
Towards Service Co-evolution
in the Internet of Things

Dissertation by

M.Sc. Huu-Tam Tran
in partial fulfillment of the requirements for the degree

Doktor der Naturwissenschaften (Dr. rer. nat.)
submitted to the

Department of Electrical Engineering and Computer Science,
University of Kassel, Germany

Supervisor: Prof. Dr. Kurt Geihs
Date of defense: 3rd December 2021

December 2021

Acknowledgements

I would like to take this opportunity to thank those individuals and organizations, without
whom this thesis and associated work would not have been possible. I am thankful for
their aspiring guidance, invaluable constructive criticism, and friendly advice during the
dissertation work.

First and foremost, I would like to thank my supervisor Prof. Dr. Kurt Geihs, for offering
me the chance to work in his research group. I greatly appreciate the advice, opinions,
and insight he has provided throughout my work. He also gives all his Ph.D. students
the freedom to pursue their interests and research ideas. I was fortunate to work on his
project named PROSECCO.

I would like to thank Dr. Nguyen Xuan Thang from Hanoi University as the second
reviewer of this thesis for his insighful comments and valuable advices.

It has been a great experience to work with the Distributed System Group at the
University of Kassel. My colleagues: Harun Baraki, Alexander Jahl, Tareq Razaul Haque,
Daniel Saur, Nugroho Fredivianus, Stephan Opfer, Thao Nguyen, Stephan Jakob, Stefan
Niemczyk, Dominik Kirchner, Marie Ossenkopf, Andreas Witsch, Christoph Evers - with
whom I have shared my ideas and from whom I have received constructive feedback.
The Group has been a source of friendships, helpful advice, and collaboration. Special
thanks go to Harun Baraki and Alexander Jahl for their supports not only during the
time of research work but also in the outdoor activities. They are also co-authors of my
publications regarding Chapters 4-7. I would like to thank my students, Ramaprasad
Kuppili and Srivardhan Cholkar, who assist me a lot in implementing the ideas in
Chapters 6 and 7 of the dissertation. It is a great honor to be their advisor during my
Ph.D. time in Germany. I will always remember their positive attitude. I also would
like to express my thanks to all colleagues who supported the everyday work, such as
Thomas Kleppe, Heidemarie Bleckwenn, Inken Poßner and all the others.

In the same fashion, moving from individuals to organizations, I would like to thank the
Ministry of Education and Training of Vietnam and the German Academic Exchange
Service for awarding me the scholarship for doing my research.

Last but not least, I must thank my parents, my wife, my brothers for their support,
encouragement, and inexhaustible patience in all the past years.

Abstract

Nowadays, in the world of technology, where the new technologies are devolved and
replace the old ones every single day, any software product in order to maintain its
competitiveness, must be updated continually. Updating a software product results
from an evolution process, including adding new features, replacing outdated features,
repairing bugs, closing security gaps, and improving performance, which requires a lot of
effort and knowledge. Therefore, the Internet of Things (IoT) services are no exception.

An interesting research question is how to handle service changes for service consumers
and how to enable and facilitate end-user application updates in case the dependent
clients provide services to other clients, especially in IoT environments. These manifold
interdependencies make on-the-fly service evolution a particularly difficult and challenging
problem because the evolution of one service may incur changes in other dependent
services and clients. In analogy to biology, we call this service coevolution. Thus,
the thesis aims to develop a comprehensive solution for the coordinated evolution of
heterogeneous services in IoT.

The main contribution of this dissertation is a set of theoretical models and approaches
that facilitate service coevolution. In particular, we developed a solution for coordinated
service coevolution through a design technique that equips every service with an intelligent
agent, called EVA (Evolution Agent), that performs the service evolution in collaboration
with other EVAs. The EVA can control service versions, update local service instances.
Furthermore, we proposed a notification management architecture for IoT services.
Additionally, an approach to describe and detect changes in IoT services with support for
a shared knowledge base is introduced. Last but not least, a method to find out changes
in service behavior is presented by analyzing the data stream between the service client
and service provider.

Kurzfassung

In der Welt der heutigen Technologie, in der neue Technologien täglich weiterentwickelt
und die alten Technologien ersetzt werden, muss jegliche Software ständig aktualisiert
werden, damit ihre Wettbewerbsfähigkeit aufrechterhalten wird. Die Aktualisierung eines
Softwareproduktes ist das Ergebnis eines Evolutionsprozesses. Dieser Prozess erfordert
einen größeren Aufwand und viel Wissen, es beinhaltet das Hinzufügen neuer Funktionen,
das Entfernen veralteter Funktionen, das Beheben von Softwarefehlern, das Schließen
von Sicherheitslücken und die Leistungssteigerung. Die Dienste des Internets der Dinge
(IoT) stellen dabei keine Ausnahme dar.

Eine interessante Forschungsfrage besteht darin, wie Änderungen von Diensten für
deren Nutzer gehandhabt, wie sie aktiviert und wie Aktualisierungen von Endnutzer
Anwendungen ermöglicht werden. Das gilt insbesondere in IoT Umgebungen und im Falle
von abhängigen Clients, die anderen Clients Dienste anbieten. Diese vielfältigen und
gegenseitigen Abhängigkeiten machen die on-the-fly Evolution eines Dienstes zu einem
besonders schwierigen und herausfordernden Problem, weil die Evolution eines Dienstes
Änderungen in anderen abhängigen Diensten und Clients notwendig macht. In Analogie
zur Biologie nennen wir diesen Dienst-Koevolution. Somit zielt diese Dissertation darauf
ab, eine umfassende Lösung für die koordinierte Evolution von heterogenen Diensten in
IoT zu entwickeln.

Der Hauptbeitrag dieser Dissertation besteht aus einer Reihe von theoretischen Modellen
und Ansätzen, die die Dienst-Koevolution ermöglichen. Insbesondere entwickelten wir
eine Lösung für die koordinierte Dienst-Koevolution durch eine Designtechnik, die jeden
Dienst mit einem intelligenten Agenten, genannt EVA (Evolutions-Agent) ausstattet.
Diese Designtechnik führt die Dienst-Koevolution in Zusammenarbeit mit anderen EVAs
durch. Der EVA kann die Dienstversionen kontrollieren und die lokalen Dienstinstanzen
aktualisieren. Außerdem schlugen wir eine Benachrichtigungsmanagementarchitektur für
IoT Dienste vor. Zusätzlich wird ein Ansatz zur Beschreibung und Änderungserfassung in
IoT Diensten mit Unterstützung für eine verteilte Wissensdatenbank dargestellt. Zu guter
Letzt wird eine Methode zur Erkennung von Änderungen im Verhalten von Diensten durch
die Analyse des Datenstroms zwischen dem Client des Dienstes und dem Dienstanbieter
präsentiert.

Table of Contents

List of Figures

1 Introduction 1
1.1 Motivation . 1
1.2 Research Questions . 2
1.3 Methodology . 4
1.4 Contributions . 5
1.5 Dissertation Outline . 6

2 Foundation 8
2.1 Service Oriented Architecture . 8

2.1.1 Definitions . 8
2.1.2 WS-* Paradigms . 10
2.1.3 RESTful Service . 12

2.2 Multi-agent System . 14
2.2.1 Concepts . 14
2.2.2 Modeling Agents . 15

2.3 Answer Set Programming . 16
2.4 IoT in Nutshell . 20

2.4.1 Concept . 20
2.4.2 Applications and Frameworks . 21

3 Related Work 23
3.1 Software Evolution . 23
3.2 Service Evolution . 25

3.2.1 Terminology . 25
3.2.2 Change Taxonomy . 27

3.3 Positioning Approaches . 29
3.3.1 Support Service Evolution . 30
3.3.2 Support Service Co-evolution . 39

4 Service Co-evolution Architecture 41
4.1 Introduction . 41
4.2 Approach Overview . 42

4.2.1 Analysis . 42
4.2.2 Evolution Analytics . 44
4.2.3 Evolution Coordination . 44
4.2.4 Smart Update Mechanism . 45
4.2.5 Repository . 46
4.2.6 Middleware . 46

4.3 Coordination of EVAs . 47
4.3.1 Coordination Algorithm . 48
4.3.2 Optimization Problem . 49

4.4 Conclusions . 51

5 Notification Management Architecture 52
5.1 Introduction . 52
5.2 Motivating Example . 53
5.3 Change Detection based on Service Description 54

5.3.1 Analyzing Service Description . 54
5.3.2 Detecting Changes . 55

5.4 Proposed Architecture . 56
5.4.1 Deploying the EVA . 56
5.4.2 Service Registry . 57
5.4.3 Communication Mechanism . 57

5.5 Implementation . 59
5.6 Conclusions . 60

6 DECOM: A Framework to Support Evolution of IoT services 61
6.1 Introduction . 61
6.2 Motivating Example . 62
6.3 Detecting Changes . 65

6.3.1 Framework Overview . 65
6.3.2 Semantic Annotation . 66
6.3.3 Generate ASP Description . 68

6.4 Implementation and Evaluation . 70
6.4.1 Evaluation Setup . 71
6.4.2 ASP Queries and Results . 71

6.4.3 Evaluation . 72
6.5 Conclusions . 74

7 Detection of Service Behavior Changes 75
7.1 Introduction . 75
7.2 Motivating Example . 76
7.3 Background . 77

7.3.1 Anomaly Detection . 77
7.3.2 Machine Learning . 79

7.4 Approach . 81
7.5 Implementation . 83

7.5.1 Data Acquisition . 83
7.5.2 Data Pre-Processing . 83
7.5.3 Training Algorithms . 84

7.6 Evaluation . 85
7.6.1 Performance of Algorithms . 85

7.7 Conclusions . 87

8 Conclusion 88
8.1 Summary . 88
8.2 Limitation and Future Work . 89

Bibliography 94

List of Figures

2.1 SOA participant roles and their interaction [1] 9
2.2 Agent and Environment Interaction [2] . 15
2.3 Fish can swim . 18
2.4 Batfish cannot swim . 19
2.5 Addition of new facts to the program . 19

3.1 Dependency Graph in Service Co-evolution Scenario 27
3.2 Change Taxonomy . 27

4.1 Architecture of the EVA . 43
4.2 Deployment of an EVA’s conceptual components 46
4.3 Coordination of EVAs based on client’s feedback 47

5.1 A motivating scenario in IoT environment 54
5.2 Detection of compatible changes based on service description 55
5.3 Notification Management for Service Co-evolution 58
5.4 Implementation Scenario . 60

6.1 A motivation scenario in IoT environment 63
6.2 Change Detection Work-flow of Framework 65
6.3 Runtime execution in the scenario . 73

7.1 Change Scenario . 77
7.2 An example of anomalies in dataset [3] . 79
7.3 Service Architecture . 81
7.4 Benchmark - Raspberry Pi, 32-bit ARM Cortex- A52 Quadcore 1.2 GHz . 85
7.5 Performance of Algorithms: J48, KNN, Naive Bayes and OCSVM 86
7.6 Performance of Algorithms: Feedforward, Elman and Jordan 87

Abbreviations

The list below gives an overview of abbreviations used throughout the thesis.

ACM: Association for Computing Machinery

ANN: Artificial Neural Networks

ASP: Answer Set Programming

BPEL: Business Process Execution Language

CD: Change Detection

CIA: Change Impact Analysis

CR: Change Reaction

CPU: Central Processing Unit

DYMOS: DYnamic MOdification System

DKB: Default Knowledge Base

DKEM: Distributed Knowledge Based Evolution Model

EVA: Evolution Agent

IoT: Internet of Things

HTTP: Hypertext Transfer Protocol

JSON: JavaScript Object Notation

RFID: Radio-frequency identification

REST: REpresentational State Transfer

SOA: Service Oriented Architecture

SOAP: Simple Object Access Protocol

XML: Extensible Markup Language

UDDI: Universal Description Discovery and Integration

URI: Universal Resource Identifier

MAS: Multi-agent systems

NCEI: National Centers for Environmental Information

OSGi: Open Service Gateway initiative

OCSVM: One-Class Support Vector Machine

OWL: Web Ontology Language

PROSECCO: Provisions for Service Co-Evolution

QoS: Quality of Service

XSLT: Extensible Stylesheet Language Transformations

KB: Knowledge Base

KNN: K-Nearest Neighbour

KRR: Knowledge Representation and Reasoning

WADL: Web Application Description Language

WSDL: Web Service Description Language

W3C: World Wide Web Consortium

1 Introduction

1.1 Motivation

In the last decades, Service Oriented Architecture (SOA) has become a widely accepted
paradigm that provides a flexible IT infrastructure to deal with the increasing pace of
business changes and global competition [4]. The service in SOA is a software component
that provides specific capabilities over a network to service consumers in a loosely coupled
fashion. This service is encapsulated and offers a clearly defined service interface to
service consumers.

With the advent of SOA, our private life and business activity increasingly depends on
SOA applications [5]. By the time, the advent of Cloud Computing [6] and the Internet
of Things [7] (IoT), or the Web of Things [8] have reinforced this trend even more. The
downside of this trend is increasing the complexity of service landscapes. This complexity
is due to the sheer size of these systems. The manifold interdependencies make service
management as a whole a very substantial challenge for service providers [9].

In this context, a critical research problem is how to handle service changes for each
consumer and how to facilitate the updates of the end-user application. Addressing
the challenge of service changes means that service modifications require adaptations in
participating parties to prevent outages and failures due to individual service modifica-
tions.

Besides, in the point of view of managing changes, in order to control service development,
the developers need to know why a change was made, what its implications are, who did
trigger, what kind of evolutionary changes occurred, and whether the resulting service
version is compatible with existing consumers.

The term "service evolution" refers to deploying a new service version, which is caused
by necessary changes [10]. On the one hand, service evolutions rise in order to satisfy

requirements from clients. The changes are requested from clients for additional function-
alities or bug reports. If the conditions are not met, the clients may switch to another
offer. On the other hand, service providers adapt and evolve to the new market trends
and attract more clients. Thereby, the service providers undergo necessary updates such
as supporting new technologies, discharging obsolete functionalities, enhancing reliability,
and improving performance. Thus, the need for evolution comes from service providers
and their clients.

Service evolution in SOA systems may be triggered by the service providers or the
service consumers since they may desire an arrangement with another competitor who
meets their new requirements or performs better. However, in distributed networks
of large-scale environments, every service depends on other services to avail of certain
functionalities. Consequently, a change in one service can lead to another change in other
services. It implies interdependent services need to co-evolve modifications together. This
phenomenon in biology is called co-evolution, which is defined as the coordination of
individual evolution to prevent outdated and failures.

Even though the successful co-evolution of services may bring advantages, it appeals very
little attention from the research community. Therefore, this thesis aims to provide a
solution for handling service interdependencies in large-scale service environments and
minimizing service downtime. Furthermore, this thesis also aims at providing a general
solution for coordinated decentralized service co-evolution within a resource-constrained
environment like IoT.

In the application domain of this dissertation, we are considering a new insight into the
feasibility and limitation of service evolution in large-scale service landscapes, includ-
ing cloud-based and IoT services. Since the envisioned IoT foresees a future Internet
incorporating smart physical objects that offer hosted functionality as IoT services, these
service-based integrations of IoT will be easier to communicate with and integrate into
existing application environments [11]. However, the management of IoT services and
their interfaces will require new techniques due to resource constraints on IoT devices in
processing capacity, communication bandwidth, battery lifetime, and memory capacity.

1.2 Research Questions

This thesis focuses on the environment of IoT systems. The primary research question
that we intend to answer is: How can we facilitate coordinating service co-evolution that

2

consists of various services that depend on each other in IoT environments?

Unquestionably, multi-agent systems have proved to be adequate for implementing com-
plex systems with autonomous components and high communication demands. Thus,
we consider them the most suited architecture to develop the IoT infrastructure. Conse-
quently, in this research, we developed a solution for coordinating service co-evolution
through a design that equips every service with EVA (Evolution Agent) that performs
the service evolution in collaboration with other EVAs.

Besides, services in IoT are frequently subject to change in order to, for example, maintain
their functionality, reliability, availability, and performance. Thus, detecting changes in
services during the application life-cycle is essential for both change analysis and change
management. The demand for defining and classifying the evolutionary changes, which
may occur in service and their potential impacts on dependent clients and services, has
recently arisen. Hence, one of the main tasks of EVA is to detect changes precisely;
another critical responsibility is how to inform affected clients about updates.

For achieving service co-evolution successfully, specific problems should be taken into
account as follows:

1. Which requirements EVAs have to meet to tackle the challenges above? This
question can be divided into sub-questions such as:

a) How to design the EVA? Or what components should EVAs constitute?

b) How can each EVA coordinate and collaborate with other EVAs?

2. How to describe services in the IoT applications domain to support service (co)
evolution?

3. How to detect and notify changes of IoT services? Or what are efficient mechanisms
for change detection and communication in light of resource-constrained IoT devices?

4. How to find the clients that depend on the service and store and maintain this list
of clients in IoT environments?

5. How to evaluate the solution?

3

1.3 Methodology

This research aims to provide a set of theoretical models and approaches that facilitate
service co-evolution in IoT environments. Mainly, we decompose the research process
into five steps:

Step 1: Problem definition

The primary motto of any research work is to define the problem statement for a short-
term goal. The problem could be identified by defining the requirements, carrying out
sufficient research, which considers some related work and corresponding literature, to
categorize the issues to a specific domain. The next step is to establish a hypothesis about
the research problem, perform further advancements to prove the considered hypothesis
valid, and finally justify the problem statement, which is mentioned in the subsection of
research questions.

Step 2: Review existing approaches When the problems are defined clearly, the
next step is to explore the literature to determine the explicit approaches. The existing
methods can also offer a concrete catalog for the identified problem that provides a
holistic view of the research situation. A combination of different search terms was used
to obtain all available research in this area, such as service co-evolution, service evolution,
coordinated evolution, service changes, evolutionary changes, and co-evolve changes.
These terms were defined to search relevant articles from the electronic databases listed
in Table 1.1

Table 1.1: Identified databases
Identifier Database URL
ED1 IEEEXplore http://ieeexplore.ieee.org
ED2 ACM https://dl.acm.org
ED3 Science Direct https://sciencedirect.com
ED4 Springer Link https://link.springer.com
ED5 Wiley https://onlinelibrary.wiley.com
ED6 Research Gate https://www.researchgate.net
ED7 Scholar Google https://scholar.google.com

Step 3: Define the solution

To solve a problem theoretically, the critical step before developing the approach is to
build an architecture (or framework or model) for this solution. The theory architecture

4

https://ieeexplore.ieee.org
https://dl.acm.org/
https://sciencedirect.com
https://link.springer.com
https://onlinelibrary.wiley.com/
https://www.reseachgate.net/
https://scholar.google.de/

defines the roles and behaviors of the approach, indicates the path to solve the problems,
and describes the system architecture of the solution. The architecture is an abstract of
the solution to the problem that is clarified in step 1.

Step 4: Implementation and Evaluation

The research target is to deal with the service co-evolution problems. Once the proposed
models are defined, it is time to work out a scenario to evaluate the approach. At the
end of this step, a conclusion is made to comment on the experiment results.

1.4 Contributions

This dissertation has five contributions to solving fundamental problems for coordinated
decentralized on-the-fly service co-evolution as follows:

• The first contribution concerns a solution for coordinating service co-evolution
through a design that equips every service with an agent called EVA (Evolution
Agent) that performs the service evolution in collaboration with other EVAs. The
solution also introduces a new vision of service co-evolution in IoT by providing
an evolution management model and reference architecture. The results of this
contribution are presented in IoT360 conference in Rome, 2014 and published in
a Springer book chapter [12] and a journal of the EAI Endorsed Transactions on
Cloud Systems [13].

• The second contribution provides a notification management architecture in the
context of the IoT domain since the main challenge for an IoT service provider is
finding out about clients that depend on the service and storing and maintaining
this list of clients who should be informed whenever a change takes place. The
results were reported at the IEEE MESOCA symposium [14] in Raleigh, NC, USA,
2016.

• The third contribution is regarding a comprehensive framework DECOM to describe
and detect changes in IoT services by using Answer Set Programming. The results
of this work were presented at the ACM SoICT2018 symposium [15] in Da Nang,
Vietnam, 2018.

• The fourth contribution proposes an approach to find out changes in the service
behavior by analyzing the data stream between the service client and service

5

provider. The numerical results of this work were reported as a Master thesis [16]
of the University of Kassel, 2018.

• The fifth contribution provides a survey of service co-evolution in SOA environments.
The results of this work are published in a Springer book chapter [17] in 2020. The
extended results were submitted to the Special Issue on Context-Aware Computing:
Theory and Applications, Journal Concurrency and Computation, 2021.

1.5 Dissertation Outline

The dissertation is comprised of 8 chapters as following:

• In chapter 1, we introduce the motivation of our work by defining the problems
and the methodology to achieve the desired solution.

• In chapter 2, we present the background knowledge, which forms the basis of
solutions in this thesis work. It describes the Service-Oriented Architecture, Multi-
Agent Systems, Answer Set Programming, and the Internet of Things.

• In chapter 3, we provide details of related work in service co-evolution, which
includes the techniques followed to treat and represent the evolving services. We
start from the overview of software evolution aspects as the root of service evolution
and then investigate service evolution in detail. Finally, some practical approaches
supporting service co-evolution are introduced.

• In chapter 4, we propose a multi-agent architecture for distributed service co-
evolution. This chapter will answer the questions concerning the requirements that
EVAs have to meet to tackle the challenges mentioned above.

• In chapter 5, we develop a notification management infrastructure that automatically
detects and informs dependent third-party applications about service changes that
require an adaptation. Moreover, it maintains a list of possibly affected clients
without consuming further resources on the IoT device that the service is running
on.

• In chapter 6, we introduce the framework DECOM to describe services for dynamic
and heterogeneous IoT environments. It is based on an extended Web Application
Description Language for REST services. Our framework is enabled to transform
the interface description into a logic program based on Answer Set Programming.

6

• In chapter 7, we describe our detecting behavior changes approach based on anomaly
detection that has received considerable attention in the data mining and machine
learning community.

• In chapter 8, we summarize the contributions of this thesis. Finally, we outline
several potential workstreams for future research efforts.

7

2 Foundation

In this chapter, we describe the selected foundations that represent the basics of this
dissertation. Firstly, we give some insight into Service Oriented Architecture (SOA)
and Web Service paradigms. Secondly, we introduce some background knowledge of
the intelligent agent and multi-agent systems. Thirdly, we present some perspectives of
the Answer Set Programming (ASP), a declarative problem-solving paradigm, rooted
in Logic Programming. Finally, we summarize some of the general and key features of
IoT.

