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Kurzfassung

Piezoelektrische Werkstoffe, eine wichtige Klasse kristalliner Materialien, sind grund-

legender Bestandenteil von intelligenten Systemen mit gekoppelten elektrischen und

mechanischen Feldern. Quasikristalle stellen im Gegensatz zu den Piezoelektrika eine

neue Materialklasse dar, die in gewisser Weise die Lücke zwischen kristallinen und

amorphen Materialien schließt und im Rahmen der Kontinuumsmechanik durch zwei

Typen von Feldern, Phonon- und Phasonfelder, beschrieben werden kann. Mittler-

weile ist bekannt, dass Quasikristalle auch piezoelektrische Eigenschaften haben kön-

nen und somit drei gekoppelte Feldtypen in diesen Materialien vorhanden sind. Aus

technischer Sicht sind Quasikristalle und Piezoelektrika aufgrund ihrer vorteilhaften

Eigenschaften interessant, was vielfältiges Anwendungspotential ermöglicht und An-

lass zu intensiver Forschung gibt. Der Fokus dieser Arbeit liegt auf dem Einfluss von

Kopplungseffekten der verschiedenen Felder und der elektrischen Belastung auf das

bruchmechanische Verhalten. Im Zentrum der Betrachtung stehen Risspfade, anhand

derer die Plausibilität von materialspezifischen Modellen, Simulationsverfahren und

bruchmechanische Kriterien bewertet werden. Zu diesem Zweck werden theoretische

Grundlagen im Sinne der Kontinuumsmechanik umfassend entwickelt, die Phonon-,

Phason- und elektrische Felder in piezoelektrischen Quasikristallen einschließen. Die

bruchmechanischen Beanspruchungsgrößen werden für die Materialien verallgemei-

nert und auf der Grundlage analytischer Lösungen in numerischen Methoden umge-

setzt. Zur Simulation des Risswachstums mit einem Neuvernetzungalgorithmus, der

auf einer adaptiven Vernetzungsstrategie in Verbindung mit Finite-Elemente-Software

beruht, werden die klassischen und neu vorgeschlagenen Rissablenkungskriterien im-

plementiert. Anhand der Simulationsergebnisse werden Einflüsse der Kopplungsko-

effizienten und der Konfiguration der Proben sowie der elektrischen Belastung auf

die Risspfade untersucht. Darüber hinaus werden Drei-Punkt-Biegeversuche an ferro-

elektrischen Proben unter verschiedenen Belastungskombinationen durchgeführt. Die

experimentellen Ergebnisse und Aufnahmen des Risswachstumsprozesses mit einer

Hochgeschwindigkeitskamera enthüllen bemerkenswerte Details.
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Abstract

Piezoelectric materials, as an important class of crystalline materials, are fundamen-

tal components of smart systems with coupled electric and mechanical fields. Qua-

sicrystals, in contrast to the piezoelectrics, represent a relatively new class of materials

which, in a sense, fills the gap between crystalline and amorphous materials and can

be described in the framework of continuum mechanics by two types of fields, phonon

and phason fields. Meanwhile, it is already known that quasicrystals can also have

piezoelectric properties and consequently three coupled field types are present in these

materials. From the technical point of view, quasicrystals and piezoelectrics are inter-

esting due to advantageous properties, which allow diverse potential applications and

give rise to intensive research. The focus of this thesis is on the influence of coupling

effects of the different fields and the electrical loading on the fracture mechanical be-

havior. The major objective is crack paths, based on which the plausibility of material-

specific models, simulation methods and crack deflection criteria are evaluated. For

this purpose, a comprehensive framework in terms of continuum mechanics is devel-

oped, including phonon, phason, and electric fields in piezoelectric QCs. The fracture

mechanics quantities are generalized for the materials and based on the closed-form

solutions they are implemented into numerical methods. To simulate the crack growth

by using a re-meshing algorithm, which relies on an adaptive meshing strategy in con-

junction with finite element software, the classical and new proposed crack deflection

criteria are implemented. The influence of the coupling coefficients and the configura-

tion of specimens as well as the electrical loading on crack paths is investigated based

on the simulation results. In addition, three-point bending tests are performed on ferro-

electric specimens under different loading combinations. The experimental results and

the recording of the crack growth process with a high-speed camera show remarkable

details.
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1. Introduction

Smart materials, also known as intelligent materials, have drawn the interest of many

researchers in scientific and industrial communities. Analogous to biological materi-

als, they are able to adapt their behavior or functionality to the variation of external

stimuli. One of the most well-known responses of external stimuli in smart materi-

als is deformation, which leads to applications as actuators (in response to an electric

field) and shape memory materials (in response to a magnetic field or a temperature

change), where the movement of parts is caused by intrinsic physical properties rather

than complex mechanisms. The study and research of smart materials is thus highly

multidisciplinary, including e.g., electronics, magnetics, chemistry, etc. Multi-field

problems shall be considered in these situations.

Ferroelectric materials, as one class of the most important smart materials, were dis-

covered in single crystal materials in the early 1920s and intensively studied after that.

They belong to the wider class of piezoelectrics, which have been discovered already

in the 1880s for single crystals. Nowadays, ferroelectrics are widely used in our daily

lives and in many advanced industrial products. Ferroelectrics often exhibit coupled

electro-mechanical behavior and in some cases, even thermal and magnetic proper-

ties, which are prevalent in applications, e.g., diesel fuel-injection actuators, ultrasonic

sensors, RAM/memories, energy harvesters and structural health monitoring. In sin-

gle crystalline form, ferroelectrics as ultrasonic transducers offer high quality medical

imaging and diagnosis. Piezoelectric actuators, often in a stacked structure of func-

tional layers, produce a stroke length about 0.1–0.2% of the actuator length with high

position accuracy and very large force compared to the actuator’s size, whereas operat-

ing voltages are in the order of 102–103 V. Due to the electrical/mechanical transition

as own material property and relatively simple structures without moving parts, piezo-

electric actuators have the capability to operate in more complex environments without

concern about friction and wear. To date, the most widely used ferroelectrics are lead

zirconate titanate (PZT) due to their high Curie temperature and large piezoelectric ac-

tivity among all ferroelectrics. However, lead is harmful to the environment and toxic

to humans, which made the research on alternative lead-free ferroelectrics, e.g., barium

titanate (BT) and (KxNa1−x)NbO3 (KNN) recently becoming more popular.

Another class of materials, quasicrystals (abbreviated as QC), is a relatively new type

of material with structures between the conventional crystalline and amorphous solids,

which was discovered four decades ago. Neither like crystals, which have a rigorous

periodic atomic arrangement and a symmetric point group, nor like amorphous solids

such as glass, where the atoms are totally disordered, QCs show long-range orienta-

tional order but no translational symmetry in particular directions, having the atomic

structure being quasiperiodic rather than periodic. Thus, materials with such structures

1



1. Introduction

are called “quasiperiodic crystals” or “quasicrystals”. In QCs, the atomic structure can

be altered, where the quasiperiodic arrangement is influenced going along with atomic

flips, denoted as phason displacements. With the classical displacements denoted as

phonon displacements, QCs present an intrinsic coupled phonon-phason effect. Based

on the deduction from crystallographic analysis, most of quasicrystalline phases be-

long to the class of piezoelectrics, leading to a multi-field coupling problem. The

piezoelectric effect in QCs, despite not having been reported in experiment, can be de-

termined by the quasicrystalline structure and is expected in a quasicrystalline barium

titanate according to recent research.

Since the discovery of the first QC, many quasicrystalline structures have been ob-

served in metallic alloys and also in meteorite as a natural composition. On the other

hand, more and more QCs of various compounds have been successfully prepared in

the laboratory, many of which are stable at room temperature. Recently, quasicrys-

talline structures have also been found in polymers and colloids, which are not as brit-

tle as metallic alloys and are thus called soft matter quasicrystals. While still subject

to very limited research in the physicist’s and chemist’s communities, many promis-

ing applications are considered or have already been introduced, taking advantage of

the beneficial properties of QCs, e.g., low friction coefficient, high hardness, wear and

corrosion resistance, low surface energy density and low thermal conductivity. Due

to these outstanding properties and the fact that larger specimens or structures are still

not available, QCs are often used as fine particles in reinforced materials, as coating

material for non-stick pans and surgical instruments, or as hydrogen storage materi-

als. In this context, QCs can also be used for additive manufacturing, providing an

appropriated strength to the products.

Reliability and durability are two important requirements for all applications of novel

materials. They are particularly critical in applications where a long life is required

or where the component is difficult to replace once damage or failure is sustained.

Ferroelectrics and QCs, as ceramics and metallic alloys in the most cases, are pre-

dominantly brittle at room temperature, where failure may start from damage or micro

cracks and transit to unstable crack propagation or fatigue crack growth. In the case

of ferroelectrics, depending on their specific usage the units are usually exposed to

mechanical loading in combination with e.g., cyclic electric loading or other mixed

loading conditions, making lifetime and structural reliability more difficult to assess.

The fracture behavior of ferroelectrics thus cannot be described within the framework

of fracture theory of conventional non-functional materials. Rather, it must be gener-

alized, taking into account many factors, e.g., the elastic and inelastic strain induced

by electric field, the electric permittivity of the crack or the local state of polarization.

Due to the manufacturing constraints, the majority of QCs are in the form of fine par-

ticles and some large samples can reach a size of up to a few centimeters. As a result,

monolithic QCs are scarcely available for mechanical tests, however, pores and cracks

can be found in bulk QC alloys. Similar to ferroelectrics, QCs have a coupled effect

between the phonon and phason fields, indicating the classical mechanical field and the

quasiperiodic order, respectively. Although no phason type of load can be applied, the

coupling effect influences the conventional stress and displacement. QCs thus exhibit

different fracture behavior from classical materials, which should be investigated.

2



The focus of this work is on macroscopic cracks, in particular crack deflection and

crack paths in coupled materials with phonon, phason and electric fields, in which the

coupling effect and additional electric loading affect crack paths. The generalized lin-

ear elastic framework with piezoelectric and quasicrystalline properties is described

in Chapter 2. In Chapter 3 various fracture parameters and deflection criteria are de-

rived and modified for the application in piezoelectrics and QCs. Fracture boundary

value problems are solved in a finite element framework, providing outputs for com-

puting the fracture parameters in post processing. The crack propagation process is

efficiently simulated by applying a smart adaptive re-meshing algorithm, see Chap-

ter 4. Simulation results for different specimens are given in Chapter 5, where QCs,

piezoelectrics and piezoelectric QCs are considered separately. For QCs, several com-

puted crack deflections with different phonon-phason coupling constants and loading

regimes are presented and crack deflection criteria are discussed. For piezoelectrics,

the classical deflection criteria are proved to be invalid and therefore a modified cri-

terion is introduced based on the pure mechanical energy release rate. A series of

three-point bending tests on ferroelectric specimens is carried out in Chapter 6 and

provides statistically evaluated results, investigating the influence of both positive and

negative electric fields on crack deflection. One of the experiments without electric

loading was recorded with a high-speed camera, providing remarkable details of the

onset and propagation of the crack.

3



2. Theoretical framework

2.1. Some basics of continuum mechanics of elasticity

2.1.1. Index notation

The index notation is used throughout this work for the sake of a succinct formulation

of equations [9]. The indices, as lower case alphabetic subscripts, take all values of

a variable indicated, e.g., the force vector Fi represents the three components F1, F2

and F3. The number of the non-repeated indices indicates the order of the tensor, e.g.,

the electric potential requires no index, classified as a scalar, the Cauchy stress is a

second-order tensor and thus has two indices. Despite a coordinate system not being

intrinsic to a mechanical problem, the Cartesian coordinate system is set as default

choice, where the index runs from one to two for a planar problem or three for a spatial

problem. A repeated index in equations implies the summation over the range of the

index.

In the case of multi-field problems, indices in terms of multi-fields are presented by up-

per case letters, indicating omnibus variables, e.g., the field intensity factors in piezo-

electrics reads

KP = (KII,KI,KIII,KIV), (2.1)

where the first three entities are the stress intensity factors of a crack in a three-

dimensional problem and P = 4 denotes the electric displacement intensity factor

[114].

In some context, a second-order tensor ψij is written in the vector form ψp for the sake

of simplicity, which is called Voigt notation. The index relations between ij and p are

shown in Tab. 2.1. It has to be noted that the sequence of this mapping relationship

may be different in some numerical softwares, a unified assignment in advance is thus

necessary.

p 1 2 3 4 5 6

ij 11 22 33 23 31 12
.

Table 2.1.: Representation of Voigt notation.
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2.1. Some basics of continuum mechanics of elasticity

Figure 2.1.: The linear elastic stress-strain diagram with shadowed area under the line

indicating the stored specific elastic energy.

Differentiation with respect to a coordinate in the index notation is expressed by a

comma in the subscript, e.g., the displacement gradient

ui,j =
∂ui

∂xj
. (2.2)

2.1.2. Linear elasticity

The linear relation between loading and deformation in a solid object is generally

known as Hooke’s law [79]. In a very simple way, if only a tensile stress is applied

and causes elongation of the considered element, referring to the stress–strain curve as

shown in Fig. 2.1, the modulus of elasticity E is given by

E =
σ
ε
, (2.3)

where σ and ε are stress and strain, respectively. This relationship presumes that

the stress is smaller than the yield stress σY , thus only the simple linear behavior is

considered.

For a three dimensional state of stress and strain, the generalized Hooke’s law for a

homogeneous material is

σij = Cijklεkl, (2.4)

where Cijkl is the fourth-order stiffness tensor. In the stress tensor there are six inde-

pendent components due to the symmetric property of the Cauchy stress σij according

to the balance of angular momentum. Since many materials used in engineering struc-

tures have large elastic constants, an infinitely small deformation is assumed, which

lets

εij =
1

2
(ui,j +uj,i) (2.5)

and apparently

εij = εji, (2.6)

5



2. Theoretical framework

leading to six independent components in the strain tensor.

The specific internal energy is expressed as the specific reversible work done by the

stresses in all directions, if no dissipation of energy takes place. The reversible work

is stored within the body in the form of strain energy, which is illustrated in Fig. 2.1

as the gray area for a uniaxial case. Comprising all the components of the stress and

strain tensors in a general case, the specific elastic internal energy u is given by

u =
1

2
σijεij. (2.7)

Based on Eqs. (2.4) and (2.7), the elastic tensor can be rewritten according to

Cijkl =
∂ 2u

∂εij∂εkl
. (2.8)

Taking account of Schwarz’s theorem in Eq. (2.8) and the symmetries of the stress and

strain tensors, the elastic tensor has the following symmetric properties

Cijkl = Cijlk = Cklij = Cjikl, (2.9)

which leads to the number of the independent constants in Cijkl being reduced from

81 to 21 in the most general case of anisotropy and strain coupling. Since the internal

energy density u must be positive due to an arbitrary deformation, the condition

Cijklεijεkl > 0 (2.10)

must be satisfied, which indicates that the elastic tensor is positive definite.

2.1.3. Transformation of coordinates

In many mechanical problems, different coordinate systems are used in order to de-

scribe quantities in an appropriate way. The analysis of the quantities based on differ-

ent coordinate systems only make sense if all the quantities involved are given in the

same frame. Therefore, a general operation has to be introduced for transforming the

quantities from one coordinate system xi to another x̂i. The transformation matrix of a

two-dimensional case, see Fig. 2.2, is defined as

Ωij =�̂ei ·�ej = |�̂ei||�ej|cos(�̂ei,�ej)

=

(
cosϕ sinϕ
−sinϕ cosϕ

)
,

(2.11)

where ϕ is the angle between the coordinate systems, and�ei and �̂ei are the basis unit

vectors of the xi- and x̂i-axis, respectively. The transformation matrix thus presents an

6



2.1. Some basics of continuum mechanics of elasticity

Figure 2.2.: Two orthonormal coordinate systems with a relative angle ϕ .

orthogonal matrix and holds the orthogonality condition

Ωij = Ω−1
ji and thus ΩijΩkj = δik, (2.12)

where δik is the Kronecker delta, which is equal to 1 if i = j and zero if i �= j. Hence,

the tensors of different order referring to the x̂i-coordinate are obtained as

ψ̂ = ψ,

ψ̂i = Ωijψj,

ψ̂ij = ΩikΩjlψkl,

ψ̂ijkl = ΩimΩjnΩkpΩlqψmnpq.

(2.13)

There is another widely used coordinate system, the polar coordinate system, denoted

by the radial coordinate r and the angular coordinate ϕ [167]. Polar coordinates are

especially appropriate and practical if the required field variables are tied to the direc-

tion and length from a center point, e.g., a crack tip. The transformation of a stress

state from a Cartesian coordinate system into a polar coordinate system is illustrated

in Fig. 2.3 and yields the expressions as follows

σrr = σ11 cos2 ϕ +σ22 sin2 ϕ +σ12 sin2ϕ,
σϕϕ = σ11 sin2 ϕ +σ22 cos2 ϕ−σ12 sin2ϕ,
σrϕ = sinϕ cosϕ(σ22−σ11)+σ12 cos2ϕ.

(2.14)

The derivatives can also be transformed from one coordinate to another, e.g., the gra-

dient of a field, given as function in the polar coordinate system, is differentiated by

the x1 and x2 as follows:

∂ f (r,ϕ)
∂x1

=
∂ f
∂ r

∂ r
∂x1

+
∂ f
∂ϕ

∂ϕ
∂x1

= cosϕ
∂ f
∂ r
− sinϕ

r
∂ f
∂ϕ

,

∂ f (r,ϕ)
∂x2

=
∂ f
∂ r

∂ r
∂x2

+
∂ f
∂ϕ

∂ϕ
∂x2

= sinϕ
∂ f
∂ r

+
cosϕ

r
∂ f
∂ϕ

.

(2.15)
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2. Theoretical framework

Figure 2.3.: Illustration of a stress state in orthonormal Cartesian and polar coordinate

systems.

2.1.4. Isotropy and transverse isotropy

As previously introduced, the stiffness tensor Cijkl has not more than 21 independent

constants due to the symmetric properties. If a material has an intrinsic plane of sym-

metry, which implies that the stress–strain relations are identical in some directions,

the number of the independent constants in Cijkl can further be reduced. Many en-

gineering materials show very limited elastic anisotropy and thus can be treated as

isotropic materials. The elastic tensor of an isotropic material reads

Cijkl = λδijδkl +μ(δikδjl +δilδjk), (2.16)

where λ and μ are the Lamé constants and have the relation with the elastic modulus

E and the Poisson’s ratio ν as follows

λ =
Eν

(1+ν)(1−2ν)
and μ =

E
2(1+ν)

. (2.17)

Since any plane in isotropic materials is a plane of symmetry, the elastic constants in

Cijkl are independent of the coordinate system.

Unlike the isotropic materials, a transversely isotropic material has one axis of symme-

try and any plane containing this axis is a symmetry plane, while planes perpendicular

to this axis exhibit isotropic behavior. Setting the x2-axis as the symmetry axis, the

Hooke’s law thus is given by⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ11

σ22

σ33

σ23

σ13

σ12

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C1111 C1122 C1133 0 0 0

C1122 C2222 C1122 0 0 0

C1133 C1122 C1111 0 0 0

0 0 0 C2323 0 0

0 0 0 0 C1313 0

0 0 0 0 0 C2323

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ε11

ε22

ε33

2ε23

2ε13

2ε12

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.18)

with C1313 = (C1111−C1133)/2, whereupon five independent constants are required. It

8



2.1. Some basics of continuum mechanics of elasticity

is noted that the material behavior of a transversely isotropic material in plane prob-

lems is related to the coordinate system, unless the symmetry axis is perpendicular to

the considered plane constituting the isotropic exception. Hence, if another coordinate

system is taken into account, the material constants must be transformed into the new

coordinate system by using Eq. (2.13).

2.1.5. State of plane stress and plane strain

A widespread simplification of a three-dimensional problem, reduced to the one only

involving two dimensions, is often of special importance for less complexity and lower

computational cost. With regard to the stress or strain state being neglected in the third

dimension, there are two possible descriptions, i.e., plane stress and plane strain [79].

Considering a thin plate in the x1-x2 plane loaded by forces in the plane, all stress

components in x3-direction are assumed to be zero, namely σi3 = 0. This description

is called plane stress and the simplified constitutive equations are⎛
⎜⎜⎝

σ11

σ22

σ12

⎞
⎟⎟⎠ =

E′

1−ν ′2

⎛
⎜⎜⎝

1 ν ′ 0

ν ′ 1 0

0 0 (1−ν ′)/2

⎞
⎟⎟⎠

⎛
⎜⎜⎝

ε11

ε22

2ε12

⎞
⎟⎟⎠ (2.19)

for isotropic materials, where E′ = E and ν ′ = ν , and

⎛
⎜⎜⎝

σ11

σ22

σ12

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

C1111− C1133C1133
C1111

C1122− C1122C1133
C1111

0

C1122− C1122C1133
C1111

C2222− C1122C1122
C1111

0

0 0 C2323

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎝

ε11

ε22

2ε12

⎞
⎟⎟⎠ (2.20)

for transversely isotropic (x2-axis as symmetry axis) materials.

Plane strain is a similar simplification just on the contrary side of a plane stress con-

dition, where the dimension of the body in x3-direction is assumed extremely large

and all cross sections along the x3-direction are expected to experience the same in-

plane deformation and stress state. For the case described, the components of the

strain tensor related to x3 is considered as zero and the constitutive equations for trans-

verse isotropy are the same as Eq. (2.18) only with εi3 = 0. For isotropic materials,

Eq. (2.19) can be easily converted into the equations for plane strain by inserting

E′ = E/(1−ν2) and ν ′ = ν/(1−ν).

Another commonly used set of material coefficients for planar problems is κ and μ . κ
is defined as 3−4ν for plane strain and (3−ν)/(1+ν) for plane stress, respectively,

and μ is the shear modulus of elasticity. Thus, E′ for plane strain and plane stress are

unified and expressed by κ and μ as:

E′ =
8μ

1+κ
. (2.21)
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2. Theoretical framework

2.2. Fundamentals of piezo- and ferroelectrics

2.2.1. Piezoelectricity

Piezoelectricity is a property of some classes of i.a. crystalline materials being able

to generate electric charge in response to a mechanical load or, conversely, being de-

formed if an electric field is applied. This linear reversible electromechanical interac-

tion, called (inverse) piezoelectric effect, was discovered by the Curie brothers about

one and a half centuries ago and is only possible in dielectric materials, where the

electric charges cannot freely move [141]. The precondition of a crystalline material

performing piezoelectricity is that its unit cell structure lacks a center of symmetry.

Among 32 existing classes of crystals, there are 21 noncentrosymmetric crystallo-

graphic classes and 20 of them show piezoelectricity [20]. A piezoelectric procedure

in a noncentrosymmetric unit cell is schematically shown in Fig. 2.4, where the ions of

the unit cell leave their equilibrium positions due to the deformation. Consequently, an

electric dipole moment is induced since the centers of the positive and negative charges

are no longer at the same position, leading to a polarized state in the unit cell.

Figure 2.4.: A unit cell of a piezoelectric crystal. The unit cell is in neutral state and

has no polarization (left) until e.g. a compressive stress is exerted (right),

where �P denotes the induced electric dipole moment density known as

(specific) polarization.

In a piezoelectric material, the polarization Pi is proportional to the electric field Ei

Pi = κ0(κr−1)Ei, (2.22)

where κ0 ≈ 8.854×10−12 As/Vm is the permittivity of vacuum and κr is the relative

permittivity of the material [140]. Based on the constitutive relations of dielectrics, an
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2.2. Fundamentals of piezo- and ferroelectrics

electric displacement is introduced as follows

Di = κ0Ei +Pi = κ0κrEi, (2.23)

if no additional polarization is present.

Similar to the Cauchy stress on a surface, the electric displacement on the electric

boundary characterizes the balance of charges

Dini =−ωA, (2.24)

where ω in general is the density of electric charges, the subscript A indicates surface

area and ni is the normal vector of the surface [162].

2.2.2. Ferroelectricity

Among the piezoelectric crystal classes, there is a subgroup of materials, which have

a natural electric polarization in the absence of an external electric field or mechanical

loading [54]. The natural polarization is called spontaneous polarization. This spon-

taneous polarization state can be changed into different directions due to an external

loading and this effect is termed ferroelectricity in analogy to ferromagnetism. Most of

the applied ferroelectrics, e.g., BT, PZT and KNN, have a similar crystalline, so called

perovskite, structure with the chemical formula ABX3, where A and B are two cations

and X is oxygen. Fig. 2.5 shows one unit cell of BT in the tetragonal phase, where the

Ba2+ take the corner positions and O2− sit at the face centers. The Ti4+ ion deviates

from the body center position and thus induces a spontaneous polarization. Heating

the ferroelectrics to a certain temperature, the tetragonal phase transits to a cubic phase

and the Ti4+ atom moves to the body center, whereupon the spontaneous polarization

vanishes and the material loses its ferroelectricity. The critical temperature, called

Curie temperature (Tc), is a material parameter and varies greatly for different material

classes. In the case of BT it is around 120◦C, while for PZT ceramics Tc is between

200◦C and 450◦C [6]. In applications of ferroelectricity, the Curie temperature should

not be surpassed to avoid losing a poling state.

The state of the spontaneous polarization in BT can be altered if the material is sub-

jected to an electric field or a mechanical loading, making both the Ti4+ ion and the

oxygen octahedron leave their stable positions. Once the energy fluctuation induced

by external loads overcomes the energy barrier, where another equilibrium state is

available, the polarization turns into a new direction and keeps the state. All possible

reorientations for polarizations in a tetragonal phase are shown in Fig. 2.6. If a reorien-

tation is driven by an electric loading, it is termed ferroelectric effect and on the other

side, it is a ferroelastic effect if the polarization change is induced by mechanical load-

ings. During the 90◦ direction switching process, the unit cell is deformed, retaining

the length of c parallel to the polarization. The mechanical strain due to the deforma-

tion is inelastic and termed spontaneous strain. Assuming infinitesimal strain while
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a
a

c

Figure 2.5.: A tetragonal unit cell of BaTiO3 shows the spontaneous polarization de-

noted as P0.

c/a≈ 11, the spontaneous strain of a tetragonal unit cell induced by a 90◦ switching is

approximated by

εD =
c−a

a0
, (2.25)

where a0 denotes the edge length of a cubic cell above Tc [118]. Compared to the

spontaneous strain of magnitude between 1% to 5% [25], the electrostrictive strain

is much lower, e.g., maximum 0.4% for PIC-151 material [162]. Apparently, a 180◦
switching is not accompanied by unit cell deformation and thus cannot take place as a

result of mechanical stresses but only of an electric field against the poling direction.

The required electric field is called coercive field Ec.

Industrial ferroelectric devices are commonly polycrystals and have domain structures,

in which the polarization states of the domains are initially not aligned. High resolu-

tion pictures and schematic illustrations of domain structures can be found in [141].

Although every domain in polycrystals has its own polarization, the materials may not

show any polarization on the macroscopic level, since the randomly distributed po-

larization states are neutralized. Applying a sufficiently large electric field, normally

much higher than Ec, the domains switch their polarization directions predominantly

along the electric field and the polycrystals thus manifest a macroscopic polarization.

This process is called poling and the macroscopic polarization state of the polycrystals

is designated as poling direction.

Since the 90◦ domain switching changes the shape of unit cells, structural mismatch is

induced between the adjacent domains. Driven by the mismatch, damage and cracks

tend to be initiated and emanated [57, 75, 119]. The ferroelectric nonlinear behavior

with the additional electric field singularity at the crack tip makes the fracture mechan-

ical understanding and the calculation of loading quantities in a crack assessment more

complex.

1for example, a = 3.9932±0.0002Å and c = 4.0341±0.0003Å for BT [120]
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2.2. Fundamentals of piezo- and ferroelectrics

Figure 2.6.: The spontaneous polarization �P (arrow) switches in a BT unit cell. The

ions of the unit cell are omitted here except for the Ti4+ as a solid black

dot near the body center position. Two types of domain switching, 180◦
and 90◦, are illustrated. While a 90◦ switching can be induced by applying

a mechanical load or an electric load, a 180◦ switching is only caused by

an electric field.

