 0, i, j, k = 1, 2. (1)

We refer the reader to Remark 2.10 for some comments on the choice of the elasticity
tensor. The region ω3D

0 corresponds to a rigid inclusion, while the cylindrical surface
γ 3D
0 is an interfacial crack.As usual in the theory of thin-walled structures,we dealwith

quantities that refer to themidsurface of the undeformed plate�0. LetW = (w1, w2)
T

be the longitudinal displacements of the midsurface points in the (x1, x2)-plane, and
w is the vertical deflection of the midsurface points along the x3-axis. In what follows,
we use a variational approach to equilibrium and thus look for (W , w) belonging to
the Cartesian product of Sobolev spaces H1(�0)

2 × H2(�0).
Let C be the fourth-order tensor with components

Ci jkl = C
3D
i jkl − C

3D
i j33C

3D
kl33

C
3D
3333

, i, j, k, l = 1, 2.
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Hence the resultant membrane stress tensor σ can be expressed in terms of the mem-
brane strain tensor ε(W ) = 1/2(∇xW + (∇xW )T) via

σ = 2hCε(W ), (2)

and the bendingmoment tensorm is related to the bending strain tensor−∇2
xw through

the constitutive equations

m = −2h3

3
C∇2

xw. (3)

The restriction of a displacement field (W , w) on the domain ω0 is an element of the
Cartesian product Rp(ω0) × Rv(ω0), where Rp(ω0) and Rv(ω0) are the spaces of
infinitesimal rigid displacement fields on ω0 that represent ker ε and ker∇2

x , respec-
tively:

Rp(ω0) =
{
W ∈ H1(ω0)

2 : ε(W ) = 0 in ω0

}
,

Rv(ω0) =
{

w ∈ H2(ω0) : ∇2
xw = 0 in ω0

}
.

We observe that the following identities hold true [48, Lemma 1.1; Chapter III, Sub-
section 2.1.1]

Rp(ω0) =
{
W (x) = BIdx (x) + C : B ∈ R

2×2, B = −BT, C ∈ R
2, x ∈ ω0

}
,

Rv(ω0) =
{

w(x) = A · Idx (x) + a : A ∈ R
2, a ∈ R, x ∈ ω0

}
.

The regularity assumptions on the domains ω0 and � \ ω0 provide that the trace
operators

Trk,ω0 : Hk(ω0)
k∗ →

k−1∏
i=0

Hk−i−1/2(∂ω0)
k∗ ,

Trk,�\ω0 : Hk(� \ ω0)
k∗ →

k−1∏
i=0

Hk−i−1/2(∂ω0; ∂�)k∗ ,

where the superscript k∗ is equal to 2 if k = 1 and 1 if k = 2, are well defined and
continuous. Moreover, these operators have right continuous inverses (lifting opera-
tors) [14, Theorem 1.5.1.2], which we denote by Tr−1

k,ω0
and Tr−1

k,�\ω0
, respectively.

According to the positive and negative directions of the unit normal ν0 on ∂ω0, there
is a positive face ∂ω+

0 and a negative face ∂ω−
0 . The double brackets �v� = v+ − v−

stand for the jump of a function v across ∂ω0. For convenience, the same notation
serves as well for the jump of functions across another smooth curves, it always clear
from the context. In order to eliminate interpenetration of the crack faces, we impose
the inequality restriction

�W � · ν0 ≥ h
∣∣�∇xw� · ν0

∣∣ on γ0, (4)
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which is understood in the sense of traces.We emphasize that, from amechanical point
of view, the nonpenetration condition (4) describes the interaction of the opposite crack
faces, admitting their frictionless contact (the equality case) or the absence of contact
(the inequality case), the contact surface being unknown a priori.

We finally suppose that the plate is clamped along its outer edge, which leads to
the homogeneous boundary conditions

W = (0, 0)T, w = ∇xw · ν0 = 0 on ∂�.

The potential deformation energy of the system associated with a displacement field
(W , w) is the stored elastic energy minus the work of external loadings (F, f ) ∈
C1(�)2 × C1(�):

E(�0;W , w) = 1

2

∫

�\ω0

σ(W ) : ε(W ) dx − 1

2

∫

�\ω0

m(w) : ∇2
xw dx

−
∫

�0

F · W dx −
∫

�0

f w dx . (5)

The variational principle of minimum potential deformation energy forces that the
composite plate �3D

0 clamped along the outer edge, with elastic part (� \ω0)
3D, rigid

part ω3D
0 , interfacial crack γ 3D

0 , and potential deformation energy given by (5), is in
equilibrium if the displacement field of its midsurface (W0, w0) is a solution of the
minimization problem

inf
(W ,w)∈K0(�0)

E(�0;W , w), (6)

where the set of kinematically admissible displacement fields reads as follows

K0(�0) =
{

(W , w) ∈ H1
∂�(�0)

2 × H2
∂�(�0) : (W , w)|ω0 ∈ Rp(ω0) × Rv(ω0);

�W � · ν0 ≥ h
∣∣�∇xw� · ν0

∣∣ on γ0
}
.

The convex set K0(�0) is closed in the Cartesian product H1
∂�(�0)

2 × H2
∂�(�0) of

the Sobolev spaces

H1
∂�(�0) =

{
v ∈ H1(�0) : v = 0 on ∂�

}
,

H2
∂�(�0) =

{
v ∈ H2(�0) : v = ∇xv · ν0 = 0 on ∂�

}
.

Since E is convex and Gâteux-differentiable, the minimization problem (6) is equiva-
lent to the variational inequality

(W0, w0) ∈ K0(�0),

∫

�\ω0

σ(W0) : ε(W − W0) dx −
∫

�\ω0

m(w0) : ∇2
x (w − w0) dx
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−
∫

�0

F · (W − W0) dx −
∫

�0

f (w − w0) dx ≥ 0 ∀(W , w) ∈ K0(�0). (7)

Thanks to G1, the Korn inequality and the Friedrichs inequality are valid in �i ,

i = 1, 2, which implies the coercivity of E . Moreover, the energy functional E
is weakly lower semicontinuous. The minimization problem (6) (and hence the
variational inequality (7)) therefore admits a solution (W0, w0) ∈ K0(�0). It is
straightforward to check that the solution to (7) is unique.