2.1 Service Oriented Architecture

Nowadays, enterprises have to be competitive and adaptable to new business requirements.
Thus, applications and services of different enterprises need to cooperate independently
of their platforms. As time goes by, systems become more complex soon; consequently,
flexibility is an important goal to be reached. In this context, SOA is a common paradigm
that addresses these challenges mentioned above.

2.1.1 Definitions

SOA: Several SOA definitions are proposed since the term has been invented; for instance,
the authors [18, 19] state that SOA is an architectural style integrating services that
distribute on different servers.

Rosen et al. [20] defined SOA as follows: "SOA is an architectural style for building
enterprise solutions based on services. More specifically, SOA is concerned with the
independent construction of business-aligned services that can be combined into mean-
ingful, higher-level business processes and solutions within the context of the enterprise".
Meanwhile, CM. Mackenzie et al. [21] describe the SOA concept as "a paradigm for

organizing and utilizing distributed capabilities that may be under the control of different
ownership domains."

A service is a self-contained unit of software that performs a specific task. According to
M. Rosen et al. [20], services are at the core of SOA. A service is a software component
or program that may solve a computational problem or a specific business task and is
available in a network. Services are loosely coupled; they offer support for overcoming
interoperability issues and distributivity challenges that enhance collaboration between
services [22].

SOA participant roles: The primary participant roles in a SOA are (i) service provider,
(ii) service consumer, and (iii) service registry. Figure 2.1 illustrates the three different
roles in a SOA and their interaction. The service provider offers its services to potential
clients, who may call the services and use their functionalities. The service registry
is responsible for making the service interface and implementation access information
available to any potential service consumers. The provider registers the service in the
service registry and publishes its service description so that potential consumers may find
it. A service consumer may be an application, such as a Web portal, or a business process
that needs to integrate the service to use its functionality. The service consumer searches
for services in the service registry by submitting a query that contains the criteria for the
searched service. A SOA can consist of publish/subscribe mechanisms to inform service
consumers about state changes [1].

Figure 2.1: SOA participant roles and their interaction [1]

SOA principles: SOA is based on some essential principles which are described shortly
as follows [18, 21]:

9

(i) Standardized Service Contract: A service must have some sort of description
that describes what the service is about. This principle makes it more straightforward
for consumers to understand what the service does.

(ii) Loose Coupling: This principle states that there should be less dependency between
the services and the client invoking the service. Hence if the service functionality changes
at any point in time, it should not disclose the client application or stop it from acting.

(iii) Service Abstraction: A service uses standard interfaces to expose its internal
logic. In a service abstract, the implementation details are hidden, allowing them to
implement the service with different technologies and platforms.

(iv) Service Autonomy: Services should have control over the logic they encapsulate.
The service knows everything on what functionality it offers and therefore should have
comprehensive control over the code it involves.

(v) Service Reusability: Logic is divided into services with the intent of maximizing
reuse. It means developers do not want to spend time and effort building the same code
repeatedly across multiple applications that require them. Hence, once the code for a
service is written, it should work with various application types.

(vi) Stateless Operation: Service should be stateless to minimize resource consumption
and to simplify failure recovery. It means that services should not withhold informa-
tion from one state to the other. This would need to be done from either the client
application.

(vii) Service Discoverability: To make the service accessible to interested consumers,
it must be centrally accessible. This could either be done by publishing the service to a
dedicated service registry or by simply placing this information in a shared directory.

(viii) Service Composability: Services break big problems into minor problems. One
should never embed all functionality of an application into one single service but instead
break the service down into modules, each with separate business functionality.

2.1.2 WS-* Paradigms

The SOA paradigm provides an approach to describe and invoke service from different
platforms based on, e.g., HTTP and XML to aid service interoperability. In practice,

10

Web Service is an example of SOA patterns with a well-defined set of implementation
choices [23].

The World Wide Web Consortium (W3C)1 defines Web Service as follows: "A software
system designed to support interoperable machine-to-machine interaction over a network.
It has an interface described in a machine-processable format. Other systems interact
with the Web Service in a manner prescribed by its description using SOAP messages,
typically conveyed using HTTP with an XML serialization in conjunction with other
Web-related standards".

WS-* usually refers to Web Service that use Simple Object Access Protocol (SOAP)
messages with an Extensible Markup Language (XML) payload and an HTTP-based
transport protocol to provide remote procedure-calls (RPCs) between clients and servers.
The key technologies of WS-* involve SOAP, Web Service Description Language (WSDL),
Universal Description Discovery and Integration (UDDI), and Business Process Execution
Language (BPEL).

In general, Web Service is preferred as they conform to the SOA principles of loose coupling,
platform independence, interoperability, and distributivity. Two cornerstone terms are
commonplace to classify specifications and technologies for Web Service composition:
(i) orchestration, an executable business process built with Web Service seen from a
single-party perspective; and (ii) choreography, the message sequences between multiple
Web Services seen from the perspective of multiple parties[23]. These terms were initially
coined in the context of SOA-based service.

SOAP

SOAP[23] is a simple XML-based protocol to let applications exchange information
over HTTP. A SOAP interface is typically designed with a single URL that implements
several RPCs methods, which define a message architecture and format, hence providing
a rudimentary processing protocol. The top-level XML element of a SOAP message is
called an envelope, which includes two XML elements: header and body. The header
specifies routing and Quality of Service (QoS) configuration while the body contains the
payload of the message indicating the interoperations.

1https://www.w3.org

11

WSDL

The service description is a key to making the SOA loosely coupled and reducing
the amount of required common understanding, custom programming, and integration
between the service provider and the service client[19]. The service description contains all
the necessary artifacts like service methods, bindings, communication protocols that the
consumer needs to know in order to be able to call the service. The service description has
to be independent from the platform of the service. The W3C published the specification
that uses a standard interface definition model called WSDL. It defines the details of the
abstract service information.

Others

UDDI [24] was constructed as a platform-independent, XML-based registry framework for
describing and discovering worldwide Web Service. UDDI can be viewed as a directory of
WSDL. Web services can be registered and located in the directory. It can be requested
using SOAP messages to provide access to WSDL documents, which describe the protocol
bindings and message formats required to interact with the Web Service listed in its
directory.

2.1.3 RESTful Service

This section provides an introduction to REST principles and Web Application Description
Language named WADL.

REST Principles

The term REpresentational State Transfer (REST) was first coined by Roy Fielding
[25] in his Ph.D. thesis. According to Roy Fielding, the basic concept of REST is that
everything is modeled “resource”, or particularly HTTP resources, with a Universal
Resource Identifier (URI). In the following section, we give an overview of the most
essential principles in REST architectural style, which are described in full detail by Deze
Zeng in [24] and Roy Fielding [25]:

12

(i) Resource: All the resources exposed by RESTful web services are identified by URIs.
Through URI, the clients can identify their interaction targets. A global addressing space
is provided for service and resource discovery.

(ii) Uniform interface: RESTful services treat the HTTP as an application protocol
instead of a transport protocol in WS-*. Therefore, the term REST is often used in
conjunction with HTTP, and the RESTful resources can be manipulated using HTTP
verbs such as PUT, GET, POST and DELETE. PUT creates a new resource while
DELETE deletes it. GET retrieves the current state of a resource in some representation
while POST updates a resource with a new state.

(iii) Self-descriptive messages: Resources are decoupled from their representations
such that it is free to use a variety of data formats to describe themselves provided that
the appropriate representation formats are agreed and understandable by endpoints. For
example, the data can be in any common-used formats such as HTML, XML, plain text,
PDF, Metadata about the resource can be used to control caching, detect transmission
errors, negotiate the representation format, and perform authentication or access control
between endpoints.

(iv) Stateless operations: Every interaction with a resource itself is stateless. However,
stateful interactions can be realized through hyperlinks. The state of a resource can be
explicitly transferred by URI rewriting, cookies, and hidden form fields. The states can
also be embedded in a response message for stateful interactions.

REST is a set of architectural constraints, not a protocol or a standard. It possess
less verbose and can support several representation formats such as HTML (HyperText
Markup Language), JSON (JavaScript Object Notation), XML (eXtensible Markup
Language) and plain TEXT besides providing the HTTP’s runtime content negotiation
[25]. This ability makes REST hold less payload and aid better support for client-server
communications. However, REST’s hypermedia does not prescribe how to describe a
RESTful standard. For this reason, a new description language is emerged, called WADL
(Web Application Description Language). Therefore, the next section summarizes what
WADL is and some of its elements.

WADL

A services description named WADL is a simple interface representation. WADL consists
of the following elements [26–28]:

13

(i) Grammars: A container for definitions of any XML data exchanged during the
execution.

(ii) Resource: It describes a resource provided by a Web application. Each one consists
of a path URL, defining it uniquely from other existing resources in the WADL definition.
A resource can have an optional ID that is used to identify the corresponding resource
element.

(iii) Method: It describes the input and output set of operations performed via the
HTTP protocol, including its definition or any method reference defined elsewhere. It
consists of at least one or more requests, responses, or representation elements.

(iv) Representation: A representation element describes a representation of a resource’s
state. A representation element can either be a representation definition or a reference
to a representation defined elsewhere.

In practice, WADL data is usually rich in syntax but not in semantics. Therefore, for
successful service discovery and change detection, semantic annotations should be added
to the WADL data. In our scenarios in this thesis, IoT services can be accessed through
REST interfaces. The resources and data elements can be arbitrarily represented using
various formats, thus, enabling a lightweight communication compared to Web Service.

2.2 Multi-agent System

2.2.1 Concepts

The definition of an agent is a topic of some debates in various application domains. In
general, there is no universally accepted definition for the term agent. In this thesis, we
rely on the definition of the rational agent by Russell and Norvig [29] that is also used in
the context of multi-agent systems by M. Woolridge [30]. This term agent is defined as
follows:"An agent is a computer system situated in some environment and that is capable
of autonomous action in this environment in order to meet its design objectives."

The term agent can be realized in various application domains. Furthermore, an agent
is also able to interact with other agents in order to accomplish its goals. Agents can
be divided into types spanning simple to complex. The interactions between agents and
their environment are shown in Figure 2.2.

14

Figure 2.2: Agent and Environment Interaction [2]

Multi-agent systems (MAS) are distributed systems composed of some autonomous
software entities called agents [31]. The concept of MAS has been considered as one
of the most important paradigms that improves the designing and implementation of
software systems [32]. The practical utility of agents has been demonstrated in a wide
range of domains such as online trading [33], disaster response [34, 35], business process
management [36] and information management [37].

Kubera et al. [38] view a MAS as a computerized system composed of multiple interacting
intelligent agents that can solve problems that are difficult or impossible for an individual
agent. Intelligence may include methodical, functional, procedural approaches, algorith-
mic search, or reinforcement learning. In general, software agents or multi-agent systems
may encompass different attributes such as architecture, communication, coordination
strategies, decision-making, and learning abilities. So far, such useful notions of intelligent
agents have made them a popular choice in the domain of software design and software
development.

2.2.2 Modeling Agents

According to M. Gelfond and Y. Kahl [2], a mathematical model of an intelligent agent
consists typically of the following elements: (i) A language(s) for representing the agent´s
knowledge. (ii) Reasoning algorithms use this knowledge to perform intelligent tasks,
including planning, diagnostics and learning. (iii) An agent architecture is the structure
combining different submodules of an agent in a coherent whole.

Similar to M. Gelfond and Y. Kahl, in this thesis, we consider the following typical agent

15

model that contains knowledge about the world and that entity´s capabilities and goal.
In this model, there are various challenges, such as: How can we create a knowledge base
for our agents? How can we enable it to function in changing environments? Or how do
we make it capable of recognizing events?

Regarding the solution, M. Gelfond and Y. Kahl recommend the logic-based approach
named Answer Set Programming (ASP) as an effective solution to overcome the challenges
mentioned above. This approach uses declarative language for representation, defining
reasoning tasks as queries to a program and computing the result using an inference
engine (i.e., a collection of reasoning algorithms).

In the following section, we will give a brief introduction to ASP, an auspicious tool
for knowledge preservation and declarative problem-solving in the area of Knowledge
Representation and Reasoning (KRR).

2.3 Answer Set Programming

This section begins with the introduction to ASP on how knowledge can be represented
by giving insights into the ASP concepts and their advantages. The main content of this
section has relied on a well-known book by M. Gelfond and Y. Kahl [2].

As we have known, the amount of computational problems seems to be limitless in both
academics and industry. There is a massive demand for new insights from the vast amount
of available data. To achieve this knowledge, researchers use all kinds of programming
languages for creating algorithms. Nonetheless, many of the current real-world problems
are complex search problems. In addition, attempts to solve the search problems by
creating various algorithms requiring significant effort and time-consuming. Fortunately,
the ASP approach offers a simple and powerful modeling language to solve combinatorial
problems [39].

ASP is a form of declarative programming towards difficult, primarily NP-hard, search
problems. It is based on the stable model (called answer set) semantics of logic program-
ming. ASP mainly focuses on what we want to achieve, not statements concerning how
we can achieve it. In other words, instead of writing statements describing the control
flow of computation, declarative programming expresses its logic. The idea of ASP is to
represent a given computational problem by a program whose answer sets correspond
to solutions and then use an answer set solver to generate answer sets for the program.

16

Whenever a program has no answer sets (no solution can be found), it is said to be
inconsistent. Otherwise, it is said to be consistent. So far ASP has been applied to various
applications, among them, decision support for space shuttles at NASA [40], product
configuration [41], train scheduling in Switzerland [42], Linux package configuration [43]
and many more.

ASP is constructed on the basement of atoms, literals, and rules in a more general sense.
Atoms or atomic statements depict the declarative information that can be either true or
false. A literal is an atom a or its negation ¬a, a negative literal, which can be read as
"a may be false". Syntactically, an ASP program is a collection of rules, where a rule is
formalized as follow:

a0 ← a1 ∧ ... ∧ an∧ ∼ an+1 ∧ ...∧ ∼ am.

A rule in ASP program has three parts, the head a0, the positive part a1 ∧ ... ∧ an and
the negative part ∼ an+1 ∧ ...∧ ∼ am of the body. Each ai denotes a predicate p(t1, ..., tj)
with terms t1, ..., tj built from constants, variables, and functions. This rule states that
the head is believed to be true if the body is believed to be true. This rule introduces
us to a new concept called default negation (not). This concept differs from classical
negation −a. The concept not a is a statement about belief and −a states the opposite
of a. In ASP, a rule without a body is a fact and a rule without a head is a constraint.

As we know that the closed world assumption introduced the term default - a statement
of natural language containing words such as "normal," "typical," or as "a rule." A default
is a rule that can be used unless an exception overrides it. Since defaults are very useful
to humans as in the absence of complete information, they allow us to draw conclusions
based on knowledge of what is common or typical. In ASP, one of the key advantages is
that the knowledge or given default can be changed and extended at runtime by adding
new information without causing inconsistencies.

Let us consider a simple example from logic about Batfish 2 and swim. It is a well-known
fact that a fish can swim. This can be encoded as an answer set rule:

canSwim(X)← fish(X).

2https://blog.padi.com/the-fish-that-doesnt-swim/

17

This line denotes the fact that “If X is a fish, then X can swim.” Now let’s add more
knowledge, for instance, facts that tell the unconditional truth such as a Salmon fish
named Harry and a Batfish fish named Sally.

canSwim(X)← fish(X).
fish(harry).
fish(sally).

salmon(harry).
batfish(sally).

Next, we execute the above piece of knowledge representation by an ASP solver, for
instance by Clingo 3. The following answer set is produced and shown in Figure 2.3.

Figure 2.3: Fish can swim

As a result, the answer set tells us the known facts that Salmon and Batfish are fishes
and they could swim. However, the biology enthusiasts among us know that Batfish are
unable to swim. In fact, Batfish cannot swim. This fish “walk” with their pectoral fins
across the ocean floor. Thus the model is not accurate! To get acceptable results, we
need to add more knowledge in the form of facts and integrity constraints to the program.
Here, the model needs to know that Batfish is not only a fish but also this fish cannot
swim. A rule can represent this new information as the following line:

← canSwim(X), fish(Batfish).

Now we have an ASP program as the following:

canSwim(X)← fish(X).
fish(harry).
fish(sally).

3https://potassco.org/clingo

18

salmon(harry).
batfish(sally).

← canSwim(X), fish(Batfish).

Figure 2.4: Batfish cannot swim

Unfortunately, the addition of this rule to the above program is inconsistent, although
this new information does not cause inconsistency. Figure 2.4 shows the result after
running Clingo.

canSwim(X)← fish(X), not batfish(X).
fish(harry).
fish(sally).

salmon(harry).
batfish(sally).

← canSwim(X), fish(batfish).

To avoid this, we could add that only fish that are not Batfish can swim. Please note
that symbol not is a new logical connective called default negation. After adding this
knowledge, if we run Clingo to acquire the answer set of the program, we get the answer
set shown in Figure 2.5. Thus, the stable model consists of the expected outcome.

Figure 2.5: Addition of new facts to the program

In summary, this simple example illustrates the use of ASP definitions of relations for
building simple knowledge bases that allow incompleteness of information. Thus, it makes
ASP suitable for the formalization of defeasible and commonsense arguments.

19

2.4 IoT in Nutshell

2.4.1 Concept

In recent years, the term IoT has become a dynamic research definition adopted in various
areas, such as computer science and robotics. The definition of the IoT varies depending
on different technologies for implementation. Kevin Ashton [44] initially proposed the
concept of IoT in 1999, and he referred to the IoT as uniquely identifiable interoperable
connected objects with radio-frequency identification (RFID) technology. The researchers
then connected IoT to other technologies such as sensors, actuators, GPS devices, and
mobile devices [45].

However, the precise definition of IoT is still in the forming process, depending on
the perspectives taken. This term has been adapted and refers to a heterogeneous
network of physical and virtual objects embedded with electronics, software, sensors, and
connectivity [46]. This term is also considered as a part of the Internet of the future and
will comprise billions of intelligent communicating “Things”. “Thing” in terms of IoT,
maybe a person with a heart monitor implant, a farm animal with a biochip transponder,
a robot for field operations that helps with a search and rescue mission [47]. According
to Cluster of European research projects [48] on the Internet of Things, “Things” are
active participants in business, information, and social processes, in which they are able
to communicate with each other and with the environment by exchanging data and
information perceived about the environment. Regarding this concept, Adrian McEwen
et al. [49] stated that IoT, in summary, can be described as the following simplistic
equation:

Physical Objects + Controller, Sensors and Actuators + Internet = IoT

In order to provide smart services to end-users or applications, the technical standards
for IoT should be set in terms of the specifications for data exchange, processing, and
communications within the network. The success of IoT depends on the standardization
that ensures interoperability, compatibility, reliability, and effectiveness of operations on
a global level. Although significant research efforts for the development of IoT, there
still are several significant challenges that should be taken into consideration such as
lack of standardized architecture [45], lack of standardized service description [46], poor
context-awareness for services [50].

20

2.4.2 Applications and Frameworks

IoT enables information gathering, storing, and transmitting to be available for things
equipped with tags or sensors [50]. The use of IoT technologies has addressed many
problems in our daily life. For example, in assisted living, a ubiquity of IoT devices
and services can address the need for independent living for the growing numbers of
people living with a physical disability. In the agriculture area, IoT can be used to
manage production by monitoring and tracking variables that influence food production,
such as weather, natural disasters, consumption, crop and animal diseases [51]. IoT has
been used to follow-up on patient recovery in the healthcare domain and assesses that
against several parameters unique to the patient using IoT-enabled devices [51]. These
applications can be classified into the following domains: (i)autonomous driving and
logistics domain; (ii) healthcare domain; (iii)smart cities; (iv)smart homes and buildings,
(v)personal and social domain.

In the past few years, a variety of IoT frameworks have been developed in several
research communities. Many of these frameworks (see at [46, 52]) have been developed
for specific application domains. Some of these frameworks have been getting more and
more attention in the IoT research community. This section will highlight some of them
as follows:

FRASAD

Nguyen et al. [53, 54] proposed the FRASAD framework. The framework is a practical
model-driven software development framework to manage the complexity of IoT applica-
tions. It aims at allowing developers to design their IoT applications using sensor node
domain concepts. The framework is an extension of two layers in the existing sensor
node architecture. These two additional layers are the Application Layer (APL) and the
Operating System Abstraction Layer (OAL). The essence of these two layers is to magnify
the level of abstraction and thus to conceal the lower levels. In order to achieve this, the
framework employs the use of a designed Domain Specific Language (DSL) to model the
sensor nodes and separate the operating system from the application. The OAL is then
contracted to explicate the modeled application based on the specific operating system
for implementation. For further detailed information about the FRASAD, we refer to
the publication [53] and Nguyen’s Ph.D thesis [55].

21

Calvin

Calvin is an IoT framework for application development, deployment, and execution in
heterogeneous environments that include clouds, edge resources, and constrained resources
[56]. Inside Calvin, all the distributed resources are viewed as one environment by the
application. The Calvin framework model offers a distributed runtime environment and
is multi-client capable since actors can share runtimes with actors from other applications.
It also supports the restrictions of actors with high resource consumption [46]. For further
features and capabilities of this framework, we refer to the publication [56].

Other Frameworks

The AllJoyn framework was developed by the AllSeen Alliance 4 to enable interoperability
for home automation applications. It is an open-source framework that aims to connect
and integrate things regardless of the communication module, operating system, and
manufacturer. The framework consists of some implemented standard services and
interfaces that developers use to integrate a variety of devices, things, or apps. It is
optionally dependent on cloud services because it runs on a local network. In this way,
devices and apps can communicate within the network with only one gateway agent,
which is designed to connect to the Internet [46, 52].

Generally speaking, there are more than 30 other frameworks [46] that include many
groups either targeting niche or specific aspects of the IoT or are looking to provide
oversight and guidance to the development of the IoT technologies. Each of these IoT
frameworks applies to a specific domain with different goals. In general, there is still
a lack of an IoT framework for service co-evolution in IoT environments. Thus, the
main focus of this thesis, i.e., providing an IoT framework for distributed co-evolution of
services, has not been appropriately addressed in recent years. Furthermore, attempting
to define service co-evolution and its vision is still immature. In the next chapter, we will
present several critical related works in this area, starting from the first effort to support
software evolution.