2.2.3. Constitutive equations of piezoelectrics

The first law of thermodynamics for a closed system written in differential form is

given as

du = dw+dq, (2.26)

where w and q are the specific work done by e.g. stress and electric field and the

specific heat exchange, respectively. Confining the system as isentropic (ds = 0), it

yields

dw = dwrev and dq = 0, (2.27)

which means that the system is adiabatic and without dissipative specific work. Thus,

du = dwrev. (2.28)

wrev is the specific reversible work and consists of two parts in piezoelectrics, i.e.

dwrev = dwm +dwe, (2.29)

where the superscripts m and e denote the mechanical and electrical parts, respectively.

Considering a driving force on the electric charges in an electric field Ei and introduc-

ing the electric displacement (electric flux density) Di, which describes the charge per
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unit area and constitutes the work associated quantity, the electric work dwe reads

dwe = ωEidli = EidDi (2.30)

with dli as an incremental length along the electric field and ω as the surface density of

electric charge. Substituting the differential form of Eq. (2.7) and Eq. (2.30) into Eqs.

(2.29) and (2.28), the specific internal energy in a reversible process is obtained:

du = σijdεij +EidDi. (2.31)

Besides u(εij,Di), another important thermodynamic potential in piezoelectric me-

chanics, the specific electric enthalpy Π, depending on the conjugate variable Ei, is

derived applying the Legendre transformation to the internal energy density:

Π(εij,Ei) = u−EiDi =
1

2
σijεij− 1

2
EiDi (2.32)

and in differential form:

dΠ = du−EidDi−DidEi = σijdεij−DidEi. (2.33)

The total differential of the electric enthalpy density with respect to the associated

variables is

dΠ =

(
∂Π
∂εij

)
Ei

dεij +

(
∂Π
∂Ei

)
εij

dEi (2.34)

and comparing to Eq. (2.33), the stress and electric displacement are expressed as

σij =

(
∂Π
∂εij

)
Ei

,

Di =−
(

∂Π
∂Ei

)
εij

.

(2.35)

The state variables as subscripts outside the parentheses imply that the terms hold by

constant electric field or strain. The stress σij and the electric displacement Di are

further differentiated by the variables εij and Ei, considering their total differentials:

dσij(εkl,Ek) =

(
∂σij

∂εkl

)
Ek

dεkl +

(
∂σij

∂Ek

)
εkl

dEk,

dDi(εkl,Ek) =

(
∂Di

∂εkl

)
Ek

dεkl +

(
∂Di

∂Ek

)
εkl

dEk.

(2.36)
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Substituting Eq. (2.35) into the right sides of Eq. (2.36), the following material con-

stants are derived from the electric enthalpy density:

Cijkl =

(
∂σij

∂εkl

)
Ek

=

(
∂ 2Π

∂εij∂εkl

)
Ek

,

eijk =−
(

∂σij

∂Ek

)
εkl

=−
(

∂ 2Π
∂εij∂Ek

)
=

(
∂Dk

∂εij

)
Ei

,

κik =

(
∂Di

∂Ek

)
εkl

=−
(

∂ 2Π
∂Ei∂Ek

)
εkl

,

(2.37)

where κik represent the dielectric constants and eijk the piezoelectric coefficients, re-

spectively. Similar to the elastic moduli by considering Schwarz’s theorem in Eq.

(2.9), the tensors of dielectric constants and piezoelectric coefficients have symmetric

properties as follows:

eijk = ejik = ekij = ekji,

κik = κki.
(2.38)

Combining Eqs. (2.36) and (2.37) and integrating finite changes of state, where the

material coefficients remain constant, the linear constitutive equations of piezoelectric

materials are obtained as

σij = Cijklεkl− eijkEk,

Di = ekliεkl +κikEk.
(2.39)

The electric enthalpy density according to Eq. (2.32) thus reads

Π(εij,Ei) =
1

2
Cijklεijεkl− eijkEkεij− 1

2
κikEiEk. (2.40)

Nonlinear ferroelectric constitutive behavior is readily obtained from Eq. (2.39), intro-

ducing inelastic strain ε irr
ij and change of spontaneous polarization Pirr

i due to domain

switching yielding

σij = Cijkl(εkl− ε irr
kl )− eijkEk,

Di = ekli(εkl− ε irr
kl )+κikEk +Pirr

i ,
(2.41)

where εkl now denotes the total strain.

Due to the transversally isotropic behavior in piezoelectric materials in tetragonal

phase, only three piezoelectric and two dielectric constants are required. If the x1-

x3 plane is the isotropic plane and the x2-axis is parallel to the poling direction, the
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material tensors read

ekli =

⎛
⎜⎜⎝

0 0 0 0 0 e121

e112 e222 e332 0 0 0

0 0 0 e233 0 0

⎞
⎟⎟⎠ , e112 = e332, e121 = e233, (2.42)

κik =

⎛
⎜⎜⎝

κ11 0 0

0 κ22 0

0 0 κ33

⎞
⎟⎟⎠ , κ11 = κ33, (2.43)

where the compressed Voigt notation is applied in Eq. (2.42)

2.3. Framework of linear elasticity in quasicrystals

2.3.1. Introduction to quasicrystals

Prior to the discovery of the first quasicrystal in 1982 and the universal acceptation of

the definition in academia, the conceptions of order and periodicity were synonymous

in crystallography, meaning that a crystal is made up of a pattern perfectly repeating

itself and the structure is gapless if no defect is considered [194]. Thus, a crystalline

structure has both rotational and translational symmetry. Due to these restrictions, the

structures or the patterns can only show certain symmetries (2-, 3-, 4- and 6-fold),

which are called crystallographic restrictions [21]. The number of the fold indicates

the ways that the pattern can be rotated to reproduce an identical pattern as the orig-

inal. The periodic constructions of crystals were confirmed with the development of

X-ray crystallography and other experimental techniques. However, the confirmation

by such experiments is mostly implicit. The standard methods, i.e., X-ray and electron

diffraction techniques, shooting X-ray or electrons from different directions towards

specimens, provide diffraction pictures with sharp peaks (Bragg peaks), which can

intuitively indicate the symmetry property of crystals but not the real crystalline struc-

ture. Dealing with the diffraction patterns, some mathematical treatment is required

to finally determinate the crystalline structure. The detailed procedure can be found

in [185].

The understanding of crystals has been challenged by an experimental finding, which

was obtained in 1982 and published two years later [176]. The diffraction pictures

of a rapidly cooled Al alloy with Mn, Fe or Cr, see Fig. 2.7(a), have clear sharp

peaks, which indicate the order of the structure, however, it shows a fivefold symmetry

impossible for crystals. Almost at the same time, a feasible structure with icosahe-

dral lattice based on two unit cells was proposed and the diffraction pattern of this

aperiodic packing was computed [124], see Fig. 2.7(b). The agreement between the

diffraction patterns from the experiment and the calculation points out that the fivefold

symmetric diffraction is not a mistake of crystal twinning, as some crystallographers
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(a) (b)

Figure 2.7.: Diffraction patterns (a) taken experimentally from a single grain Al-Mn

alloy [176] and (b) computed based on an ideal icosahedral model, where

the circles are at the location of Bragg peaks and the sizes are proportional

to their intensity [124].

believed, but that the well-ordered material really exists, although its structure vio-

lates the crystalline symmetry rules. Not like classical crystals with rigorous periodic

atomic/molecular structures, this kind of materials shows long-range orientational or-

der, however, lacks i-dimensional (i=1,2,3) translational periodicity in its spatial struc-

ture. The distribution of atoms/molecules is quasiperiodic and still has crystalline fea-

tures in short order. Hence, the materials with such structures are termed quasiperiodic

crystals, or quasicrystals (QCs) for short [124] and have been officially accepted by

the International Union of Crystallography [3].

The concept of quasiperiodicity is young in crystallography, however, has been famil-

iar to mathematicians for a long time. Quasiperiodic functions, being functions with

a certain similarity to periodic functions but without a strict periodicity, have been

extensively studied in mathematics and provide useful tools for describing the lattice

structure of QCs [96]. Regarding to classical crystals, three independent basis vectors

of the function of periodicity span a reciprocal lattice, which can describe the arrange-

ment of the unit cells and indicate the intensity of the sharp Bragg peaks [194], whereas

the rank of the quasiperiodic functions for QCs is higher than three, leading to more

than three basis vectors. The excessive basis vectors can be considered, in a simple

way, as additional dimensions for representing the quasiperiodicity. One example of

this is a bulk material having many stacked crystalline layers, where the layers are

ordered quasiperiodically in the third direction. It requires four basis vectors for the

corresponding quasiperiodic function, two in the crystalline layer and the other two

in the quasiperiodic direction. The basis vectors can be determined by the diffraction

pattern, being of great importance for the understanding of the quasicrystalline struc-

ture. The details of the mathematic and crystallographic theory in QCs can be found

in [190, 200].
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(a) (b)

Figure 2.8.: (a) A Penrose tiling shows fivefold symmetry [1] and (b) the model of

ZnMgRE is consistent with the Penrose tiling [4]

One of the most famous quasiperiodic structures is the Penrose rhomb tiling [155],

which was constructed by Sir Roger Penrose for purely mathematical purpose and

shows fivefold symmetry, see Fig. 2.8(a). The rhomb tiling consists of two unit parts,

a "skinny" type (36◦ and 144◦) and a "fat" type (72◦ and 108◦). Locally, the tiling is

simply arranged without any gap and the single tile is not just neatly repeated. The

rhombs seem to be constructed randomly, in fact, the structure is predictable based on

a so-called matching rule, which arranges the joint of tiles and ensures the quasiperi-

odicity of the structure [100]. There are also many other types of tilings, e.g., planar

tilings similar to the illustrated rhomb tiling and spatial tilings being generalized from

a two-dimensional tiling [43, 187]. The tilings are not only jigsaw puzzles but corre-

spond to the atomic structures of real QCs. Fig. 2.8(b) shows a structure model of a

decagonal quasicrystal ZnMgRE (RE= rare earth), which exhibits exactly the Penrose

rhomb tiling. This structure was confirmed by using the high-resolution transmission

electron microscopy (HRTEM), which directly observed the arrangement of atoms on

its two-dimensional quasiperiodic lattice plane [4]. More observations of QCs and the

related tilings have been reported, e.g., [86] and [62]. It has to be noted that showing

a forbidden point symmetry in the diffraction pattern is not a rigid judging criterion

of quasiperiodic structures. One of the simple examples is a square Fibonacci tiling

with two-dimensional quasiperiodic arrangement, which has the 4mm crystallographic

point symmetry [127]. Generally, the quasiperiodic structural materials with crystal-

lographic point symmetry are dealt with in the theme of incommensurately modulated

crystals instead of QCs [187].

Since the discovery of the very first QC, which was unstable at room temperature, a

lot of works have been done to find new quasicrystalline materials with useful physical

properties and to prepare stable QCs. The first stable icosahedral QC was discovered

in the system Al-Cu-Li [41]. The first stable decagonal Al-Cu-Co QC was reported in

1988 [82] and the first dodecagonal phase QC in 1994 [29]. All kinds of stable QCs
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(a) (b)

Figure 2.9.: Photographs of single-grain (a) icosahedral Ho-Mg-Zn QC [58] and (b)

decagonal Al-Ni-Co QC [60], grown from the ternary melt (edges of grid

indicate 1 mm).

were deemed in ternary compounds until the first stable binary icosahedral QCs were

found in Ca-Cd and Yb-Cd [18]. Up to date, QCs are known to be formed in more than

100 systems with Al, Ga, Cu, Ca, Ni, Ti, Ta and many other elements [197]. About

50 types of QCs that have been found are stable at room temperature and the number

is still growing [186]. Fig. 2.9 shows two single-grain quasicrystalline samples made

by the researchers of Ames Laboratory (United States Department of Energy National

Laboratory), USA, reported in 1999. These single-grain samples, grown from the

ternary melt, have the size of several millimeters. Especially, the pentagonal facets and

the dodecahedral morphology in Fig. 2.9(a), without any machining process, reflects

its basic symmetry property of the quasicrystalline structure. In order to measure the

physical properties of QCs, many research groups have made an effort for producing

large size single-grain QCs or single crystal approximants of QCs. Approximants are

conventional crystals which have the same type of chemical formula and similar local

structure (atomic cluster) of the related QCs, normally being employed for studies of

the physical properties of QCs [187]. Fig. 2.10 and Fig. 2.11 show several examples of

approximants and the Al-Ni-Co QC with two quasiperiodic directions grown by using

the Czochralski method.

Although QCs are still subject to very basic research in the physicist’s and chemist’s

communities, they manifest many useful properties and promising applications due to

their peculiar structure. Generally, QCs have high hardness and strength and thus are

ideal reinforcement materials in metal or polymer composites [207]. One industrial

example has been developed with icosahedral nanoparticles, called maraging stainless

steel, exhibiting outstanding mechanical properties [129]. Another typical application

in reinforced materials is the rapid prototyping of parts with complex structures made

by selective laser sintering, where icosahedral quasicrystalline powders are used in-

stead of the traditional glass fiber. Fig. 2.12(a) shows an example produced by the

patented rapid prototyping technique, which can be used directly in a real test en-

vironment due to its sufficient strength. Beyond that, the wetting behavior, namely

anti-adhesion and low friction, enable QCs to be prominent surface coating materials

or thin films [40, 66, 108]. Combining other outstanding properties, such as wear and
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Figure 2.10.: Four examples of Czochralski-grown single crystals of the approximants

of Al-Co-Ni [76]. The grid size in a and b is 1 mm.

Figure 2.11.: Examples of single-grain Al-Co-Ni QC grown along (a) the quasiperi-

odic direction and (b) the periodic direction and the corresponding cross-

sections [135].

corrosion resistance, the quasicrystalline coating can be used in many demanding ap-

plications, e.g., surgical scalpels, razor blades or frying pans, see Fig. 2.12(b). Many

other properties of QCs are also in the focus of research and show great potential in

applications, e.g., as optical materials for manipulating color or visibility and as hy-

drogen storage materials [39,109]. More physical properties and possible applications

are summarized in [24, 38].

2.3.2. Phonon and phason fields in QCs

According to Landau’s theory [117], the atoms in crystals, and QCs as well, do not

stay precisely in fixed places of the body. Due to the effect of thermal energy they

oscillate around their equilibrium positions. For an exact statistical description of the
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(a) (b)

Figure 2.12.: (a) A selective laser sintering composite part consisting of a polymer

matrix reinforced by quasicrystalline Al-Cu-Fe particles [110] and (b)

frying pans with quasicrystalline coating, patented as Cybernox, which

is 10 times harder than stainless steel and extremely durable [2].

atomic arrangement and position, a mass density function of an atom at position ri is

introduced [93]. For a periodic structure, the averaged mass density function ρ can be

expressed as a discrete Fourier sum

ρ(ri) = ∑
Gj

ρ(Gj) exp{iGjrj}, (2.44)

where Gj are the basis vectors of the reciprocal lattice and i is the imaginary unit.

The reciprocal lattice represents the Fourier transformation of the real lattice and is

fundamental for crystallographic analysis. The periodicity of crystalline structures is

satisfied by ρ(ri) = ρ(ri+Ri) for every basis vector Ri in the real lattice. Each Fourier

coefficient ρ(Gj) is a complex order parameter, consisting of a magnitude ρGj and a

phase angle φGj:

ρ(Gj) = ρGj exp{iφGj}. (2.45)

The magnitude ρGj is a state parameter, being dependent on the structure of the recip-

rocal lattice and independent of the position ri if the solid is in an unloaded equilibrium

state. The phase φGj has a basic value φ 0
Gj

, indicating that the atoms are at their equi-

librium positions. If the atoms are displaced from their equilibrium positions by uj due

to mechanical loading or thermal motion, the phase angle is modified as follows:

φGj = φ 0
Gj
+Gjuj. (2.46)

The same mathematic description as for "perfect" crystals is adopted for QCs, how-

ever, in a hyperspace due to the additional basis vectors. The corresponding reciprocal

lattice in QCs remains periodic in the hyperspace, being indicated as GJ [12]. The

dimensions of the hyperspace can be divided into two parts, the physical reciprocal

space identified by a superscript ‖ and the mathematical or complementary space by
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Figure 2.13.: A schematic illustration of the phason flip in a planar unit pattern. Each

vertex represents the position of an atom. The unit pattern has two sta-

ble states, where the center atom can be switched between two different

equilibrium positions.

⊥. So Eq. (2.46) is extended in the hyperspace as

φGJ = φ 0
GJ

+G‖j u‖j +G⊥j u⊥j . (2.47)

Here, the index in the physical space runs from 1 to 3 and in the complementary space

from 1 to d, indicating a general (3+d)-dimensional hyperspace or reciprocal lattice

with d being the number of the additional basis vectors. However, the mass density

function describes the distribution of mass only in the physical space, i.e.

ρ(r‖i ) = ∑
GJ

ρ(GJ) exp{iG‖j r‖j }. (2.48)

Therefore, inserting the magnitude and the phase angle according to Eqs. (2.45) and

(2.47) into Eq. (2.48), the mass density function for QCs is obtained as

ρ(r‖i ) = ∑
GJ

ρGJ exp{iG‖j r‖j + iφ 0
GJ

+ iG‖j u‖j + iG⊥j u⊥j }. (2.49)

The total displacement uJ = (u‖j ,u
⊥
j ) in the hyperspace indicates a shift with respect

to an equilibrium position. In the physical space u‖ corresponds to the real atomic

displacement and is called phonon displacement. The term phonon is borrowed from

quantum mechanics, which is a collective excitation in a periodic, elastic arrangement,

describing the motion in a lattice [174]. Its counterpart u⊥ in the complementary space

is a motion in the hyperspace, eventually influencing the mass density function ρ(r‖i )
by changing the phase φGI . It introduces a new degree of freedom in the elasticity

of QCs, denoted as phason displacement. While a phonon displacement is related to

translation of atoms, a phason displacement is associated with rearrangement of atomic

sequences, locally manifested as a flip, where an atom shifts from one position to an-

other one as the result of thermodynamic equilibrium, see Fig. 2.13. The phason flip

can be observed by using high resolution transmission electron microscopy, e.g., a sin-

gle atom flip by heating and cooling processes [46] and rearrangement of the sequence

during growth [142]. Details about the phason field and its physical interpretation can

be found in diverse review papers [32, 182].

A simple paradigm of a hyperspace with quasiperiodic structure in the physical dimen-
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sion is illustrated in Fig. 2.14, intuitively demonstrating the phason displacement as a

special elementary excitation in the higher dimensional space. The two-dimensional

hyperspace consists of one physical dimension�e‖ and one complementary dimension

�e⊥. A so-called cut method or projection method applied to the hyperspace is intro-

duced as a common tool for obtaining a quasicrystalline structure in the physical di-

mension [12]. This method is not a straightforward structural analysis, however, many

mathematical researches show that the hyperspace approach works well for QCs [186].

The periodic pattern, represented by the dots and projected onto the physical dimen-

sion�e‖, builds a quasiperiodic arrangement with different distances conforming to the

Fibonacci series, if the angle between�e‖ and the periodic direction is irrational. The

projected sequence, in which the segments are labeled by “S” for short distance and

“L” for long distance, is a typical arrangement in QCs and has been proven by observa-

tions in [59, 142]. The projection in black describes the initial state of a quasiperiodic

sequence and the red projection sequence is the result when a phason strain w is ap-

plied, which is defined as

w =
∂u⊥

∂x‖
, (2.50)

where x‖ is the coordinate of the physical dimension and u⊥ is the phason displacement

in the direction�e⊥. The applied phason strain in the model of Fig. 2.14 is constant

and interpreted as a rotation ϕ of the sampling stripe from the initial state. Comparing

to the initial black sequence, the distances (S and L) in the red sequence keep their

lengths, however, the arrangement is changed. Accordingly, the phason flips take place

by the exchange of local combinations like SL←→LS.

From the point of view of dynamics in QCs, different models have been introduced

distinguished by the explanation of the motion in the phason field. One argument,

called elastodynamics, is that the phason mode represents structural disorder. Thus, the

equation of the phason motion is of wave type like the phonon field and both fields have

the same mass density [12, 87]. In another assumption termed hydrodynamics [130],

the dynamics of phason represents a type of diffusion with large diffusion time. In

combination of the elastodynamics and hydrodynamics of QCs, two midway models

have been proposed. The elasto-hydrodynamic model takes a wave type phonon field

and a diffusive phason field [53]. In the other model, the elastodynamic model is of

wave-telegraph type, whereas the phason field is represented by waves damped in time

and propagating with finite velocity [7]. However, the physical meaning of the phason

field in QCs is conclusive and there is no difference between the arguments in static

problems.

2.3.3. State variables and linear constitutive relations

Since the phonon and phason are two kinds of elastic degrees of freedom in QCs, a

generalized theory of elasticity is formulated [31, 123]. The phason strain, introduced
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Figure 2.14.: Cut method to construct a quasiperiodic arrangement in the physical

space from a periodic arrangement in a two-dimensional hyperspace. The

phason strain in this case is interpreted as a rotation ϕ of the sampling

stripe from its initial state and the phason flips of SL sequences are in-

duced.

in Eq. (2.50), is given as a second-order tensor

wij =
∂Wi

∂xj
(2.51)

for a general three-dimensional problem, where Wi, as a generalization of u⊥i , is the

displacement vector in the phason field and xj are the coordinates in the physical space.

Since the indices of Wi and xj are allocated to different spaces, the phason strain isn’t

symmetric by nature:

wij �= wji. (2.52)

The elastic free energy density of QCs, given as a function of the phonon and phason

strains [35], can be expanded into a Taylor series. Assuming infinitesimal displace-

ment and neglecting higher order terms, the energy density Φ(εij,wij) consists of three

terms:

Φ(εij,wij) = Φuu +Φww +Φuw

=
1

2
Cijklεijεkl +

1

2
Kijklwijwkl +Rijklεijwkl,

(2.53)

with Φuu, Φww and Φuw being pure phonon, pure phason and coupling energies, re-

spectively. Cijkl is the phonon elastic stiffness tensor, Kijkl is the stiffness tensor in
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2.3. Framework of linear elasticity in quasicrystals

phason space and Rijkl denotes the phonon–phason coupling tensor. Furthermore, the

stiffness and coupling tensors can be expressed by means of partial derivatives, just as

outlined in Eq. (2.37) for piezoelectric problems, i.e.,

Cijkl =
∂ 2Φ

∂εij∂εkl
, Cijkl = Cklij = Cijlk = Cjikl,

Kijkl =
∂ 2Φ

∂wij∂wkl
, Kijkl = Kklij,

Rijkl =
∂ 2Φ

∂εij∂wkl
, Rijkl = Rjikl.

(2.54)

Eqs. (2.54) comprise all symmetry conditions of the constitutive tensors. In particular,

Kijkl and Rijkl exhibit just one symmetric property each. Unlike Cijkl, their indices

are not completely exchangeable due to the absence of the symmetry property in the

phason strain, see Eq. (2.52), and the affiliation of εij and Wij to dissimilar types of

spaces, Schwarz’s theorem thus not being applicable. Throughout this work, the first

two indices of the coupling tensor Rijkl will always be attributed to the phonon field

and the last two to the phason field.

According to Eq. (2.53), the linear governing constitutive equations of QCs are ob-

tained as

σij =
∂Φ
∂εij

= Cijklεkl +Rijklwkl,

Hij =
∂Φ
∂wij

= Rklijεkl +Kijklwkl,

(2.55)

where the stresses, following the order of Voigt’s notation, can be expressed as fol-

lows:

σij = (σ11 σ22 σ33 σ23 σ31 σ12)
T ,

Hij = (H11 H22 H33 H23 H31 H12 H32 H13 H21)
T .

(2.56)

Similar to the phonon stress σij and its traction ti = σjinj, the corresponding phason

terms, a second-order non-symmetric phason stress tensor Hij and the phason traction

hi = Hijnj, are introduced in [35]. It has to be noted that the index i of the phason

stresses Hij and hi is attributed to the complementary space, while the index j repre-

sents the directions in the physical space, corresponding to the respective indices of

the phason strain in Eq. (2.51). Since the phason stress and traction do not have any

physical interpretation within the classical mechanical sense, a boundary value prob-

lem can only be formulated in terms of pure phonon loading and traction-free phason

boundaries. The local form of the angular momentum theorem provides the symmetry

of the phonon stress tensor

σij = σji, (2.57)
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however, there is not a similar momentum equation in the complementary space. Thus,

it is not possible to obtain the symmetry of the phason stress tensor.

2.3.4. 1D, 2D and 3D QCs

The QCs are categorized according to their basic structures into several subclasses,

i.e., pentagonal (p-), octagonal (o-), decagonal (d-), dodecagonal (dd-) and icosahe-

dral (i-) phases. Among of them, the structures in the p-, o-, d- and dd-phase QCs

are quasiperiodic in two dimensions and periodic in the third one. Due to the two

quasiperiodic directions the complementary space has two dimensions with regard to

the hyperspace consideration, whereupon this class of QCs is called two-dimensional

(2D) QC. The icosahedral phase QCs have three quasiperiodic directions and thus be-

long to three-dimensional (3D) QCs. The cubic phase, considered as a quasicrystalline

system in some works, however, is mostly dealt with in the framework of incom-

mensurately modulated structure, since it shows a crystalline point symmetry [187].

To date, no other phases than icosahedron and cube were found in 3D QCs. Most

of the already discovered QCs are icosahedral three-dimensional and decagonal two-

dimensional QCs, which have about 100 and 70 kinds of stable compounds, respec-

tively.

Apparently, 1D QCs are the ones that have a periodic plane and only one quasicrys-

talline axis (QA) being perpendicular to the periodic plane. Based on the points group

theory, the 1D QCs have different phases, i.e., triclinic, monoclinic, orthorhombic,

tetragonal, rhombohedra and hexagonal phases. However, they present the conven-

tional crystalline symmetry in diffraction patterns [202]. In crystallographic analysis,

1D QCs with such phases can be theoretically deduced and explained by the hyper-

space method, whereas in reality, 1D quasicrystalline samples cannot be distinguished

from decagonal 2D QCs due to the limited resolution of observation techniques and

thus have not been experimentally confirmed. Nevertheless, many stable QCs, believed

with one-dimensional quasicrystalline structures, have been reported [198, 214] and

observed [107]. They are transformed from 2D d-QCs after prolonged annealing.

Assuming the x2-axis is the QA, 1D hexagonal QCs are transversely isotropic where

the x2-axis is also the axis of symmetry. Since there is only one phason degree of

freedom, designated as W2, the corresponding phason stresses and strains are

Hij = H2j =(H22 H23 H21)
T ,

wij = w2j =(w22 w23 w21)
T .

(2.58)

According to Eq. (2.55), the material coefficient tensors written in compact general-
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ized Voigt notation and matrix form, respectively, are given as follows:

(
C R

RT K

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C1111 C1122 C1133 0 0 0 R1 0 0

C1122 C2222 C1122 0 0 0 R2 0 0

C1133 C1122 C1111 0 0 0 R1 0 0

0 0 0 C1212 0 0 0 R3 0

0 0 0 0 C1313 0 0 0 0

0 0 0 0 0 C1212 0 0 R3

R1 R2 R1 0 0 0 K1 0 0

0 0 0 R3 0 0 0 K2 0

0 0 0 0 0 R3 0 0 K2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2.59)

where

C1313 =
C1111−C1133

2
,

R1 = R1122 = R3322, R2 = R2222, R3 = R2323 = R1221,

K1 = K2222, K2 = K2323 = K2121.

Accordingly, there are five independent constants in the phonon elastic stiffness tensor,

two in the phason stiffness tensor and three in the phonon–phason coupling tensor,

respectively.

If a planar problem is taken into account and the x1-x2 plane is considered in the plane

stress condition, as introduced in Section 2.1.5, some of the material constants have to

be transformed as follows

Cs
1111 = C1111− C1133C1133

C1111
, Cs

1122 = C1122− C1122C1133

C1111
, Cs

2222 = C2222− C1122C1122

C1111
,

Cs
1212 = C1212,

Rs
1 = R1− C1133R1

C1111
, Rs

2 = R2− C1122R1

C1111
, Rs

3 = R3,

Ks
1 = K1− R1R1

C1111
, Ks

2 = K2.

(2.60)

The major class of 2D QCs, decagonal QCs, were considered as isotropic materials in

the phonon field [35]. However, they exhibit transverse isotropy in experiments [27].

