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Abstract
Stateless ordered restart-delete automata (stl-ORD-automata) are studied. These are
obtained from the stateless ordered restarting automata (stl-ORWW-automata) by
introducing an additional restart-delete operation, which, based on the surrounding
context, deletes a single letter. While the stl-ORWW-automata accept the regular lan-
guages, we show that the swift stl-ORD-automata yield a characterization for the
class of context-free languages. Here a stl-ORD-automaton is called swift if it can
move its window to any position after performing a restart. We also study the descrip-
tional complexity of swift stl-ORD-automata and relate them to limited context
restarting automata.

Keywords Restarting automaton · Ordered rewriting · Context-free language ·
Descriptional complexity · Limited context restarting automaton

1 Introduction

The restarting automaton was introduced in [9] to model the linguistic technique of
analysis by reduction (see, e.g., [12]). Despite its linguistic motivation, also many
classical families of formal languages have been characterized by various types of
restarting automata (for a survey see, e.g., [16]). A particularly simple type of restart-
ing automaton is the ordered restarting automaton (ORWW-automaton, for short)
that has been introduced in [15] in relation with the processing of languages of
rectangular pictures.

An ORWW-automaton consists of a finite-state control, a tape with endmarkers, a
read-write window of size three, and a (partial) ordering on its tape alphabet. Based
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on the actual state and window contents, the automaton can move its window one
position to the right and change its state, or it can replace the letter in the middle of
the window by a smaller letter and restart, or it can accept. During a restart, the win-
dow is moved back to the left end of the tape, and the finite-state control is reset to
the initial state. In [17], it is shown that deterministic ORWW-automata (det-ORWW-
automata) don’t need states and that they characterize the class of regular languages.
On the other hand, the nondeterministic ORWW-automata yield an abstract family
of languages that is incomparable to the (deterministic) context-free languages, the
Church-Rosser languages, and the growing context-sensitive languages with respect
to inclusion [10, 11]. However, stateless nondeterministic ORWW-automata (stl-
ORWW-automata) are only as expressive as det-ORWW-automata, that is, they yield
just another characterization for the regular languages.

In [18] (see, also [19]), the det-ORWW-automaton was extended to the determin-
istic ordered restart-delete automaton (or det-ORD-automaton, for short). This was
achieved by introducing an additional restart-delete operation that allows to delete
the symbol from the middle of the window and to restart. The det-ORD-automata do
not need states, either, and the class of languages they accept properly includes the
class of deterministic context-free languages, while it is contained in the intersection
of the (unambiguous) context-free languages and the Church-Rosser languages.

Here we turn to the nondeterministic variant of the ordered restart-delete automa-
ton. As this model extends both, the det-ORD-automaton as well as the ORWW-
automaton, it is immediate that the resulting language class is quite large. In partic-
ular, this class contains languages that are not even growing context-sensitive [10,
11]. Therefore, we restrict our attention to the stateless variant of these automata,
the stateless ordered restart-delete automaton (or stl-ORD-automaton, for short). In
fact, for technical reasons that will be discussed in Section 3, we concentrate on a
restricted variant called swift stl-ORD-automaton. A swift stl-ORD-automaton can
always perform move-right steps unless its window is already at the right end of the
tape. While the stl-ORWW-automaton just accepts the regular languages, the swift
stl-ORD-automaton yields a characterization for the context-free languages.

We also study the descriptional complexity of stl-ORD-automata, where we use
the size of the underlying tape alphabet as a complexity measure for a stateless
ORWW- or ORD-automaton. Based on our constructions we show that the increase in
alphabet size that is required when turning a stl-ORD-automaton into a stl-ORWW-
automaton for the same (regular) language cannot be bounded from above by any
recursive function. That is, we obtain a non-recursive trade-off for this conversion.

Finally, we relate the swift stl-ORD-automata to a new class of limited context
restarting automata. A limited context restarting automaton can be seen as a certain
type of string rewriting system [2], where the accepted language is defined as the set
of all input words that are reducible to the empty word (see, e.g., [1]). Various types of
limited context restarting automata have been defined and used to characterize some
of the classes of the Chomsky hierarchy [21]. Here we show that the new class of
limited context restarting automata that is obtained from the swift stl-ORD-automata
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is a proper subclass of the limited context restarting automata of type R1. In addi-
tion, this new class is incomparable under inclusion to the limited context restarting
automata of type R2, although it has exactly the same expressive capacity.

This paper is structured as follows. In Section 2, we define the stl-ORD-
automaton, we illustrate it by a detailed example, and we establish a kind of normal
form result for stl-ORD-automata. In the next section, we prove that each swift stl-
ORD-automaton can be simulated by a pushdown automaton (PDA), which implies
that all languages accepted by swift stl-ORD-automata are necessarily context-free.
Then, in Section 4, we show conversely that each context-free language is accepted
by a swift stl-ORD-automaton. This is done by providing a simulation of a PDA by a
swift stl-ORD-automaton. In Section 5, we present the aformentioned non-recursive
trade-off and in Section 6, we relate the swift stl-ORD-automata to limited context
restarting automata. In the concluding section, we summarize our results and describe
the hierarchy of language classes obtained through a detailed diagram.

2 The Stateless Ordered Restart-Delete Automaton

An alphabet Σ is a finite set of letters. For all n ≥ 1, Σn is the set of words over Σ

of length n, Σ+ is the set of non-empty words, and Σ∗ = Σ+ ∪{λ}, where λ denotes
the empty word. For w ∈ Σ∗, |w| denotes the length of w. A language over Σ is
any subset of Σ∗. Of particular interest are the classes REG, DCFL, CFL, CRL, and
GCSL of regular, deterministic context-free, context-free, Church-Rosser [13], and
growing context-sensitive languages [3, 6]. Furthermore, for any type of automaton
X, L(X) is used to denote the class of (input) languages that are accepted by automata
of that type.

Definition 1 A stateless ordered restart-delete automaton (stl-ORD-automaton) has
a flexible tape with endmarkers and a read/write window of size 3. It is defined by
a 6-tuple M = (Σ, Γ, , , δ, >), where Σ is a finite input alphabet, Γ is a finite
tape alphabet such that Σ ⊆ Γ , the symbols , Γ , called sentinels, serve as
markers for the left and right border of the work space, respectively, > is a partial
ordering on Γ , and

δ : (((Γ ∪ { }) · Γ · (Γ ∪ { })) ∪ { }) → 2Γ ∪ {λ,MVR} ∪ {Accept}

is the transition relation that describes four types of transition steps:

(1) A move-right step has the form MVR ∈ δ(a1a2a3), where a1 ∈ Γ ∪ { } and
a2, a3 ∈ Γ . It causes M to shift the window one position to the right.

(2) A restart-rewrite step has the form b ∈ δ(a1a2a3), where a1 ∈ Γ ∪{ }, a2, b ∈
Γ , and a3 ∈ Γ ∪ { } such that a2 > b holds. It causes M to replace the symbol
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a2 in the middle of its window by b and to restart, which means that the window
is shifted to the left end of the tape so that the first symbol it contains is the left
sentinel . Observe that this operation requires that the newly written letter b is
smaller than the letter a2 being replaced with respect to the partial ordering >.

(3) A restart-delete step has the form λ ∈ δ(a1a2a3), where a1 ∈ Γ ∪{ }, a2 ∈ Γ ,
and a3 ∈ Γ ∪ { }. It causes M to delete the symbol a2 in the middle of its
window and to restart. Through this step, the tape field that contains a2 is also
removed, that is, the length of the tape is reduced.

(4) An accept step has the form δ(a1a2a3) = Accept, where a1 ∈ Γ ∪{ }, a2 ∈ Γ ,
and a3 ∈ Γ ∪ { }. It causes M to halt and accept. In addition, we allow an
accept step of the form δ( ) = Accept.

Observe that, for each word u ∈ (Γ ∪{ }) ·Γ ·(Γ ∪{ }), either δ(u) = Accept or
δ(u) does not contain an accept step. The motivation for this restriction is the obser-
vation that the aim of a computation consists in accepting an input word, and hence,
once an accept step becomes applicable, it makes no sense to choose a different
transition step.

If δ(u) is undefined for some word u, then M necessarily halts, when its window
contains the word u, and we say that M rejects in this situation. Furthermore, the
letters in Γ Σ are called auxiliary symbols.

A configuration of a stl-ORD-automaton M is a word α ∈ { } ·Γ ∗ · { } in which
a factor of length three (or all of α if |α| ≤ 3) is underlined. Here it is understood that
α is the current contents of the tape and that the window contains the underlined fac-
tor. A restarting configuration has the form w , where the prefix of length three
is underlined; if w ∈ Σ∗, then this restarting configuration is also called an initial
configuration. A configuration that is reached by an accept step is an accepting con-
figuration, denoted by Accept, and a configuration of the form α1a1a2a3α2 such that
δ(a1a2a3) is undefined is a rejecting configuration. A halting configuration is either
an accepting or a rejecting configuration. By M we denote the single-step computa-
tion relation that M induces on its set of configurations. Then ∗

M , the reflexive and
transitive closure of M , is the computation relation of M .

Any computation of a stl-ORD-automaton M consists of certain phases. A phase,
called a cycle, starts in a restarting configuration, the window is moved along the tape
by MVR steps until a restart-rewrite or a restart-delete step is performed and thus, a
new restarting configuration is reached. By c

M we denote the execution of a cycle,
and c∗

M is the reflexive transitive closure of c
M . It is the reduction relation that M

induces on its set of restarting configurations.
The part of a computation that follows after the last execution of a restart-rewrite

or restart-delete operation is called a tail. Hence, a tail starts in a restarting configu-
ration, the window is moved along the tape by MVR steps until either an accept step
is performed or the automaton gets stuck in a rejecting configuration. Accordingly,
we speak of an accepting tail or a rejecting tail.

A word w ∈ Γ ∗ is accepted by M , if there exists a computation of M which starts
with the restarting configuration w and ends with an accept step. The language
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consisting of all words that are accepted by M is denoted by LC(M). It is called
the characteristic language of M . The (input) language L(M) of M is the set of all
words w ∈ Σ∗ that are accepted by M . Obviously, L(M) = LC(M) ∩ Σ∗.

As each cycle ends with a rewrite operation, which replaces a symbol a by a
symbol b that is strictly smaller than a with respect to the given ordering >, or with a
delete operation, we see that each computation of M on an input of length n consists
of at most |Γ | · n many cycles. Each cycle (and each tail) of M can be simulated
in linear time by a nondeterministic two-tape Turing machine that stores the prefix
α1 of a configuration α1a1a2a3α2 of M on one of the tapes and the suffix a1a2a3α2
on the other tape. Hence, M can be simulated by a nondeterministic two-tape Turing
machine in time O(n2).

As each det-ORD-automaton can be simulated by a stateless det-ORD-
automaton [18], we obtain the following inclusion.

Proposition 1 L(det-ORD) ⊆ L(stl-ORD).

