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Abstract
We give a category-free order theoretic variant of a key result in Auinger and Szen-
drei (J Pure Appl Algebra 204(3):493–506, 2006) and illustrate how it might be used 
to compute whether a finite X-generated group H admits a canonical dual prehomo-
morphism into the Margolis–Meakin expansion M(G) of a finite X-generated group 
G. We show that for G the Klein four-group a suitable H must be of exponent 6 at 
least and recapture a result of Szakács.
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1 Introduction

The following note considers canonical, i.e. generator preserving dual prehomo-
morphisms from an X-generated group H into the Margolis–Meakin expansion 
M(G) of an X-generated group G. It was shown by Auinger and Szendrei [1] that 
such mappings play an important role in constructing (finite) F-inverse covers for 
(finite) inverse monoids. We give a necessary and sufficient order theoretic condi-
tion for M(G) to admit a canonical dual prehomomorphism from an X-generated 
group H. It can be seen as a variant of the key statement Lemma 3.1 in [1] and 
might be applicable on a computer. The idea is to represent the elements of both 
M(G) and H as congruence classes of words in the free monoid with involution 
(X ∪ X−1)∗ . This enables us to handle the elements of H in relation to M(G) by 
systematically going through the words in (X ∪ X−1)∗ . We use the slightly differ-
ent view of M(G), introduced in [2], to show how already known positive exam-
ples fit into the picture. Further, for G the Klein four-group, we prove that a suit-
able group H must be of exponent 6 at least and recapture a result of Szakács 
[6]. It should be noted that in our construction the groups H, we consider as pos-
sible candidates for admitting a canonical dual prehomorphism into M(G), may 
be arbitrarily X-generated extensions by G. This is in contrast to [1], where H is 
assumed to be an X-generated subgroup of a semidirect product of a relatively 
free group by G.

2  Preliminaries and notations

For all undefined notions and notations, the reader is referred to [3, 5]. Let X 
be a nonempty set and let G be an X-generated group with respect to an injec-
tion �G ∶ X → G ⧵ {1G} . Note that the mapping �G can be uniquely extended to a 
homomorphism �G ∶ (X ∪ X−1)∗ → G , where (X ∪ X−1)∗ is the free monoid with 
involution on X. For w ∈ (X ∪ X−1)∗ we denote w�G by w . By the Cayley graph 
Γ(G) with respect to �G , we mean the directed graph whose vertex set V(Γ(G)) 
is G and whose edge set E(Γ(G)) is G × X , where for each g ∈ G, x ∈ X, (g, x) 
denotes an edge with initial vertex g and terminal vertex gx . Put

There is a natural action of G on the semilattice of all subgraphs of Γ(G) with 
operation the set theoretic union, defined as follows: Put g� = � , and for each 
nonempty subgraph Γ of Γ(G) and g ∈ G , let gΓ be the subgraph of Γ(G) with 
V(gΓ) = {gh ∶ h ∈ V(Γ)} and E(gΓ) = {(gh, x) ∶ (h, x) ∈ E(Γ)} . The graphs we con-
sider do not have isolated vertices, whence they are solely determined by their edge 
sets, and we conveniently may regard them as (possibly empty) subsets of X × G.

The following theorem was essentially proved in [4].

M(G) ={(Γ, g) ∶ Γ is a finite connected subgraph of Γ(G) with at least one edge

and 1G, g ∈ V(Γ)} ∪ {(�, 1G)}.
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Theorem 2.1 [4] M(G) is an E-unitary inverse monoid with respect to the multipli-
cation (Γ, g)(Γ�, h) = (Γ ∪ gΓ�, gh) with identity element (�, 1G) and maximal group 
homomorphic image G. Further, M(G) is X-generated as inverse monoid via the 
injection �M(G) ∶ x ↦ ({(1G, x)}, x).