Taking the phason strain in the order as follows

wij = (w1j w2j)
T = (w11 w12 w13 w21 w22 w23)

T (2.61)

with the x3-axis as the symmetry axis and the x1-x2-plane as the quasiperiodic plane,
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the phason elastic tensor and the phonon–phason coupling tensor are represented by

K =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

K1 0 0 0 K2 0

0 K1 0 −K2 0 0

0 0 0 0 0 0

0 −K2 0 K1 0 0

K2 0 0 0 K1 0

0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.62)

and

R =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

R1 R2 0 −R2 R1 0

−R1 −R2 0 R2 −R1 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

R2 −R1 0 R1 R2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (2.63)

There are two independent constants in Kijkl and Rijkl. The phonon elastic tensor takes

the same form as shown in Eq. (2.18).

The phase of the most discovered stable/metastable QCs in all quasicrystalline cate-

gories is icosahedron. Because of the asymmetric property of wij and three quasiperi-

odic directions in i-QCs, there are nine coordinates in the phason field vectors. If the

strain coordinates in wij are arranged in Voigt’s notation as follows

wij = (w11 w22 w33 w23 w31 w12 w32 w13 w21)
T , (2.64)

the phason and phonon–phason coupling elastic coefficient tensors are expressed as

K =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

K1 0 0 0 K2 0 0 K2 0

0 K1 0 0 −K2 0 0 K2 0

0 0 K1 +K2 0 0 0 0 0 0

0 0 0 K1−K2 0 K2 0 0 −K2

K2 −K2 0 0 K1−K2 0 0 0 0

0 0 0 K2 0 K1 −K2 0 0

0 0 0 0 0 −K2 K1−K2 0 −K2

K2 K2 0 0 0 0 0 K1−K2 0

0 0 0 −K2 0 0 −K2 0 K1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.65)
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and

R = R

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 0 0 0 0 1 0

−1 −1 1 0 0 0 0 −1 0

0 0 −2 0 0 0 0 0 0

0 0 0 0 0 −1 1 0 −1

1 −1 0 0 1 0 0 0 0

0 0 0 −1 0 −1 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.66)

with two independent coefficients in Kijkl and only one in Rijkl. The phonon elastic

field of an i-QC is generally accepted as isotropic in crystallographic analyses and can

thus be obtained from Eq. (2.16). The isotropic behavior has been derived from the

quasicrystalline structure and further confirmed by experiments [173]. Nevertheless,

some other experimental results indicate anisotropy in i-QCs, e.g., [44].

Due to the different phases in QCs, the occupancy of the material coefficients in Kijkl
and Rijkl shows different forms. In this work, Eqs. (2.59), (2.62), (2.63), (2.65) and

(2.66) are introduced and only hold for 1D hexagonal QCs, 2D decagonal QCs and

3D icosahedral QCs, respectively. More data for other possible phases can be found

in [35] and [50].

2.3.5. Constitutive equations of piezoelectric QCs

As introduced previously, QCs have various physical properties in addition to the in-

trinsic phonon–phason coupling effect. Generally, the constitutive behavior of QCs

and the material constants including physical properties have been theoretically de-

rived from thermodynamic equilibrium, e.g., QCs with piezoelectricity. Based on the

point group symmetry of QCs, the piezoelectricity and the electric permittivity in dif-

ferent phases of QCs can be determined [78, 87]. Independently, the piezoelectricity

was also predicted by the hyperspace theory [97]. In these analyses, the piezoelectric

tensor eijk and the dielectric tensor κkl take the same forms as those in Eqs. (2.42) and

(2.43). However, the piezoelectric effect is absent in 3D i-QCs.

Although the piezoelectric effect in QCs has been deduced from the point of view of

crystallography, no measurement has been reported. The reason is that QCs have been

found only in some kinds of material systems, e.g., Al-base alloys. None of them ex-

hibits the piezoelectric effect. A few years ago, a series of experiments suggested that

barium titanate deposited on a platinum substrate can form a quasicrystalline struc-

ture under high temperature conditions, being the first quasicrystalline structure in

oxide [62]. Such oxidic QC based on the classic ferroelectric material BT has been

investigated and observed by using scanning tunneling microscopy and other experi-

mental techniques, showing a dodecagonal phase [28,219]. However, it still remains an

open question whether the quasicrystalline film of BT has the same electromechanical

behavior as the ordinary BT ceramic. Further experiments to investigate piezoelec-

tric/ferroelectric properties in QCs are still expected.
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If the BT QC is considered taking the piezoelectric properties of crystalline BT into ac-

count, the generalized electric enthalpy density, containing the terms from the phonon,

phason and electric fields, can be expressed by

Π(εij,wij,Ei) =
1

2
σijεij +

1

2
Hijwij− 1

2
EiDi

=
1

2
Cijklεijεkl +Rijklεijwkl +

1

2
Kijklwijwkl− eijkEkεij− 1

2
κikEiEk,

(2.67)

fusing Eqs. (2.32) and (2.53). The extended constitutive system of equations is thus

obtained as

σij = Cijklεkl +Rijklwkl− eijkEk,

Hij = Rklijεkl +Kijklwkl,

Di = ekliεkl +κikEk,

(2.68)

where the material coefficient tensors have been introduced in Eqs. (2.37) and (2.54).

The direct coupling between the electric field and the phason field has not been re-

ported yet, therefore, it is absent in the constitutive equations.
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3. Linear elastic fracture mechanics in
piezoelectric QCs

Material or structure failure is in the focus of interest, especially in the fields of struc-

tural design and manufacturing. A failure can be caused by preexistent flaws, dam-

age/crack initiation due to overloading, fatigue, or other factors. Classical fracture

mechanics has been studied in these aspects since it was established in the 1920s by

Griffith, who investigated the propagation of brittle cracks in glass [77,95]. Motivated

by industrial applications of structural materials, numerous assessments in classical

fracture mechanics have been developed since, e.g., crack growth and deflection crite-

ria.

Due to electro–elastic and phonon–phason coupling effects, fracture mechanical the-

ories are modified for piezoelectrics and QCs, however, incorporating their inherent

characteristics. Fracture mechanics research in piezoelectrics started in the late 1970s.

In the pioneering works, the integral transformation method was used to solve the

crack problem with pure mechanical loading [154]. A distributed dislocations method

was described [33] for the study of piezoelectric media with cracks based on an ex-

tended Stroh-formalism proposed by Barnett [14]. Later, the solutions in the near tip

field were reported in [147, 152, 192]. Another approach, using a complex potential

method, was suggested specifically for anisotropic materials in [122] and extended

to piezoelectrics for offering a solution of field quantities [146, 183]. A comprehen-

sive introduction of the mathematical fundamentals of these analysis methods can be

found in [195]. Based on the analytical solutions, the fracture loading quantities and

the corresponding fracture criteria for piezoelectric materials have been studied and

discussed [55, 114]. For example, the classical intensity factors concept is extended

to piezoelectrics based on the 1/
√

r-singularity of the electric displacement at the

crack tip [184] and the factors were modified due to the boundary conditions of crack

faces [73], the J-integral was generalized for piezoelectrics [5,164] and the mechanical

energy release rate criterion as a fracture parameter was proposed [153].

There are also a lot of references, dealing with different problems in the extended the-

ory of elasticity and fracture mechanics in QCs. Various boundary value problems

have been investigated by applying the methods that are often used in piezoelectrics,

providing solutions for, e.g., inclusions [69, 177], interfaces [203] and Green’s func-

tions [68, 149]. Some papers address crack problems in QCs, providing fracture me-

chanical loading quantities and the closed-form solutions in the crack tip near field by

using the complex analysis method with conformal mapping [70, 125] or the Fourier

transformation [218]. One of the first rigorous derivations of the J-integral of QC is

found in [206], where also the energy release rate and the crack closure integral are
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3. Linear elastic fracture mechanics in piezoelectric QCs

introduced. The nonlinearity of QCs and dynamic fracture were investigated in [52].

The crack growth problem and the deflection in QCs were handled within a continuum

mechanical framework, investigating the influence of the phonon–phason coupling ef-

fect on crack growth behavior [206]. A classical FEM for QC crack problems has been

developed in [213], a meshless local Petrov-Galerkin approach is applied to dynamic

crack problems in QCs in [179]. A first numerical work on crack growth simula-

tion in QC based on the FEM is published in [204]. Another interesting work, focus-

ing on crack propagation mechanism in QCs, was carried out at the atomic/molecular

level [137].

In the following sections, discussions and solutions are restricted to crack problems in

the context of fracture mechanics. Since piezoelectric ceramics and quasicrystalline

materials are predominantly brittle at room temperature, the plastic deformation is

sufficiently small compared to the crack size and can be limited to a small inelastic

zone in front of a crack tip, the fracture process zone. Under this assumption, crack

problems in piezoelectric QCs are mathematically analyzed within the framework of

generalized linear elasticity.

3.1. Stroh formalism and near-tip field solutions

If a single narrow crack in a planar problem is taken into account, where the crack

length is much greater than the crack opening, stress and displacement fields can be

obtained by considering an elliptical hole with an infinitesimal height. Although the

constitutive behavior in anisotropic materials is more complex than in isotropic mate-

rials, leading to difficulties in this solution scheme applied in piezoelectric QCs, the

elegant closed-form solution of an elliptical hole in anisotropic materials is provided in

two formalisms. The Stroh formalism begins with the displacement field and is stated

in terms of elastic stiffness [188, 189], while the Lekhnitskii formalism begins with

stresses and is based on compliance [122]. The solutions in these two formalisms are

essentially equivalent. Thus, in this work only the solution in the generalized Stroh

formalism is implemented for piezoelectric QCs.

For the sake of compactness, generalized vectors and tensors with uppercase indices,

uI =

⎧⎪⎨
⎪⎩

uI, I = 1,2,3

W(I−3), I = 4,5,6

ϕ, I = 7

, σIj =

⎧⎪⎨
⎪⎩

σIj, I = 1,2,3

H(I−3)j, I = 4,5,6

Dj, I = 7

(3.1)
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3.1. Stroh formalism and near-tip field solutions

and

CIjKl =

⎛
⎜⎜⎝

Cijkl Rijkl eijl

Rklij Kijkl 0

elij 0 −κjl

⎞
⎟⎟⎠ , CIjKl =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

CIjKl, I,K = 1,2,3

RIj(K−3)l, I = 1,2,3;K = 4,5,6

RKl(I−3)j, I = 4,5,6;K = 1,2,3

K(I−3)j(K−3)l, I,K = 4,5,6

eIjl or elIj, I = 1,2,3;K = 7

κjl, I,K = 7

, (3.2)

are introduced, which contain the independent and associated variables as well as the

material coefficients of a general 3D piezoelectric QC problem. The uppercase indices

range from 1 to 7, where I = 1,2,3 indicate the phonon field, I = 4,5,6 the phason field

and I = 7 the electric field, respectively. In the following, a 1D QC planar problem is

considered in the derivation of a general solution, thus, the uppercase index runs from

1 to 4, having two degrees of freedom in the phonon field, one in the phason and one

in the electric field. The phason displacement and stress in this case are degenerated

into scalar and vector quantities, respectively.

In comparison to the strain and the displacement gradient, the electric field Ei is the

negative electric potential gradient

Ei =−∂ϕ
∂xi

, (3.3)

thus changing the signs of eijk and κkl in CIjKl compared to Eq. (2.68).

If a piezoelectric QC is considered without body forces and free electric charges, the

constitutive equations and the static balance equations of momentum and charge are

given as follows

σIj = CIjKl uK,l, (3.4)

CIjKl uK,lj = 0. (3.5)

Hence, the state variables are only related to the coordinates (x1,x2) and the solution

of Eq. (3.5) is assumed to have the form

uK = aKf (z), z = x1 +px2, (3.6)

where f is an arbitrary holomorphic function of z and p and aK are unknown quantities

to be determined subsequently. The origin of the xi coordinate system is at the center

of the crack/elliptical hole, see Fig. 3.1. Differentiating Eq. (3.6)

uK,1 =aK
∂ f (z)
∂x1

= aKf ′(z)

uK,2 =aK
∂ f (z)
∂x2

= aKpf ′(z)
(3.7)
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3. Linear elastic fracture mechanics in piezoelectric QCs

Figure 3.1.: Elliptical hole or crack (b → 0) in an infinite domain with the remote

uniform loads σ∞
Ij .

and substituting into Eq. (3.5) yields

CIjKl(δl1 +pδl2)(δj1 +pδj2)aKf ′′(z) = 0, (3.8)

where the prime denotes the derivative with respect to z. Since f is an arbitrary func-

tion, f ′′(z) is in general nonzero and can be eliminated, leading to

{CI1K1 +(CI1K2 +CI2K1)p+CI2K2 p2}aK = 0, (3.9)

where the three coefficients of the polynomial, CI1K2 +CI2K1, CI1K1 and CI2K2 are

three 4×4 matrices. The latter two coefficients are symmetric and positive definite for

classic materials and QCs. In the case of materials with piezoelectric property, they

are not positive definite because the dielectric constants in CIjKl have a negative sign.

Physically, the nonexistent positive definiteness of piezoelectric problem provides the

option of a negative stored potential energy.

Inherently, Eq. (3.9) is a quadratic eigenvalue problem for a non-trivial solution of aK .

The determinant of the term in braces is an eighth-power polynomial in p, therefore

four pairs of conjugate complex eigenvalues are obtained and the same holds for the

eigenvectors aK . Introducing complex conjugates with a bar, the eigenvalues and -

vectors have the following relations

ℑ{pα}> 0, pα+4 = p̄α , aα+4
K = āα

K (α = 1,2,3,4), (3.10)

where ℑ indicates the imaginary part of the term in the curly braces. Each eigenvalue

pα provides an associated solution aα
Kf α(zα). The superscript index α is temporarily

used here, since the subscript place is occupied. Assuming that the eigenvalues are
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3.1. Stroh formalism and near-tip field solutions

distinct, the general solution of displacements uK according to Eq. (3.6) is obtained by

superposing eight independent solutions

uK =
4

∑
α=1

{aα
Kf α(zα)+ āα

Kf̄ α(z̄α)}. (3.11)

Introducing a matrix and a vector according to

AIJ = aα=J
I and fJ = f α=J(x1 +pα=Jx2) (3.12)

to formally replace the summation in Eq. (3.11), the generalized displacements in a

plane problem are obtained as

uI = AIJfJ +AIJf̄J. (3.13)

Substituting Eq. (3.6) into Eq. (3.4), the generalized stresses are obtained as

σIj = (CIjK1 +pCIjK2)aKf ′(z), (3.14)

and the stress tensor coordinates are given as

σI1 = (CI1K1 +pCI1K2)aKf ′(z),
σI2 = (CI2K1 +pCI2K2)aKf ′(z).

(3.15)

Another vector bI is introduced as

bI = (CI2K1 +pCI2K2)aK =−1

p
(CI1K1 +pCI1K2)aK, (3.16)

whereat the second identity is derived from Eq. (3.9). Thus, the stress tensor coordi-

nates in Eq. (3.15) can be represented as partial differentials of f (z) as follows

σI1 =−bI
∂ f (z)
∂x2

=−∂φI

∂x2
,

σI2 = bI
∂ f (z)
∂x1

=
∂φI

∂x1
,

(3.17)

where φI = bIf (z) is the stress function vector. Analogous to AIJ for the displacements,

a matrix BIJ is constructed as

BIJ = bα=J
I , (3.18)

and the stress function vector is finally given as

φI = BIJfJ + B̄IJ f̄J. (3.19)

In most applications, the unknown functions fJ for different eigenvalues, see Eq. (3.12),
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3. Linear elastic fracture mechanics in piezoelectric QCs

exhibit the same structure [195], leading to

fJ = f (x1 +pα=Jx2). (3.20)

They are determined adapting Eqs. (3.13) and (3.19) to individual boundary condi-

tions. It should be noted that the eigenvalues pα and the matrices AIJ and BIJ depend

exclusively on the properties of the material and are thus denoted as characteristic

eigenvalues and matrices in this work. In transversally isotropic materials with the

x3-axis as symmetry axis, which is perpendicular to the isotropic plane and represents

the poling direction and the QA in piezoelectric QCs, the solution of Eq. (3.9) has

a multiple eigenvalue pα =
√−1 = i and the depicted solutions are therefore invalid.

Such problems are referred to as degenerate problems and a solution in terms of the

Stroh formalism can also be achieved, however, requiring a special mathematical treat-

ment [162, 195].

Since the phason stress is introduced for completing the thermodynamic description,

having no physical interpretation in a structural mechanics sense, it cannot be applied

like a mechanical or electric loading. The phason load H∞
j is thus always zero, consid-

ering e.g. a crack in an infinitely large anisotropic plate with the remote uniform loads

σ∞
Ij . The boundary conditions are{

σIj(z) = σ∞
Ij , |z| → ∞,

φI(z) = constant, z at the ellipse boundary,
(3.21)

where the stress potentials φI at the ellipse boundary are usually set to zero without

loss in generality.

The boundary conditions hold for cracks and holes likewise. In [89] an elliptical hole

with semiaxes a and b (a > b), see Fig. 3.1, is considered to obtain a general solution

for this specific boundary value problem. Applying the conformal mapping method,

the infinite plane described by zK = x1 + pK x2 and exhibiting distinct eigenvalues pK ,

is mapped onto a complex plane, yielding

fI(ζI) =−1

2
ζ ∗IJB−1

JK (aσ∞
K2− ibσ∞

K1) (3.22)

with

ζ ∗IJ =

{
1/ζI, if I = J
0, if I �= J

,

1

ζI
=

zI−
√

z2
I −a2−p2

I b

a+ ipIb
.

(3.23)

The detailed derivation of the general solution Eq. (3.22) and the conformal mapping

method can be found in [89]. Setting the height of the elliptical hole b to zero, Eq.

(3.22) then holds for a crack problem with remote loadings. The final formulations of

the generalized stress and strain fields are obtained by substituting Eq. (3.22) into Eqs.

36



3.1. Stroh formalism and near-tip field solutions

Figure 3.2.: Polar coordinates (r,θ) in the vicinity of a crack tip and the singular field

quantities σij, Di, Hij on the ligament.

(3.6) and (3.19) and using Eq. (3.17):

σI1 = ℜ
{

BIM PS1
MN B−1

NJ
}

σ∞
J2 +σ∞

I1,

σI2 = ℜ
{

BIM PS2
MN B−1

NJ
}

σ∞
J2,

uI = ℜ
{

AIM Pu
MN B−1

NJ
}

σ∞
J2,

(3.24)

where ℜ denotes the real part of a complex quantity in curly braces. PS1
MN , PS2

MN and

Pu
MN are 4×4 diagonal matrices given as follows

PS1
MN = diag

⎛
⎝pK −

zK pK√
z2

K
−a2

⎞
⎠ ,

PS2
MN = diag

⎛
⎝ zK√

z2
K
−a2

⎞
⎠ ,

Pu
MN = diag

(√
z2

K
−a2− zK

)
.

(3.25)

The same boundary value problem can also be solved by applying the Fourier trans-

formation, yielding the same solutions as those provided in Eq. (3.24). This basic

solution scheme was introduced for anisotropic materials [188] and extended for piezo-

electrics [152] and QCs [68].

Since the field quantities near the crack tip are of interest in fracture analysis, it is nec-

essary to modify the formulations of the solutions. Within a polar coordinate system

with the origin at the right crack tip, introduced in Fig. 3.2, the coordinate z in Eq.

(3.6) is transformed into the polar coordinate system

zK = a+ r(cosθ +pK sinθ). (3.26)

In the vicinity of the crack tip, where r is much smaller than the crack length, the

approximation r/a → 0 is established. Inserting the approximation and Eq. (3.26)

into Eqs. (3.24) and (3.25), the near-tip field solutions of the generalized stresses and
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3. Linear elastic fracture mechanics in piezoelectric QCs

displacements for a crack are obtained as

σI1 =−
√

a
2r

ℜ
{

BIM PS1
MN B−1

NJ
}

σ∞
J2,

σI2 =

√
a
2r

ℜ
{

BIM PS2
MN B−1

NJ
}

σ∞
J2,

uI =
√

2ar ℜ
{

AIM Pu
MN B−1

NJ
}

σ∞
J2−aℜ

{
AIM B−1

MJ
}

σ∞
J2,

(3.27)

where PS1
MN , PS2

MN and Pu
MN are simplified from Eq. (3.25) as the functions of the eigen-

values and the polar coordinate angle θ :

PS1
MN = diag

(
pK√

cos(θ)+pK sin(θ)

)
,

PS2
MN = diag

(
1√

cos(θ)+pK sin(θ)

)
,

Pu
MN = diag

(√
cos(θ)+pK sin(θ)

)
.

(3.28)

Eq. (3.27) indicates that the stresses σI1 and σI2 exhibit a r−1/2-singularity near the

crack tip at z =±a. Thus, the constant term σ∞
I1 in Eq. (3.24) disappears in the near-tip

solution. The latter term of uI in Eq. (3.27) represents the solutions of the displacement

and electric potential fields in an infinite plane without any defect being subjected to

the remote loading σ∞
J2. It is therefore ignored in the near-field solutions, where only

crack tip opening displacement is of concern.

3.2. Transformation of the characteristic matrices and
the eigenvalues

The near-field solutions depend on the characteristic matrices and the eigenvalues,

which are direction-dependent in piezoelectric QCs due to anisotropic behavior in the

plane. If a crack propagates, the crack tip might deflect and thus has a different lo-

cal coordinate system compared to the global one. As a consequence, the near-tip

solutions are changed and should be derived from the original solutions via the trans-

formation process basically introduced in Section 2.1.3, where the referred coordinate

system rotates as shown in Fig. 2.2. Within the given multifield context, however, the

transformations have to be extended towards the complementary space and the elec-

tric degree of freedom. Furthermore, the matrices of the Stroh formalism must not be

handled within the context of a dyadic tensor transformation.

See Fig. 3.3 for a 1D piezoelectric QC with the QA in the x1-x2-plane and the coordi-

nates xi rotating around the x3-axis with an angle ϕ relative to x̂i. The 4× 4 transfor-
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3.2. Transformation of the characteristic matrices and the eigenvalues

QA

Figure 3.3.: Local coordinate system x̂i at the tip of a deflected crack with an angle ϕ
relative to the global coordinate system xi.

mation matrix is defined as

ΩIJ =

(
Ωij 0

0 δij

)
and Ωij =

(
cosϕ sinϕ
−sinϕ cosϕ

)
, (3.29)

considering two phonon, one phason and one electric degree of freedom. The diagonal

components in ΩIJ in terms of the electric and phason fields are 1 because the mag-

nitudes of the electric potential and the phason displacements are not affected by the

rotation of the coordinate system. The scalar product of unit vectors, similar to Eq.

(2.11), from different fields, e.g.,�e1 in x1 and�e4 in the electric field, has no physical

significance. Thus, the corresponding components in ΩIJ are zero.

The generalized stress and elastic tensors in terms of phonon, phason and electric fields

are transformed into the new reference coordinate system by

σ̂Ij = ΩIMΩjnσMn (3.30)

and

ĈIjKl = ΩIMΩjnΩKPΩlqCMnPq. (3.31)

Furthermore, the eigenvalues and the material-dependent characteristic matrices of the

Stroh formalism in local coordinates x̂i read

p̂K =
pK cosϕ− sinϕ
pK sinϕ + cosϕ

,

ÂIK = ΩIJAJK,

B̂IK = ΩIJBJK,

(3.32)

which enable the application of the general near-tip solutions in Eq. (3.27) to cracks in

arbitrary directions. The extensive derivation of Eqs. (3.32) is given in Appendix B.
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3. Linear elastic fracture mechanics in piezoelectric QCs

3.3. Fundamental concepts of multiphysical fracture
mechanics

In the case of failure analyses, where only crack-induced failure is considered, assess-

ments referring to various approaches have been developed. The first successful anal-

ysis was that of Griffith in the 1920s, who proposed an energy balance approach [77].

He claimed that crack propagation reduces the elastic strain energy of the system,

which is required for creating new crack surfaces. Later, Irwin developed the energy

release rate in the well-known form [90]. On the other hand, a stress intensity factor

(SIF or K-factor) concept was proposed based on the singular stress fields in front of

the crack tip and the relation between the K-factors and the energy release rate was

derived [91]. In these analyses, a small-scale yielding assumption is introduced, which

implies that the theoretical stress singularity generates a sufficiently small yield zone

in a real material, thus having no effect on elastic solutions. Hence, the K-factors and

the energy release rate are restricted to linear elastic fracture mechanics. In order to

describe the movement of a singularity in an elastic body, such as defects and inho-

mogeneities, a driving force concept was developed in configurational space, either

formulated locally or in terms of an integral of the energy momentum tensor along a

closed contour [49]. If the path of integration contains a crack tip, the driving force

coincides with the J-integral, which is defined as a dissipation rate with infinitesimal

crack advance [157,158]. The relation between the J-integral and the K-factors in lin-

ear elastic fracture mechanics was presented in the referenced work. Extensions of this

relationship were elaborated towards piezoelectric fracture mechanics [5,146,148,192]

and quasicrystals [50, 181, 206].

3.3.1. Generalized stress intensity factors

Characterization of near crack-tip stress fields or loading conditions is the basis of frac-

ture mechanics. Nevertheless, according to Eq. (3.27) the near-tip field stresses exhibit

an inverse square root singularity and thus the stresses are not appropriate for quantify-

ing the loading condition at the crack tip. The asymptotic behavior of the generalized

stress on the ligament approaching the crack tip, however, can be characterized by the

K-factors, which are defined in linear elastic piezoelectric fracture mechanics of QCs

for a general case with all possible degrees of freedom as

(K‖II,K
‖
I ,K

‖
III,K

⊥
II ,K

⊥
I ,K

⊥
III,KIV)

T = lim
r→0

√
2πr(σ12,σ22,σ32,H12,H22,H32,D2)

T(θ = 0).

(3.33)

The K-factors with the superscript ‖ are conventional K-factors for classical structural

materials describing three basic crack opening modes introduced by Irwin [91]. Each

of the basic crack modes is primarily associated with single local crack face displace-

ment as shown in Fig. 3.4 and any fracture condition in a cracked elastic body is

identified by one of the three basic modes or their combinations. The superscript ⊥
indicates that the K⊥-factors are related to the phason field in QC. Compared to the K‖-
factors in the phonon field, the K⊥-factors are not associated with any displacement in
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3.3. Fundamental concepts of multiphysical fracture mechanics

mode I mode II mode III
Figure 3.4.: Illustration of the three basic opening modes of a crack: the normal open-

ing mode (mode I), the in-plane sliding mode (mode II) and the tearing

mode (mode III).

the geometrical/Euclidean space, thus the subscripts of K⊥ do not refer to any basic

crack mode and are just arranged similar to the K‖-factors. KIV is an additional elec-

tric displacement intensity factor defined in accordance with the classical mechanical

K-factors, representing the singular behavior of the electric displacement D2 in front

of the crack tip [192].

The K-factors are universal fracture parameters for arbitrary crack geometries and

loading conditions, characterizing specifically the stress state at a crack tip. Thus, they

are widely used in analyses of fracture mechanics. In general, the K-factors can be de-

termined by various empirical formulae depending on the loading and the geometries

of cracked structures, see [193].

For a Griffith crack, where a crack with a length of 2a is embedded in an infinite elastic

plate subjected to remote tensile loading σ∞
I2, the analytical solutions of the intensity

factors are given as

(K‖II,K
‖
I ,K

‖
III,K

⊥
II ,K

⊥
I ,K

⊥
III,KIV)

T =
√

πa(σ∞
12,σ∞

22,σ∞
32,H

∞
12,H

∞
22,H

∞
32,D

∞
2 )

T . (3.34)

In a planar 1D quasicrystalline case, Eq. (3.34) is degenerated by neglecting K‖III and

two phason K⊥-factors:

KJ = (K‖II,K
‖
I ,K

⊥,KIV)
T . (3.35)

Substituting Eq. (3.34) with the reduction of Eq. (3.35) into the general solutions Eq.

(3.27), the near-tip field solutions are obtained as functions of the K-factors:

σI1 =− 1√
2πr

ℜ{BIM PS1

MN B−1
NJ }KJ,

σI2 =
1√
2πr

ℜ{BIM PS2

MN B−1
NJ }KJ,

uI =

√
2r
π

ℜ{AIM Pu
MN B−1

NJ }KJ.