The following example illustrates how stl-ORD-automata work.

Example 1 Let L = { anbn | n ≥ 0 } ∪ { anb2n | n ≥ 0 }. It is well-known that
L is a context-free language that is not deterministic context-free. Furthermore, this
language is not accepted by any ORWW-automaton [10, 11]. However, L is accepted
by the stl-ORD-automaton M = (Σ, Γ, , , δ, >) that is defined by taking Σ =
{a, b} and Γ = Σ ∪ { a1, e, e1, f, f1, f2}, by choosing the partial ordering > such
that a > a1, b > e > e1, and b > f > f1 > f2, and by defining the transition
relation δ as follows:

(0) δ(xyz) MVR for all x ∈ Γ ∪ { } and y, z ∈ Γ,

(1) δ( ) = Accept,
(2) δ(ab ) = {e}, (10) δ(a1ee) e1, (18) δ(a1ff ) f1,

(3) δ(bb ) = {e, f }, (11) δ(a1e ) e1, (19) δ(f1ff ) f2,

(4) δ(bbe) e, (12) δ(aa1e1) λ, (20) δ(f1f ) f2,

(5) δ(abe) e, (13) δ( a1e1) λ, (21) δ(a1f1f2) λ,

(6) δ(bbf ) f, (14) δ(ae1e) λ, (22) δ(aa1f2) λ,

(7) δ(abf ) f, (15) δ( e1 ) λ, (23) δ( a1f2) λ,

(8) δ(aae) a1, (16) δ(aaf ) a1, (24) δ(af2f ) λ,

(9) δ( ae) a1, (17) δ( af ) a1, (25) δ( f2 ) λ.

For an input of the form ambn, first the factor bn is rewritten, from right to left,
into en or into f n using lines (2) to (7). In the former case, it is then checked whether
m = n by alternatingly rewriting the last letter a into a1, the first letter e into e1 and
then deleting a1 and e1 using lines (8) to (15). In the latter case, it is checked whether
n = 2m by alternatingly rewriting the last letter a into a1 and the first factor ff into
f1f2 and then deleting f1, a1, and f2 using lines (16) to (25). For example, given
w = aabbbb as input, M can execute the following computation, where we attach

1037Theory of Computing Systems (2021) 65:1033–1068



the number of the line used as an index to the computation relation :

aabbbb 5
(0) aabbbb (3) aabbbf 4

(0) aabbbf

(6) aabbff ∗ aaffff (0) aaf fff

(16) aa1ffff 2
(0) aa1ff ff (18) aa1f1fff

3
(0) aa1f1ff (19) aa1f1f2ff 2

(0) aa1f1f2ff

(21) aa1f2ff (0) aa1f2ff (22) af2ff

(0) af2f f (24) af f ∗ f2

(25) (1) Accept.

It follows that L(M) = L.

Let M = (Σ, Γ, , , δ, >) be a stl-ORD-automaton. A word w ∈ L(M) is first
rewritten into a word z ∈ Γ ∗ through a sequence of cycles, and then M executes an
accepting tail computation on the tape contents z . Actually, we can require that
all accepting configurations of a stl-ORD-automaton are of a very restricted form.

Proposition 2 From a given stl-ORD-automaton M = (Σ, Γ, , , δ, >), one can
construct a stl-ORD-automaton M = (Σ, Δ, , , δ , > ) such that Δ = Γ ∪ {#},
where # is a new auxiliary symbol, δ ( # ) = Accept is the only accept step of M ,
and L(M ) = L(M) {λ}.

Proof Let M = (Σ, Γ, , , δ, >) be a stl-ORD-automaton and let # be a new aux-
iliary symbol. The stl-ORD-automaton M is constructed by replacing each accept
step of M by a rewrite-restart step that produces an occurrence of the symbol #. This
symbol is then used as context in delete-restart steps that delete all other letters until
the configuration # is reached.

Accordingly, we define the stl-ORD-automaton M = (Σ, Δ, , , δ , > ) by
taking Δ = Γ ∪ {#}, by defining > = > ∪ (Γ ×{#}), and by defining the transition
relation δ as follows, where a, b, c ∈ Γ :

(1) δ (abc) = δ(abc), if δ(abc) Accept,
(2) δ (abc) = {#}, if δ(abc) = Accept,
(3) δ (ab ) = δ(ab ), if δ(ab ) Accept,
(4) δ (ab ) = {#}, if δ(ab ) = Accept,
(5) δ ( bc) = δ( bc), if δ( bc) Accept,
(6) δ ( bc) = {#}, if δ( bc) = Accept,
(7) δ ( b ) = δ( b ) {λ}, if δ( b ) ∩ Γ = ∅ and

(λ δ( b ) or δ( ) Accept),
(8) δ ( b ) = {#}, if δ( b ) = Accept,
(9) δ ( b ) = (δ( b ) {λ}) ∪ {#}, if λ ∈ δ( b ) and δ( ) = Accept,

(10) δ ( #b) = {MVR}, (13) δ (#bc) = {λ},
(11) δ (ab#) = {λ}, (14) δ (#b ) = {λ},
(12) δ ( b#) = {λ}, (15) δ ( # ) = Accept.

From the definition of δ , we see immediately that λ L(M ). Let w = a1a2 · · · an ∈
L(M), where a1, a2, . . . , an ∈ Σ and n ≥ 1. Then M has an accepting computation
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on input w, that is, w is rewritten into a word z ∈ Γ ∗, which is then accepted in
a tail computation. If z λ, then by using lines (1), (3), (5), (7) and (9), M can
execute the same cycles as M , in this way rewriting w into z. The accept step of M

yields a rewrite step of M that produces an occurrence of the new auxiliary symbol #
(by (2), (4), (6), or (8)), and then M can rewrite its complete tape contents into the
configuration # by lines (10) to (14). If z = λ, then M produces the tape contents

b , from which z = is obtained through a delete step of M . In this situation
M accepts by lines (9) and (15). Thus, we see that L(M) {λ} ⊆ L(M ) holds.

On the other hand, let w ∈ L(M ). Then w is non-empty, and we see from the
definition of M that w c∗

M
# holds. As w does not contain any occurrence

of the special symbol #, M must introduce an occurrence of this symbol in the course
of its accepting computation. Hence, this computation has the form

w c∗
M z = z1bz2

c
M z1#z2

c∗
M #

for some word z = z1bz2 (z1, z2 ∈ Γ ∗ and b ∈ Γ ), where the first occurrence of
the symbol # is created by an application of line (2), (4), (6), (8), or (9). This in turn
implies that M can execute the accepting computation w c∗

M z ∗
M Accept,

which shows that w ∈ L(M). Hence, L(M ) = L(M) {λ} follows.

3 Swift Stl-ORD-Automata Only Accept Context-Free Languages

We would like to show that each language accepted by a stl-ORD-automaton is
necessarily context-free. To prove this result, we would simulate the accepting com-
putations of a stl-ORD-automaton by a (nondeterministic) PDA. For this simulation,
we would use an extension of the simulation that is given in [18] (see also [19]) for
simulating a stl-det-ORD-automaton by a PDA. Unfortunately, that approach leads
to a serious technical problem (see the paragraph following Example 2 below). As
currently we do not see a way to overcome this problem, we restrict our attention to
just a subclass of stl-ORD-automata, the swift-ORD-automata.

We first describe the data structure that will be used for the simulation.

Definition 2 Let M = (Σ, Γ, , , δ, >) be a stl-ORD-automaton, and let w =
w1w2 · · · wn, where n ≥ 1 and w1, w2, . . . , wn ∈ Γ . To encode the computations
of M for the word w in a compact way, we introduce a 3-tuple of vectors Ti =
[Li, Wi, Ri] for each letter wi of w, 1 ≤ i ≤ |w|, where

– Wi is a sequence (xi,1, xi,2, . . . , xi,ji
, xi,ji+1) over Γ ∪ {λ} such that ji ≥ 0,

wi = xi,1 > xi,2 > · · · > xi,ji
and ((xi,ji+1 ∈ Γ and xi,ji

> xi,ji+1) or
xi,ji+1 = λ),

– Li is a sequence of letters (yi,1, yi,2, . . . , yi,ji
) over Γ ∪ { }, and

– Ri is a sequence of letters (zi,1, zi,2, . . . , zi,ji
) over Γ ∪ { } such that

δ(yi,rxi,rzi,r ) xi,r+1 holds for all r = 1, 2, . . . , ji .

In addition, y1,r = for all r = 1, 2, . . . , j1 and zn,r = for all r = 1, 2, . . . , jn.
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The idea is that Wi encodes the sequence of letters that are produced by M in an
accepting computation for a particular field, and Li and Ri encode the information
on the neighboring letters to the left and to the right that are used to perform the
corresponding rewrite steps. For example, the triple (yi,1, xi,1, zi,1) ∈ (Li, Wi, Ri)

means that xi,1 is rewritten into xi,2 by the transition xi,2 ∈ δ(yi,1xi,1zi,1). We say
that xi,1 is rewritten into xi,2 with left context yi,1 and right context zi,1. In particular,
if xi,ji+1 = λ, then the transition λ ∈ δ(yi,ji

xi,ji
zi,ji

) is used to delete the letter xi,ji
.

The restrictions on the elements of L1 and Rn just express the fact that w1 is the first
letter, and so its left neighboring field contains the left sentinel , while wn is the
last letter, and so its right neigboring field contains the right sentinel .

We illustrate this definition by a simple example. As the purpose of this example
is simply to explain the dynamics of the simulation, the language accepted by the
given automaton is not of importance.

Example 2 Let M be the stl-ORD-automaton on the input alphabet Σ =
{a1, a2, a3, a4, a5}, the tape alphabet Γ = Σ ∪ {b1, b2, b3, b4, #}, and the ordering
ai > bi > # (1 ≤ i ≤ 4), where the transition relation is given by the following table:

δ( a1a2) = {MVR, b1}, δ(a1a2a3) = {MVR}, δ(a2a3a4) = {b3},
δ(a1a2b3) = {b2}, δ( a1b2) = {MVR}, δ(a1b2b3) = {λ},
δ( a1b3) = {MVR, b1}, δ(b1b3a4) = {MVR}, δ(b3a4a5) = {MVR, b4},
δ(a4a5 ) = {λ}, δ(b3a4 ) = {b4}, δ(b3b4 ) = {λ},
δ( b1b3) = {MVR}, δ(b1b3b4) = {MVR}, δ(b1b3 ) = {#},
δ( b1#) = {λ}, δ( # ) = Accept.

Given the word w = a1a2a3a4a5 as input, M can execute the following accepting
computation:

a1a2a3a4a5 M a1a2a3a4a5 M a1a2a3a4a5 M a1a2b3a4a5

M a1a2b3a4a5 M a1b2b3a4a5 M a1b2b3a4a5

M a1b3a4a5 M b1b3a4a5 M b1b3a4a5

M b1b3a4a5 M b1b3a4a5 M b1b3a4

M b1b3a4 M b1b3a4 M b1b3b4

M b1b3b4 M b1b3b4 M b1b3

M b1b3 M b1# M #
M Accept.

