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Zusammenfassung

Digitale Städte sind zunehmend auf IT- und Kommunikationsinfrastruktur ange-
wiesen. Sie können als große verteilte Systeme betrachtet werden, die aus heteroge-
nen und autonomen Teilnehmern bestehen. Besonders in Notfall- und Krisensituatio-
nen muss kritisches Wissen, beispielsweise über verletzte Personen oder beschädig-
te Infrastruktur, zuverlässig auch unter eingeschränkter Kommunikation erreichbar
sein. In einer solchen Umgebung würde eine zentrale Verwaltung des kritischen Wis-
sens einen Engpass verursachen. Daher wird in dieser Dissertation das Design und die
Umsetzung einer selbst organisierenden Multi-Agenten-basierten verteilten Wissens-
basis vorgestellt. Sie unterstützt nicht-monotones Schlussfolgern (Reasoning) und die
verteilte Speicherung von semantisch annotiertem Wissen sowie Fehlertoleranz bei
Teilausfällen des Systems.

Neben der dezentralen Speicherung ist die Anwendung von Allgemeinwissen es-
senziell für die Interaktion von Mensch und Maschine. Dies beruht auf der Art,
wie Menschen auf natürliche Weise miteinander kommunizieren, in der die meis-
ten Details aufgrund des allgemeinen Hintergrundwissens normalerweise weggelas-
sen werden. Um eine solche Kommunikation mit einer Maschine bzw. einem Ro-
boter zu ermöglichen, muss das System mit einer entsprechenden Wissensrepräsen-
tation ausgestattet sein. Ontologien könnten ein geeigneter Ansatz sein. Derzeiti-
ge Ontologie-Frameworks weisen jedoch keine dynamische Anpassungsfähigkeit auf,
sind monoton und sind nicht für große Datenmengen ausgelegt. Daher stellt diese
Dissertation einen Formalismus vor mit dem nicht-monotone Ontologien basierend
auf einer Allgemeinwissensquelle dynamisch erstellt werden können. Die generierten
Ontologien werden anschließend auf Inkonsistenzen geprüft und innerhalb der ver-
teilten Wissensbasis zur Annotation der gespeicherten Wissenselemente verwendet.

Ein weiterer zentraler Punkt in der dezentralen Verwaltung von Wissen in einem
lose gekoppelten Netz ist die Entdeckung von Wissen (Knowledge Discovery). Der
Fokus liegt dabei auf semantischen Informationen. Dies ist besonders wichtig, wenn
Rettungskräfte mit der verteilten Wissensbasis interagieren, da sie hauptsächlich an
dem gespeicherten Wissen und nicht dem Speicherort interessiert sind. Klassische
Mechanismen des IP-basierten Routings müssen dazu Flooding (Fluten des Netzes
mit Nachrichten) einsetzen, da sie im schlechtesten Fall jeden Knoten abfragen müs-
sen, um entsprechende Informationen zu finden. Dies führt zu einer zusätzlichen
Belastung der potenziell beschädigten Kommunikationsinfrastruktur. Deshalb wird
in dieser Dissertation zusätzlich ein semantischer Routing-Mechanismus vorgestellt,
der auf lose gekoppelte Netzwerke zugeschnitten ist, die unstrukturiert sind und sich
dynamisch ändern können.
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Abstract

Future digital cities increasingly depend on IT and communication infrastructure.
They can be viewed as large-scale distributed systems consisting of heterogeneous
and autonomous participants. Particularly in emergencies and crises, critical know-
ledge, such as knowledge about injured people or damaged infrastructure, must
be reliably accessible even with limited communication. In such an environment, a
centralised knowledge management system would create a bottleneck. Therefore, the
design and implementation of a self-organizing multi-agent-based distributed know-
ledge base are presented in this dissertation. It supports non-monotonic reasoning,
the distributed storage of semantically annotated knowledge, and fault tolerance for
partial system failures.

In addition to decentralised storage, the use of commonsense knowledge is es-
sential for human-machine interaction. This is due to the way people naturally
communicate with each other, where most of the details are usually left out, relying
on commonsense knowledge. To enable such communication with a machine or a
robot, the system must be equipped with corresponding knowledge representation
and reasoning mechanisms. Ontologies could be a suitable approach. However,
current ontology frameworks do not support dynamic adaptation of the ontologies,
are monotonic, and are not designed for large amounts of data. Therefore, this
dissertation presents a mechanism that generates dynamic and non-monotonic on-
tologies based on a commonsense knowledge source. The generated ontologies are
then checked for inconsistencies and used within the distributed knowledge base to
annotate the stored knowledge items.

Another central aspect of a decentralised knowledge management system in loosely
coupled networks is discovering knowledge focussing on semantics. This is especially
important when rescuers interact with the distributed knowledge base, as they are
primarily interested in the stored knowledge, not in its location. Classic mechanisms
of IP-based routing have to use flooding since they have to query every node in the
worst case to find the relevant information. This leads to an additional burden on the
potentially damaged communication infrastructure. Therefore, a semantic routing
mechanism is presented in this dissertation, which is tailored to loosely coupled
networks that are unstructured and can change dynamically.
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Introduction 1
In recent years, cities have expanded their digital infrastructure. In general, these

Smart Cities rely on information and communication technologies to collect data
from different devices, e. g., IoT (Internet of Things) devices distributed in the city.
On the one hand, this supports city officials in managing different assets like energy,
water, waste, transport, health, public safety or the general city administration. On
the other hand, these technologies enable the provision of services to citizens, for
example, efficient navigation or suggestions of free parking spaces.

Around the globe, there are several examples of Smart Cities. At the time of writ-
ing, the Smart Nation Singapore is the globally top-ranked Smart City1. Based on
the Smart Nation Initiative [134], the Singaporean government introduced informa-
tion and communication infrastructure to achieve better living standards, stronger
communities, and more participation opportunities to all citizens. The initiative
encompasses several platforms and services. These include an open-data platform,
which is used to share machine-readable datasets from various agencies. Addition-
ally, they provide a map service that enables the incorporation of data by citizens
and, thus, the crowdsourcing of spatial data. For example, the resulting data is then
used to optimise navigation services. Furthermore, the cooperation of research in-
stitutions, public agencies, and private companies is fostered by corresponding plat-
forms. Additional data is provided by the Smart Nation Sensor Platform2, which is a
nationwide network of sensors integrated into lampposts (Lamppost-as-a-Platform).
The goal of the Smart Nation Sensor Platform is to equip more than 95.000 street
lamps with LEDs and to expand their functionality with cameras as well as ad-
ditional sensors including temperature, humidity, noise, or pollutants. During the
COVID-19 pandemic, (semi-)autonomous mobile robots have been introduced to
support officials during their operations. Therefore, the four-legged platform SPOT3

by Boston Dynamics has been chosen4. It is used to broadcast messages to visitors
of parks and delivers goods to patients in isolation. Finally, the complete system is
administered by a central agency.

1IMD Smart City Index 2019, https://www.imd.org/research-knowledge/reports/
imd-smart-city-index-2019/, Accessed April 14, 2021.

2Smart Nation Sensor Platform, https://www.smartnation.gov.sg/
what-is-smart-nation/initiatives/Strategic-National-Projects/
smart-nation-sensor-platform, Accessed April 15, 2021.

3SPOT, https://www.bostondynamics.com/spot, Accessed April 15, 2021.
4Pillars of Smart Nation, https://www.smartnation.gov.sg/docs/default-source/
default-document-library/dgb-public-document_30dec20.pdf?sfvrsn=
626dc45f_2, Accessed April 15, 2021.
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1 Introduction

Systems like the Smart Nation Singapore can be considered as large-scale dis-
tributed systems, which consist of heterogeneous participants that rely on commu-
nication to exchange information and knowledge. A centralised managing instance,
however, may lead to several disadvantages. For example, relying on a central in-
stance to store information and knowledge in such large-scale systems introduces a
single point of failure and a potential bottleneck to the system. This is especially
the case during emergencies or natural disasters. For example, a strong earthquake
can have dramatic consequences for a Smart City. In this case, people could be
injured, buildings could collapse, and parts of critical infrastructure like gas or wa-
ter pipelines as well as the communication infrastructure could be destroyed. To
respond to the crisis, rescuers need access to essential information and knowledge.
Since the communication infrastructure could be affected, a stable connection to
central knowledge management platforms or knowledge bases is not guaranteed. If
this central instance fails, critical information and knowledge like free hospital beds
or available supplies can no longer be accessed.
To prevent these problems and to increase the resilience of large-scale distributed

systems like Smart Cities, critical information and knowledge should be managed
decentrally. Since the critical information and knowledge is distributed on mul-
tiple nodes over the network, failures of single nodes no longer lead to a failure
of the system. However, additional computational power and communication are
needed to maintain a decentralised knowledge management platform or a decentral-
ised knowledge base. Several approaches have been proposed in recent years that
rely on distributed databases, which are discussed in detail in Chapter 3. In con-
trast to these approaches, we will create a decentralised knowledge base utilising a
Multi-Agent System (MAS). MAS are typically decentralised, are loosely coupled,
and can act in unstable heterogeneous environments. Thus, they provide the ne-
cessary features to create a distributed knowledge base that can be used to manage
knowledge in highly dynamic domains like Search&Rescue. The following section
describes the problem addressed in this thesis and the challenges that arise in detail.

1.1 Problem Statement
The core objectives of this thesis can be summarised as follows:

The development of the conceptual foundations of a distributed,
multi-agent-based knowledge base, which is capable of

• symbolically representing and reasoning about commonsense
knowledge,

• detecting and preventing semantic inconsistencies,
• discovering and managing semantically annotated knowledge,
• providing scalability and failure tolerance

within a loosely coupled network of heterogeneous participants.
This research goal encompasses several aspects, which have to be considered. The

following paragraphs elaborate on these aspects and form the scope of this thesis.
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1.1 Problem Statement

Knowledge

One of the main goals of this thesis is the distributed management of symbolically
represented and annotated knowledge. Therefore, a clear definition of the term
knowledge is needed. Ackoff presents in [1] a hierarchy that defines the differences
between data, information, and knowledge. On the lowest level of the hierarchy is
the term data, which is gathered by observing the environment. By processing data,
information is created. Subsequently, knowledge is formed by the relations between
pieces of information as well as the application of data and information. A complete
description of this hierarchy is given in Section 2.3.

The distributed knowledge base requires an appropriate knowledge representation
and reasoning language. To support both humans and machines as users of the
knowledge base, a suitable knowledge representation language should rely on symbols
since they can be interpreted by both and can be easily expanded with semantics.
Furthermore, the incorporation of commonsense knowledge shall, on the one hand,
ease the organisation of the knowledge based on its semantics and, on the other hand,
support the manipulation of knowledge by users. However, commonsense knowledge
is prone to contain inconsistencies. Therefore, the knowledge representation has to
provide mechanisms to detect and possibly prevent them. Finally, the knowledge
base must be able to cope with adaptations of the knowledge at runtime since users
can propose additional knowledge, inconsistencies can arise, or knowledge can be
outdated.

Environment

Environments like Fog Computing (see Section 1.2.1) or Search&Rescue scenarios
(see Section 1.2.2) introduce several challenges, which have to be considered by a
distributed knowledge base. One of these challenges is the dynamically changing
number of participants. Especially in Search&Rescue scenarios, communication
between the involved participants (unmanned aerial vehicles, mobile robots, sta-
tionary smart infrastructure, injured persons, rescuers, etc.) may be unreliable.
One of these scenarios is the recovery of injured persons after an earthquake. To
ensure a reliable exchange of knowledge between the actors, the distributed know-
ledge base has to cope with unstable communication. Furthermore, it must provide
mechanisms to handle partial failures and rebuild its management.

The unstructured nature of the networks gives another challenge in both envir-
onments (Fog Computing and Search&Rescue). Centralised management of data,
information or knowledge in such environments would introduce a single point of
failure and a potential bottleneck. Therefore, the knowledge base presented in
this thesis should not rely on any central instance. Instead, our goal is to em-
ploy autonomous agents, which can form and maintain a decentralised knowledge
base capable of coping with changes in the underlying network structure.

5



1 Introduction

Knowledge Discovery

Typically, knowledge discovery in loosely coupled networks relies on flooding since
no central instance or registry is given, as discussed in the previous paragraph.
During flooding, queries are forwarded to every reachable node, which results in a
high message complexity. While this process ensures that a query is resolved in the
best way possible, it introduces additional stress on a loosely coupled network with
potentially limited bandwidth. Thus, extensive flooding can reduce the functionality
and response times of the system and, in the worst case, lead to a collapse of the
network. To prevent these problems, the decentralised knowledge base proposed in
this thesis has to restrict the application of flooding.

Requirements

Based on the problem statement presented and discussed in the previous sections,
the following requirements are derived:

R1: Handling Dynamic Environments - The solution presented in this thesis
has to be able to handle dynamic environments populated with heterogeneous
participants.

R2: Efficient Management of Knowledge - The solution has to manage and
store semantically annotated knowledge efficiently, decentrally, and has to
provide mechanisms to access the knowledge.

R3: Handling Semantic Inconsistencies - The solution must be able to detect
and prevent semantic inconsistencies in the stored knowledge.

R4: Efficient Knowledge Discovery - The solution must provide efficient mech-
anisms to discover knowledge in dynamic environments.

1.2 Scenarios

In the following sections, we introduce the research projects and scenarios that influ-
enced the creation of this thesis. The presented approaches are not limited to these
scenarios and can be applied in other environments. The remainder of this section
is structured as follows. Section 1.2.1 introduces a service replacement scenario,
which is a regular part of Service-Oriented Architectures (SOAs). Subsequently,
Section 1.2.2 presents the LOEWE5 Center emergenCITY, its vision, and research
areas.
5LandesOffensive zur Entwicklung Wissenschaftlich-ökonomischer Exzellenz, Hessen
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1.2 Scenarios

1.2.1 Service Replacement in Service-Oriented Architectures

Service-Oriented Architectures consist of loosely coupled services. To enable cooper-
ation, services exchange messages via a network protocol. In this way, a service mesh
is created, which can deliver the same functionality as large monolithic software ap-
plications. This software design methodology has many advantages in comparison
to monolithic approaches. First, the application is split into several small services,
which focus on single business functionalities. Thus, each service can be maintained
by a small team that does not need to know the complete specification of the original
software monolith. Further advantages are scalability and flexibility. If a service is
overloaded, additional instances can be created instead of duplicating the complete
application. However, SOAs introduce some disadvantages to the system. One of
them is the additional communication between the services. For example, messages
can be duplicated or lost, which has to be handled by the services. A further prob-
lem arises due to frequent changes of SOAs, which are caused by updates, context
changes, or failures. The number of these adaptions increases when microservices
are used, which are more fine-grained than service modules, run independently, and
are managed decentrally. Hence even small changes can affect many interdependent
microservices. To handle this issue, an automatic management system for changes
or service replacements is needed.

In cloud computing environments, a central service registry typically solves this
problem. However, this approach is not suited for dynamic domains like Fog Com-
puting environments. In Fog Computing, computations are forwarded to the edge
of the network where Fog Nodes can process the requests using their computational
resources [98]. Generally speaking, Fog Nodes are ubiquitous and decentralised
devices that cooperate via communication to perform tasks or to store data, inform-
ation, and knowledge [132]. Therefore, a decentralised approach is required, which
can provide alternative services by comparing its application programming interface
(API), semantics, or behaviour.

The requirements introduced by Fog Computing influence the design of the dis-
tributed and multi-agent-based knowledge base presented in this thesis. It utilises
autonomous agents, which can be deployed on the Fog Nodes. Furthermore, it relies
on a semantic description of the stored knowledge to resolve queries.

1.2.2 emergenCITY

Emergency Responsive Digital Cities6 (emergenCITY) is an interdisciplinary re-
search centre operated by the Technical University of Darmstadt, the University of
Kassel, the Philipps-University of Marburg, the Federal Office of Civil Protection
6Emergency Responsive Digital Cities, https://www.emergencity.de/,
Accessed December 29, 2021.

7
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1 Introduction

and Disaster Assistance, as well as the City of Darmstadt. The research goal of emer-
genCITY is summarised as follows: How can the functionality of cities with digitally
networked infrastructures be ensured in extreme situations, crises, and disasters?6

To achieve this goal and to create a resilient as well as reliable infrastructure in the
case of an emergency or a natural disaster, modern information and communication
technologies are applied. Additionally, historical, legal and social aspects, as well
as urban planning, are considered. In total, emergenCITY consists of four program
areas. The following sections briefly introduce the areas.

City and Society (SG) - SG focuses on the historical, political, social, and legal
aspects, which are required for the design of resilient technologies that are applied
during a crisis or a natural disaster.

Information (INF) - The focus of INF is set on the provision of information and
communication services utilising the available resources. They include the modelling
of relevant data as well as data streams.

Communication (KOM) - KOM enables basic communication services under
any circumstances. Therefore, this program area aims at designing resilient commu-
nication systems.

Cyber-Physical Systems (CPS) - CPS focuses on (semi-)autonomous robotic
platforms to respond to emergencies and to support the recovery process. Further-
more, CPS aims at establishing communication backbones without heavily relying
on present infrastructure. The goals include the deployment of (semi-) autonom-
ous robotic platforms and unmanned aerial vehicles (UAVs) to support rescuers or
to serve as communication relays. Last but not least, CPS aims at providing a
decentralised world model and knowledge base.

The Self-Organising Multi-Agent Knowledge Base presented in this thesis is part
of the research efforts of CPS. It relies on the UAVs, robotic platforms, and available
infrastructure to create a distributed knowledge base and knowledge management
backbone. Since KOM provides the underlying communication, this thesis focuses
solely on the design and the creation of the knowledge base, the necessary knowledge
representation, and the required protocols and mechanisms.

1.3 Solution Approach

To provide efficient management of semantically annotated knowledge as well as
mechanisms to detect and prevent semantic inconsistencies, a sophisticated know-
ledge representation and reasoning formalism is needed. According to Krötzsch,
a declarative and symbolic knowledge representation is suited for these require-
ments [84]. Especially the combination of Answer Set Programming (ASP) [22,
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87] and the solver Clingo [50] provides unique features, which are essential for effi-
cient knowledge management. Among other features, they support non-monotonic
reasoning, the definition of defaults and choices, the division of logic programs into
reusable sub-programs, and the adaptation of truth values of distinct predicates at
run-time. Thus, ASP provides efficient management of knowledge.

While syntactic inconsistencies (predicates like a and -a appearing in the same
knowledge base) can be easily detected, additional knowledge is needed to detect
semantic inconsistencies. A way to gain the required knowledge is to incorporate
a commonsense knowledge database like ConceptNet5 (CN5) [128]. It provides the
necessary background knowledge to detect semantic inconsistencies. Using ASP as
a representation for the knowledge extracted from CN5, we create mechanisms that
prevent inconsistencies by providing consistent alternative solutions, which can be
selected by the corresponding user of the knowledge base.

Multi-Agent Systems (MAS) typically consist of autonomous entities (agents),
which cooperate or collaborate to solve tasks. Therefore, they are suited for dy-
namic environments, as presented in Section 1.2. The agents used in the solution
of this thesis adhere to the MAPE-K model (see Section 2.1.1). Furthermore, the
development of the agents focuses on efficient resource consumption since the man-
agement of the knowledge base should not limit the functionality of participants
with limited resources like robots in Search&Rescue scenarios. An additional as-
pect is the decentralised knowledge base. Since no central instance is given, the
agents have to maintain the structure of the knowledge base. Therefore, they act
in one of two roles: Registry Nodes, which maintain the tree-like structure of the
knowledge base. Furthermore, they manage the Registry Leafs that focus on the
storage of knowledge.

To foster an efficient knowledge discovery in a single group of agents (Knowledge
Group) or between several Knowledge Groups, this thesis introduces a solution based
on semantic routing tables. They rely on taxonomies extracted from CN5 to aggreg-
ate semantically close entries, thus enabling semantic queries utilising the created
aggregates. Furthermore, the tables are only adapted if entries with new semantics
arrive. Therefore, limiting the communication to semantic deltas.

The solutions described in the previous paragraphs are evaluated using the scen-
arios introduced in Section 1.2. The first scenario encompasses the discovery of
service replacements in service-oriented architectures. In this case, replacements
are selected based on their semantics and their characteristics. This scenario shows
the benefits of ASP as the knowledge representation formalism as well as the ap-
plication of ASP and the created routing tables. The second scenario focuses on
a Search&Rescue example, which demonstrates the applicability of the proposed
knowledge base in highly dynamic environments.

9
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1.4 Contributions

This thesis contributes to three research fields, which are knowledge representation
and reasoning, distributed knowledge management, and semantic-based routing.

The first contribution is in the field of distributed knowledge management. Cent-
ral management of knowledge has the advantage that a single component stores all
relevant knowledge. Hence, queries can be resolved considering all existing relev-
ant knowledge. However, this approach is not suited for dynamic environments as
shown in Section 1.2 since it introduces a single point of failure to the system. There-
fore, this thesis presents an agent-based knowledge management (Knowledge
Group). Agents organise themselves in a tree structure. In large scale envir-
onments, several distinct Knowledge Groups can be applied. Therefore, this
thesis presentsmechanisms to foster the cooperation of Knowledge Groups.

The second contribution is given in the field of knowledge representation and
reasoning, which is the (semi-)automatic extraction of ontologies from a
graph-based commonsense knowledge source. Instead of the Web Ontology
Language [3], the non-monotonic logic reasoning language Answer Set Program-
ming (ASP) [57] is used since it provides sophisticated features for dynamic en-
vironments. These include, among others, dynamic adaptation of truth values, the
adaptation of the resulting ontologies, and a mechanism to subdivide the ontology
into reusable parts. Since commonsense knowledge inevitably contains semantic
inconsistencies, this thesis presents a sophisticated method to prevent these
semantic inconsistencies. Again, this method relies on ASP and, thus, can be
easily integrated into the generated ontologies.

The third contribution addresses semantic-based routing. The discovery of
knowledge in a loosely coupled network is a challenging task due to the frequently
changing network structure and the number of participants. In such scenarios, clas-
sical IP-based routing relies on flooding, which introduces a high message load to the
network. To tackle this issue, this thesis proposes a routing mechanism based
on the semantics of the stored knowledge, which relies on dynamically ad-
aptable routing tables. The proposed routing mechanism utilises taxonomies
to aggregate semantically related knowledge to reduce the number of routing
entries. Finally, the routing entries are represented by ASP rules, which
enables the use of its reasoning capabilities to resolve queries.

Summarising, it can be said that the main contribution of this thesis is a dis-
tributed multi-agent-based knowledge base, which is tailored for dynamic
loosely coupled networks and manages semantically annotated knowledge
autonomously.
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1.5 Structure of the Thesis

This thesis is composed of three parts. Part I contains the preliminaries. Chapter 2
presents the foundations of this thesis. They include, among others, an introduction
to Multi-Agent Systems, Answer Set Programming (ASP), and ontology generation.
Chapter 3 gives an overview of related work in several areas. They encompass
the application of commonsense knowledge, the use of Answer Set Programming
as knowledge representation language, the generation of ontologies, databases and
knowledge management, as well as semantic routing.

Part II discusses the solutions for the problem statements given in Section 1.1.
Chapter 4 introduces the first main contribution, a distributed knowledge storage
and management system (Knowledge Group). It consists of a hierarchically organ-
ised multi-agent system, which manages semantically annotated knowledge based
on ontologies. Chapter 5 presents the second main contribution of this thesis, which
is the handling of symbolic commonsense knowledge. It is divided into two com-
ponents. The first is the generation of ASP-based ontologies used by the Knowledge
Groups. Furthermore, Chapter 5 introduces a framework that extracts ontologies
from a graph-based knowledge source, introduces a schema for inference rules, and
supports the user in the refinement of the ontologies by providing a graphical user
interface. Inherently, commonsense knowledge contains semantic inconsistencies, for
example, contradicting properties or ambivalences. Therefore, the second compon-
ent is the handling of semantic inconsistencies. It utilises a graph-based knowledge
source to generate ASP rules that enable the creation of a semantically consistent
knowledge base. In large-scale environments, as presented in Section 1.2, several
Knowledge Groups can exist in parallel. Therefore, it is expanded with mechanisms
that foster collaboration and knowledge exchange between several knowledge bases.
Chapter 6 elaborates an adaptive semantic routing approach tailored for dynamic
environments to provide efficient routing of queries between the knowledge bases.
It uses Answer Set Programming to form dynamic routing tables and utilises the
ontologies respective taxonomies introduced in Chapter 5.

Part III presents the assessment. Chapter 7 shows the results of the evaluation
and discusses them. Chapter 8 summarises the contents of this thesis and concludes
the evaluation results. Finally, future work is discussed.
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Foundations 2
In this section, the foundations of this thesis are presented. Section 2.1 provides

an introduction to agents and Multi-Agent Systems. One of these systems is the
ALICA (A Language for Interactive Cooperative Agents) framework introduced in
Section 2.2. Section 2.3 illustrates the field of Knowledge Representation and Reas-
oning. In Section 2.4, the non-monotonic reasoning formalism Answer Set Program-
ming [22] is presented that is used to represent knowledge in the proposed knowledge
base. Subsequently, Section 2.5 presents the state-of-the-art ASP solver Clingo. Fur-
thermore, Section 2.6 introduces ontologies, which are used to provide semantics to
the knowledge stored in the distributed knowledge base. Finally, ConceptNet 5 is
shown in Section 2.7, which offers commonsense knowledge for the generation of
ontologies and taxonomies.

2.1 Multi-Agent Systems

Multi-Agent Systems (MAS) are distributed systems combining two key aspects [135].
The first aspect is the notion of agents, or especially in the scope of this work, of
intelligent autonomous agents. The second aspect is their cooperation. By cooper-
ating, agents form Multi-Agent Systems.

2.1.1 Intelligent Autonomous Agents

The term agent has been extensively discussed in the literature [44, 121, 135], but
so far, there is no generally accepted definition [135]. There is only a small consent
in the literature, stating that an agent has to act autonomously in its environ-
ment [135]. Thus, an agent can be seen as a computer program, a robot, or even a
human being. Furthermore, an agent perceives its environment via sensors and can
interact with it using actuators. According to Russel and Norvig [121], the environ-
ment can be classified by four dimensions. The first dimension is accessibility. An
accessible environment provides complete and accurate data, which cannot be guar-
anteed for inaccessible ones. Furthermore, an environment can be deterministic or
non-deterministic. While actions have a guaranteed effect in a deterministic envir-
onment, the results of an action in a non-deterministic environment are uncertain.
Additionally, static and dynamic environments have to be distinguished. In a static
environment, the actions of an agent do not change it. In a dynamic environment,
the actions of an agent can cause changes that the agent cannot control. Finally, the
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environment can be discrete or continuous. Thus, the most complex environment is
inaccessible, non-deterministic, dynamic, and continuous [121].

To cope with such complex environments, agents have to act intelligently. Since
the definition of intelligence is a research topic on its own, research in the field of in-
telligent agents focuses on the properties and capabilities of agents [135]. According
to [136], three essential capabilities are required for an intelligent autonomous agent.
The first capability is reactivity. It means that an intelligent autonomous agent must
react to changes in its environment in an acceptable time frame and according to its
design goal. For example, an autonomous car has to react to an appearing obstacle
in a very short time to prevent a collision. Such reflex-like behaviour alone cannot be
considered intelligent but is an important capability of an autonomous agent. The
second capability is proactivity. Proactive or goal-oriented agents have to be able to
take the initiative and act according to their goals. For example, an autonomous car
could plan a collision-free path to its goal while dynamically reacting to obstacles
during the execution. The third capability is essential for agents, which are part of
a MAS. Intelligent autonomous agents have to have some sort of social ability. This
means that agents have to interact with each other to achieve their goals. A car,
which had an accident on a highway, could proactively inform other vehicles. These
cars could react to the information and plan new paths to their destination. Further
capabilities are discussed in [44] and summarised in Table 2.1.

Capability Alias Meaning

reactive sensing
and acting

agents respond timely to
environmental changes

autonomous agents have control over own actions

goal-oriented proactive
purposeful

agents plan their actions to achieve
their design goal

temporally
continuous agents are continuously running processes

communicative socially able agents communicate and share their
information with other agents

learning adaptive agents change their behaviour according
to their experience

mobile agents are able to relocate themself
flexible agents do not rely on scripted actions

character agents have an emotional state and some
kind of personality

Table 2.1: Agent Capabilities [44]

To enable the presented capabilities, several agent architectures have been pro-
posed. One of these architectures is the MAPE-K cycle [80]. While MAPE is short
for Monitor, Analyse, Plan, and Execute, K represents the central Knowledge com-
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ponent that can be accessed by the other four components. Figure 2.1 shows a
schematic representation of the MAPE-K cycle.

Environment

Sensor Actuator

Analyse

Monitor

Plan

Execute

Knowledge

Agent

Figure 2.1: MAPE-K Agent Architecture [80]

The monitoring component of the agent receives raw data via sensors from its
environment. The corresponding component then analyses this data. The analysed
information is used to create a plan, which is executed by the actuators of the
agent. All components are further connected via a knowledge component, which
can store data, information, and knowledge. The knowledge component can contain
background knowledge about the environment and can be used by any component
of the cycle. Furthermore, this enables shortcuts between the components. In an
autonomous car, sensors could be cameras or laser scanners, which are used to detect
obstacles. The monitoring component retrieves the raw data, preprocesses it, and
forwards it to the analyse component. This component combines the preprocessed
information into knowledge, which could be the shape, size, and distance of an
obstacle. This knowledge is then passed to the planning component to avoid it.
Based on the background knowledge stored in the knowledge component and the
knowledge about the obstacle, the planning component calculates a path to avoid the
obstacle. Finally, the execute component conducts the calculated obstacle avoidance
via its actuators.

A second architecture is the Belief-Desire-Intention (BDI) architecture [113]. The
goal of this architecture is to model different mental attitudes of an agent. Figure 2.2
depicts the BDI schema.

In comparison to the MAPE-K architecture, sensors are again used to get inform-
ation about the environment. Since the agent cannot perceive the complete state of
the environment, the information is updated after every sensing action. The com-
ponent that manages this information is called the Beliefs. Besides this informative
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Environment

Sensor Actuator

Desires

Beliefs

Plans
(optional)

Intentions

Interpreter

Agent

Figure 2.2: BDI Agent Architecture [113]

component, the goals of the agent, their priorities, and their payoffs have to be
represented. This is handled by the Desires of the agent, which capture the motiv-
ational state of the agent. The Plans component is optional and can store already
executed plans if the agent can reuse them. Furthermore, the currently executed
plan is represented by the Intentions of the agent. Finally, all components are con-
nected via the Interpreter, which executes the main loop of the agent. In the first
step, the agent generates options according to new Beliefs. After selecting one of
these options, the Intentions are updated and atomic actions are executed. Finally,
the agent drops successful and impossible Intentions and Desires. Coming back to
the example of an autonomous car, Beliefs could be the data captured by its sensors,
a Desire could be to reach a specific goal, and the Intention is the current execution
of the path to the destination. In this case, the autonomous car senses an obstacle
and updates its Belief. Since one Desire is to prevent a crash, the action of evading
the obstacle is executed. Finally, the Intention is updated.

As presented in this section, agents can cope with dynamic environments and
a wide range of problems. Sometimes, a single agent is not sufficient to solve a
problem, and agents need to cooperate, coordinate, and communicate to form a
Multi-Agent System (MAS). An introduction to these essential aspects of a MAS is
given in the next section.

2.1.2 Agent Cooperation

A central aspect of agent cooperation is the communication between them. To ensure
that the agents are able to understand each other, a common vocabulary is needed.
An ontology can provide such a kind of common vocabulary (see Section 2.6). In
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summary, an ontology provides a taxonomy of classes or concepts, their relationships,
and their properties [135]. One way to communicate is the exchange of messages, for
example, by directly passing messages between agents or in a publish-subscribe like
fashion. One of the earliest standards is the agent communication language (ACL)
provided by the Foundation for Intelligent Physical Agents (FIPA) [101]. Among
other message fields, the ACL message supports fields for sender and receiver, a
language specification, diverse content, and the intention of the message. It includes
the passing and requesting of a message, negotiation, action performing, and error
handling. Based on the fields of the message and its intent, agents are able to
cooperate.

The cooperation of agents in a MAS has to address two significant challenges [135].
The first challenge is the use of heterogeneous agents, which have varying capabil-
ities, languages, and goals. The second challenge is the autonomy of agents. Each
agent decides its actions autonomously at run time. Hence, the agents need to
be able to dynamically adapt their actions and activities to other agents in the
system. Thus, during recent years many agent coordination frameworks have been
proposed [112]. The next section presents a concrete example (ALICA - A Language
for Interactive Cooperative Agents), originally published in [127]. Additionally, we
have expanded ALICA in [104] to increase its applicability.

2.2 ALICA - A Language for Interactive Cooperative Agents

This section provides a brief introduction to ALICA (A Language for Interactive
Cooperative Agents)7. The original version of ALICA was developed for robotic
soccer in the Middle Size League of the RoboCup8 and actively applied by the
Carpe Noctem Cassel team9. In this league, teams consisting of five autonomous
robots play soccer against each other using a regular-sized FIFA ball. Furthermore,
no central coordination instance is given and, thus, the agents have to coordinate
themselves. Additional requirements arise from the soccer domain itself. Soccer
is a highly dynamic game and requires agents that can act accordingly. Due to
a high amount of transmitted messages, they can be lost or duplicated. Hence,
the framework has to cope with unreliable communication. Finally, robots can be
damaged and, subsequently, have to be repaired, which requires a dynamic team
constellation and task allocation.

Besides robotic soccer, ALICA has already been used in several domains like space
exploration and autonomous driving [108]. The ALICA framework consists of three
7ALICA, https://www.uni-kassel.de/eecs/vs/research/alica,
Accessed December 29, 2021.

8RoboCupSoccer - Middle Size League, https://www.robocup.org/leagues/6,
Accessed December 29, 2021.

9Carpe Noctem Cassel, https://www.uni-kassel.de/eecs/vs/research/
carpe-noctem-cassel,Accessed August 13, 2021.
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major components [108]. The first one is the ALICA language, which is presented
in the following section. It describes the behaviour of the agents by hierarchical
plans. The second component is the execution engine presented in Section 2.2.2.
It implements the operational semantics of ALICA and executes the plans. The
third component is the ALICA Plan Designer (see Section 2.2.3), which supports
developers to model plans. For a complete specification, the interested reader is
advised to [104, 127].

2.2.1 Language

The central parts of the ALICA language are hierarchical multi-agent Plans, as
shown in Figure 2.3. A Plan implicitly models a goal and consists of at least one
finite state machine (FSM) [19]. Figure 2.3 shows two Plans AutonomousDriving
and Drive. Each FSM is accessible by an agent via an Initial State. Focussing on the
AutonomousDriving Plan, S0 is the Initial State and is annotated by a Task (Drive),
which denotes the purpose of the FSM. Furthermore, a minimum and maximum
cardinality are given, stating that at least one agent is required to execute the FSM
and that there is no restriction to the maximum number of agents. Additionally, the
Task is denoted as Success Required, which states that at least one Success State (S4)
has to be reached to finish the Plan successfully. Normal States, like S1, S2, and S3,
can contain an arbitrary number of Behaviours (orange), other Plans (light blue),
and Plan Types (dark blue), which provide a set of alternative Plans. Behaviours
encapsulate domain-specific code and describe the actions of an agent. They can
be started and stopped, and their execution can be either successful or unsuccessful
(failed). For example, the Behaviour Stop will stop the autonomous car, or the
Behaviour Park will park the car. Plan Types provide a set of alternative Plans.
For example, the Junction Plan Type in S7 of the Drive Plan provides Plans for
different junction types.

All elements inside a State are executed concurrently and with a fixed frequency,
e. g., 30Hz. This means that when an agent enters State S1, it executes the Drive
Plan while using the AvoidObstacles Behaviour to prevent a crash. Additionally,
ALICA defines three condition types, which are Pre-, Runtime, and Postconditions.
Preconditions have to hold before and during the execution of an element of the
ALICA language. Runtimeconditions have to hold while the element is executed,
and Postconditions are supposed to hold after the execution. For example, after the
successful execution of the AutonomousDriving Plan, it is expected that the car has
reached its goal. To change States, agents have to use Transitions (arrows between
states). These Transitions are annotated with a Condition. For example, to move
from State S0 to S1, the motor of the car has to be started. Like Behaviours, these
Conditions allow the use of domain-specific code. Furthermore, they should only
use idempotent functions since they are checked periodically by the ALICA Engine.
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Figure 2.3: Hierarchy of Plans for Autonomous Driving
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ALICA supports the use of different solvers and thus enables agents to query
them by providing Variables and Constraints. Up to now, three different solvers can
be used: a continuous non-linear constraint satisfaction and optimization problem
solver, an Answer Set Programming solver (see Section 2.4), and a simple solver,
which supports simply setting Variables. In the example in Figure 2.3, both Plans
are annotated with the Variable XGoal. While these Variables share their name, they
can have different values. In order to pass Variable values between Plans, ALICA
supports binding Variables. For example, both instances of the Variable XGoal can
be bound to contain the same goal location.

Since ALICA Plans can contain Plans inside their States, endless recursions can
occur. To prevent this, the dependencies of Plans need to form a directed acyclic
graph (DAG). During the runtime, the DAG is interpreted as a tree. The Plans
are the nodes of the tree, and the Behaviours form the leaves. Thus, each time a
Behaviour is used, a new instance is created. This prevents agents from influencing
the execution of a Behaviour that other agents use in different Plans.