(3.36)
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3. Linear elastic fracture mechanics in piezoelectric QCs

Specifically, the stresses and displacements according to Eqs. (3.36) are represented by

the K-factors, introducing loading and geometry, and angular functions, being uniquely

defined for a class of materials, not depending on geometry or loading. In detail, the

equations of near-tip multiphysical fields read

σIj =
1√
2πr

(
2

∑
N=1

K‖Nf ‖NIj (θ)+K⊥f⊥Ij (θ)+KIVf e
Ij(θ)

)
,

uI =

√
2r
π

(
2

∑
N=1

K‖Nd‖NI (θ)+K⊥d⊥I (θ)+KIVde
I (θ)

)
,

(3.37)

where fIj are the angular functions of stresses and dI those of the displacements, re-

spectively. Comparing Eqs. (3.36) and (3.37), the generalized angular functions of

piezoelectric QCs are given explicitly with the characteristic matrices as follows

f J
I1 =−ℜ{BIM PS1

MN B−1
NJ },

f J
I2 = ℜ{BIM PS2

MN B−1
NJ },

dJ
I = ℜ{AIM Pu

MN B−1
NJ }.

(3.38)

3.3.2. Generalized energy release rate and crack closure integral

The energy balance approach basically developed by Griffith [77], evolves from the

postulate that the total energy Etot of a dissipative system seeks a minimum. Within

the framework of variational calculus, the condition of stationarity in terms of

δEtot = 0 (3.39)

has to be satisfied, where δ denotes the first variation with regard to the crack length

or surface in a more general context.

The energy balance approach claims that the increased surface energy of crack growth

is provided by the external potential energy associated with the applied forces and

the strain energy stored in the deformed body. The total energy consists of the total

potential energy Utot and the fracture surface energy Uf :

Etot = Utot +Uf . (3.40)

The total potential energy is given as

Utot = Ui +Ua = Ui−Wa (3.41)

with Wa as the work done by the external forces, Ui and Ua as the internal and external

potential works. The surface energy for each crack face is γsBΔa, where γs is the

required energy per unit area to create a new crack surface, B and Δa are the thickness

and the length of the newly-formed crack surface, respectively. Thus the total energy
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is

Etot = Utot +2γsBΔa. (3.42)

Accounting for Eq. (3.39), equilibrium in the dissipative system of an elastic medium

with a crack, exposed to external loads, finally satisfies

∂Etot

∂a
δa =

∂Utot

∂a
δa+2γsBδa = 0, (3.43)

whereat Δa = a−a0. For perfectly elastic materials, the crack hence propagates if the

critical condition
∂Etot

∂a
= 0 (3.44)

is met, giving rise to the crack growth criterion

−∂Utot

∂a
≥ 2γs (3.45)

for unit thickness B = 1.

The left hand side of the inequality (3.45) is called (strain) energy release rate G,

defined by Irwin [91]:

G =−∂Utot

∂a
. (3.46)

The right hand side is accordingly denoted as critical energy release rate or crack

(growth) resistance

GC = 2γs, (3.47)

and is an important material parameter which is commonly used in fracture mechan-

ical analysis. As, in case of a purely mechanical problem, the total potential energy

decreases during the irreversible crack growth process, the energy release rate G is al-

ways positive in this case. The definitions of the potential energies Ui and Ua, however,

are completely open, allowing for including e.g. electrical and phason fields.

The energy release rate can be obtained by considering a virtual crack closure process,

where the crack shape is retained. The work ΔWs needed to close the crack along a

segment Δa→ 0, in case of a reversal of the quasi-static crack growth process, is equal

to the negative reduced potential energy of the system, i.e.

ΔWs =−ΔUtot. (3.48)

In the case of piezoelectric QCs, not only the phonon part but also the phason and

electrical parts are involved in the work Ws. The local work at a point on the closed

crack face (θ = 0 in the local polar coordinate system), see the dashed line in Fig. 3.5,
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3. Linear elastic fracture mechanics in piezoelectric QCs

Figure 3.5.: Derivation of the crack closure integral in self-similar crack growth: the

solid line represents the current crack faces 1© and the dashed line the state

after crack growth 2©. The superscripts, + and −, indicate the upper and

lower crack faces, respectively.

is required for crack closure and is calculated as

dWs(r,0) =
0∫

u+i

F‖+i dx‖i +
0∫

W+
i

F⊥+i dx⊥i −
0∫

ϕ+

Q+dϕ

+

0∫
u−i

F‖−i dx‖i +
0∫

W−
i

F⊥−i dx⊥i −
0∫

ϕ−
Q−dϕ

=− F̄‖+i u+i
2

− F̄⊥+i W+
i

2
+

Q̄+ϕ+

2

− F̄‖−i u−i
2

− F̄⊥−i W−
i

2
+

Q̄−ϕ−

2
,

(3.49)

where the phonon forces F‖i , the phason forces F⊥i and the electric charge Q effectu-

ate respective displacements and electric potentials on the positive and negative crack

faces x‖i ∈ [u±i ,0], x⊥i ∈ [W±
i ,0] and ϕ ∈ [ϕ±,0]. When the crack is completely closed

from state 2© to state 1©, the forces F̄‖i , F̄⊥i and the electric charges Q̄ denote the values

on the ligament at positions (r,θ = 0).

Taking the outward unit normal vectors of the crack faces

ni = (0,∓1)T (3.50)

for the positive and the negative crack face, the forces and the electric charges are then

related to the stresses and the electric displacement as

F̄‖i = σ̄i2n2dA =∓σ̄i2dA,

F̄⊥i = H̄i2n2dA =∓H̄i2dA,
Q̄ =−D̄2n2dA =±D̄2dA,

(3.51)

where the upper sign stands for the positive and the lower sign for the negative crack

surface.
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3.3. Fundamental concepts of multiphysical fracture mechanics

Inserting Eq. (3.51) into Eq. (3.49), the local crack closure work is obtained:

dWs =
1

2
σ̄i2(u+i −u−i )dA+

1

2
H̄i2(W+

i −W−
i )dA+

1

2
D̄2(ϕ+−ϕ−)dA

=
1

2
σ̄I2(u+I −u−I )dA.

(3.52)

Exploiting the asymptotic crack tip solutions, the generalized displacements are always

symmetric with respect to the positive and negative crack faces1, i.e., u+I = −u−I , and

the crack closure work for a finite crack face ΔA is thus determined by the integration

ΔWs =−ΔUtot =
∫

ΔA

σ̄I2u+I dA = B
∫
Δa

σ̄I2u+I dr, (3.53)

where dA = Bdx1 = Bdr in a plane crack problem with B as constant thickness. Re-

ferring to Fig. 3.5, where the displacements uI are taken from the crack faces at

(Δa−r,θ = π) and the tractions are taken from the ligament at (r,θ = 0) [115], where

the bars above the variables can be omitted, the energy release rate G for a plane mul-

tiphysical problem is obtained by substituting Eq. (3.53) into Eq. (3.46):

G = lim
Δa→0

1

Δa

Δa∫
0

(σi2(r,0)u+i (Δa− r,π)+Hi2(r,0)W+
i (Δa− r,π)

+D2(r,0)ϕ+(Δa− r,π))dr.

(3.54)

Taking displacements and stresses from two crack lengths, i.e., a and a+Δa, as shown

in Fig. 3.5, the limit Δa→ 0 is essential for the application of the crack tip solutions

in Eqs. (3.36) to just one crack length a. Eq. (3.54) providing an exact approach, two

different crack lengths are likewise avoided for small, but finite Δa within a numerical

context, which is the idea of the modified crack closure integral (MCCI) [115].

As one result, the energy release rate G is associated with the K-factors employing

Eqs. (3.36). In compact notation, the relation reads

G = lim
Δa→0

1

Δa

Δa∫
0

√
Δa− r

π2r
dr KPYPQ KQ =

1

2
KPYPQ KQ, (3.55)

where

YPQ = ℜ{iAPN B−1
NQ} (3.56)

is the generalized Irwin matrix for piezoelectric QCs. Substituting Eq. (3.56) into uP
according to Eqs. (3.36) with θ =±π , indicating the generalized displacements on the

1An asymmetric crack opening, observed for arbitrary loading, is taken into account considering at

least two terms of William’s series [115].
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3. Linear elastic fracture mechanics in piezoelectric QCs

crack faces, the displacement jump can be expressed as

ΔuP = (Δui,ΔWi,Δϕ)T = 2

√
2r
π

YPQ KQ. (3.57)

Considering the energy associated terms in Eq. (3.54), where the different fields in

piezoelectric QCs contribute to the energy for the assumed crack closure, the energy

release rate is divided into the mechanical part Gm and the electrical part Ge:

Gm = lim
Δa→0

1

2Δa

Δa∫
0

(σi2(r,0)Δui(Δa− r,π)+Hi2(r,0)ΔWi(Δa− r,π))dr,

Ge = lim
Δa→0

1

2Δa

Δa∫
0

(D2(r,0)Δϕ(Δa− r,π))dr.

(3.58)

According to the definition in classical fracture mechanics, the energy release rate G
should be positive in a fracture process, while the theoretical results of the electrome-

chanical and electrical energy release rates G and Ge can be negative, e.g., under pure

or dominating electric loading conditions. Mathematically, negative potential energies

are feasible due to the fact that the generalized stiffness tensor CIjKl of piezoelectric

isn’t positive definite. From the energy point of view, the negative energy release rate

indicates that the structure gains energy from the crack growth process, which contra-

dicts Eq. (3.45), thus not permitting crack growth for the given loading. One physical

interpretation of negative values of G requires considering the induced charges along

the crack faces. Positive and negative charges appear on the crack faces and produce an

attractive Coulomb force, which tends to close the crack [73,163,166]. If the mechan-

ical energy release rate is negative, the analytical solution of the displacement field

will show that the crack faces penetrate each other. Requiring the crack faces to be

separate, Gm should have a positive magnitude [153].

Following the concept of conventional fracture mechanics [132], the second energy

term H is defined by formally replacing σi2, Hi2 and D2 by σi1, Hi1 and D1 in Eq.

(3.54):

H = lim
Δa→0

1

2Δa

Δa∫
0

(σi1(r,0)Δui(Δa− r,π)+Hi1(r,0)ΔWi(Δa− r,π))dr

︸ ︷︷ ︸
Hm

+ lim
Δa→0

1

2Δa

Δa∫
0

(D1(r,0)Δϕ(Δa− r,π))dr

︸ ︷︷ ︸
He

,

(3.59)

again including a mechanical part Hm and an electrical part He. Similar to Eq. (3.55),
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3.3. Fundamental concepts of multiphysical fracture mechanics

H can be expressed in terms of field intensity factors as follows [206]:

H =−1

2
KPSPJYJQ KQ (3.60)

with

SPJ = ℜ{BJNPS1
NM(θ = 0)B−1

MP} (3.61)

and

PS1
NM(θ = 0) = diag(pK). (3.62)

While G is introduced as the energy release rate and has a specific physical meaning,

interpretation of H with respect to crack closure is not known. It is considered to be an

auxiliary quantity, which can be used, e.g., in numerical fracture analysis, particularly

in connection with the J-integral [105].

Referring to cracks in anisotropic materials, the material constants related matrices YIJ
and SIJ are modified by rotating the local coordinate system at the crack tip as the crack

deflects. In this regard, the local YIJ and SIJ have to be calculated repeatedly based on

the local general elastic tensor ĈIjKl or, for saving computational cost, transformed

from the initial state by substituting Eq. (3.32) into Eqs. (3.56), (3.61) and (3.62),

respectively:

ŶIJ = ΩIKΩJLYKL,

ŜIJ = ΩIKΩJLℜ{BLNP̂S1
NM(θ = 0)B−1

MK},
(3.63)

with

P̂S1
NM(θ = 0) = diag(p̂Q). (3.64)

3.3.3. The generalized J-integral

In the following, a rigorous derivation of the J-integral, as an interpretation of the

concept of configurational forces is given in detail, starting from the first law of ther-

modynamics with the specific quantities

du = dwrev +dq+dχ, (3.65)

where the kinetic energy in this quasi-static process is neglected. u and q are the

internal energy and the heat flux densities, respectively. The work of external loads

is separated into the reversible part wrev and the dissipative part χ . Since the specific

electric enthalpy Π according to Eq. (2.32) is taken into account in piezoelectrics as

thermodynamic potential, u is replaced by Π in the following derivation. Inserting

dwrev = σIjdεIj and dq = Tdsa into Eq. (3.65), where T is the absolute temperature and

sa is specific exchange entropy, the specific enthalpy of piezoelectric QCs in Eq. (2.67)

is thus given as

dΠ = σijdεij +Hijdwij−DjdEj +Tdsa +dχ. (3.66)
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3. Linear elastic fracture mechanics in piezoelectric QCs

Assuming an adiabatic system without heat flux, i.e., dsa = 0, the specific dissipative

work is obtained as

dχ = dΠ−σijdεij−Hijdwij +DjdEj. (3.67)

A continuum is considered, including a point defect with a virtual displacement δ zk in

a control volume V . According to Eq. (3.67), the associated dissipative virtual work

in the control volume is

Fkδ zk =
∫
V

δ χdV =
∫
V

(
δΠ−σijδεij−Hijδwij +DjdEj

)
dV, (3.68)

where Fk is a material or configurational force acting at the defect, which raises the

dissipative work. Neglecting inertia and other volumetric forces, the balance equations

σIj,j = 0 are satisfied. With the virtual works

σijδεij = (σijui,k),jδ zk

Hijδwij = (HijWi,k),jδ zk

DjδEj =−(Djϕ,k),jδ zk

(3.69)

and the relation

δΠ = Π,kδ zk = (Πδkj),jδ zk, (3.70)

where δΠ denotes the change of the potential energy due to a virtual defect displace-

ment δ zk, the configurational force of piezoelectric QCs is determined according to

Eq. (3.68) by eliminating δ zk:

Fk =
∫
V

(Πδkj−σijui,k−HijWi,k−Djϕ,k),jdV. (3.71)

The energy-momentum tensor, originally introduced for classical materials [49], is

generalized in this case for piezoelectric QCs as

Qkj = Πδkj−σijui,k−HijWi,k−Djϕ,k. (3.72)

The configurational force in a plane problem is transformed into a contour integral

applying the divergence theorem to Eq. (3.71), obtaining

Fk =
∮
Γ

QkjnjdΓ, (3.73)

where nj is the outward unit normal and the contour Γ is a path enclosing the defect.

It has been proved that the path integral yields the same value as long as the contour

surrounds the same singularity and is zero if the enclosed area is free of any kind of

defect [158]. Hence, the integral is path-independent. Applying Eq. (3.73) to a crack-

like defect, the configurational force is denoted as the J-integral, i.e., Fk = Jk.

Similar to the consideration of Eq. (3.58), dividing the reversible work wrev and the

specific enthalpy Π = Πm +Πe into the mechanical (Πm = σijεij/2+Hijwij/2) and
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3.3. Fundamental concepts of multiphysical fracture mechanics

electrical (Πe = −DiEi/2) parts, the configurational force and the J-integral, respec-

tively, are thus expressed as separate contributions [205]:

Fk = Jk =
∮
Γ

(
Πmδkj−σijui,k−HijWi,k

)
njdΓ

︸ ︷︷ ︸
Fm

k ,J
m
k

+
∮
Γ

(
Πeδkj−Djϕ,k

)
njdΓ

︸ ︷︷ ︸
Fe

k ,J
e
k

. (3.74)

The J-integral is related to the energy release rate via the reduction of total potential

energy δUtot due to virtual crack growth δa, in a plane structure of unit thickness

(B = 1) reading

δUtot =−Jkδ zk =−(Jm
k + Je

k)δ zk =−Gδa =−(Gm +Ge)δa, (3.75)

where δ zk = zkδa with zkzk = 1. Taking into account Eq. (3.68), the mechanical contri-

bution of the J-integral and configurational force, respectively, give rise to one part of

entropy production, which is attributed to the mechanical process of crack growth.

If the crack propagates in x1-direction, i.e.,�z =�e1 the energy release rate corresponds

to the projection of the�J-vector on the�e1 basis vector:

G = J1. (3.76)

For isotropic materials, Eq. (3.76) can be analytically verified by comparing J1, in-

corporating the asymptotic near-tip solutions and integrating along a small contour, to

G calculated from the crack closure integral [157]. Applying the Irwin relationship

Eq. (3.55), J1 is thus readily expressed in terms of intensity factors KN . J2, which is

non-zero in any case of mixed-mode loading, is known to be related to H of Eq. (3.59),

however for a classical KI/KII-problem [132]:

H =−J2. (3.77)

This relation is confirmed just as Eq. (3.76) by introducing K-factors on both sides. It

could further be shown that Eq. (3.77) holds as well for piezoelectrics [205] and QCs

[206]. This gives the opportunity to calculate the Jk-vector of a multiphysical problem

from K-factors, applying Eqs. (3.55) and (3.60), thus sparing the implementation of a

contour integral. Appendix C provides a proof of Eq. (3.77).

Despite Eqs. (3.76) and (3.77) being satisfied in piezoelectric QCs, the separation of

(G,H) and Jk into mechanical and electrical parts are not equivalent. The coordinates

of the path-independent integral Jm
k and the driving force Fm

k , respectively, have differ-

ent interpretations in comparison with Gm and Hm, leading to

Jm
1 �= Gm, Jm

2 �=−Hm. (3.78)

In contrast to the energy release rate and the K-factors, the J-integral can be applied

to crack problems in nonlinear materials, e.g., QCs with plastic properties if they are

heated to more than a few hundred degrees. A further advantage of the application
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3. Linear elastic fracture mechanics in piezoelectric QCs

of the Jk is that the inaccurate treatment in the near-tip field, where the stress/strain

gradients are extremely large, can be avoided by choosing a contour far away from the

crack tip, providing an accurate result of the fracture parameter. Finally, the Jk-vector

provides information not only on the crack tip loading but also on the direction of crack

deflection.

3.4. Crack growth criteria

Except for fatigue issues, cracks tend to propagate when the loading at the crack tip is

beyond a threshold. Stress at the crack tip as a loading quantity, however, is not an ap-

propriate parameter to forecast this phenomenon due to stress singularity. Accounting

for this limitation, the K-factors and the energy release rate are mainly used in fracture

mechanics as criteria for crack assessment. In the case of a pure mode-I loading, the

fracture criterion is

KI = KIC, (3.79)

where KIC is the critical value known as the fracture toughness. It is defined as the

resistance of the material against crack growth and is considered to be independent of

specimen thickness or other geometrical quantities. In a mixed-mode loading case, an

equivalent stress intensity factor KV should be introduced, considering all K-factors,

e.g., for a mixed mode-I/II case, there is a hypothesis

KV =
KI

2
+

1

2

√
K2

I +4(α1 +KII)2 ≤ KIC, (3.80)

where the material parameter α1 =KIC/KIIC is defined as the ratio of the critical values

of mode I and mode II [161].

In ferroelectric materials, the application of the K-factors as fracture parameters re-

quires appropriate modifications based on a deeper understanding of the mechanism

involved in the crack growth process. Many studies have shown that a remote electric

loading, ferroelectric phenomena and loadings on the crack faces can have a major

impact on fracture behavior, e.g., in [55, 196]. In specific, the modification should

be based on two aspects. The first is the impact of the applied loads on the crack tip

toughness

Ktip
IC = Kapp

IC +ΔKI(K
app
I ,Kapp

IV ), (3.81)

where Ktip
IC is the effective toughness at the crack tip and Kapp

IC is the critical value

associated with Kapp
I . Kapp

I and Kapp
IV are functions depending on the applied remote

loading according to Eq. (3.33). The effective toughness at the crack tip Ktip
IC in Eq.

(3.81) differs from the applied critical loading Kapp
IC by ΔKI , which is controlled by

the applied mechanical and electrical loads Kapp
I and Kapp

IV , since there is the crack

tip shielding effect along with the ferroelectric activities due to the domain switching

and the domain wall motion on the mesoscopic scale [74, 164]. On the other hand,

the applied crack tip loading Kapp
I , which is associated with Kapp

IC , also depends on the
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3.4. Crack growth criteria

solution of the selected boundary condition on the crack faces

Kapp
I = f (σ∞

ij ,D
∞
i ,σC

ij ,D
C
i ), (3.82)

where ∞ denotes the remote loads and C the crack medium. The influence of the

tractions on the crack faces on Kapp
I was discussed comprehensively in [74] and the

boundary conditions will be introduced in the following subsection.

From the energy point of view, inequality (3.45) has already provided a criterion of

critical crack growth

G = GC (3.83)

valid in linear elastic fracture mechanics, which further evolves into

Jkzk = JC = GC (3.84)

due to Eq. (3.75).

This energy criterion works well for classical structural materials. However, fracture

behavior in materials with electromechanically or phonon–phason coupled properties

does not necessarily follow this criterion due to the effect of the electric or phason

field on the energy release rate. The crack growth mechanism, which is a mechanical

process, may justify the consideration of the mechanical strain energy release rate

Gm in a fracture criterion for analysis in ferroelectric or quasicrystalline materials,

confining the crack closure only to the mechanical state [55,116,153]. In this case, the

electric field affects the fracture behavior solely as a result of the coupling effect. The

corresponding fracture criterion

Gm = Gm
C (3.85)

is thus established, where the electrical part in the total energy release rate according

to Eq. (3.58) is neglected and possibly also the phason contribution.

It should be noted that the critical values of these two criteria, GC and Gm
C , show dif-

ferent tendencies if a positive electric field is superimposed on mechanical loads, im-

plying an increased resistance in crack propagation on the basis of GC and a decrease

in Gm
C due to the negative value of Ge [164]. It was also confirmed by the fracture

toughness calculated from experimental data in the same work.

Looking closer at the separation displacement of the upper and lower crack surfaces

near a crack tip, where the deformation blunts the initially sharp crack, offers another

fracture criterion

δt = δtc, (3.86)

where δt and δtc are the crack tip opening displacement (CTOD) and its critical value,

respectively [22, 209]. Fig. 3.6(a) illustrates the crack faces, which have been calcu-

lated numerically with nonlinear mechanical behavior in ac. The
√

r-dependent crack

faces in red, which are in the K-factors dominated region and free of any traction, end

at the physical crack tip as shown in Fig. 3.6(a). Between the physical and fictitious

crack tips, the crack faces in blue are governed by a traction-separation law, where

the cohesive stress σ(δt) is a function of the separation δt. Consequently, the stress
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a

{

(a)

(b)

(c)

physical
crack tip

fictitious 
crack tip

Figure 3.6.: (a) Crack faces with crack tip opening displacement at the physical crack

tip. ac is the region where the yield stress σY according to (b) the Dugdale-

model [42] or the interatomic stress according to (c) the Barenblatt-model

[13] is applied.

singularity at the fictitious crack tip is canceled by the cohesive stress σ(δt) and the

K-factors are thus zero. This criterion can also be applied to ductile materials since the

plasticity is intrinsically involved.

The CTOD is mainly investigated in two models with distinct traction-separation laws

governing the displacement-stress relationship on the fictitious crack faces. If the stress

in a plastic zone ac meets the yield stress σY and ideal plasticity is presumed, as shown

in Fig. 3.6(b), this is called Dugdale model. The size of the yield zone depends on

the ratio of the applied loading and the yield stress [42]. For linear elastic materials,

the fictitious part of the crack constitutes the fracture process zone given by Irwin

[90]. In this model, originated in the work of Barenblatt [13], separation at the atomic

level is considered, relating the nuclear force and the separation of atoms as shown

in Fig. 3.6(c). Some other traction-separation laws have also been proposed [151].

This class of models is called the cohesive zone model and has been widely used for

modeling cracks in composites or reinforced materials as well as for simulations of

delamination.

The crack growth criteria based on J and δt are identical. The critical values JC and δtc
are related by the surface underneath the function σ(δt) from 0 to δtc

JC =

δtc∫
0

σ(δt)dδ , (3.87)

as shown in Fig. 3.6(b) and (c), respectively.

The CTOD was also discussed in soft QCs [51] and employed to simulate crack propa-
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3.5. Crack deflection criteria

crack propagation

Figure 3.7.: Crack deflection under mixed-mode loading.

gation in piezoelectrics and ferroelectrics, in particular, by using the Barenblatt-model,

e.g. [113]. In specific, the crack opening δt may be of interest at piezoelectric and ferro-

electric materials if a semi-permeable crack is considered, since an additional Coulomb

force related on δt plays an essential role in the traction-separation law due to the elec-

tric charges on crack faces. While the solution of crack opening in classical materials

subjected to a remote tensile stress can be derived from different methods [150, 157],

for a semi-permeable crack in coupled materials, δ (x) is obtained by superposing the

displacement solution of remote loadings with the one induced by an electric load on

the crack faces.

3.5. Crack deflection criteria

In classical materials with isotropic fracture behavior, the crack grows straightforward

along its ligament in a single mode-I loading case, while the crack deflects under

mixed-mode loading, e.g., a mode-I case is superimposed by mode-II, see Fig. 3.7.

Devices with piezoelectric components mostly operate under combined electrome-

chanical loadings and KII can be induced by pure tensile stress due to the coupling

effect, resulting in a mixed-mode loading case, whereupon crack deflection is a com-

mon occurrence in these materials. Thus, the electric displacement intensity factor KIV ,

as an additional field intensity factor, may also have an indirect effect on crack deflec-

tion. However, the influence of KIV on crack deflection is still a contentious issue. In

anisotropic materials, the mixed-mode crack tip loading is not the only factor inducing

crack deflection. The anisotropic crack growth resistance, e.g., the fracture toughness

or the critical energy release rate, depending on the crack growth direction, leads to a

different deflection angle in comparison with the result based on the isotropic fracture

behavior. For instance, a crack may deflect significantly under pure mode-I loading in

a fiber-reinforced composite, where orthotropic crack resistance prevails [106].

Several crack deflection criteria for isotropic solids have been developed in classical

structural materials, estimating the angle of deflection and crack paths. The criteria

and their validations are summarized in [156, 160]. Two prominent criteria and a third

criterion, which is specially modified for piezoelectrics, will be introduced in the fol-

lowing subsections.
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3. Linear elastic fracture mechanics in piezoelectric QCs

Figure 3.8.: Stress state in polar coordinates around a crack tip.

3.5.1. Maximum hoop stress criterion

One of the most applied crack deflection criteria is the maximum hoop stress crite-

rion, which is considered to work well with brittle materials [48]. According to this

criterion, the crack grows into the direction θ̄ where the hoop stress σθθ reaches its

maximum, see Fig. 3.8. This criterion can be implemented if the hoop stress is formu-

lated as a function of the angle θ :

∂σθθ
∂θ

∣∣∣∣
θ=θ̄

= 0,
∂ 2σθθ
∂θ 2

∣∣∣∣
θ=θ̄

< 0. (3.88)

The near-field hoop stress, related to the K-factors and the angular functions according

to Eqs. (2.14) and (3.36), are inserted into Eq. (3.88). In the case of an isotropic mate-

rial, the crack deflection angle θ̄ can be readily calculated, indicating the dependence

on the ratio of KI and KII:

θ̄ = 2arctan

⎛
⎝1

4

KI

KII
− 1

4

√(
KI

KII

)2

+8

⎞
⎠ . (3.89)

Thus, the crack under pure mode-I loading will propagate in a forward direction and

the deflection angle under pure mode-II loading is ±70.5◦, depending on the direction

of the shear stress near the crack tip.

While the definition of the stress field is unique for conventional crystals, the crack

tip in QCs is subjected to two classes of stress, the phonon and the induced phason

stresses. In this work, only the phonon stresses are taken into account in the maximum

hoop stress criterion, and the phason field has an influence on σθθ due to the coupling

effect, see Eq. (2.68). The same holds for piezoelectrics according to Eqs. (3.36),

where the stress σθθ is influenced by the electric displacement intensity factor.

3.5.2. J-integral vector criterion

The J-integral vector criterion was suggested to use path-independent integrals to study

crack growth problems under mixed-mode loadings [84]. It postulates that the crack
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3.5. Crack deflection criteria

Figure 3.9.: The crack deflection angle θ̄ determined by the J-integral vector criterion.

propagates in the direction of the J-vector (or the configurational force), see Fig. 3.9.