For this computation, we obtain the following sequence of triples:
⎡
⎢⎢⎣

L1 W1 R1
a1 b3
b1 #
λ

L2 W2 R2
a1 a2 b3
a1 b2 b3

λ

L3 W3 R3
a2 a3 a4
b1 b3

#

L4 W4 R4
b3 a4
b3 b4

λ

L5 W5 R5
a4 a5

λ

⎤
⎥⎥⎦

These triples do not only record the history of rewrite and delete steps that have
been applied to the various input letters, but the sequence of these triples also pro-
vides information on the ordering in which these rewrite and delete steps have been
executed at neighboring positions. In fact, if [Li, Wi, Ri]i=1,2,...,n is a sequence of
triples that describe an accepting computation of M on input w = w1w2 · · · wn, then
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we can extract the complete sequence of rewrite and delete operations of M from this
sequence. To see this, we inspect the above sequence.

First, we see that w = a1a2a3a4a5. Furthermore, from the first triple

[L1, W1, R1] =
⎡
⎣

a1 b3
b1 #
λ

⎤
⎦, we conclude that M executes the rewrite step b1 ∈

δ( a1b3) and the delete step λ ∈ δ( b1#) at position 1. As this is the first position,
we know that the left neighboring field contains the left sentinel , that is, the left
contexts of these steps coincide with (the contents of) the left neighboring field. We
express this fact by saying that these steps match left.

Next, we consider the second triple [L2, W2, R2] =
⎡
⎣

a1 a2 b3
a1 b2 b3

λ

⎤
⎦. Thus, at posi-

tion 2, M executes the sequence of rewrite and delete steps b2 ∈ δ(a1a2b3) and
λ ∈ δ(a1b2b3). As initially field 1 contains the letter a1, we see that the left contexts
of these steps coincide with their left neigboring field, that is, they match left.

At position 3, M executes the sequence of rewrite steps b3 ∈ δ(a2a3a4) and
# ∈ δ(b1b3 ). As the initial letter at position 2 is a2, we see that the first of these
rewrite steps matches left. After a3 has been rewritten into b3, the right contexts of
the rewrite and delete steps at position 2 coincide with (the contents) of their right
neighboring field, that is, they match right. Thus, all rewrite and delete steps at posi-
tion 2 match left and right, which means that all their left and right contexts have been
verified. In particular, this implies that these steps can be executed after a3 has been
rewritten into b3. As W2 ends with λ, we can now remove the triple [L2, W2, R2]
from the sequence. But then the triple [L3, W3, R3] becomes the right neighbor of
[L1, W1, R1], which shows that now the first rewrite at position 1 also matches right.
Hence, a1 can now be rewritten into b1, and after that, the second rewrite step at posi-
tion 3 matches left, too. So the second rewrite step at position 3 is executed after the
first rewrite step at position 1. After b3 has been rewritten into #, also the final delete
step at position 1 matches right, that is, all rewrite and delete steps at position 1 match
left and right. As W1 ends with λ, we can now remove the triple [L1, W1, R1] from
the sequence.

At position 4, M executes the rewrite step b4 ∈ δ(b3a4 ) and the delete step
λ ∈ δ(b3b4 ). As this position initially contains the letter a4, we conclude that the
first rewrite step at position 3 matches right. Hence, this rewrite step is executed
before the rewrite step at position 4. After a3 has been rewritten into b3, the steps at
position 4 match left.

Finally, at position 5, M only executes the delete step λ ∈ δ(a4a5 ), which
matches left and right. In particular, we see that this step is executed before the first
rewrite step at position 4. As W5 ends with λ, the triple [L5, W5, R5] can be removed,
which means that the right sentinel is now the new right neighbor of position 4.
This in turn implies that the rewrite and delete steps at position 4 match right. Thus,
these steps can now be executed and the triple [L4, W4, R4] can be removed as well.
But then is the new right neighbor of position 3, and hence, the second rewrite step
at position 3 matches right.
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Thus, only the triple [L3, W3, R3] remains, and all its rewrite steps have been
matched left and right. In fact, from the above considerations we can conclude
that the rewrite and delete transitions encoded in the given sequence of triples are
executed in the following order:

1. a3 → b3, 4. a1 → b1, 7. b4 → λ,

2. a2 → b2, 5. a5 → λ, 8. b3 → #,

3. b2 → λ, 6. a4 → b4, 9. b1 → λ.

This is actually the same order as the one in the above computation of M . Finally, as
Accept ∈ δ( # ), we see that the above sequence of triples does indeed describe the
accepting computation of M on input a1a2a3a4a5 under the assumption that M can
always move to the required position by a sequence of move-right steps.

In the case of stl-ORWW-automata, that is, when no letter can be deleted, the
required MVR-steps can easily be inferred from the corresponding sequence of
triples considered, and so, by checking the transition relation of M , it can be verified
whether they are actually possible. However, for stl-ORD-automata, that is, when
delete operations can be used, this is not at all clear, as particular move-right steps
may or may not use letters at positions that are at some point deleted. Therefore, in
order to turn our idea into a correct simulation of a stl-ORD-automaton by a PDA,
we only consider a restricted class of stl-ORD-automata.

Definition 3 A stl-ORD-automaton M = (Σ, Γ, , , δ, >) is called swift (or sim-
ply a swift-ORD-automaton) if MVR ∈ δ(a1a2a3) for all a1 ∈ Γ ∪ { } and all
a2, a3 ∈ Γ . By swift-ORD we denote the class of all swift-ORD-automata.

From a restarting configuration w , a swift-ORD-automaton M can move its
window to any position on the tape. Thus, a computation of M cannot be blocked
by a factor across which M cannot move its window. The stl-ORD-automaton M of
Example 1 is actually a swift-ORD-automaton. Furthermore, Proposition 2 carries
over to swift-ORD-automata. The aim of this section is the following result.

Theorem 1 L(swift-ORD) ⊆ CFL.

For establishing this result, we proceed as follows. First, motivated by the dis-
cussion in Example 2, we define the notion of compatibility for sequences of
triples [L, W, R]. After illustrating this definition by an example, we prove that, for
a given input w = w1w2 · · · wn, there exists a compatible sequence of triples if and
only if w is accepted by the swift-ORD-automaton M considered. Then we describe a
PDA P that, on input w = w1w2 · · · wn, guesses a corresponding sequence of triples,
checks whether this sequence is compatible, and accepts in the affirmative. Together
these results imply that L(M) is accepted by the PDA P , which completes the proof
of Theorem 1.

Definition 4 Let M = (Σ, Γ ∪ {#}, , , δ, >) be a swift-ORD-automaton for
which δ( # ) = Accept is the only accept step, and let w = w1w2 · · · wn, where
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n ≥ 1 and w1, w2, . . . , wn ∈ Γ . Furthermore, let Π = (Π0, Π1, Π2, . . . , Πn, Πn+1)

be a sequence of triples as in Definition 2. Here Π0 = [L0, W0, R0] = [∅, ( ),∅],
Πn+1 = [Ln+1, Wn+1, Rn+1] = [∅, ( ),∅], and, for all i = 1, 2, . . . , n,

Πi = [Li, Wi, Ri] =

⎡
⎢⎢⎢⎢⎣

ai,1 bi,1 ci,1
ai,2 bi,2 ci,2
· · · · · · · · ·
ai,ji

bi,ji
ci,ji

xi

⎤
⎥⎥⎥⎥⎦

,

where ji ≥ 0, ai,r , bi,r , ci,r ∈ Γ for all r = 1, 2, . . . , ji , bi,1 = wi , and xi ∈ Γ ∪{λ}.
(a) A pair (Πi, Πi+1) of neighboring triples from the sequence Π is said to be

compatible if one of the following five conditions is satisfied:

(i) If i = 0, then a1,r = for all r = 1, 2, . . . , j1. This means that all
rewrite (and delete) transitions at position 1 have left context . In the
affirmative, all left contexts of Π1 are marked.

(ii) If i = n, then cn,r = for all r = 1, 2, . . . , jn. This means that all
rewrite (and delete) transitions at position n have right context . In the
affirmative, all right contexts of Πn are marked.

(iii) If xi λ xi+1, then all rewrite transitions of Πi and all rewrite tran-
sitions of Πi+1 can be put into a linear order in such a way that the
respective right contexts of the rewrite transitions of Πi coincide with
the actual letters at position i + 1 and the respective left contexts of the
rewrite transitions of Πi+1 coincide with the actual letters at position i.
As in Example 2 we say that the rewrite transitions of Πi match right and
the rewrite transitions of Πi+1 match left. Observe that each rewrite tran-
sition at position i (i + 1) changes the letter at that position, which means
that the possible left (right) context for the rewrite transitions at position
i + 1 (i) is changed. The matching right contexts of Πi and the matching
left contexts of Πi+1 are marked.

(iv) If xi λ and xi+1 = λ, then there exists a maximal integer r ∈
{0, 1, . . . , ji} such that the first r rewrite transitions of Πi and all ji+1
rewrite (and delete) transitions of Πi+1 can be put into a linear order in
such a way that the respective right contexts of the first r rewrite tran-
sitions of Πi coincide with the actual letters at position i + 1 and the
respective left contexts of the rewrite (and delete) transitions of Πi+1
coincide with the actual letters at position i. We say that the first r rewrite
transitions of Πi match right and the rewrite (and delete) transitions
of Πi+1 match left. The matching right contexts of Πi and the matching
left contexts of Πi+1 are marked.

(v) If xi = λ and xi+1 λ, then there exists a maximal integer r ∈
{0, 1, . . . , ji+1} such that the first r rewrite transitions of Πi+1 and all ji

rewrite (and delete) transitions of Πi can be put into a linear order in
such a way that the respective right contexts of the ji rewrite (and delete)
transitions of Πi coincide with the actual letters at position i + 1 and
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the respective left contexts of the first r rewrite transitions of Πi+1 coin-
cide with the actual letters at position i. We say that the rewrite (and
delete) transitions of Πi match right and the first r rewrite transitions
of Πi+1 match left. The matching right contexts of Πi and the matching
left contexts of Πi+1 are marked.

(vi) If xi = λ and xi+1 = λ, then there are two possibilities.

(1) There exists a maximal integer r ∈ {0, 1, . . . , ji} such that
the first r rewrite transitions of Πi match right and all ji+1
rewrite (and delete) transitions of Πi+1 match left. Again, the
matching right contexts of Πi and the matching left contexts
of Πi+1 are marked.

(2) There exists a maximal integer r ∈ {0, 1, . . . , ji+1} such that
the first r rewrite transitions of Πi+1 match left and all ji

rewrite (and delete) transitions of Πi match right. The match-
ing right contexts of Πi and the matching left contexts of Πi+1
are marked.