4AllSeen Alliance, https: //wiki.allseenalliance.org/

22

3 Related Work

Service co-evolution has been an appealing subject, wherein the coordination among
various services is discussed. In the scope of SOA, researchers have spent significant effort
investigating methods and techniques for the management of service changes. However,
there many research challenges in this domain, and this chapter briefly presents few
contributions from various researchers.

This chapter presents the general introduction of software evolution, the foundation
of service evolution. After that, we provide further insights into the service evolution
aspects, e.g., change terminology, kinds of change, the process of change, and eventually
highlights some distinguished contributions related to service co-evolution (see Table 3.2).
The main results are published in [17].

3.1 Software Evolution

Software evolution is of great importance in satisfying user requirements under specific
changes in the environment [57]. Substantial works have been conducted in related
areas promoting software evolution. In the early days, the term software evolution
applied to general software maintenance and configuration. Later, this term refers to a
phase that adapts application software to ever-changing user requirements and operating
environments [58, 59].

Nowadays, it is widely accepted that continuous changes are a critical feature of evolution.
One of the fundamental research works on software evolution was investigated by Lehman,
and his colleagues [60], who presented the famous eight laws of software evolution. These
laws describe a balance between forces driving new developments and forces that slow
down progress. In their studies, Lehman et al. [60, 61] considered that the changing
and adapting requirements from the real-world software systems drive the application to

evolve with inevitable and continual feedback. The authors concluded that evolution is
an intrinsic and feedback-driven property of software.

Even though Lehman’s software evolution laws have not been wholly validated, they
became fundamental knowledge of software engineers, and widely accepted [62]. Fur-
thermore, most of the rules are just for solving general static maintenance or software
evolution problems.

In general, there is a large body of research results available for managing software
evolution. These studies fall into the following classifications: (i) analyzing the evolution
trend of a software system over a long period; (ii) developing effective techniques to
support software evolution [59].

At present, researchers have focused on solving two challenging aspects. The first
challenge is how to evolve the software. The second one is how to react with software
that has evolved. To the former question, the traditional solution is to improve software
development and deployment approaches. Concerning the latter, the users of services have
to deal with incompatible interfaces of modified modules and adapt to these changes.

With the advancement of software engineering, the software execution environment
has become more dynamic and complex. Traditional methods of maintenance and
software evolution face significant challenges related to various rapidly changing customer
requirements. Therefore, some researchers have proposed new models and tools for
evolving the software at runtime. For instance, DYnamic MOdification System (DYMOS)
by Insup Lee [63] presented general principles for modifying the running software system.
Later, K-Component by Dowling et al. [64] defined a meta-model for software architecture
to provide possibilities for dynamic adaptation. In 2003, OSGi (Open Service Gateway
initiative) was proposed by researchers at IBM and SUN, aiming to improve the practical
use of the limited resources in the embedded devices. These architectures are important
in the field of software evolution [65].

In general speaking, researchers described these solutions for software evolution as static
software evolution and dynamic software evolution. The static software evolution refers
to refactoring the software at the development stage and then install the new version by
shutting down the running application. The static software evolution could make the
software temporarily unavailable, and thus, it may cause delays for enterprise business.
In contrast, dynamic evolution refers to adjusting the behavior of the software at runtime
without breaking down the business. Dynamic evolution improves software adaptability
and can be more competitive in modern, complex, and distributed environments. However,

24

the dynamic software evolution also poses more complex challenges as users attempt to
apply themselves to the large-scale distributed environment.

Besides, through an extensive survey, Feng-lin et al. [66] discovered that software
evolution is closely related to the changing code, module, and architecture.

In summary, the existing approaches have provided a strong foundation in the development
of software evolution. The researchers have tried hard to develop the architectures,
tools, and frameworks to enable the software to be reconfigured at runtime on-the-fly.
However, these approaches lack coordinated, distributed evolution where software service
dependencies have to be negotiated with other services.

3.2 Service Evolution

Service evolution can be recognized as a particular case of software evolution. Various
research in the literature has widely accepted that service evolution is a continuous
development through a series of changes displayed in different versions of service.

3.2.1 Terminology

Let us first briefly define the basic terminology used in this thesis. This is necessary
because there is no general agreement on the terminology on the broader service evolution
community.

According to M. Papazoglou et al. [10, 19], service evolution is "a continuous process
of service development through a series of consistent and unambiguous changes". It is
expressed through a service’s different versions, and the key challenge is the forward
compatibility between different versions. Similarly, a definition of service evolution is
given by Wang et al. [67] who stated that service evolution is "the process of maintaining
and evolving services to carter to new requirements and technological changes". Both of
these definitions have the same views that service evolution involves deploying a new
service version, which is caused by necessary changes in interface structure, functionality,
usage protocol, usage policies, business rules and regulations, and more.

In distinguished studies on service evolution, M. Papazoglou et al. [10, 19, 68] provided the
fundamentals for service evolution until the present, especially when they distinguished
two kinds of changes named shallow changes and deep changes based on the nature

25

of service evolution. Shallow changes are “small-scale, incremental changes that are
localized to a service and/or are restricted to the consumers of that service”. This kind
of change typically could lead to mismatches between services at two levels: interface
level and interaction protocol level. Deep changes are “large-scale, transformational
changes cascading beyond the consumers of a service possibly to consumers of an entire
end-to-end service chain” . This kind of change involves operational behavior changes or
policy-induced modifications.

Furthermore, M. Papazoglou defines three following concepts [10]:

(i) Version compatibility means when we can introduce a new version of either a
provider or client of service without changing the other.

(ii) Backward compatibility means when a new version of a client is introduced to
the providers are unaffected. The client may introduce new features but should still be
able to support all the old ones.

(iii) Forward compatibility refers to the old version of a client application that could
interpret new operation(s) or message(s) introduced by a service.

Some types of changes that are both backward- and forwards-compatible involve the
addition of new service operations to an existing service definition, the addition of new
schema elements within a service that are not contained within previously existing types
[10].

The key problem of service evolution is that the service’s compatibility may change when
the service evolves. One of the primary objectives of the research on service evolution is
to reduce the unexpected effects caused by incompatibilities.

We adjust these definitions of service evolution in [10, 19, 67] for service co-evolution
by giving a simple notion, i.e., service co-evolution stands for a coherent process of
evolving and maintaining service and its interdependent services through a series of
explicit changes. We further explain this domain by considering the dependency graph
shown in Figure 3.1 of different service providers offering various services. It shows the
service dependency graph S, which is a set of different services.

Now, consider node S0, which is actively connected to all other nodes providing different
services without any interruptions in the edges. Similarly, S1 is connected to the nodes
S2 and S3 and these nodes are further connected to various other nodes. Considering
a scenario, in which S2 evolves to a new version but S3 is not affected at all proves

26

Figure 3.1: Dependency Graph in Service Co-evolution Scenario

a successful service evolution. In this case, the change is confined to the clients of S2

only. However, in case the evolution of S2 implies that the nodes S0, S1 and S3 should
also evolve in a coordinated fashion, we call this as a co-evolution of service where the
evolution is required to update the interdependent services.

3.2.2 Change Taxonomy

Figure 3.2: Change Taxonomy

27

Different change taxonomies for service evolution have been developed over the years.
Various change taxonomies are proposed based on the effects or scope of changes during
the interaction process. Nowadays, evolutionary changes in existing research works
can be defined into various categories such as change of interface, change of semantics
protocols, change of requirements, and change of business process models. These changes
are described in detail in Table 3.1. We adopt a change taxonomy shown in Figure 3.2.
Our terminology is consistent with the one used in [69] and shown in Table 3.1. Some
other kinds of changes such as QoS, policy, parameters, optional operations are defined
similarly to the previous works in [69, 70].

Table 3.1: Change Terminology
Category Type of Change Characteristic

Non-functional
QoS

- performance of service properties
e.g., server load, concurrent users
- performance of network latency,
- performance of throughput

Policy
- change in policy assertions on services,
which specify business agreements

Functional

Behavior
- change in the service protocol i.e.,
prescribed invocation, operational behavior

Semantic
- cover all changes that are not involved
description of services, operations,
parameters or return values.

Interface

- change in the interface signature e.g.,
parameters, operations, message structure
- addition of new functionality or
the update of existing functionality
- interface changes may affect
the implementation, QoS, pre-condition,
post-condition, usage of the service

Business Process/
Workflow

- modify the business process model
- change in choreography or orchestration
model of service composition

28

3.3 Positioning Approaches

Existing works for supporting service co-evolution have mainly focused on the following
steps: change detection, change impact analysis, and reaction.

(i) Change Detection (CD). Change detection is a critical process in service evolution
management. It helps affected services to find out changes and kinds of change that can
be used as input data for analyzing the level of impact. Researchers classified evolutionary
changes into different types of critical changes. However, in many cases, changes in
behavior usually are more complicated and need more effort to adapt by considering
the actual values communicated between services and their clients. These approaches
(see Table 3.2) mainly focused on service interfaces, workflow, semantic and behavior
change. These approaches have provided many tools or frameworks such as: Vtracker
[71], WSDarwin [72], WSDLiff [73], DiCORE [74].

Fokaefs and his colleagues [71] work on analyzing WSDL interfaces by building a tool
called VTracker [71] to find out the differences between WSDL specifications. Specifically,
the authors created an intermediate XML representation to reduce the verbosity of the
WSDL specification. However, VTracker does not take into account the syntax of WSDL
interfaces. Furthermore, transforming a WSDL interface into a simplified representation
can lead to unprecise detection results. Similarly, D. Romano et al. [73] presented a
significant contribution with the WSDLDiff tool to find out the fine-grained changes
in the WSDL descriptions by comparing the subsequent versions of the WSDL. Unlike
VTracker, the framework depends on the schema used to define the data types in the
WSDL, besides the syntax of the description language used to extract the changes. Later
in other works, M. Fokaefs et al. [72] proposed the WSDarwin tool to recognize the
changes in the specification of a service. In these works, the authors did not consider
service changes regarding the semantic aspects that differ our approach, which will present
in Chapters 5 and 6.

(ii) Change Impact Analysis (CIA). The goal of this process is to understand the relation-
ship between the service and the change. The service users should know which parts of
the system will be affected by the change and examine them for additional impacts since
the modification in one part of the service may have subsequent effects on other related
services. Significant literature works in this area can be classified into two categories
techniques: dependency analysis and trace-ability analysis [75]. It is possible to evaluate

29

the change effects and procedure evolution strategies to reduce risks and maintenance
costs through an impact assessment.

The output of existing approaches for this phase, usually are models, techniques or design
patterns, such as Trust Dependency Graph [76], Versioning Model [77], Dependency
Model [78], Change Pattern [67], DiCORE-CIA [74]. Furthermore, we found that there
has been special attention paid to the topic of change impact analysis from the research
community.

(iii) Change Reaction (CR). This process involves other steps such as decision-making,
propagation of changes, and an optional broader changes context to support other affected
services (in case of coordinated co-evolve services), eventually giving a set of prioritized
actions to adapt to new changes. Propagation of changes addresses how the impact of
a change can be effectively propagated to other entities with a minimal ripple or what
additional changes are required for a service to maintain consistency. As new functionality
is added or changed in services, developers must ensure that other system entities are
updated and consistent in response.

Existing approaches have mainly focused on changes in business process models (workflow).
Some important frameworks are DYCHOR [79] and C3Editor [80]. The DYCHOR
framework evaluates the change propagation of a process in choreography based on an
extended automated model. Simultaneously, the C3Editor visualizes the different models
and enables the definition and application of changes to the private models. The C3Editor
determines and visualizes the partners affected by a change and the updates required
for change propagation. These approaches could effectively support the coordination
of change processes. Additionally, these approaches showed that changes in a business
process model usually require manual intervention by developers.

3.3.1 Support Service Evolution

In the scope of evolution services, researchers have spent significant effort investigating
methods and techniques for the management of service changes. This research can be seen
as a precursor and established a critical foundation for research on service co-evolution.

Table 3.2 lists critical approaches related to service evolution aspects such as authors,
key contributions, available software (denote Yes (Y) or No (N)), and support processes
(e.g., change detection (CD), change impact analysis (CIA) or change reaction (CR)).

30

In our view, all of these approaches have high-value results in the field of service (co)
evolution in recent years.

These approaches could fall into one of the following categories: (I) Tool/Model-based,
(II) Versioning-based, (III) Pattern/Adaptor-based, and (IV) Analysis of Change Impact-
based. Naturally, some approaches might belong to more than one category; for instance,
the work by Khebizi et al. [81] provided a framework, a software tool, and patterns to
support dynamic change management of business protocols.

(I) Tool/Model-based

One of the first works handling service evolution is developed by Treiber et al. [82]. Their
work addressed two main problems related to services: (a) what type of information is
required for a particular perspective, how all types of information are integrated into a
single model, and (b) how these types of information are managed. The first problem
concerns the development of an aggregated, flexible and extensible information model for
services. The latter is linked to the development of a management framework that can
track historical information.

Romano et al. [73] proposed the WSDLDiff tool that can be used to derive the set of
delta changes applied to a service. This tool considers the syntax of the WSDL file
and the schema file XSD that is used to define the data types of the WSDL interface.
Similarly, Li et al. [83], presented critical empirical studies about the most common
types of service changes.

Another important framework comes from V. Andrikopoulos et al. [69], who introduced
a service specification reference model and introduced the concept of service evolution
management. Based on the type and set theory and the service specification model, the
authors developed an approach to recognize the conditions (i.e., a set of changes) under
which services can evolve while preserving compatibility. However, their works mainly
focus on the preventive evolution model and do not pay much attention to the impact
and adaptation aspects [59].

Fokaefs et al. [71] also published empirical results of evolution scenarios and presented
the Vtracker. Specifically, the authors created an intermediate XML representation
to reduce the verbosity of the WSDL specification. However, Vtracker does not take
into account the syntax of WSDL interfaces. An upgraded Vtracker named WSDarwin
[72, 84], which can be used to automatically identify changes between different versions
of service by comparing interface description documents. WSDarwin tool provided a

31

solution to answer how to support a client application in adapting to changed services.
However, WSDarwin does not indicate how the Web Service provider could perform the
adaptation assistance or deal with the dependencies when generating and compiling the
client stub.

Latter, Zou et al. [59] proposed a change-centric model in which necessary changes are
identified, planned, implemented, tested, and then notified to all necessary stakeholders.
In the model, the delta is a set of changes from one version to its next version of the
service.

Recently, Jahl et al. [74] developed the DiCORE framework that determines the kinds of
change, categorizes the changes, and shares them with dependent clients. The framework
helps the developers to find out the structural changes in workflow. In summary, these
tools and models provided practical ways to address the evolutionary challenges, such
as detecting changes and analyzing the change impact, eventually supporting related
services during an evolution process.

(II) Versioning-based

Versioning is a traditional and practical way to address the incompatibility issue [66,
85]. A robust versioning strategy allows for service upgrades and improvements while
continuously supporting previous versions. Leitner et al. [70] presented a comprehensive
versioning approach specifically for handling compatibility issues, based on a service
version graph and version selection strategies. The proposed framework is used to
dynamically and transparently invoke different versions of service through service proxies.
In this path, Kaminski et al. [86] outlined various requirements for versioning and
demonstrated why common versioning strategies are inappropriate in the context of
services. The authors proposed the Chain of Adapters pattern [86] for developing evolving
services. However, the adapter does not support the parallel execution of different service
implementations. Also, adapter implementations may be faulty and break old clients
[85].

In order to fix this faulty and do not break old clients, Weinreich et al. [85] proposed
a versioning model for supporting the evolution of service-oriented architectures. The
model involves a set of services into a subsystem and assigns them the same version
identifier. Even if only one service is changed, all services within the same subsystem
will be tagged with a new version number. Consequently, multiple versions of the same
subsystem may co-exist. Becker et al. [87] proposed an approach to automatically
determine compatibility that could be applied with the compatibility pattern. Similarly,

32

Yamashita et al. [77] introduced a novel feature-based versioning approach for assessing
service compatibility and proposed a different versioning strategy, following the W3C
standards.

In fact, various versioning approaches are proposed to address the challenges of the
service version. At the technical level, these approaches relied heavily on the SOA [66].
In general, they are used together with the design pattern and related tools that will be
presented in detail in the next section.

(III) Pattern/Adaptor-based

Design patterns and adapters have been widely used for software development and
structuring solutions. For instance, Wang et al. [67] focused on a common evolution
scenario in which a single provider provides a single service. In particular, the authors
proposed four patterns involving compatibility, transition, split-map and merge-map.
These patterns provide generic and reusable strategies for service evolution.

It is worth considering the actual work on service compatibility, which aims to assist
service consumers in seamlessly transferring their programs to newer versions [87]. Becker
et al. [87] proposed an approach to automatically determine compatibility that could be
applied with the compatibility pattern.

In case the change is not compatible, the work of Kaminski et al. [86] introduced an
adapter-based approach to maintaining multiple versions of service simultaneously. The
novel idea of this approach is to use a proxy that enables dynamic binding and invocation
for client applications to maintain multiple versions of service on the server-side and [88].
At the same time, Frank et al. [89] distinguished between a service interface (public) and
its implementation (private).

To address possible interface mismatches, Dumas et al. [90] suggested an algebra over
interfaces and a visual language that allows pairs of provided-required interfaces to
be linked through algebraic expressions. Benatallah et al. [91] proposed adapters
approach using mismatch patterns, which may capture the possible differences between
two interaction protocols.

Similarly, H. R. Motahari Nezhad et al. [92] provided semi-automatic support for adapter
generation to resolve interface mismatch and deadlock-free interaction incompatibility.
Following previous works of Benatallah et al. [91], Ryu et al. [93] studied the protocol
compatibility using path coverage algorithms based on finite state machines (FSM) service
model and suggested adapter/ad-hoc protocol as solutions. Using the FSM service model

33

is an easy way to understand inexperienced users and is suitable for representing reactive
behaviors.

In research work [94], the authors tried to keep client applications being synchronized
with evolved services through semi-automatic client updates. Their proposed tool first
analyzes the delta between different versions of service and exports them into a well-
formatted document. After that, it draws on its client’s usage history. Next, they employ
a consumer code customized component to highlight the client code fragments that
need to be updated. In the same path, Ouederni et al. [95] introduced a framework to
resolve interface and behavior mismatches by automatically updating the clients based
on compatibility measuring. The update process can be parameterized with some user
requirements to prevent the designer’s behavior from appearing in the client interface.

(IV) Analysis of Change Impact-based Basu et al. [96] proposed a technique to
extract dependencies from log files. The technique could be adapted to infer the number
of dependent service consumers. Once the dependencies are transparent, it is also essential
to infer the impact of service changes on the applications.

Later, Wang et al. [97] proposed his dependency model in analyzing the impact of service
evolution. The authors considered the dependency model to analyze the dependency
links among services that work in collaborations. This model extracts the degree of
dependency for each link between the elements in one service or between services. It is a
foundation for most of the later studies in this field. The dependency model proposes a
matrix to describe the dependency relations between services and elements in one or more
services. However, the disadvantages are also obvious: (a) The model assumes that the
dependencies are known at design time, which is invalid in the dynamic environment; (b)
The model does not distinguish the change types add, remove and modify. It considers
that each type of change results in the same impact. Additionally, the dependency
model does not explain how and where to obtain the changes, which is vital to service
evolution.

Yamashita [77] presented an impact analysis based on usage profiles. This method helps
service providers to estimate the impact on consumers as well as giving an evolution
decision later. In the same fashion, Liao et al. [76] proposed a trust dependency graph
that is introduced to analyze the impact on the trust of component services. Jahl et al.
[74] also provided the framework DiCORE to analyze the impact of changes based on
the patterns. This framework allows an intuitive and graphical formulation of patterns
while other existing tools completely ignore user-defined change patterns.