According to Eq. (3.75), the loss of the total potential energy Jkzk takes a maximum if

zk and Jk are linearly dependent, thus leading to a maximum energy release rate. The

deflection angle is accordingly determined by

θ̄ = arctan

(
J2

J1

)
= arctan

(−H
G

)
, (3.90)

where the Eqs. (3.76) and (3.77) are considered. For a conventional material, the

deflection angle according to Eq. (3.90) can be determined by G and H, which are

related to the K-factors. The basic advantage of applying G and H in Eq. (3.90) is that

by applying Eqs. (3.55) and (3.60) the J-integral vector can be calculated without any

contour or equivalent domain integral. Eq. (3.90) is basically applicable to multiphysi-

cal problems, if the total potential energy stored in all degrees of freedom is considered

relevant for crack deflection.

The application of the J-integral vector criterion has the advantage that the anisotropic

material behavior is readily incorporated, not requiring the anisotropic eigenfunctions

of the Williams series. It has been successfully validated on the basis of experimen-

tal findings in classical structural materials of various anisotropic ratios [105, 106].

However, a directional variation of crack resistance requires further modification for

piezoelectric QCs.

The deflection angles versus the ratio of KII/KI based on the introduced deflection cri-

teria are shown in Fig. 3.10. The maximum energy release rate (ERR) criterion, which

has been successfully applied to crack path predictions [88], is also illustrated in the

graph as a third criterion. The deflection angles based on the maximum ERR criterion

in black and the maximum hoop stress criterion in blue are close to each other, show-

ing a coincident tendency with the increased ratio of KII/KI . They are also consistent

with experimental observations. However, the crack deflection angles determined by

the J-integral vector criterion and illustrated in the red dashed line have a significant

deviation in comparison with the other results if the ratio reaches a certain magnitude.

It claims that the deflection reduces dramatically in cases governed by mode-II load-

ing. This unrealistic result (for brittle materials) indicates that the application of the

J-integral vector criterion for predicting crack deflection is only pragmatic under the

KII < KI condition, which is commonly satisfied for critical crack growth.
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Figure 3.10.: Comparison of the crack deflection angles based on different deflection

criteria.

3.5.3. Modified J-integral vector criterion

In one common approach for piezoelectric fracture problems based on the energy re-

lease rate, the electric contribution is neglected in the fracture criterion, see Eq. (3.85).

The J-integral crack deflection criterion accordingly shall also be modified, consider-

ing just the mechanical part as the driving force of crack propagation. The mechanical

part of the J-integral, Jm
k , is taken from Eq. (3.74). The modified J-integral vector

criterion is thus formulated as follows:

θ̄ = arctan

(
Jm

2

Jm
1

)
. (3.91)

In contrast to Eq. (3.90), where J1 and J2 are related to G and H, there is no anal-

ogous relation here due to the inequality according to Eq. (3.78), which is why the

implementation of a contour integral is unavoidable.

3.6. Mechanical and electric boundary conditions on
crack faces

Generally, the crack faces in linear elasticity are free of tractions if the load is not

directly applied there. Thus,

t+i = t−i = σ+
i2 = σ−i2 = 0 (3.92)

at any point of the upper and lower crack faces according to the normal vectors given

in Eq. (3.50). However, possible electric boundary conditions on the crack faces are

numerous. One simple assumption is that the crack interior is considered to possess
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3.6. Mechanical and electric boundary conditions on crack faces

a similar dielectric property as the body [154]. As a result, the electric field is not

disturbed by the crack and the electric potential is continuous across the crack faces:

ϕ+ = ϕ−. (3.93)

In so-called permeable crack model, the electric displacement singularity at the crack

tip and the electric displacement intensity factor are independent of the remote electric

loading and are only induced by the coupling effect.

In contrast to the permeable boundary condition, a crack can be assumed to be totally

circumvented by the electric field, leading to zero electric displacement D2 on crack

faces [146]:

D+
2 = D−2 = 0, and ϕ+ �= ϕ−. (3.94)

Similar to the mechanical boundary condition, the crack faces are free of electric

charge. It implies that the dielectric property of the crack medium is totally neglected.

This crack model with zero permittivity in the crack interior is called impermeable.

The assumption is plausible, since the dielectric constants of piezoelectric materials

are typically about 103 times larger compared to the atmosphere, e.g., vacuum or air.

On the other hand, the crack has an extreme aspect ratio of length and crack opening,

fostering its electric penetration. The singularities of the electric displacement and the

stresses in front of a Griffith crack tip, represented by the K-factors, are independent

of each other.

Later, the electric boundary condition has been modified by considering a limited elec-

tric permeability of the crack interior. A capacitor approach has been proposed [81],

where the crack faces are modeled as a capacitor plates with intrinsic surface charges.

The limited permeability of the electric field determines the relation between the local

crack opening Δu2 and the potential difference Δϕ across the crack faces which have

to satisfy the electrostatic equilibrium, i.e.

D2Δu2 =−κcΔϕ, (3.95)

where κc is the permittivity of the crack medium. Additionally, Maxwell stresses in-

duced by electrostatic tractions on the crack faces have an effect on the loading of

a crack. Due to the nonlinear behavior of the stress-displacement relationship in the

crack interior, a solution can only be obtained from an iterative approach. Several

studies have investigated this boundary condition and employed the capacitor analogy

model for crack tip loading analysis, e.g., [73, 163, 166].

Some other models have been developed, taking the nonlinear electric behavior in

front of the crack tip into account. Analogous to the classical Dugdale model with

assumed ideal plasticity in the plastic zone in front of the crack tip, a strip saturation

model has been proposed [67]. This model takes advantage of the fact that, to a cer-

tain extent, the electric displacement and the electric field phenomenologically play

similar roles as stress and strain, effectuating a constant electric displacement if the

electric field reaches a ‘yielding’ point. A similar saturation model, the strip dielectric

breakdown model, was developed in [216], where the electric field strength saturates
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3. Linear elastic fracture mechanics in piezoelectric QCs

in front of the physical crack tip, as the local electric field is much larger than the di-

electric breakdown strength. Both models avoid the electric singularity at the crack tip,

just as classical cohesive zone models, see Section 3.4, and consider linear elasticity

since piezoelectric materials are generally extremely brittle.

The phason stress in QCs, introduced as an auxiliary quantity for complementing the

constitutive equations, has no classical mechanical interpretation. Thus, a phason

stress cannot be applied as a conventional load and is assumed

hi = 0 (3.96)

on all boundaries. Also, the measurement of the induced phason tractions has not been

published. The homogeneous Neumann boundary condition must therefore be satisfied

for the phason stress on the crack faces:

H+
i2 = H−i2 = 0. (3.97)
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4. Finite element implementation

The finite element (FE) methodology, among other numerical approaches, has been de-

veloped and employed as one of the most important and widespread numerical meth-

ods for solving various boundary value problems of physical models and providing

well approximated solutions [16]. It is an indispensable part, particularly in engineer-

ing analysis, e.g., in mechanics. In solid mechanics, the boundary value problems

governed by balance laws and constitutive equations are presented in an integral for-

mulation (weak formulation), while the entire body is subdivided into finite small sub-

domains (finite elements) according to a discretization procedure, constituting a mesh

structure. The weak formulation is then applied to every single small subdomain. The

governing integral equations are approximated using various weighted residual meth-

ods. The commonly used weighted residual method in solid mechanics is the Galerkin

method, which takes the functional bases as the weighting functions, often a set of first

variations of independent variables [201]. In order to obtain an approximate solution,

the definite integral of a subdomain is replaced by a weighted sum of the function val-

ues at specified points, where weighting factors can be selected based on the Gaussian

quadrature rule. The required values of variables on the subdomains are approximated

by the nodal values and a set of shape functions. The finite element method on a

boundary value problem finally yields a system of algebraic equations. For a given

problem, the accuracy of the approximate solution can be improved by taking either

higher-order shape functions or more elements in discretization. Especially for the

simulation in fracture mechanical problems, an appropriately optimized element mesh

structure is required, since very large and inaccurate values emerge near the crack tip.

In the FE environment, various numerical techniques in post-processing can be applied

based on the output of the approximate solutions. The details of the techniques and the

application in fracture mechanics can be found e.g. in [115].

Many commercial software tools, e.g., Abaqus, provide a solver together with prede-

fined pre- and post-processing tools, which cover most engineering applications. The

pre-processing tools help to define a boundary value problem and discretize the body,

ultimately constructing the required system of algebraic equations, which is numeri-

cally solved in the solver. There are typically several types of built-in elements, in-

cluding common physical properties, which considerably facilitates the job. As far as

fracture mechanics is concerned, post-processing tools can compute fracture loading

quantities in classical materials, e.g., K-factors and the J-integral. Their applications,

however, are typically restricted to simple problems with straight cracks, neglecting

mass inertia or body forces. Unfortunately, the available FE software tools do not have

any built-in element type for QCs, where the degree of freedom in the phason field

and the phonon–phason coupling effect are lacking in the definition of the materials.
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4. Finite element implementation

Furthermore, a post-processing tool for the calculation of fracture loading quantities

in piezoelectric materials is missing, since the effect of an electric field on fracture

behavior is still a controversial issue. Many modifications of the fracture quantities for

structural materials with electric behavior have been proposed and analyzed [55, 216],

however, none has been accepted as a commonly feasible approach.

In order to overcome these limitations, some studies in the framework of FE have been

carried in this work to allow crack growth simulations in piezoelectric QCs. Firstly, the

basic weak formulations for the FE method are derived from the variational principle

of virtual work, where the multi-field materials, including phonon, phason and electric

fields, are considered. Since an element type for QCs is not available, a special USER-

element subroutine was developed in the commercial FE software Abaqus, containing

the desired physical properties and allowing a user self-defined system of algebraic

equations. Secondly, Abaqus cannot calculate fracture quantities from any simulation

job with cracks, if the crack-tip elements have piezoelectric properties. Thus, in this

work some modified methods for calculating fracture loading quantities are taken into

account and are employed in a post-processing tool.

4.1. Numerical solution of the piezoelectric
quasicrystalline boundary value problem via
FEM

4.1.1. Weak formulation and discretization

The weak formulation of piezoelectric QCs, which holds for a computational domain,

is required in order to solve boundary value problems by applying the FE method.

While for dynamic problems it can be derived from the Hamiltonian variational prin-

ciple, for static problems it is equivalent to the variational principle of virtual work,

formulated as

δ
∫
V

wdV−δ
∫
V

ΠdV = 0, (4.1)

where w is the specific work done by external loading and Π is the specific generalized

electric enthalpy of piezoelectric QCs referred to Eq. (2.67). δ indicates the first

variation. The specific virtual work in QCs with piezoelectric property is defined as

δw = tiδui +hiδWi−ωδϕ , (4.2)

where the virtual work of the electric field is derived from Eq. (2.30) with

δϕ =−Eiδ li. (4.3)

Body forces and charge are neglected here. Hence, the weak formulation is obtained
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4.1. Numerical solution of the piezoelectric quasicrystalline boundary value problem via FEM

from Eq. (4.1) by inserting Eqs. (2.67) and (4.2)∫
Γ

t̄iδuidΓ+
∫
Γ

h̄iδWidΓ−
∫
Γ

ω̄δϕdΓ− 1

2
δ

∫
V

(σijεij +Hijwij−DiEi)dV = 0, (4.4)

where the tractions with bar indicate the loading at boundaries Γ. Since the variational

terms, δui, δWi and δϕ , are zero on their Dirichlet boundaries, the integration in Eq.

(4.4) is formulated over the whole surface Γ instead of just their Neumann boundaries.

Substituting the constitutive equations Eq. (2.68) into Eq. (4.4) yields

1

2
δ

∫
V

(
(Cijklεkl +Rijklwkl− eijkEk)εij +(Rklijεkl +Kijklwkl)wij− (ekliεkl +κikEk)Ei

)
dV

−
∫
Γ

t̄iδuidΓ−
∫
Γ

h̄iδWidΓ+
∫
Γ

ω̄δϕdΓ = 0.

(4.5)

With the expansion of the variational derivative, the weak formulation reads

∫
V

(
(Cijkluk,l +RijklWk,l + eijkϕ,k)δui,j +(Rklijuk,l +KijklWk,l)δWi,j

+(ekliuk,l−κikϕ,k)δϕ,i

)
dV−

∫
Γ

t̄iδuidΓ

−
∫
Γ

h̄iδWidΓ+
∫
Γ

ω̄δϕdΓ = 0.

(4.6)

This weak formulation in the FEM is applied to a computational domain and verified

for test functions. The computational domain is normally a single element of mesh

structures. Test functions, in this case, are solutions of the displacements and the

electric potential, approximated by interpolation with a sum of shape functions hα in

each element

uk(xi) =
n

∑
α=1

hα(xi)ũα
k ,

Wk(xi) =
n

∑
α=1

hα(xi)W̃α
k ,

ϕ(xi) =
n

∑
α=1

hα(xi)ϕ̃α ,

(4.7)

where the variables with a tilde are the nodal values of the element. The shape func-

tions must satisfy certain specific conditions, which ensure the required continuous

property and allow the interpolated fields uk, Wk and ϕ to take the nodal values at their

respective positions.
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4. Finite element implementation

Inserting the expressions of Eq. (4.7) into Eq. (4.6) the weak formulation yields the

approximation:

n

∑
β=1

δ ũβ
i

(∫
V

Cijkl

n

∑
α=1

∂hα

∂xl

∂hβ

∂xj
dV ũα

k +
∫
V

Rijkl

n

∑
α=1

∂hα

∂xl

∂hβ

∂xj
dV W̃α

k +
∫
V

eijk

n

∑
α=1

∂hα

∂xk

∂hβ

∂xj
dV ϕ̃α

)

+
n

∑
β=1

δW̃β
i

(∫
V

Rklij

n

∑
α=1

∂hα

∂xl

∂hβ

∂xj
dV ũα

k +
∫
V

Kijkl

n

∑
α=1

∂hα

∂xl

∂hβ

∂xj
dV W̃α

k

)

+
n

∑
β=1

δ ϕ̃β
(∫

V

ekli

n

∑
α=1

∂hα

∂xl

∂hβ

∂xi
dV ũα

k −
∫
V

κik

n

∑
α=1

∂hα

∂xk

∂hβ

∂xi
dV ϕ̃α

)

−
n

∑
β=1

δ ũβ
i

∫
Γ

t̄ihβ dΓ−
n

∑
β=1

δW̃β
i

∫
Γ

h̄ihβ dΓ+
n

∑
β=1

δ ϕ̃β
∫
Γ

ω̄hβ dΓ = 0.

(4.8)

By eliminating the virtual displacements δ ũβ
i and δW̃β

i and the virtual electric poten-

tial δ ϕ̃β , Eq. (4.8) transforms into three balance equations. For the sake of conciseness

and clarity, the index notation is temporarily replaced by the matrix notation and the

equations are written as∫
V

BT
u C BudV {ũ}+

∫
V

BT
u RBwdV{W̃}+

∫
V

BT
u eBedV {ϕ̃}−

∫
Γ

NT
u{t̄}dΓ = 0,

∫
V

BT
wRT BudV{ũ}+

∫
V

BT
wK BwdV{W̃}−

∫
Γ

NT
w{h̄}dΓ = 0,

∫
V

BT
e eT BudV {ũ}−

∫
V

BT
e κ BedV {ϕ̃}+

∫
Γ

NT
e {ω̄}dΓ = 0,

(4.9)

where Bu, Bw and Be are differentiated shape functions for the displacements and the

electric potential of an element and Nu, Nw and Ne are the shape function matrices.

The variable in curly braces indicates a column matrix. {ũ}, {W̃} and {ϕ̃} are the

nodal values of an element. The dimensions of these matrices are dependent on the

selected shape functions and the number of phason degrees of freedom, which varies

from one to three. The matrices of a 1D QC with piezoelectric property are given in

the next subsection.

The generalized stiffness matrix KS is then assembled by different constituents

KS =

⎛
⎜⎜⎝

Kuu Kuw Kue

KT
uw Kww 0

KT
ue 0 Kee

⎞
⎟⎟⎠ (4.10)
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with

Kuu =
∫
V

BT
u C BudV, Kue =

∫
V

BT
u eBedV,

Kee =−
∫
V

BT
e κ BedV, Kuw =

∫
V

BT
u RBwdV,

Kww =
∫
V

BT
wK BwdV,

(4.11)

whereupon the system of algebraic equations according to Eq. (4.9) finally reads

KS Ũ = F̃, (4.12)

with the nodal values of the generalized displacements Ũ = ({ũ} {W̃} {ϕ̃})T and the

generalized loads

F̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∫
Γ

NT
u{t̄}dΓ

∫
Γ

NT
w{h̄}dΓ

−
∫
Γ

NT
e {ω̄}dΓ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (4.13)

4.1.2. Shape functions, generalized stiffness matrices and Gaussian
quadrature for second-order quadrilateral elements

A boundary value problem is transferred into a system of algebraic equations as shown

in Eq. (4.12) for every element, where the shape functions hα have to be defined.

As previously introduced, the selected shape functions should be continuous over the

element as well as at the element edges and represent the nodal values according to

Eq. (4.7). Since the elements in the FE method often have different geometries, it

is difficult to choose a set of appropriate shape functions for each element depending

on its form and size due to an enormous amount of work. This problem is resolved

by transforming the integrations of different elements into one simple element form,

e.g., a regular triangle element or a square element. The simple element is defined

in a local orthogonal coordinate system, called natural coordinate system, whereupon

the shape functions depend only on the natural coordinates. A quadrilateral element

with eight nodes is used in this work. Fig. 4.1 shows an arbitrary element and a uni-

fied simple quadrilateral element in the natural coordinate system (ξ ,η). According

to the isoparametric element concept, which is commonly employed for constructing

polynomial shape functions in the FE method, all geometric nodes are simultaneously

taken into account in the approximate solutions of the displacements and the electric

potential. In other words, each geometric node is allocated a shape function. The

second-order shape functions for an eight nodes quadrilateral element are listed in Fig.
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4.1.

Figure 4.1.: Integral on an element of arbitrary geometry is transformed in the natural

coordinate system. The numbers in circles indicate the nodal index and

for each node there is a shape function hα .

Considering a piezoelectric QC with one phason degree of freedom in the quadrilateral

element, the vectors in Eq. (4.9) are given as

{ũ}= (u1
1 u1

2 u2
1 u2

2 u3
1 u3

2 u4
1 u4

2 u5
1 u5

2 u6
1 u6

2 u7
1 u7

2 u8
1 u8

2)
T ,

{W̃}= (W1 W2 W3 W4 W5 W6 W7 W8)T ,

{ϕ̃}= (ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6 ϕ7 ϕ8)T ,

(4.14)

where the superscripts refer to the nodes and the index of the phason displacement

is neglected due to the single degree of freedom in the phason field. For the given

element type, the shape function matrices and their differential matrices according to

Eq. (4.9) are thus given as

Nu =

(
h1 0 h2 0 h3 0 h4 0 h5 0 h6 0 h7 0 h8 0

0 h1 0 h2 0 h3 0 h4 0 h5 0 h6 0 h7 0 h8

)
,

Ne = Nw =
(

h1 h2 h3 h4 h5 h6 h7 h8
)
,

(4.15)
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and

Bu =⎛
⎜⎜⎜⎝

∂h1/∂x1 0 ∂h2/∂x1 0 · · · ∂h8/∂x1 0

0 ∂h1/∂x2 0 ∂h2/∂x2 · · · 0 ∂h8/∂x2

∂h1/∂x2 ∂h1/∂x1 ∂h2/∂x2 ∂h2/∂x1 · · · ∂h8/∂x2 ∂h8/∂x1

⎞
⎟⎟⎟⎠ ,

Be = Bw =⎛
⎝∂h1/∂x1 0 ∂h2/∂x1 0 · · · ∂h8/∂x1 0

0 ∂h1/∂x2 0 ∂h2/∂x2 · · · 0 ∂h8/∂x2

⎞
⎠ .

(4.16)

According to the transformation into the natural coordinate system, the entries of B are

further derived with the coordinates (ξ ,η) as follows(
∂hα/∂x1

∂hα/∂x2

)
=

(
∂ξ/∂x1 ∂η/∂x1

∂ξ/∂x2 ∂η/∂x2

)
︸ ︷︷ ︸

J−1

(
∂hα/∂ξ
∂hα/∂η

)
, (4.17)

where J−1 is the inverse Jacobian matrix. The Jacobian matrix J, given by partially

differentiating one coordinate system with respect to another, describes the coordinate

transformation. Here, it is defined as the gradient of the global coordinates xi with

respect to the natural coordinates (ξ ,η):

J =
∂ (x1,x2)

∂ (ξ ,η)
=

(
∂x1/∂ξ ∂x2/∂ξ
∂x1/∂η ∂x2/∂η

)
. (4.18)

Substituting the shape functions and the nodal coordinates into Eq. (4.18), the entries

of the Jacobian matrix are

∂xi

∂ξ
=

8

∑
α=1

∂hα

∂ξ
xα

i and
∂xi

∂η
=

8

∑
α=1

∂hα

∂η
xα

i . (4.19)

The determinant of the Jacobian matrix |J| represents the ratio of infinitesimal areas

in the global and the natural coordinate systems. Accordingly, the integral area of the

element holds the relation

dx1dx2 = |J|dξ dη . (4.20)

Thus, the stiffness matrices in Eq. (4.11) can be rewritten for a single element in the

natural coordinate system, where the general volume integral is replaced by an area

65



4. Finite element implementation

integral for a planar problem. For example, Kuu in (ξ ,η) is

Kuu =
∫
x2

∫
x1

Bu(x1,x2)
T C Bu(x1,x2)dx1dx2 =

∫
η

∫
ξ

Bu(ξ ,η)T C Bu(ξ ,η) |J|dξ dη

(4.21)

and other stiffness matrices can be transformed analogously:

Kue =
∫
η

∫
ξ

Bu(ξ ,η)T eBe(ξ ,η) |J|dξ dη

Kee =−
∫
η

∫
ξ

Be(ξ ,η)T κ Be(ξ ,η) |J|dξ dη

Kuw =
∫
η

∫
ξ

Bu(ξ ,η)T RBw(ξ ,η) |J|dξ dη

Kww =
∫
η

∫
ξ

Bw(ξ ,η)T K Bw(ξ ,η) |J|dξ dη .

(4.22)

The domain integrals in Eqs. (4.21) and (4.22) are further approximated by using the

Gaussian quadrature as a standard numerical integral procedure in the FE method. The

Gaussian quadrature is an approximation of the definite integral of a function, stated

as the sum of weighting factors multiplied by the function values at specified points

within the interval of integration [201]. For a simple one-dimensional integral case

with the most common interval [−1,1], the approximation of the Gaussian quadrature

is formulated as
1∫

−1

f (x)dx≈
n

∑
i=1

ωi f (xi)
, (4.23)

where ωi are the weighting factors for the representative integration points. The choice

of the latter, which are commonly also denoted as Gaussian points, and the weighting

factors are outlined in many textbooks, e.g., [201]. For a quadrilateral element with

eight nodes, there are nine integration points for a complete integral approximation.

Fig. 4.2 illustrates the positions of integration points. The natural coordinates of the

points and the corresponding weighting factors are listed in Tab. 4.1.

4.1.3. Numerical examples and verification

Since the standard elements in the FE software Abaqus lack the phason degree of free-

dom, a self-defined USER-element is implemented, incorporating the phonon, pha-

son and electric fields. The required approximation procedure for stiffness matrices

according to Eqs. (4.21) and (4.22) has been so far introduced and thus can be nu-

merically calculated. The calculation is executed in a Fortran subroutine, which is

compatible with Abaqus for constructing the system of algebraic equations for each
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Figure 4.2.: Nine integration points of

two dimensional Gaussian

quadrature in a quadrilat-

eral element.

i ξ η ωi

1 −0.7746 −0.7746 0.3086

2 0 −0.7746 0.4938

3 0.7746 −0.7746 0.3086

4 −0.7746 0 0.4938

5 0 0 0.7901

6 0.7746 0 0.4938

7 −0.7746 0.7746 0.3086

8 0 0.7746 0.4938

9 0.7746 0.7746 0.3086

Table 4.1.: The natural coordinates of

the integration points and

the corresponding weighting

factors.

element and finally for the whole domain. The system of algebraic equations is solved

by the Abaqus solver. Since user-defined elements are not supported by the Abaqus

post-processing, an in-house code is applied for this purpose.

The solutions of the USER-element subroutine have to be verified before they are

employed in the analysis of crack problems in piezoelectric QCs. As a basic fracture

problem, the Griffith crack model is most favorable for verification, since it has a

closed-form solution and the modeling in the FE environment is comparatively simple.

The analytical solutions according to Eq. (3.24), which can be examined by using the

so-called orthogonality relations of AIJ and BIJ [195], are compared with numerical

results. An electric impermeable Griffith crack in a 1D piezoelectric QC, where the

x2-axis is the QA and further represents the poling direction, is taken for verification.

The applied material constants are given in Appendix A.4. Due to the symmetry of the

Griffith crack model and its loading condition, a quarter model with a half crack length

is set up in Abaqus, where the model edge l is much larger than the half crack length

(a = 0.1l) and a remote tensile stress σ∞
22 = 200Pa is applied. The outer boundary of

the model is free of electric charge and phason loading. Thus, the electric field and the

phason field are induced by the mechanical loading due to the coupling effect of the

piezoelectric QCs. The nodal outputs of the phonon and phason displacements as well

as the electric potential on the upper crack face near the crack tip are demonstrated

in Fig. 4.3, and compared to the analytic solutions based on Eq. (3.24). As shown

in Fig. 4.3, the numerical results from Abaqus, which are computed via the USER-

element subroutine with the plane strain condition, are consistent with the closed-form

solutions, whereupon the subroutine is considered to produce accurate results.
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4. Finite element implementation

Figure 4.3.: Comparison of the analytic solutions according to Eq. (3.24) (green line)

and the numerical outputs represented by the plus symbols. The horizontal

axis represents the normalized distance from the crack tip (x = r/a).

4.2. Numerical calculation of crack tip loading
quantities

The fracture mechanical loading quantities, e.g., the K-factors and the J-integral, de-

scribe the specific loading condition at a crack tip and are thus vital for crack growth

simulations. In addition, many crack deflection criteria directly or indirectly depend on

the loading quantities. However, an analytical expression of loading quantities is barely

available for a crack problem. Although many formulae are given in [193], they are of-

ten complex and very specific, and thus cannot be applied in crack growth simulations.

Based on the solutions of the FE method according to Section 4.1, numerical post-

processing tools efficiently and flexibly provide fracture mechanical loading quantities.

Various post-processing methods and the associated mesh structures of discretization

have been developed for accurately calculating the loading quantities [101, 115]. In

general, the straightforward methods, which are based on the stresses and the displace-

ments near the crack tip, cannot avoid the influence of the singularity, leading to less

accurate results. Hence, an indirect method and a modified path-independent integral

are used in this work and briefly introduced in the following subsections.
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4.2. Numerical calculation of crack tip loading quantities

4.2.1. Crack tip element method (CTEM)

The solutions according to Eq. (3.36) provide the relation between K-factors and the

generalized field quantities near the crack tip, allowing the K-factors to be inversely

calculated based on the FE outputs. However, there are two conflicts between the

required FE outputs and the implemented near-tip solutions due to the crack tip singu-

larity, on the one hand side, and the range of validity of the asymptotic solution on the

other, giving rise to an issue of accuracy of the numerical calculation.

An improved element type, called crack tip element, avoids this conflict and thus meets

the requirements of solution quality [15, 85]. This element type is originally a quadri-

lateral element with eight nodes, where three nodes on one side of the element are

collapsed to one point, degenerating from a quadrilateral to a triangular element. The

overlapping points are at the crack tip and such triangular crack tip elements are ar-

ranged circularly around the crack tip. The middle nodes at the element edges are

shifted from the original positions to the quarter positions in the direction of the crack

tip, so that the asymptotic
√

r-behavior is intrinsically included in their displacements

functions [115]. Fig. 4.4 illustrates the degeneration steps of an eight-node element

and Fig. 4.5 shows a mesh structure near the crack tip. It has to be noted that the shape

functions of the crack tip isoparametric elements as well as the natural coordinates are

still the same as in Fig. 4.1, however, with the modified positions of the nodes. Conse-

quently, the generalized displacements of the positive crack face are given in the form

of a polynomial approximation as follows

uP(r) = a0
P +a1

P

√
r
L
+a2

P
r
L
, (4.24)

where a0
P, a1

P and a2
P are three coefficients and the second term characterizes exactly the

square root proportionality of the near-tip displacements on the crack face according

to Eq. (3.27). Substituting r of the nodes A, B and C, displayed in Fig. 4.5, into Eq.