2.2.2 Engine

The second component of the ALICA framework is its Execution Engine. Each
ALICA agent uses its own instance of the ALICA Engine, and hence, no central
coordinator or registry is needed. Since there is no central component, the ALICA
framework is able to cope with package loss, network delay, and failures of agents.
Figure 2.4 shows the architecture of the ALICA Engine that consists of three layers.

Task
Layer

Control
Layer

Team
Layer

Conflict Handling Role Allocation Task Allocation

Plan Base
Rule Book

Behaviour Pool Sync Module

Parser
Logger

Team Observer

Figure 2.4: ALICA Execution Engine Architecture [104, 108]

The first layer is the Task Layer. It is used to assign Tasks and Roles to agents.
Furthermore, it provides a conflict-handling module in case assignments cause a
conflict involving multiple agents. For example, in its current implementation, Roles
can be configured via a settings file and Tasks are allocated using Utility Functions
of the corresponding Plans. Conflicts can occur due to uncertain sensor values or
information, which will cause inconsistent assignments by different agents. The
second layer is the Control Layer. It parses the JSON files generated by the Plan
Designer, which represent the Plans and executes them. Furthermore, this layer
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provides interfaces for communication, the clock, and a general solver interface. One
essential component of this layer is the Rule Book. It implements the operational
semantics of ALICA. They define when an agent has to follow a Transition, when a
Plan needs to be restarted in case of a failure, when to trigger the task allocation,
and when Conditions should be evaluated. A full specification of the operational
semantics is given in [127]. The last layer is the Team Layer, which is accessible
by the other layers. The central component of this layer is the Team Observer,
which is responsible for managing information about other agents. In its original
version, ALICA used a fixed team, which is not suitable for every domain. Hence,
in the second version of ALICA [108], the Team Observer has been expanded, and
a discovery module has been added. Both modules enable ALICA to incorporate
unknown ALICA agents dynamically.

2.2.3 Plan Designer

The Plan Designer is a graphical tool, which supports developers creating ALICA
Plans. Figure 2.5 depicts the main window of the Plan Designer. It is divided into
four major parts. The file tree view provides an overview of the files and the folder
structure. The repository view provides fast access to all already created elements
of the ALICA language. The main area in the middle of the figure provides tools
to model ALICA Plans and the properties view supports different settings. For
example, the AutonomousDriving Plan is marked as a Master Plan, which indicates
that this Plan is intended to be used as the root of a Plan tree.

Figure 2.5: Plan Designer [104, 108]

Besides the support during the creation of ALICA Plans, the Plan Designer
has two outputs. The first output is a serialisation of the ALICA Plans to a
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machine-readable format (JSON) enabling the ALICA Engine to read the Plans.
The second output consists of source code stubs for the domain-specific parts of the
ALICA language: Behaviours, Conditions, and Constraints. Developers can then
use these stubs to program the overall behaviour of the ALICA agent. Currently,
these stubs are available in C++ and will be provided for Java and Python in [71].

2.3 Knowledge Representation and Reasoning

The research field of knowledge representation and reasoning (KRR) is a central as-
pect of this thesis. According to [21], KRR can be summarised as follows: Knowledge
representation and reasoning in the area of Artificial Intelligence (AI) is concerned
with how knowledge can be represented symbolically and manipulated in an auto-
mated way by reasoning programs. Thus, two main research questions are focussed:
how to define and represent knowledge as well as how to draw conclusions from
knowledge.

To represent knowledge and to reason about it, it is necessary to define what know-
ledge actually is. Therefore, Ackoff presents in [1] the data-information-knowledge-
wisdom (DIKW) hierarchy. The lowest level of DIKW is data. Data is generated
by observing the environment and represents an object and its properties [120]. To
generate information, the next level of the hierarchy, the raw data is processed. The
system can then use the resulting information. The third level of the hierarchy is
knowledge, which is the application of data and information to form instructions.
Furthermore, Brachman and Levesque formulate knowledge as a relation between a
knower and a proposition [21]. Thus, it can be seen as information interconnected
via relations. The fourth level of DIKW is intelligence which is the capability to
use knowledge efficiently. The last level of this hierarchy is wisdom that enables
improving the effectiveness of a system based on knowledge. While the previous two
levels of this hierarchy are abilities, knowledge is the highest level of abstraction of
data. To efficiently work with knowledge, a suitable representation is needed. In
general, a representation can be seen as a relation between two domains [21], where
the first domain is the representation, e. g., a symbol, and the second an object in the
domain. To sum up, the field knowledge representation focuses on symbols defining
or representing propositions that are known or believed by agents [21].

The second field of KRR is reasoning. To define the process of reasoning, the
notion of a knowledge base (KB) is needed. A KB is an accumulation or store of
abstract symbols, which are structural representations of knowledge. Furthermore,
the KB can dynamically grow during the runtime of the system by adding new
knowledge, communication, and logical entailment. Thus, logical reasoning is the
ability to draw conclusions from an existing KB by the application of logical en-
tailment, which generates novel knowledge and expands the KB. To build a KB, a
formal declarative language that can formulate and model knowledge is needed, for
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example, Answer Set Programming (see Section 2.4). A language like this, in gen-
eral, is a set of words or symbols. Additionally, syntax, semantics, and pragmatics
are needed, which are essential for declarative languages that are used to build a
KB [21]. The syntax defines how the symbols are aligned and what functional char-
acters can be used in a sentence. The semantics expresses what syntactically correct
sentences mean. Finally, pragmatics describe how syntactically and semantically
correct sentences should be used.

In order to build a KB, a language fitting to the application domain has to be
selected. Therefore, several assumptions have to be considered. The first is the
Domain Closure Assumption [117], which states that there are no other individuals
besides the ones given in a KB or a database. For example, considering the KB,
which contains the three sentences:

“Bob is a parent of John;”
“Alice is a parent of John;”
“John is the child of Alice.”

In this case, only three individuals (Alice, Bob, and John) exist in the KB. Under
the Domain Closure Assumption, no other individual can and will exist.

The following assumptions, which are the Closed- and Open-World Assump-
tions [116], contradict each other. The Closed-World Assumption states that a
sentence is true if it is supported by the KB. Furthermore, every sentence which is
not supported by the KB is considered to be false. Thus, this assumption is suited
for domains in which complete or nearly complete knowledge is given. Considering
the example KB presented above, the sentence “John is the child of Alice” is true
since it is part of the KB. The sentence “John is the child of Bob” would be false
since it is not explicitly stated that child is an inverse relation to parent. To enable
this conclusion, a sentence like “If X is a parent of Y, Y is a child of X” would
have to be added to the KB. In contrast to the Closed-World Assumption, missing
knowledge in the Open-World Assumption does not lead to the conclusion that a
sentence is false. Instead, it is assumed that it is unknown. Hence, this assumption
is suited for domains in which complete knowledge is not possible or for domains in
which, for example, an agent can observe additional data and create new knowledge.

A further assumption is the Unique Name Assumption [117]. It states that in-
dividuals with the same name or identifier in a KB are the same individual. Con-
sidering the example above, the individual John that appears in all sentences is the
identical individual if the Unique Name Assumption holds. On the other hand, if
the Unique Name Assumption does not hold, it has to be explicitly stated that all
occurrences of John refer to the same individual. Furthermore, several names can
be assigned to John.

23



2 Foundations

Besides the assumptions which are supposed to hold, several logical problems have
to be considered during the creation of a KB. One example is the Frame Problem [91].
In general, this problem takes into account how actions and their results can be
described without explicitly stating which parts of a KB are (obviously) not affected.
For example, let us consider a KB used by a service robot. The robot R is able to
perform the actions PickUp(X,Y) and Move(X,Y). Besides the robot, there is a
cup of coffee C. Furthermore, two sentences or rules describe the results of the
actions. These are: “Carries(X,Y) holds after PickUp(X,Y) has been performed”
and “Position(X,Y) holds after Move(X,Y) has been performed”. By applying the
action PickUp(R,C), the robot lifts the coffee cup and holds it. Thus, Carries(R,C)
holds. In a subsequent action, R changes its position to the kitchen by applying the
Move(R,kitchen) action. An important question after the execution of both actions
is: Which results hold? Relying on human common sense, it can be assumed that
Carries(R,C) and Position(R,kitchen) hold. Since this is not stated explicitly, only
Position(R,kitchen) can be assumed without a doubt. Therefore, Frame Axioms are
needed. For example, “Carries(X,Y) holds after Move(X,Z) if it was true before”.
Solutions like this work for a small KB since it has to explicitly state what an
action changes and what is not influenced. A way to tackle this problem is the
Commonsense Law of Inertia [43]. This law states that a situation or result of an
action only changes if it is explicitly stated.

In general, logic-based languages address these problems and provide formalisms
to model the described assumptions. One of these languages is presented in the next
section.

2.4 Answer Set Programming

Answer Set Programming (ASP) [57] is a declarative and non-monotonic logic pro-
gramming formalism and tailored for NP-hard search problems. Furthermore, ASP
combines the results of research in the fields of knowledge representation, logic pro-
gramming, and constraint satisfaction [22]. This section introduces selected parts
of the ASP language. The complete ASP-Core-2 Input Language Format is presen-
ted in detail in [24]. Furthermore, this section provides an insight into the solving
process to highlight the methods used to generate solutions for an ASP program.

2.4.1 Language

The basic components of the ASP language are atoms, which are statements that can
be true or false. Furthermore, each atom has the following structure p(v0, ..., vn−1),
where p is a predicate denoting the meaning of the atom and v0, ...vn−1 are either
constants or variables. Additionally, n marks the arity of the atom. In the case that
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x0;...;xi     :-    y0,...,yj,    not z0,...,not zk

head positive negative
body

Figure 2.6: Structure of an ASP Rule

the arity of an atom is 0, it is denoted as a constant. By combining atoms, rules are
formed. The structure of an ASP rule is shown in Figure 2.6.

A rule is divided into two parts, the head and the body. In general, the head of
an ASP rule is derived if all atoms in the positive body are true and no atom in
the negative body holds. A detailed description of how an ASP program is solved
is presented in Section 2.4.2. The head of the rule shown in Figure 2.6 consists of
the i+ 1 atoms x0; ...;xi. The body is divided into two different parts, the positive
(y0, ..., yj) and the negative body (not z0, ..., not zk). Finally, a rule is terminated by
a dot. In contrast to the positive atoms, for example, y0, ..., yj , negative atoms are
annotated with the keyword not, which is used to express default negation. In ASP,
the default negation is defined as negation-as-failure. This means that a negative
atom only holds if its positive version cannot be proven to hold. For example,
the atom not z only holds if atom z cannot be derived. Atoms and their negative
version (not) are referred to as literals. Besides default negation, ASP provides
classical negation expressed by atoms of the form -z. A classically negated atom is
complementary to its positive version z and, thus, both atoms cannot hold at the
same time without rendering the ASP program inconsistent.

ASP provides two special rule types. The first type is a fact, which is a rule
without a body. Hence, the head of the rule is unconditionally true. On the other
hand, rules without a head are denoted as constraints. If the literals of a constraint
hold, the constant false is derived and, thus, the possible solution will be removed.
To provide an overview of the presented features of ASP programs, Listing 2.1 shows
a classic example.

This example contains literals with four predicate names or predicates, respect-
ively. The first predicate is bird with an arity of 1, for short, bird/1. This predicate
denotes that the constants tweety and tux are birds. Besides bird/1, the ASP pro-
gram contains the literals penguin/1, flies/1, and -flies/1. While Lines 1 to 3 are
unconditionally true facts, Line 4 and 5 are rules. For example, Line 4 expresses the
ability to fly, meaning a bird is able to fly if there is no proof that it is not able to
fly (-flies). Line 5 is used to model the contrary. A bird is not able to fly if it is
a penguin. Finally, Line 6 prohibits that a bird is able to fly and is not able to fly
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at the same time. Since ASP is a declarative language, a solver (see Section 2.5) is
needed to calculate the solution (Answer Set) of the example program. An Answer
Set is a minimal set of atoms justified by at least one rule body. The complete
process of solving an ASP program is shown in Section 2.4.2. In general, all facts
are part of an Answer Set. Based on the facts and derived rules heads, the bodies
of the rules and constraints are evaluated. Considering Line 5, tux is not able to fly
since it is a penguin. Hence, the head of Line 4 is not derived for tux. In contrast to
this, -flies cannot be derived for tweety and, therefore, the head of Line 4 is derived.
The constraint in Line 6 does not hold for tweety and tux. Thus, the Answer Set
of the example program contains the literals: {bird(tweety), bird(tux), penguin(tux),
flies(tweety), -flies(tux)}.

1 bird(tweety).
2 bird(tux).
3 penguin(tux).
4 flies(X) :- bird(X), not -flies(X).
5 -flies(X) :- bird(X), penguin(X).
6 :- flies(X), -flies(X).

Listing 2.1: Example ASP Program

Additionally, ASP supports formulating disjunctions in the rule heads. An ex-
ample of a disjunctive rule is given in Line 3 in Listing 2.2. This rule states that a
bird can either fly or not fly.

1 bird(tweety).
2 bird(tux).
3 -flies(X), flies(X) :- bird(X).

Listing 2.2: Disjunctive ASP Program

The usage of disjunctions creates multiple Answer Sets, which contain one form of
each literal given in the disjunction. Thus, the union of all Answer Sets encompasses
all combinations of the literals -flies(X) and flies(X). In this case, four Answer
Sets are created. All include the facts bird(tweety) and bird(tux) and, respectively,
-flies(tweety) and flies(tux), -flies(tweety) and -flies(tux), flies(tweety) and
flies(tux) or flies(tweety) and -flies(tux).

Choice rules are a generalisation of disjunctive rules. They enable the selection
of literals in a disjunction by providing a lower and an upper bound. Line 1 of
Listing 2.3 is an example of a choice rule with a lower bound of 1 and an upper
bound of 2. Hence, at least one bird and at max two birds are selected. Again, each
possible choice generates an Answer Set resulting in six solutions for this program.
Setting both bounds to 1 will result in the behaviour of a disjunctive rule.
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1 1{bird(tweety); bird(tux); bird(eddy)}2.
2 flies(X) :- bird(X).

Listing 2.3: ASP Program Containing a Choice Rules

An essential aspect of the ASP language is its non-monotonic reasoning capabilit-
ies. In contrast to monotonic reasoning formalisms, non-monotonic reasoning form-
alisms can retract knowledge already derived if additional rules are given. This, for
example, enables the use of defaults. Providing a way to model defaults is a major
advantage of non-monotonic reasoning since defaults provide a way to draw conclu-
sions even if there is no complete information. These conclusions are preliminary
and have to be retracted in case contrary information is available. A way to model
a default in ASP is given in Listing 2.4.

1 bird(tweety).
2 bird(tux).
3 flies(X) :- bird(X), not deviation(defaultFlies(X)).
4 deviation(defaultFlies(X)) :- penguin(X).

Listing 2.4: ASP Program With a Default

Line 1 and 2 of this example are again facts stating that tweety and tux are birds.
Line 3 and 4 introduce a default for the literal flies called defaultFlies. If there is no
deviation of the default, it can be assumed that birds are able to fly. A deviation
of the default is given, for example, if new information is available stating that tux
is a penguin (penguin(tux)). By adding this fact, the head of the rule in Line 4 is
derived, and the body of the rule in Line 3 no longer holds. Thus, tux is no longer
able to fly.

2.4.2 Solving an ASP Program

ASP solvers like Clingo [48] typically divide the solving process into two distinct
steps. The first step is the grounding, which replaces variables with the correspond-
ing part of the Herbrand Universe [37] of the ASP program. This results in a variable
free ASP program, which is then given to the second step, the solving of the ASP
program. It determines the solution of the ASP program denoted as an Answer Set
or Stable Model. Generally speaking, the Answer Set consists of all facts as well as
all derived rule heads. Both, grounding and solving, will be explained in detail in
the following sections. Furthermore, the applied grounding and solving algorithms
have a major influence on the design of an ASP program and thus on the modelling
of ASP rules used in the main contributions of this thesis. Hence, the following
sections highlight these influences.
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Grounding

To apply the grounding step, a safe ASP program is needed. In a safe ASP program,
each variable in each rule head is part of at least one positive atom in the corres-
ponding rule body. If a variable would not be safe, it could be grounded with every
part of the Herbrand Universe, which could lead to a potentially infinite number of
grounding steps. A simple approach would be to replace all variables with all con-
stants present in the ASP program. Grounding an ASP program with variables will
increase the size of the program. In the worst case, it can grow exponentially in size;
thus, grounding can be considered as an EXPTIME-hard problem [79]. Furthermore,
the simple grounding will generate rules, which cannot be satisfied. For example,
it could generate rules that depend positively on atoms not supported by the ASP
program. Hence, simple grounding is not applied by state-of-the-art grounders like
Gringo [52]. In contrast, grounding algorithms, as presented in [49], typically focus
on positive rule bodies and try to find a smaller instantiation preserving the semantic
of the ASP program. Algorithm 2.1 shows such an instantiation approach.

Algorithm 2.1: Naive Instantiation Algorithm [49]
Input : A safe logic program SP
Output: A ground logic program GP

1 D := ∅
2 GP := ∅
3 repeat
4 D’ := D
5 foreach rule ∈ SP do
6 B := positiveBody(rule)
7 foreach θ ∈ Θ(B,D) do
8 D := D ∪ {head(ruleθ)}
9 GP := GP ∪ {ruleθ}

10 until D’ == D

Algorithm 2.1 receives a safe ASP program SP as input and returns a grounded
ASP program GP. The algorithm starts by initialising the set D that contains the
domain predicates, which are variable free literals and constants. Furthermore, a
set for ground rules GP is created, which will contain the resulting ground ASP
program. The operator Θ(B,D) is defined as the minimal match of variables in
the positive body B of a rule with the domain predicates. For example, a match θ
of Line 4 in Listing 2.1 would be tweety for the variable X of the literal bird(X).
In the case of a fact, this operator will return an empty set. Additionally, the
matching operator can detect partial matches. This means, if not all literals in the
body can be grounded, a partial grounding is conducted, and the rule has to be
revisited. In order to demonstrate the functionality of this algorithm, it is applied
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to the example ASP program shown in Listing 2.1. Since Lines 1 to 3 are facts, the
matching returns an empty set and each fact is added to D in a separate iteration.
In a subsequent iteration the rule flies(X) :- bird(X), not -flies(X) is selected. Since
the Naive Grounding only considers the positive body, two matches are found for
the variable X, X := tweety and X := tux, resulting in two ground instances of this
rule. This procedure is applied until every variable has been replaced by constants.
The resulting ground ASP program is shown in Listing 2.5 and does not contain
rules, which cannot hold.

1 bird(tweety).
2 bird(tux).
3 penguin(tux).
4 flies(tweety) :- bird(tweety), not -flies(tweety).
5 flies(tux) :- bird(tux), not -flies(tux).
6 -flies(tux) :- bird(tux), penguin(tux).
7 :- flies(tweety), -flies(tweety).
8 :- flies(tux), -flies(tux).

Listing 2.5: Grounded ASP Program

To improve the efficiency of grounding, an evaluation order extracted from a de-
pendency graph is proposed by [79]. This dependency graph contains the atoms of
the ASP program. In the first step, the dependency graph is divided into strongly
connected components [122], which are subgraphs in which every node is reachable
by every other node of the subgraph. The resulting strongly connected compon-
ents represent subprograms of the considered ASP program. Figure 2.7 shows the
dependency graph of the ASP program in Listing 2.1. The graph contains three dif-
ferent node types: facts (green), predicate symbols (blue), and rules (grey). Arrows
indicate the dependencies and dashed boxes mark strongly connected components.
Since rules, including facts and constraints, form the ASP program, each rule is part
of the dependency graph. Additionally, predicate symbols are added to model the
interdependencies of the rules.

In this example, each node in the dependency graph forms a strongly connected
component since there is no subgraph in which every node is reachable from every
other node. Following the flow of the dependency graph, the order in which the
rules should be grounded is clearly evident. At first, the facts are grounded because
they have no dependencies. Subsequently, the only rule of which all dependencies
are grounded is -flies(X):-bird(X), penguin(X). After the grounding of
this rule, all dependencies of rule flies(X):-bird(X), not -flies(X) are
met, and thus, the last rule can be grounded. All necessary ground literals for each
rule are given by applying this order, and no rule needs to be revisited. Thus, the
overall complexity of the grounding process is reduced.

Recursive rules are a special case, as shown in Figure 2.8. These rules form a
strongly connected component with their recursive predicate symbol (red dashed
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bird(tweety)

bird(tux)

penguin
(tux)

bird/1

penguin/1

flies/1

-flies/1-flies(X) :- bird(X), penguin(X).

flies(X) :- bird(X), not -flies(X).

:- flies(X), -flies(X).

Figure 2.7: Dependency Graph of the ASP Program Shown in Listing 2.1

box). By grounding this type of rule, additional ground literals are added to the
domain set, resulting in an infinitely growing domain. Hence, the recursion has to
be limited by facts, by the number of iterations, or by a stopping criterion given by
the creator of the ASP program.

reachable(X,Z) :- reachable(X,Y), reachable(Y,Z).

reachable/2reachable
(a,b)

reachable
(b,c)

Figure 2.8: Dependency Graph of a Recursive Rule

In this example, both facts are grounded first. Consequently, the rule (grey box)
is grounded. Since this grounding step changes the domain, the rule is grounded
again. Subsequently, the domain does not change and the grounding is stopped.

To reduce the grounding runtime, state-of-the-art grounders apply additional sim-
plification steps as presented in [49]. A first simplification step would be to initialise
the grounding with all facts because they are already grounded, reducing the num-
ber of iterations of Algorithm 2.1. A further simplification is to remove rules during
grounding if a fact appears in default negation in its body. Since facts are always
derivable, the truth value of the default negation of a facts is always false. Hence,
the heads or these rules cannot be derived and will not influence the solution of
the ASP program. Besides removing complete rules, parts of the rule body can be
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removed to simplify the grounding process, and for example, default negated atoms
in a rule body that do not appear in any rule head. These atoms will never appear
in the solution. Therefore, their default negated version is always true and can be
removed without altering the semantic of the rule. While this approach is feasible
in single-shot solving (no subsequent solving steps after the first one), it limits the
multi-shot capabilities (see Section 2.5.2) of ASP since the missing atoms could be
added in later iterations. Therefore, Clingo introduces addition predicates (External
Statements), which prevent the deletion and enable the incorporation of knowledge
that is not initially available. An introduction to External Statements is given in
Section 2.5.1.

Solving

After the grounding is finished, solving is applied to determine the solution of the
ground ASP program. Since the ground ASP program is variable free, it can be
considered as a propositional satisfiability (SAT) problem [27]. A common ap-
proach to solve SAT problems is the Davis-Putnam-Logemann-Loveland (DPLL)
algorithm [31, 32]. Generally speaking, it is a backtracking algorithm, which assigns
truth values to a set of literals. Therefore, it receives a set of clauses in Conjunctive
Normal Form (CNF) [23] as input and returns a Boolean value stating if the set
of clauses is satisfiable. Depending on the structure of the considered clause set,
this can already be achieved by the unit propagation step, which sets the truth
value of one element clauses depending on the sign of its predicate. This is the case
for simple ASP programs since each literal can be considered as a unit clause. An
ASP program can have multiple solutions. Thus, ASP solvers should be able to
find all possible solutions and have to prove unsatisfiability after the last model has
been found. Since this requires an exhaustive search of all literal combinations in
the DPLL algorithm and there is no support for loops, modern ASP solvers apply
different solving algorithms.

The ASP solver Clingo, for example, applies Conflict-Driven Nogood Learning [54],
which is explained in the following paragraphs. A nogood [14] is a set of literals,
which are unintended in an assignment. Thus, a nogood is violated if its literals are
part of an assignment. In this case, they cannot be part of a solution for an ASP
program. To determine all nogoods of an ASP program, the Clark Completion [26]
is applied to find local inferences. The Clark Completion consists of the union of
two equivalences: One representing the bodies and one representing the atoms of a
program. According to [54], the equivalence for all rule bodies body(Π) of an ASP
program Π can be written as:

{pβ ⇔ p1 ∧ . . . ∧ pm,¬pm+1,∧ . . . ∧ ¬pn | β ∈ body(Π),
β = {p1, . . . , pm, notpm+1, . . . , notpn}}.
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This equivalence can be divided into two implications, which are translated into
nogoods. The first one states that the body of a rule is true if all literals of the cor-
responding body are true. It can be translated into the following set of nogoods [54]:

δ(β) = {Fβ,Tp1, . . . ,Tpm,Fpm+1, . . . ,Fpn}.

In these nogoods, Tx indicates that x is true, and analogously Fx indicates that
x is false. Informally speaking, the body of a rule β cannot be false if all positive
literals are true and all negative literals are false. The second implication expresses
that the body of a rule is false if at least one positive literal is false or at least one
negative literal true. Furthermore, if the body β holds, all literals in the body have
to be true. Thus, the combinations of a true body and a false literal in this body
have to be prevented. This case is expressed by the following nogoods [54]:

∆(β) = {{Tβ,Fp1}, . . . , {Tβ,Fpm}, {Tβ,Tpm+1}, . . . , {Tβ,Tpn}}.

Additional equivalences and thus sets of nogoods are defined for atoms and loops.
The complete set of nogoods is discussed in [54].

In order to provide an insight into the created nogoods, Listing 2.6 shows an ex-
cerpt from the nogoods of the grounded example ASP program. It presents ASP
rules and the nogood which each rule introduces. The derived nogoods are marked by
an arrow →. For example, Line 1 of Listing 2.6 contains the fact bird(tweety) and,
thus, is a single atom. This atom is translated into the nogood {Fbird(tweety),
T∅} since a fact cannot be false. Analogously, Line 2 and 3 introduce similar
nogoods. Considering rule heads, a nogood is introduced for each rule contain-
ing the corresponding head. For the rule in Line 4 the nogood {Fflies(tweety),
T{bird(tweety), not -flies(tweety)}} is added. This nogood states that it is forbid-
den that flies(tweety) is false if the body is true. Corresponding nogoods are added
for Lines 6 and 8.

1 bird(tweety). →{Fbird(tweety), T∅}
2 bird(tux). →{Fbird(tux), T∅}
3 penguin(tux). →{Fpenguin(tux), T∅}
4 flies(tweety) :- bird(tweety), not -flies(tweety).
5 →{Fflies(tweety), T{bird(tweety), not -flies(tweety)}}
6 flies(tux) :- bird(tux), not -flies(tux).
7 →{Fflies(tux), T{bird(tux), not -flies(tux)}}
8 -flies(tux) :- bird(tux), penguin(tux).
9 →{F-flies(tux), T{bird(tux), penguin(tux)}}

Listing 2.6: Atom Nogoods for a Grounded ASP Program

To determine an Answer Set of an ASP program with regard to the presented
nogoods, Gebser et al. present in [54] the Conflict-Driven Nogood Learning for
ASP (CDNL-ASP), which is based on Conflict-Driven Clause Learning (CDCL) [89].
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CDCL is based on the DPLL algorithm and introduces back jumps in case of a
conflict and adds constraints to prevent already met conflicts.
CDNL-ASP initialises an empty assignment A representing the Answer Set, an

empty set of dynamically created nogoods∇, and an integer representing the decision
level dl that counts literals added during a decision step. The first step is the
NogoodPropagation, which uses the existing nogoods of the Clark Completion to
determine the parts of the final Answer Set, which are added to A. If not all atoms
could be assigned during this step, additional dynamic nogoods are added to ∇
and the process is restarted. After the NogoodPropagation, three cases can occur, a
solution, a conflict, and the decision for a literal. A solution is found if all atoms
in A are either true or false. A conflict occurs in the case that a nogood is part
of A. If the decision level dl is still zero, the conflict is given by the ASP program
itself, and thus it has no solution. If dl is higher than zero, the conflict is analysed,
corresponding assignments are removed, and dynamic nogoods that prevent the
conflicting assignment are added to ∇. If no conflict occurs or no solution is found,
an atom is selected based on a heuristic and dl is incremented. As presented in [58]
and [95], heuristics track a score of each literal, which increases if it caused a conflict.
Typically, the score decreases over time to prevent the selection of the same literals.
Since the highest score is given for the variable causing the most conflicts, it is
selected to generate additional dynamic nogoods. After the selection of a literal, its
truth value has to be determined. For example, the solver Clasp [55] preferably sets
atoms to false and bodies to true, which tries to maximise the number of resulting
implications.
Considering the example ASP program and the excerpt from the nogoods show

in Listing 2.6, the application of CDNL-ASP results in the following steps. In the
beginning, A and ∇ are initialised with an empty set and the dl is set to zero.
Afterwards, NogoodPropagation is applied. During its unit propagation, the facts
bird(tweety), bird(tux), and penguin(tux) are added to A. Subsequently, -flies(tux) is
added to A. In the end, flies(tweety) is included in A. Since the unit propagation has
reached a fixpoint and no loop is given, the NogoodPropagation returns A and the
still empty dynamic nogood set∇. Since all atoms and all bodies have been assigned,
the Answer Set { bird(tweety), bird(tux), penguin(tux), -flies(tux), flies(tweety)} is
returned. A comprehensive example including back jumps is presented in [54].

2.5 Clingo
The Potsdam Answer Set Solving Collection10 (Potassco) is a set of Answer Set
Programming tools developed at the University of Potsdam. This set includes
Clingo [50], which is a system for grounding and solving ASP programs. Clingo
itself is a sophisticated ASP reasoning system combining the grounder Gringo [47],
the solver Clasp [55]. Furthermore, it enhances the plain ASP input language by
additional features.
10Potassco, The Potsdam Answer Set Solving Collection, https://potassco.org/,

Accessed December 29, 2021.
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2.5.1 Features

The following sections present several selected features. A complete overview of all
features provided by Clingo, including its support for Python [119] and Lua [69],
is given in the Potassco Guide11. The features presented in the following sections
facilitate the modelling of dynamic knowledge and are thus applied in the different
contributions of this thesis.

Conditional Literals

Conditional Literals12 have following form: L0 :L1, . . . , Ln. These literals can be
seen as nested rules, in which L0 is considered as the head and L1, . . . , Ln as the
body. Thus, the head of a conditional literal holds if all body literals are true. An
example of a conditional literal is given in Line 4 in Listing 2.7.

1 bird(tweety).
2 bird(tux).
3 penguin(tux).
4 flies(X) :- not penguin(X) : bird(X); bird(X).

Listing 2.7: ASP Program with a Conditional Literal
In this case, the conditional literal can be seen as a switch for the literal not

penguin(X). Thus, for every bird, it is checked if it is not a penguin. Since commas
separate the literals in the condition, the end of the condition is marked by a semi-
colon. Additionally, the literal bird(X) has to be added after the semicolon to ensure
that the variable X is safe. Furthermore, a conditional literal can be added to the
head of a rule. In this case, it can be considered as a rule that creates a disjunction
because a literal is added to the rule head every time the literals in the body of
the conditional literal hold. Hence, conditional literals influence rules depending on
their position.

Aggregates

Aggregates13 support deriving values from groups or sets of literals. Clingo provides
the aggregates #count, #sum, #sum+, #min, and #max. #count returns the
number of distinct literals. #sum and #sum+ calculates the sum and positive-sum,
11Potassco Guide Version 2.2.0, https://github.com/potassco/guide/releases/

download/v2.2.0/guide.pdf, Accessed December 29, 2021.
12Potassco Guide Version 2.2.0, https://github.com/potassco/guide/releases/

download/v2.2.0/guide.pdf, p. 28., Accessed December 29, 2021.
13Potassco Guide Version 2.2.0, https://github.com/potassco/guide/releases/

download/v2.2.0/guide.pdf, p. 30., Accessed December 29, 2021.
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respectively. #min and #max determine the minimum and maximum values. Fur-
thermore, aggregates act on sets and therefore, duplicates are ignored. Aggregates
in the body of a rule have the form α{t1 : L1; . . . ; tn : Ln} in which α is a placeholder
for the aggregate. The elements of the aggregates are given in pairs consisting of a
weight ti and a literal Ti. Since these aggregate return integer values, they can be
compared to thresholds via comparison predicates like < or ≤. Furthermore, their
results can be assigned to variables. Listing 2.8 shows an example of an aggregate
in Line 5, which is used to count the number of different birds that can fly. Since
just tweety is able to fly, birds(1) is part of the Answer Set of this program.

1 bird(tweety).
2 bird(tux).
3 penguin(tux).
4 flies(X) :- not penguin(X) : bird(X); bird(X).
5 birds(Z) :- Z = #count{X : flies(X)}.

Listing 2.8: ASP Program with the Aggregate #count

Optimisation Statements

In order to find an optimal Answer Set, Clingo provides optimisation statements14.
Clingo supports three kinds of optimisation statements. #maximize and #minimize
to find a maximum and a minimum of weights, respectively. Furthermore, weak
constraints (:~) enable weighting of the appearance of literals in an Answer Set. Since
optimisation aims at finding an optimal Answer Set with respect to a given set of
criteria, an ASP program with multiple Answer Sets is needed. Hence, the example
used in this section will differ from the bird example used before. The example in
Listing 2.9 is given in the official Clingo guide15 and describes the selection of a
hotel based on stars, costs, and noise level.

1 { hotel(1..5) } = 1.
2 stars(1,5). cost(1,170).
3 stars(2,4). cost(2,140).
4 stars(3,3). cost(3,90).
5 stars(4,3). cost(4,75). main_street(4).
6 stars(5,2). cost(5,60).
7 noisy :- hotel(X), main_street(X).
8

9 :~ noisy. [ 1@3 ]
10 #minimize { Y/Z@2,X : hotel(X), cost(X,Y), stars(X,Z) }.
11 #maximize { Y@1,X : hotel(X), stars(X,Y) }.

Listing 2.9: ASP Program with Optimisation Statements15

14Potassco Guide Version 2.2.0, https://github.com/potassco/guide/releases/
download/v2.2.0/guide.pdf, p. 37., Accessed December 29, 2021.

15Potassco Guide Version 2.2.0, https://github.com/potassco/guide/releases/
download/v2.2.0/guide.pdf, p. 39., Accessed December 29, 2021.
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The first line contains two shortcuts. The two dots will create five hotel literals
ranging from hotel(1) to hotel(5). The second shortcut = 1 expresses that the
lower and upper bounds of the choice rule are set to 1. Hence, this choice rule will
produce five Answer Sets, one for each hotel. Lines 2 to 6 indicate the properties
of each hotel. For example, hotel(1) has 5 stars and a cost of 170 e per night.
Furthermore, hotel(4) is situated on the main street. Line 7 defines the notion of
noisy. A hotel is noisy if it is next to the main street. Line 9 to 11 contain the
optimisation criteria, sorted according to their importance, which is denoted by an
@ in combination with an integer value. The higher the integer value, the higher is
the importance of the optimisation criterion. The optimisation statements in this
example are given in decreasing order. Thus, the highest priority is to avoid noisy
hotels. Then the costs per star have to be minimised and, finally, the stars should
be maximised. Applying the weak constraint will sort out hotel(4). Minimizing the
costs per star results in hotel(3) and hotel(5) since they both cost 30 e for each star.
Finally, hotel(3) is selected since it has more stars than hotel(5). To sum up, the
combination of weak constraints, minimisation, and maximisation enables building
of complex multi-criteria optimisation and formulate sophisticated ASP programs.

Program Sections

To provide a better overview and enable reusability, Clingo supports the division of
ASP programs into smaller parts called Program Sections16. Each Program Section
starts with the keyword #program and has to be grounded and solved separately.
Furthermore, Program Sections can be expanded with variables (lower letters in this
case) and can be reused with different variable values. Listing 2.10 is an example of
the usage of Program Sections.

1 #program fact(n).
2 bird(n).
3

4 #program rule.
5 flies(X) :- bird(X).

Listing 2.10: ASP Program Consisting of Two Program Sections
This example consists of two Program Sections. The first section is called fact and

has one variable n. During the grounding, this variable can be replaced with literals
or constants. For example, this Program Section can be grounded with the constants
tweety and tux to recreate the already existing example used before. Afterwards,
the second Program Section rule can be grounded and solved. This results in the
Answer Set: {bird(tweety), bird(tux), flies(tweety), flies(tux)}. A highly important
aspect when using Program Sections is the order in which they are grounded since the
16Potassco Guide Version 2.2.0, https://github.com/potassco/guide/releases/

download/v2.2.0/guide.pdf, p. 45., Accessed December 29, 2021.
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grounding procedure will simplify the ASP program. For example, if the Program
Section rule is grounded first, the rule in Line 5 is removed since the literal bird does
not appear in any rule head. Once the Program Section facts has been grounded,
the resulting Answer Set only contains the fact since the grounding procedure has
removed the rule. Hence, the order in which Program Sections are grounded and
solved impacts the solution of the ASP program. Furthermore, the introduction
of circular dependencies between Program Sections can cause an unsatisfiable ASP
program. A detailed description of this problem and the way to prevent circular
dependencies are given in Section 2.5.3.

External Statements

During the grounding procedure, literals that do not appear in any rule head are re-
moved. This removal prevents the modelling of rules containing literals, which could
appear in further grounding steps. To tackle this issue, Clingo provides External
Statements17. These are atoms that are not removed during grounding and marked
with the keyword #external. Furthermore, they have the following form: #external
A : L1, . . . , Ln. In this case, A is an atom and the literals L1, . . . , Ln form a condi-
tion, which enables the creation of External Statements based on parts of the ASP
program. Furthermore, they have three different states. Two states represent the
corresponding truth values: true and false. The last state is free. A free External
Statement can no longer be assigned and, thus, rules that depend on this External
Statement are removed during grounding. Once an External Statement has been set
to free, it can no longer be set to true or false. Additionally, External Statements
are initially assumed to be false and can be set to true by using the Clingo API. An
example program is given in Listing 2.11.