We often represent the elements of M(G) by their corresponding images ⟨w⟩ in 
(X ∪ X−1)∗∕ ker�M(G) , where �M(G) denotes the unique extension of �M(G) to a homo-
morphism from (X ∪ X−1)∗ onto M(G). Then obviously ⟨∅⟩ corresponds to (�, 1G) . 
Let � ≠ w =

n∏
i=1

x
�i
i
, �i ∈ {−1, 1} , be a word in (X ∪ X−1)∗ . To w we associate a word 

w� = h1x1h2x2 ⋯ hnxnhn+1 in the free product X∗ ∗ G , where X∗ is the free monoid 
on X, by replacing each x�i

i
 in w by gixigi , where

Then ⟨w⟩ corresponds to (Γ(⟨w⟩),w) ∈ M(G) , in symbols ⟨w⟩=̂(Γ(⟨w⟩),w) , where 
E(Γ(⟨w⟩)) = {(h1, x1), (h1x1h2, x2),… , (h1x1h2x2 ⋯ hn, xn)} and w =

n∏
i=1

xi
�i . Con-

versely, for each (Γ, g) ∈ M(G) there is a unique ⟨w⟩ with ⟨w⟩=̂(Γ, g) for some 
w ∈ (X ∪ X−1)∗ . For details we refer to [2]. We illustrate the situation by the follow-
ing example.

Example 2.1 Let X = {x, y} and let G = {1G, g, h, gh} be the X-generated 
Klein four-group with x ∶= g and y ∶= h . Then Γ(G) = {(1G, x), (1G, y), (g, x), 
(g, y), (h, x), (h, y), (gh, x), (gh, y)} . Now, let e.g. w = xy−1x−1 ∈ (X ∪ X−1)∗ . We get 
w� = xy

−1
yy

−1
x
−1
xx

−1
= xhyghxg , whence ⟨w⟩ corresponds to

On the other hand e.g. ({(1G, x), (g, x), (h, y)}, g) ∈ M(G) corresponds to ⟨
x2y−1yx−1

⟩
 , being equal to e.g. 

⟨
x2y−1yx

⟩
 . 

gi =

{
1G if �i = 1,

xi
−1

if �i = −1.

({(1G, x), (gh, y), (h, x)}, h) ∈ M(G).
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1G gh
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Γ( xy−1x−1 )
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x
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y

Γ( x2y−1yx−1 ) = Γ( x2y−1yx )

3  Canonical dual prehomomorphisms into M(G)

In M(G) the natural partial order is given by ⟨v⟩ ≤ ⟨w⟩ if and only if v = w and 
Γ(⟨w⟩) ⊆ Γ(⟨v⟩) . The following order theoretic statements are straightforward.

Proposition 3.1 The least upper bound ∨i∈I⟨wi⟩ with respect to ≤ exists in M(G) if 
and only if all wi are equal to a given w , say, and

(1) w ≠ 1G and w is a vertex of the 1G containing connected part of ∩i∈IΓ(⟨wi⟩) , 
denoted by cp(∩i∈IΓ(⟨wi⟩)) , in which case ∨i∈I⟨wi⟩ =̂ (cp(∩i∈IΓ(⟨wi⟩)),w) or

(2) w = 1G in which case ∨i∈I⟨wi⟩ =̂ (cp(∩i∈IΓ(⟨wi⟩)), 1G) , if the latter exists, and 
∨i∈I⟨wi⟩ =̂ (�, 1G) = 1M(G) otherwise.

Note that the greatest lower bound ∧i∈I⟨wi⟩ exists in M(G) for each 
finite set I if and only if all wi are equal to a given w , say, in which case 
∧i∈I⟨wi⟩ =̂ (∪i∈IΓ(⟨wi⟩),w) . Note further that ∨i∈I⟨wi⟩ exists if and only if the set 
{⟨wi⟩, i ∈ I} has an upper bound in M(G).
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Let H be an X- generated group via an injection �H ∶ X → H ⧵ {1H} . Like with 
M(G) we may represent the elements of H by their corresponding images [w] 
in (X ∪ X−1)∗∕ ker�H , where �H denotes the unique extension of �H to a homo-
morphism from (X ∪ X−1)∗ onto H. A mapping � ∶ H → M(G) is called a dual 
prehomomorphism if ([v][w])� ≥ ([v])�([w])� and ([v]−1)� = ([v]�)−1 for all 
[v], [w] ∈ H , see [5]. According to [1], we call � canonical if ([x])� = ⟨x⟩ for 
all x ∈ X . Note that a canonical dual prehomomorphism � ∶ H → M(G) always 
induces a generator respecting homomorphism from H onto G, given by [w] ↦ w , 
which follows from the fact that in M(G) we have that (Γ(⟨v⟩), v) ≤ (Γ(⟨w⟩),w) 
implies v = w and � respects generators. Thus H necessarily must be an extension 
by G. Further (1H)� = 1M(G) since

which corresponds to (Γ(⟨x⟩), 1G) = ({(1G, x)}, 1G) and on the other hand 
(1H)� = ([x−1x])� ≥ ⟨x−1⟩⟨x⟩ is corresponding to ({(x−1

