

UNIPace

Polymer Application Center

THE ADHESION OF LSR AND POLYPROPYLENE TYPES AFTER STORAGE

Dipl.-Ing. A. Rüppel, M. Hartung, M. Sc., Dr.-Ing. R.-U. Giesen, Prof. Dr.-Ing. H.-P. Heim University of Kassel, Institute of Material Engineering

Content

Objectives

Properties LSR-TP-Composite Materials

Adhesion

• Experimental

Results and Discussion

Objectives

Production of Liquid-Silicone-Rubber (LSR) - Polypropylene Composites

- • Adhesion of LSR and Polypropylene only possible with surface activation of PP-component
- Self-bonding LSR types only suitable for PA and PBT
 - o No self-bonding LSR-types für bulk plastics (PP, PE) currently on the market
- Generation of an Adhesion of LSR and Polypropylene
- Surface activation of thermoplastic component
- Long therm stability of the surface activation

Properties of LSR-TP-Composite Materials

- • LSR-Thermoplastic Composite Materials
 - hard-soft composites of thermoplastic and LSR
 - sample production by multi-component injection molding
- Advantages by using LSR Thermoplastic Composite Materials
 - cycle time saving production (LSR is direct overmoulded on TP)
 - production is carried out in one step
 - for production only one machine and one tool is needed
 - merging of the materials to a synergetic component
 - use of several positive properties by 2c-composites

Mechanical Adhesion

Mechanical adhesion by surface texture by

- Surface roughness
- Hollows
- Pores

Adhesion

Specific Adhesion

Chemiesorption

Chemical primary valency bonds (covalent, ionian, metal)

Diffusion Theory

Diffusion of the molecular chains into the other component

Adsorption Theory

Formation of secondary valence bonds

ightarrow good wettability necessary

Silane Coupling Agent

Generation of Adhesion between LSR-TP: Selfbonding LSR → compatible for PA and PBT

Reactive groups

- → form chemical bond with inorganic material (silicone, glass, metal)
- Methoxy groups
- Ethoxy groups
-

Reactive groups

- → form chemical bond with organic material (thermoplastics)
- Vinyl grups
- Epoxy groups
- Amino groups
-
- → connection of epoxy groups with functional groups of activated PP
- → connection of methoxy-functionalized silane group with the LSR

Material selection

Selfbonding LSR

Elastosil LSR 3071/40 (Wacker Chemie AG)

component A:

contains platinum catalyst

component B:

contains crosslinker & inhibitor

→ mixing ratio: 1:1

Polypropylene:

Material	Brand Name	Company	Properties
Polypropylene	PP Sabic 575P	Sabic	Suitable for food contact application, toys and houseware articles
	PP Purell HP571P	LyondellBasell	Medical devices
	Altech PP-HA A 2020/100 GF 20	Albis Plastic	Glass-fiber reinforced PP, applications in furniture industry

Production of polypropylene components by injection molding process

(full-electric Arburg 370A 600-70/70 Alldrive)

Polymer Application Center

Multicomponent TP-/LSR tool

I & II: cooled areas for TP

III & IV: for LSR component

IV is changable

Surface activation

No adhesion between PP and selfbonding LSR \rightarrow functional groups for interaction

due to surface activation

- → functional groups for interactions
- → allow hydrogen bonds for adhesion

Surface activation by flame treatment (silicatization)

- Flame pyrolytic deposition of amorphous silicate
- Layer thickness 20-40nm
- Precursor (silicon-containing substances)
- Formation of Si-OH groups
 - → Connection of functional groups (e.g. amino groups) to increase the adhesion
- Formation of a very thin, chemically highly reactive layer (glass layer)

Surface activation by flame treatment (silicatization)

Used Parameters: Flame distance: 15mm; activation speed: 0,4m/s

With increasing flame distance

- → aggregation of coating particles
- → less reactivity of larger particles
- → removal of particles in gas flow
- → no involvement in layer deposition
- Mobile table to control flame distance and speed of activation
- ■ Partial storage of thermoplastics before further overmolding with LSR
- • Direct overmolded with LSR → Composite storage at room temperature of LSR-PP

Experimental Plan \rightarrow 2 ways

After surface activation \rightarrow storage of PP and examination of:

- • Wetting behavior by Contact Angle Measurement (DSA-Method)
- Surface roughness by Confocal Scanning Laser Microscopy
- Formation of chemical bonds by FTIR-Spectroscopy

No activation	0 days	1 day	7 days	14 days	28 days

After surface activation → overmolding with LSR and storage of compound

No activation	0 days	1 day	7 days	14 days	28 days

Contact angle measurement by Drop Shape Analysis (DSA-Analysis) → Wetting Behaviour of PP