1 bird(tweety).
2 bird(tux).
3 #external penguin(tux).
4 flies(X) :- not penguin(X), bird(X).

Listing 2.11: ASP Program Using External Statements
Line 1 and 2 are normal facts stating that tweety and tux are birds. The knowledge

that tux is a penguin is given as an External Statement in Line 3 and is initially
false. Thus, the application of the rule in Line 4 will derive that both, tweety and
tux, can fly. If the knowledge that tux is penguin arises, the External Statement can
be set to true. Hence, the usage of External Statements supports influencing ASP
programs dynamically and to alter rules on demand.

17Potassco Guide Version 2.2.0, https://github.com/potassco/guide/releases/
download/v2.2.0/guide.pdf, p. 44., Accessed December 29, 2021.
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2.5.2 Multi-Shot Solving

Typically, Answer Set solvers are used in a single-shot fashion, which means that
each solver instance determines the solution for a given problem, returns the solu-
tion, and is discarded in the end. To reuse already derived knowledge, it has to
be added to the program, which is given to the new solver instance. To cope with
this problem and enable a dynamically changing problem specification, Clingo is
capable of multi-shot solving [51]. Furthermore, its multi-shot capabilities enable
the use of Clingo as a knowledge base. Especially multi-shot solving relies on the
usage of External Statements and Program Sections. While Program Sections en-
able the structuring and reuse of parts of an ASP program, External Statements
support altering the truth value of selected literals dynamically. To provide an in-
troduction to multi-shot solving and the usage of Program Sections and External
Statements, Listing G.1 in the appendix provides an example for modelling the
Tower of Hanoi game, which is an adapted version of the way the game is mod-
elled in [51]. The ASP program consists of three Program Sections. The first
Program Section creates the initial state, including pegs, disks, as well as their ini-
tial and goal locations. The second Program Section moves a disk from one peg
to another one if it is allowed. The third Program Section checks if the goal is
reached. Thus, by subsequently applying the second and third Program Section,
the solution of the game is found. The complete interaction with the Program
Sections is summarised in Algorithm G.1 in the appendix. Applying the presented
algorithm finds a solution in 16 calls of the solve procedure and will return the follow-
ing Answer Set: {move(4,b,1), move(3,c,2), move(4,c,3), move(2,b,4), move(4,a,5),
move(3,b,6), move(4,b,7), move(1,c,8), move(4,c,9), move(3,a,10), move(4,a,11),
move(2,c,12), move(4,b,13), move(3,c,14), move(4,c,15)}. Each of these atoms in-
dicates a move in the Tower of Hanoi game. For example, move(4,b,1) denotes that
at iteration 1, disk 4 has to be put on peg b. Thus, following the moves given in the
Answer Set will lead to a valid solution for the Tower of Hanoi game.

2.5.3 Module Property

The Module Property of ASP programs is based on the Module Theorem presented
in [103], which checks if ground ASP programs or, respectively, propositional logic
programs can be combined without losing valid Answer Sets or Stable Models. A
propositional logic program module is defined as a triple P = (P, I,O). Further-
more, the following three conditions have to hold. P has to be a finite set of rules.
Furthermore, the set of input atoms I and the set of output atoms O have to be
disjoint. Finally, no atom given in a rule head is part of I. In order to check if
two modules, P1 and P2, can be combined, the positive dependency graph (see Sec-
tion 2.4.2) of their combination is needed. If this dependency graph contains at
least one strongly connected component [122], the union P1 ∪ P2 forms a positive
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recursion between the modules. For example, a positive recursion occurs if an atom
of O1 depends positively on an output atom of O2. Since they are part of a strongly
connected component, the atom of O2 depends positively on the atom in O1. This
positive recursion could cause the loss of valid Answer Sets. Thus, two modules that
form strongly connected components between them cannot be combined. Hence,
two modules, P1 and P2, can only be combined if they have disjoint output sets and
there is no positive recursion between them. The join of two modules P1 and P2 is
defined as P1 t P2. Again, P1 t P2 is a triple and is according to [103] defined as
(P1 ∪ P2, (I1 \O2) ∪ (I2 \O1), O1 ∪O2).

In order to demonstrate the join of two modules P1 and P2, let us consider the
ASP programs P1 = a :- not b. and P2 = b :- not a. [103]. This results in the
following modules: P1 = ({a :- not b.}, {b}, {a}) and P2 = ({b :- not a.}, {a}, {b}).
Since their output sets are disjoint and there is no positive recursion between the
modules, both modules can be joined resulting in the module P1 t P2 = ({a :- not
b. b :- not a.}, {∅}, {a, b}).

To find the Answer Sets of the combined modules, the compatibility of Answer
Sets of a module SM(P) has to be defined. Therefore, the Herbrand Base [37] of
both modules is needed. Since already grounded ASP programs are considered, the
Herbrand Base of a module P (HB(P)) contains all atoms of P , I, and O. Fur-
thermore, the visible Herbrand Base HBv(P) contains all input and output atoms.
As presented in [103], two Answer Sets M1 and M2 of two modules P1 and P2 have
to share a common subset of their respective visible Herbrand Bases to be compat-
ible. Thus, they are compatible if the following equation holds: M1 ∩ HBv(P2) =
M2 ∩ HBv(P1). By combining the join of two modules and the compatibility of
their Answer Sets, the Module Theorem is derived. This theorem states that a
set M is an Answer Set for P1 t P2 if their join is defined and the Answer Sets
M1 = M ∩HB(P1) ∈ SM(P1) and M2 = M ∩HB(P2) ∈ SM(P2) are compatible.

To show the effects of a violation of the Module Theorem, Oikarinen et al. provide
an example in [103]. In this example, the two modules P1 = ({a :- b.}, {b}, {a}) and
P2 = ({b :- a.}, {a}, {b}) are used, which share the Answer Sets {∅, {a, b}}. Both
modules form a positive recursion and, therefore, violate the Module Theorem. A
join of programs P1 and P2 creates the program {b :- a. a :- b.} that has only the
empty set as an Answer Set, excluding the set {a, b}. Hence, causing a loss of an
Answer Set, which is still valid. Finally, the adherence to the Module Theorem en-
ables the safe combination of ASP Programs without the risk of losing valid Answer
Sets.

In order to ease the use of multi-shot solving, we propose in [106] an automatic
satisfaction of the Module Property, which Opfer expands in [105]. The automatic
satisfaction of the Module Property is realised as a wrapper for Clingo. Generally
speaking, the wrapper encapsulates queries in unique predicates and thus prevents
positive recursions.
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2.6 Ontologies

To be able to share knowledge and to cooperate based on this knowledge, it is neces-
sary to find and share the same terminology [64, 135]. Furthermore, the terminology
has to provide a way to represent the classes that exist in an environment [65]. A
common approach is to rely on an ontology. Generally speaking, an ontology can
be seen as a formalisation of the structure of knowledge. It provides a taxonomy
of classes and supports modelling the relationships between them, their properties,
and value ranges. Besides classes, instances (individuals) can be specified, which are
objects that belong to a specific class. Furthermore, the definition of axioms allows
to model rules that hold in an ontology; for example, all properties of a parent class
are also inherited by the child classes.

Ontologies can be divided into several types depending on their formality and
specificity [135]. The simplest informal ontology type is a Controlled Vocabulary,
which is a set of keywords or terms. A Glossary expands a Controlled Vocabulary
with natural language explanations for each term. The next type is a Thesaurus,
which combines terms with the same meaning. The most complex informal ontology
type is an Informal Taxonomy. It provides a hierarchy of keywords or terms, but
there is no formal definition for each level of the hierarchy. In contrast to informal
ontology types, formal ontologies provide formal semantics and support reasoning.
Formal Taxonomies provide a mechanism to subsume the relationships among their
classes or terms. Additionally, Properties, Value Restrictions, and Arbitrary Logic
Constraints can be added to increase the expressiveness of the ontology. Especially,
the addition of Arbitrary Logic Constraints increases the complexity of the ontology,
which can result in undecidability.

An additional hierarchy of ontologies can be defined regarding their reusabil-
ity [135]. The lowest reusability is given in an Application Ontology. It comprises
concepts that are used in a single application. Usually, Application Ontologies are
based on a Domain Ontology. This type of ontologies provides concepts that can
be reused and is suited for a specific domain, such as medical terms, sports terms,
and political terms. These classes and terms are broader and thus can be easier
reused. Finally, an Upper Ontology provides the most common classes, terms, and
concepts. For example, the notion of an object or a thing could be defined in an
Upper Ontology.

2.6.1 Ontology Development

The creation of ontologies is a complex task since it involves the selection of classes
and sub-classes, their properties, constraints, and the level of abstraction. Therefore,
Noy et al. describe in [100] an iterative guideline for the creation of ontologies. Three
rules form the base of this guideline, which state that there is no best way to model
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a domain, that ontology development has to be iterative, and that classes in the
ontology should be close to the objects they represent. The guideline itself consists
of seven steps, which will be discussed in the following paragraphs.

The first step is to decide which domain should be represented and what scope the
ontology should have. Thus, this step provides a general idea of which classes will
be needed, how detailed they have to be represented, and where the ontology will
be applied. Furthermore, the ontology developer should determine what questions
the ontology should be able to answer.

After the initial determination of domain and scope, Noy et al. recommend check-
ing if already defined ontologies can be reused. On the one hand, this can reduce
the overall effort which is needed to create the ontology. On the other hand, the
adaption of existing ontologies enables the developer to interact with the systems
that provide the corresponding ontology.

In a third step, the ontology developer is supposed to enumerate all terms used
in the ontology. This results in a comprehensive list of terms that supports the
understanding of the domain and provides the basic modelling blocks that are needed
in the following steps.

Based on the terms defined in the third step, the class hierarchy of the ontology
and the properties of the classes are defined in the fourth step. According to [100],
there are three ways to generate the class hierarchy, which depend on the personal
preferences of the ontology developer. The hierarchy can be created in a top-down
fashion by selecting the most general term and subsequently adding subclasses. The
bottom-up approach starts with the most specific instances and combines them with
fitting parent classes. The last way is a combination of both approaches by changing
the strategy based on the given classes.

The fifth and sixth steps are the definition of the properties (slots) of each class
and value restrictions. Based on the class hierarchy, slots of a class are inherited by
its subclasses. Hence, the ontology developer has to decide when to add a slot to a
class. In general, a slot should be added to the highest class in the hierarchy that
can have the property to prevent redefinitions. Afterwards, value limitations can be
given to the properties. This includes cardinalities, ranges, all possible values, and
value types.

In the last step, instances are created. Therefore, a fitting class is selected, an
instance is created, and values are assigned to the slots.

A further decision that has to be made is the language that is used to create the
ontology. A common approach is to use the Web Ontology Language (OWL), which
is briefly presented in the following section.
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2.6.2 Web Ontology Language

The Web Ontology Language (OWL) is an ontology modelling language that the
World Wide Web Consortium recommends as a standard for ontology creation [68].
It supports the automatic processing of web documents by applications, by providing
semantics of a document by classes, and their properties [92]. OWL allows defining
classes, subclass relations, and constraints. A complete description of all language
features is given in [68]. Furthermore, OWL provides three sublanguages, which are
OWL Lite, OWL DL, and OWL Full. All sublanguages support a different subset
of the language constructs, which results in varying expressiveness and complexity.
The least complex sublanguage is OWL Lite. It supports the specification of class
hierarchies, properties, and limited cardinality restrictions (0 and 1). OWL Lite is
decidable and its complexity is ExpTime [92]. OWL DL (description logic) contains
OWL Lite and lifts some restrictions. For example, it enables the definition of
arbitrary cardinality constraints. Additionally, OWL DL is the decidable subset of
OWL Full and has a complexity of NExpTime [92]. Finally, OWL Full supports
the complete language specification and contains OWL DL and, thus, OWL Lite. It
has the highest expressiveness of the sublanguages. It enables the use of classes as
individuals or arbitrary logic constraints. Hence, it is undecidable and not supported
by most tools [92]. Additionally, the Unique Name Assumption (see Section 2.3) does
not hold. Meaning that different names can be given to a single entity and that it
has to be explicitly stated that these names belong to the same entity. Furthermore,
the Open-World Assumption is applied in OWL since it is assumed that a knowledge
base is always incomplete [92].

A commonly used example to introduce the OWL language is the pizza onto-
logy18,19. An excerpt from this ontology is shown in Figure 2.9. The most general
class in this figure is Food, which is divided into three disjoint subclasses. These
are PizzaTopping, Pizza, and PizzaBase. For example, the PizzaTopping class has
three further disjoint subclasses: CheeseToppping, MeatTopping, and SauceTopping.
Explicitly marking the classes as disjoint enables checking the consistency of indi-
viduals or classes. For example, the class Tomatoes should not be a subclass of
PizzaTopping and PizzaBase simultaneously. The least general class in this excerpt
of the pizza ontology is the MeatyPizza. It is a subclass of a NonVegetarianPizza
and, thus, a subclass of Pizza. It has a base, which is expressed by the relation
hasBase, and a MeatTopping connected by the hasTopping relation. Furthermore,
OWL provides a most general class Thing [92], which is the superclass of all classes
and instances. In contrast to this, Nothing is the most specific class. It is the sub-
class of all OWL classes and has no instances [92]. Both classes, Thing and Nothing,
are omitted in Figure 2.9 to provide a better overview of the classes.
18An Ontology About Pizzas and their Toppings, https://protege.stanford.edu/

ontologies/pizza/pizza.owl, Accessed December 29, 2021.
19Pizzas in 10 Minutes, https://protegewiki.stanford.edu/wiki/

Protege4Pizzas10Minutes, Accessed December 29, 2021.
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Figure 2.9: Graphical Representation of an Excerpt from the Pizza Ontology18
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To provide a machine-readable ontology, OWL uses the Resource Description
Framework Schema (RDFS)20. The definition of the MeatyPizza class in RDFS is
shown in Listing 2.12.

1 <owl:Class rdf:about="http://www.co-ode.org/ontologies/pizza/
2 pizza.owl#MeatyPizza">
3 <owl:equivalentClass>
4 <owl:Class>
5 <owl:intersectionOf rdf:parseType="Collection">
6 <rdf:Description rdf:about="http://www.co-ode.org/
7 ontologies/pizza/pizza.owl#Pizza"/>
8 <owl:Restriction>
9 <owl:onProperty xml:resource="http://www.co-ode.org/
10 ontologies/pizza/pizza.owl#hasTopping"/>
11 <owl:someValuesFrom xml:resource="http://www.co-ode.org/
12 ontologies/pizza/pizza.owl#MeatTopping"/>
13 </owl:Restriction>
14 </owl:intersectionOf>
15 </owl:Class>
16 </owl:equivalentClass>
17 <rdfs:label xml:lang="en">MeatyPizza</rdfs:label>
18 <rdfs:label xml:lang="pt">PizzaDeCarne</rdfs:label>
19 <skos:definition xml:lang="en">Any pizza that has at least one
20 meat topping</skos:definition>
21 <skos:prefLabel xml:lang="en">Meaty Pizza</skos:prefLabel>
22 </owl:Class>

Listing 2.12: Excerpt from the RDF Description of the Pizza Ontology18

Line 1 of Listing 2.12 defines that the classMeatyPizza is part of the pizza ontology,
which is given by an URL (http://www.co-ode.org/ontologies/pizza/ pizza.owl). In
Lines 3 to 16, an equivalent class is created, which states that a MeatyPizza is equal
to an anonymous class described in Lines 4 to 15. It has to be part of the Pizza
class and the PizzaTopping has to be a MeatTopping, e. g., HamTopping. Lines 17
to 21 provide additional information. The English name of the class is MeatyPizza
and the Portuguese name is PizzaDeCarne, which can be used in combination with
the ontology URL to address this class. Finally, a natural language description for
the MeatyPizza is given.

2.7 ConceptNet 5

ConceptNet 5 (CN5) [128] is a multilingual commonsense knowledge base. It aims
at supporting machines in understanding the meaning of concepts, which appear in
the daily life of humans. The basis of CN5 is a semantic hypergraph. This hyper-
graph represents commonsense knowledge, which has been extracted from various
20RDF Schema 1.1, https://www.w3.org/TR/rdf-schema, Accessed December 29, 2021.
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knowledge sources like the Open Mind Common Sense project [125], Wiktionary21,
WordNet [94], DBPedia [5], and Wikipedia22. In its current version (5.7), the CN5
hypergraph consists of approximately 34 million edges and supports 304 languages23.
These include English (1803874 concepts), French (3023144 concepts), and German
(825741 concepts). A concept in CN5 is a natural language term, which is annotated
with a language tag and a sense label denoting its word class. In order to build a
hypergraph, these concepts are connected by edges. The meaning of an edge is given
by its relation24. An excerpt from the set of relations is shown in Table 2.2.

Table 2.2: 10 from 34 Base Relations of CN524

Relation Meaning Example
RelatedTo A is positively related to B a cup is related to a glass

HasProperty A has property B water has the property
Antonym A is the opposite of B day is the opposite of night
Synonym A is the same as B feline is a synonym for cat
AtLocation A can be found at B a cup can be found at a table
SimilarTo A is similar to B a cup is similar to a mug
CapableOf A is able to B a boat is able to swim
UsedFor A is used for B a pen is used for writing

IsA A is a sub-class of B a dog is an animal
FormOf A is linguistically derived from B wrote is derived from write

Besides a relation, edges contain their sources, e. g., WordNet or Wikipedia and
a weight. This weight is the sum of weights assigned to the sources. A weight
greater than or equal to 1.0 denotes that the edge has been extracted from at least
one verified source like WordNet. The higher the weight, the more reliable is the
knowledge represented by the edge.

To provide an insight into how knowledge is represented in CN5, Figure 2.10 shows
an excerpt from the CN5 hypergraph. A car usually can be found on a road or a
parking lot. It is used to drive or transport objects. Furthermore, drive is a specific
way to transport goods. The concept cars is linguistically derived from car. A car
is both a vehicle and a machine. Finally, a vehicle is a sub-class of a machine, too.

In addition to the hypergraph, CN5 supports the determinations of the relatedness
of two concepts [128]. Therefore, CN5 utilises Word Embeddings. Word Embeddings
are the mapping of words to a vector of real numbers denoting their distance to other
21Wiktionary, The Free Dictionary, https://en.wiktionary.org, Accessed December 29, 2021.
22Wikipedia, The Free Encyclopedia, https://en.wikipedia.org, Accessed December 29,

2021.
23ConceptNet5 Languages, https://github.com/commonsense/conceptnet5/wiki/

Languages, Accessed December 29, 2021.
24ConceptNet5 Relations, https://github.com/commonsense/conceptnet5/wiki/

Relations, Accessed December 29, 2021.
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Figure 2.10: Excerpt from the CN5 Hypergraph

words in a text, which results in a description of a word based on words that are close
to it in a text [42]. These word embeddings are generated by creating a symmetrical
term-term matrix. It includes concepts that appear in at least three edges [128]. The
value of each cell is determined by summing up all weights of the edges that connect
the corresponding concepts. The relatedness of two concepts is then determined
by the similarity of vectors that represent the concepts. Subsequently, the result
is normalised, resulting in values ranging from -1 to 1. For example, machine and
parking lot have a low relatedness of 0.077 while car and cars are strongly related
(0.782).
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Related Work 3
In this chapter, selected related work is shown. Section 3.1 introduces related work

in the field of distributed databases and knowledge management. Subsequently,
Section 3.2 presents relevant work focussing on the application of commonsense
knowledge in various systems. Hence, both sections form the related work for the
distributed knowledge management introduced in Chapter 4. The usage of Answer
Set Programming to represent knowledge is discussed in Section 3.3. Section 3.4 dis-
cusses publications in the area of ontology generation. Thus, they form the relevant
work for the handling of semantic inconsistencies and the generation of commonsense
ontologies introduced in Chapter 5. Finally, Section 3.5 introduces relevant work
regarding semantic routing. The related work presented in the following sections
has been partially discussed and published in [9, 72–78, 105–108].

3.1 Databases and Knowledge Management

In recent years, distributed, non-relational databases and data stores (NoSQL) have
emerged [33], which differ in the employed data model, consistency model, and the
selected distribution of data. Key-Value Stores like Amazon DynamoDB25 allow
access to data objects by a single key and, thus, enable fast random access to the
stored objects. Wide-Column Stores like Apache Cassandra26 store values using a
triple consisting of a row-key, a column-key, and a timestamp. They support batch
processing of data and horizontal as well as vertical partitioning of their tables. Doc-
ument Stores like MongoDB27, store data similar to Key-Value Stores in key-value
pairs. In contrast, values are semi-structured documents like XML or JSON files.
By relying on documents, data of any complexity can be stored. Graph Stores
like Neo4j28 store data as a graph consisting of object entities. These entities are
considered as the vertices of the graph and the edges between them express their
relation. Thus, Graph Stores enable storing object graphs efficiently. Besides the
data model, the way consistency is handled differs between the data stores. Strong
Consistency provides a single consistent image of the complete data set and thus
is hard to achieve in a distributed database since it requires high communication
efforts. It can be achieved in parts of Key-Value, Wide Column, and Document
Stores [33]. Causal Consistency requires a partial order between causally depending
25Amazon DynamoDB, https://aws.amazon.com/dynamodb/, Accessed December 29, 2021.
26Apache Cassandra, http://cassandra.apache.org/, Accessed December 29, 2021.
27MongoDB, https://www.mongodb.com/ Accessed December 29, 2021.
28Neo4j, https://www.neo4j.com/, Accessed December 29, 2021.
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operations on the database. It can be achieved in the four presented data models
but is not implemented in the presented examples due to its high communication de-
mand [33]. Eventual Consistency has the lowest requirements since replicated data
objects will eventually converge to identical values, and thus, no ordering in the data
is required. Therefore, this consistency can be achieved with any data model and
can be guaranteed in many databases or data stores.

Our proposed Self-Organising Multi-Agent Knowledge Base can be compared with
the distributed, non-relational databases introduced in the previous paragraph. The
knowledge is distributed to several agents on the network. The agents are able to
self-organise, cope with loosely coupled networks, and semantically annotated pieces
of knowledge while providing Eventual Consistency. In contrast to Key-Value Stores,
the proposed system will not rely on static table schemata. Instead, it will enable
the user to define relations at design as well as run time. Since ASP, in combination
with the solver Clingo, enables the use of arbitrary strings as symbols, the proposed
knowledge base can use file links like Document Stores. Finally, the knowledge base
can be compared to Graph Stores. Knowledge is represented by tuples, which are
parts of a knowledge graph. In contrast to the presented Graph stores, the suggested
knowledge base will be an active part of the system using it since it will automatically
distribute and maintain the knowledge.

Bonifacio et al. present a Peer-to-Peer architecture tailored for distributed know-
ledge management in [17], which is extended in [18]. It is based on JXTA [62], which
is a collection of protocols used for communication and cooperation. Each peer can
act in two different roles. A Seeker interacts with a user and forwards queries to
Providers, which, in turn, try to answer the queries and forward them to neigh-
bouring Providers. The knowledge is stored in files and is annotated using either a
schema, a taxonomy or a context. These are created using the Context Description
Language, which is an XML-like language supporting the definition of a hierarchical
context. Furthermore, Bonifacio et al. define two principles a distributed knowledge
management has to adhere to. The first is autonomy, which states that each group
has to maintain its knowledge autonomously. The second principle is coordination.
Groups share their knowledge and provide mechanisms to translate knowledge.

The system introduced by Bonifacio et al. is similar to our distributed and
multi-agent-based knowledge base. Both use groups of distributed nodes to manage
the stored knowledge. A significant difference is given in the way the knowledge
is stored. While Bonifacio et al. use an XML-like language to model the relations
between the stored files, we utilise ASP and the solver Clingo. The combination of
ASP and Clingo has, among others, two advantages over XML-like languages. The
application of ASP enables reasoning about the stored knowledge and the use of
Clingo provides mechanisms to adapt the knowledge storage at run time.
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3.2 Application of Commonsense Knowledge

The application of commonsense knowledge to solve everyday tasks is part of human
nature. Thus, following the human example, the application of knowledge in general
and especially commonsense knowledge has been broadly studied in various fields
such as service robotics.

One of these frameworks is DyKnow, presented by Heintz et al. in [66]. The cent-
ral aspect of DyKnow is the distributed collection of various kinds of inputs. They
include a broad span ranging from raw or processed sensor values up to symbolic
representations of objects, which are connected via relations. The DyKnow middle-
ware consists of two types of units. The first type of unit is a source, which is a
process that provides data samples and is considered as mappings of time points
to samples. Computational units conduct the refinement of these samples. They
combine inputs provided by sources to higher-level information or knowledge. The
declarative knowledge processing language [66] is used to specify static networks of
the source and computational units. This results in the automatic processing of data
and their refinement into information and knowledge.

The general structure of DyKnow can be compared to our multi-agent knowledge
base. Both distinguish two specific roles, which handle the provided input in differ-
ent ways. The main difference, however, is given in the way both systems are used.
While DyKnow can be considered as a distributed source of data, information, and
semantically annotated knowledge, our multi-agent knowledge base focusses on the
storage of semantically enriched knowledge. Hence, both works can be seen as com-
plementary since the knowledge provided by DyKnow could be used as a source for
our semantic knowledge handling (see Chapter 5) and, thus, input for the distributed
storage of knowledge (see Chapter 4).

A further framework using knowledge to enhance the capabilities of service robots
is KnowRob [130]. The primary purpose of this framework is the improvement and
execution of plans by applying domain-specific or common knowledge. A central
aspect of KnowRob is its knowledge base. The received information is stored in
Prolog predicates. In addition to the classical knowledge base, a virtual knowledge
base is created. It is an extension that creates abstract representations of data
once it is queried to improve its overall quality. The knowledge base is based on
OWL ontologies. These ontologies adhere to the Open-World assumption and are
undecidable in the full OWL specification. However, using the decidable subset
of OWL is limited in its expressiveness [96]. In the cases that the Closed-World
assumption is needed, Prolog and a corresponding reasoner are used. While the
OWL ontologies form the first layer of the knowledge base, Prolog predicates in the
second layer link the OWL classes to corresponding reasoning methods. A complete
specification of the KnowRob knowledge base and its knowledge representation is
given in [131]. In its second version [13], KnowRob is expanded with a simulation.
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It enables the grounding of the symbols used in the knowledge base during the
simulated execution of the task, which are then used during their actual execution.
Besides Prolog predicates, KnowRob introduces the concept of computables. Their
truth value is initially unknown and later set by external sources. Hence, they can
be compared to the External Statements provided by Clingo.

Comparing KnowRob to our dynamic knowledge base, the number of involved
agents is a major difference. KnowRob is designed to be used on a single agent. In
contrast, our multi-agent knowledge base distributes its knowledge management on a
dynamically changing group of agents. The second difference is given in the dynamic
of the application scenarios. Robots equipped with KnowRob achieve astonishing
results in their application scenarios, for example, preparing breakfast. However,
these scenarios are rather static and do not require fast reasoning. In contrast to
this, our knowledge base is tailored for dynamically changing environments. Finally,
both frameworks rely on a similar kind of symbolic knowledge representation.

In [39], Erdem et al. employ a hybrid planning approach to model the task
of tidying a household. It is a combination of ASP, Prolog, ConceptNet 4, and
a motion planner. The task of tidying the household as well as the actions of
a robot are formulated in ASP. ConceptNet 4, the predecessor of ConceptNet 5,
is used as a commonsense knowledge source. Two of its relations are used and
translated into further ASP predicates. The AtLocation relation provides typical
places of objects, while the HasProperty relation is used to describe if an object
is fragile. The resulting ASP predicates are then used as external input of the
Prolog program, which conducts the actual task planning. Finally, the resulting
commonsense knowledge enriched task is given to motion planning.

The approach presented by Erdem et al. is similar to the integration of com-
monsense knowledge into the knowledge base of a robot shown by us in [104, 107].
Besides using ConceptNet 5 instead of ConceptNet 4, the extracted knowledge is
directly translated into ASP instead of using Prolog. This reduces the overall com-
plexity of the system since no additional formalism has to be applied. Additionally,
the utilisation of Clingo External Statements enables the retraction of commonsense
knowledge from the knowledge base in the case of contrary knowledge is received. A
further difference is the amount of employed commonsense knowledge. Erdem et al.
only use the AtLocation and HasProperty relation to prevent possible inconsistencies.
In contrast, the full set of over 34 base relations is applied in [104, 107]. To prevent
semantic inconsistencies in the knowledge base of a robot, we introduce an auto-
matic prevention of inconsistencies in [78], which relies on commonsense knowledge
to find contradictions in the properties of an object.

Lemaignan et al. present in [86] a framework for autonomous robots with ad-
vanced human-robot interaction skills. They use OWL in combination with the
Pellet reasoner [126] as their knowledge representation and reasoning formalism.
This limits the addition of further knowledge during runtime since the complete
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knowledge base has to be classified again to add new classes. The knowledge base
of a robot is additionally supplemented with databases such as DBPedia [5] and
WordNet [94], which are part of ConceptNet 5. The communication and dialogues
between robots are modelled by the Dialogs [85] component. It heavily relies on the
knowledge base to resolve the relationships between the perceived words.

The usage of commonsense knowledge shown by Lemaignan et al. is similar to our
usage of commonsense knowledge presented in [104, 107] and our detection of incon-
sistencies introduced in [78]. Both enrich their knowledge bases with commonsense
knowledge extracted from external sources. A difference is given in the used reas-
oning formalism. Lemaignan et al. rely on OWL, which requires the reclassification
of the complete knowledge base to introduce additional classes. This disadvantage
can be removed using ASP as proposed by us in [78, 104, 107].

Ayari et al. present in [6] a system for ambient assisted living, which applies
commonsense knowledge and reasoning. Two ontologies form the basis of their
framework. The first ontology provides a hierarchy of classes and individuals using
a generalisation / specification relation like IsA. Furthermore, it is used to describe
static commonsense knowledge. The second ontology is used to represent dynamic
terms. Both ontologies can be enriched by commonsense knowledge extracted from
external sources like WordNet [94]. Instead of using OWL for the ontologies, the
Narrative Knowledge Representation Language (NKRL) [138] is utilised to form the
ontologies. In addition to classical ontology features, NKRL supports the definition
of events, which serve as templates for actions.

The framework introduced by Ayari et al. is similar to the combination of our
modelling of commonsense knowledge [107] and our inconsistency handling [78].
Both approaches use commonsense knowledge to support agents in solving their
tasks, for example, in a household scenario. The major difference is given in the
selection of the knowledge representation language. Ayari et al. use NKRL, which
focuses on the narratives of text. It is not fully declarative and adheres to the
Open-World assumption. In contrast, our approaches utilise the fully declarative
language ASP, which supports the dynamic adaption of the knowledge and enables
the use of the Closed-World assumption.

Chen et al. focus in [25] on the interaction between humans and robots by trans-
lating limited segments of natural language, which are restricted to if-then clauses,
into ASP. The proposed method is divided into three steps. The first step is the
generation of a grammar tree and the relations between the words of the perceived
sentence. The second step is a semantic analysis generating logic predicates that
define the meaning of the sentence. Finally, a pragmatic analysis forms the ASP
predicates.

In contrast to our approach shown in [107] and in [78], no additional forms of
commonsense knowledge can be added by Chen et al. [25]. Furthermore, no mech-
anism to detect or prevent inconsistencies is given. To avoid them, each reasoning
step depends on an increasing timestamp.
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Böhnstedt et al. present in [16] a tagging concept to enrich resources semantic-
ally using individual knowledge networks. In general, a knowledge network models
knowledge as a graph with concepts as nodes and relations as edges. In the presen-
ted tagging concept, each user builds their own knowledge network by semantically
tagging web page fragments. By utilising the semantics of the tags, an efficient
search method is created that supports filtering, recommendation, and collabora-
tion between users.

The general idea of Böhnstedt et al. can be compared to our application of
commonsense knowledge. We utilise this knowledge to semantically annotate stored
pieces of knowledge to enable an efficient knowledge discovery in loosely couple
networks. While Böhnstedt et al. rely on users to create individual knowledge
networks, we utilise the CN5 hypergraph to extract the necessary commonsense
knowledge.

3.3 Knowledge Representation Using ASP

Answer Set Programming (ASP) is a widely used knowledge representation and
reasoning formalism. This is the case since ASP provides a rich, declarative, and
at the same time easy to use language. ASP enables the definition of defaults, it
provides non-monotonic reasoning capabilities, and is supported by efficient solvers.
Hence, it is best suited for the dynamic management of knowledge introduced in
this thesis. To provide an overview of state-of-the-art applications of ASP, several
works utilising ASP are presented in this section.

In [56], Gebser et al. detect inconsistencies in large biological networks using
ASP. Vertices of the network model genes, metabolites, proteins, and regulations
between them are formed by the edges. The applied ASP program is divided into
three parts. The first part contains the problem instance, which consists of facts
representing vertices, edges, and observations. The second part is the generation of
solution candidates. It consists of disjunctive ASP rules, which create the solution
space. The last part is the testing of possible solution candidates by adding further
rules and constraints. The resulting ASP program is then applied to experimental
measurements to handle incomplete and unreliable data.

The approach shown by Gebser et al. can be compared with our approach [107],
which we expanded with an inconsistency handling in [78]. Both aim at locat-
ing inconsistencies in a given set of data or knowledge, which is organised in a
graph structure. However, Gebser et al. rely on single-shot solving, while we utilise
multi-shot solving to create a dynamic commonsense knowledge base.

Gonçalves et al. focus on the process of intentionally forgetting in ASP [61]. The
focus is set on supporting strong persistence. It requires that all semantic relations
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between atoms that are not intentionally forgotten have to be preserved. However,
they conclude that this is not always possible, especially in two cases, which are
either choice rules or atoms that are actively used to determine the truth value of
other predicates. Further investigation concerning intentional forgetting has been
conducted in [60]. Relying on the notion of modules (see Section 2.5.3), uniform
persistence is introduced, which relies on moving input and output atoms to the set
of hidden atoms inside each module.

The discouraging results indicated by [61] have influenced our modelling common-
sense knowledge presented in [107], our handling of semantic inconsistencies shown
in [78], and our semantic routing framework introduced in [75]. To avoid the neces-
sity of intentional forgetting operators, a combination of negation-as-failure, classical
negation, as well as External Statements is applied. Informally speaking, an atom
in a rule head depends negatively on its negated version in the body. Instead of
actively forgetting atoms, the corresponding negative literal is added, stating that
the knowledge no longer holds.

Redl et al. focus in [114, 115] on the detection and explanation of inconsisten-
cies in a given ASP program. According to [115], an ASP program is inconsistent
concerning a set of input predicates if no Answer Set can be derived. Inconsistency
reasons are determined by comparing the input sets with the rules of the ASP pro-
gram and selecting the pairs of facts and rules which derive the contradiction. This
process is refined in [114] to provide consistent program splits.

In contrast to our inconsistency handling [78], Redl et al. do not focus on se-
mantic inconsistencies. Instead, the focus is set on finding the reasons for syntactic
inconsistencies. Furthermore, Redl et al. do not provide mechanisms to prevent
inconsistencies.

Basu et al. present in [10] a natural language understanding (NLU) framework
using ASP and a commonsense knowledge source. To understand English sentences,
their algorithm parses the sentences and generates a syntactic tree. Subsequently,
the verbs are extracted and their semantic is determined using VerbNet [82], which
provides semantic frames for English action verbs. For example, the verb grab in-
volves an agent that performs the action and a theme that is affected by the action.
The resulting frames are then translated into s(CASP) [4], which is a grounding free
ASP variant. The resulting ASP programs are used in two frameworks: SQuARE,
which is a question answering system, and, StaCACK, a chatbot focussed on reser-
vations.

The framework shown by Basu et al. is very similar to the usage of commonsense
knowledge we have suggested in [107] and in [75]. Both approaches utilise com-
monsense knowledge and ASP to solve tasks related to interaction with humans.
The main differences are given in the utilised frameworks and the field of applic-
ation. While Basu et al. focus on verbs, we employ the complete set of concepts
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provided by ConceptNet. We use the ASP-Core-2 Input Language Format which
is described in detail in [24] since it enables the use of prototypic rules. Finally,
we focus on the solving of tasks presented to a service robot and prevent possible
semantic inconsistencies created during the process.

Evans et al. introduce the Apperception Engine in [40], which is an automatic
tool for making sense of sensory input. In their work, making sense is defined as the
process of constructing a symbolic theory containing a set of objects that persist over
time, with attributes that change over time, according to general laws. The resulting
theory, on the one hand, should explain the sensory input. On the other hand, it has
to satisfy the following unity conditions. Objects are united in space. Constraints
unite predicates between these objects. Ground atoms form states that have to
respect the constraints and static rules. Finally, states form sequences by applying
causal rules [40]. To formulate these conditions and to represent the considered
sequence of inputs, ASP is used. Therefore, facts are used to model the input, while
rules model the unity conditions. In the last step, the most cost-efficient symbolic
theory is selected by weak constraints (see Section 2.5.1).

The modelling of sensory input and the application of weak constraints is similar
to the knowledge representation of our proposed multi-agent knowledge base dis-
cussed in Section 4.2 and in [76]. Input is modelled as External Statements, the
interdependencies by rules, and the selection of the best alternative by weak con-
straints. External Statements enable the dynamic adaption of the facts and, thus,
the results of a query. In contrast to this, Evans et al. rely on holds predicates,
which depend on discrete time steps.