, x)}, 1G) . Consequently 
Γ((1H)𝜓) ⊆ {(1G, x)} ∩ {(x

−1
, x)} = � implying (1H)� = 1M(G).

In what follows we give a necessary and sufficient condition for M(G) to admit 
a canonical dual prehomomorphism � ∶ H → M(G) . Our condition is of an order 
theoretic form.

Theorem 3.2 Let G and H be groups as defined above. Then H admits a canoni-
cal dual prehomomorphism � ∶ H → M(G) if and only if the following sequence of 
least upper bounds exists for each [w] ∈ H ∶

Proof Necessity: Let � ∶ H → M(G) be a canonical dual prehomomorphism. Let 
[w] ∈ H , for some w ∈ (X ∪ X−1)∗ . Since � is canonical we obtain ([w])� ≥ ⟨v⟩ 
for all v ∈ (X ∪ X−1)∗ with [v] = [w] . Consequently P0([w]) = ∨[v]=[w]⟨v⟩ 
exists and ([w])� ≥ P0([w]) . Let now [u], [v] ∈ H with [u][v] = [w] . 
Then ([w])� = ([u][v])� ≥ ([u])�([v])� ≥ P0([u])P0([v]) . Consequently 
P1([w]) = ∨[u][v]=[w](P0([u])P0([v])) exists and ([w])� ≥ P1([w]) . Continuing this 
process we see that all Pn([w]), n ∈ ℕ0 exist.

Sufficiency: Let the condition in the assumption of Theorem 3.2 be satisfied. Note 
that {Pn([w])}n∈ℕ0

 is increasing and will be constant after a finite number of steps, for 
each [w] ∈ H , since all occurring graphs are finite. Let P([w]) ∶= lim

n→∞
Pn([w]), [w] ∈ H . 

We show that the mapping � ∶ [w] ↦ P([w]) defines a canonical dual prehomomor-
phism. Let [u], [v] ∈ H . It follows P1([uv]) ≥ P0([u])P0([v]) , P2([uv]) ≥ P1([u])P1([v]) , 
… , Pn([uv]) ≥ Pn−1([u])Pn−1([v]) , … which after a finite number of steps gives 
P([uv]) ≥ P([u])P([v]) . Further P([w]−1) = (P([w]))−1 , since ⟨u⟩ ∨ ⟨v⟩ exists if and 
only if ⟨u⟩−1 ∨ ⟨v⟩−1 exists in which case ⟨u⟩−1 ∨ ⟨v⟩−1 = (⟨u⟩ ∨ ⟨v⟩)−1 . This fact holds 
in any inverse semigroup S and easily follows from s ≤ t ⇔ s−1 ≤ t−1 , s, t ∈ S . Finally 

(1H)� = ([xx−1])� ≥ ([x])�([x−1])� = ([x])�(([x])�)−1 = ⟨x⟩⟨x−1⟩

P0([w]) ∶= ∨[v]=[w]⟨v⟩
Pn([w]) ∶= ∨[w1][w2]=[w]

Pn−1([w1])Pn−1([w2]), n ∈ ℕ.
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� is canonical since from Γ(P([x])) ⊆ Γ(⟨x⟩) we infer Γ(P([x])) = Γ(⟨x⟩) , whence 
P([x]) = ⟨x⟩ .   ◻

Note that the above defined mapping P is the least possible canonical dual preho-
momorphism with respect to the pointwise order of mappings, since in the necessity 
proof of Theorem 3.2 we have ([w])� ≥ P([w]), [w] ∈ H.

Corollary 3.3 In case P0([w]) =̂ (∩[u]=[w]Γ⟨u⟩,w) ∈ M(G) , for all [w] ∈ H , it fol-
lows P0([w]) = Pn([w]) , for all n ∈ ℕ , whence ([w])� = P0([w]) defines a canonical 
dual prehomomorphism � ∶ H → M(G).