- \rightarrow a drop of water is applied on the PP surface
- → measurement of contact angle
- →4 samples and 3 drops every batch were measured

Polymer Application Center

Confocal Scanning Laser Microscopy (LEXT, OLS 3100/OLS3000) → Surface Roughness of PP

- Scanning of the sample by focusing laser
- Investigation of stored and direct activated samples
- No sample preparation needed
- Magnification: 500x
- ● 3 samples per batch

FTIR Spectroscopy (Schimadzu, IRAffinity -1S) → Chemical Bonds

- Investigation of stored and direct activated samples
- Examination by Attenuated Total Reflection (ATR)
- Total reflection at the boundary between two optically different media (crystal and specimen)

Crystal: Zinc selenide (ZnSe, 45°)

After Storage → Overmoulding of TP with selfbonding LSR

- $\bigcirc \bullet \bigcirc$ PP was inserted into the machine by hand \rightarrow overmolding with LSR
- Temperature of 140°C for 60s during injection molding process for both components

Peel-Test according to VDI 2019 (Hegewald & Peschke, 5kN, testing speed: 100mm/min.)

- wavy curve
- cohesive failure at LSR
- cohesive failure at LSR after peeling (50%)

A: peeling of the LSR component without residue (adhesive peeling)

B: residue (1 -50%) of LSR on thermoplastic component (cohesive peeling)

C: residue (51-99%) of LSR on thermoplastic component (cohesive peeling)

D: no peeling of the LSR component

→ cohesion crack (Ws max)

Results and Discussion

- ● significant reduction of the values after surface activation for all materials
 - ightarrow increase of the contact angle after storage time
 - → reversible process of flame treatment, but lower values of contact angle than materials without surface activation

Confocal Laser Scanning Microscopy

- $\circ \bullet \circ$ reduction of surface roughness after silicatization \rightarrow increase of the values after storage
- But lower values than materials without surface activation

FTIR-Spectroscopy

Example: PP after silicatization

- Significant changes after silicatization visible
- → Formation of silicon bonds (Si-O-Si, area 1090-1030)
- → Si-NH₂ bonds in the range of 1250-1100 (Amino-group)
- \rightarrow After 28 days storage \rightarrow decrease of the bondings of PP
- → rotation of polymer chains → they are not available for further interactions

- no adhesion without surface activation
- strong adhesion (cohesive peeling) after silicatization
- ● decrease of peel-resistance after storage time but still a strong adhesion up to 1 week (failure type: B & C)

- No adhesion without surface activation
- Increase of the values up to 7 days
- Increase of the values by post-crosslinking of the silicone component and possibly an interdiffusion due to temperature storage
- • Reduction of the values after 2 weeks → post-crystallisation of the PP component and the resulting embrittlement

- No adhesion without surface activation
- Increase of the values up to 3 days
- In comparison with 100°C composite storage
 → faster reduction of the peel-resistance from
 7 days up to 28 days
- Post-crystallisation leads to embrittlement in the material → less adhesion after storage time

Conclusion

Dependence between adhesion and storage of Polypropylene before overmolding with LSR exemplified by PP Sabic 575P

- Decrease of surface roughness after silicatization → increase of the values after storage time → deterioration of adhesion depending on storage time
- Improvement of wetting behaviour after surface activation → storage time leads to an increase in contact angle → decrease of the peel-resistance depending on storage time

Conclusion

- Peel-Test according to VDI 2019 (Storage of the whole compound at 100°C & 120°C)
 - o 100°C: increase of values up to 7 days & a reduction of peel-resistance from 2 weeks \rightarrow post-crystallization of PP
 - o 120°C: increase of values up to 3 days \rightarrow significant reduction in adhesion from 7 days (HDT & post-crystallization)

Due to surface activation...

- Generation of a very good adhesion between LSR an PP (no adhesion without activation)
- Very strong compounds even after storage of the PP component bevor overmolding
- Very strong compound after storage of LSR/PP-compound up to one week (especially for 100°C)

Thank you for your attention

A gecko can run overhead on all surfaces by perfect matched properties of the soles of his feet

www.unipace.de

Back Up

Overview of Silicone Rubber

Differential Scanning Calorimetry of PP after Storage

- Heating up the sample from 0°C to 200°C (10K/min.) → Changes of the heat flow in endothermic direction
- Constant melting temperature for PP reference and the stored thermoplastics
- Increasing melting enthalpy with storage time especially at 120°C → post-crystallization of the material
- ● Post-crystallization could lead to a reduction of the adhesion → embrittlement in the thermoplastic component