We are now ready to give the classical formulation of the equilibrium problem. We
seek (W0, w0) in the domain �0, (WR

0 , wR
0 ) ∈ Rp(ω0) × Rv(ω0), and (σ,m) in the

domain � \ ω0 satysfying the following equations and boundary conditions

−divxσ = F in � \ ω0, (8)

σ − 2hCε(W0) = 0 in � \ ω0, (9)

−divxdivxm = f in � \ ω0, (10)

m + 2h3

3
C∇2

xw0 = 0 in � \ ω0, (11)

W0 = (0, 0)T, w0 = ∇xw0 · ν0 = 0 on ∂�, (12)

�W0� · ν0 ≥ h
∣∣�∇xw0� · ν0

∣∣ on γ0, (13)

σ+
τ0

= (0, 0)T, t+ν0 = 0, h−1|m+
ν0

| ≤ −σ+
ν0

on γ0, (14)

σ+
ν0

�W0� · ν0 + m+
ν0

�∇xw0� · ν0 = 0 on γ0, (15)

�W0� = (0, 0)T, �w0� = �∇xw0� · ν0 = 0 on ∂ω0 \ γ0, (16)

W0 = WR
0 , w0 = wR

0 in ω0, (17)

−
∫

∂ω0

σ+ν0 · WR
dH1 =

∫

ω0

F · WR
dx ∀W

R ∈ Rp(ω0), (18)

∫

∂ω0

t+ν0w
R dH1 −

∫

∂ω0

m+
ν0

∇xw
R · ν0 dH1 =

∫

ω0

f wR dx ∀wR ∈ Rv(ω0). (19)

Here the traction σ+ν0, transverse force t+ν0 , and bending moment m+
ν0

acting on ∂ω0
are

σ+ν0 = (σ+
1 jν0 j , σ

+
2 jν0 j )

T, t+ν0 = −(divxm)+ · ν0 − ∂τ0

((
m+ν0

) · τ0
)
,

m+
ν0

= −(m+ν0) · ν0, τ0 = (τ01, τ02)
T = (−ν02, ν01)

T,

and the traction σ+ν0 is decomposed into normal and tangential components given
by

σ+
ν0

= σ+ν0 · ν0, σ+
τ0

= σ+ν0 − σ+
ν0

ν0.

ArepeatedRoman subscript signifies summation from1 to2.Equations (8) and (10) are
equilibrium equations for the elastic part of the plate with respect to the (x1, x2)-plane
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and x3-axis, respectively. Conditions (13)–(15) are the complementarity conditions
for contact of the crack faces. The nonlocal boundary conditions (18) and (19) ensure
that the rigid part of the plate in equilibrium, that is, the resultant force and moment
acting on it vanish.

It is a routine matter to verify that our minimizer (W0, w0) ∈ K0(�0) is indeed a
weak solution of the Euler–Lagrange system (8)–(19), see [17].

Remark 1.1 We elucidate briefly in what sense the natural boundary conditions (14)–
(19) for the minimizer (W0, w0) are satisfied. For each k = 1, 2, we introduce the
Lions–Magenes space

Hk−1/2
00 (γ0) =

{
v ∈ Hk−1/2

0 (γ0) : d−1/2∂ iτ0v ∈ L2(γ0), 0 ≤ i ≤ k − 1
}

,

where ∂0τ0v = v, ∂1τ0v = ∂τ0v, and d(s) = dist∂ω0(s, ∂γ0). This space equipped with
the norm

‖v‖
Hk−1/2
00 (γ0)

=
(

‖v‖2Hk−1/2(γ0)
+

k−1∑
i=0

‖d−1/2∂ iτ0v‖2L2(γ0)

) 1
2

is a Banach space. Since ∂ω0 ∈ C1,1, the following equivalence holds [18, Proposition
1.1]

v ∈ Hk−1/2
00 (γ0) ⇔ v =

{
v on γ0

0 on ∂ω0 \ γ0
∈ Hk−1/2(∂ω0).

Denote by 〈·, ·〉00k−1/2,γ0
the duality pairing between the space Hk−1/2

00 (γ0) and its

topological dual space H−k+1/2
00 (γ0). If σ,m ∈ L2(�\ω0)

2×2, divxσ ∈ L2(�\ω0)
2,

and divxdivxm ∈ L2(� \ ω0), then

σ+
τ0

∈ H−1/2
00 (γ0)

2, σ+
ν0

,m+
ν0

∈ H−1/2
00 (γ0), t+ν0 ∈ H−3/2

00 (γ0),

and the boundary conditions (14) and (15) read as follows [17]

〈
σ+

τ0
, v
〉00
1/2,γ0

= 0 ∀ v ∈ H1/2
00 (γ0)

2, v · ν0 = 0,
〈
t+ν0 , v

〉00
3/2,γ0

= 0 ∀ v ∈ H3/2
00 (γ0),

〈
σ+

ν0
± h−1m+

ν0
, v
〉00
1/2,γ0

≤ 0 ∀ v ∈ H1/2
00 (γ0), v ≥ 0,

〈
σ+

ν0
, �W0� · ν0

〉00
1/2,γ0

+ 〈m+
ν0

, �∇xw0� · ν0
〉00
1/2,γ0

= 0,
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whereas the interpretation of the nonlocal conditions (18) and (19) is provided by

〈
σ+ν0, v

〉
1/2,∂ω0

= −
∫

ω0

F · v dx ∀ v ∈ Rp(ω0),

〈
t+ν0 , v

〉
3/2,∂ω0

− 〈m+
ν0

,∇xv · ν0
〉
1/2,∂ω0

=
∫

ω0

f v dx ∀ v ∈ Rv(ω0).

Here 〈·, ·〉k−1/2,∂ω0 is the duality pairing between the spaces Hk−1/2(∂ω0) and
H−k+1/2(∂ω0).

We exploit some of these conditions to derive an explicit formula for the first-order
shape derivative of the potential deformation energy, see Theorem 2.2.

2 Shape Derivative of the Energy

We begin this section by recalling the velocity (speed) method [46, Section 2.9],
which we employ to describe shape variations of the reference domain �0. Let V ∈
W 2,∞

loc (R2)2 be a given shape velocity field. We assume further that V is compactly
supported in the domain �. This assumption does not limit the generality of our
analysis, but it simplifies the presentation. The following proposition is a core of
the velocity method and allows us to construct a family of diffeomorphisms of R

2

generated by V .

Proposition 2.1 Let V ∈ W 2,∞
loc (R2)2 be a given shape velocity field satisfying the

property suppV � �. Then there exists δ0 > 0 such that:

(a) the Cauchy problem

d

dδ
Tδ = V ◦ Tδ for δ �= 0, T0 = Idx ,

has a unique solution T[·] ∈ C1((−δ0, δ0);W 2,∞
loc (R2)2);

(b) the Cauchy problem

d

dδ
T−1

δ = −V ◦ Tδ for δ �= 0, T−1
0 = Idy,

has a unique solution T−1
[·] ∈ C1((−δ0, δ0);W 2,∞

loc (R2)2);
(c) fixed δ ∈ (−δ0, δ0), the inverse mapping to Tδ is T

−1
δ , that is,

Tδ ◦ T−1
δ = Idy, T−1

δ ◦ Tδ = Idx , x, y ∈ R
2.

Proof The proof is carried out in [21, Section 2] for W 1,∞ vector fields. Without any
changes, the arguments are also applicable to W 2,∞ vector fields V . ��
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Before proceeding further, we record here a consequence of [2, Theorem 2.2] that
will be useful throughout the paper. For each k = 1, 2, the space Wk,∞(�) is alge-
braically and topologically isomorphic to Ck−1,1(�).

Let us fix δ ∈ (−δ0, δ0) and set ωδ = Tδ(ω0) and γδ = Tδ(γ0). Since Tδ is an
orientation-preserving C1,1-diffeomorphism between � and Tδ(�), coinciding with
the identity on ∂�, we have Tδ(�) = �, see [6, Theorem 5.5-2]. The domain ωδ � �

is a simply connected one, and its boundary ∂ωδ = Tδ(∂ω0) is of class C1,1, with
the outward pointing unit normal νδ. Moreover, the boundary ∂ωδ is the union of two
disjoint simple curves γδ and ∂ωδ \ γδ , and γδ is a relatively open set. So we can put
�δ = � \ γ δ. Against this background, we conclude that the mapping Tδ induces a
C1,1-diffeomorphism between the non-Lipschitz domains �0 and �δ. To complete
our considerations on the geometry of the perturbed domain �δ, let us note that from
the condition suppV � � follows the validity of G1 for �δ.