Proof Under the assumptions we obtain for arbitrary [w1], [w2] ∈ H with 
[w1][w2] = [w]

since ∩[u1]=[w1]
Γ(⟨u1⟩) ∪ w1 ∩[u2]=[w2]

Γ(⟨u2⟩) ⊇ ∩[u]=[w]Γ(⟨u⟩). Thus we have

whence P1([w]) = P0([w]) follows. We conclude by induction

proving the assertion.   ◻

Example 3.1 Let G be any X-generated group and let H be the free group on X. Then 
for any [w] ∈ H we have P0([w]) =̂ (Γ(⟨r(w)⟩),w) ∈ M(G) where r(w) is the reduced 
word associated to [w].

Example 3.2 Let G be the {x}-generated cyclic group of order n and let H be the {x}
-generated cyclic group of order 2n. Inspecting Γ(G) which is an n-cycle, we directly 
see

and

In particular we have ∩[w]=[x2n]Γ(⟨w⟩) = � , since [�] = [x2n] corresponds to 1H . Hence  
� ∶ H →M(G) may be defined by ([xk])� = ⟨xk⟩, 1 ≤ k ≤ n, ([xl])� = ⟨xl−2n⟩,
n < l < 2n, and ([x2n])� = ⟨�⟩ =̂ (�, 1G) = 1M(G) , cf. ( [2], Theorem 19).

To check whether a given extension H by a group G satisfies the condition of 
Theorem 3.2 it is crucial to determine ∩[v]=[w](Γ(⟨v⟩)) for any [w] ∈ H . In what fol-
lows we describe a way of doing that for finite H and G which might be implemented 

P0([w1])P0([w2]) =̂ (∩[u1]=[w1]
Γ(⟨u1⟩) ∪ w1 ∩[u2]=[w2]

Γ(⟨u2⟩),w)
≤ (∩[u]=[w]Γ(⟨u⟩),w)
=̂P0([w]),

P1([w]) = ∨[w1][w2]=[w]
(P0([w1])P0([w2])) ≤ P0([w]) ≤ P1([w]),

P0([w]) = P1([w]) = P2([w]) = ⋯ = P([w]),

∩[w]=[xk]Γ(⟨w⟩) = Γ(⟨xk⟩), 1 ≤ k ≤ n

∩[w]=[xl]Γ(⟨w⟩) = Γ(⟨xl−2n⟩), n ≤ l ≤ 2n.
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on a computer. We start to determine a finite subset T of (X ∪ X−1)∗ satisfying the 
following property: For each w ∈ (X ∪ X−1)∗ there is v ∈ T  such that [w] = [v] and 
Γ(⟨v⟩) ⊆ Γ(⟨w⟩) . To compute such a set T we describe a simple algorithm which 
directly implements the defining property of T. 

(0) Put the identity element of (X ∪ X−1)∗ into T.
(1) For T, constructed so far, construct a superset T ′ of T in the following way: 

Put all elements of T into T ′ . List the elements of T × X × {−1, 1} and check 
for each (w, x, �) in T × X × {−1, 1} if there is u ∈ T  such that [u] = [wx�] and 
Γ(⟨u⟩) ⊆ Γ(⟨wx𝜀⟩) . If the answer for a given (w, x, �) is yes, go to the next triple 
in the list. If the answer is no, put wx� into T ′ and go to the next triple in the list.

(2) If T is a proper subset of T ′ , as constructed in (1), take T ′ as new T and start (1) 
again. If T = T � the algorithm stops.

Note that since H and M(G) are finite, the computation stops after a finite number 
of steps. To see that in the end T has the required property, we note that if a word w′ 
is dropped in (1) of the above algorithm because [w�] = [u] with Γ(⟨u⟩) ⊆ Γ(⟨w�⟩) 
for some u ∈ T  , then for each word w�v, v ∈ (X ∪ X−1)∗ we have [w�v] = [uv] with 
Γ(⟨uv⟩) ⊆ Γ(⟨w�v⟩) , where uv is in T or has been dropped earlier in (1), i.e. there 
is some u� ∈ T  such that [uv] = [u�] and Γ(⟨u�⟩) ⊆ Γ(⟨uv⟩) , whence [w�v] = [u�] and 
Γ(⟨u�⟩) ⊆ Γ(⟨w�v⟩) . Consequently the final set T satisfies the property that for each 
word w in (X ∪ X−1)∗ there is a word u in T such that [w] = [u] and Γ(⟨u⟩) ⊆ Γ(⟨w⟩) . 
Now for a given [w] ∈ H we get