(4.24), gives the nodal displacements as functions of the coefficients aP:

uP(0) = uA
P = a0

P,

uP(L/4) = uB
P = a0

P +
1

2
a1

P +
1

4
a2

P,

uP(L) = uC
P = a0

P +a1
P +a2

P.

(4.25)

Therefore, a0/1/2
P are obtained as

a0
P = uA

P,

a1
P =−3uA

P +4uB
P−uC

P ,

a2
P = 2uA

P−4uB
P +2uC

P .

(4.26)

The CTEM calculates the field intensity factors based on Eq. (3.57), which states that

the calculation does not require the generalized displacements of just one crack face
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crack tip

Figure 4.4.: Modification of an eight-node isoparametric element at the crack tip: (a)

its original form, (b) collapsed into triangular form, (c) two middle nodes

shifted to the quarter position. This type of crack-tip element exhibits a√
r-proportionality of the generalized displacements.

A
BC

L
Figure 4.5.: Mesh structure near the crack tip. Node A is the crack tip, node B is at

a quarter position. The nodes on the middle line in red (crack faces) are

overlapping double nodes from the positive and negative crack faces.

but rather the generalized crack opening displacements ΔuP. Whereas the last term in

Eq. (4.24) can be neglected for r → 0, the second term with the
√

r-proportionality

dominates in the near-tip field. Thus, the crack opening displacements read

ΔuP(r) = (−3ΔuA
P +4ΔuB

P−ΔuC
P)

√
r
L
. (4.27)

The node A is located at the crack tip, where the crack opening displacements are zero,

ΔuP(r) is thus further given as

ΔuP(r) = (4ΔuB
P−ΔuC

P)

√
r
L
. (4.28)

Inserting Eq. (4.28) on the left-hand side of Eq. (3.57), the field intensity factors are

obtained as

KQ =
1

2

√
π
2L

Y−1
QP (4ΔuB

P−ΔuC
P). (4.29)

In this method, the expression of K-factors eludes the 1/
√

r-singularity and thus has

a clear and accurate result. Applying the CTE method in a Griffith crack model in-

troduced in Section 4.1.3, where the analytic solution for the K-factors is given in Eq.
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4.2. Numerical calculation of crack tip loading quantities

Figure 4.6.: Contours of the J-integral;

arrows indicate the orien-

tations of the integration

paths.

Figure 4.7.: An integral path for com-

puting Jk in a FE model in

Abaqus, highlighted in the

deformed geometry.

(3.34), this post-processing tool has a deviation of about 1%, if a very fine mesh near

the crack tip is allocated. Accounting for the modification factor of geometry [193],

which empirically corrects the discrepancy between a bounded finite element model

and the ideal infinite Griffith crack model, the deviation is further reduced to 0.4%.

4.2.2. J-integral

The Jk-vector can be numerically calculated along an integral contour by applying

the path independent integral according to Eq. (3.74) to a crack problem. Generally,

a closed contour can be selected including both crack faces, however, excluding the

crack tip as illustrated in Fig. 4.6. The J-integral is zero without any heterogeneity or

defect in the enclosed domain:

Jk =
∮
Γ

Qkjnj dΓ =
∮

Γa+Γ+−Γε+Γ−
Qkjnj dΓ = 0. (4.30)

Nevertheless, as long as the inner contour Γε is sufficiently small, the J-integral of the

crack tip can be calculated based on either Γε or a finite contour including both crack

faces:

Jk = lim
ε→0

∫
Γε

Qkjnj dΓ

=
∫
Γa

Qkjnj dΓ+ lim
ε→0

∫
Γ++Γ−

(Πnk−σIjnjuI,k)dΓ.
(4.31)

Since the unloaded crack faces are traction free and the phason traction has no mechan-
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4. Finite element implementation

ical interpretation, leading to σijnj = 0 and Hijnj = 0, and if impermeable crack face

boundary conditions are further assumed, i.e. Djnj = 0, the J-integral in Eq. (4.31) is

reduced to

Jk =
∫
Γa

QkjnjdΓ+ lim
ε→0

∫
Γ++Γ−

ΠnkdΓ. (4.32)

The J-integral according to Eq. (4.32) has been numerically implemented, integrat-

ing along an automatically generated contour. The integral contour, illustrated in Fig.

4.7, runs along the crack faces and element edges surrounding the crack tip at suf-

ficiently large distance. However, the straightforward application of Eq. (4.32) in a

post-processing procedure has its limitation in some special cases, e.g., if the crack tip

approaches an interface or if two cracks are close to each other. Under these circum-

stances, the outer contour Γa is obliged to approach the crack tip due to the geometric

constrains, whereupon the numerical integration has to use inaccurate nodal values. In

order to resolve such problems, a remote contour can be chosen instead of the local

contour focused on the crack tip. This approach requires some special treatment which

can be found in [103, 104].

In particular, if straight crack faces with the boundary condition σIjnj = 0 are assumed

to be in the integral contour as depicted in Fig. 4.6, the normal vector coordinate

n1 on the crack faces is zero in the crack tip coordinates (x̂1, x̂2). In this case, J1

does not require an integration along the crack faces Γ+ and Γ−. In the calculation

of J2, however, the crack face integral on Γ+ and Γ− unavoidably contains the nodal

outputs near the crack tip, resulting in comparatively large errors due to the singularity.

The graphs in Fig. 4.8 show the J-integral according to Eq. (4.32) from a mixed-

mode loading simulation of a straight crack, integrating along the crack faces. The

normalized coordinate x̃1 indicates segments of the integral contour Γ+/−. In detail,

the circles represent results of incomplete integration paths, where Γ+ starts at x̃1 = 0

and ends right in front of the crack tip at x̃1 = 1. The physical magnitudes J1/J2 are

thus obtained at x̃1 = 1. The line of J2 in red seems to yield a feasible value, except

for the last increment, which is calculated from the two nodes right in front of the

crack tip, leading to a considerable error. J1, on the other hand, is not affected since

it only depends on the integration along Γa. A simple way to obtain a rational result

of J2 is to neglect the last few increments of the crack face integral and to determine

the actual value by extrapolation, as shown in Fig. 4.8 by the black square symbol

at x̃1 = 1. Compared to the result based on the CTEM and Eqs. (3.60) and (3.77),

the extrapolated J2 has a 3% deviation. In light of the above issue, the common role

of the J-integral, providing a reference of crack tip loading analysis, must be put into

perspective, as soon as not just J1 = G of a straight crack is considered.

Details and some other advanced numerical methods to achieve an accurate J2 are

found in [47, 102]. Accounting for the T-stress, one approach employs the analytic

and numerical solutions in an iterative scheme to get a result of the Jk-integral, where

the inaccurate values near the crack tip are faded out in the numerical contour integral.

Another method separates J2 into symmetric and antisymmetric parts with regard to

the stresses on the crack faces, which are individually extrapolated towards the crack

tip. Both methods likewise satisfy the requirement of accuracy.
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Figure 4.8.: The J-integral based on Eq. (4.32) vs. normalized coordinate along the

crack face, where x̃1 = 0 indicates the intersection of Γa and Γ+/− and

x̃1 = 1 is at the crack tip. The magnitudes of Jk refer to a plane structure

of unit thickness.

Compared to the CTEM, the advantage of this post-processing method is that no spe-

cial element is required at the crack tip. Accordingly, all element types as well as shape

functions can be applied without specific modifications.

4.3. Adaptive re-meshing algorithm of crack growth

Many studies focus on the numerical calculation of crack tip loading quantities to

achieve assessments of a crack, which has been well developed in terms of a static

crack problem. However, with regard to the prediction of crack growth or crack paths,

special numerical techniques and algorithms are required. In the context of the FEM,

various numerical approaches have been developed to simulate crack growth since the

pioneering work in 1967 [143]. The element splitting method and the element elim-

ination method provide special treatments for the elements in front of a crack, which

are involved in the crack advance. The crack either grows in the middle of the ele-

ments or eliminates the elements on the ligament, thus creating a propagating crack

path [34, 138]. In the moving crack tip method, the crack-tip elements move with the

crack tip and the local mesh is readjusted repeatedly. Since a special element type is

applied, where the singularities are represented in the shape functions, the static or

dynamic stress intensity factors can be directly computed [144]. The cohesive zone

model based on Barenblatt [13] and Dugdale [42] can be conveniently applied to sim-

ulate crack growth. Nevertheless, the main disadvantage is that the separation can only

takes place along a predefined line, a crack deflection is thus impossible. The extended

finite element method (XFEM), developed in 1999 [17, 139], is popular in the simula-

tion of crack propagation [10]. It is advantageous as the mesh in the initial state can

be retained during the failure process and thus there is no need to adjust the elements.
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model

mesh / USER-element deployment

equation system solved in Abaqus

post-processing

loading quantities, e.g., K-factors,

deflection 
yes no

increase loading

new crack face

   adaptive
re-meshing

Figure 4.9.: Flow chart of the adaptive re-meshing algorithm for crack growth simula-

tions.

The displacement discontinuity due to cracking is embedded in the element by discon-

tinuous shape functions and selected near tip enrichment functions. Besides the FE

methods, the boundary element method (BEM) is also a popular tool for simulating

crack propagation [8]. The BEM reduces the problem dimensionality by one order by

only discretizing the surface of a boundary value problem, thus, fewer discrete points

are involved saving computational cost [133].

Amongst other methods, the smart adaptive re-meshing algorithm based on the FE

method is an effective solution technique for crack propagation simulations, which

was originally proposed in [136, 172] and later generalized for coupled materials [94,

204]. The simulation algorithm repeatedly constructs the mesh and refines it near the

crack tip. Fig. 4.9 demonstrates the workflow of the re-meshing algorithm for crack

growth simulations applied in this work. In order to ensure an optimized mesh structure

without highly distorted elements near the crack tip, where the calculation is sensitive

to numerical errors, an additional partition is inserted around the crack tip and the

suitable nodes are allocated. Outside of this region, there is an irregular arrangement

of elements. The post-processing tools according to Sections 4.2.1 and 4.2.2 have been

implemented to provide the fracture mechanical loading quantities and the deflection

angle, which is determined by the deflection criteria introduced in Section 3.5. In

every crack growth increment, the new crack tip is shifted in the predicted deflection

direction and the whole model is meshed again with refinement. The crack increment

length is chosen sufficiently small to provide convergent crack paths and large enough

to avoid unnecessary computational cost.
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5. Crack path predictions

In this chapter, the introduced crack tip loading analysis, crack deflection criteria and

the adaptive re-meshing algorithm in the FE environment are employed for the predic-

tion of crack paths. Two special cases are considered first. By neglecting the electric

properties or the phason field, crack growth is simulated in QCs and piezoelectrics,

respectively. In QCs, only the classical mechanical loading of the phonon field is ap-

plied and the phason K-factor is thus induced by the coupling effect, affecting loading

quantities and deflections. In piezoelectrics, both mechanical and electric loadings are

possible on the boundary, while diverse loading combinations are taken into account.

Then, the crack paths in a 1D piezoelectric QC are presented in the last part.

5.1. Crack paths in 1D QCs

As introduced in Chapter 3, different fracture problems in QCs have been analytically

investigated. A lot of numerical works have also been carried out, dealing with cracks

by using various approaches. A meshless local Petrov-Galerkin approach was pro-

posed, solving boundary value problems in 2D QCs with cracks [179]. Dynamic crack

propagation has been numerically investigated in a Griffith crack model by using an

extended finite difference method [217]. The influence of the phonon–phason coupling

effect on fracture loading quantities was assessed by an extended displacement discon-

tinuity BEM [126]. Regarding the FEM, approaches for QCs including cracks have

been established in [178, 206, 213] and the crack deflection affected by the coupling

effect has been analytically and numerically investigated in [206]. Later, crack paths in

1D QCs subjected to mixed-mode loadings have been predicted [204]. Apart from the

linear constitutive relations in QCs based on the model introduced in Section 2.3.3, a

strain-gradient theory was developed and the J-integral of this model was implemented

in a FE environment [180].

In this work, the near-tip field solutions and the deflection criteria are implemented in

a plane of a 1D QC, which has only one quasiperiodic direction and is thus a special

case among the subclasses of QCs. The QA can be perpendicular to the plane, leading

to classic crystalline behavior in the plane. If the QA lies in the plane, different con-

figurations are possible in regard to the initial crack. Two special configurations are

taken into account in the simulations, i.e. the QA is parallel to the x1- or x2-axis. The

relevant material constants of both cases are given in Appendix A.1. These configura-

tions can also represent a planar problem of a 2D QC, which has two phason degrees

of freedom, if one of the two QAs is in the plane and the other is not.
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5. Crack path predictions

To eventually simulate a crack growth in QCs and predict crack paths, deflection cri-

teria and the influence of the induced phason crack-tip loading are analytically investi-

gated at first. Some computed results with different phonon–phason coupling constants

and loading regimes are presented. Then, the numerical results of deflection angles

based on different approaches and fracture quantities are compared, see Section 5.1.2.

Applying the adaptive re-meshing algorithm, the crack paths in different numerical

models under mixed-mode loading are presented.

5.1.1. Influence of the phason field on crack deflection

The selected crack deflection criteria are applied to a planar 1D QC with an initial crack

for investigating the influence of the phason field on crack deflection. Since a directly

applied phason loading is not possible, the phason field is induced by the phonon load-

ing due to the coupling effect. The coupling coefficients are expected to have an impact

on the crack tip loading by the induced phason stress. The most adopted coupling co-

efficients, however, are relatively small (R1/C1111 ≈ 0.5%) according to [45]. On the

other hand, only a few quasicrystalline materials and their coupling constants have

been investigated to date. The available constants are predominantly evolved from ab

initio or molecular dynamics simulations [112], whereas an experimental confirmation

is still lacking. Thus, the coupling coefficients have to be considered to be not quite

reliable, whereupon a set of enlarged constants are additionally used to theoretically

investigate the influence of the phason field.

Applying the criterion of maximum hoop stress first, the stresses in the near-tip field

in the Cartesian coordinate system have to be transformed into the polar coordinate

system, by using the transformation matrix Ωij according to Eq. (2.11). The hoop

stress is then given as

σθθ = cos(θ)
(
σ22 cos(θ)−σ12 sin(θ)

)− sin(θ)
(
σ21 cos(θ)−σ11 sin(θ)

)
, (5.1)

where the stresses in the Cartesian coordinate system are inserted according to Eq.

(3.36). The induced phason stress in the near-tip field is not considered in the criterion

of maximum hoop stress, since only the phonon stress σθθ is assumed to determine

the crack deflection. Nevertheless, the phonon–phason coupling effect has an impact

on σij in Eq. (5.1). The deflection angle θ̄ is determined by inserting the expression

of σθθ into Eq. (3.88). Unfortunately, a closed-form solution, and thus, an explicit de-

termination of θ̄ as a function of the K-factors is not available because of the complex

quantities in the angular functions according to Eq. (3.38). The hoop stress and its first

order derivative, however, can be plotted versus the angle if the K-factors are given,

whereupon the deflection angle is determined by numerically identifying the root of

the derivative. One example of a mixed-mode loading case is shown in Fig. 5.1, il-

lustrating the hoop stress and its derivative around the crack tip. Since the absolute

magnitude of hoop stress is not relevant for the deflection angle θ̄ according to Eq.

(3.88), only the ratios of K-factors are given. The maximum of σθθ and the root of its

derivative are found by using a numerical Newton-Raphson method from the starting

point θ = 0.
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0 1 2 3 4 5 6-1

0

Figure 5.1.: The hoop stress and its first order derivative in the near-tip field of a crack

in 1D QC under mixed-mode loading, where the QA is parallel to the crack

face. The given K-factors have the relations K‖II = 1%K‖I and K⊥ = K‖I .

The deflection angle in this loading case is −0.0197 rad (−1.13◦) [168].

Regarding the J-integral criterion of Eq. (3.90), the required magnitudes of J1 and J2

can be expressed by the K-factors according to Eqs. (3.55), (3.60), (3.76) and (3.77).

For the selected 1D QC material, they are determined as

J1 = (5.1066K‖2
I +5.1897K‖2

II −0.08824K‖IIK
⊥+9.2413K⊥2)×10−12,

J2 =−1.0213×10−11 K‖I K‖II−3.1194×10−25 K‖I K⊥,
(5.2)

if the QA is parallel to the crack faces and

J1 = (5.1897K‖2
I +5.1066K‖2

II −0.08824K‖I K⊥+9.2413K⊥2)×10−12,

J2 =−1.0379×10−11 K‖I K‖II−2.2198×10−14 K‖IIK
⊥,

(5.3)

for the QA being perpendicular to the crack faces [206]. The material coefficients with

the required characteristic matrices and eigenvalues are listed in Appendix A.1. The

phason stress intensity factor K⊥, as the only phason intensity factor in a 1D QC, is

written without any subscript index.

Taking a look at the phonon–phason mixed terms in Eqs. (5.2) and (5.3), which include

the phonon and phason stress intensity factors, it is obvious that the coefficients are

significantly smaller in comparison with the other terms. For the first configuration in

Eq. (5.2), the phason K-factor has scarcely an influence on J2, whereas it might give

some contribution to J2 for the second configuration, where the coefficient related to

K⊥ is small but not negligible. However, it still essentially depends on the ratio of K‖I
and K‖II . For J1, the impact of K⊥ in both configurations is comparable to the one of

the phonon K-factors and less by two orders in the mixed terms.

The calculated crack deflections θ̄ based on the introduced criteria are compared, see
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5.1. Crack paths in 1D QCs

Tab. 5.1 for the QA being parallel to the crack faces and Tab. 5.2 for the QA being per-

pendicular. There are two rows for each deflection criterion, one showing the results

based on the coupling constants according to Appendix A.1 denoted as Rref and the

second row being based on 50 times enlarged coupling constants. The K-factors not

explicitly given are zero, so the first two columns represent single mode loading condi-

tions and the others are mixed-mode loadings. The J-integral criterion, basically being

valid only if KI is dominating KII as shown in Fig. 3.10, was not applied in the loading

cases K‖I = 0 and K‖II = K⊥. The magnitude of K⊥, whose influence on the validity of

the J-integral criterion is still unknown, varies in a large range from 1% to 100% of K‖I .

K⊥ alone is not applied as the phason stress singularity at the crack tip is induced by

the coupling effect under phonon loadings and a pure phason loading is not possible.

Since the J-integral criterion demonstrates that a finite J2 is indispensable for a crack

deviating from its original direction, according to Eqs. (5.2) and (5.3) an additional

mode-II loading is required. Thus, most of the considered loading cases in Tabs. 5.1

and 5.2 exhibit a phonon mixed-mode loading. The value of K‖II was chosen two orders

of magnitude minor compared to K‖I , being a typical loading condition along curved

crack paths in an inhomogeneous stress field under constant external loading, e.g., for

cracks near holes or inclusions [102]. In Tabs. 5.1 and 5.2 only ratios of K-factors are

given, since their absolute magnitudes are not relevant for the deflection angles, which

is demonstrated in Eqs. (5.2) and (5.3).

Just as in classical materials, there is no crack deflection under a pure mode-I loading

regardless of the configuration and the coupling constant. A large phason loading, as

shown in the fourth column, even with the same magnitude as K‖I , does not have any

significant impact on the crack deflection. Considering the J-integral criterion at first,

the predicted deflection angle under pure phonon mixed-mode loading is −1.15◦. It is

remarkable that an enlarged coupling constant, 50×Rref, leads to a reduced deflection

angle of 0.96◦ in the case of the QA being perpendicular to the crack. Although the

influence of the coupling constant in Eq. (5.3) is not obvious, the material-dependent

matrices in Eqs. (3.55) and (3.60) represent the relation of the Jk and the K-factors

and thus the influence of the coupling coefficient is manifested in the coefficients in

Eqs. (5.2) and (5.3). In Tabs. 5.1 and 5.2, the last four columns show the results

of an increased K⊥ superimposed by a phonon mixed-mode I/II loading, exhibiting a

considerable reduction in the deflection angles. Eventually, the phason stress intensity

factor shows a smaller influence on crack deflections than K‖II , since the coefficients

associated with K⊥ for J2 in Eqs. (5.2) and (5.3) are much smaller and K⊥ in the latter

equation is multiplied by K‖II instead of by the larger K‖I .

Compared to the J-integral criterion, the maximum hoop stress criterion allows the

calculation of a crack deflection angle under pure mode-II loading. The predicted de-

flection angles θ̄ in this case are slightly larger than the value of isotropic materials

(θ̄ = −70.5◦ [48]), where no coupling effect is present. For the decoupled case of

anisotropic elasticity (R=0, the phason field is thus irrelevant for the results), the de-

flection angles for the QA parallel and perpendicular to the crack are θ̄ =−71.03◦ and

θ̄ = −71.32◦, respectively, being equal to the angles in the case of Rref. If a phason

stress intensity factor of the same magnitude is applied additionally, as shown in the
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5. Crack path predictions

third column, no remarkable change of θ̄ is observed, only showing a deviation up to

3% by the enlarged coupling coefficients. In the mixed-mode I/II loading cases, the de-

flection angles of the maximum hoop stress criterion are very close to those predicted

by the J-integral criterion, except for the last two columns, where K⊥ approaches the

magnitude of K‖I . In contrast to the J-integral criterion, a superimposed phason load-

ing K⊥ does not result in a notable change of θ̄ predicted by the maximum hoop stress

criterion, unless the coupling constants are enlarged, in particular for a perpendicular

QA.

From an energetic point of view, the J-integral criterion takes into account the energy

contributed by the phason field and postulates the minimization of the total potential

energy of QCs. It thus manifests a notable influence of the phason stress intensity fac-

tor when the enlarged coupling constants are employed. On the contrary, the maximum

hoop stress criterion considers essentially the phonon field in the fracture process and

thus predicts a minor impact of phonon–phason coupling on the crack deflection an-

gle. Although deviations in deflection angles may be small in Tabs. 5.1 and 5.2, their

accumulation at crack growth might lead to distinctly different crack paths. Numerical

predictions and crack growth simulations are thus indispensable.

5.1.2. Numerical calculation of deflection angles

The deflection angle θ̄ in crack boundary value problems is calculated based on the se-

lected crack deflection criteria by post processing of FE simulations. If the maximum

hoop stress criterion according to Eq. (3.88) is applied, the deflection angle is deter-

mined inserting Eq. (5.1), employing the near tip solutions of generalized stresses σIj
based on the K-factors, see Eq. (3.27). To implement the J-integral criterion Eq. (3.90)

in a crack growth simulation, the integrands of Eq. (4.32) have to be calculated along

the outer contour Γa and the crack faces numerically, providing the J-integral and sub-

sequently the deflection angle θ̄ . Alternatively, the coordinates of J1 and J2 can be

determined by the energy release rate G and the second energy term H as shown in

Eq. (3.90). G and H are readily calculated by the crack closure integral according to

Eqs. (3.55) and (3.60) with K-factors, which are provided from the CTE method, thus

sparing the effort of implementing a contour integral.

If classical fracture behavior is considered, cracks will propagate straightforwardly

under symmetric mode-I loading, where H = −J2 = 0. An induced phason loading

at the crack tip in QCs, where pure tensile load is applied, has only minor impact on

J2 due to the small coefficient in Eq. (5.2) or no influence at all according to Eq.

(5.3). Hence, an inclined crack with remote tensile load is employed to investigate

the numerical results from different approaches. The model is illustrated in Fig. 5.2,

where the crack is inclined by 30◦ with respect to the x1-axis and K‖II is thus on the

same level as K‖I . Three different sets of coupling constants, the reference value Rref

and the enlarged values, are used in the calculations. Crack tip loading quantities,

determined by both the CTE method in connection with the crack closure integral and

the contour integral approach, are compared.
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5.1. Crack paths in 1D QCs

2
30 1

2 = 30

1

Figure 5.2.: Crack inclined by 30◦ with respect to the x1-axis. A kink of −30◦ is illus-

trated in detailed view.

The results are shown in Tab. 5.3. The deflection angles θ̄ , stemming from (G,H)
and (J1,J2), are listed in the second and fourth columns behind the related data. Both

columns of the angles are determined by the J-integral criterion. Two cases with dif-

ferent QA directions are considered, one with the QA being parallel to the x1-axis, the

other being parallel to the x2-axis. First of all, G and J1 as well as H and −J2 show

almost equal values, which makes the calculation of (G,H) from the K-factors more

attractive, avoiding the contour generation and the numerical integration, thus being

advantageous in regard to computational cost. Comparing their magnitudes, the load-

ing quantities are increased by the enlarged coupling constants due to the phason field

and its influence on the free energy.

However, there is no remarkable change on the crack deflection angles in these three

situations. All the values are in a small range around −30◦, which indicates a crack

extension almost perpendicular to the loading direction, see Fig. 5.2. The crack de-

flection angles in the case of a QA in the x1-direction vary from −30.7◦ to −29.8◦,
being slightly smaller in the other case, where a range of −30.6◦ to −29.5◦ is pre-

dicted. Although the deviation of the deflection angles is small, in fact, the differences

may have a significant effect on the whole crack path according to the findings in con-

ventional fracture mechanics, where a KII being small compared to KI prominently

influences crack growth and leads to a curved crack path [102]. Therefore, a small

induced phason stress intensity factor could also have a strong influence on the crack

path at mixed-mode loading, where K‖I is much larger than K‖II and K⊥.
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5. Crack path predictions

G/H θ̄(◦) J1/J2 θ̄(◦)
QA along x1-axis

Rref 1.31/0.78 -30.7◦ 1.31/-0.77 -30.7◦

50×Rref 1.43/0.84 -30.5◦ 1.43/-0.84 -30.5◦

80×Rref 1.89/1.10 -30◦ 1.89/-1.09 -29.8◦

QA along x2-axis

Rref 1.33/0.78 -30.6◦ 1.36/-0.78 -29.8◦

50×Rref 1.52/0.89 -30.2◦ 1.50/-0.87 -30.1◦

80×Rref 4.34/2.48 -29.7◦ 4.15/-2.35 -29.5◦

Table 5.3.: Results of the energy terms (G,H) [N/m] from the CTEM and (J1,J2) per

unit thickness from the contour integral as well as the calculated crack de-

flections angles θ̄ corresponding to Fig. 5.2.

5.1.3. Crack growth simulations in QCs

The most interesting case, being characteristic for many crack growth problems, is a

mode-I/II loading case with K‖II being much smaller than K‖I . Hence, two models of

numerical fracture mechanics are employed for obtaining the desired loading regime,

see Fig. 5.3. The first model describes a double cantilever beam (DCB) specimen with

asymmetric concentrated forces applied. The other model with external tensile loading

has mixed-mode loadings at the crack tip due to the drilled hole located above the crack

ligament. In both cases, K‖II and K⊥ are relatively small compared to K‖I . The specific

ratios of the K-factors at the incipient crack position are given in Tab. 5.4 for the DCB

model with the applied forces F2 = 0.99F1, illuminating the influence of the phonon–

phason effect on the K-factors. The ratios K⊥/K‖I in the first configuration of QA

along x1-axis are close to zero, in fact, they are distinct from each other, being able to

affect crack paths in the following. The crack growth is simulated using the adaptive

re-meshing algorithm in the framework of the FEM. The crack paths are plotted in

Figs. 5.4 and 5.5. Both CTEM and path-independent integral have been employed,

see Section 5.1.2, providing the crack tip loading quantities for the J-integral criterion.

Despite the slightly different deflection angles calculated for a single crack increment,

as shown in Tab. 5.3, the results of the crack path prediction from both approaches do

not visibly differ from each other. Therefore, the CTEM is used if no further indication

is given.

In both Figs. 5.4 and 5.5, the solid red lines show the crack paths for R=Rref. The

results for R = 0, representing crack paths in a classical crystalline material, are omit-

ted because the crack paths almost coincide with the solid red lines. The dash-dotted

green lines, representing the 50 times enlarged coupling coefficients, and the dotted

blue lines for R=80×Rref are distinctly different from the red lines of Rref.

Similar to crack paths in regular crystalline materials, a small K‖II in mixed-mode load-

ing conditions leads to a significantly curved crack path. For the QA being parallel to
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5.1. Crack paths in 1D QCs
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Figure 5.3.: (a) Double cantilever beam (DCB) model with asymmetric loadings, (b)

plate with a hole above the ligament under tensile loading. The QA is

either in the x1- or x2-direction. The thick lines starting from the left edges

are the incipient cracks.