As above, the equilibrium of the composite plate �3D
δ clamped along the outer

edge, with elastic part (� \ ωδ)
3D, rigid part ω3D

δ , interfacial crack γ 3D
δ , and potential

deformation energy

E(�δ;W , w) = 1

2

∫

�\ωδ

σ (W ) : ε(W ) dy

−1

2

∫

�\ωδ

m(w) : ∇2
xw dy −

∫

�δ

F · W dy −
∫

�δ

f w dy,

is achieved when the displacement field of its midsurface (W δ, wδ) is a solution of
the minimization problem

inf
(W ,w)∈K δ(�δ)

E(�δ;W , w), (20)

the set of kinematically admissible displacement fields being

K δ(�δ) =
{

(W , w) ∈ H1
∂�(�δ)

2 × H2
∂�(�δ) : (W , w)|ωδ ∈ Rp(ωδ) × Rv(ωδ);

�W � · νδ ≥ h
∣∣�∇yw� · νδ

∣∣ on γδ

}
.

The minimization problem (20) possesses a unique solution satisfying the variational
inequality

(W δ, wδ) ∈ K δ(�δ),

∫

�\ωδ

σ (W δ) : ε(W − W δ) dy −
∫

�\ωδ

m(wδ) : ∇2
y (w − wδ) dy

−
∫

�δ

F · (W − W δ) dy −
∫

�δ

f (w − wδ) dy ≥ 0 ∀(W , w) ∈ K δ(�δ).

(21)
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By definition, the first-order shape derivative of the potential deformation energy E at
�0 in the direction of V , if it exists, is given by the limit

lim
δ→0

E(�δ;W δ, wδ) − E(�0;W0, w0)

δ
. (22)

The questions we are now interested in are whether (22) does exist and how this shape
derivative can be expressed in an explicit form.

To state our main result, let us fix some notation. ForU ,W ∈ H1(�0)
2, we define

the bilinear form

Ap(V ;U ,W ) = divx Vσ(U ) : ε(W )−σ(U ) : E (∇x V ;W )−σ(W ) : E (∇x V ;U ) ,

(23)
where the second-order tensor E reads as

E (X;W ) = 1/2
(
∇xW X + (∇xW X)T

)
, X ∈ R

2×2.

Simultaneously, for u, w ∈ H2(�0), we put

Av(V ; u, w) = −divx Vm(u) : ∇2
xw + m(u) :

(
2∇2

xw∇x V + N∇xw
)

+m(w) :
(
2∇2

x u∇x V + N∇xu
)

, (24)

where

(N∇xw)i j = (∇2
x Vk)i j (∇xw)k .

We finally set

G(�0; V ) = 1

2

∫

�\ω0

(
Ap(V ;W0,W0) + Av(V ;w0, w0)

)
dx

−
∫

�\ω0

(divx (F ⊗ V ) · W0 + divx ( f V )w0) dx

− 〈σ+
ν0

(W0),∇x V �W0� · ν0
〉00
1/2,γ0

−
〈
m+

ν0
(w0), �∇xw0� ·

(
∇x V + (∇x V )T

)
ν0

〉00
1/2,γ0

− 〈σ+(W0)ν0, B0V
〉
1/2,∂ω0

+ 〈t+ν0(w0), A0 · V 〉
3/2,∂ω0

− 〈m+
ν0

(w0),∇x (A0 · V ) · ν0
〉
1/2,∂ω0

−
∫

ω0

(F · B0V + f A0 · V ) dx . (25)
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Theorem 2.2 Under the assumptions of Proposition 2.1, the limit in (22) exists and is
equal to (25).

The remainder of the paper is devoted to the quite long and technical proof of Theo-
rem 2.2. The key idea behind the proof consists in applying themapping Tδ : �0 → �δ

to transform the potential deformation energy E(�δ;W δ, wδ) to the reference domain
�0 and calculating the desired limit as δ → 0 in�0. The particular steps are presented
below.

We begin with the study of properties of themapping Tδ : �0 → �δ . In view of [38,
Chapter 2, Lemma 3.4], it generates an isomorphism between the spaces H1

∂�(�δ)
2 ×

H2
∂�(�δ) and H1

∂�(�0)
2 × H2

∂�(�0) via

Tδ : H1
∂�(�δ)

2 × H2
∂�(�δ) → H1

∂�(�0)
2 × H2

∂�(�0) : (W , w) �→ (W , w) ◦ Tδ.

For (U δ, uδ) ∈ H1(�δ)
2 × H2(�δ), we introduce the notation

(Uδ, uδ)(x) = (U δ, uδ)(Tδ(x)), x ∈ �0.

Then the derivatives of first and second orders of such transformed functions can be
calculated from the relations

∇xUδ(x) = ∇yU
δ(Tδ(x))∇x Tδ(x),

∇2
x uδ(x) = (∇x Tδ(x))

T∇2
yu

δ(Tδ(x))∇x Tδ(x) + (Lδ∇yu
δ)(Tδ(x)),

where

(Lδ∇yu
δ)i j (Tδ(x)) = (∇2

x Tδk(x))i j (∇yu
δ)k(Tδ(x)).

On the other hand, for (Uδ, uδ) ∈ H1(�0)
2 × H2(�0), with

(U δ, uδ)(y) = (Uδ, uδ)(T
−1(y)), y ∈ �δ,

it holds

∇yU
δ(y) = ∇xUδ(T

−1
δ (y))(∇x Tδ)

−1(T−1
δ (y)),∇2

yu
δ(y) = (∇x Tδ)

−T(T−1
δ (y))(

∇2
x uδ(T

−1
δ (y)) − (Mδ∇xuδ)(T

−1
δ (y))

)
(∇x Tδ)

−1(T−1
δ (y)),

where

(Mδ∇xuδ)i j (T
−1
δ (y)) = (∇2

x Tδk)i j (T
−1
δ (y))(∇x Tδ)

−1
lk (T−1

δ (y))(∇xuδ)l(T
−1(y)).

Let Kδ(�0) be the image of the set of the admissible displacement fields K δ(�δ)

under the mapping Tδ . In order to identify Kδ(�0), we first note that any element
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(W , w) ∈ Kδ(�0) satisfies the inequality constraint

�W � · νδ ≥ h
∣∣∣(∇x Tδ)

−T �∇xw� · νδ

∣∣∣ on γ0. (26)

The transformed outward pointing unit normal νδ = νδ ◦ Tδ is related to ν0 through
the equation [6, Section 1.7]

νδ = (∇x Tδ)
−Tν0∥∥(∇x Tδ)−Tν0

∥∥
2

,

where ‖ · ‖2 stands for the Euclidean norm in R
2. Inequality (26) then reads

�W � · (∇x Tδ)
−Tν0 ≥ h

∣∣∣�∇xw� · (∇x Tδ)
−1(∇x Tδ)

−Tν0

∣∣∣ on γ0.