(b) The sequence of triples Π = (Π0, Π1, Π2, . . . , Πn, Πn+1) is called compatible
if it satisfies all of the following conditions:

(1) There exists an index s ∈ {1, 2, . . . , n} such that xs = #, while xi = λ for
all i ∈ {1, 2, . . . , n} {s}.

(2) Each pair of neighboring triples (Πi, Πi+1), i = 0, 1, 2, . . . , n, is
compatible.

(3) From Π a sequence of remainder triples Π is constructed as follows.
Each triple Πi , i ∈ {1, 2, . . . , n} {s}, for which all left and all right
contexts have been marked, is deleted. For each other triple, all rewrite
transitions are deleted for which the corresponding left and right con-
texts have both been marked. The resulting sequence of triples is the
sequence Π . If Π does not contain any rewrite or delete transitions any-
more, then it is compatible; otherwise, it is now checked recursively that
the sequence Π is compatible. For checking the conditions in (a) for Π ,
the marked contexts are ignored.

We illustrate this definition by taking another look at our example.

Example 2 (cont.) For the automaton M considered above, we have the following
sequence of triples Π = (Π0, Π1, Π2, Π3, Π4, Π5, Π6) =

∅ ( ) ∅
⎡
⎣

a1 b3
b1 #
λ

⎤
⎦

⎡
⎣

a1 a2 b3
a1 b2 b3

λ

⎤
⎦

⎡
⎣

a2 a3 a4
b1 b3

#

⎤
⎦

⎡
⎣

b3 a4
b3 b4

λ

⎤
⎦ a4 a5

λ
∅ ( ) ∅ .

The pairs (Π0, Π1) and (Π5, Π6) are obviously compatible by (i) and (ii). Accord-
ingly, the left contexts in Π1 and the right contexts in Π5 are marked.
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The pair (Π1, Π2) =
⎡
⎣

a1 b3
b1 #
λ

⎤
⎦

⎡
⎣

a1 a2 b3
a1 b2 b3

λ

⎤
⎦ is compatible by case (vi) (1) for

r = 0. Here the rewrite and the delete steps at position 2 have left context a1, which
is the current letter at position 1.

The pair (Π2, Π3) =
⎡
⎣

a1 a2 b3
a1 b2 b3

λ

⎤
⎦

⎡
⎣

a2 a3 a4
b1 b3

#

⎤
⎦ is compatible by case (v) for

r = 1. Here the first rewrite transition at position 3 comes before the rewrite and
delete transitions at position 2.

The pair (Π3, Π4) =
⎡
⎣

a2 a3 a4
b1 b3

#

⎤
⎦

⎡
⎣

b3 a4
b3 b4

λ

⎤
⎦ is compatible by case (iv) with

r = 1. Here the first rewrite transition at position 3 comes before the rewrite and
delete transitions at position 4.

Finally, the pair (Π4, Π5) =
⎡
⎣

b3 a4
b3 b4

λ

⎤
⎦ a4 a5

λ
is compatible by case

(vi) (1) with r = 0. Here only the delete transition at position 5 is possible.
By marking all the left and right contexts that correspond to the enabled rewrite

and delete transitions, we obtain the following variant of the original sequence, where
the marked letters are written in boldface:

∅ ( ) ∅
⎡
⎣

a1 b3
b1 #
λ

⎤
⎦

⎡
⎣
a1 a2 b3
a1 b2 b3

λ

⎤
⎦

⎡
⎣
a2 a3 a4
b1 b3

#

⎤
⎦

⎡
⎣
b3 a4
b3 b4

λ

⎤
⎦ a4 a5

λ
∅ ( ) ∅ .

From this sequence we obtain the sequence of remainder triples

Π = (Π0,Π1,Π2,Π3,Π4) = ∅ ( ) ∅
⎡
⎣

a1 b3
b1 #
λ

⎤
⎦ b1 b3

#

⎡
⎣
b3 a4
b3 b4

λ

⎤
⎦ ∅ ( ) ∅ .

Continuing recursively, we see that the pairs (Π0, Π1) and (Π3, Π4) are compatible.

Furthermore, the pair (Π1, Π2) =
⎡
⎣

a1 b3
b1 #
λ

⎤
⎦ b1 b3

#
is compatible by case

(v) with r = 1. Here the first rewrite step of Π1 comes first, the rewrite step of Π2
comes second, and then comes the delete step of Π1.

Finally, the pair (Π2, Π3) = b1 b3
#

⎡
⎣
b3 a4
b3 b4

λ

⎤
⎦ is compatible by case (iv)

with r = 0. By marking the left and right contexts of the corresponding rewrite and
delete transitions, we obtain the following sequence:

∅ ( ) ∅
⎡
⎣

a1 b3
b1 #
λ

⎤
⎦ b1 b3

#

⎡
⎣
b3 a4
b3 b4

λ

⎤
⎦ ∅ ( ) ∅ .
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From this sequence we finally get the remainder sequence

Π = (Π0 , Π1 , Π2 ) = ∅ ( ) ∅ b1 b3
#

∅ ( ) ∅ .

In this sequence the right context of Π1 is marked and the first line of Π1
is deleted. This yields the final sequence ∅ ( ) ∅ ∅ (#) ∅ ∅ ( ) ∅ , which
shows that the original sequence is indeed compatible.

On the other hand, the following sequence is not compatible:

Π = (Π0,Π1,Π2,Π3,Π4) = ∅ ( ) ∅
⎡
⎣

a1 a2
b1 #
λ

⎤
⎦ a1 a2 b3

b2
∅ (b3) ∅ ∅ ( ) ∅ .

In fact, the pair (Π1, Π2) is not compatible. Indeed, Π1 tells us that the first rewrite
transition at position 1 is b1 ∈ δ( a1a2), which requires the right context a2, while
Π2 tells us that the first rewrite transition at position 2 is b2 ∈ δ(a1a2b3), which
requires the left context a1. No matter which of these rewrite transitions is applied
first, it destroys the required context for the other rewrite transition.

Lemma 1 Let M = (Σ, Γ ∪ {#}, , , δ, >) be a swift-ORD-automaton as
constructed in Proposition 2, and let w = w1w2 · · · wn, where n ≥ 1 and
w1, w2, . . . , wn ∈ Γ ∪ {#}. Then the following statements are equivalent:
(a) w ∈ LC(M).
(b) There exists a compatible sequence of triples

Π = (Π0, Π1, Π2, . . . , Πn, Πn+1),

where Π0 = [∅, ( ),∅], Πn+1 = [∅, ( ),∅], and, for all i = 1, 2, . . . , n,

Πi = [Li, Wi, Ri] =

⎡
⎢⎢⎢⎢⎣

ai,1 bi,1 ci,1
ai,2 bi,2 ci,2
· · · · · · · · ·
ai,ji

bi,ji
ci,ji

xi

⎤
⎥⎥⎥⎥⎦
such that bi,1 = wi .

Proof Let M = (Σ, Γ ∪ {#}, , , δ, >) be a swift-ORD-automaton as constructed
in Proposition 2. Then δ( # ) = Accept is the only accept step of M , and the letter
# can neither be rewritten nor deleted. Let w = w1w2 · · · wn, where n ≥ 1 and
w1, w2, . . . , wn ∈ Γ ∪ {#}.

Claim 1. If w ∈ LC(M), then there exists a sequence of triples Π =
(Π0, Π1, Π2, . . . , Πn, Πn+1) that satisfies all the properties in (b).

Proof If w ∈ LC(M), then M has an accepting computation

w c
M z1

c
M

c
M zm

c
M # M Accept.

By Definition 2, we can associate a triple Πi = [Li, Wi, Ri] to each letter wi , i =
1, 2, . . . , n, such that Πi describes the rewrite and delete steps that are executed at
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position i during the above computation. For i = 1, 2, . . . , n, let

Πi = [Li, Wi, Ri] =

⎡
⎢⎢⎢⎢⎣

ai,1 bi,1 ci,1
ai,2 bi,2 ci,2
· · · · · · · · ·
ai,ji

bi,ji
ci,ji

xi

⎤
⎥⎥⎥⎥⎦

,

let Π0 = [∅, ( ),∅], and let Πn+1 = [∅, ( ),∅]. Then a1,j = for all 1 ≤ j ≤ j1,
cn,j = for all 1 ≤ j ≤ jn, bi,1 = wi , xi ∈ {#, λ}, and bi,1 > bi,2 > · · · >

bi,ji
> xi for all 1 ≤ i ≤ n. Here we extend the partial ordering > by taking b > λ

for all letters b ∈ Γ . Furthermore, as δ( # ) = Accept is the only accept step
of M , there is a unique index s ∈ {1, 2, . . . , n} such that xs = # and xi = λ for all
i ∈ {1, 2, . . . , n} {s}.

We consider the sequence of triples Π = (Π0, Π1, Π2, . . . , Πn, Πn+1). It remains
to prove that this sequence is compatible. From the definition of Π , we see immedi-
ately that conditions (i) and (ii) of part (a) and condition (1) of part (b) of Definition 4
are satisfied.

For proving compatibility of Π , we proceed by induction on m, the number of
cycles in the above computation. For m = 1, there are three cases:

(1) n = 1, w = w1, and # ∈ δ( w1 ) is the rewrite transition that is used in this

cycle. Then Π1 = w1
#

.

(2) n = 2, w1 ∈ Γ , w2 = #, and λ ∈ δ( w1#) is the delete transition that is used

in this cycle. Then Π1 = w1 #
λ

and Π2 = ∅ (#) ∅ .

(3) n = 2, w1 = #, w2 ∈ Γ , and λ ∈ δ(#w2 ) is the delete transition that is used

in this cycle. Then Π1 = ∅ (#) ∅ and Π2 = # w2
λ

.

In each of these cases it is easily seen that the corresponding sequence Π is
compatible.

For the inductive step we scrutinize the first cycle

w = w1w2w3 · · · wn
c
M z1

of the above computation. In this cycle a rewrite or delete transition b ∈
δ(wi−1wiwi+1) is executed, where b ∈ Γ ∪ {#, λ} and i ∈ {1, 2, . . . , n}. Thus, the
triples Πi−1, Πi , and Πi+1 look as follows, where w0 = and wn+1 = :

Πi−1 = ai−1,1 wi−1 ci−1,1
Li−1 Wi−1 Ri−1

, Πi =
⎡
⎣

wi−1 wi wi+1
ai,2 b ci,2
Li Wi Ri

⎤
⎦,

and

Πi+1 = ai+1,1 wi+1 ci+1,1
Li+1 Wi+1 Ri+1

.