K‖II/K‖I K⊥/K‖I
QA along x1-axis

Rref 0.3% ≈ 0

50×Rref 0.3% ≈ 0

80×Rref 0.3% ≈ 0

QA along x2-axis

Rref 0.3% 0.3%

50×Rref 0.3% 13.8%

80×Rref 0.5% 20.6%

Table 5.4.: The ratios of the K-factors at the initial crack state of the DCB model.

the x1-axis, the varied coupling effect does not lead to substantial changes in the crack

paths. Only a slight enhancement of crack deflection by the increased coupling coef-

ficients is exhibited in the DCB model, whereas the crack paths in the second model

show a converse tendency. If the QA is the x2-axis, the large coupling effect essen-

tially compensates the influence of the shear effect, showing that the crack tends to

grow along its ligament in both specimens. This effect, however, is strongly nonlinear

with respect to the coupling constants. The similar nonlinearity in this configuration

is also shown in Tab. 5.4, where the ratio K‖II/K‖I for 80×Rref is much larger than the

others.

The results based on the maximum hoop stress criterion show basically the same ten-

dency, however, they differ quantitatively from the crack paths predicted by the J-

integral criterion. For the sake of simplicity, only the crack path of 50×Rref is illus-
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Figure 5.4.: Results of simulation for DCB model with the QA being (a) parallel to the

x1-axis and (b) parallel to the x2-axis.
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Figure 5.5.: Results of simulation for plate under tensile loading with a hole above the

ligament and the QA being (a) parallel to the x1-axis and (b) parallel to the

x2-axis. The gray circle indicates the hole.

trated in each graph in dash-dotted black line.

As reliable data of a coupling coefficient are still hard to get hold of, probably because

of experimental limitations, different magnitudes of the phonon–phason coupling co-

efficients have been employed here to investigate in principle the effect of phonon–

phason coupling. Being capable of accurately simulating crack paths in QCs gives

rise to the idea of inversely determining coupling coefficients based on crack growth

experiments in specimens akin to those presented here. Due to technical issues, still

restricting specimen sizes to just a few millimeters, this approach, however, remains

visionary.

84



5.2. Crack paths in piezoelectrics

5.2. Crack paths in piezoelectrics

The crack growth in piezoelectrics, in particular, under combined mechanical and

electric loading has been simulated hitherto with different approaches, investigating

e.g. the influence of the electric field. In [94] finite element simulations with linear

piezoelectric constitutive behavior and an adaptive re-meshing algorithm provide crack

paths in three-point bending specimens with different notch positions. The boundary

element method and also a linear constitutive model in [121] yield similar results,

which are just roughly accordant with the experimental crack paths in [153]. In both

works, the anisotropic fracture toughness is taken into account in a simplified manner,

assuming that there is a globally homogeneous polarization even in the fracture process

zone. A saturation strip model considering a linear mechanical field and a nonlinear

electric field in front of the crack tip is suggested in [128], whereupon the experimen-

tal crack path in [153] is well reproduced, however, only if a calibration parameter

of this model is appropriately chosen. All these simulations employ the maximum

hoop stress criterion to predict crack deflection angles, where electric fields scarcely

show an influence on crack paths and the results thus only depend on the mechanical

load. An energy density criterion, on the other hand, has been applied to crack growth

simulation in an infinite piezoelectric plate under mixed-mode loading, showing the in-

fluence of electric fields [72]. In this thesis, a modified J-integral criterion accounting

for the mechanical part of the configurational force, has been applied and compared

with experimental results of the three-point bending specimens outlined in Chapter 6

and [205].

First of all, a DCB model with the same geometry as in Fig. 5.3(a) is constructed for

crack growth simulations in the piezoelectric material BaTiO3. The favored configura-

tion for crack problems in piezoelectrics is a specimen with homogeneous polarization

being perpendicular to the crack. A positive electric field indicates that the electric

field has the same direction as the poling, while a negative electric field acts against

the poling direction. Two loading conditions, pure mechanical loading and combined

mechanical/electric loading, are incorporated in the crack growth simulations, where

the applied electric field of 100 V/mm corresponds to 0.5Ec for BaTiO3 [61]. The

concentrated forces depicted in Fig. 5.3(a) are F1 = 40 N and F2 = 95%F1, inducing

KI = 1.1MPa
√

m at the incipient crack tip, which is in the regular order of the fracture

toughness of ceramic materials.

The predicted crack paths are plotted in Fig. 5.6. The simulations are based on the

material constants given in Appendix A.2. The solid lines show the results under pure

mechanical loading, where the crack path based on the J-integral criterion according to

Eq. (3.90) exhibits a smaller deflection than the one calculated with the maximum hoop

stress criterion. The modified J-integral criterion according to Eqs. (3.91) and (3.74),

neglecting the electrical part of the configurational force and thus labeled Jm
k , shows

the identical path of the J-integral criterion, since the electric energy part induced by

the coupling effect is too small to have an impact on the crack path. If an electric field

is superimposed, the crack paths show significant changes. The red-dashed line and

the blue line, based on the maximum hoop stress and the modified J-integral criteria,
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Figure 5.6.: Results of simulations in the BaTiO3 DCB model with the poling in x2-

direction. A zoomed-in view is provided for the lines close to each other.
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Figure 5.7.: Results of simulation based on the J-integral criterion in BaTiO3 DCB

model.

respectively, manifest a reduced shear effect, showing a smaller deflection, however, to

distinctly different extents. On the contrary, the green-dashed line based on the classi-

cal J-integral criterion obviously predicts a larger deflection due to the superimposed

electric loading.

The J-integral criterion, however, yield an unreasonable crack path, if other loading

conditions are applied. Fig. 5.7 depicts crack paths determined by the J-integral crite-

rion based on the total electromechanical energy according to Eq. (3.90) under differ-

ent loading combinations, in particular, various mechanical loads. Without an applied

electric load, the absolute magnitude of the concentrated force does not have an influ-

ence on the crack path, the black line thus represents the crack path of any mechanical

load with the ratio F2 = 0.95F1. Under the combined loading conditions, a constant

0.5Ec is superimposed with three different mechanical loads. Two of them, KI = 1.4
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Figure 5.8.: Results of PZT-5H three-point bending test model calculated based on dif-

ferent deflection criteria. The magnitudes of loads are taken from Tab. 6.1.

The floating figure illustrates the crack paths determined by the Jm
k -vector

criterion with different electric loadings.

and 1.1MPa
√

m, provide similar crack paths. In contrast, if KI = 0.8MPa
√

m is ap-

plied, the crack turns around almost immediately after it starts to propagate, which is

not a plausible crack growth. This result is due to the electric displacement intensity

factor KIV , which is mainly induced by the electric field and affects the energy release

rate G and the second energy term H disproportionately, especially in the case of small

KI . Hence, the J-integral criterion causes an irrational deflection angle and is deemed

invalid, if the electric loading is not negligible.

For the sake of comparison with experiments, see Chapter 6, the following simulations

were carried out on a three-point bending test model with an off-center initial crack, see

Fig. 5.8. The concentrated force is applied at the top middle position of the specimen,

inducing a mode-I/II crack tip loading. At the bottom, the model is mechanically fixed

in the x2-direction. Different electric potentials are defined on the left and right edges

of the model for applying an electric field. The homogeneous polarization in the x1-

direction is perpendicular to the initial crack. Three loading conditions are taken into

account, i.e., pure mechanical loading without an electric field and mechanical loading

with an electric field parallel or anti-parallel with respect to the direction of polariza-

tion. The applied mechanical and electric loading combinations are critical, taken from

the experiments in Chapter 6. An anisotropy of crack resistance is neglected.

The crack paths based on three deflection criteria, the Jk- and Jm
k -vector criteria as well

as the maximum hoop stress, are compared in Fig. 5.8. The gray-dashed line based on

the maximum hoop stress criterion represents the crack paths under all three loading

conditions, being independent of the electric load. The angular functions of the near

tip solution under electromechanical loading, see Eqs. (3.38), do not depend on the

electric field [164], whereas KI , KII vs. KIV are the weights of the mechanical and
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5. Crack path predictions

electrical contributions to σθθ . KIV , typically being in the order of 10−3 Cm−3/2 if

the electric field is in the same order of Ec, thus gives rise to an electrical contribu-

tion not greater than 10−2−10−3 of mechanical contribution. In comparison with the

crack path predicted by the Jm
k -vector criterion of Eq. (3.91), the crack path from the

maximum hoop stress criterion shows a larger deflection for a positive electric field.

The dash-dotted brown line, representing the crack path from the J-integral criterion

based on the total electromechanical potential energy according to Eq. (3.90), reveals

a non-physical crack path under the loading condition with 0.75Ec.

A closer look at the crack paths of the Jm
k -vector criterion is given in the floating

graph in Fig. 5.8, showing that positive electric loading results in a smaller crack

deflection and negative electric loading in a larger one. These predictions are qualita-

tively confirmed by the simulations based on the energy density deflection criterion,

where a crack model in an infinite piezoelectric plate under mode-I/II/IV loading is

employed [72].

5.3. Crack paths in piezoelectric 1D QC

Accounting for different phonon–phason coupling coefficients and a superimposed

electric loading, crack paths in a 1D QC with piezoelectric property are predicted.

A DCB model with the same geometry of the foregoing simulations as depicted in Fig.

5.3(a) is employed. The QA is parallel to the polarization state of the model, i.e., in

the x2-direction. The asymmetric forces, F1 = 50 N and F2 = 0.95F1, induce a phonon

mode-I stress intensity factor in the order of 1MPa
√

m, whereupon the K‖II/K‖I -ratio is

about 1.5% for the initial crack.

Fig. 5.9 illustrates the crack paths for the reference phonon–phason coefficient R=Rref

as well as for the enlarged coefficients R=50×Rref and R=80×Rref. The crack deflec-

tion angles are determined by the maximum hoop stress criterion and the Jm
k (Jk)-vector

criterion, respectively. The Jk- and Jm
k -vector criteria yield identical crack paths be-

cause the electrical part of Jk is negligible if no electric loading is applied. Compared

to the crack paths shown in Fig. 5.4(b) with the same QA, Fig. 5.9 demonstrates a

similar outcome, in so far as a large coupling coefficient significantly reduces crack

deflection. This reduction, however, is larger predicted by the maximum hoop stress

criterion than by the Jm
k -vector criterion.

If a positive electric loading is superimposed, the predicted crack paths are generally

less deflected, see Fig. 5.10. Along with that, the maximum hoop stress criterion seems

to be less affected by the electric loading than the Jm
k -vector criterion, showing a com-

paratively smaller deviation between the crack paths. This agrees with the conclusions

for piezoelectric materials according to Fig. 5.6. The classical J-integral criterion is

not considered here, since the loading combination of the electric field of 0.5Ec with

the mechanical loading of K‖I = 1MPa
√

m may lead to a non-physical crack path as

shown in Fig. 5.7.
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Figure 5.9.: Results of crack growth simulations in piezoelectric 1D QC with different

phonon–phason coupling coefficients and deflection criteria.

Rref 50×Rref 80×Rref

E = 0 0.27% 14% 22%

E = 0.5Ec 0.24% 12% 8%

Table 5.5.: K⊥/K‖I -ratios of the initial crack in the DCB model.

Although there is no direct coupling relation between the phason and electric fields,

whereupon the coupling terms are zero in Eq. (4.11), these two fields are intercon-

nected via the phonon field similar to the magnetoelectric coupling phenomenon shown

in a ferroelectric–ferromagnetic composite [11]. Tab. 5.5 shows the K⊥/K‖I -ratio for

the initial crack tip in the DCB model influenced by the electric loading. A deviation

of about 10% arises due to the additional 0.5Ec for Rref and for 50×Rref. In the case

of 80×Rref, the electric field results in a drop of more than 50%.
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5. Crack path predictions
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Figure 5.10.: Results of simulations in piezoelectric 1D QC. Each figure illustrates a

comparison of the crack paths with and without electric loading. The

dashed and dotted lines represent the results of the maximum hoop stress

and the Jm
k -vector criterion, respectively.
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6. Mixed-mode crack growth
experiment

A host of fracture testing procedures have been developed for providing fracture pa-

rameters of classical structural materials and other experimental conclusions to im-

prove and validate analytical methods, which facilitates the understanding of fracture

behavior. Unfortunately, there are not many fracture testings and findings in QCs due

to the current development of specimen production. One indentation test for the mea-

surement of the fracture toughness of a 2D decagonal QC (Al65Cu20Co15) has been

reported, whereas the measurement was based on an empirical formula and thus might

be deficient [50]. No further experiment is conducted hitherto in QCs with respect to

fracture mechanics. Concerning ferroelectrics, an enormous amount of experiments

has been carried out to explore the impact of the ferroelectric properties on fracture

behavior, e.g., the influence of electric loading and the ferroelectric domain switching

effect. Most of the experiments measure the fracture loading quantities and deter-

mine the critical values with associated crack growth criteria. Crack deflections and

crack paths affected by electric fields, however, can only be found in a few references,

e.g., [36, 153, 205].

In this chapter, the focus is on experiments in ferroelectric materials, in particular, the

influence of electric fields on crack deflections. A review of experimental works is

provided at first, rendering some major conclusions and the state of the art. A series

of three-point bending tests employing the ferroelectric material PZT-5H is presented

to provide statistically evaluated results of experimental crack paths, investigating the

influence of both positive and negative electric fields below Ec on the crack deflection.

Different specimens and loading configurations were critically reflected prior to the

experiments with the aim to obtain curved crack paths under pure mixed-mode me-

chanical loading on the one hand side and to efficiently impose an influential electric

field below the coercive field on the other. In this context, the three-point bending test

set-up turned out to be the most appropriate one. The results of the experimental find-

ings are discussed and compared to the numerical outcomes from the simulations in

Section 5.2. This experimental work has been published in [205].

6.1. A short review of experimental works

The experiments in ferroelectrics focus basically on two essential classes of mate-

rials, lead zirconate titanate (PZT) and the lead-free barium titanate (BT), the latter
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6. Mixed-mode crack growth experiment

class becoming more popular due to the environmental compatibility. The fracture

toughness has been measured by Vickers indentation tests in [30,63,134], manifesting

isotropic fracture behavior in the unpoled ferroelectrics and anisotropy in the poled

ferroelectrics. A crack in the poled ferroelectrics, being perpendicular to the poling

direction, is longer than the crack in the unpoled ferroelectrics, while a crack in the

parallel direction to the poling is shorter. This anisotropic fracture toughness is due to

the tensile or compressive stresses, which are primarily induced by the domain switch-

ing effect in the fracture process zone [56, 74, 171]. These lead to a reduced macro-

scopic toughness for perpendicular cracks with respect to the poling direction and an

enhanced fracture toughness for parallel cracks. The influence and mechanism of the

domain switching at crack tips induced by external loadings has been investigated by

using scanning electron microscopy and X-ray technique in [57, 80]. Based on a se-

ries of Vickers indentation tests [196] and compact tension tests [153], an additional

electric loading changes the anisotropic ratio of the fracture toughness in the poled

ferroelectrics, leading to a longer crack in the perpendicular direction under positive

electric field and shorter under negative electric field, however, having very little influ-

ence on the crack length in the parallel direction. The same effect of electric loading

on the crack growth in the perpendicular direction was observed from central cracked

specimens in [55]. Nevertheless, a completely reverse conclusion has been reported

in [202], which was again based on Vickers indentations. Some other tests, however,

revealed that both positive and negative electric fields reduce the fracture toughness

by applying a large indentation load, no matter if applied parallel or perpendicular to

the crack [64, 65, 171, 191]. According to a series of three-point bending tests [205],

the similar conclusion was drawn from the measured critical loadings for pure me-

chanical and combined electromechanical loadings with positive or negative electric

fields. Crack growth driven only by pure cyclic electric loading of different magni-

tudes in PZT and lead lanthanum zirconate titanate (PLZT) was experimentally and

theoretically investigated [23, 131]. In a further test [210], a mechanical loading was

superimposed and an exponential crack growth law based on the electric displacement

intensity factor was suggested.

Many other ferroelectric-related properties and factors have also been investigated to

reveal their influences on fracture behavior. The impact of the permittivity of the

crack interior on crack propagation has been studied in [64, 98] and in an indentation

test [170] the relative electric permittivity κr = 40 was determined as an equivalent

dielectric constant of the crack-filling medium. Some works focus on the influences of

grain size and poling direction, in particular, on the crack resistance curve (R-curve),

whereupon the toughing effect increases with the grain size and a poling parallel to the

crack front exhibits the largest fracture toughness all along the R-curve [37,111]. In the

tests on DCB specimens in [116, 165], the crack resistance has been measured under

pure mechanical and combined electromechanical loading along the poling direction,

which is perpendicular to the crack. The R-curves were thereby presented and the re-

sults reveal that a positive electric field above the coercive field shifts the R-curve to

larger values of the fracture toughness. Some environmental factors, e.g., temperature

and humidity, can also affect the fracture behavior in ferroelectrics and have thus been

investigated [145,175]. A further experiment indicates that an unstable crack propaga-
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6.2. Experimental set-up and testing procedure

Figure 6.1.: (a) The crack path of a three-point bending specimen cracked under mode-

I/II/IV loading [153] and (b) a crack growth simulation result [128].

tion can be triggered by a temperature rise, which promotes domain switching and vice

versa, particularly in the vicinity of the crack tip [26]. A more comprehensive overview

on experiments in ferroelectrics can be found in diverse review papers [6,169,208].

Crack deflection and crack path prediction in ferroelectrics, however, have been rarely

studied. In [36] crack paths in PZT ceramics, driven by a continuously increased

electric field, induced by a pair of electrodes only partly covering the specimen, are

investigated both experimentally and numerically, primarily studying the influence of

the width of the electrodes. A three-point bending test presented in [153] is proba-

bly one of the most essential experiments on the topic of crack paths, where a PZT-4

specimen with an eccentric notch position was employed for attaining a curved crack

path under mechanical mixed-mode loading and an electric field, see Fig. 6.1(a). Un-

fortunately, a comparison with crack paths under other electric loading conditions and

repeated experiments providing data for a statistical analysis are missing, whereas the

crack paths of just one single specimen per notch position under the same electric

loading are included in [153]. A solid conclusion about the influence of electric fields

on crack deflection can thus not be provided. Nevertheless, the crack path shown in

Fig. 6.1(a) has still served as a reference for the few numerical simulations available

to date, e.g., the simulations on the bending test specimen with linear piezoelectric

behavior using the FE method [94] or the boundary element method [121], providing

just a rough accordance. The experimental crack path in [153] is well reproduced by

an electric displacement saturation model presented in [128], where a nonlinearity in

front of the crack tip is considered, however, a calibration parameter of the model must

be appropriately chosen, see Fig. 6.1(b).

The experimental work presented in the following subsections uses a similar bending

test set-up and provides statistically evaluated results of experimental crack paths, illu-

minating the influence of positive and negative electric loading below Ec on the crack

deflection [205]. Moreover, a high-speed camera recording reveals unexpected details

of crack initiation and propagation.
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Figure 6.2.: (a) Specimen for the electric–mechanical mixed-mode fracture test (units

in mm). The thin dotted lines at the root of the primary notch indicate the

sharpened notch tip. (b) Two prepared specimens with notches [205].

6.2. Experimental set-up and testing procedure

The non-symmetric three-point bending test set-up according to [153] is employed in

the present experiments, where the initial crack is not aligned with the mechanical

loading axis. This configuration provides the favorable mixed-mode loading condition

conveniently induced by only one loading degree of freedom, leading to a curved crack

path. Fig. 6.2(a) shows the geometry of the three-point bending specimens. In contrast

to [153], PZT-5H was used instead of PZT-4 and the material constants are listed in

Appendix A.3. The plates (provided by the Institute of Acoustics, Chinese Academy of

Sciences) of dimensions 19.1 × 9 × 5.1 mm with an average grain size of 4 μm were

poled in silicon oil in order to avoid an electric arc. An electric field of 3000 V/mm,

which is much larger than the coercive electric field, was applied along the longest

edge of the specimens to obtain a homogeneous polarization state. The left and right

surfaces of the specimens are coated with silver electrodes (melting point at 961.78◦C),

which were sintered at 700◦C. From the viewpoint of Fig. 6.2(a), the poling direction

is from left to right, as �P shows. The eccentric notch, with a width of about 0.7 mm

and an approximate depth of 3.7 mm, is perpendicular to the poling direction and was

cut by a wheel cutter and polished. A common procedure to introduce a crack from a

notch is subjecting a cyclic subcritical load. However, it is unfeasible for the present

specimens due to the eccentric notch position. Thus, at the root of the primary notch, a

thin slit was subsequently made by a surgical scalpel of 0.1 mm thickness to facilitate

crack initiation. The total final length of the sharpened notch is 4 mm. A photograph

of two prepared specimens is shown in Fig. 6.2(b).

The specimens for the tests with electric loading need extra preparation. Two wires

were separately glued on the silver electrode surfaces with an electrically conducting

polyurethane adhesive (PU 1000, Polytec PT, hardening at room temperature). The

wires are connected with the output of a Trek Model 10/40A-HS amplifier, which

generates a constant voltage of 10 kV, corresponding to E =±0.75Ec for the PZT-5H

specimens. During the experiments involving an electric loading, the specimens were
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6.2. Experimental set-up and testing procedure

Figure 6.3.: Calibration of the applied force. The error of the applied force from the

piston rod measured with a pressure gauge is given and the hatched area

indicates the range of operation [205].

submerged in silicon oil in an acrylic glass container for insulation.

A double-acting pneumatic cylinder, fixedly installed on a stable test platform, gener-

ates the force-controlled mechanical loading in vertical direction. The piston rod of

the cylinder is powered by compressed air pumped into the cylinder from the upper

port, thus moving downwards. Comparing to a single-acting pneumatic cylinder, the

double-acting pneumatic cylinder does not have a restoring spring, whereupon the pis-

ton rod transfers constant force for any position if the air pressure remains constant and

the bottom port is unimpeded. The circular effective area of the cylinder has a diameter

of 25 mm, indicating a force increment of 49.1 N per 1 bar. The mapping between the

pressure gauge and the force has been calibrated, see Fig. 6.3. The error is smaller

than 1% if the air pressure is larger than 2.5 bar, which corresponds to approximately

123 N. Based on the mechanical energy release rate criterion, the critical fracture loads

have been estimated, which are much larger than 123 N. The schematic arrangement

of the experimental set-up under combined electromechanical loading and a photo-

graph of the mechanical loading unit are shown in Fig. 6.4. Fig. 6.5(a) illustrates the

mechanical loading procedure without applied electric field and Fig. 6.5(b) shows the

broken specimen at the end of the experiment.

A displacement-controlled loading unit for a stable crack growth is challenging for this

test. The required displacement at the loading point demands extremely precise control

due to the small displacement increment according to the geometry of the specimens.

Based on the fracture criterion of the mechanical energy release rate introduced in

[153], the increment of the applied displacement should be in the order of 1 μm for

obtaining a controllable crack growth process.
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Figure 6.4.: (a) Working principle of three-point bending test, (b) loading frame for the

mechanical force [205].

(a) (b)

Figure 6.5.: Specimen without electric loading and (a) piston rod with a remaining 1

mm stroke length, (b) spontaneously broken specimen after critical load

has been attained [205].

6.3. Crack paths of three-point bending specimens

6.3.1. Comparison of the crack paths under different loading
configurations

Three different loadings were implemented, i.e., pure mechanical load and mechanical

load with an additional electric field parallel or anti-parallel with respect to the poling

direction. For each loading condition, five specimens have been prepared and tested.

The specimens were subsequently scanned by a high-resolution scanner and the crack

paths were extracted from the pictures. All the crack paths of the 15 tested specimens,

scanned from the front and back sides, are illustrated in Fig. 6.6 and the averaged crack

paths based on five tests of each case with error bars are shown in Fig. 6.7.
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6.3. Crack paths of three-point bending specimens

(b)(a)

Figure 6.6.: Crack paths of three-point bending tests under different electric loading

conditions, (a) view from the front sides and (b) view from the back sides

of the specimens.

(b)(a)

Figure 6.7.: The crack paths averaged from five tests for each electric loading condition

and the associated error bars: (a) view from the front side, (b) view from

the back side of the specimen.

The cracks under pure mechanical loading, in general, propagate with a larger deflec-

tion angle, see Fig. 6.6. Electric fields, in both parallel and anti-parallel directions,

reduce the deflection, however to different extents. The crack paths of specimens un-

der the additional negative electric field, compared to those under the positive electric

field, have a smaller deflection. This tendency is also confirmed by the critical me-

chanical loads of crack initiation, where averaged values 272.4 N, 249 N and 200.6

N correspond to E = 0, E = 0.75Ec and E = −0.75Ec, respectively. The critical me-

chanical loads for the individual specimens are listed in Tab. 6.1. The electric field in

anti-parallel direction (E =−0.75Ec), which leads to the least deflection, is coming up

with the largest scattering and is thus manifested in the longest error bars. The large

scattering is probably due to the domain switching near the crack tip induced by the

negative electric field. The electric load of ±0.75Ec is expected to be large enough to

show influence on the fracture behavior, however will not exceed the coercive field, re-

taining the general polarization state of the specimens. Nevertheless, the electric field
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E = 0 E = 0.75Ec E =−0.75Ec

specimen 1 282 270 187

specimen 2 266 251 216

specimen 3 282 241 177

specimen 4 266 266 197

specimen 5 266 216 226

average 272.4 249 200.6

Table 6.1.: Critical mechanical loading force (unit in N).

near the crack tip is definitely beyond the switching barrier due to the singularity at

the crack tip, thus inducing domain switching. The domain switching arises predomi-

nantly in the negative electric loading cases, where the domains initially are arranged

against the electric field. Hence, the negative electric field makes the fracture process

more unstable and promotes the diversity of the crack paths.

The experiment in [153] provided a crack path of a three-point bending specimen with

the same geometry of the present tests. However, only one single result for the chosen

notch position is available, which was subjected to a positive electric field. Although

not all the details of the tests are identical, e.g., the employed material and the applied

electric field, PZT-5H and 0.75Ec in this work, PZT-4 and about 0.33Ec in [153], a

qualitative comparison is at least allowed after all. Fig. 6.8(a) shows the crack path

from [153], which first deflects to the left side of the notch and continues with a curved

path towards to the loading position. In contrast, the averaged crack paths from the

front and back sides of the current experiments under the positive electric field are

distinctly less curved, having similar deflection angles at the onset stage and being

close to each other during crack growth.

The crack path of the simulation applying the Jm
k -vector criterion, taken from Fig. 5.8,

is compared with the experimental crack paths of E = 0.75Ec in Fig. 6.8(b). The three

paths show very similar initial kinking angles and continue propagating in the similar

direction. The curvatures of the experimental results, however, are larger than the one

from the simulation, thus the divergence increases at further growth.

The discrepancy of simulation and experiment in Fig. 6.8(b), although fundamentally

smaller than from comparison with the experimental result of [153], is supposed to be

mainly due to two aspects, which have been disregarded so far in the model. Nonlinear

ferroelectric and ferroelastic phenomena, leading to inelastic stress and polarization

switching in a crack tip process zone, may substantially affect the stress state at the

crack tip. In particular, the shear stress induced by the nonlinear phenomena might

effectuate a non-negligible contribution to crack deflection. Another important factor

related to this issue is, the fracture toughness anisotropy of ferroelectrics. Many ex-

perimental works confirmed that a considerable anisotropy of crack resistance prevails

in ferroelectrics, e.g., as shown in the Vickers indentation tests [171, 196]. The im-

pact of anisotropic fracture behavior on the curvature of cracks and even qualitative

features of crack paths was shown to be crucial in [105, 106], where crack paths in a
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Figure 6.8.: Comparison of the averaged crack paths for E = 0.75Ec on both sides of

PZT-5H specimens from the current experiments and (a) the crack paths

(designated as Park & Sun) from [153] and (b) the crack path from simu-

lation applying the Jm
k -vector criterion.

rolled aluminum alloy with smaller anisotropy ratio and short fiber reinforced polymer

matrix composites with larger ratios, respectively, have been investigated. In principle,

anisotropy of crack resistance has been considered in some numerical works [94,121],

however, assuming a constant polarization state and axis of anisotropy in the whole

specimen. Local polarization reorientation induced by the crack tip loading and the

resulting modification of anisotropy have been neglected.