Additionally, the restriction (W , w) on the domainω0 belongs to the Cartesian product
Rδ
p(ω0) × Rδ

v(ω0) of the sets

Rδ
p(ω0) = {W (x) = BTδ(x) + C : B ∈ R

2×2, B = −BT, C ∈ R
2, x ∈ ω0 },

Rδ
v(ω0) = { w(x) = A · Tδ(x) + a : A ∈ R

2, a ∈ R, x ∈ ω0 }.

Thus, Kδ(�0) may be defined as follows

Kδ(�0) =
{

(W , w) ∈ H1
∂�(�0)

2 × H2
∂�(�0) : (W , w)|ω0 ∈ Rδ

p(ω0) × Rδ
v(ω0);

�W � · (∇x Tδ)
−Tν0 ≥ h

∣∣∣�∇xw� · (∇x Tδ)
−1(∇x Tδ)

−Tν0

∣∣∣ on γ0

}
,

and so Tδ is a bijection between the sets K δ(�δ) and Kδ(�0).

The change of variables y = Tδ(x) in the variational inequality (7) implies that
(Wδ, wδ) ∈ Kδ(�0) is a unique solution of the variational inequality

2h
∫

�\ω0

det(∇x Tδ)CE((∇x Tδ)
−1;Wδ) : E((∇x Tδ)

−1;W − Wδ) dx

−2h3

3

∫

�\ω0

det(∇x Tδ)C
{
(∇x Tδ)

−T
(
∇2
xwδ − Mδ∇xwδ

)
(∇x Tδ)

−1
}

:
{
(∇x Tδ)

−T
(
∇2
x (w − wδ) − Mδ∇x (w − wδ)

)
(∇x Tδ)

−1
}
dx

≥
∫

�0

det(∇x Tδ)Fδ · (W − Wδ) dx +
∫

�0

det(∇x Tδ) fδ(w − wδ) dx

∀(W , w) ∈ Kδ(�0). (27)

Here, (Fδ, fδ)(x) = (F, f )(Tδ(x)).
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As a preliminary step towards the verification of the uniform boundedness of
(Wδ, wδ) in H1

∂�(�0)
2 × H2

∂�(�0), we establish the next proposition.

Proposition 2.3 The following Taylor formulae as δ → 0 are valid:

Tδ = Idx + δV + r1δ , ‖r1δ ‖W 2,∞(�)2 = o(δ), (28)

∇x Tδ = I + δ∇x V + r2δ , ‖r2δ ‖W 1,∞(�)2×2 = o(δ), (29)

det(∇x Tδ) = 1 + δdivx V + r3δ , ‖r3δ ‖W 1,∞(�) = o(δ), (30)

(∇x Tδ)
−1 = I − δ∇x V + r4δ , ‖r4δ ‖W 1,∞(�)2×2 = o(δ), (31)

Proof This is an immediate consequence of Proposition 2.1. ��
Lemma 2.4 There exists δ1 ∈ (0, δ0) such that the solution (Wδ, wδ)of the transformed
variational inequality (27) is uniformly bounded with respect to δ ∈ [−δ1, δ1] in
H1

∂�(�0)
2 × H2

∂�(�0) by a constant c > 0 :

‖(Wδ, wδ)‖H1(�0)2×H2(�0)
≤ c. (32)

Proof Since (W δ, wδ)|ωδ ∈ Rp(ωδ)× Rv(ωδ), we can replace the integration domain
� \ ωδ by �δ in (21) and the integration domain � \ ω0 by �0 in (27). The modified
variational inequality (27) is referred to as (27)�0 . Let (W , w), (U , u) ∈ H1(�0)

2 ×
H2(�0). Invoking Proposition 2.3, we deduce that the integrals on the left-hand side
of (27)�0 admit the following asymptotic expansions as δ → 0 :

2h
∫

�0

det(∇x Tδ)CE((∇x Tδ)
−1;U ) : E((∇x Tδ)

−1;W ) dx

=
∫

�0

(
σ(U ) : ε(W ) + δAp(V ;U ,W ) + R1(δ,U ,W )

)
dx, (33)

2h3

3

∫

�0

det(∇x Tδ)C
{
(∇x Tδ)

−T
(
∇2
x u − Mδ∇xu

)
(∇x Tδ)

−1
}

:
{
(∇x Tδ)

−T
(
∇2
xw − Mδ∇xw

)
(∇x Tδ)

−1
}
dx

=
∫

�0

(
−m(u) : ∇2

xw + δAv(V ; u, w) + R2(δ, u, w)
)
dx, (34)

where

‖R1(δ,U ,W )‖L1(�0)
≤ c1(|δ|)‖U‖H1(�0)2

‖W‖H1(�0)2
, 0 ≤ c1(|δ|) = o(δ),

(35)

‖R2(δ, u, w)‖L1(�0)
≤ c2(|δ|)‖u‖H2(�0)

‖w‖H2(�0)
, 0 ≤ c2(|δ|) = o(δ). (36)
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The terms in the right-hand side of (27)�0 can be rewritten in like manner:

∫

�0

det(∇x Tδ)Fδ · W dx =
∫

�0

(F · W + δdivx (F ⊗ V ) · W + R3(δ,W )) dx,(37)

∫

�0

det(∇x Tδ) fδw dx =
∫

�0

( f w + δdivx ( f V )w + R4(δ, w)) dx, (38)

where

‖R3(δ,W )‖L1(�0)
≤ c3(|δ|)‖W‖L2(�0)2

, 0 ≤ c3(|δ|) = o(δ), (39)

‖R4(δ, w)‖L1(�0)
≤ c4(|δ|)‖w‖L2(�0)

, 0 ≤ c4(|δ|) = o(δ). (40)

Moreover, since ∇x V ∈ C0,1(�)2×2 and (F, f ) ∈ C1(�)2 ×C1(�), we arrive at the
estimates

∥∥Ap(V ;U ,W )
∥∥
L1(�0)

≤ c‖U‖H1(�0)2
‖W‖H1(�0)2

,

‖Av(V ; u, w)‖L1(�0)
≤ c‖u‖H2(�0)

‖w‖H2(�0)
, (41)

‖divx (F ⊗ V ) · W‖L1(�0)
≤ c‖W‖L2(�0)2

,

‖divx ( f V )w‖L1(�0)
≤ c‖w‖L2(�0)

. (42)

We next take W = (0, 0)T and w = 0 into the variational inequality (27)�0 and use
the asymptotic expansions (33)–(34) and (37)–(38) to discover

∫

�0

σ(Wδ) : ε(Wδ) dx −
∫

�0

m(wδ) : ∇2
xwδ dx

≤ −δ

∫

�0

(
Ap(V ;Wδ,Wδ) + Av(V ;wδ,wδ)

)
dx

+
∫

�0

(F · Wδ + f wδ + δ (divx (F ⊗ V ) · Wδ + divx ( f V )wδ) − R1(δ,Wδ,Wδ)

−R2(δ, wδ,wδ) +R3(δ,Wδ) + R4(δ, wδ)) dx . (43)

Applying the Korn inequality and the Friedrichs inequality on the left-hand side of
(43), the Cauchy inequality and estimates (35)–(36), (39)–(40), and (41)–(42) on
the right-hand side of (43) yields that there exists δ1 ∈ (0, δ0) such that for every
δ ∈ [−δ1, δ1] the uniform estimate (32) takes place. This proofs the lemma. ��

For convenience purposes, we collect here auxiliary statements that will be
employed repeatedly in the sequel.
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Proposition 2.5 [19, Lemma 1.14] Let u ∈ H1/2(∂ω0) and v ∈ C0,1(∂ω0). Then
uv ∈ H1/2(∂ω0) and

‖uv‖H1/2(∂ω0)
≤ c‖u‖H1/2(∂ω0)

‖v‖C0,1(∂ω0)

with c > 0 independent of u and v.