Here Li−1, Wi−1, Ri−1, Li, Wi , Ri, Li+1, Wi+1, Ri+1 denote the remaining parts of
the corresponding sequences.
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We now contruct a new sequence Π . For all j ∈ {0, 1, 2, . . . , n+1} {i}, we take

Πj = Πj . Furthermore, we take Πi = ai,2 b ci,2
Li Wi Ri

, if b λ. In this way, we

obtain the sequence Π = (Π0, Π1, . . . , Πi−1, Πi , Πi+1, . . . , Πn, Πn+1), if b λ,
or Π = (Π0, Π1. . . . , Πi−1, Πi+1 . . . , Πn, Πn+1), if b = λ. In either case, the
sequence Π corresponds to the computation

z1 = w1 · · · wi−1bwi+1 · · · wn
c
M

c
M zm

c
M # M Accept

of M . As this computation consists of only m − 1 cycles. the induction hypothesis
yields that the sequence Π is compatible. Compatibility of Π now follows easily,
which completes the proof of Claim 1.

Claim 2. If there exists a sequence of triples Π = (Π0, Π1, . . . , Πn, Πn+1) that
satisfies all the properties in (b), then w ∈ LC(M).

Proof Let Π = (Π0, Π1, Π2, . . . , Πn, Πn+1) be a sequence of triples that satisfies
all the properties in (b). We proceed by induction on the overall number R = n

i=1 ji

of rewrite and delete steps encoded in this sequence of triples. If R = 1, then either
a single rewrite step or a single delete step is described by the given sequence. In the

former case, we have n = 1 and compatibility of Π implies that Π1 = w1
#

.

Hence, w1
c
M # M Accept is an accepting computation of M . In the latter

case, we have n = 2, and compatibility of Π implies that Π1 = w1 #
λ

and

Π2 = ∅ (#) ∅ or Π1 = ∅ (#) ∅ and Π2 = # w2
λ

. Hence, we have the

accepting computation w1# c
M # Accept or #w2

c
M # Accept.

Let us assume that R ≥ 2. We claim that there exists an index s ∈ {1, 2, . . . , n}
such that as,1 = ws−1 and cs,1 = ws+1. This means that the transition bs,2 ∈
δ(as,1wscs,1), which is the first rewrite (or delete) transition described by Πs ,
matches left and right. From the fact that Π is compatible, we see that a1,1 = =
w0. Thus, if c1,1 = w2, we can take s = 1. If c1,1 w2, then compatibility of the pair
(Π1, Π2) implies that a2,1 = w1. Thus, if c2,1 = w3, we can take s = 2; otherwise,
we can repeat this argument for i = 3, 4, . . . , n. As by compatibility, the rewrite and
delete transitions of Πn match right, we see that cn,1 = = wn+1. Hence, there
exists an index s ∈ {1, 2, . . . , n} that meets the stated properties.

Now we consider the initial configuration

w1w2w3 · · · ws−2ws−1wsws+1ws+2 · · · wn

= w1w2w3 · · · ws−2as,1wscs,1ws+2 · · · wn

of the swift-ORD-automaton M . As M is swift, it can make MVR-steps until its
window contains the factor as,1wscs,1, and it can then execute the rewrite (or delete)
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step bs,2 ∈ δ(as,1wscs,1). Thus, M can execute the cycle

w1w2w3 · · · ws−2as,1wscs,1ws+2 · · · wn
c
M w1w2w3 · · · ws−2as,1bs,2cs,1ws+2 · · · wn

= w1w2w3 · · · ws−2ws−1bs,2ws+1ws+2 · · · wn .

If js = 1 and bs,2 = λ, then we define a new sequence of triples Π =
(Π0, Π1, Π2, . . . , Πs−1, Πs+1, . . . , Πn+1) by deleting the triple Πs . Otherwise, we
define a triple Πs by removing the first entries from each of the columns of the
triple Πs , that is,

Πs = [Ls, Ws, Rs] =

⎡
⎢⎢⎣

as,2 bs,2 cs,2
· · · · · · · · ·
as,js bs,js cs,js

xs

⎤
⎥⎥⎦.

In this case we take Π = (Π0, Π1, Π2, . . . , Πs−1, Πs, Πs+1, . . . , Πn, Πn+1). In
either case, Π is now a sequence of triples that has all the properties required in (b).
As this sequence only contains R − 1 rewrite and delete steps, we can conclude
by induction that M has an accepting computation that begins with the restarting
configuration w1w2w3 · · · ws−1bs,2ws+1 · · · wn , that is,

w1w2w3 · · · ws−1bs,2ws+1 · · · wn
∗
M Accept.

Thus, by combining the above cycle with this accepting computation, we obtain
an accepting computation of M that begins with the restarting configuration

w1w2w3 · · · ws−1wsws+1 · · · wn . Hence, w ∈ LC(M).

This completes the proof of Lemma 1.

Let M = (Σ, Γ ∪ {#}, , , δ, >) be a swift-ORD-automaton as constructed
in Proposition 2. To prove that the language L(M) is context-free, we now describe
a PDA P that, given a word w = w1w2 · · · wn ∈ Γ n (n ≥ 1) as input, guesses a
corresponding sequence of triples (Π0, Π1, Π2, . . . , Πn, Πn+1), checks whether this
sequence is compatible, and accepts in the affirmative. Actually, the language L(P )

accepted by P will be L(P ) = LC(M)·{ }, but as the class of context-free languages
is closed under right quotients by a single letter, this suffices to prove that LC(M) is
a context-free language. Since L(M) = LC(M) ∩ Σ∗, it then follows that L(M) is
context-free, too.

Accordingly, the input alphabet of P will be Σ1 = Σ ∪ { }. The pushdown
alphabet Δ will contain the bottom marker and all triples [L, W, R] describing
sequences of rewrite and delete steps of M . In addition, Δ will contain variants of
[L, W, R] in which some of the symbols in L and R have been marked to indicate
that the corresponding rewrite and delete steps have already been verified to match
left, respectively, to match right. The behavior of P is described by the following
algorithm, in which the left sentinel will be represented by the triple [∅ ( ) ∅],
and the right sentinel will be represented by the triple [∅ ( ) ∅].
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To illustrate the way in which the PDA in Algorithm 1 works, we return to
Example 2.

Example 2 (cont.) The computation of the PDA P for simulating the swift-ORD-
automaton M is described in the table in Fig. 1. Here the input processed is w =
a1a2a3a4a5 , and the table contains the various steps of the computation of the PDA
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Fig. 1 Simulating the stl-ORD-automaton of Example 2 by a PDA
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simulating M for this input. In the table those tape symbols in the left or right col-
umn of a triple that have been marked are written in boldface. Each time an input
symbol is read, a corresponding triple Π = [L, W, R] is guessed, the rewrite steps
of which are neither left nor right marked. Then the triple Π = [L , W , R ] on the
top of the pushdown is compared to Π , some entries in R and in L are marked, and
depending on the situation (see (14) to (22)), Π is possibly popped from the push-
down, some more triples may be popped, and then Π is pushed onto the pushdown.
As the simulation ends with the pushdown containing the sequence

∅ ( ) ∅
⎡
⎣

a1 b3
b1
#

⎤
⎦ ∅ ( ) ∅ ,

the PDA accepts in line (24).

It remains to prove that L(P ) = L(M) · { }. For doing so, we establish the
following technical lemma.

Lemma 2 The PDA P of Algorithm 1 accepts on input w = w1w2 · · · wn (n ≥ 1,
w1, w2, . . . , wn ∈ Γ ) if and only if there exists a sequence of triples for w1w2 · · · wn

that satisfies all the properties of Lemma 1 (b).

Proof Let w = w1w2 · · · wn, where n ≥ 1 and w1, w2, . . . , wn ∈ Γ . Furthermore,
let Π = (Π0, Π1, . . . , Πn, Πn+1) be a sequence of triples, where

Πi = [Li, Wi, Ri] =

⎡
⎢⎢⎢⎢⎣

ai,1 bi,1 ci,1
ai,2 bi,2 ci,2
· · · · · · · · ·
ai,ji

bi,ji
ci,ji

xi

⎤
⎥⎥⎥⎥⎦

such that bi,1 = wi for all i = 1, 2, . . . , n, let Π0 = [∅, ( ),∅], and
Πn+1 = [∅, ( ),∅]. Comparing the various conditions in Definition 4 to the tests in
Algorithm 1, we see that

– condition (a) (i) is guaranteed by line (5),
– condition (a) (ii) is guaranteed by the choice of Πn+1 and the tests in lines (19)

and (21) on triples that are popped from the pushdown and by the test in line (24),
– condition (a) (iii) corresponds to lines (14) and (15),
– condition (a) (iv) corresponds to lines (16) and (17),
– condition (a) (v) corresponds to lines (18) and (19),
– condition (a) (vi) corresponds to lines (20) to (22), and
– condition (b) (1) is checked by the test in line (24).

Finally, the recursion in the definition of compatibility (see condition (b) (3)) is
resolved inductively by the PDA P . In fact, for each triple Πi , all rewrite (and delete)
steps are verified to match left before this triple is pushed onto the pushdown (see
lines (15), (17), and (22)), and all rewrite and delete steps are verified to match right
before this triple is popped from the pushdown (see lines (19) and (21)). It follows
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that the PDA P accepts on input w = w1w2 · · · wn if and only if the sequence
of triples guessed for w1w2 · · · wn satisfies all the properties of Lemma 1 (b). This
completes the proof of Lemma 2.

Now we can present the proof of the main result of this section.

Proof (of Theorem 1.) Let M = (Σ, Γ, , , δ, >) be a swift stl-ORD-automaton.
By Proposition 2, we can construct a swift stl-ORD-automaton M = (Σ, Γ ∪
{#}, , , δ , > ) from M such that δ ( # ) = Accept is the only accept step of M

and L(M ) = L(M) {λ}. Lemma 1 now implies that, for each n ≥ 1 and each
word w = w1w2 · · · wn ∈ Γ n, w ∈ LC(M ) if and only if there exists a compatible
sequence of triples

Π = (Π0, Π1, Π2, . . . , Πn, Πn+1),

where Π0 = [∅, ( ),∅], Πn+1 = [∅, ( ),∅], and, for all i = 1, 2, . . . , n,

Πi = [Li, Wi, Ri] =

⎡
⎢⎢⎢⎢⎣

ai,1 bi,1 ci,1
ai,2 bi,2 ci,2
· · · · · · · · ·
ai,ji

bi,ji
ci,ji

xi

⎤
⎥⎥⎥⎥⎦

such that bi,1 = wi .

Let P be the PDA that is defined by Algorithm 1 for the swift stl-ORD-
automaton M . Then by Lemma 2, P accepts on input w = w1w2 · · · wn if and
only if there exists a sequence of triples for w1w2 · · · wn that satisfies all the prop-
erties above. It follows that L(P ) = LC(M ) · { }, which shows that LC(M ) · { }
is a context-free language. Hence, LC(M ) is a context-free language, and therewith,
L(M) is a context-free language, too, as L(M ) = LC(M )∩Σ∗. Finally, this implies
that L(M ) is a context-free language, as L(M ) = L(M) {λ}. This completes the
proof of Theorem 1.