Further related work can be found in the area of Truth Maintenance Systems such
as [12, 35]. They support non-monotonic reasoning like ASP. Additionally, a single
justification is required to introduce a true proposition. However, syntactic incon-
sistencies can be caused by rules that add semantic contradictions to a knowledge
base, thus, rendering the knowledge base useless. In comparison to Truth Mainten-
ance Systems, Belief Maintenance Systems [41] do not rely on a single justification.
Instead, belief support is aggregated. Still, beliefs that cause inconsistencies that
have the same belief support cannot be resolved, thus, leading to a contradiction
in the knowledge base. Additionally, both types of systems do not have access to
external knowledge sources that could be used to deal with the contradictions.

3.4 Ontology Generation

Ontologies are a common approach used to provide a shared terminology, share
knowledge, and cooperate utilising the shared knowledge [64, 135]. However, the
manual creation of these ontologies is tedious and error-prone. Hence, many ap-
proaches to automatically create ontologies have been proposed.
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The first kind of approach originates from databases and data warehouses. Both
consist of tables, which utilise named columns to store data points in rows. Fur-
thermore, columns can contain references to columns of other tables, which form
their relations. Several approaches rely on this structure to automatically generate
ontologies. A selection of these works is presented in the following paragraphs. The
general idea of these approaches is to employ a fixed set of rules that translates
the database or data warehouse scheme into an ontology. Table names are trans-
lated into classes, column names serve as properties, and rows are interpreted as
individuals.

Following this method, Kiong et al. present the Health Ontology Generator
(HOG) in [81], which extracts an ontology from a given SQL database. During
this process, bridge tables, references tables, and reference fields are highlighted.
To ease the generation for a human user, HOG provides a graphical user interface.
Similarly, da Silva et al. [124] extract ontologies from a data warehouse based on a
set of fixed rules. A refinement of this method is provided by Zhou et al. in [140]. In
contrast to Kiong et al., references are automatically mapped to the corresponding
relations instead of introducing special relations for bridge or reference tables. Fur-
thermore, Zhou et al. provide techniques to extract cardinalities of properties. If a
column in a relational database is marked as NOT NULL, the minimum cardinality
of the resulting property is set to 1. In the case that a column is marked as UNIQUE,
the maximum cardinality is set to 1. Further features are included by Al Khuzayem
et al. in [2]. Amongst others, these include subclass relations as well as symmetric
or reflexive properties. Furthermore, they generate bidirectional mappings between
the original database and the resulting ontology. A comprehensive comparison of
further approaches is given in [38].

The approaches presented in the previous paragraph achieve good results in auto-
matically generating ontologies. However, the resulting ontologies lack expressive
power and flexibility. This is caused by the way databases are usually built. They
typically consist of a low number of tables consisting of data points stored in the
rows. This results in very few classes and a considerable amount of individuals.
Furthermore, the number of relations is restricted by the references between the
tables. In contrast to this, we introduce the ARRANGE framework in [77]. Instead
of databases, ARRANGE uses hypergraph-based knowledge sources for automatic
ontology extraction. This results in a huge amount of classes, which are connected
by relations defined by commonsense knowledge. A further difference is given by
the selected language used to represent the ontology. In contrast to [2, 81, 124, 140],
ARRANGE uses ASP instead of OWL, which results in a dynamically adaptable
ontology.

In comparison to fully structured sources like databases, free text sources do not
provide fixed names that can be used as classes in an ontology. Mousavi et al.
present OntoHarvester in [97], which extracts a domain-specific ontology from a free
text. They use an existing ontology as a seed and extend it by applying graph-based
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search patterns. The resulting classes are added to the ontology if they appear
frequently and have high confidence. Additionally, they actively search for aliases
and synonyms to increase the quality of the resulting ontology. This process is
stopped when no significant amount of new classes can be found. The resulting
ontology resembles a typical taxonomy as it does not provide subclasses, properties,
and value restrictions.

The approach of OntoHarvester is similar to ARRANGE presented in [77]. On-
toHarvester uses a seed class or seed ontology and applies graph-based search pat-
terns to derive subclass relationships. In contrast, ARRANGE uses ASP and, thus,
supports the dynamic adaption of the ontology during design and run time and
reasoning. Besides OntoHarvester, many approaches exist (see [110]) that utilise
knowledge graphs extracted from free texts or semi-structured knowledge. To fur-
ther refine the resulting ontologies, crowd-based approaches or expert knowledge are
used. ARRANGE employs a similar approach since it extracts ontologies from the
hypergraph-based knowledge source CN5. The use of ASP in ARRANGE, however,
provides axiomatic semantics and reasoning support.

In [118], Ricca et al. describe the OntoDLV system, which is tailored for enter-
prise ontologies. Instead of modelling the ontologies in OWL, they chose ASP based
on two reasons: the application of the Closed-World Assumption (CWA) [116] and
the Unique Name Assumption (UNA) [117] in ASP. Both assumptions ease the use
of an ontology, especially in enterprise environments. Additionally, CWA and UNA
typically hold in the databases, which were used to generate the ontologies. To
model the ontologies, OntoDLP is used, which is an extension of the basic ASP syn-
tax. Classes are marked with the keyword class. Furthermore, additional keywords
for individuals, relations, modules, data types, lists, and sets are available. A tax-
onomy is defined by adding the additional keyword isa. For example, an employee
class is defined as follows: class employee isa person(salary : integer,company :
enterprise) [118]. This OntoDLP line states, that an employee class is a subclass of
person and has the properties salary, which is an integer, and company, which has
the type enterprise.

In comparison to OntoDLV, ARRANGE [77] adheres to the ASP-Core-2 standard.
By incorporating the External Statements and Program Sections provided by the
Clingo solver, dynamically adaptable ontologies are generated.

3.5 Semantic Routing

To locate pieces of knowledge in a distributed knowledge management system, as
presented in this thesis, an efficient routing mechanism and knowledge discovery is
needed. Many Peer-to-Peer (P2P) systems apply search and routing mechanisms
like flooding, random walks, distributed hashing or central repositories. Steinmetz
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et al. provide in [129] a comprehensive description of these mechanisms and give
a detailed insight into P2P systems. Mechanisms like flooding are not suited for
unstructured and unstable networks, for example, as present in Search&Rescue
scenarios (see Section 1.2.2). Flooding by many users, including authorities, rescue
teams, and civilians, can lead to network congestions or, in the worst case, to a
complete breakdown of the communication network. Random walks do not assure
that the required piece of information or knowledge is found. Central repositories
could be unreachable and introduce a bottleneck and a single point of failure to the
system. Distributed hash maps like [133] map keys of a document or a piece of know-
ledge to nodes and, thus, violate the autonomy principles defined by Bonifacio et
al. [17]. Furthermore, they are not designed for unstable or dynamic networks since
they tend to store knowledge equally distributed on the network. This could result
in a mapping of a document to a remote node that could be no longer reachable.
Therefore, an efficient content-centric approach to locate knowledge is needed.

The first type of related works is from the area of Semantic Query Routing in
P2P systems. Generally speaking, the Semantic Query Routing Problem can be
described as discovering the location of semantically annotated files or documents in
an unstructured P2P network. A related work belonging to this category is presen-
ted by Gómez Santillán et al. in [59]. They use an adapted Ant Colony algorithm
to learn paths leading to the requested documents. Therefore, the algorithm sub-
sequently adapts the pheromone levels of routes regarding their hit rates and hops.
Thus, the more often a specific query is propagated through the network, the better
the route converges to the optimum.

The system proposed by Gómez Santillán et al. is suited for rather static envir-
onments with recurring queries containing the same topic since a learning phase is
required. Frequent changes in the network structure hamper that the routes con-
verge. In contrast to this, we present in [75] a semantic routing approach that
relies on semantic routing tables, which are dynamically adapted to the network
structure. These tables are automatically created during the forming process of the
used multi-agent system and updated if new knowledge is introduced or the network
topology changes. Hence, our system does not require a learning phase.

The second type of related work can be found in the area of Content-Based Rout-
ing. A typical approach is to rely on taxonomies to ease the discovery of related
knowledge. Michlmayr et al. present in [93] a routing mechanism that utilises
taxonomies to determine the similarity of documents. Documents, which share a
super concept are considered similar. A related approach is introduced by Pireddu
and Nascimento [111]. Nodes in the network use taxonomies to sum up the num-
ber of documents of each category and propagate them to their direct neighbours.
Additionally, the resulting numbers for upper-level categories are shared between
neighbours of neighbours. Finally, if the number of hops required to reach a docu-
ment is greater than the depth of the taxonomy, the information is removed from
the knowledge base.
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In comparison to Michlmayr et al., our semantic routing mechanism [75] utilises
taxonomies to aggregate routing entries to reduce the size of the routing tables.
This approach can be compared to the work of Pireddu and Nascimento. Both
apply taxonomies to aggregate knowledge about similar categories. However, the
work of Pireddu and Nascimento focuses on the local neighbourhood and is not
tailored for routing queries over long distances. Furthermore, our approach shown
in [75] is not limited by the depth of the taxonomy and tailored for loosely coupled
networks.

Koloniari et al. discuss in [83] a hierarchically organised P2P system managing
knowledge stored in XML files. To solve queries, each node applies a local Bloom
Filter [34]. Generally speaking, a Bloom Filter is a data structure providing a
compact probabilistic representation of a set of objects. To improve the performance
of the Bloom Filters, the system proposed by Koloniari et al. supports the merging
of filters in a bottom-up way. Parent nodes merge the filters of their child nodes.
Thus, a parent node forwards the query to a fitting child node. If no child is able
to solve the query, it is forwarded to a higher level of the hierarchy.

The system proposed by Koloniari et al. is suited for static environments since
nodes have to stay in the hierarchy to prevent a high number of updates. Further-
more, the system is limited by the resources of the root node since it has to manage
most queries and updates. To prevent false positives, Bloom Filters have to be
regularly adapted. In contrast to this, our semantic routing relies on ASP to form
dynamically adaptable routing tables, which are tailored for dynamic environments.
Furthermore, it is not limited to XML files. Instead, it supports the storage of any
kind of serialised knowledge.

A further approach used for Content-Based Routing is the application of hier-
archical names, which for example, have been used by Jacobson et al. in [70] and
Gritter et al. in [63]. In general, hierarchical names consist of a list of concepts
starting with the most general one. Furthermore, the concepts are separated by a
special character. Since there are no restrictions to the names, consistent names or
annotations of the content are not given. For example, names could start with an
URL.

While hierarchical names are similar to a path in a taxonomy, the properties of
a taxonomy, for example, merging of child concepts, are not applied. Furthermore,
identical concepts can appear at arbitrary parts of the hierarchical names and, thus,
complicate aggregations. In contrast, our semantic routing method uses concepts
organised in a taxonomy to aggregate routing entries to minimise the size of the
managed routing tables. Furthermore, the inclusion of an ASP solver enables solving
semantic queries.

Manfredi et al. present Scalable Hybrid Adaptive Routing for dynamic multi-hop
Environments (SHARE) in [88]. SHARE relies on a combination of techniques
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to efficiently route queries. This includes gradient-based routing for long-distance
queries, local link-state routing, and scoped flooding. To prevent a high load for
dense areas in the network, each node only maintains knowledge about its two-hop
neighbourhood. Additionally, two kinds of control messages are used. Gradient
Establishment Messages for long-distance routing and Heartbeats for local scopes
(one hop).

SHARE is similar to our semantic routing mechanism. Both only rely on flooding
if no routing information is available. Furthermore, both rely on regular small
messages (heartbeat reps. ping messages) to establish routes. However, SHARE is
not suited for content-based routing. In contrast to SHARE, our approach utilises
semantic information and a taxonomy to aggregate the created routing tables to
minimise their size and increase their efficiency.

Orda et al. show an extension to the routing tables used in the Kademlia P2P sys-
tem [90] in [109]. To improve the routing tables of Kademlia, Orda et al. introduce
a multi-dimensional metric and distance calculation. These rely on a complex iden-
tifier containing a unique id and coordinates. Furthermore, changes in the network
are propagated by adjusting the bucket ranges.

In contrast to our semantic routing approach, Orda et al. do not rely on semantic
information and, thus, do not aggregate routing entries leading to similar knowledge
or documents. Furthermore, the expansion is suited for mostly static networks to
prevent a high number of adaptions to the buckets.
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The central management of knowledge in a network of heterogeneous participants
has a significant advantage. Since all relevant knowledge is stored at a central node
of the network, queries can easily be resolved using all relevant available know-
ledge with as few messages as possible. However, central solutions are not suited
for dynamically changing environments since it cannot be guaranteed that central-
ised management components are reachable by every participant. In a decentralised
knowledge management system, knowledge is distributed on several nodes of a net-
work. Since relevant knowledge can be located on several nodes, queries must be
disseminated in the system, increasing the message complexity. However, no bot-
tleneck and no single point of failure are introduced to the system. Furthermore, a
failed or unreachable node of a distributed knowledge management will not cause
a complete system failure. This is especially beneficial in highly dynamic environ-
ments.

The remainder of this chapter is structured as follows: Section 4.1 presents specific
requirements for the distributed storage of knowledge. Section 4.2 introduces the
concept of a multi-agent-based and distributed knowledge base. The agents form a
tree-like structure to manage knowledge efficiently. Since several distinct knowledge
bases can be formed in separate networks, protocols and mechanisms are needed
to combine these knowledge bases if new network connections are established. For
example, this could happen by introducing additional communication infrastructure
during an emergency. The corresponding protocols and mechanisms are introduced
in Section 4.3. Section 4.4 summarises this chapter.

4.1 Specific Requirements

Service-oriented architectures (SOAs) are typically deployed in dynamic environ-
ments. The incorporation of microservices further increases the complexity of SOAs,
since they frequently change. This can either be caused by updates, changes in their
context or failures. Even small changes can affect huge parts of a microservice com-
position and thus requires a broad adaptation of the corresponding microservices.
Thus, a distributed knowledge management is needed to handle the frequent changes
and provide suitable replacements for microservices. A detailed description of the
scenario can be found in Section 1.2.1.
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Further examples of highly dynamic environments are future digital cities. Di-
gital cities strongly depend on their IT and communication infrastructure29 (see
Section 1.2.2). In the near future, this dependency will further increase in most
areas of a digital city. Besides the already existing infrastructure, heterogeneous
participants like autonomous cars, unmanned aerial vehicles (UAVs), and autonom-
ous mobile robots will rely upon the existing communication infrastructure. Hence,
future digital cities can be considered as large distributed systems that consist of
heterogeneous participants. Furthermore, these participants rely on communication
to exchange data, information, and knowledge. Typically, central control instances
manage these critical aspects of a city and introduce central failure points or bottle-
necks to the distributed system. To overcome this issue, a resilient exchange of data,
information, and knowledge is needed. This is especially the case in emergencies or
after natural disasters. For example, let us consider an earthquake. During an
earthquake, buildings could collapse, water or gas pipes could be damaged, commu-
nication infrastructure could be destroyed, and humans could be injured or buried.
To manage situations like this, rescuers need an effective and reliable way to ac-
cess and manage mission-critical knowledge [75]. Due to limited communication
capabilities, the reachability of a central knowledge management system cannot be
guaranteed. Hence, the knowledge has to be distributed on the remaining nodes of
the network to at least guarantee partial access.

Both scenarios shown above indicate that central entities, which manage a net-
work or knowledge are not suited for highly dynamic environments. However, simply
splitting a central knowledge base into several parts and distributing them among
the network nodes does not solve the presented issues. In addition, a smart method
to manage the knowledge is needed. As proposed by us in [78], Multi-Agent Systems
(MAS) can manage the knowledge since MAS grant loosely coupled and decentral-
ised organisations. Furthermore, agents are able to act autonomously and react
to changes in their environment. They can cope with lost messages or failures of
other agents. Thus, the application of agents and the resulting MAS creates a
failure-tolerant and robust distributed knowledge base.

Considering the requirements introduced in Section 1.1, this chapter aims to fulfil
Requirement R1 - Handling Dynamic Environments. Therefore, Section 4.2
presents the fundamental concepts of the multi-agent knowledge base, its distributed
knowledge management, and the query resolution. Since several knowledge bases
can be deployed in large-scale environments, Section 4.3 discusses protocols that
enable the exchange of knowledge and the forwarding of knowledge between several
knowledge bases.

29Emergency Responsive Digital Cities, https://www.emergencity.de/,
Accessed December 29, 2021.
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4.2 Agent-based Knowledge Management

As discussed in the previous section, providing a reliable and robust knowledge
base in loosely coupled networks consisting of heterogeneous participants is a ma-
jor challenge and requires a distributed knowledge management [76]. Especially
Service-oriented architectures (SOAs) deployed in highly dynamic environments like
Fog or Edge computing need a decentralised service registry to be able to cope with
service updates or failures. Jahl proposes in [72] NIO-CMS (Networked Intercooper-
ative Objects - Change Management System) to create the knowledge needed to
discover a suitable service replacement for a failed service. Figure 4.1 presents the
concept of NIO-CMS.

Service S Agent A Distributed 
Registry R

Characterisitc
Set

Skill Set

Characterisitc
Set

Skill Tree

Skill Set

In-/Output In-/Output

Figure 4.1: Concept of NIO-CMS [72]

NIO-CMS is based on a MAS in which each agent monitors a service and stores a
set of Skills for the monitored service. On the one hand, this Skill set contains Char-
acteristics, which include interface descriptions and dynamic capabilities like delay
or available bandwidth. On the other hand, the Skill set contains a machine-learned
behaviour model. Each service is equipped with an agent that monitors its input and
output data streams to create this model. By applying hyperplane-based learning
techniques, like Support Vector Machines, in combination with Ensemble Learn-
ing [137] on the input and output data streams of a service, a comparable model of
the behaviour of the service is learned. The resulting Skill set is then passed to the
distributed registry, which is formed by the distributed knowledge base (Knowledge
Group) developed in this thesis and presented in Section 4.2.1. In order to separate
the concerns of monitoring the services and managing the knowledge, a Knowledge
Group is a separate MAS.

To ease the search for service replacements, the Skill set is enriched with semantic
information. Additionally, non-monotonic reasoning is applied to select the best
fitting service replacement. ASP is best suited to semantically annotated the Skills,
which is discussed in detail in Chapter 5. The application of the solver Clingo
provides optimisation statements that can be used to select the fitting service re-
placements. Furthermore, the incorporation of External Statements enables the
modelling of dynamically adaptable Skill sets.

The following sections introduce the Self-Organising Multi-Agent Knowledge Base.
Section 4.2.1 and 4.2.2 present the MAS, its agents, and the representation of the
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stored knowledge. The knowledge base is discussed using the SOA scenario shown
in Chapter 4, but it is not limited to this domain. Afterwards, Section 4.2.3 explains
the query resolution.

4.2.1 Multi-Agent System

Multi-Agent Systems (MAS) are ideally suited for dynamic environments like Fog
Computing or Search & Rescue scenarios due to their decentralised architecture and
ability to execute tasks independently. Therefore, a MAS-based approach is chosen
to manage the presented dynamic and decentralised knowledge base (Knowledge
Group). Each agent of the MAS follows the MAPE-K principle and contains the
components shown in Figure 4.2.

Query Event

Request Response

Node

Response

Knowledge Manager

Message

Communication Manager

Network
Topology

General
Knowledge Store Receiver Sender

Agent Manager

Topology Adaptation

Ping Handling Spawn RequestFailure Handling Executor

Figure 4.2: Component Diagram of an Agent

The central part of each agent is the Node component. It is responsible for the
decisions of an agent and controls the remaining components shown in blue and their
subcomponents marked in orange. The Node component monitors (M) its environ-
ment by receiving messages from other agents. Therefore, a chain of responsibility
of Receivers is provided by the Communication Manager. The agent analyses (A)
the content of the messages after they have been received by the corresponding Re-
ceivers. Table 4.1 presents the used message types and briefly describes their usage.
A detailed description of each message will be given in the following paragraphs.
For example, a RegistryRequest is a multicast message used to find a Registry Node
when a new agent initially enters the system. Furthermore, the Constraint Applica-
tion Protocol (CoAP) [20] is used to minimise the size of the transmitted messages.
For short, CoAP is situated on the Application Layer of the OSI model. It uses
UDP to transport messages. To enable confirmable messages, CoAP messages can
be equipped with a unique id enabling the detection of duplicates or missing parts
of a multi-part message.
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Message Type Description
RegistryRequest Multicast Initial Request for a Registry Node
Election Multicast Starts the election of the first Registry Node
Post Unicast Exchange of contact information
PostLevel Unicast Response containing the required tree level
Register Unicast Registration of a Registry Leaf /Node at a

Registry Node
Acknowledge Unicast Acknowledge for a previous message, con-

tains identical ID
Ping Unicast Periodic availability check
ASPInform Unicast Store knowledge
ASPRequest Unicast Forwarding of an ASP query
ASPResponse Unicast Answer to an ASP query
SpawnRequest Unicast Request to spawn a replacement agents
KnowledgeGroupCheck Multicast Checks a network for an existingKnowledge

Group

Table 4.1: Message Types

After an agent has received a message, it plans (P) suitable actions based on the
content of the message. During this process, two primary purposes of messages are
distinguished. They are either related to the managed knowledge of an agent or
used to coordinate with other agents. In the case of knowledge related messages
like ASPRequests, the contents are forwarded to the Knowledge Manager (K). The
knowledge manager incorporates two instances of the ASP solver Clingo to separate
knowledge about the Network Topology from the General Knowledge Store, which
contains semantically annotated pieces of information and knowledge (Knowledge
Items). A detailed description of the mechanism to store knowledge and its rep-
resentation in ASP is given in Section 4.2.2. Messages related to the maintenance
of the connection to neighbouring agents are handled by the Agent Manager. For
example, Ping messages are sent regularly to connected agents to check their avail-
ability. Missing Pings indicate that an agent is no longer available and will result
in an adaption of the Network Topology. Since the missing agent could be an es-
sential part of the organisation of the MAS, a replacement for the failed agent can
be requested from the Executor. It is an additional process used to create further
agents. Finally, agents execute (E) their planned actions by sending messages via
the Sender interface provided by the Communication Manager.

To improve the performance of the Knowledge Group, agents form a hierarchy.
This enables theKnowledge Group to effectively forward queries to the corresponding
agents, which will be discussed in detail in Section 4.2.3. This hierarchy of agents is
shown in the purple part of Figure 4.3. The green part depicts NIO-CMS presented
by Jahl in [72].
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Figure 4.3: Structure of the Distributed Knowledge Base [76]

Inside this hierarchy, agents act in two roles, which are Registry Leaves and Re-
gistry Nodes. Registry Leaves are responsible for the storage as well as the main-
tenance of general knowledge and resolve queries given to the system. To foster the
usage of the Knowledge Group by heterogeneous participants, ASP is selected as the
common knowledge representation language since it has already proven its suitab-
ility, as discussed in the related work and will be shown in Chapter 5. Especially
the definition of defaults and the non-monotonic reasoning capabilities enable the
creation of a dynamic knowledge base. For short, knowledge like the characteristics
or skills of a service are formulated as External Statements and enriched with se-
mantics that supports semantic-based queries. A detailed description of the stored
knowledge of a Registry Leaf is given in Section 4.2.2.

While the Registry Leaves concentrate on managing and providing knowledge, Re-
gistry Nodes focus on maintaining the structure of the Knowledge Group and form
its backbone. To efficiently manage the Knowledge Group, an adapted version of
the B*-tree [11] is applied to enable a binary search in O(log n), where n is the
number of agents. In a B*-tree, each node contains a sorted list of child nodes with
a fixed size. To maintain the fixed number of child nodes, new levels are intro-
duced if further nodes are added to the tree. Analogously, branches of a B*-tree are
merged if nodes are no longer available. Besides the management of the structure
of the Knowledge Group, Registry Nodes distribute received semantically annotated
data, information, and knowledge to the corresponding Registry Leaves. Therefore,
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ASP-based taxonomies are applied. To prevent a translation between different know-
ledge representation languages, the incorporated taxonomies are formulated in ASP
and will be presented in Section 5.2. Generally speaking, Registry Nodes aggregate
taxonomy branches and forward semantic queries using these branches to the fitting
Registry Leaves. A detailed description of the semantically enriched query routing
is given in Chapter 6.

To initialise a Knowledge Group, at least two agents are needed to separate the
concerns of administering the new Knowledge Group and managing the stored know-
ledge. Hence, one agent is necessary that acquires the Registry Leaf role and one
agent that acts as a Registry Node. Since these agents can be located on different
devices, a mechanism to reach a consensus about the roles is needed. A suitable
approach is to rely on the election of a leader, which subsequently will serve as a
Registry Node. The election procedure is shown in Algorithm 4.1. It is based on the
Bully Algorithm [28] and adapts it for asynchronous environments by introducing a
request limit and timeout.

Algorithm 4.1: Leader Election
Input : Request limit rl, Timeout t
Output: Leader l

1 R := ∅
2 for int i := 0; i < rl; i++ do
3 Send RegistryRequest
4 R := R ∪ collectRequests(t)
5 if R 6= ∅ then break
6 if R == ∅ then return self
7 l := self
8 foreach Request r ∈ R do
9 if l.uuid < r.sender.uuid then

10 l := r.sender

11 return l

The initialisation of the Leader Election is shown in the Lines 1 to 5. To start
the election, an agent sends a RegistryRequest via a predefined multicast address
to other agents and waits for the arrival of RegistryRequests of other agents until a
configurable timeout T is reached. If no requests arrive, the procedure is repeated
up to Rl times since new agents could have been introduced to the system during
the previous waiting time. In the case that no requests arrive at all, the agent
proclaims itself as the winner and serves as the first Registry Node. Otherwise, a
leader has to be determined. Therefore, agents are equipped with a UUID that
supports the definition of a total order. The participating agents evaluate their
received RegistryRequests and select a leader based on the highest UUID, including
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their own UUID (Line 7 to 11). After the Leader Election has finished, two results
are possible. First, another agent is selected as the leader. In this case, the agent
simply waits for a Post message containing the contact information of the elected
Registry Node. Second, the agent itself is elected as the first Registry Node. Thus,
it sends a Post message containing its contact information to the participants of
the election to confirm its role as the initial Registry Node. In the case that a
conflict arises, the Post message of the agent with the lower UUID is overruled by
the message of the higher one. The remaining agents will act as Registry Leaves and
have to register themselves at the newly elected Registry Node. Therefore, they send
a Register message to the Registry Node. If the Registry Node is still able to manage
additional Registry Nodes, it adds the received contact information to its Network
Topology and acknowledges the registration. Upon receiving the acknowledgement,
Registry Leaves include the Registry Node into their Network Topology. Nevertheless,
the registration of a Registry Leaf can be rejected if the Registry Node is not able to
manage additional Registry Leaves. For example, this could be decided based on a
configurable number, the size of the managed Network Topology, or limitations given
by the device the Registry Node is running on, like available RAM or CPU usage.
Finally, if no agent is available that can act as a Registry Leaf, a Spawn message is
sent by the elected Registry Nodes to the Executor. Subsequently, it creates a new
agent, which will act as a Registry Leaf.

To expand the Knowledge Group, additional Registry Nodes have to be introduced.
As already discussed above, a Knowledge Group organises its agents based on an
adapted B*-tree. Hence, additional levels are introduced to the tree if existing levels
are full. The application of Algorithm 4.2 conducts the expansion of a Knowledge
Group.

Algorithm 4.2: Knowledge Group Expansion
Input : Knowledge Group KG, Agent ag, Connection limit cl, Timeout t
Output: Expanded Knowledge Group KGe

1 ag.sendRegistyRequest()
2 foreach Registry Node rn ∈ KG do
3 if rn.connections.size < cl then
4 rn.sendPostLevel(rn.neededLevel)

5 P := ag.collectPostLevel(t)
6 Registry Node Rnw := ag.selectLowestPostLevel(P).sender
7 ag.registerAt(Rnw)

This algorithm receives an existing Knowledge Group KG, a new agent ag, a
connection limit cl, and a timeout t as input. After its execution, the expanded
Knowledge Group KGe is returned. Generally speaking, Algorithm 4.2 is used to
find a place for a new agent inside an existing Knowledge Group. Furthermore, the
following assumptions hold by default but can be adapted by the user:
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A1 The connection limit cl is set to 4 and a timeout of 1 s is assumed.
A2 A Registry Leaf is only connected to a single Registry Node.
A3 A Registry Node has 1 connection to a higher level in the B*-tree, 1 on the same

level to provide redundancy, and cl − 2 connections to a lower level.
A4 Registry Nodes ignore requests by new agents if their connection limit is reached.

As shown in Figure 4.4a, Registry Node 1 (RN1 ) is not connected to any other
agent. Thus, according to the assumptions, RN1 can establish a connection to two
Leaf Leaves, which is indicated by zeros, one Registry Node on the same level (1),
and one Registry Node on a higher level (2). In the case that a new agent ag is
introduced to the system, it sends a Registry Request via multicast. Since RN1 can
still register child nodes, it responds with a PostLevel message containing the lowest
required number of its connection list. This message is received by ag and evaluated
after timeout t. In this example, the only received level is 0. Hence, ag registers
itself at RN1 as a Registry Leaf. Analogously, a third agent is introduced to the
system, resulting in the constellation shown in Figure 4.4b. After the successful
registration of the third agent as a Registry Leaf, RN1 is not allowed to manage
additional agents with a lower level according to the assumptions A1 and A3. The
next agent which enters the system receives a PostLevel message containing the level
1 and, hence, registers itself as Registry Node 2 (RN2 ) at RN1. This is indicated
in Figure 4.4c. Since the newly introduced Registry Node has two available spots
with the level 0, two new Registry Leaves can be managed by the system. The
introduction of these results in the constellation of agents as shown in Figure 4.4c.
Furthermore, RN1 and RN2 only have an open connection to an upper level (A3).
Since there are two Registry Nodes that require a further agent at level 2, the next
agent receives two PostLevel messages with the same level. Thus, it registers itself
as a new Registry Node at RN1 and RN2 and creates a new level in the Knowledge
Group. The resulting tree is shown in Figure 4.4d. As indicated by a dashed line,
the connection between RN1 and RN2 is no longer necessary to organise the tree.
However, the connection is still maintained in the Network Topology of both agents
but not used to actively exchange messages to keep the structure of the Knowledge
Group tree-like. Additionally, it provides a fallback mechanism. In the case Registry
Node 3 (RN3 ) fails, RN1 and RN2 can still rely on the dashed connection and thus
prevent a division of the network.

Besides the creation and organisation of the tree-like structure of a Knowledge
Group, failure handling is an essential part of a Knowledge Group to ensure its
applicability in highly dynamic domains like SOAs or Search&Rescue scenarios.
Therefore, each Registry Node and Registry Leaf of a Knowledge Group actively
checks if its connected neighbours are still reachable. Therefore, each agent in a
Knowledge Group periodically sends Ping messages to its connected agents. For
example, in Figure 4.4d, RN3 checks the availability of RN1 and RN2. Since these
checks are conducted regularly, the messages have to be small to lower the necessary
bandwidth. Therefore, they only contain the UUID of the sender, the UUID of
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the receiver, a unique message ID used for the acknowledgement, and an optional
payload field. The payload can be used to distribute information that has to be
updated periodically, for example, to exchange Semantic Routing Entries used for
the creation of Semantic Routing Tables as presented in Chapter 6. On the one
hand, this slightly increases the message size; on the other hand, the total number
of messages is reduced since no additional message is needed for regular updates.

If an agent receives no Ping message from a connected agent during a predefined
timeout (for example, 5 s) it assumes that the connected agent is no longer reachable.
Therefore, the Ping Handling shown in Figure 4.2 maintains a count of missing pings
for each connected agent. In the case that one of these counts exceeds a predefined
threshold (e. g., three pings), the Failure Handling is triggered, which determines
the required actions to limit the impact of a failing agent. Four major cases are
distinguished.

The first case is a failed Registry Leaf. Since it is on the lowest level of the
Knowledge Group, the overall structure of the Knowledge Group is not affected.
However, a failed Registry Leaf will result in the loss of the knowledge stored in
its Knowledge Store. Therefore, each Registry Leaves protocols received ASPInform
messages and stores them persistently on the device they are running on. In the
case of a failing Registry Leaf, the Executor tries to create a new Registry Leaf on
the corresponding device, which then is able to recreate the lost General Knowledge
Store. Nevertheless, this requires the device of the failed Registry Leaf to be still
reachable. If this is not the case, the contents of its General Knowledge Store are
lost until the device is reachable again. To tackle this issue, redundant storage can
be introduced. This could be achieved by introducing a second Registry Leaf that
mirrors the corresponding General Knowledge Store. This, however, would double
the amount of managed Registry Leaves and increase the necessary messages. A
second option is to store received ASPInform messages redundantly on the level 1
Registry Nodes of the network which ensures that each piece of knowledge is at least
stored twice. Furthermore, the level 1 Registry Nodes do not manage a large number
of Registry Leaves. The size of the persistently stored history should not limit the
applicability of the system. Additionally, a redundancy level can be introduced to the
ASPInform messages. On the lowest level, the messages are not stored persistently.
On the next level, they are stored persistently at the corresponding Registry Leaf,
and, finally, on the highest level, the messages are stored on the level 1 Registry
Node of the Registry Leaf.

The second case is a failed Registry Node with level 1, as shown in Figure 4.4b.
Thereby, the network may be divided into several parts, which mostly consist of
single Registry Leaves. Hence, a new Registry Node has to be determined among the
remaining Registry Leaves, which is achieved by starting the leader election presented
in Algorithm 4.1. As a result, a new Registry Node is elected, which replaces the
failed one. Additionally, a new Registry Leaf is requested from the Executor. To
prevent a loss of knowledge, the newly elected Registry Note transfers its General
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Knowledge Store to the new Registry Leaf. Subsequently, this Registry Leaf recreates
the lost General Knowledge Store by applying the stored ASPInform messages.

The third case is a failing Registry Node at an intermediate level of the Knowledge
Group, which range from 2 to maxLevel − 1. In most cases, a failure of a Registry
Node on these levels will not result in a separation of the Knowledge Group since
there are still redundant connections, as indicated in Figure 4.4d. In the case that
Registry Nodes detect a failed neighbouring agent, they re-enable the correspond-
ing redundant connections to prevent a division of the Knowledge Group until a
replacement for the failed agent has been introduced to the Knowledge Group. To
prevent the creation of several replacements, only the Registry Node directly above
the failed node is allowed to request a replacement from the Executor. This can be
easily determined by each Registry Node that detects the failure by incorporating the
knowledge stored in the Network Topology. If the failed Registry Node had a higher
level, the affected agents on the lower level would wait for a replacement. Registry
Nodes on the same level can check if there is a Registry Node available on the next
level. If this is the case, they wait for the higher level to request a replacement.
If this is not the case, the Registry Node on the same level is allowed to request a
replacement. After the replacement has been requested, a new agent is spawned by
the Executor, which then follows Algorithm 4.2 to integrate itself at the place in the
tree of the failed agent. Furthermore, no knowledge is lost since the knowledge in
the Network Topology is restored when the replacement Registry Node is integrated
into the tree.

The last case is a failure on the highest level of the Knowledge Group. In this
case, a replacement is not necessary since the Knowledge Group can rely on the
redundant connections of the second-highest level. This results in a constellation
similar to Figure 4.4c. Furthermore, the next agent that enters the Knowledge Group
will automatically be assigned to the highest level according to Algorithm 4.2.

To summarise, this section has presented the tree-like organisation of a Knowledge
Group. This includes the incorporation of agents in two distinct roles, which either
manage the knowledge or maintain the structure of the Knowledge Group. Further-
more, agents are able to integrate themselves into an existing Knowledge Group and
can handle failures autonomously. Therefore, they rely on their stored knowledge
about the Network Topology, which is discussed alongside the General Knowledge
Store in the next section.

4.2.2 Knowledge Management

A central aspect of a Knowledge Group is its capability of storing and managing
knowledge. Since ASP has already proven its capabilities to represent dynamically
changeable knowledge as discussed in the related work, it is employed as knowledge
representation and reasoning formalism again. Furthermore, the application of ASP
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for the stored knowledge of a Knowledge Group enables the use of ASP-based ontolo-
gies (see Section 5.2) and the detection of semantic inconsistencies (see Section 5.3)
without the need to translate between different knowledge representation formalisms.
On the one hand, this increases the system performance since no time-consuming
translations are needed. On the other hand, it reduces the risk of knowledge loss
during the translation process.

To separate concerns, the managed knowledge of a Knowledge Group is divided
into two scopes: the Network Topology that keeps track of the connections between
the agent of a Knowledge Group and the General Knowledge Store, which manages
external knowledge. The following paragraphs present ASP templates that are used
to model the knowledge of the corresponding scopes.

Network Topology

The Network Topology is used to store the knowledge about the connections each
agent has inside its Knowledge Group, which varies depending on the active connec-
tions of an agent. The following listings introduce templates for the different agent
roles. Listing 4.1 shows the ASP template for a Registry Node.

1 registry(uuid("RegistryUUID"), ip("RegistryIP"),
port("RegistryPort"), location("localhost"))
:- not -registry(uuid("RegistryUUID"), ip("RegistryIP"),
port("RegistryPort"), location("localhost")).

2 #external -registry(uuid("RegistryUUID"), ip("RegistryIP"),
port("RegistryPort"), location("localhost")).

3

4 level(uuid("RegistryUUID"), level("RegistryLevel"),
timeStamp("TimeStamp")) :- not -registry(uuid("RegistryUUID"),
ip("RegistryIP"), port("RegistryPort"), location("localhost")),
not -level(uuid("RegistryUUID"), level("RegistryLevel"),
timeStamp("TimeStamp")).

5 #external -level(uuid("RegistryUUIDD"), level("RegistryLevel"),
timeStamp("TimeStamp")).

6 ...