where v ∈ (X ∪ X−1)∗, u ∈ T  , and in case w ≠ 1G we have to check whether the right 
hand intersection contains a connected subgraph with vertices 1G and w , to see-
whether P0([w]) exists. Note that in case w = 1G , P0([w]) always exists. If for some 
[w] ∈ H , P0([w]) does not exist, the algorithm stops. If all P0([w]) , [w] ∈ H exist, we 
check whether for each [w] ∈ H P1([w]) = ∨[w1][w2]=[w]

(P0([w1])P0([w2])) exists, by 
going through all |H| factorisations of [w]. If P1([w]) does not exist for some [w] ∈ H , 
the algorithm stops. In the other case we continue, checking whether P2([w]) exists, 
and so on. After a finite number of computations we end up with n0 ∈ ℕ such that 
either Pn0

([w]) does not exist for some [w] ∈ H , in which case H does not satisfy the 
conditions of Theorem 3.2 , or Pn0

([w]) = Pn0+1
([w]) for all [w] ∈ H . The latter must 

be the case since for each [w] ∈ H the sequence {Pn([w])}n∈ℕ0
 is decreasing whence 

eventually constant, since all occurring graphs are finite. Further H is finite. We then 
have Pn0

([w]) = Pk([w]) for all k ≥ n0 , [w] ∈ H . Thus H satisfies the conditions of 
Theorem 3.2.

Even for a small finite noncyclic X-generated group G, an X-generated group H 
admitting a canonical dual prehomomorphism � ∶ H → M(G) might be large. The 
following theorem points into this direction.

∩[v]=[w]Γ(⟨v⟩) = ∩[u]=[w]Γ(⟨u⟩),
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Theorem 3.4 Let G = {1G, g, h, gh} be the {x, y}-generated Klein four-group with 
respect to x = g, y = h . Then any X-generated group H which admits a canonical 
dual prehomomorphism � ∶ H → M(G) must be of exponent 6 at least.

Proof We show that the {x, y}-generated Burnside group of exponent 4, B(2; 4), does 
not admit a suitable � ∶ B(2;4) → M(G) . Assume that � exists. Note first that in 
B(2; 4) we have [xyx2yx−1] = [x−1y−1x2y−1x] , since

We get ⟨xyx2yx−1⟩ ≤ ([xyx2yx−1])� = ([x−1y−1x2y−1x])� ≥ ⟨x−1y−1x2y−1x⟩ , whence 
Γ([u]𝜓) ⊆ Γ(⟨xyx2yx−1⟩) ∩ Γ(⟨x−1y−1x2y−1x⟩) . 

g

h

1G gh

x y

y

x

x

Γ( xyx2yx−1 )

g

h

1G gh
x

y

y

x

x

Γ( x−1y−1x2y−1x )

Since the intersection of both graphs does not contain a connected subgraph 
having at least one edge and vertex 1G , we conclude that Γ([u]�) = � , whence 
([u])� = 1M(G) . We infer

and on the other hand ([x2y−1x])� ≥ ⟨x2y−1x⟩ which means

with contradiction, since the intersection on the right hand side does not contain a 
connected subgraph with vertices 1G and x2y−1x = gh . 

[xyx2yx−1] = [xyx2yx3]

= [(xyx2yx2)x]

= [x−1y−1yx2yx2yx2x]

= [x−1y−1(yx2)−1x]

= [x−1y−1x−2y−1x]

= [x−1y−1x2y−1x] =∶ [u].