We label the part ∂� ∪ ∂ω0 \ γ0 of the outer boundary of the domain �0 \ ω0 as
�. For each k = 1, 2, we introduce the extension operator Extk : Hk

�(� \ ω0)
k∗ →

Hk
∂�(�0)

k∗ given by

v �→

⎧
⎪⎨
⎪⎩

(0, . . . , 0︸ ︷︷ ︸
k∗

)T in ω0,

v in � \ ω0.

It is clearly that Extk are well defined, linear, and continuous operators.
With these preliminaries behind us, we are able to state the key assertion of our

analysis that guarantees the existence of certain test elements.

Theorem 2.6 Let (W0, w0) ∈ K0(�0) be the solution of the variational inequality (7),
and let (Wδ, wδ) ∈ Kδ(�0) be the solution of the transformed variational inequality
(27). Then there exists δ2 ∈ (0, δ1] and tuples (Wi

δ , w
i
δ) such that for every δ ∈

[−δ2, δ2] the inclusions

(Ŵ 1
δ , ŵ1

δ ) = (W0, w0) + δ(W 1
δ , w1

δ ) ∈ Kδ(�0),

(Ŵ 2
δ , ŵ2

δ ) = (Wδ, wδ) − δ(W 2
δ , w2

δ ) ∈ K0(�0),

and uniform in δ bounds

‖(Wi
δ , w

i
δ)‖H1(�0)2×H2(�0)

≤ c, i = 1, 2, (44)

are valid.

Proof For each i = 1, 2, we construct the required tuple (Wi
δ , w

i
δ) as sums Wi

δ =
Pi

δ +Qi
δ andwi

δ = piδ +qiδ , where the set {Pi
δ , piδ} provides the appropriate inequality

constraint for (Ŵ i
δ , ŵ

i
δ) on γ0, and the set {Qi

δ, q
i
δ} is responsible for the correct

structure of (Ŵ i
δ , ŵ

i
δ) in ω0, which is specified by the equality constraint. The case

δ = 0 is trivial, so we assume that δ �= 0.
We start with the construction of (W 1

δ , w1
δ ). Since �W0� ∈ H1/2(∂ω0)

2 and by
Proposition 2.5, the function

P1
δ = Ext1 ◦ Tr−1

1,�\ω0

(∇x Tδ − I

δ
�W0�; (0, 0)T

)
(45)

belongs to H1
∂�(�0)

2. We define w1
δ in the following way. Observe first that Zδ =

(∇x Tδ)
−1(∇x Tδ)

−T ∈ C0,1(�)2×2. For any function v ∈ H2(� \ ω0), we write

((∇xv)+ · ν0)ν0 · Zδν0 = (∇xv)+ · Zδν0 + (∇xv)+ · (ν0 ⊗ ν0Zδ − Zδ)ν0 on ∂ω0.
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There exists δ2 ∈ (0, δ1] and α > 0 such that αδ(s) = (ν0 · Zδν0)(s) ≥ α for every
(δ, s) ∈ [−δ2, δ2]×∂ω0. For Zδτ0 = (ν0⊗ν0Zδ −Zδ)ν0,we compute ν0 ·Zδτ0 = 0 on
∂ω0,which implies Zδτ0 = βδτ0 withβδ = τ0·Zδτ0 .Byconstruction,βδ ∈ C0,1(∂ω0).

With the help of standard arguments in local coordinates (see also [11, Proposition
3.1]), we infer

(∇xv)+ = (∂τ0v
+)τ0 + ((∇xv)+ · ν0)ν0 on ∂ω0,

and so

αδ(∇xv)+ · ν0 = (∇xv)+ · Zδν0 + βδ∂τ0v
+ on ∂ω0.

Exploiting the inclusions �w0� ∈ H3/2(∂ω0) and �∇xw0� ∈ H1/2(∂ω0)
2 and once

more Proposition 2.5, we conclude that the function

p1δ = Ext2 ◦ Tr−1
2,�\ω0

(
�w0�; 0; 1

αδ

(
�∇xw0� · I − Zδ

δ
ν0 + βδ∂τ0�w0�

)
; 0
)

is from the space H2
∂�(�0). Under the circumstances, a straightforward calculation

reveals

�∇x p
1
δ � · Zδν0 =

(
∇x p

1
δ

)+ · Zδν0 = αδ

(
∇x p

1
δ

)+ · ν0 − βδ∂τ0 p
1+
δ

= �∇xw0� · I − Zδ

δ
ν0 on ∂ω0. (46)

Let us set

Q1
δ(x) = B0

Tδ − Idx
δ

(x), q1δ (x) = A0 · Tδ − Idx
δ

(x), x ∈ �.

The functions Q1
δ and q1δ vanish in a neighborhood of ∂�. We now check that

(Ŵ 1
δ , ŵ1

δ ) ∈ Kδ(�0). In fact, the inequality constraint follows from the following
chain of equalities and inequalities

�Ŵ 1
δ � · (∇x Tδ)

−Tν0 = �W0 + δP1
δ � · (∇x Tδ)

−Tν0

(45)= (
�W0� + (∇x Tδ − I ) �W0�

) · (∇x Tδ)
−Tν0 = �W0� · ν0

≥ h
∣∣�∇xw0� · ν0

∣∣ = h
∣∣�∇xw0� · (I − Zδ + Zδ) ν0

∣∣
(46)= h

∣∣∣
�
∇x (w0 + δ p1δ )

�
· Zδν0

∣∣∣ = h
∣∣∣
�
∇x ŵ

1
δ

�
· Zδν0

∣∣∣ on γ0.

Moreover, we have no difficulty in verifying the equality constraint,

Ŵ 1
δ (x) = W0(x) + δQ1

δ(x) = B0Idx (x) + C0 + B0(Tδ(x) − Idx (x))

= B0Tδ(x) + C0 in ω0,
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ŵ1
δ (x) = w0(x) + δq1δ (x) = A0 · Idx (x) + a0 + A0 · (Tδ(x) − Idx (x))

= A0 · Tδ(x) + a0 in ω0.

We next turn our attention to (W 2
δ , w2

δ ). The construction of W 2
δ is not much harder

than that for W 1
δ . Indeed, with �Wδ� ∈ H1/2(∂ω0) and Proposition 2.5 in mind, the

function

P2
δ = Ext1 ◦ Tr−1

1,�\ω0

(
I − (∇x Tδ)

−1

δ
�Wδ�; (0, 0)T

)
(47)

is an element of the space H1
∂�(�0)

2. To define w2
δ , we appeal to slightly simpler

arguments than for w1
δ . Taking into account the inclusions �wδ� ∈ H3/2(∂ω0) and

�∇xwδ� ∈ H1/2(∂ω0)
2 and applying Proposition 2.5 again, we derive that the function

p2δ = Ext2 ◦ Tr−1
2,�\ω0

(
�wδ�; 0; �∇xwδ� · I − Zδ

δ
ν0; 0

)
(48)

belongs to H2
∂�(�0). We finally put

Q2
δ (x) = Bδ

Tδ − Idx
δ

(x), q2δ = Aδ · Tδ − Idx
δ

(x), x ∈ �.