34

Ta
bl
e
3.
2:

Ex
ist

in
g
A
pp

ro
ac
he

s
Su

pp
or
t
Se
rv
ic
e
Ev

ol
ut
io
n

ID
A
ut
ho

r/
R
ef
er
en

ce
K
ey

C
on

tr
ib
ut
io
n

Fo
cu

s
on

/A
va
ila

bl
e
So

ft
w
ar
e

P
ro
ce
ss

1
Pa

pa
zo
gl
ou

&
A
nd

rik
op

ou
lo
s
[6
8,

98
]

C
la
ss
ify

an
d
an

al
yz
e
sh
al
lo
w

an
d
de
ep

ch
an

ge
s

A
se
t
of

th
eo
rie

s
an

d
m
od

el
s
th
at

un
ify

di
ffe

re
nt

as
pe

ct
s
of

se
rv
ic
es

(d
es
cr
ip
tio

n,
ve
rs
io
ni
ng

an
d
co
m
pa

tib
ili
ty
)

A
ll
ki
nd

of
ch
an

ge
s/

N
C
D
,C
IA

,C
R

2
Tr

ei
be

et
al
.
[9
9]

SE
M
F
fr
am

ew
or
k
to

m
an

ag
e
th
e
ch
an

ge
s

on
in
te
rf
ac
e,

in
te
ra
ct
io
n
pa

tt
er
ns

or
Q
oS

as
pe

ct
s

R
eq
ui
re
m
en
t
c h
an

ge
,

In
te
rf
ac
e
ch
an

ge
,

Im
pl
em

en
ta
tio

n
ch
an

ge
an

d
Q
oS

ch
an

ge
/
N

C
D
,C

R

3
R
om

an
o
et

al
.
[7
3]

A
to
ol

to
ex
tr
ac
t
ch
an

ge
s
au

to
m
at
ic
al
ly

W
SD

L
do

cu
m
en
t
ch
an

ge
/
Y

C
D

4
Fo

rk
ae
fs

et
al
.
[7
1]

V
tr
ac
ke
r
to
ol

id
en
tifi

es
ch
an

ge
s

be
tw

ee
n
di
ffe

re
nt

ve
rs
io
n
of

a
se
rv
ic
e

W
SD

L
In
te
rf
ac
e
ch
an

ge
/N

C
D

5
Fo

rk
ae
fs

et
al
.
[7
2,

84
]

W
SD

ar
w
in

to
ol

su
pp

or
ts

th
e
cl
ie
nt
s
to

co
ev
ol
ve

w
ith

th
e
pr
ov
id
er

se
rv
ic
e

W
SD

L,
W
A
D
L

in
te
rf
ac
e
ch
an

ge
/
Y

C
D

6
W
an

g
et

al
.
[6
7]

A
se
rv
ic
e
ev
ol
ut
io
n
m
od

el
A

m
et
ho

d
to

an
al
yz
e
se
rv
ic
e
de
pe

nd
en
ci
es

Pr
op

os
ed

fo
ur

pa
tt
er
ns
:
co
m
pa

tib
ili
ty
,

tr
an

sit
io
n,

sp
lit
-m

ap
,m

er
ge
-m

ap

O
pe

ra
tio

n
an

d
da

ta
ty
pe

ch
an

ge
/
N

C
IA

7
B
as
u
et

al
.
[9
6]

A
to
ol

ca
n
ex
tr
ac
t
de
pe

nd
en
ci
es

fr
om

lo
g
fil
es

Pr
ot
oc
ol

ch
an

ge
/
Y

C
IA

8
K
am

in
sk
ie

t
al
.
[8
6]

A
ch
ai
n
of

ad
ap

te
rs

te
ch
ni
qu

e
ap

pr
oa
ch

fo
r
de
pl
oy

in
g
m
ul
tip

le
se
rv
ic
e
ve
rs
io
ns

W
SD

L
In
te
rf
ac
e
ch
an

ge
/N

C
D

35

Ta
bl
e
3.
2:

Ex
ist

in
g
A
pp

ro
ac
he

s
Su

pp
or
t
Se
rv
ic
e
Ev

ol
ut
io
n

ID
A
ut
ho

r/
R
ef
er
en

ce
K
ey

C
on

tr
ib
ut
io
n

Fo
cu

s
on

/A
va
ila

bl
e
So

ft
w
ar
e

P
ro
ce
ss

9
Zo

u
et

al
.
[5
9]

A
ch
an

ge
-c
e n
tr
ic

m
od

el
an

d
a
m
et
ho

d
fo
r
th
e
ch
an

ge
im

pa
ct

an
al
ys
is

W
SD

L
in
te
rf
ac
e
ch
an

ge
/
N

C
D
,C

IA

10
R
yu

et
al
.
[9
3]

A
fr
am

ew
or
k
su
pp

or
ts

bu
sin

es
s
pr
ot
oc
ol

Pr
ot
oc
ol

c h
an

ge
/
N

C
D
,C
IA

11
Le

in
er

et
al
.
[7
0]

En
d-
to
-e
nd

ve
rs
io
ni
ng

su
pp

or
t

ba
se
d
on

se
rv
ic
e
hi
st
or
y

In
te
rf
ac
e
ch
an

ge
/N

C
D

12
Fr
an

k
et

al
.
[8
9]

A
se
rv
ic
e
in
te
rf
ac
e
pr
ox
y
fo
r

de
al
in
g
w
ith

th
e
in
co
m
pa

tib
ili
ty

W
SD

L
In
te
rf
ac
e
ch
an

ge
/
N

C
D

13
D
um

as
et

al
.
[9
0]

A
n
in
te
rf
ac
e
ad

ap
ta
tio

n
m
et
ho

d,
in

w
hi
ch

ea
ch

in
te
rf
ac
e
is

re
pr
es
en
te
d
as

an
al
ge
br
a
ex
pr
es
sio

n
th
at

co
ul
d
be

tr
an

sf
or
m
ed

an
d
lin

ke
d
ac
co
rd
in
gl
y

In
te
rf
ac
e
ch
an

ge
/
N

14
B
en
at
al
la
h
et

al
.
[9
1]

A
da

pt
er
s
as

an
ap

pr
oa
ch

ba
se
d
on

m
ism

at
ch

pa
tt
er
ns

w
hi
ch

ca
pt
ur
es

th
e
po

ss
ib
le

di
ffe

re
nc
es

be
tw

ee
n

tw
o
in
te
ra
ct
io
n
pr
ot
oc
ol
s

Pr
ot
oc
ol

ch
an

ge
/
N

C
D

15
Ja

hl
et

al
.
[7
4]

Fr
am

ew
or
k
D
iC
O
R
E

to
de
te
rm

in
e

th
e
ki
nd

of
ch
an

ge
s
an

d
th
e
aff

ec
te
d

co
m
po

ne
nt
s
in

a
bu

sin
es
s
pr
oc
es
s

B
us
in
es
s
pr
oc
es
s

ch
an

ge
/
Y

C
D

16
Tr

an
et

al
.
[1
4,

15
]

A
n
ap

pr
oa
ch

de
te
ct
s
an

d
ex
tr
ac
ts

in
te
rf
ac
e
ch
an

ge
s

W
A
D
L
fil
e
ch
an

ge
/
N

C
D

36

Ta
bl
e
3.
2:

Ex
ist

in
g
A
pp

ro
ac
he

s
Su

pp
or
t
Se
rv
ic
e
Ev

ol
ut
io
n

ID
A
ut
ho

r/
R
ef
er
en

ce
K
ey

C
on

tr
ib
ut
io
n

Fo
cu

s
on

/A
va
ila

bl
e
So

ft
w
ar
e

P
ro
ce
ss

17
W
an

g
et

al
.
[7
8,

97
]

A
de
pe

nd
en
cy

im
pa

ct
an

al
ys
is

th
e
ki
nd

of
ch
an

ge
s
an

d
th
e
aff

ec
te
d

ca
us
es

an
d
eff

ec
ts

of
ch
an

ge
s

O
pe

ra
tio

n
an

d
da

ta
ty
pe

ch
an

ge
/
N

C
IA

18
Ja

hl
et

al
.
[1
00
]

A
n
ar
ch
ite

ct
ur
e
ca
pt
ur
es

an
d
as
se
ss
es

th
e
be

ha
vi
or

di
m
en
sio

n
of

se
rv
ic
es

B
eh
av
io
r
c h
an

ge
s
/
N

C
D

19
B
ec
ke
r
et

al
.
[8
7]

A
ve
rs
io
ni
ng

fr
am

ew
or
k
de
te
rm

in
es

co
m
pa

tib
ili
ty

ba
se
d
on

pa
tt
er
ns

In
te
rf
ac
e
c h
an

ge
/N

C
D
,C

IA

20
M
ot
ah

ar
ie

t
al
.
[9
2]

A
se
m
i-a

ut
om

at
ic

m
et
ho

d
fo
r
ad

ap
te
r

ge
ne
ra
tio

n
fo
r
th
e
m
ism

at
ch
es

at
th
e

in
te
rf
ac
e-
le
ve
l,
pr
ot
oc
ol

le
ve
l

In
te
rf
ac
e
c h
an

ge
,

Pr
ot
oc
ol

ch
an

ge
/
N

C
D
,C

IA

21
Ya

m
as
hi
ta

et
al
.
[7
7]

A
ch
an

ge
im

pa
ct

an
al
ys
is

ap
pr
oa
ch

ba
se
d
on

us
ag
e
pr
ofi

le
O
pe

ra
tio

n
an

d
da

ta
ty
pe

ch
an

ge
/Y

C
IA

22
Li

et
al
.
[8
3]

A
m
et
ho

d
fo
r
ch
an

ge
im

pa
ct

an
al
ys
is

Pr
op

os
ed

16
A
PI

ch
an

ge
d
pa

tt
er
ns

O
pe

ra
tio

n
an

d
A
PI

ch
an

ge
s
/
N

C
IA

23
W
ei
nr
ei
ch

et
al
.
[8
5]

A
ve
rs
io
ni
ng

m
od

el
Im

pl
em

en
ta
tio

n
c h
an

ge
,

In
te
rf
ac
e
ch
an

ge
/
N

C
D

24
K
he
bi
zi

et
al
.
[8
1]

A
fr
am

ew
or
k
w
ith

m
ig
ra
tio

n
pa

tt
er
ns

Pr
ot
oc
ol

c h
an

ge
/
N

C
D

25
Li
ao

et
al
.
[7
6]

A
tr
us
t
an

al
ys
is

m
od

el
In
te
rf
ac
e
ch
an

ge
,

B
in
di
ng

ch
an

ge
/
N

C
IA

26
O
ue
de
rn
ie

t
al
.
[9
5]

A
fr
am

ew
or
k
to

re
so
lv
e
th
e
co
m
pa

tib
ili
ty
;

A
n
in
te
rf
ac
e
m
od

el
In
te
rn
al

be
ha

vi
or

ch
an

ge
M
es
sa
ge

pa
ra
m
et
er
s
ch
an

ge
/
N

C
D

27
Le

et
al
.
[9
4]

A
fr
am

ew
or
k
an

d
m
od

el
W

SD
L
in
te
rf
ac
e
/N

C
D

37

Table 3.2: Existing Approaches Support Service Evolution
ID Author/Reference Key Contribution Focus on /Available Software Process

28 Olga et al. [101]
A framework for managing semantic,
syntactic and protocol changes

semantic, syntactic, protocol /N CD

29 Fang et al. [88]
A version-aware service description model;
A version-aware service directory model

Implementation and interface change
Binding change /N

CD

30 Thanos et al. [102] A framework for semantic drift Semantic change /Y CD

31 Juric et al. [103] A model to support versioning interfaces
WSDL interface,
Message parameters change /N

CD

32 Labbac et al. [104] An approach for handling services evolution. Semantic change /N CD

38

3.3.2 Support Service Co-evolution

The need for advancements in service co-evolution support is undisputed, just as for all
software. One of the most challenging aspects of a service co-evolution is the ability
to co-evolve services together in order to retain compatibility and bindings. Obviously,
support service co-evolution also means support service evolution since it is a particular
case of service evolution. In practice, a service co-evolution process requires further
co-evolve steps, e.g., coordination among inter-dependency parties. Even though the
coordinated distributed service evolution plays an essential part in SOA environments,
there is currently a lack of attention being paid to this kind of service evolution.

This section highlights some valuable research works that investigated service co-evolution
as the following aspects:

One of the first works handling co-evolve changes, closed to service co-evolution, was
developed by M. Papazoglou [68]. The author proposed a fundamental classification
of evolutionary changes in the service-based system. Their work also introduces two
types of service changes, one of them called deep-changes. In our thesis, we concentrate
on coordinated deep-changes in large-scale service computing scenarios. However, M.
Papazoglou did not consider the special scenario of service evolution, where several
services have to co-evolve together to retain compatibility.

• Requirements for service co-evolution: It is worth mentioning the research by De
Sanctis et al. [9] who first proposed eight requirements for service co-evolution. However,
the authors mainly focus on general requirements. Even though the authors do not
analyze these requirements in-depth, they induce a small step toward service co-evolution.
Furthermore, the authors presented a solution for service co-evolution based on the
Domain Object concept, which supports deep-changes across a service dependency graph
through the decentralized collaboration of evolution agents.

• A distributed knowledge-based evolution model: Wang et al. [105] proposed a dis-
tributed knowledge-based evolution model named DKEM to promote competition and
collaboration between services from different vendors. The model regards stability as a
key factor in competition, and a stability evaluation model is intended to calculate the
stability of services, vendors, and service-based processes. Based on the evaluation model,
two evolution patterns are specified with which new, and more stable cooperation among
services can be examined automatically by utilizing a runtime self-adaption mechanism.
The authors reported that the model DKEM is effective for competition and cooperation

39

among services with distributed knowledge, and evolved processes have higher stability
and reaction efficiency. Nonetheless, the model is designed to eliminate semantics conflicts
between different vendors with different ontologies.

• Process of co-evolution using meta-models in model-driven engineering: Cicchetti et al.
[106], presented atomic changes and defined the process of co-evolution. The authors
also created a differential meta-model with the identified changes. However, in this
approach, a number of open questions remain, including issues of systematic validation
of the dependency detection, change impact analysis and resolution technique, which
necessarily encompasses larger population models and meta-models.

In summary, we have explored the related contributions in the field of service co-evolution
and service evolution. Furthermore, we highlighted some practical approaches that closely
focus on service co-evolution, which led us to conclude an urgent need for coordinated
service evolution. In the following chapters, we will present the main contributions of
this thesis.

40

4 Service Co-evolution Architecture

This chapter describes a vision of service co-evolution in IoT. Moreover, the chapter
proposes a novel agent architecture that supports the evolution by controlling service
versions, updating local service instances, and enabling the collaboration of agents. In
this way, the service co-evolution can make systems more adaptive, efficient and reduce
maintenance costs. The content of this chapter is presented at the First International
Summit, IoT360 2014, Rome, Italy, October 27-28, 2014. The main results are published
in [12, 13].

4.1 Introduction

The envisioned Internet of Things (IoT) foresees a future Internet incorporating smart
physical objects that offer hosted functionality as IoT services. This service-based
integration of IoT will be easier to communicate with and more valuable for enriching
our environment. However, the interfaces and services can be modified due to updates
and amendments. Such modifications require adaptations in all participating parties.
Therefore, this chapter aims to present a vision of service co-evolution in IoT.

In this chapter, we address the challenge of coordinated services in IoT by employing
an agent-based approach. Service providers may depend on third-party services to
deliver quality products to customers and other service providers. A centralized solution
would not be realizable due to administrative and technical reasons. It would not be
scalable, in particular, in the area of IoT, and security issues would complicate the whole
approach. Consequently, service providers have to be responsible for the evolution of
their own services. The required actions have to be coordinated with other providers in
the IoT environment. The objective is to automate the coordinated evolution as much as
possible.

Service co-evolution in IoT has received barely attention so far. Thus, there are some
needs for detailing the vision of service co-evolution and solutions to provide benefits for
IoT users. However, there are many challenges and requirements to tackle to meet an
overall trade-off between aspects like clients’ satisfaction, the resource consumption of
provided interface versions, and the efforts to update them. Consequently, this chapter
will analyze the roles of this evolution regarding management requirements, and the
solution.

This chapter aims at promoting the idea of coordination of service co-evolution in
IoT environments by highlighting a novel agent architecture in the IoT environment.
Furthermore, it explains how these agents can be used in service co-evolution environments.
Thus, the main contribution of this chapter is to make software engineers aware of the
power of service co-evolution and make systems more adaptive, efficient, and reliable.

The rest of the chapter is structured as follows. Section 4.2 illustrates an overview of
our approach and its key components. Section 4.3 analyzes the coordination of services.
Finally, Section 4.4 draws conclusions on our results.

4.2 Approach Overview

Services running on heterogeneous systems and offered by different providers have de-
coupled lifecycles, in particular, in IoT. Single services will be updated due to amendments
or refinements or to provide further functionalities. Other providers may cut back the
functionalities without taking notice of remaining clients that try to apply the removed
functions. Business processes and applications that depend on services require appropriate
coordination and adaptation by the participating parties. The solution we worked out
equips every service with an agent, called EVA (Evolution Agent) that is capable to
undertake these tasks. The internal structure and the rough composition of an EVA are
depicted in Figure 4.1. The next sections introduce the main components of an EVA and
their interactions.

4.2.1 Analysis

The flow of information interaction within our model is as follows. When an EVA receives
first an Evolution Request, it is analyzed by the Analysis module. An Evolution Request
demands adaptation to be able to take part in future interactions. In case a service

42

Figure 4.1: Architecture of the EVA

provider wants to update his service, its EVA can send the Evolution Request to the
clients’ EVAs. A further scenario is that the EVA of a service composed of other services
and depends on them demands one of his service providers to evolve to his update
service.

In the latter case, the Analysis module has to decide whether evolution should occur and,
if so, whether a local evolution is possible or whether the evolution has to be coordinated
with other EVAs. For this reason, it assesses firstly the significance of the Evolution
Request by evaluating the importance, the reputation, and the number of partners who
sent the request. The importance of a partner will increase the more clients are affected
by him. The significance will rise too if the local service strongly depends on the other
service and no alternative services. If either resource is becoming scarce or takes high
efforts to satisfy the request, lowly rated Evolution Requests may be rejected. Service
instances not requested for a long-time can be switched off to free resources for crucial
service instances.

To estimate the efforts required for adaptation, the Analysis module initially considers
local knowledge that includes information about locally available update mechanisms,

43

the different service instances realizing different versions of the service, and the service
versions’ dependencies towards other services. In case the Analysis module accepts the
Evolution Request and a local update would satisfy the request, it will instruct the
Smart Update Mechanism module, as presented below, to execute the local update and
provide a new service instance eventually. Suppose a pure local update is not available or
not sufficient due to the interplay between several services. In that case, the Evolution
Coordination module has to deal with a coordinating evolution and possibly ask software
developers for further configurations.

4.2.2 Evolution Analytics

As time passes, the Analysis and the Evolution Coordination module can take more
sophisticated decisions. The Evolution Analytics module collects runtime data about
successful and unsuccessful evolution procedures. These data include information about
local and coordinated evolutions since both modules feed the Evolution Analytics module.
The goal is to discover promising evolution patterns by fostering successful and proven
evolution procedures and preventing unsuccessful ones. Success not only depends on
smooth running in a technical sense but also considers the cost-performance ratio, revenue,
reputation, and QoS (Quality of Service) parameters. Costs comprise, for instance,
hardware and human resources, which can be estimated hardly in the very beginning. If
a new configuration has been implemented, the developer specifies the total person-hours
spent. Using Evolution Analytics, EVA will learn to predict worthwhile evolutions
while minimizing costs and time and maximizing the own revenue and reputation. The
reputation of an EVA may decrease if it regularly denies Evolution Requests. Here,
Evolution Analytics has to weigh the reputation against other factors like the costs for
updates and the future revenue. To estimate reputation, costs, and QoS, we will use our
two prediction algorithms presented in [107].

For reasons of bootstrapping, EVAs are allowed to share parts of their knowledge with
other EVAs. Particular know-how that affects only the service supervised by the EVA
has to be left out.

4.2.3 Evolution Coordination

In the event that a pure local evolution is not applicable, the Evolution Coordination
module will co-operate with other EVAs and possibly interact with software developers.

44

For example, the service is providing a method that depends on data delivered by a
third party. To customize the interface for the client sending the Evolution Request, the
Evolution Coordination will first determine the involved third parties and send them
an Evolution Request. Continuous feedback between the EVAs is required to keep all
parties up-to-date and to recognize future developments early. If a third party rejects the
Evolution Request or is not available anymore, the Evolution Coordination can search
for suitable services. To this end, we will adopt our service selection algorithms proposed
in [108].

If the latter fails due to a lack of matching services, the Evolution Coordination will
instruct the service provider or a responsible software developer to adapt the service. For
this purpose, the developer may implement a configuration that is subsequently executed
by the Smart Update Mechanism.

4.2.4 Smart Update Mechanism

The Smart Update Mechanism encompasses mainly two types of evolution capabilities.
Firstly, it is aware of the different versions of the services running as service instances
on the local machine and the versions used in the past. If one of them is fulfilling the
conditions required, then it will be assigned to the requesting party. The second approach
is a specification of the evolution rules and constraints representing the possible service
re-configurations and adaptations.

An EVA maintains up-to-date evolution models of its services. The models expose the
possible configuration and adaptation paths. The EVA may govern multiple instances
and versions of the same service simultaneously to accommodate different applications
with different needs concerning the service. Eventually, outdated alternatives will be
slowly retired.

The Analysis and Evolution Coordination modules introduced in the previous sections
decide which configuration or version will be used for a specific client. In this connection,
they consider the possibilities offered by the Smart Update Mechanism and take into
account the Evolution Analytics to optimize criteria like revenue, reputation, response
time, and own operability.

45

4.2.5 Repository

The Smart Update Mechanism makes use of a repository where several configurations were
made available by developers. Developers can add new configurations to the repository
during the lifetime of a service, for instance, if the Smart Update Mechanism did not
find appropriate ones to update the service.

Figure 4.2: Deployment of an EVA’s conceptual components

4.2.6 Middleware

Since objects or mobile devices are free to enter or leave the system, the middleware
enables EVAs to communicate with each other in an asynchronous and loosely coupled
manner. Besides that, the EVA itself can be divided into modules so that each module
may run on another device. This allows EVA to use powerful runtime environments while
energy-constrained IoT devices that deliver the data offered by the service are spared.
Small services, such as an object in IoT, will not have the processing power or storage
needed to implement a full EVA. Figure 4.2 shows a low-level object that has outsourced

46

Figure 4.3: Coordination of EVAs based on client’s feedback

its EVA components. This is a conservative deployment scenario since we assume that
the on-site server and the cloud are always available.

However, more opportunistic approaches are also conceivable. For example, an object
might rely on the availability of mobile devices that can enter or leave the system freely
to provide the resources it needs to communicate with the cloud.

4.3 Coordination of EVAs

Coordinating the evolution of services is a significant challenge since it is a complex
process that requires multiple interactions and continuous feedback to understand whether
the distributed evolution is proceeding as desired. To prevent never-ending negotiations
between service providers about which service has to adapt first or to change, we introduce
an algorithm that gives a clear path for the evolution. Therefore, we include the number
of clients of each concerned service and their overall reputation. Figure 4.3 shows the
process of taking into account the feedback received in response to an evolution request,
particularly from EVA x, which sends the requests to its clients.

To tackle the challenge mentioned above, we define the following terms to coordinate
and adapt EVAs.

Weight of a service (w):

47

The weight of a service is defined as the product of the reputation r of the service (range
[0,1]) and its number of clients nc (scaled into the range [0,1] by incorporating the max
and min values of all services considered). The reputation r of the service and the weight
w of service can be defined as follows:

r =
∑n

1 ratingi

n
(4.1)

w = r × nc (4.2)

Vote of a service (v): The EVA that is managing an affected service is either
interested in an adaptation or rejects it. For this reason, an EVA can vote for or against
the evolution of a used service. Hence, we adopt the values of votes:

• Vote (vi) = +1 votes for accepting the new service version.

• Vote (vi) = −1 votes for not updating the interface or do update but keep the old
version.

Feedback (f): The higher the reputation of a service and the higher its number of
clients, the higher the vote of the EVA that is managing the service is weighted. Thus,
the overall feedback is comprised of the multiplication of the vote and the weight that
consists of the reputation and the number of clients. This means that services that satisfy
and affect more clients have a higher impact.

Feedback of one client (fi):
fi(wi, vi) = wi × vi (4.3)

Feedback of all n clients (fagg):

fagg =
n∑
i

wi × vi (4.4)

4.3.1 Coordination Algorithm

The co-evolution will be executed if

fagg ≥ ε(threshold value) (4.5)

48

A step-wise structure of the proposed algorithm that encompasses the equations from (1)
to (5), is given in the following:

Input: Evolution request of EVA x to EVAs c ∈ C; number of clients and the reputation
of the EVAs c ∈ C.

Step 1: The service managed by EVA x will be updated by the provider or EVA x
received an evolution request from another EVA y.

Step 2: x is asking the EVAs c ∈ C of its clients whether they would accept or reject
the required adaptation.

Step 3: x is summing up the feedbacks of c ∈ C by considering their vote and their
reputation and number of clients that are both scaled into the range [0,1].