Listing 4.1: ASP Representation of a Registry Node in the NetworkTopology

Line 1 and 2 of Listing 4.1 introduce the definition of a Registry Node. It is
identified by a universally unique identifier (UUID), is reachable via a specific IP
address and port, and is located on the local system (localhost). The body of the
rule in Line 1 depends negatively on the External Statement in Line 2. Thus, the
head of this rule can be derived as long as the corresponding External Statement
is false, which is initially the case. In order to remove the Registry Node from the
Network Topology, the corresponding External Statement has to be set to true. As
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introduced in Section 4.2.1, each Registry Node is annotated with its level in the
tree-like organisation of the Knowledge Group. The knowledge about the level of a
Registry Node is modelled like the templates in the Lines 4 and 5. Line 4 states the
level of a Registry Node by providing its UUID, the actual level, and a timestamp,
which is used to determine the current level. Again, Line 4 depends negatively on
the External Statement in Line 2. Thus, the knowledge about the level of a Registry
Node is removed when the External Statement is set to true. Line 5 introduces an
additional External Statement, which is analogously used to invalidate the current
level.

The representation of a Registry Leaf is shown in Listing 4.2 and works analogously
to the representation of a Registry Node. The only difference in the Lines 1 to 6 is
the usage of the leaf predicate instead of the registry predicate. Besides the use of
a different predicate name, Registry Leaves have topics that are used to categorise
and classify managed knowledge. A template for the definition of a topic is given in
the Lines 7 and 8 of Listing 4.2. Since the topics of a Registry Leaf are subject to
changes, they utilise a combination of a rule that depends negatively on a special
External Statement, too. To add further topics for a Registry Leaf, additional rules
and External Statements have to be added to the Network Topology.

1 leaf(uuid("LeafUUID"), ip("LeafIP"), port("LeafPort"),
location("localhost")) :- not -leaf(uuid("LeafUUID"),
ip("LeafIP"), port("LeafPort"), location("localhost")).

2 #external -leaf(uuid("LeafUUID"), ip("LeafIP"), port("LeafPort"),
location("localhost")).

3

4 level(uuid("LeafUUID"), level("LeafLevel"), timeStamp("TimeStamp"))
:- not -leaf(uuid("LeafUUID"), ip("LeafIP"), port("LeafPort"),
location("localhost")), not -level(uuid("LeafUUID"),
level("LeafLevel"), timeStamp("TimeStamp")).

5 #external -level(uuid("LeafUUID"), level("LeafLevel"),
timeStamp("TimeStamp")).

6 ...
7 topic(uuid("LeafUUID"), topic("LeafTopic"))

:- not -leaf(uuid("LeafUUID"), ip("LeafIP"), port("LeafPort"),
location("localhost")), not -topic(uuid("LeafUUID"),
topic("LeafTopic"), timeStamp("TimeStamp")).

8 #external -topic(uuid("LeafUUID"), topic("LeafTopic"),
timeStamp("TimeStamp")).

9 ...

Listing 4.2: ASP Representation of a Registry Leaf in the NetworkTopology

The last type of rules that are used to represent additional Registry Nodes located
in remote networks to which a Knowledge Group is connected. A detailed descrip-
tion of the handling of multiple Knowledge Groups distributed on several networks
is given in Section 4.3. A combination of a rule and two External Statements is
employed to enable dynamic adaptations of these Registry Nodes. In contrast to
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Registry Nodes in the local network, they can be seen as representatives of remote
Knowledge Groups. To emphasis this circumstance, the predicate networkRegistry
is used instead of the registry predicate used in Listing 4.1. Line 1 of Listing 4.3
presents a template for a remote Registry Node.

1 networkRegistry(uuid("NetworkUUID"), ip("NetworkIP"),
port("NetworkPort"), location("NetworkAddress"))
:- not -networkRegistry(uuid("NetworkUUID"), ip("NetworkIP"),
port("NetworkPort"), location("NetworkAddress")),
interface(ip("NetworkAddress")).

2 #external interface(ip("NetworkAddress")).
3 #external -networkRegistry(uuid("NetworkUUID"), ip("NetworkIP"),

port("NetworkPort"), location("NetworkAddress")).

Listing 4.3: ASP Representation of a Remote Registry Node in the NetworkTopology

1 //Registry Node 1
2 registry(uuid("Registry1"),ip("10.0.0.1"),port("5678"),

location("localhost"))
3 level(uuid("Registry1"),level("1"),timeStamp("0"))
4

5 leaf(uuid("Leaf1"),ip("10.0.0.1"),port("1112"),location("localhost"))
6 level(uuid("Leaf1"),level("0"),timeStamp("1"))
7 topic(uuid("Leaf1"),topic("person"))
8

9 leaf(uuid("Leaf2"),ip("10.0.0.1"),port("1314"),location("localhost"))
10 level(uuid("Leaf2"),level("0"), timeStamp("1"))
11 topic(uuid("Leaf2"),topic("patient"))
12

13 registry(uuid("Registry3"),ip("10.0.0.1"),port("1234"),
location("localhost"))

14 level(uuid("Registry3"),level("1"),timeStamp("3"))
15

16 //Registry Node 3
17 registry(uuid("Registry3"),ip("10.0.0.1"),port("1234"),

location("localhost"))
18 level(uuid("Registry3"),level("2"),timeStamp("0"))
19

20 registry(uuid("Registry1"),ip("10.0.0.1"),port("5678"),
location("localhost"))

21 level(uuid("Registry1"),level("1"),timeStamp("1"))
22

23 registry(uuid("Registry2"),ip("10.0.0.1"),port("9101"),
location("localhost"))

24 level(uuid("Registry2"),level("1"),timeStamp("1"))
25

26 networkRegistry(uuid("Network2"),ip("10.11.0.1"),port("9876"),
location("10.11.0.1"))

27 interface(ip("10.11.0.1"))

Listing 4.4: Answer Sets of Registry Node 1 and 3 of Figure 4.4d
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To provide a better understanding of the rules presented in the Listings 4.1 to 4.3,
let us consider the Answer Sets that represent their Network Topology. The Answer
Set for Registry Node 1 (RN1 ) is shown in Lines 1 to 14 in Listing 4.4. Each
segment of lines represents an agent, which is connected to RN1. Line 2 and 3
represent knowledge about RN1 itself. Its UUID is Registry1, it is reachable via the
IP address 10.0.0.1 at port 5678, and is located on the local computer. Furthermore,
its current level in the Knowledge Group is 1, which was decided a timestamp 0.
According to the example given in Figure 4.4d, RN1 is connected to two Registry
Leaves, which are represented by the predicates shown in the Lines 5 to 11. Leaf1
is located on the local computer with the IP address 10.0.0.1 at port 1112. It
was added at timestamp 1 and had a level 0. Additionally, it stores Knowledge
Items (kItem) that are annotated with the topic person. Further topics are added
by introducing additional topic predicates. The predicates for Leaf2 are interpreted
analogously.
The Answer Set representing the Network Topology of Registry Node 3 (RN3 )

is shown in the Lines 16 to 27 of Listing 4.4. Again, the Answer Set contains the
knowledge about the agent itself and the registries it is connected to (Registry 1 and
Registry 2 ). In contrast to RN1, RN3 is the highest agent in the Knowledge Group.
Thus, it responsible for maintaining connections to other Knowledge Groups. The
representation of another Knowledge Group is shown in the Lines 26 and 27. They
state that Network2 is located on the computer with the IP address 10.11.0.1 at
port 9876, which is reachable via the interface 10.11.0.1.

General Knowledge Store

The second part of the Knowledge Management is the General Knowledge Store. To
provide a distinct separation of concerns, it stores all Knowledge Items provided by
ASPInform messages and does not contain any knowledge regarding the structure
of the Knowledge Group. Generally speaking, the General Knowledge Store manages
arbitrary knowledge, which is encapsulated in ASP predicates to provide semantic
information. Therefore, a suitable representation in ASP is needed. The following
paragraphs discuss several alternatives. During this discussion, the Knowledge Items
shown in Listing 4.5 are used. They contain knowledge about three persons during
an emergency, e. g., an earthquake in a Smart City, as mentioned in Section 1.2.2.
The knowledge about Alice is defined in Lines 1 to 5 of Listing 4.5. She is 36 years
old, her location is known, and she was not injured (healthy). Bob is 72 years old and
his location is known. In contrast to Alice, Bob has been injured in the earthquake,
indicated by the health status injured. Furthermore, the kind of his injury is known
(broken leg). Last but not least, Charlie is 20 years old, but there is no current
information about her location or health status.
To model knowledge in the General Knowledge Store, a suitable ASP represent-

ation is needed. The first way to model Knowledge Items (kItems) in the General
Knowledge Store is the use of a single External Statement as shown in Listing 4.6.
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1 person:
2 name: Alice
3 age: 36
4 location: 51°18’41.2"N 9°28’26.5"E
5 healthStatus: "healthy"
6

7 person:
8 name: Bob
9 age: 72
10 location: 51°19’03.0"N 9°27’31.3"E
11 healthStatus: "injured"
12 injury: "broken leg"
13

14 person:
15 name: Charlie
16 age: 20
17 location: "unknown"
18 healthStatus: "unknown"

Listing 4.5: Example Knowledge Items Encoded in YAML

1 #external kItem(topic("human","person"),
content("person: name: Alice age: 36
location: 51°18’41.2"N 9°28’26.5"E healthStatus: healthy"),
format("text/YAML"), timestamp(1610356452)).

Listing 4.6: kItem Modelled as an External Statement

One of the benefits of modelling kItems as single External Statements is that no
additional rules are needed, and thus, the knowledge is represented with the least
possible overhead. Each kItem consists of a semantic annotation (topic) based on the
ontologies presented in Section 5.2, the stored content, its format, and a timestamp
that enables determining the most recent kItems. Generally, a topic is a sequence
of comma-separated concepts that form a branch of an ontology or taxonomy. Ad-
ditionally, the leftmost concept is the most generic and the rightmost concept the
most distinct one. The format is a string, which indicates the type of the kItem. It
adheres to the Multipurpose Internet Mail Extensions Type (MIME-Type) [45, 46]
and is divided into a type (text in Listing 4.6) and subtype (YAML in Listing 4.6).
Furthermore, the type ASP expresses that the stored knowledge is represented by
an ASP program itself. However, simply using External Statements has a major
drawback. While concepts in an ontology are typically short statements, the con-
tent can have an arbitrary length, which is only limited by the available memory
(see Section 7.1). Since the External Statement has to be set to true in order to add
the kItem to the General Knowledge Store, the content of the knowledge base has
to be parsed by Clingo during the adding procedure, and each time the truth value
of the External Statement is changed. Especially for large kItems, this will result
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in an increased runtime (see Section 7.1). Hence, this way of modelling kItems is
unsuited for contents with arbitrary size.

The second way of modelling kItems is incorporating a combination of a rule and
an External Statement. This kind of modelling preserves the advantages of External
Statements since kItems can be dynamically removed by changing their truth value.
Nevertheless, the overhead of using an External Statement and a rule is higher in
comparison to the modelling strategy presented in Listing 4.6. Listings 4.7 and 4.8
show examples of this way of modelling kItems. Generally speaking, both methods
introduce a UUID to the External Statement, which links it to the corresponding
kItem via a rule. This prevents that the contents of the kItem have to be parsed
several times. Furthermore, this supports adding further rules to expand a kItem.
The major difference between the modelling methods presented in the Listings 4.7
and 4.8 is the sign of the employed External Statement. In Listing 4.7, a negative
External Statement is created in Line 1. Informally speaking, it states that there
is no kItem with the topic "human","person" with UUID 123, which has arrived
at timestamp 1610363038. Line 2 models the actual kItem, which is stored in the
rule head that depends negatively on the corresponding External Statement. A
benefit of using negative External Statements in combination with default negation
(see Section 2.4) is that the External Statement does not have to be set to true
to derive the rule head. Hence, the overall runtime for adding a kItem to the
knowledge base is reduced to parsing and a single solving step. However, this kind
of modelling is semantically counterintuitive. Informally speaking, the kItem holding
the knowledge about Charlie is derived since it is unknown that the corresponding
External Statement is true. Hence, arbitrary pieces of knowledge are derived from
the absence of information.

To overcome this semantic issue, a positive External Statement is used, as shown
in Listing 4.8. The rule in Line 2 of this listing positively depends on the External
Statement presented in Line 1. Since the External Statement has to be set to
true, the runtime slightly increases. However, this method of modelling a kItem
is semantically intuitive since the kItem is derived as long as the corresponding
External Statement holds. Additionally, kItems now have a justification instead of
being derived from the unknown.

1 #external
-kItem(topic("human","person"),uuid("123"),timestamp(1610363038)).

2 kItem(topic("human","person"), content("person: name: Charlie age:
20 location: unkown healthStatus: unkown"), format("text/YAML"),
uuid("123"), timestamp(1610363038))
:- not -kItem(topic("human","person"), uuid("123"),
timestamp(1610363038)).

Listing 4.7: kItem Modelled as a Negative External Statement and a Rule
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1 #external kItem(topic("human","person","patient"),uuid("456"),
timestamp(1610367448)).

2 kItem(topic("human","person","patient"), content("person: name: Bob
age: 72 location: 51°19’03.0"N 9°27’31.3"E healthStatus: injured
injury: broken leg"), format("text/YAML"), uuid("456"),
timestamp(1610367448))
:- kItem(topic("human","person","patient"), uuid("456"),
timestamp(1610367448)).

Listing 4.8: kItem Modelled as a Positive External Statement and a Rule

One major drawback shared by the modelling strategies presented above is the
representation of the content as a string of arbitrary size. As already discussed,
the string of arbitrary length has to be parsed by Clingo while adding it to its
knowledge base. On the one hand, this has a significant influence on the run time
(see Section 7.1). On the other hand, it enforces the storage of all knowledge inside
the main memory and thus influencing the performance of the system the Knowledge
Group is running on. To tackle this problem, the arbitrarily sized string in the
content is replaced by a fixed size identifier, for example, by a UUID or the hash of
the content string. Furthermore, a local Key-Value Store is used, which utilises the
hash or the UUID as key and the original content string as value. This combination
has two advantages. Such stores support the serialisation of knowledge, provide
persistence, and prevent a loss of knowledge if a node fails. First, the representation
of a kItem is no longer dominated by the length of the content. Second, the load
can be shifted from the primary storage to the secondary storage if the system
uses a persistently stored Key-Value Store instead of an in-memory one. Hence,
this combination is a suitable approach to manage and represent knowledge in the
General Knowledge Store.

Besides selecting the most suitable modelling strategy, determining the predicate
name for kItems is an essential step. The straightforward approach is selecting
kItem as the predicate name, as shown in the listings above. The predicate in the
rule represents a kItem and, thus, it should be named accordingly. Nevertheless,
choosing kItem as the predicate name negatively affects the filtering for kItems
encapsulating specific topics. While the External Statements (arity 3) and kItems
(arity 4) can still be distinguished by their arity, all kItems have to be considered
when querying for specific topics. Hence, selecting kItem as the predicate name can
be compared to creating a database solely containing a single table, which stores all
available knowledge. Therefore, another name has to be chosen. Since each kItem is
annotated with a topic, parts of the topic string can be used as the predicate name.
Two parts of the topic are especially suited, the most generic concept (leftmost
concept) and the most distinct concept (rightmost concept).

Selecting the most generic concept as the predicate name, e. g., human (see List-
ing 4.8), has the advantage that a part of the knowledge base can be easily accessed
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since the less generic kItems are summarised under the same predicate name. Nev-
ertheless, selecting the most generic concept has several drawbacks. For example,
let us consider a knowledge base used in a hospital only containing kItems dealing
with knowledge about humans like patients, nurses, and doctors. Selecting the most
generic concept as the predicate name results in the identical behaviour as select-
ing kItem since no filtering is possible. Furthermore, to select all patients, several
queries have to be conducted.

In contrast to selecting the most generic concept, choosing the most distinct
concept as the predicate name enables efficient filtering. Typically, this kind of
query is more common than selecting the most generic concept. For example, rather
than determining all humans in a hospital, a doctor is typically interested in all
patients, which can easily be queried by filtering the knowledge base for kItems
with the predicate name patient. Furthermore, selecting the most distinct concept
provides the most detailed semantic description. For example, if Bob (see List-
ing 4.5) is categorised as a patient, it can be derived that he is injured in some way,
and that he probably needs help. If Bob was only classified as a human, this deriv-
ation of additional commonsense knowledge would not be easily possible. However,
a disadvantage is present when querying the most generic concept. Selecting all
humans requires several query steps, which include the remaining concepts provided
by the topic string and the application of the ontologies that will be presented in
Section 5.2.

Comparing the presented strategies for modelling kItems, a positive External
Statement using a hash or a UUID in the content is the best fitting solution. The
piece of knowledge that it holds has to be parsed only once. Additionally, it prevents
the storage of the complete knowledge inside the primary storage, thus not limiting
the system. Selecting the most distinct concept as the predicate name is favoured
since they provide the most efficient filtering. Finally, this results in kItems as shown
in Listing 4.9.

1 #external conceptn(topic("concept1","concept2",...,"conceptn"),
content("hash/uuid"), format("format"), timestamp(ts)).

Listing 4.9: Final Modelling Scheme of a kItem

4.2.3 Query Resolution

After the representation of knowledge in the General Knowledge Store has been dis-
cussed in detail in the previous section, this section introduces the query mechanism
needed to extract stored Knowledge Items (kItems). It consists of the general for-
warding of queries from Registry Nodes to Registry Leaves as described by us in [76].
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In this case, a Knowledge Group is deployed in a service-oriented scenario to man-
age knowledge of the characteristics of services. Hence it can be considered as a
distributed service registry. For short, a client interacts with a chessboard-like game
service. During the interaction, the chessboard-like game service does no longer
respond and the client has to find a replacement. Therefore, a service registry that
contains possible alternatives is needed. While static environments can rely on cent-
ral service registries, dynamic environments like Fog Computing scenarios demand a
decentralised approach. Therefore, Jahl presents in [72] a multi-agent-based change
management system, which monitors the interaction between a client and a service.
By using hyperplane-based machine learning algorithms, agents in the change man-
agement system learn the behaviour of their corresponding service employing the
monitored input and output data. The resulting behaviour models are then stored
in a Knowledge Group alongside service characteristics like response delay, avail-
able bandwidth, and interface descriptions. To provide an overview of the query
resolution, the workflow of queries is depicted in Figure 4.5.
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Figure 4.5: Query Workflow for a Service Replacement [76]

During its normal operation, a client in this system interacts with an agent in
the Fog Layer 1 that monitors the received input data and forwards them to its
managed microservice 2 . Subsequently, the received input is processed and the
resulting output is returned to the client. In this case, no interaction with the
Knowledge Group is needed. A failure of the microservice 3 can be either detected
if it is no longer reachable or by comparing its output with the learned behaviour
model. If the latter one is considered as an outlier, a service failure can be assumed.
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In both cases, the corresponding agent queries a Registry Node in the Knowledge
Group for a service replacement 4 . This query includes the behaviour model of
the failed service, its characteristics, an ASP program to determine the optimal
replacement, and a semantic classification of the failed microservice if it is available.
For example, let us consider that the failed service was semantically annotated with
the classification {"service","game","chessboard_like"}. A semantic description like
this is not necessary, but it reduces the overall query runtime since it decreases the
possible replacement candidates. Once the query has arrived at the corresponding
Registry Node 5 , two cases have to be distinguished.

In the first case, the managed Registry Leaves of the Registry Node are able to
answer the query. This can be checked by comparing the stored service descriptions
with the received query. If the query contains a semantic description, it is used to
filter the stored service descriptions and, thus, reduces the considered replacements
to semantically appropriate replacements. For example, by providing the semantic
classification {"service","game","chessboard_like"} solely chessboard-like game ser-
vices are considered. If there is no semantic annotation, each stored service has
to be compared with the information provided by the query. Therefore, the corres-
ponding kItems are selected from the Registry Leaves, their content is extracted, and
a service replacement is determined. Generally speaking, the contents of the kItems
are extracted, a new Clingo instance is created, and the query solution is determ-
ined based on the provided ASP program. A detailed description of this process is
given in a later paragraph. After successfully determining a service replacement, the
Registry Leaf forwards the solution to the querying agent 6 . The agent extracts
this information and forwards its client to the corresponding replacement 11 .

In the second case, the managed Registry Leaves of the Registry Node, which is
queried first, are unable to answer the query 5 . Therefore, the query is forwarded
to a higher level of the Knowledge Group 7 , if present. Since the next Registry
Node is an inner node of the Knowledge Group, it has no attached Registry Leaves
but manages further Registry Nodes on the lower level. Therefore, it forwards the
received query to them 8 . Again, providing a semantic classification in the query
is beneficial since it reduces the number of Registry Nodes, which have to be con-
sidered. After a Registry Node on the lower level has been selected, the Registry Leaf
determines a solution if it can answer the query 9 . Analogously to the case in the
previous paragraph, the Registry Leaf forwards the results to the querying agent 10 ,
which refers the client to the replacement 11 . Finally, the last Registry Leaf will
inform the agent if there is no possible replacement.

After a detailed description of the query forwarding process in the previous para-
graphs, query resolution is discussed in the following passages. Therefore, let us con-
sider the following scenario: In Figure 4.5, a client interacts with a chessboard-like
game service via an agent in the Fog Layer. After some time, the service is no
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longer reachable (see 3 ). Subsequently, its corresponding agent queries the Know-
ledge Group for a replacement, which can be provided by one Registry Leaf man-
aged by the first Registry Node (see 5 ). Listing 4.10 presents fitting kItems stored
in the General Knowledge Store of the Registry Leaf mentioned above. They con-
tain knowledge about three different chessboard-like game services. Their location
(IP-address, port, ...) are omitted for the sake of clarity.

1 chessboard_like(topic("service","game","chessboard_like"),
content("characteristic("ChineseChess 1.1", bandwidthKB(10000)).
characteristic("ChineseChess 1.1",delayMS(50))."),
format("ASP"), timestamp(1610356390)).

2 chessboard_like(topic("service","game","chessboard_like"),
content("characteristic("StandardChess 1.0.1",
bandwidthKB(12000)).
characteristic("StandardChess 1.0.1",delayMS(70))."),
format("ASP"), timestamp(1609545600)).

3 chessboard_like(topic("service","game","chessboard_like"),
content("characteristic("Checkers 2.0", delayMS(100))."),
format("ASP"), timestamp(1608508800)).

Listing 4.10: kItem Containing Service Characteristics

Line 1 of Listing 4.10 describes the knowledge about the Chinese Chess service in
version 1.1 as a separate ASP program (format("ASP")) encapsulated in the con-
tent section of the kItem. This ASP program states that the delay of the Chinese
Chess service is 50ms and that 10000 kB/s of bandwidth is available. Line 2 defines
knowledge about the Standard Chess service, which has version 1.0.1 and provides
an available bandwidth of 12000 kB/s. Information about the delay of the Standard
Chess service is not available. Knowledge about the Checkers service in version 2.0
is defined in Line 3. It has a delay of 100ms but does not provide any informa-
tion on the available delay. After the determination of the service replacements,
their contents are extracted. This results in the facts shown in the Lines 1 to 5 of
Listing 4.11. Additionally, a choice rule is created, encapsulation the names and
versions of each possible replacement (Line 6). Both are added to a new instance
of the Clingo solver and form the basis for the optimisation ASP program provided
by the received query. The optimisation program is shown in the Lines 8 to 12 of
Listing 4.11.

Line 8 and 9 are auxiliary rules, which define the notion of a slow service. A
service is considered slow if its delay is higher than 75ms or if there is no in-
formation on the delay. The Lines 10 to 12 define the actual optimisation. The
highest priority (@3 in Line 10) is the prevention of slow services. This is the case
for Checkers 2.0 since its delay is higher than 75ms and, thus, it is considered
slow based on Line 8. Subsequently, the delay is minimised by the optimisation
statement in Line 9 with the second-highest priority (@2), which removes Stand-
ard Chess 1.0.1 since its delay is higher than the delay of ChineseChess 1.1. As
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the last optimisation (@1), the highest available bandwidth is determined. This
results in the following Answer Set, which contains the possible replacement: {char-
acteristic("ChineseChess 1.1",bandwidthKB(10000)) characteristic("StandardChess
1.0.1",bandwidthKB(12000)) characteristic("ChineseChess 1.1",delayMS(50)) char-
acteristic("StandardChess 1.0.1", delayMS(70)) characteristic("Checkers 2.0", delay-
MS(100)) characteristic("ChineseChess 1.0.1")}. The selected replacement is the
only characteristic predicate with an arity of 1. Finally, the Knowledge Group re-
turns this result to the agent in the Fog Layer ( 6 in Figure 4.5), which then refers
the client to the replacement ( 11 in Figure 4.5).

1 characteristic("ChineseChess 1.1", bandwidthKB(10000)).
2 characteristic("StandardChess 1.0.1", bandwidthKB(12000)).
3 characteristic("ChineseChess 1.1", delayMS(50)).
4 characteristic("StandardChess 1.0.1", delayMS(70)).
5 characteristic("Checkers 2.0", delayMS(100)).
6 {characteristic("ChineseChess 1.1"); characteristic("StandardChess

1.0.1"); characteristic("Checkers 2.0")} = 1.
7

8 slow :- characteristic(X), characteristic(X, delayMS(Y)), Y > 75.
9 slow :- characteristic(X), not characteristic(X, delayMS(_)).
10 :~ slow. [1@3]
11 #minimize {Y@2,X : characteristic(X), characteristic(X, delayMS(Y))}.
12 #maximize {Y@1,X : characteristic(X), characteristic(X,

bandwidthKB(Y))}.

Listing 4.11: ASP Representation of Characteristics and Query Rules [76]

Following the example presented above, arbitrary optimisation queries can be
formed. By providing auxiliary rules, unwanted properties can be assigned to ob-
jects, which are removed by corresponding weak constraints. Additionally, thresholds
can be modelled by utilising the minimize and maximize directives. Thus, the com-
bination of both enables the formalisation of complex queries that are not limited
to the service domain.

4.3 Combining Knowledge Groups

So far, we only considered a single Knowledge Group. While a single Knowledge
Group can be used in relatively small Fog Computing or smart home environ-
ments, solely relying on a single Knowledge Group is impractical in large-scale
Service-Oriented Architectures or Search&Rescue missions with unreliable com-
munication. For example, in large-scale Fog Computing scenarios, parts of a single
Knowledge Group could be distributed on distant parts of the network, which could
lead to Registry Nodes managing Registry Leaves located on different parts of the
Fog Computing environment. To tackle this issue, the Knowledge Group would have
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to be reorganised according to changes in the underlying network. However, this
introduces a high workload to the Knowledge Group and a significant increase in the
number of required messages. Furthermore, the increased message load caused by
the reorganisation of a large Knowledge Group or the distribution of nodes across
an unreliable network is especially harmful in Search&Rescue missions. Therefore,
creating separate Knowledge Groups is beneficial since they can be created independ-
ently and located in distant areas of the network. However, this leads to another
problem that has to be solved: The exchange of knowledge between Knowledge
Groups without merging their tree-like organisation scheme.

To enable this exchange, additional protocols are introduced. The first protocol is
used to discover further Knowledge Groups. A detailed description of this protocol is
given in Section 4.3.1. To keep the information about connected Knowledge Groups
up to date, Section 4.3.2 introduces protocols used to maintain the communication
connections. After new Knowledge Groups have been discovered, the exchange of
knowledge and subsequent queries have to be enabled. The corresponding protocols
are presented in Section 4.3.3.

4.3.1 Discovery of Knowledge Groups

The general idea of combining Knowledge Groups is to gain access to potentially new
knowledge. For example, the discovery of new service alternatives in a Fog Com-
puting environment or locations of injured persons in a Search&Rescue scenario.
The first step in the combination of several Knowledge Groups is the discovery of
other Knowledge Groups. Therefore, a protocol is needed that enables the Registry
Nodes with the highest level to scan available network interfaces for other Knowledge
Nodes. Figure 4.6 presents this protocol. In this case, it is assumed that Knowledge
Group 1 (KG1 ) has sent the first KnowledgeGroupCheck message (see Table 4.1 in
Section 4.2.1). This message includes its IP address, port, the multicast address
used by KG1, and a list of available topics.

Before sending a KnowledgeGroupCheck in the first step ( 1 ), KG1 checks if its
connection limit is reached. To prevent the creation of a fully connected mesh
network, each Knowledge Group has a maximum number of connections to other
Knowledge Groups, which is configured during its initialisation. Preventing a fully
connected mesh network has two main reasons: The first reason is the management
overhead since each Knowledge Group would have to store the contact information
of all other nodes. The second reason is the vast amount of messages needed to
maintain the information mentioned above, which is impractical in scenarios with
unreliable communication.

In the case that KG1 is still able to form connections with other Knowledge
Groups, it sends a KnowledgeGroupCheck message for each of its active network
interfaces via a predefined multicast address. This message is received by Knowledge
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Figure 4.6: Knowledge Group Discovery Protocol

Group 2 (KG2 ) in 2 . Subsequently, KG2 checks if its connection limit is reached.
If this is not the case, it responds with an Acknowledge message. Upon receiving this
acknowledgement, KG1 waits for a KnowledgeGroupCheck message from KG2 ( 3 ).
Simultaneously, KG2 generates the ASP representation of KG1 (see Listing 4.3 in
Section 4.2.2), adds the contact information to its Network Topology, and sends a
KnowledgeGroupCheck message containing its own contact information to KG1 ( 4 ).
KG1 acts analogously by adding the necessary information to its Network Topology,
enabling the exchange of queries with KG2, and sending an Acknowledge message
( 5 ). Finally, KG2 receives this message and enables the exchange of queries ( 6 ).
Summarising the protocol in Figure 4.6, it provides a two-way handshake, ex-

change of contact information, and enables query forwarding.

4.3.2 Connection Maintenance

In order to keep the information that was exchanged during the discovery protocol up
to date, Knowledge Groups periodically exchange Ping messages. These messages
serve two purposes. The first purpose is the validation of the reachability of the
connected Knowledge Groups. Generally speaking, if Knowledge Group 1 (KG1 )
regularly receives Ping messages from Knowledge Group 2 (KG2 ), it is able to derive
that KG2 is reachable. The second purpose is the update of relevant information
regarding the connected Knowledge Groups. Since these messages are exchanged
regularly, they are suited to propagate changes in the managed topics of a Knowledge
Group by including lists of topics that have been included and topics that are no
longer provided. A Knowledge Group that receives such messages parses these lists
and adapts the contact information of connected Knowledge Groups accordingly.
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4.3.3 Exchange of Knowledge and Queries

After the discovery of Knowledge Groups and exchange of Ping messages, the last
part of the interaction between Knowledge Groups is the forwarding and exchange
of queries in the form of ASPRequest and ASPResponse messages. The protocol for
query forwarding is shown in Figure 4.7. To demonstrate the protocol of queries,
which involve multiple Knowledge Groups, let us consider the Search&Rescue scen-
ario presented in Section 1.2.2. In this scenario, a natural disaster has occurred in a
Smart City, which damaged buildings, limited communication, and injured people.
Subsequently, rescue organisations try to locate the injured people and possible
safety hazards like gas leaks. Therefore, they employ UAVs, mobile ground robots,
and the smart infrastructure of the city. During this process, two Knowledge Groups
have been formed. Therefore, three parties are considered. The first is a client ap-
plication (CA) representing the rescuers, who intend to acquire knowledge from a
Knowledge Group. The second party is Knowledge Group 1 (KG1 ), which consists
of Registry Node 1 (RN1 ) that manages Registry Leaf 1 (RL1 ). The third party
contains Knowledge Group 2 (KG2 ). It encompasses Registry Node 2 (RN2), which
manages Registry Leaf 2 (RL2 ). While CA and KG1 share a network (grey box),
KG2 is situated in another network. Additionally, it is assumed that the CA is able
to communicate with KG1, that KG1 and KG2 have established a connection, and
that KG1 and KG2 have exchanged their managed topics.

In the first step ( 1 ), CA sends an ASPRequest querying all known positions of
injured people to KG1. In KG1, the query is forwarded to the Registry Node, which
manages the knowledge about injured people. The routing inside a Knowledge Group
is straightforward. Each Registry Node accumulates the topics managed by its child
nodes. Hence, queries can be passed down to the Registry Leaves containing the
corresponding knowledge. In this case, the query is passed to RN1, which checks
its knowledgebase for the contact information containing the knowledge about in-
jured people ( 2 ) and forwards the ASPRequest message to RL1. RL1 subsequently
extracts fitting Knowledge Items from its General Knowledge Store ( 3 ), encapsu-
lates them in an ASPResponse message and sends it to the CA, which extracts the
received knowledge ( 4 ) and distributes it to the rescuers.

The second task of CA is to fix gas leaks to prevent further injured people. It
sends a second ASPRequest in 4 to KG1. In this case, RN1 does not manage
any agents that contain corresponding knowledge. Therefore, it checks its Network
Topology for routing entries ( 5 ) that indicated the existence of the requested know-
ledge. The creation and exchange of these routing entries are discussed in detail
in Chapter 6. In this example, KG2 is in possession of the corresponding know-
ledge. Thus, KG1 forwards the ASPRequest to KG2 ( 6 ). Since the forwarding
of the query involves multiple Knowledge Groups located in different networks or
sub-networks, the ASPRequest is expanded with a list of visited Knowledge Groups
to return of the corresponding response successfully. Additionally, a hop count is
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Figure 4.7: ASPRequest Involving Multiple Knowledge Groups

included to measure the distance from its origin. Once the ASPRequest has arrived
at KG2, it is forwarded to the corresponding Registry Leaf ( 7 ) and solved ( 8 ).
This process is analogous to steps 2 and 3 . Since the origin of the ASPRequest
is located in another Knowledge Group, the resulting ASPResponse is sent to the
highest level Registry Node, which doubles the hop count and sends it to the last
element of the list of passed Knowledge Groups. However, this may not be possible
due to a connection loss. In this case, the Knowledge Group tries to forward the
response to other connected Knowledge Groups to find a possible route to the origin.
To prevent that the response is exchanged indefinitely between Knowledge Groups,
the hop count is decremented each time it is forwarded. In the end, the query is
deleted if the hop count reached zero. Once the response has reached its destination
Knowledge Group ( 10 ), it is forwarded to the CA, which parses the response ( 11 ).

4.4 Summary and Discussion

In this chapter, the first main contribution of this thesis has been discussed, which
is the distributed management of semantically annotated knowledge in highly dy-
namic domains with unreliable communication. The foundation of the presented
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distributed knowledge base is a Multi-Agent System, which is denoted as a Know-
ledge Group. Agents in this system act in two roles, which are Registry Nodes and
Registry Leaves. While Registry Nodes manage the tree-like structure of the Know-
ledge Group, general knowledge is maintained by the Registry Leaves. Since ASP
and Clingo have already proven their suitability as a knowledge representation lan-
guage, both are chosen to represent the knowledge about the Network Topology and
the General Knowledge Store of the system.

To further improve the scalability of Knowledge Groups and their applicability in
large scale environments, protocols have been introduced that foster the interaction
between different Knowledge Groups. This includes the distribution of queries, the
exchange of knowledge, and failure mechanisms in the case that Knowledge Groups
lose their connection to other Knowledge Groups.

Comparing the Knowledge Groups presented in this chapter with the distributed
databases discussed in Section 3.1, the main difference is that the Knowledge Groups
rely on autonomous entities that manage and store knowledge. Bonifacio et al.
present in [17, 18] a Peer-to-Peer architecture that is tailored for distributed know-
ledge management utilising an XML-like language to store knowledge and to form
relations. In contrast to this, Knowledge Groups store and manage knowledge using
ASP in combination with Clingo. Thus, they provide reasoning support as well as
dynamic adaptation of stored knowledge at run-time.

Summing up, this chapter presented a dynamic MAS that fosters the use of se-
mantically annotated knowledge, which is distributed in a loosely coupled network.
Thus, it fulfils Requirement R1 - Handling Dynamic Environments. Further-
more, it relies on a single formalism to represent the topology of the network and
the storage of general knowledge. This enables the use of all relevant knowledge
without a need to translate between representations.
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Handling Symbolic Commonsense
Knowledge 5

A central aspect of human communication is the usage of commonsense know-
ledge [29]. We rely on it while solving everyday chores or while giving tasks to each
other. For example, the simple question "Could you please fetch me a cup?" creates
a task that is hardly solvable without commonsense knowledge. To understand this
problem, let us consider this task from the point of view of a sophisticated service
robot. Since its a multi-purpose service robot, it can be assumed that it has some
kind of actuator and behaviour that enables it to fetch objects. The first question
that now arises is what kind of object the robot is supposed to fetch. For a human,
it is clearly evident what the concept of a cup expresses. It is an object made of
ceramic, it has an open side, as well as a closed side, a handle is attached to it, and
it is usually used to hold liquids. The second question is, where do you usually find
a cup? Typically, a cup could be found on a shelf or in a cupboard which is located
in the kitchen or, in the case of an office, on the desks of the employees. To enable
the service to solve the task of fetching a cup, it has to have access to such kind of
knowledge. It could be provided by its human user or could be extracted from a
commonsense knowledge source like ConceptNet 5.

The remainder of this chapter is structured as follows. Section 5.1 elaborates spe-
cific requirements for the handling of symbolic commonsense knowledge introduced
in this chapter. Section 5.2 presents a technique to model ontologies using ASP
and relying on hypergraph-based knowledge sources. The ontologies and taxonom-
ies created in this process are used to annotate the Knowledge Items presented in
Chapter 4 and enable the aggregation of Semantic Routing Table Entries introduced
in Chapter 6. After introducing a commonsense ontology, Section 5.3 introduces a
mechanism to prevent semantic inconsistencies in the properties of an object, which
will improve the quality of the knowledge base of a robot. Section 5.4 concludes this
chapter.