The functions Q2
δ and q2δ vanish in a neighborhood of ∂�. In view of the above

discussion, we obtain

�Ŵ 2
δ � · ν0 = �Wδ − δP2

δ � · ν0
(47)=
(
�Wδ� −

(
I − (∇x Tδ)

−1
)

�Wδ�
)

· ν0

= �Wδ� · (∇x Tδ)
−Tν0 ≥ h

∣∣�∇xwδ� · Zδν0
∣∣ (48)= h

∣∣∣
�
∇x (wδ − δ p2δ )

�
· ν0

∣∣∣
= h

∣∣∣
�
∇x ŵ

2
δ

�
· ν0

∣∣∣ on γ0.

Furthermore,

Ŵ 2
δ (x) = Wδ(x) − δQ2

δ (x) = BδTδ(x) + Cδ − Bδ(Tδ(x) − Idx (x))

= BδIdx (x) + Cδ in ω0,

ŵ2
δ (x) = wδ(x) − δq2δ (x) = Aδ · Tδ(x) + aδ − Aδ · (Tδ(x) − Idx (x))

= Aδ · Idx (x) + aδ in ω0.

We thus can conclude that (Ŵ 2
δ , ŵ2

δ ) ∈ K0(�0), as asserted.
In order to complete the proof, we observe that the uniform estimates (44) is an

immediate consequence of (32) and continuity of the lifting and extension operators.
��

These considerations allow us to establish convergence properties of the trans-
formed solutions (Wδ, wδ) as δ → 0.
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Lemma 2.7 There exists a constant c > 0 that is independent of δ such that it holds
for every δ ∈ [−δ2, δ2] :

‖(Wδ, wδ) − (W0, w0)‖H1(�0)2×H2(�0)
≤ c
√|δ|.

Proof As in the proof of Lemma 2.4, we change the integration domain�\ω0 by�0 in
the variational inequality (7). The resulting variational inequality is referred to as (7)�0 .

Inserting (Ŵ 1
δ , ŵ1

δ ) and (Ŵ 2
δ , ŵ2

δ ) as test functions for (27)�0 and (7)�0 , respectively,
and adding both variational inequalities, we invoke the asymptotic expansions (33)–
(34) and (37)–(38) to obtain

∫

�0

σ(Wδ − W0) : ε(Wδ − W0) dx −
∫

�0

m(wδ − w0) : ∇2
x (wδ − w0) dx

≤ δ

∫

�0

(
Ap(V ;Wδ,W0 + δW 1

δ − Wδ) + Av(V ;wδ,w0 + δw1
δ − wδ)

)
dx

+ δ

∫

�0

(
F · (W 2

δ − W 1
δ ) + f (w2

δ − w1
δ ) − divx (F ⊗ V ) · (W0 + δW 1

δ − Wδ)

− divx ( f V )(w0 + δw1
δ − wδ)

)
dx

+ δ

∫

�0

(
σ(Wδ) : ε(W 1

δ ) − m(wδ) : ∇2
xw

1
δ

)
dx

− δ

∫

�0

(
σ(W0) : ε(W 2

δ ) − m(w0) : ∇2
xw

2
δ

)
dx

+
∫

�0

(
R1(δ,Wδ,W0 + δW 1

δ − Wδ) + R2(δ, wδ,w0 + δw1
δ − wδ)

)
dx

+
∫

�0

(
R3(δ,W0 + δW 1

δ − Wδ) + R4(δ, wδ,w0 + δw1
δ − wδ)

)
dx .

By virtue of estimates (32),(35)–(36),(39)–(42), and (44), it holds for every δ ∈
[−δ2, δ2] :
∫

�0

σ(Wδ − W0) : ε(Wδ − W0) dx −
∫

�0

m(wδ − w0) : ∇2
x (wδ − w0) dx ≤ c|δ|.

We finally apply the Korn inequality and the Friedrichs inequality to complete the
proof. ��
Corollary 2.8 The sequence (Bδ,Cδ, Aδ, aδ) converges to (B0,C0, A0, a0) in R

2×2 ×
R
2 × R

2 × R as δ → 0.
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Proof By Lemma 2.7, it follows that (Wδ, wδ) → (W0, w0) strongly in H1(ω0)
2 ×

H2(ω0), in other words,

BδIdx + Cδ + δBδ

(
V + r1δ

δ

)
→ B0Idx + C0 strongly in H1(ω0)

2, (49)

Aδ · Idx + aδ + δAδ ·
(
V + r1δ

δ

)
→ A0 · Idx + a0 strongly in H2(ω0).

(50)

Estimate (32) forces that the sequences Bδ and Aδ are uniformly bounded with respect
to small enough δ. Thus we can rewrite (49)–(50) as

BδIdx + Cδ → B0Idx + C0 strongly in H1(ω0)
2

and (up to a subsequence) a.e. in ω0, (51)

Aδ · Idx + aδ → A0 · Idx + a0 strongly in H2(ω0)

and (up to a subsequence) a.e. in ω0. (52)

The strong convergences ∇x (BδIdx + Cδ) → ∇x (B0Idx + C0) in L2(ω0)
2×2 and

∇x (Aδ · Idx + aδ) → ∇x (A0 · Idx + a0) in H1(ω0)
2 mean in particular Bδ → B0

in R
2×2 and Aδ → A0 in R

2. Hence (51)–(52) imply the remaining convergences
Cδ → C0 in R

2 and aδ → a0 in R, so we are done. ��
We intend now to identify the limit of the sequence (Wi

δ , w
i
δ) for each i = 1, 2.

Lemma 2.9 Let (W̃0, w̃0) = (P0 + Q0, p0 + q0), where P0 = Ext1 ◦ Tr−1
1,�\ω0

(∇x V

�W0�; (0, 0)T), Q0 = B0V , p0 = Ext2 ◦ Tr−1
2,�\ω0

(
�w0�; 0; �∇xw0� · (∇x V+

(∇x V )T
)
ν0; 0

)
, and q0 = A0 · V . Then, for each i = 1, 2, the sequence (Wi

δ , w
i
δ)

converges strongly to (W̃0, w̃0) in H1
∂�(�0)

2 × H2
∂�(�0) as δ → 0.

Proof We first note that, by construction, (W̃0, w̃0) ∈ H1
∂�(�0)

2×H2
∂�(�0); further-

more, P0 ≡ (0, 0)T and p0 ≡ 0 in ω0. Since all the functions Pi
δ and piδ vanish in ω0,

it is enough to investigate their convergence in � \ ω0.