Step 4: x is dividing the summed-up feedbacks by the number of clients to obtain fagg

and compares fagg with a predefined threshold value ε.

Step 5: The co-evolution will be executed if fagg ≥ ε. In this case, the update mechanisms
will be executed.

Step 6: Otherwise, the evolution requests will be rejected.

Output: Accept or reject the evolution requests

4.3.2 Optimization Problem

Hence, a service may be composed of several other services and, hence, stay in contact
with different EVAs. This scenario is similar to that of business processes in SOA, where
a central process orchestrates Web services to realize a particular functionality.

In service co-evolution, we are searching for the optimal interface. Service may be a com-
position of multiple EVAs where each EVA represents a Web service. The orchestration
itself is monitored and managed by an EVA. It tries to optimize the own revenue and the
rate of satisfaction of clients by providing a suitable interface for a given functionality.
This interface is built by a composition of the interfaces of other EVAs (services). A
selection algorithm aims to find first an optimal choice of interfaces that realize the most
preferred interface for the orchestration. This is done by the aforementioned coordinating
algorithm. With EVA x, for instance, we define the set I that contains the set of requested

49

service interfaces. The set I depends on the clients who vote whether they would accept
or reject the interface of a composition of certain interfaces.

After finding the set I of matching interfaces, the challenge is to find those services that
optimize the orchestration’s overall quality and the revenue for the provider. Finding the
optimal solution means now maximizing the overall satisfaction (S) of the own clients
and selecting those EVAs that will provide the required interfaces and maximize the own
revenue (R).

We consider the following objective function for realizing the EVA orchestration:

MaximizeFobj(I) = Fobj1(R)× Fobj2(S) (4.6)

Fobj1(R) and Fobj2(S) are explained below. Fobj1(R) is an objective function for maximiz-
ing the provider’s revenue, Fobj2(S) has the goal to maximize the clients’ satisfaction.

We incorporate the following quality dimensions to compute the overall satisfaction for
the clients:

• throughput(t) : number of service invocations per time unit.

• reliability(l) : the probability that the service executes successfully.

• execution time(e) : the time it takes to execute the service.

• availability(a) : the percentage of time during which the service is available.

The vector Q (t, l, e, a) contains the quality of service (QoS) dimensions.

The value of functions Fobj1 and Fobj2 are weighted and combined to make the final deci-
sion. To maximize Fobj(I) in (6) both objective functions below has to be maximized:

Fobj1(R) =
n∑

i=1
ri, ri ∈ R (4.7)

Fobj2(S) = k1 × t+ k2 × l + k3 ×
1
e

+ k4 × a (4.8)

Therefore:
Fobj(I) = (

n∑
i=1

ri)× (k1 × t+ k2 × l + k3 ×
1
e

+ k4 × a) (4.9)

50

To keep the description as simple and clear as possible, the normalization steps to the
range of [0,1] are not included in the formula. The factors ki, i = 1...4 represent the
weights for the quality dimensions depending on the preferences of the EVA. Let us
assume that the current interface of EVA x can provide a revenue of R0 and an average
satisfaction of (t0, l0, e0, a0). The goal of interface selection would be to find a pair (Ri, Si)
better than the pair (R0, S0).

In the event of pure Web service selection for business processes, this issue can be solved
by our approach in the work [108] or by other popular approaches like integer linear
programming [109] and genetic algorithms [110].

4.4 Conclusions

This chapter introduces a new vision of service co-evolution in IoT. In particular, it adopts
a novel conceptual agent as a solution for service co-evolution. In addition, the chapter
also proposes an approach for coordinating EVAs in service co-evolution. In this way,
system can be made more adaptive, efficient and reduce costs to manage maintenance.

However, the coordination of EVAs needs a notification management architecture that can
enable notifying all participating parties in the network in case of updates or amendments
of services, especially in IoT environments. Therefore, we will present a solution for this
issue in the next chapter.

51

5 Notification Management Architecture

This chapter proposes a novel notification management architecture that detects service
description changes and notifies all affected participating parties in the network. The
main content of this chapter is reported at the IEEE MESOCA symposium [14] in Raleigh,
NC, USA, 2016.

5.1 Introduction

In the IoT area, services can be modified during application lifespan due to updates and
amendments. Hence, the third-party applications and other client services, dependent
on changed services, need to take appropriate coordination and adaptation actions. An
effective way to tackle such scenarios is to provide a notification management mechanism
to inform third-party applications about a service change. For this to come to fruition,
there should be an appropriate way to describe the service changes within limited resource
capabilities. With their limited resources, a significant challenge in IoT systems is to store
the list of clients and find the target clients to send the service change information.

Existing solutions focus on how to adapt to these changes without considering coordinated
co-evolution services within resource constraints. Our solution overcomes this limitation
by proposing a notification management mechanism to support the communication of
updates between service providers and service consumers on-the-fly through the evolution
of dependent services. To achieve this, we employ a service registry. Furthermore, we
implement the notification management on a simple scenario to examine our approach.
The test results show that our proposed notification management architecture can be
considered as a promising solution for notifying changes in IoT environments.

This chapter provides a solution to overtake research questions mentioned in Section
1.2. In particular, the chapter focuses on a notification management architecture for
co-evolution of IoT services. Furthermore, a case study is implemented to show the

feasibility of the proposed solution. The rest of the chapter is organized as follows. In
Section 5.2, we depict a motivating example for IoT services. In Section 5.3, we analyze
service description to detect the kind of changes. In Section 5.4 we present our proposed
notification management. Section 5.5 provides a case study for evaluating our approach.
Finally, some concluding remarks are given in Section 5.6.

5.2 Motivating Example

In the following scenario, we want to emphasize a notification management architecture’s
vital role that IoT service providers need to inform their clients about changes.

The example in Figure 6.1 illustrates the problem in the context of an IoT scenario. A
sensor node located at A (S1) is providing the temperature and humidity via a REST
service. Its clients may be servers, laptops, android phones, and other devices. These
different clients can access this service to use the data directly, e.g., C3 and C4, or process
it and provide it to other clients, e.g., client S2 (C1, C2, ..Cx).

Someday, the temperature provider updates the service so that it does not deliver
temperatures in Celsius but in Fahrenheit, which could be categorized as change in
semantics. Hence, it is necessary to check the effect of updates to the clients in the
network. The clients cannot replace the service by integrating other services since
the other sensor nodes are deployed in other rooms and consequently measuring other
locations. A solution could be given by agents, called EVA, that is presented detail in
Chapter 4. The EVAs emulate the old version of the service by combining the updated
service S1 with another service S2 that converts Fahrenheit to Celsius. The client
applications continue to work with the old version provided by the agent. This step
circumvents interruptions and gains time for manual adaptions by developers.

Obviously, service providers also do not want to lose their clients. Hence, service providers
will try to inform their clients about changes. The first idea would be to keep the list of
clients on the IoT device exposing the changed service. Then, the clients will be informed
by the device whenever a change takes place. This means service providers need more
storage and bandwidth, especially in case of a growing number of clients in the network
as their addresses have to be stored and updated information has to be sent to all of
them. However, with the resource limitations of typical IoT devices, it is not feasible
to maintain such a growing list. Thus, service providers’ major challenge is to store the

53

list of the targeted clients so that the service change information could be shared with
them.

Figure 5.1: A motivating scenario in IoT environment

5.3 Change Detection based on Service Description

5.3.1 Analyzing Service Description

We assume that the IoT services have a standard of WADL interface specifications for
REST services in this work. To inform the changes, service notification management
must detect changes based on comparing IoT service descriptions described in WADL
files. WADL files are XML-based and specify the complete interface of a web service.
They describe data as resources and all the operations that can be invoked on these
resources in HTTP methods (e.g., GET, POST, PUT, DELETE). In case it finds out the
differences between WADL files, it will inform the change to its clients. The comparison
will help the developer infer the changes in service from one version to another. However,
it will make it easier to immediately and accurately understand the change impact on
service clients since the WADL reflects how a client may use the service.

54

Figure 5.2: Detection of compatible changes based on service description

5.3.2 Detecting Changes

Our idea is to develop an algorithm that is integrated with our notification management
component. We adopt this algorithm from an open-source toolkit called Membrane SOA
Model 1 - a Java API for WSDL and XML Schema to compare and analyze WSDL files.
This toolkit automatically loads WSDL data of the services and saves it on a local drive.
After a certain period, the current WSDL file is loaded and compared to the previous
WSDL file. Then this tool can detect if a change happens or not. However, this tool
works only with WSDL formats.

1http://membrane-soa.org/soa-model/index.htm

55

In our case, we work on WADL files. Figure 5.2 illustrates the flowchart of the comparing
process. In the scope of this work, the algorithm may indicate which elements are added,
removed, or changed in e.g., WADL operations, HTTP method, XML schema types.
These types of change are considered as compatible changes. [10].

Figure 5.2 is a flowchart explaining how the changes in two different WADL data of a
particular web service can be detected by parsing them. The work flow is as follows:
after an intended parser file is created, two WADL files with changes in their description
after service evolution are loaded to compare the differences. The way to create parser
files similar to Membrane SOA Model. Hereby, each entity in the description (for e.g.,
data type) is called node. To store the differences, a list is created beforehand to add the
changes at the end. Two WADL files are parsed to detect the desired nodes.

Service changes that occur at the peer’s side and their interdependencies can be classified
into shallow changes and deep changes [10]. Confining our work to the shallow changes,
it is of utmost importance to classify whether the service evolution that occurred is
compatible or not. Some service providers obey the compatibility issue by adding or
changing the evolution processes, like interface, operation or implementation methods
etc., and also by adding a new WADL operations and/or new XML schema types to an
existing WADL description, guaranteeing the interoperability with prior notification to
their clients. Other providers may reduce either parameters, functionalities, or semantic
changes without notifying the dependent clients, in which case it is incompatible.

5.4 Proposed Architecture

In this section we present a notification management architecture and its components
propagating the update information to affected clients.

5.4.1 Deploying the EVA

In IoT environments, many typical sensor devices, such as Z1 mote 2, Arduino BT 3, or
Waspmote 4 possess severe memory constraints, featuring less than 10KB of RAM and
130 KB of ROM, resulting in limited computing power [53]. Thus, change management

2https://zolertia.io/
3https://www.arduino.cc/en/Main/ArduinoBoardBluetoothNew
4https://www.libelium.com/iot-products/waspmote/

56

in IoT environments must be endowed with resource-efficient mechanisms that relieve
service-providing IoT devices. For this reason, the idea of IoT devices being managed by
an externally hosted EVA is considered.

The EVA can be deployed to a powerful gateway node or in the Cloud. An EVA
needs memory and storage to create, distribute, and process incoming update messages.
Therefore, it consists of components for Analysis, Evolution Analytics, and Evolution
Coordination. Only the so-called Smart Update component [13] runs on the IoT devices
and ensures that the external EVA can access and manage them. Hence, in the context
of service co-evolution, each IoT system will base on the Cloud or other local computers
to be able to cater to a growing number of clients in the network. One EVA may monitor
and manage several IoT services belonging to one provider. For further detail regarding
EVA architecture, readers can refer to Chapter 4.

5.4.2 Service Registry

In the SOA area, a service registry plays a pivotal role as any service can be dynamically
added, removed, or modified. A service registry is often trivial database, which makes it
a tedious process to update every time a new service provider wants to register itself into
it. The service registry contains a list of services provided by different IoT devices in the
network. As the IoT devices shall be accessed by clients, they should be registered in the
registry. When a client wants to use a service, it inquires the registry about the service
it needs (e.g., temperature). The registry checks its database for all the service providers
that provide the requested service. The registry then sends the relevant list of all service
providers to the client. Upon receiving the list of providers, the client chooses one from
the list and requests the service. On the other hand, after the client sends a request to
the service, the sensor node has the information regarding the client and binds with it.
In case of any service updates, the provider can inform the clients about the relevant
service changes from now on, as it has the required information about its clients.

5.4.3 Communication Mechanism

As can be seen in Figure 5.3, an EVA is deployed in a gateway node and responsible for
a group of IoT devices on the left-hand side. We assume in our scenario, the services
are provided by these IoT devices. However, the notification system is not implemented

57

Figure 5.3: Notification Management for Service Co-evolution

by the resource-constrained IoT devices, but the EVA is located remotely. This EVA is
responsible for the services and service updates by the sensor nodes it is managing.

Since EVA is not constrained in terms of memory or processing power, thus, it can handle
the problem of a growing number of clients. The EVA has the information of the IoT
devices’ services and registers these services at the service registry (step 1). This enables
potential clients to search for concrete services and get a list of suitable IoT services
(step 2).

However, in our case, the service registry is not returning the address of the actual IoT
service but the address of the EVA responsible for that IoT service (step 3). This enables
the responsible EVA to take note of the client and register in the list of clients of the
requested IoT service (steps 4 and 5).

In step 6, the EVA on the server will redirect the client to the real IoT service so that
it can be used directly (steps 7 and 8). In this way, the IoT device does not need to
maintain the list of clients.

The provider’s EVA only informs those clients about updates on IoT services that are
indeed affected. Furthermore, clients may also have clients which are using their services.
As soon as a client is indirectly affected by a service update, it will be informed through
this mechanism as well. Update notifications will encompass the whole chain of affected
parties, so that in case of cycles, the initial causing service provider recognizes that.

58

5.5 Implementation

We have implemented the notification management using EVAs on Apache Tomcat 5 on
Raspberry Pi 3, Apache Fuseki 6 on a server, REST services on Z1 motes and Android
devices as clients. This section will explain the details of our implementation.

In our scenario, both the service providers and the clients implement a REST interface
in order to communicate with each other. The service is registered at the registry and
hence it can be accessed by the clients. Our scenario is depicted in Figure 5.4, consisting
of Raspberry Pi 3 and several Z1 motes. These Raspberry Pi 3 work as border routers
but have also EVAs installed. Z1 motes play as different IoT services for measuring, e.g.,
temperature, humidity, and brightness.

Whenever a client (e.g., Android device in Figure 5.4) requests a service by specifying,
e.g., the sensor type and region, the registry gives a list of providers offering a suitable
service. Upon reception of the response, the Android client requests the provider for the
service. But, as the current provider is an EVA and not the real IoT device, the EVA
adds the client to its list of clients for notifying it about any changes of the requested
IoT service. The provider redirects the client to the real IoT service with a redirection
message which is nothing but the HTTP redirection. Through HTTP redirection, the
client is notified about the address of the real IoT service, and the client can finally use
the service it has asked for. In this way, the built-in constraints of IoT devices are faced
by grouping several devices under one external EVA. During the experiment, we changed
the return type of the temperature reading operation from Float to String and passed
the new service implementation to the responsible EVA of the IoT device. The EVA
took as additional inputs the updated descriptions and executed the algorithm presented
in section 5.3. The change detection identified the new return type as an incompatible
change and noted down the update’s operation and resource. Then, the client on the
Android device was informed about the incompatible change. Finally, the EVA deployed
the new service implementation on the Z1 motes.

The implementation has shown that our approach is a resource-efficient solution for IoT
environments. The list of clients and finding the target clients to send the service change
information to were executed externally. This notification management architecture plays
an essential part in coordinating services in IoT environments.

5http://tomcat.apache.org//
6https://jena.apache.org/documentation/fuseki2/

59

Figure 5.4: Implementation Scenario

5.6 Conclusions

This chapter presents a novel notification management architecture that can enable
notifying all participating parties in the network in case of updates or amendments of
services in IoT service co-evolution. This is the first step to support affected peers to
adapt to changes towards a coordinated services environment.

The notification management architecture is implemented to cater to the growing, dynamic
networks in IoT, particularly in resource-constrained devices providing services. However,
this chapter mainly emphasizes the need for a notification mechanism and does not dive
into change detection aspects. In the next chapter, we will present a comprehensive
framework named DECOM that allows detecting syntactic as well as semantic changes
in IoT services.

60

6 DECOM: A Framework to Support
Evolution of IoT services

This chapter presents a comprehensive framework called DECOM for automatic detection
and communication changes. The content of this chapter is reported at the ACM SoICT
conference in Da Nang, Vietnam, December 06-07, 2018. The main results are published
in the ACM Proceedings [15].

6.1 Introduction

As all software, IoT services evolve over time to include enhancements and to increase their
value to meet the requirements of their service consumers. Often service providers undergo
necessary updates like supporting new technologies, discharging obsolete functionalities,
bug fixes, and improvement in the quality of the provided service [70, 98, 111]. When a
service changes, the client that depends on this service also needs to adapt. However, a
service may be modified without notification and updates may lead to service interruptions
[14].

Awareness of service changes is an essential ingredient of a reliable IoT environment. As
changes are unavoidable, appropriate mechanisms are required to detect and communicate
them precisely and automatically. Both aspects have received limited attention so far and
remained a critical challenge in heterogeneous IoT domains. Our effort in this work focuse
on enhancing the reliability of IoT services through comprehensive change detection.
Particularly, we aims to detect semantic changes in IoT services by employing ASP [2] in
stead of Web Ontology Language (OWL) [112].

As mentioned before in the foundation chapter, one of the significant advantages of ASP
is that knowledge or given default can be changed and extended by new information
without causing inconsistencies [2].

Existing approaches like OWL have some limitations. For example, OWL does not
support general-purpose rules, which are seen as an essential paradigm in knowledge
representation. Furthermore, OWL is monotonic. This means that other parties can
adjust a referenced ontology, but the OWL ontologies cannot be used as a common
language. Additionally, creating and processing semantic service descriptions is time-
consuming and requires a deep knowledge of the applied logic, explanations, and tools.
Therefore, this chapter presents a comprehensive method to describe and detect services
for dynamic and heterogeneous IoT environments.

Our evaluation examines the run-time performance and proves the suitability for highly
dynamic environments. Thus, the main contributions of this work are: (1) an approach to
describe IoT services semantically and syntactically with support for a shared knowledge
base; (2) a comprehensive change detection to enhance the reliability of the heterogeneous
and dynamic IoT service environments; (3) an evaluation with realistic scenarios to
measure the run-time performance and to prove the practicability of our approach.

The rest of the chapter is organized as follows. Section 6.2 introduces an example scenario
with service changes. Section 6.3 explains the key building blocks of our approach. In
Section 6.4, we describe our implementation as well as its evaluation. Finally, some
concluding remarks are given in Section 6.5.

6.2 Motivating Example

It is considering a health care application named FitService that is implemented as a
RESTful Web service. The aim of this application is to provide many health-related
services to its customers. The application involves many indicators such as heart rate,
basal body temperature, and respiratory rate besides some flourishing value-added
services like nutrition-related information, health specialists, training plans provided by
third-party services.

Figure 6.1 shows a flowchart diagram for the FitService application. The green nodes
represent the invocation of third-party services. This scenario can be well established by
deploying some smart devices providing the functionalities to consumers. In case there is
any disturbance in the normal health readings, warnings are displayed to the user.

Let us assume that in order to improve the functionality provided by the third parties,
any of these REST services could evolve independently without notifying the customer

62

Figure 6.1: A motivation scenario in IoT environment

applications. In this case, the entire application may disrupt, making the application
unusable. Hence, changes would indirectly affect the customer applications, making the
FitService not trustworthy anymore. Thus, a service provider should notify its clients in
time and in a precise way about the change from the existing version to the updated one
so that the clients can have a grace period to switch over to the new service.

The following section explains by means of the FitService workflow the different types of
changes that we will consider. Such changes can also appear in other direct and indirect
service layers and affect the customer.

63

Listing 6.1: Change in the WeightType semantic

...

<xs: complexType name= "WeightType">

<xs: sequence>

<xs: element name= "pound" type="xs:float"/>

</xs: sequence>

</xs:complexType>

<xs: complexType name= "WeightType">

<xs: sequence>

<xs: element name= "kilo" type="xs:float"/>

</xs: sequence>

</xs:complexType>

...

• Change the semantic of WeightType: let us consider that the FitService extends
its services in an international market and thus it has undergone a few changes
in its functionality. Without any prior notification, the FitService evolves into its
new version. However, the changes do not interrupt the clients but it provides
unexpected results. Let us consider that the FitService asks its users to input the
weight value in kilo and not in pounds anymore. This change is presented in the
related WADL file as seen on Listing 6.1).

• Addition of new service: FitService has decided to include a new service called
"Nutrition" to its already existing service without any other changes to it. This is
to satisfy its clients who could also be health-conscious, wanting to know the kind
of diet they have to maintain. For the new service, the FitService manager also
increases the cost of subscriptions for its premium customers.

These scenarios are used in the following to show how a service can undergo changes
and subsequently how these changes are described, detected and propagated to the
dependent clients.

64

6.3 Detecting Changes

6.3.1 Framework Overview

In the scope of this work, a precise detection means that not only structural changes like
the addition or removal of a function are detected but also semantic changes which are
not reflected by the structure. For example, a return value may keep its data type Float
but change its interpretation from the imperial system to the metric system. This section
presents a framework to detect syntactic and semantic service changes by describing
these services before and after the evolution.

Figure 6.2: Change Detection Work-flow of Framework

Figure 6.2 shows how to detect changes in our framework involving four stages. The
first stage describes RESTful services by using WADL. The second stage annotates
semantically RESTful services. This stage adds change information of services into
WADL descriptions. The third stage generates an ASP program based on the extended
WADL description by XSLT1. The last stage detects changes by means of ASP Query.

1https://www.w3.org/TR/xslt/, visited last on 16th February 2021

65

6.3.2 Semantic Annotation

Semantic changes in the service interfaces can be referenced, extended, and implemented
by application providers. Thus, for successful service discovery and change management,
semantic annotations should be added to the description of service interfaces. They
will enrich the interface of services with various semantic information. Coming back
to our example, we assume that the FitService is implemented by using RESTful Web
services. In our scenario, the WADL description before the service evolution of FitService.
Extending WADL with semantic annotations to the service description is performed by
adding asp:conceptReference as seen in Listing 6.2. The customer resource is annotated
because this resource later undergoes a change in WeightType. The prefix asp refers to
the ASP description of the service.

Listing 6.2: An example of Semantic annotation
...

<resource path="user">

<method id="createUser" name="POST">

<request>

<ns:representation asp:conceptReference

="http://.../asp/

Fitness#Customer" element

="Customer" mediaType="application/json">

</request>

</method>

</resource>

...

The second change scenario can be observed in Listing 6.3 below, which is an addition of
a new service called "Nutrition" after the service evolution.

Listing 6.3: Semantic Annotation for Nutrition Service
...