4 All Context-Free Languages are Accepted by Swift
Stl-ORD-Automata

Here we establish the converse of Theorem 1, showing that each context-free
language is accepted by a swift stl-ORD-automaton.

Theorem 2 CFL ⊆ L(swift-ORD).

Let L ⊆ Σ∗ be a context-free language. Then there exists a context-free grammar
G = (V , Σ, S, P ) in quadratic Greibach normal form for the language L {λ} [23],
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that is, each production (B → r) ∈ P satisfies the restriction that B ∈ V and
r ∈ Σ · (V 2 ∪ V ∪ {λ}). From this grammar, a PDA A = (Q, Σ, ΔA, q, S, δA)

can be obtained such that L is the language N(A) that is accepted by A with empty
pushdown. The PDA A is defined by taking Q = {q}, ΔA = V , and (q, αR) ∈
δA(q, a, B) iff (B → aα) ∈ P , where a ∈ Σ , B ∈ V , and α ∈ (V 2 ∪ V ∪ {λ})
(see, e.g., [8]). Here αR denotes the reversal (or mirror image) of the word α. Thus,
A has a single state only, it does not execute any λ-transitions, and in each step, it
replaces the topmost symbol on its pushdown by a word of length at most two. In our
encoding below, the bottom (top) of the pushdown will always be on the left (right).

For proving that the language L is accepted by a swift stl-ORD-automaton we now
proceed as follows. First, we present a construction of a swift stl-ORD-automaton
M that simulates the PDA A. Essentially, M works as the automaton in Example 1,
that is, it chooses the transition of A that is to be applied next, it marks the letters
that are to be rewritten, and then it replaces (or deletes) the corresponding letters.
Here the simulation of A is performed in a non-length-increasing fashion using an
appropriate encoding of the pushdown. After giving the construction we illustrate it
through a simple example, and then we prove that L(M) = L through a sequence of
four lemmas.

Definition 5 Let (q, x, α) be a configuration of the PDA A, where x ∈ Σ∗ is the still
unread suffix of the given input and α ∈ V + is the contents of the pushdown. This
configuration will be encoded as [b1][b2] · · · [bm][q, α2]x, where α = b1b2 · · · bmα2
for some α2 ∈ V 2 ∪ V and either m ≥ 1 and b1, b2, . . . , bm ∈ V or m = 0.

The swift-ORD-automaton M = (Σ, Γ, , , δ, >) is now defined as follows:

– The tape alphabet Γ contains the input alphabet Σ , two disjoint copies of Σ ,
encodings [x] of the nonterminals x ∈ V , encodings [q, α], [q, α] , [q, α]a (a ∈
Σ) for all α ∈ V ∪ V 2, and the symbol [q, λ], that is,

Γ = Σ ∪ { a , a | a ∈ Σ } ∪ { [x] | x ∈ V } ∪ {[q, λ]} ∪
{ [q, α], [q, α] | α ∈ V ∪ V 2 } ∪ { [q, α]a | α ∈ V ∪ V 2, a ∈ Σ }.

– The partial ordering > on Γ is defined through

a > a > a > [q, xy] > [q, xy] > [q, xy]b
> [x] > [q, x] > [q, x] > [q, x]c > [q, λ],

for all a, b, c ∈ Σ and x, y ∈ V .
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– The transition relation δ is defined through the following table, where a, b ∈ Σ ,
c ∈ Σ ∪ { }, x, y ∈ V , γ ∈ V ∪ V 2, and X ∈ { } ∪ { [x] | x ∈ V }:

(0) δ(UYZ) MVR for all U ∈ Γ ∪ { } and Y, Z ∈ Γ,

(1) δ( a ) = Accept for all a ∈ L ∩ (Σ ∪ {λ}),
(2) δ( ab) q, γ ], if δA(q, a, S) (q, γ ) and γ λ,

(3) δ([q, x]ac) a , if δA(q, a, x) = ∅,

(4) δ([q, yx]ac) a , if δA(q, a, x) = ∅,

(5) δ(X[q, x]a ) q, x]a, if δA(q, a, x) = ∅,

(6) δ(X[q, yx]a ) q, yx]a, if δA(q, a, x) = ∅,

(7) δ([q, x]aa c) q, γ ] , if δA(q, a, x) (q, γ ), γ λ,

(8) δ([q, yx]aa c) q, γ ] , if δA(q, a, x) (q, γ ), γ λ,

(9) δ(X[q, yx]a[q, γ ] ) y], if δA(q, a, x) (q, γ ), γ λ,

(10) δ(X[q, x]a[q, γ ] ) λ, if δA(q, a, x) (q, γ ), γ λ,

(11) δ(X[q, γ ] c) q, γ ],
(12) δ([q, x]aa c) a , if δA(q, a, x) (q, λ),

(13) δ([q, yx]aa c) a , if δA(q, a, x) (q, λ),

(14) δ(X[q, yx]aa ) q, y], if δA(q, a, x) (q, λ),

(15) δ([q, y]a c) λ,

(16) δ([y][q, x]aa ) λ, if δA(q, a, x) (q, λ),

(17) δ(X[y]a ) q, y],
(18) δ( [q, x]aa ) q, λ], if δA(q, a, x) (q, λ),

(19) δ([q, λ]a c) λ,

(20) δ( [q, λ] ) = Accept.

In order to illustrate this construction, we consider a simple example.

Example 3 Let A = ({q}, {a, b}, {S, B, C}, q, S, δA), where δA only contains the
following transitions:

δA(q, a, S) = {(q, BC), (q, B)},
δA(q, b, B) = {(q, λ)},
δA(q, a, C) = {(q, BC), (q, B)}.

Then N(A) is the language { anbn | n ≥ 1 }, and, for example, A can execute the
following accepting computation:

(q, aaabbb, S) A (q, aabbb, BC) A (q, abbb, BBC) A (q, bbb, BBB)

A (q, bb, BB) A (q, b, B) A (q, λ, λ).

This computation is now simulated by the corresponding swift-ORD-automaton M as
follows, where the indices refer to the lines in the definition of the transition relation
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δ of M:

aaabbb (2) [q, BC]aabbb (0) [q, BC]aabbb

(4) [q, BC]a abbb (6) [q, BC]aa abbb

(0) [q, BC]aa abbb (8) [q, BC]a[q, BC] abbb

(9) [B][q, BC] abbb (0) [B][q, BC] abbb

(11) [B][q, BC]abbb 2
(0) [B][q, BC]abbb

(4) [B][q, BC]a bbb (0) [B][q, BC]a bbb

(6) [B][q, BC]aa bbb 2
(0) [B][q, BC]aa bbb

(8) [B][q, BC]a[q, B] bbb (0) [B][q, BC]a[q, B] bbb

(9) [B][B][q, B] bbb 2
(0) [B][B][q, B] bbb

(11) [B][B][q, B]bbb 3
(0) [B][B][q, B]bbb

(3) [B][B][q, B]b bb 2
(0) [B][B][q, B]b bb

(5) [B][B][q, B]bb bb 3
(0) [B][B][q, B]bb bb

(12) [B][B][q, B]bb bb 2
(0) [B][B][q, B]bb bb

(16) [B][B]b bb (0) [B][B]b bb

(17) [B][q, B]b bb 2
(0) [B][q, B]b bb

(15) [B][q, B]bb 2
(0) [B][q, B]bb

(3) [B][q, B]b b (0) [B][q, B]b b

(5) [B][q, B]bb b 2
(0) [B][q, B]bb b

(12) [B][q, B]bb b (0) [B][q, B]bb b

(16) [B]b b (17) [q, B]b b

(0) [q, B]b b (15) [q, B]b
(0) [q, B]b (3) [q, B]b
(5) [q, B]bb (0) [q, B]bb
(12) [q, B]bb (18) [q, λ]b
(0) [q, λ]b (19) [q, λ]
(20) Accept.

We must prove that L(M) = N(A). Let

C = (q, w, x1x2 . . . xm−2xm−1xm)

be a configuration of the PDA A, where w ∈ Σ+ and x1, x2, . . . , xm ∈ V for some
m ≥ 2. Then the restarting configurations

C1 = [x1][x2][x3] · · · [xm−2][xm−1][q, xm]w
and

C2 = [x1][x2][x3] · · · [xm−2][q, xm−1xm]w
of M are representations of the configuration C of A. Conversely, if

C3 = [x1][x2][x3] · · · [xm][q, α]w
is a restarting configuration of M for some x1, x2, . . . , xm ∈ V , α ∈ V ∪ V 2, and
w ∈ Σ+, then C = (q, w, x1x2 · · · xmα) is the corresponding configuration of A.
Thus, for each configuration of the PDA A, in which the height of the pushdown is
at least two, we have two restarting configurations of M that represent it.
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In order to prove that N(A) is contained in the language L(M), we first establish
the following technical result.

Lemma 3 Let C = (q, w1, α1) A (q, w2, α2) = C , where w1, w2 ∈ Σ+ and
α1, α2 ∈ V +, and let C1 be a restarting configuration of M that represents the con-
figuration C. Then C1

c∗
M C2 for some restarting configuration C2 that represents

the configuration C .

Proof As C = (q, w1, α1) A (q, w2, α2) = C , we have w1 = aw2 for some a ∈
Σ , α1 = x1x2 · · · xmx, and α2 = x1x2 · · · xmγ for some m ≥ 0, x1, x2 . . . , xm, x ∈
V , and γ ∈ V ∪ V 2 ∪ {λ} such that (q, γ ) ∈ δA(q, a, x) and x1x2 · · · xmγ

λ. The restarting configuration C1 represents the configuration C, and so C1 =
[x1][x2] · · · [xm−1][q, xmx]aw2 or C1 = [x1][x2] · · · [xm−1][xm][q, x]aw2 .

We first assume that γ λ. Then M can proceed as follows starting from the
configuration C1:

C1 = [x1][x2] · · · [xm−1][q, xmx]aw2
c∗
M [x1][x2] · · · [xm−1][q, xmx]aa w2 (by lines (4) and (6))
c
M [x1][x2] · · · [xm−1][q, xmx]a[q, γ ] w2 (by line (8))
c
M [x1][x2] · · · [xm−1][xm][q, γ ] w2 (by line (9))
c
M [x1][x2] · · · [xm−1][xm][q, γ ]w2 (by line (11))

or
C1 = [x1][x2] · · · [xm][q, x]aw2

c∗
M [x1][x2] · · · [xm][q, x]aa w2 (by lines (3) and (5))
c
M [x1][x2] · · · [xm][q, x]a[q, γ ] w2 (by line (7))
c
M [x1][x2] · · · [xm][q, γ ] w2 (by line (10))
c
M [x1][x2] · · · [xm][q, γ ]w2 (by line (11)),

where, in either case, the restarting configuration [x1][x2] · · · [xm][q, γ ]w2 rep-
resents the configuration C = (q, w2, α2) of A.