Thanks to the asymptotic expansion (29), continuity of the lifting operator Tr−1
1,�\ω0

,

and Proposition 2.5, we have P1
δ → P0 strongly in H1(�\ω0)

2. From the asymptotic
expansion (28), it follows that Q1

δ → Q0 strongly in H1(�0)
2, and q1δ → q0 strongly

in H2(�0). The asymptotic expansion

Zδ = I − δ
(
∇x V + (∇x V )T

)
+ r5δ , ‖r5δ ‖W 1,∞(�)2×2 = o(δ), (53)

strong convergences αδ → 1 and βδ → 0 in C0,1(∂ω0), and Proposition 2.5 imply
that (∇x p1δ )

+ · ν0 → (∇x p0)+ · ν0 strongly in H1/2(∂ω0). In view of p1+δ ≡ p+
0 on

∂ω0 and the continuity of the lifting operator Tr−1
2,�\ω0

, we conclude that p1δ → p0
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strongly in H2(� \ ω0). Consequently, (W 1
δ , w1

δ ) converges strongly to (W̃0, w̃0) in
H1

∂�(�0)
2 × H2

∂�(�0), as claimed.
By Lemma 2.7 and the continuity of the trace operators Tr1,�\ω0 and Tr1,ω0 , we find

�Wδ� → �W0� strongly in H1/2(∂ω0)
2. Therefore, using the asymptotic expansion

(31), continuity of the lifting operator Tr−1
1,�\ω0

, and Proposition 2.5, we deduce that

P2
δ → P0 strongly in H1(�\ω0)

2.With the aid of the asymptotic expansion (53) and
continuity of the trace operators Tr2,�\ω0 and Tr2,ω0 , we derive p2+δ → p+

0 strongly
in H3/2(∂ω0) and (∇x p2δ )

+ · ν0 → (∇x p0)+ · ν0 strongly in H1/2(∂ω0). Employing
the continuity of the lifting operator Tr−1

2,�\ω0
, we infer that p2δ → p0 strongly in

H2(� \ ω0). Additionally, Corollary 2.8 yields Q2
δ → Q0 strongly in H1(�0)

2 and
q2δ → q0 strongly in H2(�0). Thus, the strong convergence (W 2

δ , w2
δ ) to (W̃0, w̃0) in

H1
∂�(�0)

2 × H2
∂�(�0) is established, and the lemma is entirely proved. ��

Now we have enough tools at hand to prove Theorem 2.2.

Proof of Theorem 2.2 For the calculation of limit (22), we first transform the potential
deformation energy E(�δ; ·, ·) to the reference configuration �0, which leads to

Eδ(�0;W , w) = h
∫

�\ω0

det(∇x Tδ)CE((∇x Tδ)
−1;W ) : E((∇x Tδ)

−1;W ) dx

+h3

3

∫

�\ω0

det(∇x Tδ)C
{
(∇x Tδ)

−T
(
∇2
xw − Mδ∇xw

)
(∇x Tδ)

−1
}

:
{
(∇x Tδ)

−T
(
∇2
xw − Mδ∇xw

)
(∇x Tδ)

−1
}
dx

−
∫

�0

det(∇x Tδ)Fδ · W dx −
∫

�0

det(∇x Tδ) fδw dx,

(W , w) belonging to H1(�0)
2 × H2(�0). Utilizing the same machinery as in the

proof of Lemma 2.4 yields

Eδ(�0;W , w) = E(�0;W , w) + δ

2

∫

�\ω0

(Ap(V ;W ,W ) + Av(V ;w,w)) dx

−δ

∫

�0

(divx (F ⊗ V ) · W + divx ( f V )w) dx +
∫

�0

R5(δ,W , w) dx,

(54)

where

‖R5(δ,W , w)‖L1(�0)
≤ c5(|δ|)

(
‖(W , w)‖2H1(�0)2×H2(�0)

+ ‖(W , w)‖L2(�0)3

)
,

0 ≤ c5(|δ|) = o(δ).
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Since Tδ is a bijection between the sets K δ(�δ) and Kδ(�0), it follows that

Eδ(�0;Wδ, wδ) = E(�δ;W δ, wδ) = inf
(W ,w)∈K δ(�δ)

E(�δ;W , w)

= inf
(W ,w)∈Kδ(�0)

Eδ(�0;W , w). (55)

Let δ > 0. Using (Ŵ 1
δ , ŵ1

δ ) ∈ Kδ(�0) as a competitor in (55), we discover

E(�δ;W δ, wδ) − E(�0;W0, w0)

δ
= Eδ(�0;Wδ, wδ) − E(�0;W0, w0)

δ

≤ Eδ(�0; Ŵ 1
δ , ŵ1

δ ) − E(�0;W0, w0)

δ
, (56)

which implies

lim sup
δ↘0

E(�δ;W δ, wδ) − E(�0;W0, w0)

δ
≤ lim sup

δ↘0

Eδ(�0; Ŵ 1
δ , ŵ1

δ ) − E(�0;W0, w0)

δ
.

(57)
On the other hand, considering (Ŵ 2

δ , ŵ2
δ ) ∈ K0(�0) as a competitor in (6), we arrive

at

Eδ(�0;Wδ, wδ) − E(�0; Ŵ 2
δ , ŵ2

δ )

δ
≤ Eδ(�0;Wδ, wδ) − E(�0;W0, w0)

δ
, (58)

so that

lim inf
δ↘0

Eδ(�0;Wδ, wδ) − E(�0; Ŵ 2
δ , ŵ2

δ )

δ
≤ lim inf

δ↘0

E(�δ;W δ, wδ) − E(�0;W0, w0)

δ
.

(59)
Invoking the asymptotic expansion of the transformed potential deformation energy
(54), we can calculate the limit superior on the right-hand side of (57) and the limit
inferior on the left-hand side of (59). Direct computations based on Lemmas 2.7 and
2.9 reveal that they are finite and equal. Therefore,

lim
δ↘0

E(�δ;W δ, wδ) − E(�0;W0, w0)

δ
= 1

2

∫

�\ω0

(
Ap(V ;W0,W0) + Av(V ; w0, w0)

)
dx

−
∫

�\ω0

(divx (F ⊗ V ) · W + divx ( f V )w) dx

+
∫

�\ω0

σ(W0) : ε(W̃0) dx −
∫

�\ω0

m(w0) : ∇2
x w̃0 dx

−
∫

�0

(F · W̃0 + f w̃0) dx . (60)
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For δ < 0, we just have to flip inequality signs in (56) and (58) and reason as before
to prove that

lim
δ↗0

E(�δ;W δ, wδ) − E(�0;W0, w0)

δ
= lim

δ↘0

E(�δ;W δ, wδ) − E(�0;W0, w0)

δ
.

In view of the above discussion, the limit in (22) exists and coincides with the right-
hand side of (60). Thus it remains to show that the right-hand side of (60) is equal to
G(�0; V ). To do so, let us set

∫

�\ω0

σ(W0) : ε(W̃0) dx −
∫

�\ω0

m(w0) : ∇2
x w̃0 dx

−
∫

�0

(F · W̃0 + f w̃0) dx = Ip(W0, W̃0) + Iv(w0, w̃0).

An application of the Green formula [17, Theorem 1.17] gives

Ip(W0, W̃0) =
∫

�\ω0

(divxσ(W0) − F) · W̃0 dx −
∫

ω0

F · W̃0 dx

− 〈σ+(W0)ν0, Q0
〉
1/2,∂ω0

− 〈σ+
ν0

(W0), P
+
0 · ν0

〉
1/2,∂ω0

−
〈
σ+

τ0
(W0), P

+
0τ0

〉
1/2,∂ω0

,

where P+
0τ0

= P+
0 − (P+

0 · ν0)ν0. Since P+
0 = (0, 0)T on ∂ω0 \ γ0, we find

〈
σ+

ν0
(W0), P

+
0 · ν0

〉
1/2,∂ω0

+
〈
σ+

τ0
(W0), P

+
0τ0

〉
1/2,∂ω0

= 〈σ+
ν0

(W0), P
+
0 · ν0

〉00
1/2,γ0

+
〈
σ+

τ0
(W0), P

+
0τ0

〉00
1/2,γ0

.