<resource path="nutrition">

<method id="getNutrition" name="GET">

<response>

<representation asp:conceptReference=

"http://.../asp/Fitness#Macro" element=

"Macro" mediaType="application/json">

<response>

</method>

</resource>

...

66

It can also be observed in its corresponding XML Schema Definition (XSD). The element
Macro is semantically annotated (shown in Listing 6.4).

Listing 6.4: Semantic Annotation for Nutrition Service
...

<xs:element name="Customer" type="tns:CustomerType"/>

<xs:element name="CustomerResults" asp:conceptReference=

"http://.../asp/Fitness#CustomerResults"

type="tns:CustomerResultsType"/>

<xs:element name="Macro" asp:conceptReference=

"http://.../asp/Fitness#Macro" type="tns:MacroType"/>

.. .

<xs:complexType name="MacroType">

<xs:sequence>

<xs:element name="carbs" type="xs:float"/>

<xs:element name="fat" type="xs:float"/>

<xs:element name="protein" type="xs:float"/>

</xs:sequence>

</xs:complexType>

</xs:schema>

...

After the addition of semantic annotations to both versions of the FitService’s WADL
descriptions, the next stage is to generate the ASP description from the extended WADL,
as discussed in the following section.

Listing 6.5: WADL resource
...

<resource path="/auth">

<resource path="/login">

<method id="login" name="POST">

<request>

<param xmlns:xs="http://www.w3.org/2001/XMLSchema"

name="login" style="query"

type="xs:string"/>

<param xmlns:xs="http://www.w3.org/2001/XMLSchema"

name="password" style="query" type="xs:string"/>

</request>

<response>

<representation mediaType="text/plain"/>

</response>

</method>

</resource>

...

67

6.3.3 Generate ASP Description

In our approach, the main reason for using ASP instead of OWL is that ASP is non-
monotonic and supports so-called defaults [113], which allow service providers to refer to
the same default knowledge. On the other hand, it can also override parts and adapt
to details without breaching consistency. Other frameworks, for example, Web service
execution environment [114] combine OWL with rule-based formalisms grounded in logic
programming. However, logical conclusions that an OWL reasoner would draw from an
ontology differ from those that would be obtained when using a logic program engine
[2]. In fact, the root of ASP is logic programming providing defaults for expressing
standard representations. This feature of ASP provides various benefits for service
vendors and participating parties in dynamic and heterogeneous environments [2]. A
short introduction of ASP is described in Section 2.3. Further details related to ASP and
representing programs are presented in the book [2].

In practice, RESTful services are syntactically described using the XML-based WADL
that defines the complete interface of a service. Its service interface presents resources and
all the operations that can be invoked on these resources through HTTP methods, e.g.,
GET, POST, DELETE, and PUT. In our scenario, IoT services can be accessed through
REST interfaces. As mentioned earlier in Section 2.1.3, WADL is XML-based and can be
considered a tree structure with nodes representing the ‘elements’ and edges representing
the ‘relations’. Besides, we use the XSLT as one of the transformation languages to
extract the element values. Furthermore, we employ ASP that provided many advantages,
such as updating existing rules or overwriting initial default assumptions. The following
listings show the fundamental XSL Transformations applied on the target XML data,
besides providing the corresponding output in ‘text’ format. This output file can be
stored and processed later using ASP. For generating ASP from the WADL data, it
has to be noted that all datatype attribute values are taken as defaults in the Default
Knowledge Base (DKB) [115], that is created by the developer.

Listing 6.6: Example defaults for DKB-Predefined ASP Rules
....

is_a(X,Y) :- property(X), not d(X,Y), not -is_a(X,Y).

d(X,Y) :- property(X), X=float, Y=type(xs_float).

...

Listing 6.6 consists of various default statements for some of the property values. The
developers create this DKB beforehand. The rest of the WADL data is realized by

68

using XSLT as discussed in Listing 6.5 and 6.7. The result in Listing 6.8 of the XSLT
transformation of the WADL description presents the declaration of facts [115] in ASP.

Listing 6.7: Example for transformation rules in XSLT
..

<xsl:stylesheet version="2.0" xmlns:ns= "https://www.w3.org/TR/xslt>

<xsl:output encoding="UTF-8" indent="no" method= "text" omit-xmldeclaration="

yes" />

<xsl:template match="/">

<xsl:for-each select= "ns:application/ns:resources/ns:resource">

property(<xsl:value-ofselect= "substring-after(@path,’/’)"/>).

object(<xsl:value-of select="name()" />).

is_a(<xsl:value-of select="@path" />,

<xsl:value-of select="name(@path)"/>).

...

Listing 6.8: An example of generating ASP
...

object(resource).

is_a(auth,path(P1)).

property(login).

object(resource).

is_a(login,path(P2)).

...

Consider that the FitService has upgraded its service, which includes scenarios described
in Section 6.2. This section focuses on semantic change that kinds of change play a vital
role in service evolution. As can be seen in Listing 6.9, it shows a snippet of logical
description, realized using XSL Transformation. It consists of describe a service change
definition of WeightType. The arguments of every predicate are well described as facts.

Listing 6.9: Change in WeightType as kilo
...

is_a(weight,name(N)).

is_a(WeightType,type(T)).

has(sequence(S),element(E)).

has(element(E),name(B)).

has(element(E),type(T)).

...

By representing the service description using ASP, KB consisting of unconditional facts
cannot be overwritten. In order to change a fact representing a specific element with its

69

attribute value in the knowledge base, defaults are used to add some additional facts to
the KB as shown in Listing 6.9. In the scope of service evolution, a default statement for
name(Y) value is defined as X in the DKB. Furthermore, the knowledge representation for
the WADL data before the service change can import the DKB. This can be represented
as shown in Listing 6.10.

Listing 6.10: Defautl statement and change in WeighType -X

...

// Default statement

is_a(X,name(Y)) :- property(X), not d(X,name(Y)),

not -is_a(X,name(Y)).

d(X,name(Y)) :- property(X), X=kilo.

...

// Change in WeighType -X

include "Fitsness.lp".

include "Defaults.lp".

is_a(pound,X(Y).

...

Consider that a service provider has updated the service, changing the WeightType from
pound to kilo, it is then simpler to add this fact to the new ASP program, and by using
#include statements to import all the rules to the new ASP program and also the DKB,
besides adding the new facts about the service.

6.4 Implementation and Evaluation

Section 6.4, relies on a Master thesis [116] 2.

This section presents solutions for detecting the changes to the affected clients. It is
furnished with an evaluation setup in Section 6.4.1 required to implement the approach.
In Section 6.4.2, the evaluation results are provided that show the service evolution
successfully performed on the WADL data by using the ASP Queries to figure out the
differences between the two versions of the WADL before and after the change of services.
Section 6.4.3 provides a performance analysis of the ASP Queries.

2Huu Tam Tran wrote the Master thesis description with the support from project PROSECCO

70

6.4.1 Evaluation Setup

The following evaluations were derived on a PC, with 2.5 GHz Intel Core i7 processor
and 8 GB 1600 MHz DDR3 RAM by utilizing Clingo, an ASP system to ground and
solve logic programs [113].

6.4.2 ASP Queries and Results

The setup discussed above forms the basis for the implementation of the prototype for
our service change detection. For this evaluation, the following steps are considered to
find out the solution. It involves:

1. The logical WADL description of the Fitness service (before the change) saved under
the filename Fitness.lp is taken into account, having the imported DKB Defaults.lp
that consists of all the default statements for the data objects and properties.
Fitness.lp also consists of FitnessX.lp, the logical description for FitService XSD.

2. The new logical description FitnessNew.lp of the web service description (after
the change) has to import all the facts declared in Fitness.lp along with the DKB
Defaults.lp and the new FitService XSD saved under the filename FitnessNewX.lp.

3. In order to write an ASP Query to find out the service changes, an important
step is now to change all the predicates of FitnessNew.lp and FitnessNewX.lp to
considering the predicates in Fitness.lp and FitnessX.lp.

4. By using the keyword #include which sets all the atoms of Fitness.lp, FitnessX.lp,
Defaults.lp, FitnessNew.lp and FitnessNewX.lp.

5. If required, update the DKB Defaults.lp with some additional rules and defaults,
which could be the result of newly added atoms in FitnessNew.lp and Fitness-
NewX.lp.

Before proceeding further with the ASP Queries, the predicate changes in FitnessNew.lp
and FitnessNewX.lp are provided. It is achieved with a piece of Java program, which
takes every text line in ASP consisting of a predicate as a string.

71

Listing 6.11: An example of ASP Query for multiple changes
...

%----FitnessX.lp

4 property(kilo;liter). object(name(X);name(Y)).

5 is_a(float,type(X)).

6 -is_a(P,X) :- is_a(P0,X), property(P), P0 != P.

%----Defaults.lp

7 is_a(X,name(X)) :- property(X), not d(X,name(X)),

not -is_a(X,name(X)).

8 d(X,name(X)) :- property(X), X=kilo.

9 is_a(X,name(Y)) :- property(X), not d(X,name(Y)),

not -is_a(X,name(Y)).

10 d(X,name(Y)) :- property(X), X=liter.

%----FitnessNewX.lp

11 property(pound;milliL).

12 is_a_n(pound,name(Z)).

13 is_a_n(milliL,name(W)).

%----ASP Query

14 delta(A,B) :- is_a_n(A,B), not d(A,B).

15 delta(A,B) :- not is_a_n(A,B), d(A,B).

#show delta/2.

...

After creating new predicates of FitnessNew.lp and FitnessNewX.lp, we compare all the
atoms of the respective logical descriptions with their corresponding peers of Fitness.lp
and FitnessX.lp for both the scenarios. Thereby the Clingo solver is used to execute
these queries. The DKB Defaults.lp can consist of ’d’ number of defaults corresponding
to predicates of either the property or object. This ASP query is more advantageous if
it has more defaults. These queries can be performed by changing multiple numbers of
property values in our scenario, and find out exactly the differences between the atoms
of both FitnessX.lp and FitnessNewX.lp. To depict this, we randomly added two new
properties and objects to the logical descriptions and also a new default statement in
Defaults.lp. The results can be observed in Listing 6.11.

6.4.3 Evaluation

This section will present the test analysis that is performed for a proposed scenario
by using Cling solver [113]. In our scenario, we focus on semantics change, a crucial
change for the change detection process. A simple example of this changes is WeightType
presented in Section 6.2.

72

We conducted the scenario by adding several changes and then examining the runtime
during our experiments. With each time of an increasing number of changes, we count
five times and take the average results to improve the reliability of our test. For example,
we add 16 new changes to our scenario. After that, we measuring the average runtime is
11.56 ms.

Regarding increasing the number of changes from 1 to 128, we examined runtime and
found that the average time increased from 10.52 ms to 12.92 ms. These results can be
seen in Figure 6.3.

Number of Changes

10.52
11.02 11.06

11.52 11.56 11.64

12.76 12.92

0.93 1.04 1.30 1.31 1.36

2.09 2.20 2.23

0

3.5

7

10.5

14

1 2 4 8 16 32 64 128

Mean Standard Deviation

R
u
n
ti

m
e

in
 m

s

Figure 6.3: Runtime execution in the scenario

Compared to any simulation that consumes a reasonable amount of time, the Clingo
solver still performs well in executing the queries in the range of some milliseconds.
Meanwhile, the average standard deviation is considered, which measures the spread of
the data that shows how dispersed the data is around the mean. It increases gradually,
resulting in the reliability of the data points considered for the average runtime at each
step.

To summarize the performances of the above scenario, the increment of changes shows
an impact on the performance of the Clingo solver.

73

6.5 Conclusions

This chapter presents a comprehensive framework DECOM to describe and detect changes
in IoT services by using Answer Set Programming. Additionally, our evaluation examines
the run-time performance and proves the suitability for highly dynamic environments.

However, this framework is designed for detecting changes based on the service interface.
Because we know that changes due to updates may affect functional and non-functional
properties, the former can be recognized by analyzing the service interface in many
cases. However, the detection could be a failure if updates merely address behavioral
aspects. Therefore, we will present an approach to determine service behavior changes
by inspecting input and output values in the next chapter.

74

7 Detection of Service Behavior Changes

This chapter extends current change detection approaches by considering behavioral
changes of services. The behavior addresses the correlation and distribution of input
and output values of service. This differs from structural and semantic change detection,
which examines interface descriptions only. Structural changes modify the signature
of the service interface, while semantic changes affect interface annotations defined in
referenced ontologies. The main content of this chapter has relied on a Master thesis
[16]1 and a part of the publication [100]2.

7.1 Introduction

Current approaches mainly focus on the interface changes without considering the actual
service behavior by inspecting input and output values [100]. This can lead to a selection
of unsuitable service during an autonomous service replacement. Although service
interface matching could be successful, the behavior of the selected service could deviate
from the replaced service significantly [100].

Our goal is to detect any kinds of service change that is relevant for a client application by
analyzing the streamed sensor data. These changes are detected in an anomaly detection
fashion by introducing a smart agent where anomaly detection models are deployed at
each client depending on their service subscription. The models are developed based
on machine learning techniques. With the use of machine learning, the models can be
learned and updated automatically, detecting anomalies efficiently, which reduces a part
of a manual effort in the continuous provision of services to the end-users.

Since there are many machine learning techniques available, thus the performance of each
of the techniques should carefully be assessed through its benchmarks and evaluation.

1Huu Tam Tran wrote the Master thesis description with the support from project PROSECCO
2Alexander Jahl is the first author of this publication.

The performance is measured to feasibly support the models on resource-constrained IoT
devices in terms of processing power, communication bandwidth, battery lifetime, and
memory capacity. In our approach, the performance of several algorithms is evaluated
through benchmarks, training, and test results. The benchmark was run on a Raspberry
Pi minicomputer. Memory usage, number of threads used, number of classes loaded, CPU
usage, and execution time for different algorithms are assessed in order to check suitability
for resource-constrained IoT devices, assuming a REST-based service architecture.

This chapter presents the following points: (i) How to detect the service behavior changes
in an IoT domain to support service evolution? (ii) What is the efficient mechanism to
be implemented to detect the changes in such a large-scale environment? Thus, the main
contributions of this work are: (1) propose an approach to detect the service behavior
changes in an IoT domain to support service evolution; (2) realize an implementation of
REST service architecture providing appropriate models for IoT resource-constrained
devices.

The rest of the chapter is organized as follows. Section 7.2 introduces a motivation
scenario of service behavior changes. Section 7.3 provides some background information
related to anomaly detection and machine learning techniques. Section 7.4 explains the
key building blocks of our approach. In Section 7.5 we describes our implementation.
Section 7.6 evaluates our approach. Finally, some concluding remarks are given in Section
7.7.

7.2 Motivating Example

Let us consider an IoT scenario that is depicted in Figure 7.1. In this scenario, service
provider C is a client of service providers A and B, providing the information of atmo-
spheric pressure and temperature, respectively. Service provider C also has client 1, client
2 and client 3 since they subscribed to service C. Here we assume that service provider C
is delivering the Temperature service in Fahrenheit to clients 2 and 3 when they invoked
a Temperature service in Fahrenheit by a getTempInF() method. Someday the service
provider B updates its service and provides the Temperature service in Celsius instead of
Fahrenheit. However, service C does not get any notice from service B. Hence, clients 2
and 3 could be interrupted or not. In the latter case, clients 2 and 3 may get the wrong
temperature information. If this case occurs, we may consider it as a behavioral change
in service.

76

Figure 7.1: Change Scenario

In this scenario, the Fahrenheit values are considered normal behavior of the data while
Celsius values are considered the anomalies (when the client subscribed to Temperature
in Fahrenheit). The problem of detecting such anomalies is called anomaly detection
that will be considered in the next sections.

7.3 Background

This section introduces a couple of different concepts of anomaly detection and machine
learning techniques. The main content of this section is extracted from two well-known
publications, including a survey of anomaly detection by Varun Chandola [3] and a
technical paper by K. Singh [117].

7.3.1 Anomaly Detection

Anomalies are the unexpected changes of the behavior in the data that do not conform
to a well-defined notion of normal behavior [3]. Thus, anomaly detection refers to the
problem of finding patterns in data that do not conform to expected behavior. These
non-conforming patterns are often called anomalies or outliers, or exceptions in a wide

77

variety of application domains. Of these terms, the terms anomalies and outliers are used
most commonly in the context of anomaly detection.

Besides, detecting anomalies in data has been studied in the statistics community
for many decades. Over time, a variety of anomaly detection techniques have been
developed in several research communities. Typically, anomalous data can be connected
to some problem or rare events such as bank fraud, structural defects, image processing,
malfunctioning equipment, network intrusion detection, or novel topic detection in Text
mining [117].

An important aspect of anomaly detection is the nature of the desired anomaly. In
general, anomalies are classified into three categories: Point Anomalies, Contextual
Anomalies and Collective Anomalies. These categories are described as the followings:

• Point Anomalies: An individual data instance is considered as an anomaly when it
is far from most of the points in the normal region. For example, in Figure 7.2,
points O1 and O2 and points in O3 are considered as point anomalies as they lie
outside and far away from the boundary of normal data points [117].

• Contextual Anomalies: If a data instance is anomalous in a specific context, but
not otherwise, then it is termed as a contextual anomaly. The notion of a context
is induced by the structure in the dataset and must be specified as a part of the
problem formulation. Each data instance is defined using two sets of attributes,
contextual attributes and behavioral attributes. The contextual attribute is used
to determine the context, for instance. In time-series data, time is a contextual
attribute that determines the position of an instance on the entire sequence, while
the behavior attribute defines the non-contextual characteristics of an instance [3].

• Collective Anomalies: If a collection of related data instances is anomalous with
respect to the entire dataset, it is termed as collective anomaly[3].

Figure 7.2 illustrates anomalies in a simple two-dimensional dataset. The data has two
normal regions, N1 and N2 since most of the data points lie in these two regions. Points
that are adequately far away from these regions, for instance, points O1 and O2 and the
points in the region O3, are anomalies.

The following section provides a summary of potential machine learning techniques for
the analysis of numerical values.

78

Figure 7.2: An example of anomalies in dataset [3]

7.3.2 Machine Learning

Machine learning has been introduced to detect anomalies in the data as efficient and
promising solutions. There are many machine learning methods such as supervised,
unsupervised and semi-supervised.

Supervised methods or classification methods required a labeled training set containing
both normal and anomalous samples to construct the predictive model. Theoretically,
supervised methods provide better detection rates than semi-supervised and unsupervised
methods since they have access to more information [118]. In the scope of this work,
most of the algorithms are used from supervised learning for anomaly detection purposes.
However, some technical issues exist, making these methods seem not accurate as they
are supposed to be. The first issue is the shortage of a training data set is a challenge,
and the training data sets usually contain some noises that result in higher false alarm
rates. For these reasons, we will mainly focus on supervised learning algorithms for our
implementations.

The supervised learning algorithms such as Decision Tree [119], Naive Bayes [120], K-
Nearest Neighbour [121] are used to classify anomalies. Artificial Neural Networks (ANN)
like Feed-forward neural network [122], Elman and Jordan recurrent neural networks[123]
are used to predict the data and classify the anomalies based on the Mean Square
Error [124]. Unsupervised learning like K-Means [125] and semi-supervised learning like
One-Class SVM (OC-SVM) [125] is used for clustering and classification of anomalies,

79

Table 7.1: Selection of existing anomaly detection techniques (source [118])
.

Techniques Characteristic

Decision Tree

- require little data preparation
- able to handle both numerical data
- need to select a good kernel function
-possible to validate a model using statistical tests

KNN

- easy to understand with few predictor variables
- large storage requirements
- perform well with large data in a short time
- useful for building models involving non-standard data

Naive Bayes - suitable for text categorization
- highly scalable, requires features and predictors

K-means
- low complexity
- necessity specifying k
- sensitive to noise and outlier data points

One-Class Support
Vector Machine

- highly specialized support vector machine,
- optimized for outlier detection requires less
parameters and training data than SVMs

Feedforward

- the neural network needs the training to operate
- contain at least three layers of neurons
- feed the data to the network in a forward manner,
that is, from the input layer to the output layer
- they do not contain any loops

Elman

- requires high processing time for large neural network
- the neural network needs the training to operate
- context layer always has the same number of
neurons present in the hidden layer
- a layer of context neurons is combined to the input layer
which together inputs the data to the hidden layer
- can perform tasks that a linear program cannot,
- the neural needs training to operate

Jordan

- requires high processing time for large neural network
- the neural network needs the training to operate
- number of context neurons are always equal to
the number of output neurons

80

respectively. The significant characteristics of these algorithms can be summarized in
Table 7.1).

7.4 Approach

In our approach, each IoT service is equipped with a smart agent like EVA (see Section
4.2) that can communicate with others. These agents automatically gather data from
dozens of sensors for parameters such as temperature, humidity. Due to the dynamic
streaming of sensor data measurements, the model representing the expected behavior
of data is prepared and distributed to different agents. To archieve this, we apply
machine learning techniques for agents to discover service behavior changes. In the
scope of our motivation scenario, we ask for machine learning algorithms suitable for
resource-constrained devices. In addition, they should operate unsupervised, classify
quickly, detect precisely with a low error rate, should not tend to overfit, and should be
optimized for one cluster detection.

Figure 7.3: Service Architecture

In our scenario, a REST service architecture is established between the service provider
and its clients. Figure 7.3 shows a service provider delivers temperature service of
three different cities to three different clients 1, 2 and 3 respectively, depending on their
subscription of services, for example. The temperature services are provided via REST
service in Fahrenheit values. The agent EVAs are deployed to both clients and servers.
In our scenario, EVAs are the only module the developer has to integrate. Assuming an
application is running on different devices, like, e.g., a Raspberry, personal laptop, each
of them is equipped with its own agent. The agents are collecting the in- and output sent

81

between the application and the invoked services. Depending on the number of agents
and the message sizes, the responsible agent will ask its agent intermittently for a subset
of their collected data. This enables the agent to analyze the typical interaction between
the application and its connected services and generate a representative model through
machine learning algorithms.

When clients subscribed to the server to get Temperature service in Fahrenheit, the
models are prepared based on Fahrenheit’s normal data using the most common machine
learning algorithms. In the scope of this work, we consider several algorithms that are
introduced in Table 7.1.