If γ = λ, then M can proceed as follows starting from the configuration C1:

C1 = [x1][x2] · · · [xm−1][q, xmx]aw2
c∗
M [x1][x2] · · · [xm−1][q, xmx]aa w2 (by lines (4) and (6))
c
M [x1][x2] · · · [xm−1][q, xmx]aa w2 (by line (13))
c
M [x1][x2] · · · [xm−1][q, xm]a w2 (by line (14))
c
M [x1][x2] · · · [xm−1][q, xm]w2 (by line (15)),

or
C1 = [x1][x2] · · · [xm][q, x]aw2

c∗
M [x1][x2] · · · [xm][q, x]aa w2 (by lines (3) and (5))
c
M [x1][x2] · · · [xm][q, x]aa w2 (by line (12))
c
M [x1][x2] · · · [xm]a w2 (by line (16))
c
M [x1][x2] · · · [q, xm]a w2 (by line (17))
c
M [x1][x2] · · · [q, xm]w2 (by line (15)),

where the restarting configuration [x1][x2] · · · [xm−1][q, xm]w2 represents the
configuration C = (q, w2, α2) of A. This proves Lemma 3.
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Now we are prepared to prove the following inclusion.

Lemma 4 N(A) ⊆ L(M).

Proof Let w ∈ N(A). If |w| ≤ 1, then w ∈ L ∩ (Σ ∪ {λ}), and hence, M can accept
on input w by line (1). So let us assume that w = a1a2 · · · an for some n ≥ 2 and
a1, a2 . . . , an ∈ Σ . As w ∈ N(A), A has an accepting computation for input w:

(q, w, S) = (q, a1a2a3 · · · an, S)

A (q, a2a3 · · · an, γ1) (using (q, γ1) ∈ δA(q, a1, S) for some γ1 λ)
∗
A (q, an, γn) (for some γn ∈ V )

A (q, λ, λ) (as A accepts with empty pushdown).

Now M has a computation of the following form:

a1a2a3 · · · an
c
M [q, γ1]a2a3 · · · an (by line (2))
c∗
M [q, γn]an (by using Lemma 3 repeatedly)
c∗
M [q, γn]anan (by lines (3), (5), and (12))
c
M [q, λ]an (by line (18))
c
M [q, λ] (by line (19))

M Accept (by line (20)),

as the restarting configuration [q, γ1]a2a3 · · · an represents the configuration
(q, a2a3 · · · an, γ1) of A and the restarting configuration [q, γn]an represents the
configuration (q, an, γn) of A. Thus, N(A) ⊆ L(M) follows.

It remains to prove the converse inclusion. We first derive the following technical
result.

Lemma 5 Let C1 be a restarting configuration of M such that C1
∗
M Accept. If

C1 represents a configuration (q, w, α) of the PDA A for some w ∈ Σ∗ of length
|w| ≥ 2 and α ∈ V +, then there exists a restarting configuration C2 of M such that
C1

c+
M C2

∗
M Accept and C2 represents an immediate successor configuration of

(q, w, α).

Proof Let w = a1a2 · · · an and α = x1x2 · · · xm. Then

C1 = [x1][x2][x3] · · · [xm−2][q, xm−1xm]a1a2 · · · an

or
C1 = [x1][x2][x3] · · · [xm−1][q, xm]a1a2 · · · an .

From the form of the transition relation δ, we can conclude that the accepting com-
putation of M that starts with the configuration C1 begins with a sequence of cycles
that finally reaches the restarting configuration Cf = [q, λ] , in which M sim-
ply accepts. Thus, during this sequence of cycles, one of the symbols on the tape is
rewritten into the symbol [q, λ], while all other symbols are eventually deleted. We
now analyze the possible rewrite and delete steps that M can apply starting from C1.
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The only rewrite transition that is applicable to the tape contents of the configura-
tion C1 is from line (3) or (4), and after that a rewrite by line (5) or (6) must follow.
Hence, C1

c2

M D1, where

D1 = [x1][x2][x3] · · · [xm−2][q, xm−1xm]a1a1a2 · · · an

or
D1 = [x1][x2][x3] · · · [xm−1][q, xm]a1a1a2 · · · an .

As this sequence of two cycles is an initial part of an accepting computation of M , it
follows that δA(q, a1, xm) = ∅, and that the next rewrite step is executed based on a
transition (q, γ ) ∈ δA(q, a1, xm) (see lines (7), (8), (12), and (13)).

There are two cases:

(i) If line (7) or (8) is used next, then γ λ, and the subsequent rewrite is executed
based on line (9) or (10), that is, D1

c2

M D2, where

D2 = [x1][x2][x3] · · · [xm−2][xm−1][q, γ ] a2 · · · an ,

and then

D2
c
MC2 = [x1][x2][x3] · · · [xm−2][xm−1][q, γ ]a2 · · · an

by using line (11). Now the restarting configuration C2 represents the configu-
ration (q, a2a3 · · · an, x1x2 · · · xm−1γ ) of A, and

(q, w, α) = (q, a1a2 · · · an, x1 · · · xm−1xm) A (q, a2a3 · · · an, x1 · · · xm−1γ ).

(ii) If line (12) or (13) is used next, then γ = λ, and the subsequent rewrite is
executed by applying line (14) or (16), that is, D1

c2

M D2, where

D2 = [x1][x2][x3] · · · [xm−2][q, xm−1]a1a2 · · · an

or
D2 = [x1][x2][x3] · · · [xm−1]a1a2 · · · an .

In the latter case, another cycle follows in which a rewrite step is executed by
line (17) that yields the configuration

[x1][x2][x3] · · · [q, xm−1]a1a2 · · · an .

Finally, line (15) is used to delete the symbol a1 , which yields the configuration

C2 = [x1][x2][x3] · · · [xm−2][q, xm−1]a2 · · · an .

In this case, the restarting configuration C2 represents the configuration
(q, a2a3 · · · an, x1x2 · · · xm−1) of A, and

(q, w, α) = (q, a1a2 · · · an, x1 · · · xm−1xm) A (q, a2a3 · · · an, x1 · · · xm−1).

This completes the proof of Lemma 5.

Based on Lemma 5, we can now prove the following inclusion.

Lemma 6 L(M) ⊆ N(A).
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Proof Let w ∈ L(M), that is, w ∗
M Accept. If |w| ≤ 1, then w is accepted by

line (1). This, however, means that w ∈ L = N(A).
We now consider the case that |w| ≥ 2. The only rewrite transitions that can be

applied to the tape contents a1a2 · · · an are those of line (2). Hence, the accepting
computation of M for w has the following structure:

a1a2a3 · · · an
c
MC1 = [q, γ1]a2a3 · · · an

c+
M [q, λ] M Accept

for a pair (q, γ1) ∈ δA(q, a1, S) such that γ1 λ. Thus, on input w, the PDA A can
execute the transition

(q, w, S) = (q, a1a2a3 · · · an, S) A (q, a2a3 · · · an, γ1),

and C1 represents the configuration (q, a2a3 · · · an, γ1) of A. If |a2a3 · · · an| =
n − 1 ≥ 2, then we can apply Lemma 5, which implies that there exists a
restarting configuration C2 of M such that C1

c+
M C2

∗
M Accept and C2 repre-

sents an immediate successor configuration (q, a3a4 · · · an, γ2) of the configuration
(q, a2a3 · · · an, γ1) of A. Proceeding inductively, we obtain a sequence of restarting
configurations C3, C4, . . . , Cn−1 such that

C2
c+
M C3

c+
M

c+
M Cn−1

∗
M Accept,

the PDA A can execute the sequence of transitions

(q, a3a4 · · · an, γ2) A (q, a4a5 · · · an, γ3) A A (q, an, γn−1),

and the restarting configuration Ci of M represents the configuration
(q, ai+1ai+2 · · · an, γi) of A for all i = 2, 3, . . . , n − 1.

As Cn−1 represents the configuration (q, an, γn−1) of A, we have Cn−1 =
W [q, α]an for some W ∈ { [x] | x ∈ V }∗ and α ∈ V ∪ V 2 such that

γn−1 = ϕ(W [q, α]), where ϕ : ({ [x] | x ∈ V } ∪ { [q, α] | α ∈ V ∪ V 2 })∗ → V ∗
denotes the morphism that is defined by [x x and [q, α α. From δ we see
that the accepting computation of M starting from Cn−1 has the form

Cn−1 = W [q, α]an
c+
M [q, λ] M Accept.

Furthermore, as there is only a single input letter left in Cn−1, we can conclude that
|γn−1| = 1, that is, W = λ and α = γn−1 ∈ V . From line (18), which is the
only one that produces an occurrence of the symbol [q, λ], we see that (q, λ) ∈
δA(q, an, γn−1). Thus, A can execute the accepting computation

(q, w, S) = (q, a1a2 · · · an, S) A (q, a2a3 · · · an, γ1) A (q, a3a4 · · · an, γ2)∗
A (q, an, γn−1) A (q, λ, λ),

which proves that w ∈ N(A) = L. This completes the proof of Lemma 6.
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Together Lemmas 4 and 6 show that L(M) = N(A) = L, which proves
Theorem 2. From Theorems 1 and 2 we obtain the following characterization.

Corollary 1 L(swift-ORD) = CFL.

5 Descriptional Complexity

Here we take a look at the descriptional complexity of stl-ORD-automata, relating
it to the descriptional complexity of stl-ORWW-automata. As both these types of
automata are stateless, we cannot possibly take the number of states as a measure
for their descriptional complexity, as is done for finite-state acceptors (see, e.g., [7]).
Instead, for both these types of automata, we take the size of the tape alphabet as
complexity measure. This is reasonable, as the number of transitions and the size of
the description of an automaton of one of these types are polynomially related to this
measure. Here we have the following result, showing that for some regular languages,
swift-ORD-automata yield a much more concise description than corresponding stl-
ORWW-automata.

Theorem 3 The trade-off between swift-ORD-automata and stl-ORWW-automata is
non-recursive.

Thus, the size increase that occurs when turning a swift-ORD-automaton that
accepts a regular language into a stl-ORWW-automaton for the same language cannot
be bounded from above by any recursive function.