5.1 Specific Requirements

Besides the access to a commonsense knowledge source, a suitable representation of
the extracted knowledge is needed. Krötzsch presents in [84] several requirements
that are necessary for a suitable knowledge representation. The first one is smart
editing, which means that tool support should be present for a knowledge represent-
ation language to ease its use. The second requirement is robustness. The knowledge
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representation language, the resulting knowledge base, and reasoners have to be tol-
erant to errors and should support the adaptation to the current application field.
The third requirement is quantitative computation. Thus, the knowledge represent-
ation should provide access to numerical reasoning. The last requirement is modu-
larisation, which means that the knowledge representation language should provide
mechanisms to divide programs into reusable subprograms. This leads Krötzsch to
the conclusion that a declarative and symbolic knowledge representation is needed,
which supports modelling ontologies and provides access to a reasoning formalism.

A declarative and non-monotonic language, which fulfils the requirements defined
by Krötzsch, is Answer Set Programming (ASP). It provides negation, numeric con-
straints, the incorporation of script languages like Python, and methods to model
defaults. Further, ASP provides a three-valued logic. Querying an ASP program for
a specific predicate can either result in true if the predicate is part of the Answer
Set, false if the strongly negated predicate is part of the Answer Set or unknown
otherwise. The state-of-the-art ASP solver Clingo introduces, amongst others, two
extensions to the ASP syntax, which enable the change of the truth value of a predic-
ate (External Statement) at run-time and the division of ASP programs into smaller
and reusable parts (Program Section). The general notion of External Statements is
that their truth value is not known and thus can be set manually by the user. ASP
and the solver Clingo [48, 50] best meet the proposed requirements, especially in
dynamic reasoning [53, 105, 106], modelling of knowledge [39], and the application
of commonsense knowledge [8].

To provide a common understanding of the used ASP predicates, an ontology is
needed. Typically, this ontology would be developed in OWL [92] or OWL2 [67].
However, OWL in its full specification is undecidable. It is monotonous, which pre-
vents the definition of defaults. ASP, on the other hand, does not have these short-
comings. Hence, it can be used to create an ontology and has already shown its
applicability in ontology merging [15]. By formulating ontologies in ASP, the same
formalism is used for storing and managing knowledge. Furthermore, it provides a
formal representation and naming, categorisation, and relations between the predic-
ates.

In addition to an ontology, a mechanism to handle semantic inconsistencies is
needed, especially when commonsense knowledge is incorporated since contradict-
ing properties can be easily introduced to the knowledge base. For example, it is
commonsense knowledge that a knife can have the properties sharp and dull. While
there is no contradiction between these properties in classical Boolean logic, a se-
mantic inconsistency is introduced to the knowledge base of the robot if a specific
knife has both properties at the same time. Therefore, a mechanism is required that
prevents such kinds of inconsistencies.

Revisiting Section 1.1, this chapter addresses the Requirements R2 - Efficient
Management of Knowledge and R3 - Handling of Semantic Inconsisten-
cies. Section 5.2 focuses on the fulfilment of Requirement R2 by presenting a
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(semi-)automatic and ASP-based ontology generation approach. Section 5.3 aims at
the fulfilment of R3 by introducing methods to formulate ASP rules that prevent
semantic inconsistencies in a knowledge base by utilising a commonsense knowledge
source.

5.2 ASP-based Commonsense Knowledge Ontology
Modelling

Smart environments and smart devices are an increasingly important part of our life.
They consist of various entities like services, smart devices, and robots. Currently,
these robots are mainly built for a single purpose. These robots, for example, include
lawnmowers or vacuum cleaners. However, the research focus in the area of service
robotics is set on versatile and multi-purpose robots [30]. To enable the cooperation
of these entities, communication based on a shared understanding of knowledge and
reasoning about this shared knowledge is needed. In contrast to machine-to-machine
communication, the interaction with humans requires the incorporation of common-
sense knowledge since humans rely on this kind of knowledge while solving everyday
tasks [29]. Thus, robots working with humans should have access to a commonsense
knowledge source like ConceptNet 5 (CN5). To incorporate and reason about this
commonsense knowledge, a suited formalism is needed.

A typical approach to model such knowledge and to provide a common vocabu-
lary is the use of an ontology. Ontologies provide mechanisms to model sub-class
relations, define individuals and their properties, and reason about the modelled
knowledge. However, current ontology frameworks do not support a dynamic ad-
aptation of the represented knowledge, are monotonic, do not provide a formalism
to express negation, and cannot handle huge amounts of data [96]. These issues
demand a new way to model ontologies. Krötzsch suggests in [84] that a declarative
and symbolic knowledge representation is needed to overcome these issues. Fur-
thermore, it should not purely be used for representation and additionally should
provide a computation paradigm. ASP is particularly suited for this. It provides
non-monotonic reasoning capabilities and allows to model default knowledge by ap-
plying negation-as-failure and classical negation. It relies on symbolic knowledge
representation and supports the application of the closed world assumption.

Besides the selection of a suited representation, several key challenges arise. The
first challenge is the vast amount of commonsense knowledge itself. For example,
CN5 has several million edges which are almost impossible to handle manually.
Hence, an automated approach is needed. Storing a complete commonsense know-
ledge base could limit its usage to robots with high computational power and would
limit its applicability. Therefore, the ontology generation has to be configurable to
adapt it to its application scenario. However, an increased configurability can reduce
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the usability of the ontology generation. The second challenge is the adaptability of
the ontology. Since the necessary commonsense knowledge can vary depending on
the environment of a robot, parts of the ontology have to be adapted or expanded
during run-time.

By relying on the beneficial features of ASP, we propose a novel method for gen-
erating a dynamic and non-monotonic ontology in [77]. The resulting ontology is
extracted from a hypergraph-based knowledge source. It can be adapted during
run-time and does not require a rebuild of the ontology if further knowledge is ad-
ded. In contrast to the handling of commonsense knowledge presented by Opfer
in [104], which focusses on the provisioning and teaching of commonsense know-
ledge to robots, our focus is set on the creation of dynamic ontologies that enable
classification of individuals, the derivation of super- and subclasses, as well as the
incorporation of facets.

The remainder of this section introduces the components of this ontology gen-
eration method. Therefore, the extraction of a commonsense knowledge ontology
from a hypergraph-based database or knowledge source is described in Section 5.2.1.
In order to use the extracted knowledge, inference rules are needed. Section 5.2.2
describes the formulation of these rules. Facets enable modelling properties in an
ontology. Their definition in ASP is shown in Section 5.2.3. To ease the modelling
of the ASP-based ontologies, Section 5.2.4 presents graphical tool that supports a
user during the creation of an ontology. Finally, the dynamic interaction with the
ontology is shown in Section 5.2.5.

5.2.1 Ontology Generation

The initial step in the generation of a commonsense knowledge ontology is the ex-
traction of edges from a hypergraph-based knowledge source like CN5 and their
translation into ASP. Generally speaking, during this process, the initial classes of
the ontology and their relations are formed. The general idea of the ontology gen-
eration presented by us in [77] is to start from a given root concept and traverse
the hypergraph until a set of stopping criteria is met. Algorithm 5.1 shows the
automatic process of the hypergraph traversal.

The inputs of Algorithm 5.1 are a root concept cr, a set of relations that are used
for the ontology Ro, a set of relations denoting synonyms Rs, a set of relations ex-
pressing properties Rp, and a set of stopping criteria SC. This enables the adaption
of the ontology generation to its corresponding application. In Line 1, an adapted
breadth-first search (BFS) is applied. The BFS starts at the given root concept
cr and follows edges annotated with at least one relation given in Ro. The BFS
stops once no additional edges can be found according to the stopping criteria SC
and returns a set of all encountered concepts C and all traversed edges E. In a
subsequent step, all synonyms (Rs) for all concepts in C are determined in order
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Algorithm 5.1: Ontology Extraction [77]
Input : Root Concept cr,

Set of Ontology Relations Ro,
Set of Synonym Relations Rs,
Set of Property Relations Rp,
Set of Stopping Criteria SC

Output: ASP Commonsense Ontology oasp
1 <C, E>:= adaptedBreadthFirstSearch(cr, Ro, SCo)
2 E := E ∪ getSynonyms(C, Rs, SCs)
3 E := E ∪ getProperties(C, Rp, SCnp)
4 oasp := translateEdges(E)
5 return oasp

to increase the expressiveness of the resulting commonsense ontology. Again, the
stopping criteria are applied to decide if an edge is added to the ontology. If a new
concept is reached during this step, it is added to C. After the determination of
synonyms, Algorithm 5.1 extracts all properties of all concepts from the common-
sense knowledge source. Therefore, edges annotated with relations given in Rp that
adhere to the stopping criteria are added to the ontology. For example, to create a
simple taxonomy using CN5, the relation IsA could be used in Ro, the Synonym
relation in Rs, the HasProperty relation as part of Rp, and an edge weight of 2.0
as the stopping criterion. Selecting such a high edge weight as a stopping criterion
will only consider edges with at least two verified sources to be part of the ontology.
Thus, a small ontology consisting of trusted and reliable edges is created. In the
case of unweighted knowledge sources like WordNet [94], a maximum number of
hops can be used as a stopping criterion. Therefore, the edges directly connected to
cr are annotated with the maximum hop number. Subsequently, each layer of edges
connected to the previous layer is annotated with a decreased hop count.

After successfully extracting relevant edges in the Lines 1 to 3, the resulting set
of edges E is translated into ASP in Line 4 by applying Algorithm 5.2. Its input is
a set of edges E and returns an ASP program pasp. In the first step, an empty ASP
program pasp is created. Subsequently, each edge e that is part of E is translated
into ASP in the Lines 2 to 8. Therefore, a Universally Unique Identifier (UUID)
is generated in Line 3 that connects the two ASP rules generated in the following
lines. Line 4 is the actual translation of e into an ASP fact. As mentioned in
Section 2.5.1, facts annotated with the keyword #external are denoted as External
Statements and, thus, their truth value can be dynamically altered. By relying
on External Statements, the ontology gains flexibility since it is adaptable to its
application scenario during run-time. Hence, parts of the ontology can be added
or removed depending on the field of application. Additionally, the prefix cs_ is
added to express that the External Statement represents commonsense knowledge.
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Algorithm 5.2: translateEdges
Input : Set of Edges E
Output: ASP Program pasp

1 ASP Program pasp
2 foreach Edge e ∈ E do
3 UUID id := getNewID()
4 String edgeExternal := ”#external cs_” + e.relation

+ ”(” + e.startConcept + ”, ” + e.endConcept + ”, ” + id + ”).”
5 String weightRule := ”weight(” + id + ”, ”

+ (int)((e.weight + e.relatedness) * 100) + ”, ” + timeStamp
+ ”) : −” + edgeExternal

6 pasp := pasp ∪ edgeExternal
7 pasp := pasp ∪ weightRule
8 return pasp

The resulting fact uses the relation of the edge as predicate name, the start concept
as the first argument, the end concept as the second argument, and the id as the
last argument. Line 5 denotes the weight of the edge. Therefore, a rule is created.
This predicate has the name weight and uses the generated UUID as the first
argument to map the weight to the previously generated External Statement. The
second argument is the actual weight. It is the edge weight, and in the case of CN5,
the relatedness between both concepts is added. Since ASP can only handle integer
values, the weight is multiplied by 100 to include the first two decimal points. In the
case of other knowledge sources, any numeric value representing the reliability of an
edge can be used. The last argument is a timestamp used to determine the current
weight of an edge by selecting the maximum value (see Section 5.2.2). The weight
rule in Line 5 uses the External Statement created in Line 4 as a body. Hence, the
weight can be removed from the knowledge base if the External Statement is set
to false. After generating both rules, they are added to the ASP program. Finally,
after all edges in E have been translated, Algorithm 5.2 returns the ASP program.

To demonstrate the functionality of Algorithm 5.1 and Algorithm 5.2, both are
applied using the excerpt from CN5 shown in Figure 5.1. The relatedness is omitted
in this figure and assumed to be 0 during the translation process, to provide a better
overview. The concept puppy is selected as the root concept rc, Ro contains the
IsA relation, Rs the Synonym relation, and Rp the HasProperty relation. As a
stopping criterion, a minimum weight of 1.5 is assumed for all relations.

By applying Algorithm 5.1, the edges from puppy to immature dog and from
puppy to dog are selected and added to the set of edges E. Furthermore, the
concepts immature dog and dog are added to the set of concepts C. Since
immature dog has no outgoing IsA edges, the outgoing edges of dog are con-
sidered next. These edges are all added to E since their weight is higher than 1.5.
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Figure 5.1: Excerpt from the CN5 Hypergraph [77]

Subsequently, the concepts loyal friend, pet, and four legged animal are
inserted into C. The remaining outgoing IsA edges are pet to animal and four
legged animal to quadruped. While the first is added to E, the second edge
is omitted since its weight is too low. Since no further outgoing IsA edges remain,
Algorithm 5.1 stops the first step. In the following step, it determines synonyms
for all concepts in C. The edge from puppy to pup is added to E since it has the
synonym relation and satisfies the minimum weight. Additionally, pup is added to
C. After the determination of synonyms, properties are collected for all concepts in
C. During this process, the edge from animal to alive is added to E. After the
collection of all edges adhering to the defined criteria, they are translated into ASP
by applying Algorithm 5.2. Listing 5.1 shows an excerpt from the resulting ASP
program.

1 ...
2 #external cs_hasProperty("animal", "alive", 8).
3 weight(8, 400, 0) :- cs_hasProperty("animal", "alive", 8).
4 ...
5 #external cs_isA("dog", "pet", 136).
6 weight(136, 668, 0) :- cs_isA("dog", "pet", 136).
7 ...
8 #external cs_isA("puppy", "dog", 139).
9 weight(139, 568, 0) :- cs_isA("puppy", "dog", 139).
10 ...
11 #external cs_synonym("pup", "puppy", 357).
12 weight(357, 288, 0) :- cs_synonym("pup", "puppy", 357).
13 ...

Listing 5.1: Excerpt from the Resulting Ontology [77]

Line 2 and 3 of this listing are the translation of the edge between the concepts
animal and alive. Line 2 can be read as follows: an animal has the property
alive. The weight rule of this edge (Line 3) is mapped by the UUID 8 to the
External Statement in Line 2. Furthermore, the head of the weight rule expresses
that the corresponding edge has a weight of 400 at timestamp 0 and is derived as
long as the External Statement in the body is set to true. By setting the External
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Statement to false, both the External Statement and the weight are removed from
the knowledge base.

After the generation of the ASP program, ASP rules are needed to apply com-
monsense knowledge to individuals. The rules are presented in the next section.

5.2.2 Ontology Inference Rules

While the External Statements and weight rules presented in the previous section
model the commonsense knowledge, a second ASP program with additional rules
is needed to reason about this knowledge and apply it to individuals. These infer-
ence rules mainly serve two purposes. On the one hand, they are used to reason
about commonsense knowledge internally. On the other hand, they are used to cre-
ate human-readable output predicates. Furthermore, the inference rules are divided
into six categories: weight handling, commonsense knowledge propagation, subset
determination, classification, facet handling, and Answer Set size reduction. List-
ing 5.2 shows an excerpt from these inference rules, which contains examples for each
category. The complete set of example inference rules is available at Bitbucket30.

Weight Handling The weight handling category consists of one rule, which is shown
in Line 1 of Listing 5.2. As mentioned in Section 5.2.1, each External Statement
representing an edge of the hypergraph is connected to a weight rule using a UUID
and is annotated with a timestamp. By using this timestamp, the weight handling
rule determines the current weight for each UUID. If the ontology has just been
generated, the maximum timestamp for all UUIDs is 0, and the extracted weight
is used. However, additional weight rules with the same UUID can be later added
to adjust the weight, for example, to achieve broader classification results. In this
case, the #max operator of Clingo selects the newest timestamp and stores its value
in the variable MaxTimeStamp. The resulting dynamic weight uses the predicate
name currentWeight, the UUID, the weight given at MaxTimeStamp, and Max-
TimeStamp as parameters. The weight handling is used internally and thus is not
included in the final Answer Set.

Commonsense Knowledge Propagation The second category of rules is used to
propagate commonsense knowledge. Lines 3 and 4 of Listing 5.2 show an excerpt
from these rules. Line 3 marks the initial propagation of commonsense knowledge.
Therefore, the predicate is is used to represent an initial classification of an indi-
vidual, which, for example, can be given by a human user or an image classification
algorithm. If the variable FromConcept of the initial classification fits to a com-
monsense knowledge predicate (cs_ prefix), additional classifications are derived.
30Inference Rules, https://bitbucket.org/sjakob872/arrange/src/master/

resources/etc/ontology_rules.lp Accessed December 29, 2021.
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1 currentWeight(UUID, Weight, MaxTimeStamp)
:- MaxTimeStamp = #max{TimeStamp : weight(UUID, _, TimeStamp)},
weight(UUID, Weight, MaxTimeStamp).

2 ...
3 isA(Individual, ToConcept, Weight) :- is(Individual, FromConcept),

cs_isA(FromConcept, ToConcept, UUID), currentWeight(UUID, Weight,
MaxTimeStamp).

4 isA(FromConcept, ToConcept, WeightB) :- isA(FromConcept,
InterConcept, WeightA), cs_isA(InterConcept, ToConcept, UUID),
currentWeight(UUID, WeightB, MaxTimeStamp), WeightA < WeightB.

5 ...
6 subSetOfInternal(FromConcept, ToConcept, isA, Weight))

:- isA(InterConcept, ToConcept, _), isA(InterConcept,
FromConcept, _), cs_isA(FromConcept, ToConcept, UUID),
currentWeight(UUID, Weight), MaxTimeStamp).

7 subSetOf(FromConcept, ToConcept, Relation, MaxWeight) :- MaxWeight =
#max{ Weight : subSetOfInternal(FromConcept, ToConcept, Relation,
Weight)}, subSetOfInternal(FromConcept, ToConcept, Relation, _).

8 ...
9 classifiedAsInternal(Individual, ToConcept, MaxWeight)

:- MaxWeight = #max{ Weight : isA(Individual, ToConcept,
Weight)}, isA(Individual, ToConcept, _), is(Individual, _).

10 classifiedAs(FromConcept, ToConcept, MaxWeight)
:- MaxWeight = #max{ Weight : classifiedAsInternal(FromConcept,
ToConcept, Weight)}, classifiedAsInternal(FromConcept,
ToConcept, _).

11 ...
12 hasFacet(Concept, Facet) :- facetOf(Facet, Property),

hasProperty(Concept, Property, Weight).
13 facetInheritedFrom(Facet, Concept, ParentConcept) :- facetOf(Facet,

Property), propertyInheritedFrom(Concept, Property,
ParentConcept, Weight).

14 ...
15 #show subSetOf/4.
16 #show classifiedAs/3.
17 ...

Listing 5.2: Excerpt from the Inference Rules [77]

To provide a better understanding, let us consider the following example. An
image classification algorithm receives an image of rex and classifies rex as a
puppy, which results in the predicate is("rex","puppy"). The excerpt from
the hypergraph in Figure 5.1 contains the commonsense knowledge that a puppy is
a dog, which results in the commonsense predicate cs_isA("puppy", "dog",
139). Given these predicates, the rule in Line 3 derives that rex is a dog, too.
Line 4 uses already derived commonsense knowledge to apply further classifications.
This process is stopped if no edge with a higher weight than the current one is
found. Including equal or lower weights would result in an exhaustive use of further
commonsense knowledge predicates resulting in cyclic or impractical classifications.
Again, the resulting predicates are used internally and are not included in the Answer
Set.
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Subset Determination Lines 6 and 7 show an excerpt from the determination
of subsets, which utilises the derived rule heads of the commonsense knowledge
propagation. For example, Line 6 determines subset relationships between isA pre-
dicates and checks if this subset is part of the commonsense knowledge. Considering
the example given in Figure 5.1, the commonsense knowledge propagation derives the
predicates isA("rex", "puppy", 1) and isA("rex", "dog", 568). Since
it is commonsense knowledge that a puppy is a dog, the head of the rule in Line 6 is
derived. The resulting subSetOfInternal( "puppy", "dog", isA, 568)
predicate states that puppy is a subset of dog and was extracted from an edge with
the isA relation. Rules like Line 6 are used internally and provide predicates used
in Line 7. This rule selects the internal subset predicates between two concepts with
the highest weight and represents the subsets in a human- and machine-readable
format. Furthermore, the subSetOf predicates derived by Line 7 are part of the
resulting Answer Set and indicate a chain of subset relations starting from the initial
classification.

Classification Lines 9 and 10 present an excerpt from the classification. While the
subset rules in the previous paragraph form a chain of subset predicates, the clas-
sification rules directly link the individuals with the relevant concepts. Rules, like
shown in Line 9, are used to create an internal representation of the classification.
Therefore, these rules use the predicates derived by the commonsense knowledge
propagation and select the concepts for classification based on their weight. Line 10
summarises the internal classification. Therefore, this rule selects the highest in-
ternal classification predicates for each concept and marks them as the final results,
which are part of the returned Answer Set.

Facet Handling An excerpt from the rules that handle facets is shown in the
Lines 12 and 13. The resulting predicates of this rule category are part of the res-
ulting Answer Set. These rules attach facets to concepts by using their properties
(Line 12). Therefore, a facet is added to a property via a facetOf predicate. Fur-
thermore, rules like Line 13 enable the inheritance of facets based on the inheritance
of properties. In general, a property is inherited to a subclass if its parent class has
the corresponding property. A detailed description of facets is given in Section 5.2.3.

Answer Set Size Reduction The last category of inference rules is used to reduce
the number of predicates that are returned in the Answer Set. This limits the Answer
Set to the most important predicates and prevents that the complete ontology is
returned to the user. Lines 15 and 16 are examples of the size reduction. They
use the #show directive of Clingo, which prompt Clingo to return only atoms with
the fitting predicate name and arity. The complete set of #show directives includes
subsets, classification, facets, properties, and the initial classification.
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The application of the presented inference rules on the ontology extracted from
Figure 5.1 results in the following Answer Set:

M = {is(”rex”, ”puppy”),
subSetOf(”rex”, ”puppy”, is, 1),
subSetOf(”puppy”, ”immature_dog”, isA, 286),
subSetOf(”puppy”, ”dog”, isA, 568),
subSetOf(”dog”, ”loyal_friend”, isA, 665),
subSetOf(”dog”, ”pet”, isA, 668),
classifiedAs(”rex”, ”puppy”, 568),
classifiedAs(”rex”, ”immature_dog”, 286),
classifiedAs(”rex”, ”dog”, 568),
classifiedAs(”rex”, ”loyal_friend”, 665),
classifiedAs(”rex”, ”pet”, 668)}.

The Answer Set M can be interpreted as follows. Rex has been initially classified
as a puppy. Thus, it is a subset of this concept. Subsequently, a puppy is a
subset of both immature_dog and dog. Finally, a dog is a subset of the concepts
loyal_friend and pet. Following these subset predicates, several classifications
with different weights are given. For example, rex is classified as a dog. By selecting
the highest weight, the most generic concept is used, which is pet in this example.

Following the pattern of the inference rules discussed in the previous sections,
a further set of inference rules can be manually created enabling the inclusion of
custom relations and custom inheritance structures. After the definition of infer-
ence rules, the last step in the generation of a commonsense knowledge ontology
is the definition of facets, which provide several rules for a detailed specification of
properties. The facet specification is shown in the next section.

5.2.3 Facets

The final step in the generation of a commonsense knowledge ontology is the cre-
ation of facets. These include the definition of values, their types and ranges,
sub-properties, and domains. This enables the detailed description of concepts and
their properties. To demonstrate the definition of facets, an additional edge is in-
troduced to the excerpt of the CN5 hypergraph shown in Figure 5.1. This edge
models the commonsense knowledge that a dog has the property coat_colour.
Listing 5.3 demonstrates the construction of a facet for the property coat_colour
called colour. This includes the definition of the facet itself, its type, a value range,
and the actual value. Domain and sub-property facets are defined analogously.
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1 #external facetOf("colour", "coat_colour").
2 #external typeOf("colour", "coat_colour", "string").
3 #external valueRangeOf("colour", "coat_colour",

"1{black;grey;brown;white;brindle}1").
4 propertyViolation(Individual, "colour", "coat_colour", "Too many

Values") :- X = #count{Value : hasValue(Individual, "colour",
"coat_colour", Value, _)}, hasValue(Individual, "colour",
"coat_colour", _, _), X > 1.

5 propertyViolation(Individual, "colour", "coat_colour", "Too few
Values") :- X = #count{Value : hasValue(Individual, "colour",
"coat_colour", Value, _)}, hasValue(Individual, "colour",
"coat_colour", _, _), X < 1.

6 propertyViolation(Individual, "colour", "coat_colour", "No Value")
:- not hasValue(Individual, "colour", "coat_colour", _, _),
is(Individual, _).

7 #external hasValue("rex", "colour", "coat_colour", "brown", 0).

Listing 5.3: Facets Defining the Coat Colour of a Dog [77]

Line 1 of Listing 5.3 is the definition of the facet. It is modelled as an Ex-
ternal Statement and, thus, can be activated dynamically. Furthermore, it states
that the property coat_colour has a facet defining its colour. The second
line of this listing defines the type of the colour facet, which is string. The
range of the created facet is limited by the External Statement in Line 3. It states
that the colour has to have at least and at most one value included in the set
{black;grey;brown;white;brindle}. These restrictions are enforced in two
ways. While the restriction of the actual values is conducted by the graphical user
interface ARRANGE presented in Section 5.2.4, the minimum and maximum cardin-
alities are asserted by additional ASP rules. Lines 4 to 6 present these rules. Line 4
checks if the number of defined values for the colour for a specific individual is
higher than the given maximum cardinality. If this is the case, the comparisonX > 1
is evaluated to true, and the head of the rule is derived. The resulting predicate
then indicates that the given individual has too many values for the facet colour of
the property coat_colour. Line 5 performs the analogous check for the minimum
cardinality and signals too few values if the number is lower than the corresponding
cardinality. Additionally, the rule in Line 6 checks if at least one value is specified in
the case that the minimum cardinality is higher than 0. Finally, a value is specified
in Line 7. It is modelled as an External Statement, and therefore its truth value can
be changed dynamically. Informally speaking, this External Statement expresses
that the coat_colour of rex is brown.

5.2.4 Graphical User Interface

To support the generation, definition, and adaption of ASP-based ontologies, we
provide a graphical user interface denoted as ARRANGE (Answer set pRogRAm-
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ming oNtoloGy gEneration) [77] that is publicly available at Bitbucket31. AR-
RANGE supports the automatic extraction of a commonsense ontology from a
hypergraph-based knowledge source as presented in Section 5.2.1, shows the on-
tology inference rules, which are defined in Section 5.2.2, supports the developer
while creating facets, and provides access to the resulting Answer Set and solving
statistics. Figure 5.2 depicts the graphical user interface ARRANGE.

To manually create, alter, or generate an ASP ontology, the ontology tab shown
in Figure 5.2a is used. It is divided into three areas. On the left side, a list of all
concepts is given that are part of the ontology. By selecting a concept, all connected
edges are shown on the right side. Edges can be added, edited, deleted, and saved
using the corresponding buttons. Figure 5.2b shows the facet tab, which is used
to model facets. Additional rules like property violation are not shown since they
should not be removed or edited manually to ensure the correct indication of errors.
Furthermore, individuals can be created in an additional tab. To provide a detailed
overview of the ASP ontology, separate tabs present the basic ontology program
and the inference rules. The last tab is the solution tab shown in Figure 5.2c. It
gives an overview of the resulting Answer Set and provides statistics of the ontology
and the solving process. Furthermore, the results are returned as a graph to ease
the understanding of the returned Answer Set. The graph representation of the
Answer Set shown in Figure 5.2c is presented in Figure 5.3. Blue arrows mark
facets. For example, rex has the facet colour. Black arrows indicate property
relations like hasProperty. Green arrows denote subsets, e. g., puppy is a subset
of dog. Finally, red arrows present the classification results.

31ARRANGE, https://bitbucket.org/sjakob872/arrange/src/master/
Accessed December 29, 2021.
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5.2.5 Dynamic Ontology Interaction

The classification provided by the automatically generated ontology already achieves
satisfying results without any manual interference. Nevertheless, the classification
can miss some classes. Figure 5.4 shows an example. Using the initial classification
that rex is a dog, the application of the ontology extracted from the presented
example classifies rex as a pet and a four legged animal. Further classes
are not derived. This is caused by the inference rules since they only use edges
with a higher weight. By relying on increasing weights, an exhaustive traversal of
the hypergraph or loops are prevented since both would lead to impractical or no
classification. To add further classes without causing a risk of an exhaustive search,
two mechanisms are provided.

IsA 3.17

IsA 6.68dog IsA 4.56pet Has
Property 4.0animal alive

IsA 1.0

quadrupedIsA 1.0
four

legged 
animal

Figure 5.4: Subgraph of CN5

The first mechanism is the adaption of the weights during the design-time of the
ontology. After the generation of the ontology, ARRANGE supports the adaption
of weights. Thus, the weights of the corresponding edges can be adapted using
the ontology tap. For example, by increasing the edge weight of the edge between
pet and animal in Figure 5.4 to 7.0, the concept animal is included in the
classification.

The second mechanism is to integrate further weight rules, which can be added
during design-time and run-time. An example of the weight adaption of the edge
between pet and animal is shown in Listing 5.4.

1 #external cs_isA("pet", "animal", 19).
2 weight(19, 456, 0) :- cs_isA("pet", "animal", 19).
3 weight(19, 700, 1) :- cs_isA("pet", "animal", 19).
4 ...
5 weight(19, 306, 10) :- cs_isA("pet", "animal", 19).

Listing 5.4: Dynamic Weight Adaption

The first two lines of this listing are the translation of an edge with its current
weight. In order to adapt the weight of this edge, Line 3 adds an additional weight
rule. The rule head contains the UUID of the edge, the adapted weight, and an
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increased timestamp. Thus, the weight handling shown in Section 5.2.2 selects the
weight of Line 3 for the current weight. Considering the example presented above,
rex is now classified as an animal and inherits the property alive. In the case the
classification is no longer suited, the weight can be lowered by introducing further
weight rules (Line 5).

5.3 Handling Semantic Inconsistencies

Commonsense knowledge is used in our everyday life [29]. We utilise this knowledge
to solve our daily chores and rely on it during communication. Hence, this kind of
knowledge is needed to improve the communication between service robots and hu-
mans. Besides the classification of objects by an ontology as presented in Section 5.2,
the service robots have to have access to a source of commonsense knowledge, need a
suited representation of it, and have to be able to adapt this knowledge according to
their environment [78, 104, 107]. Therefore, let us consider the following example: a
human states that it is cold. To solve this implicitly formulated task, a service robot
could fetch a blanket or turn on the heater. Commonsense knowledge is needed
to understand the implicitly formulated task and the connection between the room
temperature and the heating.

Depending on the operating place, the service robots have to adapt their know-
ledge and either extract commonsense knowledge from a knowledge source like CN5
or have to be taught by a human [104]. This process can cause inconsistencies
in the knowledge base, which can be divided into syntactic and semantic incon-
sistencies. Syntactic inconsistencies are literals that are considered to be true and
false simultaneously. For example, the literals ¬X and X could be part of the
same knowledge base and, thus, only the trivial solution false could be derived.
While these syntactic inconsistencies are handled by the used reasoning formalism,
e. g., Boolean algebra, semantic inconsistencies are not considered by these form-
alisms. For example, the predicates temperature(livingRoom, cold) and
temperature(livingRoom, hot), stating the temperature of a room is cold
and hot at the same time, are syntactically correct but introduce a semantic incon-
sistency. There is an apparent contradiction for humans. However, robots without
any commonsense knowledge are not able to understand this contradiction. There-
fore, the knowledge base of the robot has to be able to cope with semantic incon-
sistencies and needs to prevent them in case further knowledge is introduced [78].

The remainder of this section is structured as follows: Section 5.3.1 presents
a method to formalise commonsense knowledge in ASP. Since inconsistencies can
arise during the incorporation of commonsense knowledge, a semantic inconsistency
detection is shown in Section 5.3.2. Finally, a way to prevent these inconsistencies
is presented in Section 5.3.3.
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5.3.1 Modelling of Commonsense Knowledge in ASP

In order to incorporate commonsense knowledge, a suitable representation and know-
ledge source are needed. ASP, with its non-monotonic reasoning capabilities and
mechanisms to model defaults, is particularly suited. Furthermore, CN5 is suited
as a commonsense knowledge source since its hypergraph based knowledge repres-
entation allows fast and easy access to the stored knowledge. Hence, an application
of ASP to model commonsense knowledge based on CN5 was introduced by Opfer
et al. in [107], which we adapt in [78]. To model commonsense knowledge and to
apply it to sensor inputs, Opfer et al. suggest three distinct Program Sections. The
first one is the commonsenseKnowledge Program Section. It contains facts that
model commonsense knowledge extracted from hypergraph-based knowledge sources
like CN5 or taught by human users. Furthermore, this kind of knowledge is assumed
to hold and rarely changes. Hence, it has been modelled as facts. An excerpt of
this Program Section modelling commonsense knowledge about a cup is shown in
Listing 5.5.

1 #program commonsenseKnowledge.
2 cs_AtLocation("coffee", "cup", 200).
3 cs_AtLocation("cup", "shelf", 282).
4 cs_AtLocation("cup", "sink", 100).
5 cs_AtLocation("cup", "table", 400).
6 cs_CapableOf("cup", "hold_liquids", 692).
7 cs_IsA("cup", "drinking_vessel", 100).
8 cs_FormOf("cups", "cup", 200).

Listing 5.5: Excerpt of the Commonsesne Knowledge on Cups [107]

Line 1 of Listing 5.5 marks the commonsenseKnowledge Program Section.
The following lines model the commonsense knowledge about a cup. For example,
"coffee" can be found in a cup. A cup can be located on a shelf, in a sink,
and on a table. Additionally, a cup is able to hold liquids.

The second Program Section is denoted as sensorInput. It contains external
input about objects in the environment of the robot. This input can be given by
sources like YOLO (You Only Look Once)32, by the Google Vision API33, by the
classification based on an ontology, or simply by statements of a human user. In
contrast to commonsense knowledge, knowledge given in this Program Section often
changes, for example, if the information is outdated. Thus, the statements given
in this Program Section are marked as External Statements. Listing 5.6 shows an
example of this Program Section.

32YOLO: Real-Time Object Detection, https://pjreddie.com/darknet/yolo/
Accessed December 29, 2021.

33Vision AI, https://cloud.google.com/vision Accessed December 29, 2021.
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1 #program sensorInput.
2 #external is("blueCup", "cup").
3 #external is("kitchenTable", "table").
4 #external is("kitchenShelf", "shelf").

Listing 5.6: Example of the sensorInput Program Section [107]

Line 1 of Listing 5.6 marks the beginning of the sensorInput Program Section.
The following lines are External Statements representing objects detected via image
classification. The object blueCup is classified as a cup, the kitchenTable as a
table, and the kitchenShelf as a shelf.

To combine the commonsense knowledge with the sensor input, the Program Sec-
tion situationalKnowledge is defined [107], which provides corresponding rules.
Listing 5.7 depicts an excerpt from this Program Section.

1 #program situationalKnowledge(n, m).
2 #external -atLocation(n, m).
3 atLocation(n, m, W) :- not -atLocation(n, m), is(n, "cup"),

is(m, "table"), cs_atLocation("cup", "table", W).
4 atLocation(n, m, W) :- not -atLocation(n, m), is(n, "cofee"),

is(m, "cup"), cs_atLocation("cofee", "cup", W).
5 atLocation(n, m, W) :- not -atLocation(n, m), is(n, "cup"),

is(m, "shelf"), cs_atLocation("cup", "shelf", W).
6 ...
7 #external -formOf(n, m).
8 formOf(n, m, W) :- not -formOf(n, m), is(n, "cups"), is(m, "cup"),

cs_formOf("cups", "cup", W).

Listing 5.7: Excerpt of the situationalKnowledge Program Section [107]

Line 1 of Listing 5.7 is the beginning of the situationalKnowledge. In
contrast to the previous Program Sections, two variables, n and m, are added to
its definition. During the grounding of the ASP program, these variables are re-
placed by concrete values, which enable reusing this Program Section for different
pairs of objects. By using these objects, External Statements (see Line 2 and 7)
are created, which can be used to negate the predicates derived by the corres-
ponding rules. For example, grounding this Program Section with the objects
blueCup and kitchenTable, creates, among others, the External Statement
-atLocation("blueCup", "kitchenTable"). Setting this External State-
ment to true expresses that the blueCup is not on the kitchenTable.

Besides the External Statements, additional rules are part of the situational-
Knowledge Program Section, which apply commonsense knowledge onto the sensor
input. Lines 3 to 5 and Line 8 show such rules. Informally speaking, the rule in
Line 3 can be interpreted as follows: if a robot has detected an object n which is
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classified as a cup, an object m with the class table, it is commonsense that a cup
can be located on a table, and it is unknown that n is not located at m, it can be
derived that n is possibly located at m. Furthermore, the variable W indicates the
reliability of the derived rule head. For example, the edge weight of CN5 can be
used to define the reliability of the derived knowledge.

Each rule in the situationalKnowledge Program Section depends on the
truth value of three External Statements, two of them representing the sensor input
and one that states contrary knowledge. Hence, the predicates derived from the
rules can be removed from the knowledge base in two ways. The first one is to
change the truth value of the External Statements representing the sensor input
if the information is outdated. The second one is that the robot is able to derive
contrary knowledge. For example, the robot could check if the blueCup is on the
kitchenTable and if that is not the case, the truth value of the corresponding
External Statement is set to true.