In order to support the models on constraint devices, the performance of each algorithm
is analyzed with benchmarking and accuracy. The efficient algorithms are chosen and
then deployed on agents at the clients based on their service subscriptions. When the
deployed models detect normal values as anomalies, the value or specific data instance
is sent to the server where other efficient models are employed. This is usually done to
avoid false alarms. The model on the server checks the data instance for an anomaly. If
it detects an anomaly, the model deployed at the clients is performing well. If it detects
as a normal value instead of an anomaly, then it replies back to the concerned agents
to update the model. The models are then updated offline with new data and deployed
back with updated models.

These changes are detected in an anomaly detection fashion by introducing a smart agent
or a proxy node where anomaly detection models are deployed at each client depending
on their service subscription. With the use of machine learning, the models can be
learned and updated automatically. Its process reduces a part of manual effort in the
continuous provision of services to the end-users. The model is usually prepared offline
for the normal behavior of the data. When the model provided encounters new data
online, it detects any anomalies. Anomaly detection is used to either adapt or replace the
services. Using state-of-the-art techniques, several models are created to classify or detect
anomalies in the sensor data. Because many machine learning techniques are available,
each of these techniques’ performance is carefully assessed based on their benchmarks
and ratings. Performance is measured to support models on resource-constrained IoT
devices in terms of processing power, communication bandwidth, battery life and storage
capacity. The models are optimized to avoid false alarms due to updates. In order to
validate the models provided on the clients, the instance of the service data is sent to
other efficient models that are used on the server. We will describe the implementation
in detail in the following sections.

82

7.5 Implementation

In this section, we present the implementation3 of various models using machine learning
algorithms, which were described briefly in Section 7.3. The classical machine learning
algorithms such as Decision Tree, Naive Bayes, K-Nearest Neighbour, K-Means, and
One-Class Support Vector Machine are developed using a WEKA 4. WEKA is a data
mining software that has collections of machine learning algorithms for data mining
tasks. The models based on Neural Networks are developed using ENCOG in Java 5.
ENCOG is an advanced machine learning framework that supports a variety of advanced
algorithms. It is also a tool to normalize and process data.

7.5.1 Data Acquisition

In this scope of thesis work, we focus on anomaly detection based on the temperature
sensor data. A publicly available raw temperature sensor data is collected from National
Centers for Environmental Information (NCEI), which is responsible for hosting and
providing access to comprehensive oceanic, atmospheric, and geophysical data. The
weather data that is considered. The temperature dataset in Fahrenheit is used to make
it exactly resemble the service behavior change problem.

7.5.2 Data Pre-Processing

The time-series data, such as temperature data with missing values, is often incomplete
due to sensor errors, transmission errors. The temperature-related characteristics had
several missing values about 0.7 percent of the total and randomly dispersed over 30
years (1960-1990). The missing values are filled with the traditional imputation method.
The data should also be prepared in a format that the algorithms understand.

In order to have service behavior changes, the data is introduced with 1 percent of
anomalies randomly by converting the Fahrenheit values into Celsius. The data is
provided to the algorithms in a supervised manner by including a target variable into the
temperature data specifying the class type labeled as “anomaly” or “normal” for each
instance containing the dataset. The “normal” label for a specific data instance indicates

3The experiments of this work conducted by Srivardhan Cholkar in his Master thesis.
4Data Mining Software in Java. https://www.cs.waikato.ac.nz/ml/weka/index.html
5Encog is a machine learning framework. https://www.heatonresearch.com/encog/

83

that the data values in that instance are in the units, “Fahrenheit,” and the “anomaly”
label indicates that the data values in that instance are in the units, “Celsius.” Except
for the semi-supervised algorithm like One-Class SVM, the anomaly class is labeled as
“1” and the normal class is labeled as “0”.

The data is normalized in the range [0, 1] to learn the data pattern and understand the
features’ correlation clearly. The more data provided for the model, the better the model;
for instance, the accuracy of the model is higher. The entire data set is divided into
training data sets and test data sets. The model is created based on this training data
set, and the test data serve to validate the trained model.

The neural network is created with five input neurons, one output neuron, and a hidden
layer with two hidden neurons. The number of hidden layers and hidden neurons is
chosen using the pruning method. The best architecture of the neural network is the
optimized number of hidden layers and hidden neurons, which can be determined with a
trial and error process.

7.5.3 Training Algorithms

The training starts with initializing the weights using the Nguyen-Widrow method [126]
which generates random weights distributed roughly evenly over the input space. With
the use of this method, the training works faster. The hyperbolic tangent activation
function is chosen for each of the hidden neurons and the linear activation function for
the output neuron with a trial and error process. The best selection of the activation
function is based on the training that the loss function gives the lowest error rate and
less execution time.

The Resilient training technique [127] is chosen with a trial and error process to train or
adjust the weights of the neural network. In order to improve the accuracy of the network,
several strategies were used, such as Greedy strategy and Hybrid strategy [128].

Greedy strategy [128] always checks the network error for each iteration. It allows only
those iterations to update the weights and other training parameters for which there is
an improvement in the network error. If there is no improvement, the trainer discards
that iteration effect. This type of strategy is typically used in conjunction with a hybrid
strategy. The training results and test results are presented in the following section.

84

7.6 Evaluation

Figure 7.4: Benchmark - Raspberry Pi, 32-bit ARM Cortex- A52 Quadcore 1.2 GHz

To deploy efficient models on a number of devices, including memory-constrained devices,
it is essential to check the performance of each algorithm through benchmarking and
compare them to see which models are best suited to support different IoT devices. We
use Raspberry Pi that plays as IoT clients in our experiments.

The benchmarks are taken on Java Virtual Machine on Raspberry Pi, evaluating the
model’s complexity for the given data. Furthermore, we can observe using heap memory
usage, committed memory usage, number of threads used, the total number of classes
loaded, CPU usage, and runtime while training different algorithms. Figure 7.4 [16]
shows the critical performance characteristics like heap memory usage, CPU usage, and
runtime are only considered with different to compare the algorithms with each other as
the others are more or less the same for all the algorithms.

7.6.1 Performance of Algorithms

The general overview of the performance of all algorithms is based on the frameworks for
machine learning and the considered temperature data record with three characteristics
maximum, minimum, and observed temperature with more than 15,000 instances.

85

Figure 7.5: Performance of Algorithms: J48, KNN, Naive Bayes and OCSVM

Figure 7.5 [16] shows that classic machine learning algorithms such as Decision Tree,
Naive Bayes, KNN, and K-Means are easy to implement, understand, and have high
training and prediction speeds with low memory usage, except OCSVM. Among them,
Decision Tree, Naïve Bayes, KNN, and OCSVM are highly accurate. The accuracy
of K-means cannot simply be calculated with the other algorithms. Although highly
accurate, they were unable to see the contextual and collective anomalies analyzed in
practice. However, OCSVM partially discovered contextual anomalies that have the
highest accuracy of 96.38 percent. Detecting contextual anomalies is essential for time
series and periodic data such as temperature.

Figure 7.6 [16] shows the performance of our selected neural network algorithms, including
Feedforward, Elman and Jordan. Although the neural networks have a low training
and prediction speed compared to classical machine learning algorithms, they use less
memory. Their complexity increases with the number of features and data instances.

The static memory of the Feedforward neural networks could not predict the contextual
anomalies well. The Elman and Jordan recurrent neural networks are specialized with
their contextual neurons using which they construct a dynamic memory or short-term
memory. With this dynamic memory, they were able to recognize the contextual anomalies
well. However, the accuracy of anomaly detection is high for Jordan, and the training
speed is similarly high for other neural networks because they converged to a considerably
small error with a small number of iterations.

86

Figure 7.6: Performance of Algorithms: Feedforward, Elman and Jordan

The Decision Tree, Naive Bayes, KNN algorithms are therefore suitable for IoT-restricted
devices to detect point anomalies if high accuracy and low resource consumption are
taken into account, for which KNN is best suited. OCSVM is considered when there
is a trade-off between accuracy and memory usage. Jordan and Elman are suitable for
devices with high memory.

7.7 Conclusions

In this chapter, we presented an approach to detect anomalies efficiently in the streamed
sensor data by deploying agents that automatically take care of these changes. To detect
abnormalities in the sensor data, we have to use anomaly detection methods based
on machine learning algorithms. The performances of several algorithms are analyzed
through benchmarks, training, and test results. The performance is measured to satisfy
the requirements of IoT-constrained devices. Thus, the main contribution of this chapter
is realized by the verifying agents that are responsible for the behavioral analysis of the
client-server communication. This represents a new dimension not included by other
existing approaches. In the future, we will adopt the proposed approach with other
machine learning algorithms for the realization of full service-oriented architecture in
real-time for business applications.

87

8 Conclusion

This chapter summarises the research problems and their corresponding solutions. It also
presents some potential extensional directions to the current work.

8.1 Summary

In this thesis, we are primarily interested in foundational research aiming at the distributed
coordination of service co-evolution in the context of IoT services. Mainly, we have
presented the following contributions:

• We have developed a solution for coordinating service co-evolution through a de-
sign that equips every service with an EVA that performs the service evolution
in collaboration with other EVAs. The solution also introduced a new vision of
service co-evolution in IoT by providing an evolution management model. We
have illustrated how a service co-evolution is carried out, what should be involved,
why it is essential, and what should be prepared to meet the co-evolution require-
ments. In this model, evolution tasks like assessing and coordinating evolution
requests, updating the interfaces, and selecting matching services can be performed
automatically or semi-automatically by EVAs.

• We have proposed a novel notification management architecture that detects service
description changes and notifies all affected participating parties in the network.
The design of this architecture has taken into account the combination of EVAs,
a service registry, and the detecting algorithm. The notification management
architecture is implemented to cater to the increasing dynamic networks in IoT,
particularly for services exposed by resource-constrained devices.

• We have developed a comprehensive framework DECOM to describe and detect
service changes in IoT services using Answer Set Programming. Here, we assume
that the capabilities and interfaces of IoT devices are described and provided

through REST services. To detect syntactic and semantic changes, we transform
an extended version of the interface description into a logic program and apply a
sequence of analysis steps to detect changes. The feasibility and applicability of
the approach are demonstrated through a running example.

• We have proposed an approach to find out changes in the service behavior by
analyzing the data stream between the service client and the service provider. In
our approach, an intelligent agent is deployed at each client that monitors the
data stream. Anomaly detection is based on machine learning techniques. The
performance of several algorithms is evaluated through benchmarks, training, and
test results. The benchmarks were run on a Raspberry Pi minicomputer. Memory
usage, number of threads used, number of classes loaded, CPU usage, and execution
time for different algorithms are assessed in order to check the suitability for
resource-constrained IoT devices, assuming a REST-based service architecture.

• Last but not least, we have presented a short overview of existing approaches that
support service evolution and, in particular, of service co-evolution. It provides a
technical document to researchers and practitioners building industrial-strength
adaptive applications related to service co-evolution.

8.2 Limitation and Future Work

The thesis presented a set of theoretical models and approaches that facilitate service
co-evolution in IoT environments. Although our contribution is a significant step towards
on-the-fly service evolution in IoT circumstances, we intend to address some open
challenges in our future work. This work calls for the following extensions:

• Extending the EVA framework architecture:

The first direction is to extend the EVA framework architecture to realize fully
autonomous agent collaboration. The EVA framework should be extended with
the following components:

(i) A component of decision making and planning of service co-evolution, which
is designed for EVAs in order to compute a joint executable plan, for instance,
an updated plan for a group of EVAs in a co-evolution scenario based on logic

89

programming. This component may use the game-theoretic modeling that is
proposed in a distinguished work by M. Fokaefs, and E. Stroulia [129].

(ii) A component of monitoring and run-time testing aims to validate the functional
and non-functional properties of co-evolved services. This component could support
capturing information about possible violations or changes in the quality of service
parameters. This component aids in verifying the compliance of functional and
non-functional requirements of a co-evolved service configuration. It aims to avoid
changes in a worst-case scenario. Hence, this component aims to ensure that service
evolution does not break the correctness condition and other specified requirements.
In conclusion, these integrated components with EVAs could support joint service
co-evolution activities.

• Extending the current notification management architecture:

The second direction is to extend our notification management architecture. The
current notification management architecture mainly emphasizes the need for a
notification mechanism and does not dive into the impact of changes. Thus,
further works related to the impact of changes should be taken into account. The
notification management architecture should particularly determine what kind of
service changes have to be considered in the service evolution support, e.g., interface
changes, quality of services, or behavior changes. Furthermore, to handle such
kinds of changes, it is to assure that the services involved have communication
protocols to propagate the requested changes.

• Extending the framework DECOM:

This framework should support testing the service version compatibility after the
successful detecting of changes. Since the compatibility version plays a vital role in
service co-evolution, any change during the service evolution should be tested for
its compatibility. Of course, only changes that ensure no interruption in the bond
between services by upgrading to a new version are considered. Besides, further
efforts are needed to detect the impact of complex changes.

• Extending a suitable model of detection of service changes in complex
scenarios:

The current defined model is suitable for numerical and text output data. Thus,
we need to expand models and algorithms for monitoring and analyzing service
behaviors with complex data structures. A possible direction is to combine several

90

machine learning techniques, which could lead to a hybrid classifier. Additionally,
after the detection, a specific notification management architecture is needed to
notify the clients about the service behavior changes. Finally, an evaluation in a
detailed scenario with typical sensors, actors, service dependencies with complex
data structures should be performed.

• Others: The security aspects that can be used to check the safety of service
evolution activities before being commissioned have not been addressed yet. A
further option that is taken into consideration for future work, is the transfer and
application of the solution for distributed service co-evolution in the area of Smart
Cities. The application scenarios must reflect a broad range of change requests and
IoT service dependencies.

91

Publications as (Co-) Author

This thesis has a single author; however, it is the result of years of collaboration.
Parts of the work conducted for this thesis have already been reported in the following
publications:

1. H.T. Tran, V.T. Nguyen, C.V. Phan, "Towards Service Co-evolution in SOA
Environments: A Survey", in the proceedings of Context-Aware Systems and
Applications, and Nature of Computation and Communication, pp. 233-254,
Springer 2020, (Best Paper Awards).

2. H.T. Tran, V.T. Nguyen, X. T. Nguyen, C.V. Phan, "Service Co-evolution in SOA
Environments: A Survey and Outlook", in the special issue on Context-Aware
Computing: Theory and Applications, Concurrency and Computation- Practice
and Experience, 2021 (submitted).

3. H.T. Tran, A. Jahl, K. Geihs, R. Kuppili, X.T. Nguyen, and T. T. B Huynh,
"DECOM: A framework to support evolution of IoT services", in the proceedings of
the Ninth International Symposium on Information and Communication Technology,
pp. 389–396, ACM 2018.

4. A. Jahl, H. T. Tran, H. Baraki, and K. Geihs, "Wip: Behavior-based service
change detection," in the proceedings of IEEE International Conference on Smart
Computing (SMARTCOMP), pp. 267–269, IEEE 2018.

5. H.T. Tran, H. Baraki, R. Kuppili, A. Taherkordi and K. Geihs, "A notification
management architecture for service co-evolution in the Internet of Things", in the
proceedings of Maintenance and Evolution of Service-Oriented and Cloud-Based
Environments, IEEE 10th International Symposium, pp 9-15, 2016.

6. H.T. Tran, H. Baraki, and K. Geihs, "An approach towards a service co-evolution
in the internet of things," in the proceedings of Internet of Things. User-Centric
IoT, pp. 273–280, Springer 2015.

7. H.T. Tran, H. Baraki, and K. Geihs,"Service co-evolution in the internet of things,"
in the Endorsed Transactions on Cloud Systems, pp. 1-15, EAI 2015.

8. A. Jahl, H. Baraki, H.T Tran, R. Kuppili, and K. Geihs, "Lifting low-level workflow
changes through user-defined graph rule-based patterns", in the proceedings of

92

International Conference on Distributed Application and Interoperable Systems,
pp. 115-128, Springer 2017.

9. X.T. Nguyen, H.T. Tran, H. Baraki, and K. Geihs, "Optimization of non-functional
properties in internet of things applications," in Journal of Network and Computer
Applications, vol. 89, pp. 120–129, Elsevier, 2017.

10. X. T. Nguyen, H. T. Tran, H. Baraki, and K. Geihs, "FRASAD: A framework for
model-driven iot application development," in the proceedings of the Internet of
Things (WF-IoT), 2015 IEEE 2nd World Forum, pp. 387–392, IEEE 2015.

11. T. V. Nguyen, N. Fredivianus, H. T. Tran, K. Geihs and T. T. B. Huynh, "Formal
verification of alica multi-agent plans using model checking," in the proceedings of
the Ninth International Symposium on Information and Communication Technology,
pp. 351–358, ACM 2018.

93

Bibliography

[1] M. Zajac, B. Oesterdiekhoff, C. Loeser, and H. Bohn, “Bilateral service mapping
approaches between the different service oriented architectures web services and
upnp,” in 21st International Conference on Advanced Information Networking
and Applications Workshops (AINAW’07), vol. 1, pp. 964–969, IEEE, 2007.

[2] M. Gelfond and Y. Kahl, Knowledge representation, reasoning, and the design of
intelligent agents: The answer-set programming approach.

Cambridge University Press, 2014.

[3] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,” ACM
computing surveys (CSUR), vol. 41, no. 3, p. 15, 2009.

[4] M. N. Huhns and M. P. Singh, “Service-oriented computing: Key concepts and
principles,” IEEE Internet computing, vol. 9, no. 1, pp. 75–81, 2005.

[5] K. Geihs, “Provisions for servicce co-evolution, dfg proposal 2015.”.

[6] D. C. Marinescu, Cloud computing: theory and practice.
Morgan Kaufmann, 2017.

[7] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of things (iot):
A vision, architectural elements, and future directions,” Future generation
computer systems, vol. 29, no. 7, pp. 1645–1660, 2013.

[8] D. Pfisterer, K. Römer, D. Bimschas, O. Kleine, R. Mietz, C. Truong, H. Hasemann,
A. Kröller, M. Pagel, M. Hauswirth, et al., “Spitfire: toward a semantic web of
things.,” IEEE Communications Magazine, vol. 49, no. 11, pp. 40–48, 2011.

[9] M. De Sanctis, K. Geihs, A. Bucchiarone, G. Valetto, A. Marconi, and M. Pistore,
“Distributed service co-evolution based on domain objects,” in International
Conference on Service-Oriented Computing, pp. 48–63, Springer, 2015.

[10] M. P. Papazoglou, V. Andrikopoulos, and S. Benbernou, “Managing evolving
services,” Software, IEEE, vol. 28, no. 3, pp. 49–55, 2011.

[11] K. Dar, A. Taherkordi, H. Baraki, F. Eliassen, and K. Geihs, “A resource ori-
ented integration architecture for the internet of things: A business process
perspective,” Pervasive and Mobile Computing, vol. 20, pp. 145–159, 2015.

[12] H. T. Tran, H. Baraki, and K. Geihs, “An approach towards a service co-evolution
in the internet of things,” in Internet of Things. User-Centric IoT, pp. 273–280,
Springer, 2014.

[13] H. T. Tran, H. Baraki, and K. Geihs, “Service co-evolution in the internet of things,”
EAI Endorsed Transactions on Cloud Systems, vol. 15, 2 2015.

[14] H. T. Tran, H. Baraki, R. Kuppili, A. Taherkordi, and K. Geihs, “A notification
management architecture for service co-evolution in the internet of things,” in
Maintenance and Evolution of Service-Oriented and Cloud-Based Environments
(MESOCA), 2016 IEEE 10th International Symposium on the, pp. 9–15, IEEE,
2016.

[15] H. T. Tran, A. Jahl, K. Geihs, R. Kuppili, X. T. Nguyen, and T. T. B. Huynh,
“Decom: A framework to support evolution of iot services,” in Proceedings of the
Ninth International Symposium on Information and Communication Technology,
pp. 389–396, 2018.

[16] S. Cholkar, “An efficient anomaly detection mechanism for streamed sensor data
in iot environments.,” Master’s thesis, University of Kassel, 2018.

[17] H. T. Tran, C. V. Phan, et al., “Towards service co-evolution in soa environments: A
survey,” in Context-Aware Systems and Applications, and Nature of Computation
and Communication, pp. 233–254, Springer, 2020.

[18] T. Erl, SOA principles of service design (the Prentice Hall service-oriented com-
puting series from Thomas Erl).

Prentice Hall PTR, 2007.

[19] M. P. Papazoglou, “Web services and soa: principles and technology 2nd,” Harlow,
Essex: Pearson Education Limited, 2012.

[20] M. Rosen, B. Lublinsky, K. T. Smith, and M. J. Balcer, Applied SOA: service-
oriented architecture and design strategies.

John Wiley & Sons, 2012.

95

[21] C. M. MacKenzie, K. Laskey, F. McCabe, P. F. Brown, R. Metz, and B. A. Hamilton,
“Reference model for service oriented architecture 1.0,” OASIS standard, vol. 12,
p. 18, 2006.

[22] W. Roshen, SOA-based enterprise integration: A step-by-step guide to services-based
application.

McGraw-Hill, Inc., 2009.

[23] C. Peltz, “Web services orchestration and choreography,” Computer, vol. 36, no. 10,
pp. 46–52, 2003.

[24] D. Zeng, S. Guo, and Z. Cheng, “The web of things: A survey,” JCM, vol. 6, no. 6,
pp. 424–438, 2011.

[25] R. T. Fielding, Architectural styles and the design of network-based software archi-
tectures.

University of California, Irvine, 2000.

[26] R. Daigneau, Service Design Patterns: fundamental design solutions for
SOAP/WSDL and restful Web Services.

Addison-Wesley, 2012.

[27] C. Pautasso, “Restful web services: principles, patterns, emerging technologies,” in
Web Services Foundations, pp. 31–51, Springer, 2014.

[28] A. Bouguettaya, Q. Z. Sheng, and F. Daniel, Web services foundations.
Springer, 2016.

[29] S. J. Russell and P. Norvig, Artificial intelligence: a modern approach.
Malaysia; Pearson Education Limited„ 2016.

[30] M. Wooldridge, An introduction to multiagent systems.
John Wiley & Sons, 2009.

[31] S. Poslad, “Specifying protocols for multi-agent systems interaction,” ACM Trans-
actions on Autonomous and Adaptive Systems (TAAS), vol. 2, no. 4, p. 15,
2007.

[32] F. L. Bellifemine, G. Caire, and D. Greenwood, Developing multi-agent systems
with JADE, vol. 7.

John Wiley & Sons, 2007.

96

[33] A. Rogers, E. David, N. R. Jennings, and J. Schiff, “The effects of proxy bidding
and minimum bid increments within ebay auctions,” ACM Transactions on the
Web (TWEB), vol. 1, no. 2, p. 9, 2007.