Owing to the equilibrium equations (8) and Remark1.1, we infer

Ip(W0, W̃0) = −
∫

ω0

F · B0V dx − 〈σ+(W0)ν0, B0V
〉
1/2,∂ω0

− 〈σ+
ν0

(W0),∇x V �W0� · ν0
〉00
1/2,γ0

. (61)

Let us turn now to Iv(w0, w̃0). We employ the Green formula [17, Theorem 1.19] to
deduce

Iv(w0, w̃0) =
∫

�\ω0

(−divxdivxm(w0) − f )w̃0 dx −
∫

ω0

f w̃0 dx + 〈t+ν0(w0), q0
〉
3/2,∂ω0
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− 〈m+
ν0

(w0),∇xq0 · ν0
〉
1/2,∂ω0

+ 〈t+ν0(w0), p
+
0

〉
3/2,∂ω0

− 〈m+
ν0

(w0), (∇x p0)
+ · ν0

〉
1/2,∂ω0

.

Taking into account that p+
0 = 0 and (∇x p0)+ ·ν0 = 0 on ∂ω0 \γ0,we thereby obtain

〈
t+ν0(w0), p

+
0

〉
3/2,∂ω0

− 〈m+
ν0

(w0), (∇x p0)
+ · ν0

〉
1/2,∂ω0

= 〈t+ν0(w0), p
+
0

〉00
3/2,γ0

− 〈m+
ν0

(w0), (∇x p0)
+ · ν0

〉00
1/2,γ0

.

Furthermore, the equilibrium equation (10) and Remark1.1 yield

Iv(w0, w̃0) = −
∫

ω0

f A0 · V dx + 〈t+ν0(w0), A0 · V 〉
3/2,∂ω0

− 〈m+
ν0

(w0),∇x (A0 · V ) · ν0
〉
1/2,∂ω0

−
〈
m+

ν0
(w0), �∇xw0� ·

(
∇x V + (∇x V )T

)
ν0

〉00
1/2,γ0

. (62)

Combining (60)–(62) completes the proof. ��
Remark 2.10 The structural assumption (1) arises in dimension reductions from 3D
to 2D within the Kirchhoff–Love energy scaling regime [8–10]. In the case of an
undamaged elastic plate, this assumption provides in particular that the limit stored
elastic energy is a sum of uncoupled bending and stretching energies.

From a mathematical standpoint, we have no difficulty in treating a more general
case in which the elastic properties of the plate depend on the spartial variable x as in
[17]. Indeed, letCp, C

v ∈ C1(�)2×2×2×2 be fourth-order tensors. For each n = p, v,

the tensor C
n is assumed to be positive, i.e., there exists cCn > 0 such that

C
n(x)X : X ≥ cCn |X |2 for all X ∈ R

2×2
sym and all x ∈ �,

and symmetric

C
n
i jkl = C

n
i jlk = C

n
kli j , i, j, k, l = 1, 2.

We denote by C
n,V the fourth-order tensor with components C

n,V
i jkl = ∇xC

n
i jkl · V ,

i, j, k, l = 1, 2, and replace the constitutive relations (2),(3) (see also (9),(11)) by

σ = C
pε(W ), m = −C

v∇2
xw

and the bilinear forms (23),(24) by

Ap(V ;U ,W ) = divx Vσ(U ) : ε(W ) − σ(U ) : E (∇x V ;W )

− σ(W ) : E (∇x V ;U ) + C
p,V ε(U ) : ε(W ),
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Av(V ; u, w) = − divx Vm(u) : ∇2
xw + m(u) :

(
2∇2

xw∇x V + N∇xw
)

+ m(w) :
(
2∇2

x u∇x V + N∇xu
)

+ C
v,V∇2

x u : ∇2
xw.

Exploiting the asymptotic representations

C
n ◦ Tδ = C

n + δC
n,V + rn6δ , ‖rn6δ ‖L∞(�)2×2×2×2 = o(δ),

we can easily adapt the arguments above to show that all our results remain valid.

Remark 2.11 (Griffith formula) We now demonstrate how one can apply the result
obtained to derive the Griffith formula for the energy release rate associated with
extension of the crack along the interface.

We assume that there exists a simple curve� of classC2,1 such that γ0 � � ⊂ ∂ω0,

and let λ : (0,H1(�)) → R
2 be its arc-length parametrization, whereas γ0 = λ(0, l)

with l = H1(γ0). For technical reason, we require the validity of G1 for the domain
�\�.The cylindrical surface�3D is a prescribed crack path. For δ ∈ (−l,H1(�\γ0)),

the admissible crack set is γ 3D
δ = λ(0, l + δ) × (−h, h), and we put �δ = � \ γ δ.

The energy release rate associated with crack extension ERR(�0) is formally
defined as the opposite of the derivative of the potential deformation energy with
respect to the crack length:

ERR(�0) = − lim
δ→0

E(�δ;W δ, wδ) − E(�0;W0, w0)

δ
, (63)

where (W δ, wδ) and (W0, w0) are the displacement fields corresponding to�δ, δ �= 0,
and �0, respectively. Thanks to the regularity assumptions on �, we can find μ > 0
and ψl ∈ C2,1([λ1(l) − μ, λ1(l) + μ]) such that

� = { (x1, ψl(x1)) : x1 ∈ [λ1(l) − μ, λ1(l) + μ] }.

Choose a cut-off function θ ∈ C∞(R2) so that θ = 1 on Bμ/3(0) and θ = 0 outside
Bμ/2(0), and define the mapping Tl,δ : R

2 → R
2 by

Tl,δ(x) = x +
(

(λ1(l + δ) − λ1(l))θ(λ(l) − x)
ψl(x1 + (λ1(l + δ) − λ1(l))θ(λ(l) − x)) − ψl(x1)

)
.

Hence there exists δ0 > 0 such that Tl,· ∈ C2,1([−δ0, δ0] × R
2)2 and, for every

δ ∈ [−δ0, δ0], the mapping Tl,δ is a C2,1-diffeomorphism on R
2 with Tl,δ(�0) = �δ,

Tl,δ(λ(l)) = λ(l + δ), Tl,δ(γ0) = γδ, and Tl,δ(ω0) = ω0, see [24, Lemma 3.5]. By
construction, the vector field

VGr(x) = ∂δ(Tl,δ(x))|δ=0 = λ′
1(l)θ(λ(l) − x)(1, ψl,1(x1))

T

belongs toC1,1(R2)2 and is compactly supported in�.We thus deduce that the energy
release rate associated with crack extension (63) is well defined and can be calculated
as
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ERR(�0) = −G(�0; VGr).

We conclude this remark and paper by noting that, in view of the definition (63), the
energy release rate associated with crack extension ERR(�0) is independent of the
choice of the cut-off function θ.
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9. Freddi, L., Paroni, R., Roubíček, T., Zanini, C.: Quasistatic delamination models for Kirchhoff-Love
plates. Z. Angew. Math. Mech. 91, 845–865 (2011)
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