After presenting a general way to model commonsense knowledge introduced by
Opfer et al. in [104, 107], we aim at detecting and preventing semantic inconsisten-
cies in this knowledge to keep the resulting knowledge base consistent. Both aspects
are discussed in the following sections.

5.3.2 Semantic Inconsistency Detection

The first step in the handling of semantic inconsistencies is their detection. In order
to apply the presented inconsistency detection method, the used commonsense know-
ledge source has to be hypergraph-based and should be able to represent properties
of a concept. Furthermore, a relation to determine antonyms is needed. A relation
defining synonyms can improve the detection of inconsistencies. CN5, for example,
fulfils these requirements since it provides corresponding relations. Properties are
supported by the HasProperty relation, antonyms by the Antonym relation, and
synonyms by relations like Synonym or SimilarTo. Hence, the semantic incon-
sistency detection presented in Algorithm 5.3 can be applied using CN5.

The semantic inconsistency detection receives a concept c as input and returns
a set E of edges connected to c. In the case that edges would introduce semantic
inconsistencies, they are marked for the semantic inconsistency prevention shown
in Section 5.3.3. During the first step, the algorithm extracts all edges connected
to c in the set of edges E (Line 1). Subsequently, all properties of c are gathered
in set P , which are concepts connected by a property edge to c (Line 2). Lines 3
to 9 show the detection of inconsistencies. To detect inconsistencies, antonym edges
are used. Therefore, Algorithm 5.3 checks if any property p ∈ P is connected to
any other property in P via an antonym edge. If this is the case, the properties
contradict each other and the corresponding pair of edges can introduce an incon-
sistency to the knowledge base. Thus, both edges are marked as inconsistent.
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Algorithm 5.3: Semantic Inconsistency Detection [78]
Input : Concept c
Output: Set of edges E connected to c

1 E := Extract edges connected to c
2 P := Gather properties from E
3 foreach Property p ∈ P do
4 if p is an Antonym to any property in P
5 then Mark corresponding edge in E as inconsistent
6 S := Collect all Synonyms for p
7 foreach Synonym s ∈ S do
8 if s is an Antonym to any Property in P
9 then Mark corresponding edge in E as inconsistent

10 return E

Only using this step could leave some inconsistencies unmarked because synonyms
of properties could cause further semantic inconsistencies. Therefore, synonyms (S)
of the considered property are extracted from the utilised knowledge sources. In the
case of CN5, the edges with the relations SimilarTo, Synonym, and InstanceOf
could be used. Subsequently, the algorithm checks if any of the gathered synonyms
is connected via an antonym edge to a property and marks the corresponding edges
as possible inconsistencies. The step of collecting synonyms is only applied once.
Considering synonyms of synonyms would lead to a traversal of an exponentially
growing number of synonyms and would lower the quality of the result of the in-
consistency detection. Finally, the set E containing all edges extracted from the
knowledge source is returned, which are then translated into ASP. If an edge has
been marked as inconsistent, it is translated as described in Section 5.3.3. If it is
not marked as an inconsistency, it is translated according to Section 5.3.1.

person

peoplefat

lean

thin

overweight

underweight

FormOf 1.0

HasProperty 2.0

HasProperty 1.0 HasProperty 1.0

Antonym 1.0

Synonym 2.0
SimilarTo 2.0

Antonym 1.0

Antonym 1.0

Figure 5.5: Inconsistencies in the Properties of People [78]

In order to understand the steps of Algorithm 5.3, Figure 5.5 presents an example
based on CN5, which contains the concept people and an excerpt of its proper-
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ties. The first step of Algorithm 5.3 extracts four edges, which connect people
to person, fat, overweight, and thin. Since person is not connected via a
HasProperty edge, it is not considered in the following steps. The three remaining
edges have the relation HasProperty, and thus the concepts fat, overweight,
and thin are considered as properties. In the initial detection of inconsistencies
(Lines 4 and 5), the edges between people and fat, as well as people and thin,
are marked as inconsistent since an antonym edge connects thin and fat. However,
there is no such edge between thin and overweight. In order to detect such incon-
sistencies, synonyms are extracted. In this example, lean is a synonym for thin
and underweight is similar to thin. Using these synonyms, the inconsistency
between thin and overweight is found since its an antonym to underweight.
The returned set of edges contains four edges. While the edge between person
and people does not introduce an inconsistency, the remaining three can cause an
inconsistency.

5.3.3 Semantic Inconsistency Prevention

After possible inconsistencies have been marked by Algorithm 5.3 shown in the pre-
vious section, these edges have to be translated in a different way than unmarked
edges. Therefore, we introduce a variant of the situationalKnowledge Pro-
gram Section. Instead of applying commonsense knowledge to a pair of objects
provided by two variables, n and m, the variant presented in this section is used
to represent the properties of a single object n. In general, this Program Section
is used to derive properties based on the sensor input presented in Section 5.3.1.
Inconsistencies in this input cannot be prevented. Therefore, the rules presented
in this section enable deriving consistent properties by introducing the additional
predicate hasProperty, which will model consistent properties. Listing 5.8 shows
an example of rules that are used to prevent inconsistencies.

1 #program situationalKnowledge(n).
2 hasProperty(n, "thin", W) :- not is(n, "-thin"),

cs_HasProperty("people", "thin", W), is(n, "thin"),
is(n, "people"), not hasProperty(n, "fat", _) :
cs_Antonym("thin", "fat", _).

3 -hasProperty(n, "thin", W) :- not is(n, "thin"),
cs_HasProperty("people", "thin", W), is(n, "-thin"),
is(n, "people").

4 hasProperty(n, "fat", W) :- not is(n, "-fat"),
cs_HasProperty("people", "fat", W), is(n, "fat"),
is(n, "people"), not hasProperty(n, "thin", _) :
cs_Antonym("thin", "fat", _).

5 -hasProperty(n, "fat", W) :- not is(n, "fat"),
cs_HasProperty("people", "fat", W), is(n, "-fat"),
is(n, "people").

6 is(X, "people") :- is(X, "person").

Listing 5.8: Modelling of the Inconsisteny Prevention [78]
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Line 1 marks the beginning of the adapted situationalKnowledge Program
Section. The following four rules (Lines 2 to 5) model a pair of edges that has been
marked as inconsistent by Algorithm 5.3. In this example, the translation of the
edges from people to thin and from people to fat are shown. Line 2 derives
that the object n has the property thin. This knowledge can only be derived if the
following knowledge is present in the knowledge base:

1. There is no proof that n is not thin;
2. it is commonsense knowledge that people can be thin;
3. the sensor input indicates that n is thin;
4. the sensor input states that n is classified as people;
5. n does not have the property fat if it is commonsense knowledge that thin

and fat are antonyms.

Line 3 represents the logical opposite of Line 2 since it states that n does not have
the property thin. To prevent that both syntactically contradicting rule heads can
be derived simultaneously, both rules rely on contrary input predicates in the body.
For example, the rule in Line 2 negatively depends on is(n, "-thin") while it
is positively used in Line 3. Hence, it prevents that both rule heads can be derived
at the same time. The rules for the property fat shown in Line 4 and 5 are used
analogously to Line 2 and 3.

To provide a better understanding of the interaction of the rules shown in List-
ing 5.8, let us consider the following example. The author of this thesis has finally
lost some weight. His service robot sees him as a thin person now and adds the sensor
input is("stefan","thin") and is("stefan","person") to its knowledge
base. By applying the auxiliary rule in Line 6, the service robot derives the pre-
dicate is("stefan","people"). Hence, the inconsistency prevention rules in
Listing 5.8 are applied. Since there is no proof that stefan is not thin, the cor-
responding sensor input is given, it is commonsense knowledge that people can
have the property thin, and no contrary information is given, the robot derives
that stefan has the property thin. At a later time, the service robot receives the
input is("stefan","fat"). This causes a semantic inconsistency in the input.
However, the way the rules in Listing 5.8 are modelled prevents inconsistencies in
the hasProperty predicates. Instead of creating a single semantically inconsistent
Answer Set, two consistent Answer Sets are created that both contain one of the
contradicting properties. For this example, the Answer Sets are:

M1 = {cs_Antonym(”thin”, ”fat”, 1), is(”stefan”, ”thin”), is(”stefan”,
”fat”), is(”stefan”, ”person”), is(”stefan”, ”people”), cs_HasProperty(
”people”, ”thin”, 2), cs_HasProperty(”people”, ”fat”, 1),
hasProperty(”stefan”, ”fat”, 1)}
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M2 = {cs_Antonym(”thin”, ”fat”, 1), is(”stefan”, ”thin”), is(”stefan”,
”fat”), is(”stefan”, ”person”), is(”stefan”, ”people”), cs_HasProperty(
”people”, ”thin”, 2), cs_HasProperty(”people”, ”fat”, 1),
hasProperty(”stefan”, ”thin”, 2)}

The differences between M1 and M2 are highlighted in blue. Since the number
of Answer Sets is increased, the robot can detect the possible inconsistency and
has three ways to solve it. The first way is to rely on the weights attached to the
hasProperty predicates. In this example, the property thin has a higher weight
and the robot could thus remove the input that caused the inconsistency. The second
option is to rely on the most current information. In this case, the robot could keep
the property fat and invalidate the old input is("stefan","thin"). The last
option is to request the assistance of a human user, who can state which input
predicate does not hold.

By combining the modelling of commonsense knowledge shown in Section 5.3.1,
the inconsistency detection presented in Section 5.3.2, and the prevention of incon-
sistencies by creating several consistent Answer Sets in parallel discussed in Sec-
tion 5.3.3, a dynamically adaptable and consistent commonsense knowledge base
can be created.

5.4 Summary and Discussion

In this chapter, one of the main contributions of this thesis has been presented, which
is the semantic handling of symbolically represented commonsense knowledge. The
introduced handling of symbolic commonsense knowledge is divided into two parts.

The first part is the automatic generation of ASP-based ontologies, which are
used to represent commonsense knowledge. ASP is ideal for the representation of
ontologies since it adheres to the requirements for a knowledge representation lan-
guage defined by Krötzsch [84]. ASP and the solver Clingo provide failure robustness
since rules can be formulated that catch errors. Furthermore, its three-valued logic
provides methods to express that something is unknown, which eases the indication
of errors. By providing External Statements and Program Sections, ASP programs
can be dynamically adapted fulfilling the modularisation requirement defined by
Krötzsch. Additionally, ASP provides mechanisms to apply numeric computation.
The last requirement defined by Krötzsch is tool support. While ASP has soph-
isticated solvers like Clingo, there are hardly any graphical tools that support the
modelling of ASP programs. To tackle this issue, we developed an ontology model-
ling and generation framework that provides a graphical modelling tool supporting
the user in the generation, creation, and manual adaption of ontologies. To ensure
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the reusability of parts of the ontology, as demanded by Krötzsch, the presented
ontologies consist of three distinct parts. The first part is the generated ontology,
which is modelled using External Statements and weight rules that enable the dy-
namic adaptation of the ontology at run-time. The second part contains inference
rules that enable the classification of individuals. The last part manages facets,
which enable the user to provide values, restrictions, domains, and sub-properties
for extracted properties. By combining these three parts, a dynamically adaptable
ontology has been created, which is supported by a graphical modelling tool and
satisfies the requirements defined by Krötzsch. Furthermore, the presented genera-
tion of ASP-based ontologies fulfils Requirement R2 defined in Section 1.1 since the
generated ontologies provide an efficient method to manage and access the stored
knowledge. Additionally, they provide a common semantic which supports a decent-
ralised application.

Related work in the field of ontology generation aims at the (semi-)automatic
extraction of ontologies from various sources. For example, frameworks like the
Health Ontology Generator [81] utilise databases and approaches similar to Onto-
Harvester [97] focus on free text. Furthermore, these frameworks typically use OWL
to generate the ontologies. In contrast, ARRANGE generates ASP-based ontolo-
gies, which are dynamically adaptable and expandable at run-time. Frameworks
like OntoDLV [118] model ontologies using ASP, too. OntoDLV expands ASP with
additional keywords that enable the modelling of classes as well as sub- and super-
class relations. In contrast, ARRANGE adheres to the ASP-Core-2 standard [24]
and utilises External Statements and Program Sections provided by Clingo.

The second part of the handling of symbolic commonsense knowledge is a mech-
anism to manage semantic inconsistencies. Commonsense knowledge is a significant
part of our everyday life [29]. Thus, the incorporation of commonsense knowledge
into the knowledge base of a service robot fosters the interaction of service robots
with its human users because both can rely on similar knowledge. However, the
incorporation of commonsense knowledge into the knowledge base of a robot can
easily introduce semantic inconsistencies, which can cause faulty executions of tasks
or misunderstanding in the communication between robots and humans. To pre-
vent this, commonsense knowledge is extracted from a hypergraph-based knowledge
source. During this process, extracted properties are checked for possible incon-
sistencies and ASP rules that prevent the derivation of semantic inconsistencies are
generated. Instead, the rules create several consistent solutions that can be selected
by the robot or the human interacting with the robot. Thus, in the second part of
the handling of symbolic commonsense knowledge, a dynamic formalisation of com-
monsense knowledge is presented that provides access to a vast amount of knowledge
and prevents possible semantic inconsistencies, which fulfils Requirement R3.

In related works, ASP has been broadly used for knowledge representation in
various fields (see Section 3.3). However, semantic inconsistencies inside the created
ASP programs are seldom addressed automatically. One of the works addressing
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inconsistencies is presented by Gebser et al. in [56]. The focus is set on detecting
inconsistencies in large scale biological networks. The approach presented by Geb-
ser et al. can be compared to the semantic inconsistency handling introduced in
Section 5.3, which incorporates a commonsense knowledge source to solve inconsist-
encies automatically. In contrast, Gebser et al. manually formulate rules to detect
inconsistencies based on specifically formulated rules.
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By introducing several distinct Knowledge Groups as presented in Section 4.3, a
loosely coupled and mesh-like network is formed. Typically, locating contents in such
unstructured networks is achieved by flooding, which simply forwards messages to
all neighbouring nodes. Especially in Search&Rescue scenarios, this could introduce
unnecessary load to a potentially unstable network and, thus, cause a breakdown of
the network. Additionally, entirely relying on flooding in a Fog Computing envir-
onment would create additional stress on the Fog Nodes and could cause network
congestion. Thus, an efficient and intelligent way of routing based on the content
is needed, which only relies on flooding as a last resort. A possible solution is the
introduction of a structured peer-to-peer network, e. g., Distributed Hash Tables
(DHT) [139]. While DHTs provide fast access to the stored data, they have a major
drawback. They distribute content equally on the network. This can potentially
lead to a broad distribution of the content, which then could not be reachable in
highly dynamic networks. To tackle this problem of content-based routing in such
networks, we present in [75] a routing mechanism based on routing tables since they
can be easily updated by adding, changing or deleting entries. In their typical use
case, routing tables provide information about routes to destinations on the network.
However, this is not suitable for scenarios that require content-based queries instead
of location-based ones. Therefore, the routing mechanism we present in [75] shifts
the focus of routing tables from location-based to semantic-based.

The remainder of this chapter is structured as follows. In Section 6.1, specific re-
quirements for the semantic routing are discussed. The base of the adaptive semantic
routing is formed by Semantic Routing Tables, which are presented in Section 6.2.
To reduce the overall size of the tables and to utilise the hierarchy provided by the
used taxonomies, table entries are semantically aggregated. Section 6.3 discusses
this procedure. Updates of the tables are shown in Section 6.4. The propagation of
newly discovered individuals is presented in Section 6.5. Subsequently, Section 6.6
provides an example application. Last but not least, Section 6.7 summarises this
chapter.

6.1 Specific Requirements

The first challenge in creating Semantic Routing Tables and solving semantic queries
is to provide access to knowledge sources that grant semantic information. Con-
ceptNet5 (CN5) [128] is such a knowledge base, which we utilise for the creation of
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ASP-based ontologies in Chapter 5. By relying on a subset of the base relations of
CN5, such as IsA and FormOf, a taxonomy can be generated. While ontologies are
a typical approach for providing a common understanding of concepts, taxonomies
provide a hierarchical representation of subclass relationships and, thus, enable an
aggregation of concepts based on their branches. Figure 6.1 shows a comparison
between an ontology focussing on the concept of a human and a corresponding tax-
onomy. For example, a branch in the presented taxonomy consists of the concept
rescuer, which is a person and, thus, a human.

IsA IsA

FormOf hasPropertyhuman

IsA

IsA

person

hasProperty
IsA

patient

rescuer
sufferring
from

disease
sick

person

humans good

Figure 6.1: Taxonomy Extracted from a Hypergraph [75]

The concepts forming the taxonomy are displayed in green and further concepts in-
troduced by an ontology are highlighted in red. While the ontology forms a mesh-like
structure, a tree-like structure is formed by the taxonomy. A downside of mesh-like
structures are circles, which could lead to misleading aggregations. Since the tree-like
structure eases the aggregation of knowledge based on taxonomy branches and pre-
vents cyclic aggregations they have been chosen as the basis for the Semantic Routing
Tables presented by us in [75]. The example scenario, shown in Figure 6.234, is used
to describe the process of the generation of the Semantic Routing Entries and their
maintenance.

The main goal of the rescuers in this example is to locate the four patients A,
B, C, and D after a natural disaster, e. g., an earthquake. Each of these patients
is associated with their smartphone, which enables communication with the other
entities present in the example. Furthermore, the smartphones run a Knowledge
Group on their own and, thus, can share their knowledge. In order to support the
Search&Rescue mission, rescuers have deployed unmanned aerial vehicles (UAVs)
and autonomous robots. While UAVs provide an aerial view, robots support the
rescuers in locating and rescuing injured people. Additionally, both serve as com-
munication relays to support the potentially damaged communication infrastructure
of the city. Since the UAVs and the robots are mobile, the communication connec-
tions can break due to their movement. Finally, the smart infrastructure of the
city serves as static communication relays. Together, the employed entities form a
loosely coupled network of Knowledge Groups that can share their knowledge. In

34Created with https://app.diagrams.net/ Accessed December 29, 2021.
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Figure 6.2, dashed arrows represent the communication between participants. Solid
arrows denote a query. Knowledge is indicated as a string consisting of several
concepts separated by a slash. A capital letter in this string marks an individual.
For example, "human/person/D" expresses that individual D is a person and sub-
sequently a human.

human/person/patient/A

Street Light 1 Street Light 2

Smartphone 1

Smartphone 3Smartphone 2

UAV 2

Robot 1

UAV 3
human/person/patient/B human/person/patient/C

UAV 1

Smartphone 4
human/person/D

Rescuers

Communication Query concept/Individual Knowledge

Robot 2

Figure 6.2: Example Scenario34 [75]

To save patients in this scenario, rescuers send semantic queries to this network,
which aim at locating the injured patients. Since these queries focus on the con-
tents of the network, we introduce in [75] the Adaptive Semantic Routing, which is
described in detail in the following sections.

This chapter focuses on the fulfilment of RequirementR4 - Efficient Knowledge
Discovery, which is defined in Section 1.1. Therefore, the following sections present
a routing method based on dynamically created routing tables, which rely on the
semantics of the stored knowledge. Furthermore, the entries of these tables are
represented by ASP rules enabling their adjustment at run-time.
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6.2 Semantic Routing Tables

Semantic Routing Tables form the core component of the Adaptive Semantic Rout-
ing. Generally speaking, the routing entries indicate which connected Knowledge
Group has to be addressed for a specific piece of knowledge or which Knowledge
Group is closer to the requested knowledge. Each routing entry consists of a com-
bination of two External Statements and an ASP rule. The ASP rule is used to
model the actual route, while the External Statements represent the availability of
the connected Knowledge Groups and the validity of the table entry. Templates for
the External Statements and the rules are shown in Listing 6.1.

1 route(path("concept1", "concept2",...,"conceptn"),
uuid("location_uuid"), dist(dist), uuid("next_uuid"))
:- node(uuid("next_uuid")),
not -route(path("concept1", "concept2",...,"conceptn"),
uuid("location_uuid"), dist(dist), uuid("next_uuid")).

2 #external node(uuid("next_uuid")).
3 #external -route(path("concept1", "concept2",...,"conceptn"),

uuid("location_uuid"), dist(dist), uuid("next_uuid")).

Listing 6.1: Semantic Routing Table Entry Templates [75]

Line 1 of Listing 6.1 is a template for ASP rules that are used to model the routing
table entries. Its head consists of a predicate with the name route and arity of 4.
The components of this predicate contain the necessary information to locate pieces
of knowledge based on their semantics, which is expressed by the path predicate.
It contains the concepts denoting the semantics of the routing entry, which has
been created either during the Semantic Aggregation (see Section 6.3) or due to
updates (see Section 6.4) or are given by an initial classification of an individual
(see Section 6.5). Since a branch of a taxonomy provides these concepts, they form
a chain of subclass relations. For example, concept2 is a subclass of concept1. The
second predicate of each routing entry is a uuid that indicates the actual location
of the knowledge. This knowledge is reachable via the number of hops indicated by
the dist predicate. Last but not least, the second uuid indicates to which Knowledge
Group the query has to be forwarded to reach the requested knowledge. In the case
that the knowledge indicated by the path is stored in the current Knowledge Group,
both uuids are set correspondingly and a dist of 0 is selected. To activate a rule,
the corresponding instance of the External Statement in Line 2 of Listing 6.1 has to
be set to true. Since it represents the available communication to the corresponding
Knowledge Group, all routes leading to it can be added or removed according to
the truth value of the External Statement. While the first External Statement
acts as a switch for all routing entries provided by a Knowledge Group, the second
External Statement acts analogously for a single Routing Entry. It is modelled as
the negative variant of the rule head. Thus, it provides contradicting information.
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To remove the corresponding routing entry, the External Statement has to be set to
true. Subsequently, the negative version of the rule head replaces the positive one,
which expresses that the knowledge is no longer reachable via the route.

In contrast to routes, individuals are represented by a single External Statement.
Since the Knowledge Group manages the individual on its own, it can invalidate the
knowledge, for example, if it is outdated, by setting the External Statement to false.
The template for the creation of routing entries that represent individuals is shown
in Listing 6.2.

1 #external route(path("concept1", "concept2",...,"conceptn",
"Individual"), uuid("own_uuid"), dist(0), uuid("own_uuid")).

Listing 6.2: Semantic Routing Table Entry Template for Individuals

Analogously to the rules presented in Listing 6.1, the path predicate represents
the semantic classification of the individual, which is the last argument of the path
predicate. Since the corresponding knowledge is managed by the Knowledge Group
itself, its UUID is selected for the uuid predicates and the distance is set to 0.

By introducing new individuals to the system and by propagating this knowledge,
the size of each table would constantly be growing. To prevent this and to keep the
tables tractable, an aggregation mechanism is needed, which is introduced in the
next section.

6.3 Semantic Aggregation

A central aspect in the creation of Semantic Routing Tables is the Semantic Aggreg-
ation. Generally speaking, it reduces the size of the routing table by summarising
routing entries based on the provided taxonomies. This has two major impacts on
the table. First, the size reduction keeps the tables tractable. Second, the aggreg-
ation can stop the propagation of individuals if already aggregated rules exist and,
thus, can reduce the number of required messages. The process of the Semantic
Aggregation is shown in Algorithm 6.1.

The algorithm receives a routing table rt and a new routing entry ren as input
and returns an aggregated routing entry rea as well as a list of routing entries rer
that are replaced by rea and thus have to be removed from rt. The general idea
of this algorithm is to compare ren with each entry of rt and check if one of three
possible aggregation steps can be conducted.

The first type of aggregate is possible if an existing routing entry ree and ren
share the same path and the same origin but differ in the distance entry (see Lines 4
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Algorithm 6.1: Semantic Aggregation
Input : Routing Table rt, Routing Entry ren
Output: Routing Entry rea, List<Routing Entry> rer

1 Routing Entry rea = NULL
2 List<Routing Entry> rer
3 foreach Routing Entry ree ∈ rt do
4 if ree.path == ren.path then
5 if ree.origin == ren.origin && ren.dist >= ree.dist then
6 return {SKIP , rer}
7 else
8 rea := createAggregatedRoutingEntry(ree.path, ree.origin,

ren.dist, self.uuid)
9 rer.add(ree)

10 continue

11 if ree.isIndiviual && ren.isIndividual then
12 if ree.path.baseConcepts == ree.path.baseConcepts then
13 rea := createAggregatedRoutingEntry(ree.path.baseConcepts,

self.uuid, 0, self.uuid)
14 return {rea, rer}

15 if ree.path starts with ren.path then
16 rea := createAggregatedRoutingEntry(ree.path ∩ ren.path,

self.uuid, 0, self.uuid)
17 rer.add(ree)
18 return {rea, rer}

19 return {rea, rer}

to 10). This indicates that both routing entries represent the same knowledge but
have reached the Knowledge Group separately. Therefore, a new aggregate rea is
created if the new route (ren) has a lower distance than the existing one (ree).
Routing entries with a higher or equal distance are ignored (SKIP ). The resulting
aggregate rea comprises the existing path and origin. For the distance, the value
of ren is used since it is lower than the current one. The UUID of the aggregating
Knowledge Group is set as the contact. As the last step, ree is added to rer to
replace it in the Semantic Routing Table.

The second type of aggregation can occur if two routing entries, ren and ree,
represent individuals that share the same base concepts (see Lines 11 to 14). Thus,
a routing entry that represents the shared base concepts has to be created. In this
process, an aggregated routing entry rea is created, which contains the path consist-
ing of the shared base concepts, a distance of 0 and the UUID of the aggregating

124



6.3 Semantic Aggregation

Knowledge Group, as both the origin and the contact of this entry. This is the case
since rea points at the knowledge that is available at the aggregating Knowledge
Group. In contrast to the first type of aggregation, ree is not added to rer since it
could remove the reference to an individual, which is maintained by the Knowledge
Group itself.

The third type of aggregates is given if the path section of an existing routing entry
ree starts with the path from the newly received entry ren (see Lines 15 to 18). On
the one hand, this summarises routing table entries and, thus, reduces the size of
the table. On the other hand, it creates more general entries that support the
content-based search. The aggregated routing entry rea consists of the intersection
of both paths, a distance of 0 and the UUID of the aggregating Knowledge Group
as the origin and the contact of this entry. Subsequently, ree is added to rer, which
indicates that this routing entry is replaced by rea.

As the last step (Line 19), a pair containing the aggregate rea and the list of
routing entries that have to be removed (rer) is returned. If none of the above
aggregation types is possible, a pair consisting of a NULL value and an empty list
is returned. The newly created aggregation rea and the routing entries that have to
be removed rer are then handled by the update mechanism presented in the next
section.

To provide a better understanding of the Semantic Aggregation, the example in
Listing 6.3 demonstrates the second type of aggregation. Therefore, this example
uses the individuals B and C introduced in Figure 6.2. Additionally, this example
assumes that Smartphone 2 (sp2 ) conducts the aggregation.

1 route(path("human", "person", "patient", "B"), uuid("sp2"), dist(0),
uuid("sp2")).

2 route(path("human", "person", "patient", "C"), uuid("sp3"), dist(1),
uuid("sp3")).

3

4 route(path("human", "person", "patient"), uuid("sp2"), dist(0),
uuid("sp2")).

Listing 6.3: Example Aggregation

Line 1 shows the Semantic Routing Entry for individual B located on sp2. Line 2
contains the Semantic Routing Entry for individual C, which was received from
Smartphone 3. Since both Semantic Routing Entries share the same base concepts,
Algorithm 6.1 creates the Semantic Routing Entry shown in Line 4, which states
that knowledge about patients can be found at sp2.
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6.4 Table Updates

The update mechanism is used to adapt the Semantic Routing Tables based on newly
arrived information. In general, the update mechanism applies Algorithm 6.2 to
enable or disable the representation of connected Knowledge Groups and to introduce
new routing entries to the routing table.

The algorithm to update the routing table has three inputs. The first one is the
routing table that should be updated (rt). The second is a newly received routing
entry ren. The last input is a UUID (uuid) used to activate or deactivate the Ex-
ternal Statement representing the corresponding Knowledge Group if its availability
has changed. While the first input is mandatory, the second and third can be re-
placed by NULL values. The first line defines the boolean flag aggregated, which
indicates that ren was aggregated during the execution of the algorithm. The fol-
lowing segment of the algorithm (Lines 2 to 4) relies on the value of the uuid input.
If it is not a NULL value, the truth value of the corresponding External Statement is
switched, which means it is set to false if it was true before or vice versa. This either
enables or disables all existing routes to the corresponding Knowledge Group. This
segment is executed first since adding and removing routes influences the Semantic
Aggregation conducted in the next segment by either adding or removing routing
entries.

In the case that a new routing entry ren is given (Line 5), the second and third
segments are executed. The second segment of the Table Update algorithm (Lines 6
to 17) handles the new routing entry ren. If ren is given (not NULL), it is checked
if the introduction of ren results in any aggregation, which is determined by Al-
gorithm 6.1. The pair returned by Algorithm 6.1 consists of a rule rea indicating a
possible aggregation and rer, a list of rules that are replaced by rea. Subsequently,
Algorithm 6.2 updates the routing table rt by removing all routing entries in rer
by setting the corresponding negative External Statements and the aggregated flag
to true. Furthermore, rea is added to rt. Additionally, the created aggregate is
propagated to the neighbouring Knowledge Groups, excluding the Knowledge Group
that originally sent ren. On the receiving side, the distance is increased by one and
the update algorithm is called. Furthermore, the ping mechanism of a Knowledge
Group can be utilised to reduce the overall message complexity since these messages
are exchanged regularly. In the last step of this segment, Algorithm 6.2 stops if ren
is not an individual since they are managed by the third segment separately or if
Algorithm 6.1 suggested skipping (SKIP ) the received routing entry.

The third segment (Lines 18 to 25) of Algorithm 6.2 is used if a new routing
entry ren is not part of rt. In this case, ren is added to rt and propagated to
the neighbouring Knowledge Groups if it is no individual. Again, the Knowledge
Group that provided ren is excluded from the propagation. Subsequently, Line 23
checks that the value of the aggregated flag is false. In this case, ren is a newly
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received individual containing a new semantic annotation. Therefore, it has to be
propagated to the neighbouring nodes. In contrast to the previous propagation
steps, this step has to adjust the representation of the individual. Locally, a single
External Statement represents an individual (see Listing 6.2). Thus, it has to be
transformed into a corresponding rule (see Listing 6.1) that is propagated to the
neighbouring nodes.

Algorithm 6.2: Table Update
Input: Routing Table rt, Routing Entry ren, UUID uuid

1 boolean aggregated = false
2 if uuid 6= NULL then
3 rt.switchNodeExternal(uuid)
4 return
5 if ren 6= NULL then
6 < rea, rer > = semanticAggregation(rt, ren)
7 if rea 6= NULL then
8 for r ∈ rer do
9 rt.set(r, true)

10 if rea /∈ rt then
11 rt.add(rea)
12 propagate(rea)
13 aggregated = true
14 if ren is no individual then
15 return

16 if rea == SKIP then
17 return
18 if ren /∈ rt then
19 rt.add(ren)
20 if ren is no individual then
21 propagate(ren)
22 return
23 if !aggregated then
24 propagateIndividual(ren)
25 return

6.5 Propagation of Individuals

A central point in the management of Semantic Routing Tables is the propagation
of individuals since they are used to answer queries given to the system. Thus, it is
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essential that their existence is published. The handling of newly created individuals
is shown in Algorithm 6.3.

Algorithm 6.3: Individual Propagation
Input : Routing Table rt, Individual i
Output: Void

1 Routing Entry rei := createRoutingEntry(i)
2 tableUpdate(rt, rei, NULL)
3 return

In Line 1 of Algorithm 6.3, a new routing entry rei is created following the
rule template presented in Listing 6.2. For example, the introduction of indi-
vidual A at Smartphone 1 in Figure 6.2 results in the routing entry #external
route(path("human","person","patient","C"), uuid("sp1"),
dist(0), uuid("sp1")). Simply forwarding the created individuals could res-
ult in constantly increasing Semantic Routing Tables. Therefore, the newly created
routing entry is given to the update mechanism in Line 2, which checks if the new
individual causes any aggregates or updates and forwards it to the neighbouring
Knowledge Groups if necessary.

6.6 Example Scenario

The combination of the algorithms presented in the previous sections results in
dynamically adaptable Semantic Routing Tables. To provide a better understanding
of the presented algorithms, their applications are discussed in this section based
on the provided example scenario. This scenario encompasses rescuers that want to
locate missing persons after a natural disaster. Therefore, they deploy autonomous
mobile robots and unmanned aerial vehicles (UAVs) that form a loosely coupled
communication network, which includes the smart infrastructure of the city. Each
missing person is associated with a smartphone that enables communication with the
robots and the UAVs. Additionally, it is assumed that each device (UAVs, robots,
etc.) has its own Knowledge Group. Figure 6.3 presents the results of Semantic
Aggregation, the Table Updates, and the Propagation of Individuals.

In this figure, blue points indicate aggregations. One of these points is located on
Smartphone 2 (sp2 ), which stores knowledge about individual B that is classified as
human, person, and patient. As expressed by the dashed arrow reaching from sp2 to
Smartphone 3 (sp3 ), knowledge about individual C is available if sp2 contacts sp3.
Since individual C is the only piece of knowledge present at sp3, it is propagated
using Algorithm 6.3. Once the message arrives at sp2, the Semantic Aggregation
is started. In this case, both individuals are aggregated since they share the base
concepts human, person, and patient. The resulting entry is then propagated to

128



6.6 Example Scenario

hu
m

an
/p

er
so

n/
pa

tie
nt

/A

St
re

et
 L

ig
ht

 1

St
re

et
 L

ig
ht

 2

Sm
ar

tp
ho

ne
 1

Sm
ar

tp
ho

ne
 2

U
AV

 2

R
ob

ot
 1

hu
m

an
/p

er
so

n/
pa

tie
nt

/B
hu

m
an

/p
er

so
n/

pa
tie

nt
/C

U
AV

 1

Sm
ar

tp
ho

ne
 4

hu
m

an
/p

er
so

n/
D

R
es

cu
er

s

hu
m

an
/p

er
so

n
ua

v2
 2

hu
m

an
/p

er
so

n
r1

 1

hu
m

an
/p

er
so

n
/p

at
ie

nt
 r1

 1

hu
m

an
/p

er
so

n
/p

at
ie

nt
 s

p2
 3

hu
m

an
/p

er
so

n
/p

at
ie

nt
 s

p1
 1

hu
m

an
/p

er
so

n
/p

at
ie

nt
 s

p1
 2

hu
m

an
/p

er
so

n/
pa

tie
nt

sp
2 

1

hu
m

an
/p

er
so

n/
pa

tie
nt

/C
 s

p3
 1 Sm

ar
tp

ho
ne

 3

hu
m

an
/p

er
so

n/
pa

tie
nt

 s
p2

 1
hu

m
an

/p
er

so
n 

r1
 2

hu
m

an
/p

er
so

n
ua

v2
 1

hu
m

an
/p

er
so

n
r1

 1

hu
m

an
/p

er
so

n
/D

 s
p4

 1

hu
m

an
/p

er
so

n
/p

at
ie

nt
 s

p1
 1

U
AV

 3

N
um

be
rD

is
ta

nc
e

co
nc

ep
t/I

nd
iv

id
ua

l
Kn

ow
le

dg
e

Kn
ow

le
dg

e 
av

ai
la

bl
e 

fro
m

 N
od

e
Te

xt
U

U
ID

 o
f O

rig
in

Q
ue

ry
Ag

gr
eg

at
io

n

R
ob

ot
 2

hu
m

an
/p

er
so

n
/p

at
ie

nt
 s

p2
 2

hu
m

an
/p

er
so

n
ua

v2
 1

hu
m

an
/p

er
so

n
r1

 2

Fi
gu

re
6.
3:

Ex
am

pl
e
Sc

en
ar
io

34
[7
5]

129



6 Adaptive Semantic Routing in Dynamic Environments

the neighbouring Knowledge Groups, which update their routing tables accordingly.
This process is conducted analogously for each of the remaining individuals, resulting
in the constellation shown in Figure 6.3.

During this process, routing tables are created at each Knowledge Group. After
the four individuals have been introduced, a fixpoint is reached and the routing
entries are not adapted until a new individual is introduced or a Knowledge Group
is no longer reachable. Listing 6.4 shows the complete ASP program used to create
the routing table of Robot 1 (r1 ). To provide a complete overview, the rules are
shown instead of the resulting Answer Set.

1 route(path("human", "person", "patient"), uuid("sp1"), dist(2),
uuid("r2")) :- node(uuid("r2")), not -route(path("human",
"person", "patient"), uuid("sp1"), dist(2), uuid("r2")).

2 route(path("human", "person", "patient"), uuid("sp2"), dist(1),
uuid("sp2")) :- node(uuid("sp2")), not -route(path("human",
"person", "patient"), uuid("sp2"), dist(1), uuid("sp2")).

3 route(path("human", "person"), uuid("uav2"), dist(1), uuid("uav2"))
:- node(uuid("uav2")), not -route(path("human", "person"),
uuid("uav2"), dist(1), uuid("uav2")).

4 #external node(uuid("r2")).
5 #external node(uuid("sp2")).
6 #external node(uuid("uav2")).
7 #external -route(path("human", "person", "patient"), uuid("sp1"),

dist(2), uuid("r2")).
8 #external -route(path("human", "person", "patient"), uuid("sp2"),

dist(1), uuid("sp2")).
9 #external -route(path("human", "person"), uuid("uav2"), dist(1),

uuid("uav2")).