([x2y−1x])� = ([yxx−1y−1x2y−1x])�

≥ ([yx])� ([x−1y−1x2y−1x])�
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

1M(G)

= ([yx])� ≥ ⟨yx⟩,

Γ(([x2y−1x])𝜓) ⊆ Γ(⟨yx⟩) ∩ Γ(⟨x2y−1x⟩)
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h

1G gh

xy

Γ( yx )

g

h

1G gh

x

x

x

y

Γ( x2y−1x )

  ◻

It is an open question whether the finite group B(2; 6) admits a canonical dual 
prehomomorphism into M(G) with G the Klein four-group, or a contradiction can 
be achieved following the pattern in the proof of Theorem 3.4. It is also an open 
question whether the group GU , as defined in [1], with U the variety of all groups 
of exponent n = 3 , respectively n = 4 , admits a suitable mapping � ∶ GU

→ M(G) 
in this case. In our setting GU may be represented by FG({x, y})∕≡ , where ≡ is the 
congruence on the free group FG({x, y}) generated by the relators w3 = 1 , respec-
tively w4 = 1 , where w = 1G , w ∈ FG({x, y}) . Since, by construction in [1], GU 
is a subgroup of a semidirect product of the finite groups B(8;  3), respectively 
B(8;  4) by G, it is finite. Obviously B(2;  4) is a homomorphic image of GU in 
case n = 4 . However B(2; 4) itself is not of the form GV for some group variety V, 
since the only possible choice of such V would be the variety of elementary Abe-
lian 2-groups. Only if V has exponent 2, the group GV has exponent 2 ⋅ 2 = 4 . But 
in this case GV is a subgroup of a semidirect product of the free elementary Abe-
lian 2-group of rank 8 by G whence |GV | < 28 ⋅ 22 = 210 < 212 = |B(2;4)| . Note 
in particular that GU has exponent 6 in case n = 3 , and exponent 8 in case n = 4 . 
Anyway it follows from [1], Proposition 4.4., referring to a remark of V. Guba, 
that � ∶ GU

→ M(G) exists if U is the variety of all groups of sufficiently large 
odd exponent n.

We continue our considerations with a theorem which also follows from a 
result of Szakács [6]. For sake of completeness we give an elementary direct 
proof.

Theorem  3.5 Let G be an X-generated noncyclic group, and let H be a genera-
tor respecting X-generated extension by G such that the homomorphism H → G , 
defined by [w] ↦ w has a nontrivial Abelian kernel K. Then there is no canonical 
dual prehomomorphism � ∶ H → M(G).

Proof We show first that under the assumptions Γ(G) contains a subgraph consisting 
of two disjoint cycles connected by a path, of the form 
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1G ,

u1

u2

v

z1

z2

where u1, u2, v, z1, z2 are nonempty words in (X ∪ X−1)∗ , labeling the respective 
paths.

Assume first that there is y ∈ X such that y has finite order m ≥ 2 . Since G is 
noncyclic there is x ∈ X such that x ≠ y

n , for all n ∈ ℕ . Consequently, by use of the 
words u1 = z1 = y, u2 = y1−m, v = x, z2 = ym−1 , we may define a graph which consists 
of two cycles with vertex sets A = {1G, y,… , y

m−1
} and B = {yx, yxy,… , yx y

m−1
} 

connected by the edge (y, x) . Since A is a subgroup of G and B = yxA , with yx ∉ A 
by assumption, we obtain A ∩ B = �.

Assume now that there is x ∈ X , such that x has infinite order. Since K 
is nontrivial there is a nonempty reduced word w = y1 … ym , m ≥ 2 , with 
yi ∈ X ∪ X−1 , 1 ≤ i ≤ m , such that w = 1G , and Γ(⟨w⟩) forms a cycle. Let 
u1 = y1 = z1, u2 = (y2 ⋯ ym)

−1 , z2 = y2 ⋯ ym , and v� = xn , where n is such that 
y1 x

n
a ≠ b for all a,  b in the set A = {1G, y1,… , y1 ⋯ ym−1} . Such n exists, since 

the equality y1 x
k
a = b can only hold for at most one k ∈ ℕ by the assumption that x 

has infinite order, and the set A, whence A × A , is finite. We may use u1, u2, v′, z1, z2 
to define a graph which consists of the two disjoint cycles with vertex sets 
A = {1G, y1,… , y1 ⋯ ym−1} and B = {y1 x

n
, y1 x

n
y1,… , y1 x

n
y1 ⋯ ym−1} , connected 

by the path with initial vertex y1 labeled by v� = xn . Let p, q ∈ {1,… , n} such that 
p is the least element with y1 x

p
∉ A for all k, p ≤ k ≤ n , and such that q is the least 

element with y1 x
q
∈ B . Then the path with initial vertex y1 x

p−1 and label v = xq−p+1 
connects the cycles with vertex sets A and B precisely as shown in the graph above. 
We conclude

On the other hand we obtain

Hence for any canonical dual prehomomorphism � ∶ H → M(G) we get

whence 
(
[u1vz1z2v

−1u−1
1
]
)
� = 1M(G).