Proof According to an old result by Meyer and Fischer [14], the trade-off for turn-
ing a context-free grammar into an equivalent NFA is non-recursive. Now let G be a
given context-free grammar that generates a regular language. From G we can con-
struct an equivalent grammar G1 that is in quadratic Greibach normal form. The
grammar G1 is in general much larger than the grammar G, but the size increase is
bounded from above by an exponential function (see [23]). Thus, size(G1) ≤ csize(G),
where we use size(G) (or size(A)) to denote the size of a grammar G or an automa-
ton A. From the latter grammar, we immediately obtain a PDA A that accepts the
language L(G) = L(G1) by empty pushdown. Then size(A) = size(G1) ≤ csize(G).
Following the construction given in the proof of Theorem 2, we obtain a swift-ORD-
automaton M for the language L(G). As is easily seen from this construction, the
number of letters n in the tape alphabet of M is bounded from above by an expo-
nential function in the size of the PDA A. Thus, size(M) ≤ csize(A) ≤ ccsize(G)

. Now
assume that f is a recursive function such that, for each swift-ORD-automaton P ,
there exists an equivalent stl-ORWW-automaton P such that the number of letters
in the tape alphabet of P is bounded from above by the value f (size(P )). Then
there exists a stl-ORWW-automaton M for the language L(M) = L(G) such that
size(M ) ≤ f (size(M)) ≤ f (ccsize(G)

). Finally, it is known from [10] that from M

we can construct an NFA B for the language L(G) that is of size 2O(size(M )). Thus,

we see that size(B) ≤ 2O(f (ccsize(G)
)), which is a recursive bound for the conversion
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of the context-free grammar G into the equivalent NFA B. As this contradicts the
aforementioned result of Meyer and Fischer, there is no recursive bound for the con-
version of a swift-ORD-automaton into an equivalent stl-ORWW-automaton, which
completes the proof.

As the swift-ORD-automaton is just a restricted variant of the stl-ORD-automaton,
Theorem 3 also holds for stl-ORD-automata in general.

6 Limited Context Restarting Automata

After a restart a swift-ORD-automaton can move its window to any position before
executing a restart-rewrite, a restart-delete, or an accept step. Accordingly, this
automaton can be seen as a type of rewriting system on its tape alphabet. And indeed,
restarting automata of this form have been studied before.

In [4], the so-called clearing restarting automaton was introduced, which deletes
symbols depending only on the context of a fixed size around the factor to be deleted.
Not surprisingly, clearing restarting automata are quite limited in their expressive
power. They accept all regular languages and some languages that are not context-
free, but they do not even accept all context-free languages. Accordingly, they were
extended to the so-called Δ-clearing restarting automata that can use a marker sym-
bol Δ in their rewrite transitions. These automata only accept languages that are
growing context-sensitive [21], but they accept all context-free languages [5]. How-
ever, it is still open whether or not there is a growing context-sensitive language that
is not accepted by any Δ-clearing restarting automaton.

In [1], limited context restarting automata were defined as an extension of the
clearing restarting automaton. Also these automata apply rewrite steps only based on
context information, but their rewrite instructions are more general. Following [21],
these automata can be defined as follows.

Definition 6 A limited context restarting automaton (an lc-R-automaton, for short)
M is defined through a triple M = (Σ, Γ, I), where Σ is an input alphabet, Γ is
a working alphabet containing Σ , and I is a finite set of instructions of the form
(u | x → y | v). Here x, y ∈ Γ ∗ such that g(x) > g(y) for some weight function
g : Γ ∗ → N, u ∈ {λ, } · Γ ∗, and v ∈ Γ ∗ · {λ, }. Again the symbols and are
used as left and right sentinels, which are not elements of Γ .

The lc-R-automaton M = (Σ, Γ, I) induces a reduction relation c
M on Γ ∗ as

follows: for each w, z ∈ Γ ∗, w c
Mz, if there exist words w1, w2 ∈ Γ ∗ and an instruc-

tion (u | x → y | v) ∈ I such that w = w1xw2, z = w1yw2, u is a suffix of w1,
and v is a prefix of w2 . Thus, the factor x is rewritten into y, if it appears within
the context uxv. By c∗

M we denote the reflexive and transitive closure of c
M . The

language accepted by the lc-R-automaton M is L(M) = {w ∈ Σ∗ | w c∗
M λ }.

An lc-R-automaton M accepts exactly the set of input words which can be reduced
to λ. Thus, λ is in L(M) for each lc-R-automaton M . Accordingly, if L is a language
that does not contain λ as an element, then L is not accepted by any lc-R-automaton.
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In order to overcome this problem, we consider equality of languages only up to the
empty word, that is, we say that two languages L and L on Σ are equal, denoted as
L =̇ L , if L ∩ Σ+ = L ∩ Σ+.

In [21], many different types of limited context restarting automata have been
introduced and their expressive power has been studied. Here we are only interested
in the following two types. We say that an lc-R-automaton M = (Σ, Γ, I) is of type

• R1, if I only contains instructions of the form (u | x → y | v), where |y| ≤ 1;

• R2, if I only contains instructions of the form (u | x → y | v), where |y| ≤ 1,
u ∈ {λ, }, and v ∈ {λ, }.

For any R ∈ {R1,R2}, we will refer to lc-R-automata of type R as lc-R[R]-
automata. In [21], the following characterizations were obtained.

Theorem 4 (a) L(lc-R[R1]) = GCSL. (b) L(lc-R[R2]) = CFL.

A clearing restarting automaton can be described as a limited context restarting
automaton M = (Σ, Σ, I) of type R1 such that each instruction (u | x → y | v) ∈
I satisfies the restrictions |u| = |v| ≥ 1 and y = λ. Furthermore, a Δ-clearing
restarting automaton can be described as a limited context restarting automaton M =
(Σ, Σ ∪ {Δ}, I ) of type R1 such that each instruction (u | x → y | v) ∈ I satisfies
the restrictions |u| = |v| ≥ 1 and y ∈ {λ, Δ} [4].

Here we introduce still another type of limited context restarting automata in
order to describe swift-ORD-automata. A limited context restarting automaton M =
(Σ, Γ, I) is of type RORD if each instruction (u | x → y | v) ∈ I satisfies the restric-
tions |u| = |x| = |v| = 1 and |y| ≤ 1. Observe that the weight function associated
with M induces a partial ordering > on Γ such that x > y holds for each instruction
(u | x → y | v) ∈ I for which |y| = 1. Thus, RORD is obtained from the type R1
by restricting the left context, the right context, and the lefthand side of the rewrite
instruction to be of length one. Limited context restarting automata of type RORD
will be denoted as lc-R[RORD]-automata.

Lemma 7 L(lc-R[RORD]) ⊆ L(swift-ORD).

Proof Let M = (Σ, Γ, I) be an lc-R[RORD]-automaton. We define an ordering on Γ

by taking A > B if g(A) > g(B), where g : Γ ∗ → N is the weight function for M .
Now we construct a swift-ORD-automaton M = (Σ, Γ, , , δ, >) by defining the
transition relation δ as follows:

(1) δ(abc) MVR for all a ∈ Γ ∪ { } and b, c ∈ Γ,

(2) δ(abc) y if (a | b → y | c) ∈ I,

(3) δ( ) = Accept.

Then L(M ) = {w ∈ Σ∗ | w c∗
M λ } = L(M), which proves the above inclusion.

Actually, we even have the following result.

1064 Theory of Computing Systems (2021) 65:1033–1068



Theorem 5 L(lc-R[RORD]) = L(swift-ORD).

Proof Let M = (Σ, Γ, , , δ, >) be a swift-ORD. By Proposition 2, we may
assume that there is a special non-input symbol # ∈ Γ such that δ( # ) = Accept is
the only accept step of M . Now we define an lc-R[RORD]-automaton S = (Σ, Γ, I)

by taking
I = { (a | b → d | c) | d ∈ δ(abc) } ∪ { | # → λ | }.

Then L(S) = {w ∈ Σ∗ | w c∗
S λ } =̇ L(M). Thus, we also have L(swift-ORD) ⊆

L(lc-R[RORD]), which, together with Lemma 7, yields the intended equality.

Hence, we conclude the following from Corollary 1.

Corollary 2 L(lc-R[RORD]) = CFL.

Thus, the limited context restarting automata of type RORD are just as expressive
as those of type R2. However, type RORD is a restricted variant of type R1 that is
incomparable to type R2. Indeed, an automaton of type RORD admits arbitrary left
and right contexts of length one, while the only non-empty contexts that an automaton
of type R2 admits are the sentinels and . On the other hand, an automaton of
type R2 may rewrite factors of arbitrary positive length, while an automaton of type
RORD can rewrite factors of length one only. Hence, Corollary 2 nicely complements
the known results on limited context restarting automata presented in [21].

7 Conclusion

By introducing an additional restart-delete operation, which can just delete a single
letter at a time, we have extended the stl-ORWW-automaton to the stl-ORD-
automaton. As we have shown, this extension has surprizingly strong consequences.
While the stl-ORWW-automaton just accepts the regular languages, we have seen
that the stl-ORD-automaton accepts all context-free languages. In fact, by restricting
the stl-ORD-automaton to its swift variant, we obtained a new characterization for
the class of context-free languages. From the given constructions, we additionally
derived the fact that stl-ORD-automata describe some regular languages in a much
more succinct way than even stl-ORWW-automata. In fact, the size increase (mea-
sured in the cardinality of the underlying tape alphabets) that is required for turning
a stl-ORD-automaton into an equivalent stl-ORWW-automaton can in general not be
bounded from above by any recursive function.

Furthermore, we noticed that swift-ORD-automata can be interpreted as a new
class of limited context restarting automata that is a proper subclass of the limited
context restarting automata of type R1. This new class is incomparable under inclu-
sion to the limited context restarting automata of type R2, although it has exactly the
same expressive capacity.

Unfortunately, it still remains open whether stl-ORD-automata that are not swift
can accept any languages that are not context-free. The diagram in Fig. 2 presents
the inclusion and non-inclusion results between the classes of languages that are

1065Theory of Computing Systems (2021) 65:1033–1068



Fig. 2 Hierarchy of language classes that are accepted by the various types of ordered restarting automata.
An arrow indicates a proper inclusion, while an arrow with a question mark indicates an inclusion that
is not known to be proper. If two classes that are not connected by a sequence of arrows, then they are
incomparable under inclusion

accepted by the various types of ordered restarting automata, the classes of the
Chomsky hierarchy, and some related classes of limited context restarting automata.
Here DCFLR = {LR | L ∈ DCFL } is the class of languages that are reversals of
deterministic context-free languages, UCFL is the class of unambiguous context-free
languages, and Co-UCFL is the class of languages the complements of which are
unambiguous context-free. Finally, L(con-lc-R[R1]) is the class of languages which
are accepted by limited context restarting automata that are of the confluent version
of type R1 (see [21]). The results on det-ORWW-automata can be found in [22], those
on stl-ORWW- and ORWW-automata are taken from [10, 11], the results on det-
ORD-automata are from [18, 19], and those on limited context-restarting automata
are from [21].
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12. Lopatková, M., Plátek, M., Sgall, P.: Towards a formal model for functional generative description:
Analysis by reduction and restarting automata. Prague Bull. Math. Linguist. 87, 7–26 (2007)

13. McNaughton, R., Narendran, P., Otto, F.: Church-Rosser Thue systems and formal languages. J. ACM
35, 324–344 (1988)

14. Meyer, A., Fischer, M.: Economy of description by automata, grammars, and formal systems. In:
IEEE Symposium on Switching and Automata Theory (SWAT 1971), pp. 188–191. IEEE Press
(1971)

15. Mráz, F., Otto, F.: Ordered restarting automata for picture languages. In: Geffert, V., Preneel, B.,
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