[34] Z. Genc, F. Heidari, M. A. Oey, S. van Splunter, and F. M. Brazier, “Agent-based
information infrastructure for disaster management,” in Intelligent Systems for
Crisis Management, pp. 349–355, Springer, 2013.

[35] N. Schurr, J. Marecki, M. Tambe, P. Scerri, N. Kasinadhuni, and J. P. Lewis,
“The future of disaster response: Humans working with multiagent teams using
defacto.,” in AAAI spring symposium: AI technologies for homeland security,
pp. 9–16, 2005.

[36] B. Burmeister, M. Arnold, F. Copaciu, and G. Rimassa, “Bdi-agents for agile
goal-oriented business processes,” in Proceedings of the 7th international joint
conference on Autonomous agents and multiagent systems: industrial track,
pp. 37–44, International Foundation for Autonomous Agents and Multiagent
Systems, 2008.

[37] M. Pěchouček and V. Mařík, “Industrial deployment of multi-agent technologies:
review and selected case studies,” Autonomous agents and multi-agent systems,
vol. 17, no. 3, pp. 397–431, 2008.

[38] Y. Kubera, P. Mathieu, and S. Picault, “Everything can be agent!,” in Proceedings
of the 9th International Conference on Autonomous Agents and Multiagent
Systems: volume 1-Volume 1, pp. 1547–1548, International Foundation for
Autonomous Agents and Multiagent Systems, 2010.

[39] M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub, “Answer set solving in
practice,” Synthesis lectures on artificial intelligence and machine learning,
vol. 6, no. 3, pp. 1–238, 2012.

[40] M. Nogueira, M. Balduccini, M. Gelfond, R. Watson, and M. Barry, “An a-prolog
decision support system for the space shuttle,” in International symposium on
practical aspects of declarative languages, pp. 169–183, Springer, 2001.

[41] T. Soininen and I. Niemelä, “Developing a declarative rule language for applications
in product configuration,” in International Symposium on Practical Aspects of
Declarative Languages, pp. 305–319, Springer, 1999.

97

[42] D. Abels, J. Jordi, M. Ostrowski, T. Schaub, A. Toletti, and P. Wanko, “Train
scheduling with hybrid answer set programming,” Theory and Practice of Logic
Programming, vol. 21, no. 3, pp. 317–347, 2021.

[43] M. Gebser, R. Kaminski, and T. Schaub, “aspcud: A linux package configuration
tool based on answer set programming,” arXiv preprint arXiv:1109.0113, 2011.

[44] K. Ashton et al., “That ‘internet of things’ thing,” RFID journal, vol. 22, no. 7,
pp. 97–114, 2009.

[45] P. P. Ray, “A survey on internet of things architectures,” Journal of King Saud
University-Computer and Information Sciences, vol. 30, no. 3, pp. 291–319,
2018.

[46] O. Uviase and G. Kotonya, “Iot architectural framework: connection and integration
framework for iot systems,” arXiv preprint arXiv:1803.04780, 2018.

[47] J. A. Stankovic, “Research directions for the internet of things,” IEEE Internet of
Things Journal, vol. 1, no. 1, pp. 3–9, 2014.

[48] H. Sundmaeker, P. Guillemin, P. Friess, and S. Woelfflé, “Vision and challenges for
realising the internet of things,” Cluster of European research projects on the
internet of things, European Commision, vol. 3, no. 3, pp. 34–36, 2010.

[49] A. McEwen and H. Cassimally, Designing the internet of things.
John Wiley & Sons, 2013.

[50] S. Li, L. Da Xu, and S. Zhao, “The internet of things: a survey,” Information
Systems Frontiers, vol. 17, no. 2, pp. 243–259, 2015.

[51] Y. Liu, H. Wang, J. Wang, K. Qian, N. Kong, K. Wang, L. Zheng, Y. Shi, and D. W.
Engels, “Enterprise-oriented iot name service for agricultural product supply
chain management,” International Journal of Distributed Sensor Networks,
vol. 11, no. 8, p. 308165, 2015.

[52] P. P. Ray, “A survey of iot cloud platforms,” Future Computing and Informatics
Journal, vol. 1, no. 1-2, pp. 35–46, 2016.

[53] X. T. Nguyen, H. T. Tran, H. Baraki, and K. Geihs, “Frasad: A framework for
model-driven iot application development,” in Internet of Things (WF-IoT),
2015 IEEE 2nd World Forum on, pp. 387–392, IEEE, 2015.

98

[54] X. T. Nguyen, H. T. Tran, H. Baraki, and K. Geihs, “Optimization of non-functional
properties in internet of things applications,” Journal of Network and Computer
Applications, vol. 89, pp. 120–129, 2017.

[55] X. T. Nguyen, Model-driven development of sensor network applications with
optimization of non-functional constraints.

PhD thesis, University of Kassel, 2016.

[56] P. Persson and O. Angelsmark, “Calvin–merging cloud and iot,” Procedia Computer
Science, vol. 52, pp. 210–217, 2015.

[57] H. Naji and M. Mikki, “A survey of service oriented architecture systems mainte-
nance approaches,” International Journal of Computer Science and Information
Technology, vol. 8, pp. 21–29, 2016.

[58] K. H. Bennett and V. T. Rajlich, “Software maintenance and evolution: a roadmap,”
in Proceedings of the Conference on the Future of Software Engineering, pp. 73–
87, ACM, 2000.

[59] W. Zuo et al., Managing and modeling web service evolution in SOA architecture.
PhD thesis, Université de Lyon, 2016.

[60] M. M. Lehman and J. F. Ramil, “Software evolution—background, theory, practice,”
Information Processing Letters, vol. 88, no. 1-2, pp. 33–44, 2003.

[61] M. M. Lehman and L. A. Belady, Program evolution: processes of software change.
Academic Press Professional, Inc., 1985.

[62] L. Yu and A. Mishra, “An empirical study of lehman’s law on software quality
evolution.,” Int. J. Software and Informatics, vol. 7, no. 3, pp. 469–481, 2013.

[63] R. P. Cook and I. Lee, “Dymos: A dynamic modification system,” ACM SIGPLAN
Notices, vol. 18, no. 8, pp. 201–202, 1983.

[64] J. Dowling and V. Cahill, “The k-component architecture meta-model for self-
adaptive software,” in International Conference on Metalevel Architectures and
Reflection, pp. 81–88, Springer, 2001.

[65] O. Alliance, Osgi service platform, release 3.
IOS Press, Inc., 2003.

99

[66] F.-L. Li, L. Liu, and J. Mylopoulos, “Software service evolution: A requirements
perspective,” in Computer Software and Applications Conference Workshops
(COMPSACW), 2012 IEEE 36th Annual, pp. 353–358, IEEE, 2012.

[67] S. Wang, W. A. Higashino, M. Hayes, and M. A. Capretz, “Service evolution
patterns,” in Web Services (ICWS), 2014 IEEE International Conference on,
pp. 201–208, IEEE, 2014.

[68] M. P. Papazoglou, “The challenges of service evolution,” in Advanced Information
Systems Engineering, pp. 1–15, Springer, 2008.

[69] V. Andrikopoulos et al., “A theory and model for the evolution of software services,”
tech. rep., Tilburg University, School of Economics and Management, 2010.

[70] P. Leitner, A. Michlmayr, F. Rosenberg, and S. Dustdar, “End-to-end version-
ing support for web services,” in Services Computing, 2008. SCC’08. IEEE
International Conference on, vol. 1, pp. 59–66, IEEE, 2008.

[71] M. Fokaefs, R. Mikhaiel, N. Tsantalis, E. Stroulia, and A. Lau, “An empirical study
on web service evolution,” in Web Services (ICWS), 2011 IEEE International
Conference on, pp. 49–56, IEEE, 2011.

[72] M. Fokaefs and E. Stroulia, “Wsdarwin: Studying the evolution of web service
systems,” in Advanced Web Services, pp. 199–223, Springer, 2014.

[73] D. Romano and M. Pinzger, “Analyzing the evolution of web services using fine-
grained changes,” in Web Services (ICWS), 2012 IEEE 19th International
Conference on, pp. 392–399, IEEE, 2012.

[74] A. Jahl, H. Baraki, H. T. Tran, R. Kuppili, and K. Geihs, “Lifting low-level workflow
changes through user-defined graph-rule-based patterns,” in IFIP International
Conference on Distributed Applications and Interoperable Systems, pp. 115–128,
Springer, 2017.

[75] H. K. Dam and A. Ghose, “Supporting change impact analysis for intelligent agent
systems,” Science of Computer Programming, vol. 78, no. 9, pp. 1728–1750,
2013.

[76] L. Liao, S. Qi, and B. Li, “Trust analysis of composite service evolution,” in
2016 IEEE 14th International Conference on Software Engineering Research,
Management and Applications (SERA), pp. 15–22, IEEE, 2016.

100

[77] M. Yamashita, B. Vollino, K. Becker, and R. Galante, “Measuring change impact
based on usage profiles,” in Web Services (ICWS), 2012 IEEE 19th International
Conference on, pp. 226–233, IEEE, 2012.

[78] S. Wang and M. A. Capretz, “Dependency and entropy based impact analysis for
service-oriented system evolution,” in Proceedings of the 2011 IEEE/WIC/ACM
International Conferences on Web Intelligence and Intelligent Agent Technology-
Volume 01, pp. 412–417, IEEE Computer Society, 2011.

[79] W. Song, G. Zhang, Y. Zou, Q. Yang, and X. Ma, “Towards dynamic evolution
of service choreographies,” in Services Computing Conference (APSCC), 2012
IEEE Asia-Pacific, pp. 225–232, IEEE, 2012.

[80] W. Fdhila, C. Indiono, S. Rinderle-Ma, and M. Reichert, “Dealing with change in
process choreographies: Design and implementation of propagation algorithms,”
Information systems, vol. 49, pp. 1–24, 2015.

[81] A. Khebizi, H. Seridi-Bouchelaghem, B. Benatallah, and F. Toumani, “A declarative
language to support dynamic evolution of web service business protocols,”
Service Oriented Computing and Applications, vol. 11, no. 2, pp. 163–181, 2017.

[82] M. Treiber, H.-L. Truong, and S. Dustdar, “Semf - service evolution manage-
ment framework,” in Software Engineering and Advanced Applications, 2008.
SEAA’08. 34th Euromicro Conference, pp. 329–336, IEEE, 2008.

[83] J. Li, Y. Xiong, X. Liu, and L. Zhang, “How does web service api evolution
affect clients?,” in 2013 IEEE 20th International Conference on Web Services,
pp. 300–307, IEEE, 2013.

[84] M. Fokaefs and E. Stroulia, “Using WADL specifications to develop and maintain
REST client applications,” in Web Services (ICWS), 2015 IEEE International
Conference on, pp. 81–88, IEEE, 2015.

[85] R. Weinreich, T. Ziebermayr, and D. Draheim, “A versioning model for enterprise
services,” in Advanced Information Networking and Applications Workshops,
2007, AINAW’07. 21st International Conference on, vol. 2, pp. 570–575, IEEE,
2007.

[86] P. Kaminski, H. Müller, and M. Litoiu, “A design for adaptive web service evolution,”
in Proceedings of the 2006 international workshop on Self-adaptation and self-
managing systems, pp. 86–92, ACM, 2006.

101

[87] K. Becker, A. Lopes, D. S. Milojicic, J. Pruyne, and S. Singhal, “Automatically
determining compatibility of evolving services,” in Web Services, 2008. ICWS’08.
IEEE International Conference on, pp. 161–168, IEEE, 2008.

[88] R. Fang, L. Lam, L. Fong, D. Frank, C. Vignola, Y. Chen, and N. Du, “A version-
aware approach for web service directory,” in Web Services, 2007. ICWS 2007.
IEEE International Conference on, pp. 406–413, IEEE, 2007.

[89] D. Frank, L. Lam, L. Fong, R. Fang, and M. Khangaonkar, “Using an interface
proxy to host versioned web services,” in 2008 IEEE International Conference
on Services Computing, pp. 325–332, IEEE, 2008.

[90] M. Dumas, M. Spork, and K. Wang, “Adapt or perish: Algebra and visual notation
for service interface adaptation,” in International Conference on Business
Process Management, pp. 65–80, Springer, 2006.

[91] B. Benatallah, F. Casati, D. Grigori, H. R. M. Nezhad, and F. Toumani, “Developing
adapters for web services integration,” in International Conference on Advanced
Information Systems Engineering, pp. 415–429, Springer, 2005.

[92] W. Kongdenfha, H. R. Motahari-Nezhad, B. Benatallah, F. Casati, and R. Saint-
Paul, “Mismatch patterns and adaptation aspects: A foundation for rapid
development of web service adapters,” IEEE Transactions on Services Comput-
ing, vol. 2, no. 2, pp. 94–107, 2009.

[93] S. H. Ryu, F. Casati, H. Skogsrud, B. Benatallah, and R. Saint-Paul, “Supporting
the dynamic evolution of web service protocols in service-oriented architectures,”
ACM Transactions on the Web (TWEB), vol. 2, no. 2, p. 13, 2008.

[94] Z. Le Zou, R. Fang, L. Liu, Q. B. Wang, and H. Wang, “On synchronizing with
web service evolution,” in 2008 IEEE International Conference on Web Services,
pp. 329–336, IEEE, 2008.

[95] M. Ouederni, G. Salaün, and E. Pimentel, “Client update: A solution for service
evolution,” in Services Computing (SCC), 2011 IEEE International Conference
on, pp. 394–401, IEEE, 2011.

[96] S. Basu, F. Casati, and F. Daniel, “Toward web service dependency discovery for
soa management,” in Services Computing, 2008. SCC’08. IEEE International
Conference on, vol. 2, pp. 422–429, IEEE, 2008.

102

[97] S. Wang and M. A. Capretz, “A dependency impact analysis model for web services
evolution,” in Web Services, 2009. ICWS 2009. IEEE International Conference
on, pp. 359–365, IEEE, 2009.

[98] V. Andrikopoulos, S. Benbernou, and M. P. Papazoglou, “On the evolution of
services,” IEEE Transactions on Software Engineering, vol. 38, no. 3, pp. 609–
628, 2012.

[99] M. Treiber, H.-L. Truong, and S. Dustdar, “On analyzing evolutionary changes
of web services,” in International Conference on Service-Oriented Computing,
pp. 284–297, Springer, 2008.

[100] A. Jahl, H. T. Tran, H. Baraki, and K. Geihs, “Wip: Behavior-based service
change detection,” in 2018 IEEE International Conference on Smart Computing
(SMARTCOMP), pp. 267–269, IEEE, 2018.

[101] O. Groh, H. Baraki, A. Jahl, and K. Geihs, “Coop-automatic validation of evolving
microservice compositions.,” in SATToSE, 2019.

[102] T. G. Stavropoulos, S. Andreadis, M. Riga, E. Kontopoulos, P. Mitzias, and
I. Kompatsiaris, “A framework for measuring semantic drift in ontologies,” in
1st Int. Workshop on Semantic Change & Evolving Semantics (SuCCESS’16).
CEUR Workshop Proceedings, Leipzig, Germany, 2016.

[103] M. B. Juric, A. Sasa, B. Brumen, and I. Rozman, “Wsdl and uddi extensions for
version support in web services,” Journal of Systems and Software, vol. 82,
no. 8, pp. 1326–1343, 2009.

[104] H. Labbaci, N. Cheniki, Y. Sam, N. Messai, B. Medjahed, and Y. Aklouf, “A linked
open data approach for web service evolution,” in OTM Confederated Interna-
tional Conferences" On the Move to Meaningful Internet Systems", pp. 265–281,
Springer, 2019.

[105] X. Wang, Z. Feng, S. Chen, and K. Huang, “Dkem: A distributed knowledge based
evolution model for service ecosystem,” in 2018 IEEE International Conference
on Web Services (ICWS), pp. 1–8, IEEE, 2018.

[106] A. Cicchetti, D. Di Ruscio, and A. Pierantonio, “Managing dependent changes in
coupled evolution,” in Theory and Practice of Model Transformations, pp. 35–51,
Springer, 2009.

103

[107] H. Baraki, D. Comes, and K. Geihs, “Context-aware prediction of qos and qoe
properties for web services,” in Networked Systems (NetSys), 2013 Conference
on, pp. 102–109, IEEE, 2013.

[108] D. Comes, H. Baraki, R. Reichle, M. Zapf, and K. Geihs, “Heuristic approaches
for qos-based service selection,” in Service-Oriented Computing, pp. 441–455,
Springer, 2010.

[109] L. Zeng, B. Benatallah, A. H. Ngu, M. Dumas, J. Kalagnanam, and H. Chang,
“Qos-aware middleware for web services composition,” IEEE Transactions on
software engineering, vol. 30, no. 5, pp. 311–327, 2004.

[110] G. Canfora, M. Di Penta, R. Esposito, and M. L. Villani, “An approach for qos-
aware service composition based on genetic algorithms,” in Proceedings of the
7th annual conference on Genetic and evolutionary computation, pp. 1069–1075,
ACM, 2005.

[111] D. Webster, P. Townend, and J. Xu, “Restructuring web service interfaces to
support evolution,” in Service Oriented System Engineering (SOSE), 2014
IEEE 8th International Symposium on, pp. 158–159, IEEE, 2014.

[112] S. Bechhofer, “Owl: Web ontology language,” in Encyclopedia of Database Systems,
pp. 2008–2009, Springer, 2009.

[113] M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub, “Multi-shot asp solving
with clingo,” arXiv preprint arXiv:1705.09811, 2017.

[114] A. Haller, E. Cimpian, A. Mocan, E. Oren, and C. Bussler, “WSMX - A semantic
service-oriented architecture,” in Web Services, 2005. ICWS 2005. Proceedings.
2005 IEEE International Conference on, pp. 321–328, IEEE, 2005.

[115] G. Brewka, T. Eiter, and M. Truszczynski, “Answer set programming: An intro-
duction to the special issue,” AI Magazine, vol. 37, no. 3, pp. 5–7, 2016.

[116] R. Kuppili, “Towards a communication protocol for service co-evolution in iot
systems.,” Master’s thesis, University of Kassel, 2017.

[117] K. Singh and S. Upadhyaya, “Outlier detection: applications and techniques,”
International Journal of Computer Science Issues (IJCSI), vol. 9, no. 1, p. 307,
2012.

104

[118] S. Omar, A. Ngadi, and H. H. Jebur, “Machine learning techniques for anomaly
detection: an overview,” International Journal of Computer Applications, vol. 79,
no. 2, 2013.

[119] M. Brijain, R. Patel, M. Kushik, and K. Rana, “A survey on decision tree algorithm
for classification,” 2014.

[120] S. Chen, G. I. Webb, L. Liu, and X. Ma, “A novel selective naïve bayes algorithm,”
Knowledge-Based Systems, vol. 192, 2020.

[121] G. E. Batista, M. C. Monard, et al., “A study of k-nearest neighbour as an
imputation method.,” His, vol. 87, no. 251-260, p. 48, 2002.

[122] G. Bebis and M. Georgiopoulos, “Feed-forward neural networks,” IEEE Potentials,
vol. 13, no. 4, pp. 27–31, 1994.

[123] D. T. Pham and D. Karaboga, “Training elman and jordan networks for system
identification using genetic algorithms,” Artificial Intelligence in Engineering,
vol. 13, no. 2, pp. 107–117, 1999.

[124] D. Fumo, “Types of machine learning algorithms you should know,” Towards Data
Science, Towards Data Science, vol. 15, 2017.

[125] J. Muñoz-Marí, F. Bovolo, L. Gómez-Chova, L. Bruzzone, and G. Camp-Valls,
“Semisupervised one-class support vector machines for classification of remote
sensing data,” IEEE transactions on geoscience and remote sensing, vol. 48,
no. 8, pp. 3188–3197, 2010.

[126] D. Nguyen and B. Widrow, “The truck backer-upper: An example of self-learning
in neural networks,” in Advanced neural computers, pp. 11–19, Elsevier, 1990.

[127] V. K. Chippa, S. T. Chakradhar, K. Roy, and A. Raghunathan, “Analysis and
characterization of inherent application resilience for approximate computing,”
in Proceedings of the 50th Annual Design Automation Conference, pp. 1–9, 2013.

[128] S. Chatterjee, B. Datta, S. Sen, N. Dey, and N. C. Debnath, “Rainfall prediction
using hybrid neural network approach,” in 2018 2nd International Conference
on Recent Advances in Signal Processing, Telecommunications & Computing
(SigTelCom), pp. 67–72, IEEE, 2018.

[129] M. Fokaefs and E. Stroulia, “Wsdarwin: A decision-support tool for web-service
evolution,” in 2013 IEEE International Conference on Software Maintenance,
pp. 444–447, IEEE, 2013.

105

	List of Figures
	Introduction
	Motivation
	Research Questions
	Methodology
	Contributions
	Dissertation Outline

	Foundation
	Service Oriented Architecture
	Definitions
	WS-* Paradigms
	RESTful Service

	Multi-agent System
	Concepts
	Modeling Agents

	Answer Set Programming
	IoT in Nutshell
	Concept
	Applications and Frameworks

	Related Work
	Software Evolution
	Service Evolution
	Terminology
	Change Taxonomy

	Positioning Approaches
	Support Service Evolution
	Support Service Co-evolution

	Service Co-evolution Architecture
	Introduction
	Approach Overview
	Analysis
	Evolution Analytics
	Evolution Coordination
	Smart Update Mechanism
	Repository
	Middleware

	Coordination of EVAs
	Coordination Algorithm
	Optimization Problem

	Conclusions

	Notification Management Architecture
	Introduction
	Motivating Example
	Change Detection based on Service Description
	Analyzing Service Description
	Detecting Changes

	Proposed Architecture
	Deploying the EVA
	Service Registry
	Communication Mechanism

	Implementation
	Conclusions

	DECOM: A Framework to Support Evolution of IoT services
	Introduction
	Motivating Example
	Detecting Changes
	Framework Overview
	Semantic Annotation
	Generate ASP Description

	Implementation and Evaluation
	Evaluation Setup
	ASP Queries and Results
	Evaluation

	Conclusions

	Detection of Service Behavior Changes
	Introduction
	Motivating Example
	Background
	Anomaly Detection
	Machine Learning

	Approach
	Implementation
	Data Acquisition
	Data Pre-Processing
	Training Algorithms

	Evaluation
	Performance of Algorithms

	Conclusions

	Conclusion
	Summary
	Limitation and Future Work

	Bibliography