6.3.2. High-speed recording of a crack growth process

Since crack growth in the three-point bending test is unstable under the force-controlled

loading regime, the crack length is not controllable and a critical loading instanta-

neously leads to spontaneous failure. In order to observe the crack growth, a high-

speed camera system was used for recording the crack propagation of one of the tests

under pure mechanical loading, where the optically obstructive acrylic glass with sil-

icon oil was removed. The high-speed camera recorded 65100 frames per second,

focusing on a small area of approximately 1 cm2, including the crack tip and the load-

ing position. Six of the recorded frames are selected and shown in Fig. 6.9.

A notable feature revealed by the recording is that before the crack starts to initiate

and propagate from the sharpened notch tip, which is supposed to take place as soon

as the mechanical load is sufficiently large, a white line is formed and denoted as

pre-fracture line in Fig. 6.9(b). After its appearance the white line is arrested for a

short time, about 0.3 s, then it rapidly grows further towards the upper boundary of the

specimen, see Fig. 6.9(c). Immediately after the white line reaches the boundary, the

actual crack initiates and the subsequent crack path exactly follows the white line, see

6.9(d)-(f). The crack takes about 1.5×10−4 s from initiation at the notch tip to grow to

the upper boundary, whereupon an average propagation speed of 42 m/s is identified.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.9.: Six stages of the high-speed recording of a specimen subjected to pure

mechanical loading: (a) loaded specimen prior to cracking, (b) increasing

the applied force, a white line appears in front of the notch tip (indicated

as pre-fracture line), (c) after a 0.3 s arrest the white line continues propa-

gating, (d)-(f) a crack initiates from the notch tip and propagates along the

white line [205].
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Figure 6.10.: Normal vectors (thin black arrows) and calculated stress vectors (thick

blue arrows, compressive stress if underneath the pre-fracture line and

tensile stress if above the line) at selected points on the pre-fracture line,

which has been extracted and averaged from the crack paths of specimens

under the pure mechanical loading condition. The averaged critical load

of 272.4 N was applied as a single force in the simulation, where the

notch was modeled as a crack [205].

This velocity, however, is much lower than typical velocities of surface waves in elastic

ceramic materials.

Regarding the white line, it is not clear what causes this phenomenon and what it

essentially is. It is provisionally interpreted as a pre-fracture line, which might be

driven by the stress field in the specimen prior to cracking. This assumption reminds

of a localization band which, however, is in fact only known for ductile materials

[159], exhibiting intense shear strain in a narrow zone and pronounced strain softening

behavior before failure. The deformation in the narrow zone leads to damage and

cracking just after the localization band emerges. The appearance of localization bands

is akin to what is observed in Fig. 6.9. In order to further illuminate this feature, the

stress vectors on the pre-fracture line were computed with linear piezoelectric finite

elements and illustrated in Fig. 6.10. The pre-fracture line in Fig. 6.10 has been

extracted and averaged from five crack paths under identical boundary and loading

conditions. The longer stress vectors (in blue, the length indicates the magnitude) on

the pre-fracture line are almost either parallel or anti-parallel to the normal directions

(unit length, small arrows in black). Normal stresses are tensile near the notch tip,

while they are compressive at the last three sampling points. Along the pre-fracture

line, the directions of the stress vectors change continuously, turning around gradually.

The magnitude of the stress vector varies accompanied by the change of the direction,

being reduced at first and increased again after the change from tensile to compressive.

The stress near the notch tip, which has been modeled as a crack tip, is much larger than

elsewhere due to the stress singularity. Near the upper boundary, the stress vectors,

still being compressive and not included in the figure, will rotate further towards the

opposite loading direction. Nevertheless, the pre-fracture line according to Fig. 6.10

is essentially oriented perpendicular to the directions of the large stress vectors, thus

it is exposed to principal tensile or compressive stress rather than to shear stress as is

known for classical localization bands in ductile materials.
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A promising approach to further examine the nature of the pre-fracture line in Fig. 6.10

could be a numerical simulation of the three-point bending test based on nonlinear fer-

roelectric constitutive behavior. The applied electric load is lower than Ec, however,

the crack gives rise to a much larger electric field in front of the crack tip, where the

ferroelectric/-elastic domain switching takes place, incorporating a pronounced non-

linearity just as plasticity in ductile materials. Furthermore, the mechanical load may

locally lead to domain switching apart from the crack tip. The nonlinear behavior of

ferroelectrics has been implemented in a FE environment via subroutines and USER-

elements [11,75,211], investigating damage, multiferroic and caloric phenomena. The

application of the re-meshing algorithm for crack path predictions, however, is still

missing here.

Digital Image Correlation (DIC) measurements on the surface of a loaded specimen

could possibly provide further insight into the nature of the pre-fracture line. In-situ

measurements, however, appear to be a challenging task, since the resolution of the im-

ages and the frame rate of high speed recording, whereupon 65100 frames per second

turned out to be prerequisite, are competing requirements. A further problem to over-

come in this regard is the application of a sufficiently fine stochastic speckle pattern

on the comparatively small test surface. The DIC device in connection with the high-

speed camera is basically suitable for the measurement of displacements on the surface

of the specimen. However, the current camera system offers for the given frame rate

a field of 320 × 304 pixels per cm2, whereupon each speckle covers 2-3 pixels. Thus,

the available resolution is too coarse to show the emergence of the white line and to

provide additional information.

A recording of tests with electric loads is, unfortunately, elusive due to the limitation

of the illumination system. The required power density of the illumination system is

linearly dependent on the recording frame rate. The extraordinarily powerful spotlight

used for the images of Fig. 6.9 does not provide enough light if the specimen has to be

submerged into oil in an acrylic glass box, since the oil environment and reflections of

the acrylic glass drastically reduce the light intensity on the specimen’s surface.
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7. Summary

The focus of this thesis is on crack paths in materials with coupled properties, in partic-

ular, the influence of the coupling effect and the electric field on crack deflections. The

topics of crack deflection and crack paths in classical materials have been comprehen-

sively studied and the obtained analysis methods basically provide reliable assessments

and crack path prediction. However, the issues addressed in multi-field materials are

still not sufficiently clarified, e.g., QCs with the coupled phonon–phason fields and

piezoelectrics with the mechanical–electric fields.

Along this purpose, an all-around framework in the sense of continuum mechanics is

developed in Chapter 2, including the phonon, phason and electric fields in piezoelec-

tric QCs. The governing equations are derived assuming linear material behavior, thus

the ferroelectric domain switching effect and the relaxation of the phason displacement

are disregarded.

In Chapter 3, the closed-form solutions for planar crack problems in piezoelectric QCs

and the solutions confined in the near-tip field are obtained considering an imperme-

able crack. The fundamental crack tip loading quantities, associated with classical

crack growth criteria, are extended into the multi-field coupled materials. The crack

deflection criteria proposed for classical materials are generalized for the coupled ma-

terials. Accounting for the change of potential mechanical energy with virtual dis-

placement of the crack tip, a modified Jm
k -vector criterion is suggested for materials

with piezoelectric property.

Subsequently in Chapter 4, the governing equations of 1D piezoelectric QC with one

degree of freedom in the phason field are implemented in a FE environment. Via a

USER-element type in connection with a subroutine, the solutions of boundary value

problems in 1D piezoelectric QCs and the generalized fracture loading quantities are

provided in the commercial FE software Abaqus. An adaptive re-meshing algorithm is

introduced to simulate crack growth by repeatedly creating new crack faces and refined

mesh at the crack tip in every increment, whereupon the deflection angle is determined

by different numerical approaches in the post-processing.

The results of crack growth simulation, according to the introduced numerical tools,

are shown in Chapter 5. Two special cases, the 1D QC and the piezoelectrics, are

considered first by neglecting the electric property and the phason field, respectively,

investigating the influence of the phonon–phason coupling and the electric loading on

crack paths. Under mechanical mixed-mode loading conditions with an initially small

KII/KI-ratio, where KII nevertheless gives rise to a noticeable crack deflection, the

phonon–phason coupling and the electric field show significant impact on the crack

paths. With regard to the deflection criteria, the simulation results demonstrate that the
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7. Summary

crack paths predicted by the maximum hoop stress criterion are likely to be affected

by enlarger coupling coefficients of the QCs compared to the other criteria, however,

show less impact of the electric loading in piezoelectrics. The Jk-vector criterion,

as an appropriate deflection criterion in classical structural materials if KII is much

smaller than KI , nonetheless proves to be invalid for the multi-field materials with

piezoelectric property, at least if an electric loading is applied. The modified one,

the Jm
k -vector criterion, incorporating only the mechanical part of the configurational

driving force, seems to be reliable according to the crack paths in the simulation results.

Moreover, the experimental crack paths presented in Chapter 6 are in some aspects well

reproduced by the Jm
k -vector criterion. The crack growth in piezoelectric 1D QC are

also simulated, showing the interrelation of the phason and the electric field, although

there is no direct coupling between the two fields.

A series of three-point bending tests is carried out in Chapter 6, presenting statisti-

cally evaluated results of crack paths in PZT-5H specimens. Different electric loading

conditions have been implemented in addition to a mechanical load to illuminate their

influences on crack paths. The experimental findings could be qualitatively confirmed

by simulations under positive electric loading. While negative electric loading shows

converse influence compared to the simulation. Additionally, the negative electric field

leads to the most distinctive scattering of crack paths, being manifested in the longest

error bars, which is probably due to the domain switching induced by the large electric

field at the crack tip. High-speed recordings of the crack propagation, taken for one of

the tests under pure mechanical loading, reveals unexpected details of crack initiation

and growth, where a white line is formed and precedes the actual crack growth. The

line is denoted as pre-fracture line and has to be further investigated.
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A. Material constants and
characteristic matrices of the Stroh
formalism

The material constants of diverse materials, employed in the analytical solutions and

the numerical models in this thesis, are given in the following. The characteristic

matrices and eigenvalues for the general solutions in the Stroh formalism according to

Eqs. (3.9), (3.12) and (3.18) were calculated by the engineering computing software

Mathematica and verified by using the orthogonal relations.

A.1. 1D QC

In compressed notation the constitutive equations of a 1D QC with the QA being par-

allel to the x1-axis are⎛
⎜⎜⎜⎜⎜⎜⎝

σ11

σ22

σ12

H11

H12

⎞
⎟⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

C1111 C1122 0 R2 0

C1122 C2222 0 R1 0

0 0 C1212 0 R3

R2 R1 0 K1 0

0 0 R3 0 K2

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

ε11

ε22

2ε12

w11

w12

⎞
⎟⎟⎟⎟⎟⎟⎠ (A.1)

in the state of plane strain.

Since the properties of 1D QC based on experiments are, to date, still unknown due

to the absence of a measurement, the following material constants, adopted from the

measured and evaluated results of 2D decagonal QCs [27, 45, 99], have been used for

the calculations:

C1111 = 232.22, C1122 = 66.63, C2222 = 234.33

C1133 = 66.63, C2233 = 57.41, C3333 = 234.33,

C1212 = 70.19, C1313 = 70.19, C2323 = 88.46,

R1 =−1.1, R2 = 0.2, R3 = 0.5

K1 = 122, K2 = 24.

(A.2)
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A. Material constants and characteristic matrices of the Stroh formalism

The units in A.2 are GPa and the values of the coupling coefficients are the reference

values Rref. However, R3 is not provided by literature and thus is assumed in the same

order of R2. The stiffness matrix in Eq. (A.1) comes out to be positive definite for Rref

and also for the 50 and 80 time enlarged coupling coefficients, which have been used

for some of the calculations. For plane stress conditions, the following transformations

are required:

Cs
1111 = C1111− C1133C1133

C3333
, Cs

2222 = C2222− C2233C2233

C3333
,

Cs
1122 = C1122− C2233C1133

C3333
, Cs

2211 = Cs
1122, Cs

1212 = C1212,

Rs
1 = R1− C2233R1

C3333
, Rs

2 = R2− C1133R1

C3333
, Rs

3 = R3,

Ks
1 = K1− R1R1

C3333
, Ks

2 = K2.

(A.3)

In a general 3D QC case, the characteristic matrices are 6×6, where three rows/columns

are from the phonon field and the other three from the phason field. For a planar 1D

QC, only two of the phonon dimensions and one of the phason fields are required.

Thus, for the quasiperiodic direction along the x1-direction and the material data ac-

cording to (A.2), the following complex 3×3 matrices and eigenvalues are calculated

by applying the methods introduced in [71]:

AMN =

⎛
⎜⎝ −0.008585 1.136 0.551i
−0.002932i 0.5395i −1.142

0.9999 0.003374 −0.003747i

⎞
⎟⎠ ,

BMN =

⎛
⎜⎝ −0.4371i 148.1i −107.7

0.1939 −107.2 −151.3i
54.10i 1.167i −0.7029

⎞
⎟⎠×109,

pN =

⎛
⎜⎝ 2.255i

1.383i
0.7117i

⎞
⎟⎠ .

(A.4)
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A.2. BaTiO3

For the quasiperiodic direction along the x2-axis they are

AMN =

⎛
⎜⎝ −1.142 0.5395i −0.002932i

−0.551i −1.136 0.008585

0.003747i −0.003374 −0.99996

⎞
⎟⎠ ,

BMN =

⎛
⎜⎝ −151.3i −107.1 0.1939

107.7 −148.1i 0.4371i
0.7029 −1.167i −54.10i

⎞
⎟⎠×109,

pN =

⎛
⎜⎝ 1.405i

0.7233i
0.4435i

⎞
⎟⎠ .

(A.5)

The crack growth simulations for 1D QC in Section 5.1 are based on the plane stress

state, since the QCs are so far applied as thin films, e.g., coating materials. Nonethe-

less, the state of plane stress or plane strain, in fact, has no essential influence on crack

paths.

A.2. BaTiO3

According to the measurements in [83,92], the material constants of polarized BaTiO3

are

C1111 = 166, C1122 = 77.5, C2222 = 162, C1212 = 42.9,

e211 =−4.4, e222 = 18.6, e121 = 11.6,

κ11 = 14.34, κ22 = 16.82,

(A.6)

where the poling direction is in the x2-axis and the units are GPa, C/m2 and C/(GVm),

respectively. The corresponding constitutive equation is thus expressed as⎛
⎜⎜⎜⎜⎜⎜⎝

σ11

σ22

σ12

D1

D2

⎞
⎟⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

C1111 C1122 0 0 −e211

C1122 C2222 0 0 −e222

0 0 C1212 −e121 0

0 0 e121 κ11 0

e211 e222 0 0 κ22

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

ε11

ε22

2ε12

E1

E2

⎞
⎟⎟⎟⎟⎟⎟⎠ . (A.7)

The matrices and the eigenvalues, being required for the solutions in the Stroh formal-
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A. Material constants and characteristic matrices of the Stroh formalism

ism, are given as follows

AMN =

⎛
⎜⎝ 4.069−4.069i −2.908−2.227i −2.227−2.908i

3.476+3.476i 2.133−3.566i 3.62.133i
0.8925+0.8925i 2.936+2.204i −2.204−2.936i

⎞
⎟⎠×10−6,

BMN =

⎛
⎜⎝ 35.08+35.08i 22−24.13i 24.13−22i
−32.01+32.01i 26.51+22.36i 22.36+26.51i
−7.231+7.231i 11.04+0.442i 0.442+11.04i

⎞
⎟⎠×104,

pN =

⎛
⎜⎝ 1.096i
−0.03635+0.941i
0.03635+0.941i

⎞
⎟⎠ .

(A.8)

A.3. PZT-5H

The material constants of PZT-5H with the poling direction in the x2-axis, according

to [147], are given as follows

C1111 = 126, C1122 = 53, C2222 = 117, C1212 = 35.3,

e211 =−6.5, e222 = 23.3, e121 = 17,

κ11 = 15.1, κ22 = 13

(A.9)

with the same units of BaTiO3. The matrices and the eigenvalues in the Stroh formal-

ism based on the constants in (A.9) are

AMN =

⎛
⎜⎝ −11.89+11.89i −4.268+35.61i 35.61−4.268i
−14.329−14.329i −31.17+8.521i −8.521+31.17i

30.06+30.06i −23.52−7.223i 7.223+23.52i

⎞
⎟⎠×10−7,

BMN =

⎛
⎜⎝ −4.444−4.444i −27.75−2.211i 2.211+27.75i

4.149−4.149i −2.755−26.24i −26.24−2.755i
8.535−8.535i −1.944−7.242i −7.242−1.944i

⎞
⎟⎠×104,

pN =

⎛
⎜⎝ 1.071i
−0.1932+1.037i
0.1932+1.037i

⎞
⎟⎠ .

(A.10)

A.4. Piezoelectric 1D QC

Since the material constants reported for the properties of 1D piezoelectric QC are

not fully reliable due to the absence of experimental measurements, different material
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A.4. Piezoelectric 1D QC

constants have been suggested, e.g., in [215], [199] and [212]. Considering that the

quasicrystallized BaTiO3 has been reported [62], the electric properties of the piezo-

electric 1D QC in this work are taken from BaTiO3 according to (A.6). The rest of

material constants is adopted from the 1D QC given in (A.2). For the quasiperiodic

direction and the poling direction along the x2-axis, the matrices and the eigenvalues

are

AMN =

⎛
⎜⎜⎝

17.01−17.01i −2.118+2.118i −8.707−8.707i 0.0751+0.0751i
8.255+8.255i −0.8429−0.8429i 16.33−16.33i −0.1711+0.1711i

−0.06196−0.06196i −0.01129+0.01129i 0.06167−0.06167i 21.5−21.5i
1.93+1.93i −40.44−40.44i 13.6−13.6i −0.1449+0.1449i

⎞
⎟⎟⎠×10−7,

BMN =

⎛
⎜⎜⎝

22.85+22.85i −6.642−6.642i 17.52−17.52i −0.5279+0.5279i
−16.2+16.2i 7.261−7.261i 23.88+23.88i −1.19−1.19i
−1.038+1.038i 0.1223−0.1223i 1.75+1.75i 11.63+11.63i
−2.456+2.456i −5.986+5.986i 0.9325+0.9325i −0.0066−0.0066i

⎞
⎟⎟⎠×104,

pN =

⎛
⎜⎜⎜⎝

1.4099i
0.91486i
0.73383i
0.44351i

⎞
⎟⎟⎟⎠ ,

(A.11)

with the same units as in the previous subsections.
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B. Transformation of p, AIJ and BIJ of
the Stroh formalism

In this section, the transformation of p, AIJ and BIJ into the local coordinate systems

is introduced to obtain the solutions of a deflected crack during crack growth process.

According to Eq. (3.13), an ansatz for the generalized displacements reads

ûI = âI f̂ (ẑ) ẑ = x̂1 + p̂x̂2, (B.1)

where the hat indicates a variable in the local coordinate system. Similar to the deriva-

tion of Eq. (3.9) from Eq. (3.5) in the global coordinate system, the eigenvalue equa-

tion in the local coordinates x̂i is found as

{ĈI1K1 +(ĈI1K2 + ĈI2K1)p̂+ ĈI2K2 p̂2}âK = 0, (B.2)

and the corresponding elastic tensors are obtained by using Eqs. (3.29) and (3.31)

ĈI1K1 = ΩIMΩKP(cos2 ϕ CM1P1 + sinϕ cosϕ CM2P1 + sinϕ cosϕ CM1P2 + sin2 ϕ CM2P2),

ĈI1K2 = ΩIMΩKP(−sinϕ cosϕ CM1P1− sin2 ϕ CM2P1 + cos2 ϕ CM1P2 + sinϕ cosϕ CM2P2),

ĈI2K1 = ΩIMΩKP(−sinϕ cosϕ CM1P1− sin2 ϕ CM1P2 + cos2 ϕ CM2P1 + sinϕ cosϕ CM2P2),

ĈI2K2 = ΩIMΩKP(sin2 ϕ CM1P1− sinϕ cosϕ CM2P1− sinϕ cosϕ CM1P2 + cos2 ϕ CM2P2),

(B.3)

where ϕ is the angle between the two coordinate systems, see Fig. 3.3. Inserting Eq.

(B.3) into Eq. (B.2), the eigenvalue equation is expressed as(
CM1P1+(CM2P1+CM1P2)

sinϕ + p̂cosϕ
cosϕ− p̂sinϕ

+CM2P2

(
sinϕ + p̂cosϕ
cosϕ− p̂sinϕ

)2 )
ΩIMΩKPâK = 0.

(B.4)

Comparing the identical eigenvalue problems Eqs. (B.4) and (3.9), the relation of p
and p̂ is readily found:

p =
sinϕ + p̂cosϕ
cosϕ− p̂sinϕ

or p̂ =
pcosϕ− sinϕ
psinϕ + cosϕ

. (B.5)

It is noted that outside the braces, ΩIM does not have any associated index with ΩKPâK .

As a non-singular matrix, ΩIM thus can be eliminated providing the relations

aP = ΩKPâK or âK = ΩKPaP, (B.6)
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and

AIK = ΩJIÂJK or ÂIK = ΩIJAJK. (B.7)

This relation can also be derived from the formulation of ẑ. Replacing x̂i in Eq. (B.1)

by the transformed xi, ẑ is expressed as

ẑ = (cosϕ− p̂sinϕ)(x1 +
sinϕ + p̂cosϕ
cosϕ− p̂sinϕ

x2), (B.8)

where the displacement vector ûI depends on ẑ. Meanwhile, ûI is also related to z:

ûI = ΩIJuJ = ΩIJaJf (z). (B.9)

Comparing Eq. (B.9) to Eq. (B.1) and without loss in generality, ẑ has to be a function

of z, i.e.

ẑ = g(z) = g(x1 +px2). (B.10)

Apparently, the expression of p can be extracted from Eq. (B.8).

Substituting stresses according to Eq. (3.17) into the constitutive equations Eq. (3.4),

the relation of uK and φK is given as(
CI1K1 0

CI2K1 −δIK

)(
uK,1

φK,1

)
+

(
CI1K2 δIK

CI2K2 0

)(
uK,2

φK,2

)
= 0 (B.11)

Based on Eqs. (3.6), (3.7) and (3.19), the following relations can be derived

uI,2 = puI,1 and φI,2 = pφI,1, (B.12)

which allows transforming Eq. (B.11) into a 8-dimensional eigenvalue problem(
N1

IJ N2
IJ

N3
IJ N1

JI

)(
aJ

bJ

)
= p

(
aJ

bJ

)
, (B.13)

where

N1
IJ =−C−1

I2K2 CK2J1,

N2
IJ = C−1

I2J2,

N3
IJ = CI1K2 C−1

K2L2 CL2J1−CI1J1.

(B.14)

Taking a look at Eq. (B.13), the mathematical rules governing aI and AIJ are also valid

for bI and BIJ, i.e.,

b̂I = ΩIJbJ and B̂IK = ΩIJBJK. (B.15)

Eqs. (B.5), (B.7) and (B.15) enable the transformation of the near-tip solutions of

an anisotropic material according to Eq. (3.27) into any direction without repeated

calculation.
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C. Equivalence of −H and J2 in
isotropic LEFM

The equivalence of G and J1 in linear elastic fracture mechanics (LEFM) provides a

practical way for obtaining J1 from the K-factors without a cumbersome path integral,

in particular, if an appropriate integral contour is not available. In classical materials

the proof of this relation has been given in an isotropically linear elastic case [157],

selecting a circular integral contour surrounding the crack tip with radius r→ 0. Since

G and J1 are both motivated energetically, their equivalence is easily understood. Al-

though the second energy term in the crack closure integral H is obtained in a similar

way as G by formally replacing σi2 by σi1 [132], it does not describe a virtual crack

closing process. Thus, H doesn’t have any physical interpretation and a relation with

J2 needs to be proved.

Assuming a planar problem in isotropic materials with a crack under mixed mode-I/II

loading, the second energy term H is obtained as

H = lim
Δa→0

1

2Δa

Δa∫
0

σi1(r,0)Δui(Δa− r,π)dr =
1+κ

4μ
KIKII, (C.1)

where the asymptotic near-tip fields are employed. The stresses and displacements of a

crack under mixed mode-I/II loading in isotropic materials are given as follows [115]

σij =
1√
2πr

(
KIf I

ij(θ)+KIIf II
ij (θ)

)
,

ui =
1

2μ

√
r

2π
(
KIdI

i (θ)+KIIdII
i (θ)

)
,

(C.2)

where the angular functions for stresses and displacements are given as

f I
11 = cos

θ
2

(
1− sin

θ
2

sin
3θ
2

)
, f II

11 =−sin
θ
2

(
2+ cos

θ
2

cos
3θ
2

)
,

f I
22 = cos

θ
2

(
1+ sin

θ
2

sin
3θ
2

)
, f II

22 = sin
θ
2

cos
θ
2

cos
3θ
2
, (C.3)

f I
12 = cos

θ
2

sin
θ
2

cos
3θ
2
, f II

12 =−cos
θ
2

(
1− sin

θ
2

sin
3θ
2

)
,
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Figure C.1.: Infinitesimal contour Γ with the length 2δx and height 2δy surrounding the

crack tip.

and

dI
1 = cos

θ
2
(κ− cosθ), gII

1 = sin
θ
2
(κ +2+ cosθ),

dI
2 = sin

θ
2
(κ− cosθ), gII

2 = cos
θ
2
(κ−2+ cosθ),

(C.4)

respectively.

On the other side, J2 can be calculated using the integral along an infinitesimal contour

at the crack tip

J2 = lim
δx→0

lim
δy→0

∫
Γ

(
1

2
σijεijn2−σijui,2nj

)
dΓ, (C.5)

where the contour is illustrated in Fig. C.1. Due to the limit of the contour edges,

taking δy → 0 prior to δx → 0, only the top and bottom contours have to be considered

in the integral

J2 = 2 lim
δx→0

δx∫
−δx

(
1

2
σijεij−σi2ui,2

)
dx = 2 lim

δx→0

δx∫
−δx

f (x)dx, (C.6)

where n1 vanishes and n2 = 1 represents the top contour. The bottom contour provides

the same result as the top contour due to the symmetric property of the stresses and the

asymmetry of the displacement gradients.

Let f (x) represents the integrand in Eq. (C.6), it can be expanded as

f (x) =
1

2
σ11u1,1− 1

2
σ12u1,2 +

1

2
σ12u2,1− 1

2
σ22u2,2. (C.7)

Inserting the angular functions fij and di into the stresses and displacements in Eq.

(C.7) and differentiating the displacements with respect to x1 and x2 accounting for

Eq. (2.15), leads to the simple expression

f (x) =
−1

8μπr
(1+κ)cosθ (KI sinθ +KII cosθ)2 . (C.8)
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C. Equivalence of −H and J2 in isotropic LEFM

In order to integrate f (x) according to Eqs. (C.6) and (C.7), the variable r and functions

of θ have to be converted applying the relations in Fig. C.1, yielding

J2 = 2 lim
δx→0

⎛
⎝ lim

δy→0

δx∫
−δx

−(1+κ)
8μπ

(
K2

I
xδ 2

y

(x2 +δ 2
y )

2
+K2

II
x3

(x2 +δ 2
y )

2
+2KIKII

x2δy

(x2 +δ 2
y )

2

)
dx

⎞
⎠

=
−(1+κ)

4μπ
lim

δx→0

⎛
⎝

⎛
⎝K2

I

[
− δ 2

y

2(x2 +δ 2
y )

]δx

−δx

⎞
⎠+

⎛
⎝K2

II
2

[
δ 2

y

x2 +δ 2
y
+ ln(x2 +δ 2

y )

]δx

−δx

⎞
⎠

+

⎛
⎝KIKII

[
arctan

x
δy
− xδy

x2 +δ 2
y

]δx

−δx

⎞
⎠

⎞
⎠ .

(C.9)

Finally, J2 is derived by taking the limit δy → 0:

J2 =
−(1+κ)

4μ
KIKII, (C.10)

Eqs. (C.10) and (C.1) are identical, except for the factor −1. This relation is given

in [19], however, the derivation is not presented.

A mathematical proof of the relation of J2 and −H in anisotropic functional materials

is challenging due to the complexity of the stress and displacement solutions, see Eqs.

(3.27), where the angular functions include complex numbers. Nevertheless, a numer-

ical validation has been done in both classical and coupled materials [132,168,206].
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