⟨u1vz1z2v−1u−11 ⟩ ∨ ⟨u2vz1z2v−1u−12 ⟩ = 1M(G).

[u1vz1z2v
−1u−1

1
] = [u1vz1z2v

−1u−1
1
u2u

−1
2
]

= [u1u
−1
1
u2vz1z2v

−1u−1
2
], since [u−1

1
u2], [vz1z2v

−1] ∈ K

= [u2vz1z2v
−1u−1

2
].

�
[u1vz1z2v

−1u−1
1
]
�
� =

�
[u2vz1z2v

−1u−1
2
]
�
�

≥ ⟨u1vz1z2v−1u−11 ⟩ ∨ ⟨u2vz1z2v−1u−12 ⟩ = 1M(G),
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By the rule 
(
[w1w2]

)
� = 1M(G) ⇒ ([w2])� ≥ ([w−1

1
])� ⇒ ([w−1

2
])� ≥ ([w1])� , 

since � respects inverses, we obtain with [w1] = [u1vz1] and [w2] = [z2v
−1u−1

1
] that 

([u1vz
−1
2
])� ≥ ([u1vz1])� ≥ ⟨u1vz1⟩ , which together with ([u1vz−12 ])� ≥ ⟨u1vz−12 ⟩ 

leads to a contradiction. Note in particular that ⟨u1vz1⟩ ∨ ⟨u1vz−12 ⟩ does not exist.   ◻

Note that in case K is trivial in Theorem 3.5, i.e. K =
{
1H

}
 , we have that H is 

isomorphic to G via the homomorphism induced by the mapping [x] ↦ x.
It is shown in [2], see also Example 3.2, that for any {x}-generated cyclic group 

G of order n there is a canonical dual prehomomorphism � from the {x}-gener-
ated cyclic group H of order 2n into M(G). Clearly the homomorphism [w] ↦ w 
has Abelian kernel. If we regard, however, G as an e.g. {x, y}-generated group 
where y = x

2 , say, n ≥ 3 , then the assertion of Theorem 3.5 remains true, although 
G is cyclic, as the following example shows for n = 3.

Example 3.3 Let G = {1G, g, g
2} be the three element cyclic group generated by 

X = {x, y} with respect to x = g, y = g2 . The Cayley graph Γ(G) looks as follows: 

y

1G x

y y

y

x
x x

Γ( G )

Assume � exists for some {x, y}-generated generator preserving group extension 
H by G , where [w] → w has Abelian kernel. It follows

We obtain 
��
y−1xy2

��
� ≥ ⟨y−1xy2⟩, ⟨x2yx−1⟩

⇒ Γ
���

y−1xy2
��
𝜓
�
⊆ Γ

�
⟨y−1xy2⟩

�
∩ Γ

�
⟨x2yx−1⟩

�

⇒ Γ
(([

y−1xy2
])
�
)
= � ⇒

([
y−1xy2

])
� = 1M(G) . 

[y−1xy2] = [x(x−1y−1)(xy)y]

= [x(xy)(x−1y−1)y], since xy = x−1y−1 = 1G

= [x2yx−1].
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y

1G x

y

y

Γ( y−1xy2 )

y

1G x

y

x
xx

Γ( x2yx−1 )

We infer

which means together with ([x])� = ⟨x⟩ a contradiction.
Note that Γ(G) contains a forbidden minor in the sense of Szakács, namely 

y

1G x

y y

y

x

In particular Γ(⟨x⟩) is a breaking path in her terminology.
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([x])� =
�
[y(y−1xy2)y−2]

�
�

≥ ([y])�
�
[y−1xy2]

�
�

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
1M(G)

�
[y−2]

�
�

= ([y])�
�
[y−2]

�
� ≥ ⟨yy−1y−1⟩,
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you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
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