Listing 6.4: Semantic Routing Table of Robot 1 [75]

The Lines 1 to 3 of this listing model the Semantic Routing Entries. The first
route indicates that knowledge about patients is available at Smartphone 1 (sp1 ).
To reach this knowledge, two hops are required and queries have to be forwarded
to Robot 2 (r2 ) to reach the desired knowledge. The existence of this route is
linked to the truth value of the External Statements used in the body of the rule.
The route represented by the rule head is derived as long as the External Statement
representing r2 (Line 4) is set to true and the External Statement that expresses the
opposite of the route (Line 7) is set to false. Since several sources provide knowledge
about patients in different parts of the network, a second route leading to another
Knowledge Group is given in Line 2. Its combination with Lines 5 and 8 works
analogously to the route presented before. The last set of rules (Lines 3, 6, and 9)
indicate that knowledge about persons can be found at uav2.
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6.7 Summary and Discussion

This chapter presents the third main contribution, which is the Adaptive Semantic
Routing tailored for dynamic environments. The core of the semantic routing
method is formed by Semantic Routing Tables, which consist of routing entries
represented by ASP rules. The creation of these entries and the maintenance of the
table are divided into three steps. One of these steps is the Semantic Aggregation,
which summarises semantically close routing entries by applying a taxonomy and
a distance metric. Another step is the update of the routing tables. In the case
that new routing entries arrive at a node of the network, the tables are checked
for possible updates. These can either be caused by aggregation, the removal of a
node from the network, or the introduction of a new individual. The last step is
the propagation of individuals, which is required to introduce new individuals to the
system.

Reconsidering the related work discussed in Section 3.5, the main difference to
the presented Adaptive Semantic Routing in Dynamic Environments is given in the
way the routing entries are created and represented. Approaches like [59] utilise Ant
Colony Optimization to learn efficient routes. Thus, they are suited for rather static
environments since a training phase is required. Pireddu and Nascimento present
in [111] an approach, which employs taxonomies to categorise files. However, the
routing is limited to a local neighbourhood. Approaches like SHARE [88] rely on
multiple techniques like gradient-based routing, local link-state routing, and scoped
flooding. In contrast to these approaches, our Semantic Routing Tables rely on
semantic information to aggregate routing entries, which minimises the size of the
tables and increases their efficiency. Furthermore, by utilising the reasoning capab-
ilities of ASP and Clingo, the routing entries can be dynamically adapted, and thus,
our approach is suited for dynamic environments.

Summing up, this chapter presented a dynamic method to discover knowledge in
a dynamic and loosely coupled network. Thus, it fulfils Requirement R4 - Efficient
Knowledge Discovery. Furthermore, it relies on a single formalism to represent
the routing entries and the managed individuals. This supports the use of all rel-
evant knowledge without a need to translate between representations, which could
influence the overall response time.
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Evaluation 7
This chapter presents the evaluation of this thesis. The remainder of this chapter

is structured as follows. In Section 7.1, we evaluate the General Knowledge Store
introduced in Chapter 4. Section 7.2 presents the evaluation of the handling of sym-
bolic commonsense knowledge. Finally, Section 7.3 evaluates the adaptive semantic
routing.

The experiments discussed in this section have been conducted on a Lenovo T570
workstation specified in Table 7.1. Additional software, hardware or changes on this
setup are highlighted in the corresponding section.

Property Description
CPU Intel® Core™ i7-7500U @ 2.70GHz Dual-Core
RAM 16GB DDR4-2133
Operating System Ubuntu 18.04.4
Kernel 4.15.0-112-generic
ConceptNet 5.7
Clingo 5.3.1 with Gringo 5.3.1 and Clasp 3.3.4
Gringo 5.3.1 with Python 2.7.15rc1, without Lua
Clasp 3.3.4 Configuration: WITH_THREADS=1

Table 7.1: Evaluation Setup

7.1 Distributed Knowledge Storage and Management

In order to efficiently manage knowledge stored in the General Knowledge Store, a
suitable representation of the Knowledge Items is needed. Therefore, Section 4.2.2
discusses four modelling schemes:

S1 - External Statements using arbitrary content
S2 - Rule negatively depending on External Statement with arbitrary content
S3 - Rule positively depending on External Statement with arbitrary content
S4 - External Statement using hashed content
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The first modelling scheme S1 uses a single External Statement that holds the
content. S2 encapsulates the content in the rule head, which depends negatively
(not, see Section 2.4) on an External Statement. S3 follows this way of modelling.
In contrast to S2, it depends positively on an External Statement. While S1, S2,
and S3 hold content of arbitrary size, S4 uses hashes to represent the content. In
general, hashes are created by one-way functions and represent strings of arbitrary
length by fixed-size strings while preventing collisions. As discussed in Section 4.2.2,
the usage of hashed content should mitigate the influence of the content on the run
time, which is evaluated in the following paragraphs.

Figure 7.1 compares the average run time of the first three modelling approaches.
To evaluate the influence of content size, different sized strings consisting of ran-
domly selected characters are used. The considered character numbers increase up
to 100.000 with a step size of 100 characters. The run time for each number of
characters was measured 100 times.

Figure 7.1: Comparison of Different Modelling Schemes

The blue graph shows the average run times of S1, the red graph indicates the
results of S2, and the green graph presents the results of S3. As it is clearly
evident, all schemes scale linearly with the number of characters used in the content
of each Knowledge Item. The average run times of S2 and S3 are almost identical.
However, S2 achieves the lowest average run times, as indicated in Figure 7.2 which
presents an excerpt from the measurements show in Figure 7.1. Since it depends
negatively on an External Statement and Clingo assumes External Statements to be
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7.1 Distributed Knowledge Storage and Management

false by default, no further steps besides adding, grounding, and solving are required
to establish a Knowledge Item. S3 has a slightly higher average run time. This is
caused by the positive dependence of the rule head on an External Statement, which
has to be set to true before the solving step. This marginally impacts the average
run time because a fixed size UUID is used in the External Statement. In total,
the UUID consists of 36 characters, 32 characters for the UUID and 4 separators (-)
in its string representations. S1 has the highest average run time. Since it models
Knowledge Items as a single External Statement, the content has to be parsed twice,
once during adding and once during the change of its truth value. Thus, the size
of the content has a high impact on the average run time. The measured run times
have a standard deviation ranging from 13% for S1 up to 22% for S2 and S3.
Considering the low run times, they can be easily influenced by operating system
events, which increases the standard deviation.

Figure 7.2: Intersection of Run Times

S1 has an advantage when considering a lower number of characters in the content.
Figure 7.2 shows the corresponding excerpt from Figure 7.1. In this case, the run
time when using S1 is lower than the run times of S2 and S3. Especially between
0 and 1800 characters, S1 is faster. Hence, content consisting of a low number of
characters is suited for modelling schemes that solely utilise External Statements.
If the content contains more than 1800 characters, rule-based schemes achieve lower
run times. This result is exploited by S4, which uses an External Statement and
a fixed-size hash of the content. Thus, it has the lowest modelling overhead and
the lowest run time. One drawback is that the content hash still has to be parsed
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twice. Nevertheless, this only causes a marginal increase in the run time, as shown
by the run times of S2 and S3, which differ in the parsing of a fixed-size content.
According to the results of S1, when considering hash sizes up to 1800 characters,
utilising S4 is best suited to be used in the General Knowledge Store since hash
algorithms typically produce hashes with lower sizes.

After the selection of a suitable modelling scheme, this part of the evaluation
focuses on the influence of different hash sizes on the run time of adding Knowledge
Items to the General Knowledge Store. Therefore, this evaluation considers five hash
sizes. These include 64, 128, 256, 512, and 1024 characters. While 64 characters (256
bit) is used by SHA3-256 [36] and 128 characters (512 bit) is used by SHA3-512 [36],
the remaining sizes provide measurements for hash functions with arbitrary hash
sizes like BLAKE3 [102]. Table 7.2 presents a comparison of the average run times of
100 measurements for each hash size. Furthermore, the number of Knowledge Items
is steadily increased until 1000 Knowledge Items are part of the General Knowledge
Store.

Number of Knowledge Items
Characters 250 500 750 1000

64 9.1 17.8 26.8 35.6
128 9.1 17.8 26.8 35.5
256 9.1 17.9 26.9 35.6
512 9.3 18.1 27.1 35.8
1024 9.4 18.3 27.3 36.1

Table 7.2: Influence of Knowledge Items on the Run Time in [ms]

The average run time of introducing a new Knowledge Item to the General Know-
ledge Store increases linearly with the number of added Knowledge Items, which
indicates the scalability of the selected modelling scheme. Furthermore, the stand-
ard deviation is roughly 2% for all measurements, which shows their stability. Each
additional Knowledge Item increases the run time on average by 0,035ms, support-
ing the scalability and applicability of the selected modelling scheme. The selection
of the hash size has only a low impact on the average run time. As expected, the
lowest average run times were measured for 64 characters and the highest for 1024
characters. Additionally, the run time increases linearly with the size of the selected
hash. Hashes with 64 and 128 characters achieve almost identical results. Setting
the size to 256 characters increases run time by roughly 0.1ms. Doubling the hash
size from 256 characters to 521 requires, on average, additional 0.2ms and increasing
from 512 to 1024 characters requires 0.2ms. Thus, selecting hashes with sizes up to
1024 characters has no significant impact on the scalability of the selected modelling
scheme.
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7.2 Handling of Symbolic Commonsense Knowledge

This section presents the evaluation of the Symbolic Commonsense Knowledge Hand-
ling. The selected stopping criteria significantly influence the size of extracted com-
monsense ontologies and the run time of the extraction. Thus, Section 7.2.1 eval-
uates their impact on the size of the resulting ontologies. Section 7.2.2 presents
the corresponding run times. A comparison between the Web Ontology Language
(OWL) [3] is given in Section 7.2.3. The results shown in this section have partially
been published by us in [77]. Subsequently, Section 7.2.4 evaluates the inconsistency
detection and prevention discussed in Section 5.3. The presented results have been
published in [78].

7.2.1 Ontology Size

Two parameters mainly influence the automatic extraction of commonsense ontolo-
gies. The first is the selected root concept, which determines the starting position
of the extraction in the selected hypergraph. The second parameter is the set of
stopping criteria, which influence the decision to add further edges to the ontology.
The evaluation discussed in this section utilises CN5 as the commonsense know-
ledge source. The considered root concepts are Animal, Car, Person, and Thing.
Furthermore, minimum edge weights act as stopping criteria since they express the
reliability of the extracted edges. For the creation of the ontology, edges labelled
with the relations IsA, FormOf, Synonym, and HasProperty are used. Since the
highest number of edges is given for the IsA relation, the adaption of the minimum
weight will have the highest impact on the size of the resulting ontology. Therefore,
this evaluation uses the minimum weights 2.5, 2.0, and 1.0 for the IsA relation. The
minimum weights for the remaining relations have a fixed value of 2.0. Table 7.3
summarises the resulting ontology sizes.

Root Concept
Minimum Weight Animal Car Person Thing

2.5 522 34 17 196
2.0 95353 95353 95353 95353
1.0 201148 201148 201148 201148

Table 7.3: Ontology Sizes Based on Minimum Weight and Root Concept [77]

The minimum edge weight of 2.5 is the most restrictive criterion. Thus, the
resulting ontologies have the lowest number of edges. The ontology extracted for
the root concept Animal contains 522 edges, 34 edges for the root concept Car, 17
for Person, and 196 for Thing. Lowering the minimum weight increases the size
of the ontology. In the case of a minimum weight of 2.0, the influence of the root
concept is no longer present and a big part of the CN5 hypergraph is explored,
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resulting in ontologies with 95353 edges. Lowering the minimum weight to 1.0
roughly doubles the ontology size. Considering these results, higher minimum edge
weights are suited to create small domain-specific ontologies. In contrast to that,
lower minimum weights create more general commonsense ontologies.

7.2.2 Ontology Generation and Query Run Time

In addition to the ontology size, the selection of stopping criteria and the root
concept has a major influence on the run time of ontology generation. Again, CN5
is used as the commonsense knowledge source. The ontologies generation considers
edges annotated with the relations IsA, FormOf, Synonym, and HasProperty.
Furthermore, the minimum edge weight is used as the stopping criterion. The eval-
uated root concepts are Animal, Car, Person, and Thing. The minimum weights are
2.5, 2.0, and 1.0 for the IsA relation. The remaining relations have a fixed minimum
weight of 2.0. The run time of the ontology generation has been measured 20 times
for each root concept and minimum weight. Table 7.4 shows the mean values of the
measured run times. The corresponding standard deviations are given in Table 7.5.

Root Concept
Minimum Weight Animal Car Person Thing

2.5 142.05 5.01 3.65 50.75
2.0 8097.45 8139.04 8199.49 8142.40
1.0 13505.68 13402.36 13341.25 13134.26

Table 7.4: Run Time of the Ontology Generation in [s] [77]

Root Concept
Minimum Weight Animal Car Person Thing

2.5 0.61 0.22 0.20 0.43
2.0 51.54 20.95 66.44 34.64
1.0 103.87 83.11 54.40 84.25

Table 7.5: Standard Deviation in [s] [77]

The lowest run times have been measured for the ontologies generated using the
minimum weight of 2.5. In this case, the selection of the root concept has a significant
influence on the run time. The generation takes 3.65 s for the root concept Person,
5.01 s for Car, 50.75 s for Thing, and 142.05 s for Animal. Considering the ontology
sizes presented in Table 7.3, it can be seen that the generation run time scales linearly
with the ontology size. For lower minimum weights, similar run times were measured
for all root concepts. Again, the run time scales linearly to the ontology sizes. If the
size of the ontology is doubled, the run time of the generation is roughly increased
by a factor of 1.5. The standard deviation shown in Table 7.5 is roughly 1% for
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all measurements, which indicates that there is no high deviation or outliers in the
measurements.

Another essential aspect besides the ontology generation is reasoning. This process
consists of seven steps. The first four steps ensure that Clingo can use the ontology
during subsequent queries. They include the adding and grounding of the edges of
the ontology, which are modelled by External Statements. Clingo assumes newly
added External Statements as false. Thus, they have to be set to true in the third
step, including them in the reasoning process. After the solving process is finished,
the ontology can be used to classify individuals via queries. Queries are separate
ASP programs. Hence, they require three steps, which are adding, grounding, and
solving. The run times have been measured 20 times. As a query, the ASP predicate
is("rex","puppy") is used (see Section 5.2.2), which results in a classification of rex
based on the extracted ontologies. In order to remove this predicate, it depends
negatively on a unique External Statement that is set to true after the query has
been answered. Figure 7.3 depicts the results for a minimum weight of 2.5. The
complete evaluation results are shown in Table H.1 and Table H.2 in the appendix.

Figure 7.3: Classification and Query Run Times

The measured run times show similar behaviour to the run times of the ontology
generation. A minimum weight of 2.5 achieves the overall lowest run times. In
the case the minimum weight is lowered, the run times increase linearly with the
ontology size. The highest impact on the total run time is given by the introduction
of the ontology to Clingo. Especially adding (yellow) and grounding (light blue)
of the ontology have a major impact on the run time, which is caused by the high
number of rules. In comparison to the adding and grounding, the run times of
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assigning External Statements (black) and solving (orange) are negligible since no
complex rules, e. g. disjunctions are involved. The run time of a query is generally
lower than the complete ontology reasoning process. The run time of adding a query
(dark blue) is similar for all minimum weights and root concepts since they contain
a fixed number of rules. However, the grounding of a query (green) requires the
inclusion of the ontology rules, which increases the run time linearly based on the
size of the ontology. Finally, the solving step (red) is only slightly affected by the
inclusion of the ontology rules. The measured run times scale linearly with the
ontology size. Thus, Person achieves the lowest total run time (64.69ms) followed
by Car (75.55ms) and Thing (138.49ms). The root concept Animal has the highest
total run time (276.29ms).

Table H.2 presents the standard deviation of the measurements. The standard
deviation for larger ontologies is lower than 1%, which indicates the stability of
the measurements. The standard deviation slightly increases to roughly 2.5% for
ontologies created with a minimum weight of 2.5 since the low run times can easily
be influenced by concurrently running processes. The highest standard deviation
is given for the query solving using the ontology with Person as the root concept
and a minimum weight of 2.5, which is roughly 7%. This is caused by the very low
run time of 0.29ms. Such low measurements can be influenced by any concurrent
process on the system and, thus, causing the high standard deviation.

7.2.3 Comparison to OWL

The Web Ontology Language (OWL) [68] is the de facto standard for representing
knowledge in the Semantic Web and for the creation of ontologies. Thus, this section
compares our ASP-based ontology generation and modelling with OWL-based onto-
logy modelling. Therefore, we translate the Pizza Ontology35,36 using the ASP-based
modelling scheme and ARRANGE presented in Section 5.2. The OWL reasoning
uses HermiT [123] version 1.4.3.456 and Protégé 5.5.0 [99]. In order to compare
both formalisms, the evaluation presented in this section creates an individual with
the base class margherita. Subsequently, it applies a classification query. Figure 7.4
shows the average run time of 20 measurements. For each measurement, a new
solver instance was used.

The presented measurements include the classification of the individual based
on the ontology and the determination of all super- and subclasses. As shown
in Figure 7.4, the ASP-based formalism takes 82.15ms for the preparation of the
ontology, which includes adding, grounding, and solving. Solving the query takes
35An Ontology About Pizzas and their Toppings, https://protege.stanford.edu/

ontologies/pizza/pizza.owl, Accessed December 29, 2021.
36Pizzas in 10 Minutes, https://protegewiki.stanford.edu/wiki/

Protege4Pizzas10Minutes, Accessed December 29, 2021.
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Figure 7.4: Comparison of ASP and OWL Run Times [77]

66.01ms. Furthermore, the measurements have a low standard deviation of 1.63ms
and 0.55ms, indicated by the error bars. In comparison to this, HermiT takes
588.15ms for the reasoning process, which includes the determination of the super-
and subclass as well as the classification. The query resolution has a mean run time
of 154.55ms. The standard deviation is higher in comparison to the ASP-based
approach. The measurement for the ontology reasoning has a standard deviation
of 38.36ms and 13.57ms for the query resolution. Comparing these measurements,
the ASP ontology reasoning is roughly seven times faster than the OWL reasoning
process. One of the reasons for the differences in the measured run times is the
underlying reasoning mechanism. At the base of the ASP reasoning process, a
SAT-solver solves the grounded ASP program. On the one hand, they provide
fast results. On the other hand, they do not provide any explanation for the results,
which complicates debugging. In contrast to ASP, OWL uses a tableau algorithm [7],
which is typically slower than SAT-based approaches. However, tableau algorithms
support explanations of the results and thus enable efficient debugging.

Besides the measured run times, language properties like decidability and assump-
tions are important aspects. The full specification of OWL is based on first-order
logic and, hence, undecidable. To mitigate this drawback, many applications rely on
decidable subsets, such as OWL Lite or OWL DL (see Section 2.6.2). All specifica-
tions adhere to the same assumptions. First, there is no Unique Name Assumption,
which supports providing distinct names for a single individual. Second, OWL onto-
logies are monotonic. Thus, already derived knowledge cannot be removed if novel
or contradicting knowledge arises. To incorporate such knowledge, the OWL reas-
oning process has to be restarted. Third, the Open-World Assumption holds, which
limits the reasoning process to the concepts and relations explicitly modelled in the
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ontology. Thus, an OWL reasoner is not able to derive that a statement is false
solely on its absence in the ontology. Based on these assumptions, defaults that
may be overwritten by additional knowledge cannot be defined.

In comparison to OWL, ASP complies with the Unique Name Assumption. Thus,
an individual can only be represented by a single name. On the one hand, it reduces
the overall modelling effort since there is no need to state that names refer to the
same individual explicitly. On the other hand, it prevents the modelling of distinct
individuals with the same name or identifier. In contrast to monotonic reason-
ing, non-monotonic reasoning supports the retraction of already derived knowledge
if contrary knowledge is given. Furthermore, ASP adheres to the Closed-World
Assumption, which enables the definition of defaults since knowledge that is not
explicitly stated is assumed to be false. Last but not least, the incorporation of
the ASP solver Clingo supports the creation of dynamically adaptable ontologies.
Thus, ASP, in combination with Clingo, is suited to model commonsense knowledge
ontologies, which can be dynamically adapted to their current application field. In
contrast to that, OWL ontologies are suited for relatively static environments in
which new concepts or relations appear seldomly.

7.2.4 Inconsistency Detection and Prevention Run Time

Incorporating commonsense knowledge into a knowledge base can introduce semantic
inconsistencies, for example, by adding contradicting properties of an object. To
provide an insight into the inconsistent properties that can occur, we tested in [78]
200 concepts of CN5 that typically appear in households. Among these, 12 concepts
had at least one pair of contradicting properties. In total, 18 pairs of contradicting
properties were found. Table 7.6 shows selected concepts alongside their contradict-
ing properties.

Concept Contradicting Properties
glass opaque ⇐⇒ clear, see through
human good ⇐⇒ evil
knife sharp ⇐⇒ dull
matter solid ⇐⇒ liquid
people thin ⇐⇒ overweight, fat

Table 7.6: Examples of Contradicting Properties in CN5 [78]

One of these examples is the concept of a knife. While it is commonsense know-
ledge that the concept knife can have the properties sharp and dull, assigning both
properties to a single instance of a knife would cause a contradiction and thus in-
troduce a semantic inconsistency to the knowledge base.

144



7.2 Handling of Symbolic Commonsense Knowledge

To handle semantic inconsistencies, we propose in [78] a method to detect them
and provide rules preventing them. Since these rules are generated during the ex-
traction of the commonsense knowledge from a graph-based source, this section
evaluates the influence of the semantic inconsistency detection and prevention on
the run time. The overall process consists of three steps: the extraction of edges
from CN5, the detection of possible inconsistencies, and subsequent translation into
ASP. The run time is measured for four base concepts. The concept bed is connected
to 831 other concepts, which includes six properties. The concept of fire is linked to
955 concepts, including 28 properties. Water is connected to 2468 concepts contain-
ing 69 properties. Finally, the concept of people has connections to 2635 concepts
that contain 271 properties. Figure 7.5 presents the average of 1000 run time meas-
urements. The run time of extraction of the connected concepts is presented by the
green bars. Blue bars indicate the run time of the inconsistency detection and red
bars for the translation into ASP. After each measurement, the local CN5 instance
is restarted to prevent influences from previous interactions.

Figure 7.5: Run Time of Inconsistency Handling for Different Concepts [78]

The run time of the concept extraction scales linearly with the number of con-
nected concepts. Thus, the measurements for bed (838.16ms) and fire (1043.24ms)
as well as for water (1782.53ms) and people (1513.44ms) are similar. The standard
deviation is roughly 10% for bed and fire. This can be caused by the interaction
with CN5. During this process, an HTTP-GET is sent to a local instance of CN5,
which consists of several interacting Docker containers. The concept limit of the
request is set to 1000, and thus only a single query is required. After the request
is answered, the results are returned. Thus, the measured run time depends on
the communication between several processes and containers. The standard devi-
ation of the measurements of water and people is roughly 2%. In this case, several
HTTP-GET requests are required, which mitigates the influence of outliers.
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In contrast to the extraction of concepts, the detection of inconsistencies focuses on
the properties and scales linearly with their number. The concept bed is connected
to six properties and the detection of possible inconsistencies takes 267.32ms on
average. Checking the properties of fire takes 826.95ms, 2318.79ms for water, and
8450.49ms for people. The standard deviation is roughly 7% for bed, 4% for fire,
2.3% for water, and 2% for people. Again, the standard deviation decreases when
the number of interactions with CN5 increases. In comparison to the extraction of
concepts from CN5 (roughly 1ms per concept), the inconsistency detection takes
roughly 35ms per concept. This increase is caused by the number of interactions
with CN5. Instead of extracting concepts in a batch, the inconsistency detection
requires several small requests to CN5 regarding properties, their synonyms, and
possible antonymic relations between them, resulting in a higher run time.

The translation into ASP has the lowest impact on the overall run time since
no interaction with CN5 is required. It scales linearly with the number of edges
connecting the extracted concepts. The translation of the concept bed takes 4.2ms
on average, 10.12ms for fire, 21.38ms for water, and 92.25ms for people. The meas-
urements of the translation of bed and fire have a standard deviation of roughly
30%, which reflects that events of the operating system easily influence the low run
time. These events have a lower impact on higher run times resulting in a standard
deviation of 14% for water and 6.5% for people.

7.3 Adaptive Semantic Routing in Dynamic Environments

This section presents the evaluation of the Adaptive Semantic Routing mechanism
illustrated in Chapter 6. It includes the analysis of the message complexity, which
is discussed in Section 7.3.1. Furthermore, Section 7.3.2 evaluates the run time of
the creation of the Semantic Routing Tables, their updates, and the propagation of
new individuals.

7.3.1 Message Complexity

A central aspect of the creation of the Semantic Routing Tables is the number of ex-
changed messages during their creation. Especially in highly dynamic environments
as well as loosely coupled networks, a low message complexity is preferred to avoid
additional stress on the network. Furthermore, the focus of the presented routing
mechanism is set on the content. Hence, no explicit addressing, e. g. IP-based ad-
dressing is given. Typically, systems apply flooding in such environments, which
introduces a high message load to the system. The following paragraphs summarise
the analysis of the message complexity, which we have already published in [75].
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In general, there are two types of flooding algorithms. The first type is Naive
Flooding, which forwards messages to all neighbours except its original sender. If a
node receives an already known message, it is ignored. Thus, in a fully connected
network of n nodes, a message complexity of O(n·(n−1)) is given, which holds for the
best and the worst case. Maintaining a fully connected network in highly dynamic
environments is a challenging task and impractical in general. Thus, we will focus on
not fully connected mesh networks. This reduces the message complexity of Naive
Flooding to O(n ·m), where m is the number of neighbours without the origin of the
message. The second type is Selective Flooding. To reduce the message complexity
of updates and queries to O(n), a tree structure is created, which is responsible for
message forwarding. Thus, the best-case complexity for queries is defined by the
depth of the corresponding branch of the tree. However, additional messages are
required to create and maintain the tree structure.

Our Adaptive Semantic Routing mechanism relies on flooding in two cases. The
first case is the introduction of the first individual on a node. The second case is
the introduction of a new taxonomy branch. In both situations, the necessary rout-
ing entries are disseminated through the network resulting in a worst-case message
complexity of O(n · m). However, this complexity is reduced by the creation of
aggregation points since each aggregation point acts as a filter for already existing
aggregations. Thus, in the best case, the message complexity to introduce a new in-
dividual can be reduced to O(1) if it is located at an aggregation point. Additionally,
aggregation points reduce the message complexity to O(m) if the neighbouring nodes
already contain corresponding routing entries. Besides the creation of the routing
tables, the message complexity for queries is an important metric. The worst-case
complexity is O(n) if all nodes contain fitting knowledge, which can occur if a gen-
eral concept in the taxonomy is used in the semantic query. In contrast to this,
the best case of O(1) can be achieved if the query is given to a node managing the
queried individual. Finally, adding a new node has a message complexity of O(1)
since the routing table of a neighbouring node can be copied.

To provide more context, Table 7.7 provides a comparison of the message com-
plexities for the related work discussed in Section 3.5. In this table, n denotes the
total number of nodes in the network andm denotes the number of neighbours. O(1)
indicates a constant number of messages. A central aspect is the message complexity
of updating the routing information. For updates, three different approach types are
considered. Learning approaches like Michlmayr et al. [93] and Gómez Santillán et
al. [59] need to learn new routes during updates. Thus, additional messages are re-
quired with results in a worst- and best-case complexity of O(n ·m). The same holds
for systems that do not apply any additional management structures like Jacobson
et al. [70] or our Adaptive Semantic Routing. Hence, they have a worst-case message
complexity of O(n ·m). Nevertheless, once the routing tables are built, a constant
best-case message complexity can be achieved. For example, the Adaptive Semantic
Routing does not need to propagate routing entries if corresponding aggregates are
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present. The worst-case message complexity can be mitigated by introducing addi-
tional management structures, for example, tree-like structures (Selective Flooding
or Koloniari et al. [83]). This reduces the worst-case message complexity for updates
to O(n). A further reduction can be achieved by utilising more complex structures
like Distributed Hash Tables (DHTs), which can lead to constant update message
complexity (see Orda et al. [109]). However, the creation of management structures
requires additional messages. Furthermore, these structures are typically suited for
networks of stationary nodes since a reallocation of a node would require a com-
plex update of the management structure. Furthermore, the application of DHTs
like Kademlia [90], as suggested by Orda et al. [109], organises the nodes based on
their location and does not provide any support for semantic information. Thus, se-
mantically close knowledge could be stored on distant nodes. Learning approaches
like Michlmayr et al. [93] and Gómez Santillán et al. [59] require a learning phase to
establish routes. Hence, they are not suited for environments where nodes are relo-
cated or frequent changes of the network structure occur. Comparing our Adaptive
Semantic Routing with the algorithms shown in Table 7.7, it achieves a competitive
message complexity for updates while supporting the relocation of nodes and data.

Besides the updates of the routing information, the message complexity of queries
is an important aspect. In this complexity analysis, it is assumed that all updates
have been finished and that the stored routing information is stable. Furthermore,
the worst case indicates that the queried information or knowledge is distributed on
the network, while the best case assumes that the queried information or knowledge
is located on one node or some relatively close nodes. Considering the worst-case
scenario, several approaches, like Pireddu et al. [111] or Manfredi et al. [88], rely
on flooding, which results in a message complexity of O(n ·m). Again, DHT-based
approaches require fewer messages since they simply have to calculate hashes and
address the corresponding nodes. The remaining approaches achieve a message com-
plexity of O(n) since they have to contact all nodes to acquire all queried information
or knowledge. The message complexity for the best case is constant for most of the
presented algorithms. Again, our Adaptive Semantic Routing achieves a competitive
message complexity.

Summarising the message complexity analysis presented in the previous para-
graphs, it can be said that the Adaptive Semantic Routing introduced in this thesis
achieves competitive results. Updates require O(n ·m) messages in the worst case,
which is caused by initial flooding. In the best case, a constant message complexity
is achieved. Queries have a message complexity of O(n) in the worst case since all
nodes of the network could contain the required information and knowledge. Quer-
ies have a constant message complexity if the answer is located on a single node.
Finally, the introduction of multiple aggregation points tends to steer the message
complexity of updates and queries to the best case since they filter messages which
contain already met taxonomy concepts.
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7.3.2 Run Time Analysis

After a comprehensive discussion of the message complexity of the Adaptive Se-
mantic Routing mechanism, this section focuses on the run time analysis of its com-
ponents as well as the evaluation of different test setups. It is divided into two parts.
In the first part, the focus is set on the run time analysis of update and aggregation
mechanisms. The second part provides an analysis of different scenarios.

The centrepiece of the Adaptive Semantic Routing is the update mechanism (see
Section 6.4) and the aggregation (see Section 6.3) since they manage the rout-
ing tables, handle new routes, summarise routes according to their semantics, and
propagate routes to neighbouring nodes. Hence, both mechanisms have a major im-
pact on the performance of the Semantic Routing Tables. To focus on the run time of
the mechanisms, a single node is considered during this part of the evaluation. Dur-
ing the measurements, 50 individuals with the semantic type path("human","person",
"patient"), 50 individuals with the semantic type path("human","person"), and 50 in-
dividuals with the semantic type path("human") are subsequently added to the node.
Figure 7.6 presents the average run time of 100 runs of this experiment. The blue
graph indicates the total measured run time, including updates and aggregation.

Figure 7.6: Average Run Time of Aggregation and Update Mechanisms

The aggregation has a low impact of 0.5% on the overall run time, which is
achieved by two factors. The first factor is the usage of taxonomy branches to
define the semantics of a routing entry. In general, these branches consist of a low
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number of concepts, which need to be compared. The second factor is the intro-
duction of aggregated routes to the Semantic Routing Tables. Once an aggregated
rule representing a corresponding superclass (e. g. path(”human”, ”person”) for
path(”human”, ”person”, ”patient”)) is part of a Semantic Routing Table, routing
entries representing individuals of a subclass do not have to be aggregated again
and are skipped. On average, the run time of the aggregation is 0.0099ms with
a standard deviation of 0.002ms, which is roughly 20%. The overall run time is
mainly impacted by the update mechanism (99.5%). In this case, a route has to be
added to the table. Whether it is a new or an aggregated one, the update mechan-
ism has to interact with Clingo to derive the Semantic Routing Table. Since this
requires adding, grounding, and solving a Program Section, the run time is higher
in comparison to the aggregation mechanism. In general, the run time of the up-
date mechanism scales linearly with the number of routing entries. However, the
measurements show three spikes, which are located at 2, 51, and 101 individuals. In
these cases, an individual is added to the table that causes an aggregation. Thus,
two routes have to be added to the routing table, one that represents the individual
and one that models the aggregation, which increases the run time during this step.
The measured run times range from roughly 0.9ms for the first individuals up to
4ms for the last individuals. The introduction of the last aggregate has the highest
run time of 6.16ms. The standard deviation is 0.4ms which is roughly 16.5% of the
run time.

UAV 2

Robot 1

UAV 1Rescuers

Street Light 2

Robot 2

Smartphone 1
human/person/patient/A

Smartphone 4
human/person/D

UAV 3
human/person/patient/C

human/person/patient/B
Smartphone 2

Smartphone 3Street Light 1

Figure 7.7: Line and Grid Scenario37

Another important aspect besides the performance of the Adaptive Semantic
Routing on a single node is its overall performance in application scenarios like
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Search&Rescue considered by emergenCITY. Our scenarios encompass twelve nodes
and four individuals (A - D). Figure 7.737 indicates the distribution of nodes and
individuals for three organisational schemes. The first scheme is a Line using the
red connections. A Circle is created by using the Line scenario and establishing a
connection between Smartphone 4 and the Rescuers. The Grid scheme utilises both
the red and black connections. The last scenario is the example used in Chapter 6
to describe the components of the Adaptive Semantic Routing. Figure 6.2 shows
the scenario, which is basically a combination of lines and a circle. To focus on
the performance of the created algorithms and to prevent the influence of network
communication, the scenarios are implemented in a single thread application. Fur-
thermore, this evaluation considers eight categories, including the time needed to
generate the Semantic Routing Tables on all nodes, a query for a specific individual
(C ), a query for all patients (A, B, C ), a query for all humans (A - D), and the
total amount of sent messages for the generation and each query. In all scenarios,
Rescuers formulate the queries and do not create a routing table themselves. Thus,
they simulate a party that interacts with the network of nodes. Table 7.8 presents
the average results of 100 test runs. Table 7.9 shows the corresponding standard
deviation. The number of messages is stable during the measurements. Thus the
corresponding standard deviations are zero and left out in Table 7.9.

Line Circle Test Scenario Grid
Table Generation [ms] 69.574 70.700 76.737 148.951

Messages [#] 40 40 51 115
Query Individual C [ms] 0.108 0.219 0.150 0.158

Messages [#] 5 11 8 7
Query Patient [ms] 0.247 0.246 0.166 0.284

Messages [#] 11 11 8 12
Query Human [ms] 0.213 0.209 0.143 0.241

Messages [#] 11 11 8 12

Table 7.8: Average Run Time and Number of Messages

Line Circle Test Scenario Grid
Table Generation [ms] 1.021 2.796 1.074 10.811
Query Individual C [ms] 0.005 0.016 0.009 0.003

Query Patient [ms] 0.013 0.028 0.012 0.004
Query Human [ms] 0.020 0.021 0.010 0.003

Table 7.9: Standard Deviation

The Line and the Circle scenario achieve almost identical results. This is mainly
caused by their similar connectivity. On average, each node in the Line is connected
37Created with https://app.diagrams.net/ Accessed December 29, 2021.
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to 1.83 other nodes and 2.0 nodes in the Circle. Thus, new individuals, new routes,
and aggregated routes are only published to a small number of neighbours during
the generation of the Semantic Routing Tables. In total, the generation requires
40 messages to create the Semantic Routing Tables on all nodes, which adheres to
the worst-case message complexity presented in Table 7.7. Each introduction of an
individual is the first of this type on the corresponding node. Thus, an individual
or an aggregated route has to be propagated to the remaining nodes. A difference
is given in the number of query messages. While the Rescuers are connected to a
single node in the Line scenario, they are connected to two nodes in the Circle scen-
ario. Thus, they send two queries that traverse both halves of the Circle resulting in
eleven messages(five, when contacting UAV1 ; six, when contacting Smartphone4 ).
The Test Scenario has a higher run time and requires additional messages for the
table generation. While it has similar average connectivity of 2.0, the nodes Ro-
bot1 and UAV2 are connected to four and three nodes, respectively. Thus, they
slightly increase the required messages. However, these nodes accumulate routing
entries, which has a beneficial effect on the messages required during queries. The
Grid scenario has the highest run times and required messages. On average, each
node is connected to 3.1 other nodes. Hence, each new individual or aggregation
is propagated to additional nodes resulting in 115 messages. Table 7.9 summarises
the standard deviations of the measurements. The standard deviation of the run
times is below 2%, which further underlines the stability of the Adaptive Semantic
Routing.
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Conclusion 8
In this thesis, we have presented the conceptual foundations and the develop-

ment of a self-organising and multi-agent-based knowledge base. The research goal
has been to provide a distributed knowledge base capable of managing semantic-
ally annotated knowledge in loosely coupled networks consisting of heterogeneous
participants. Furthermore, it is able to detect and prevent semantic inconsistencies
by applying commonsense knowledge extracted from a hypergraph-based knowledge
source. Since the managed knowledge is distributed on a network of agents, the
presented solution offers an efficient discovery of knowledge based on its semantics.

Section 8.1 summarises the results of this thesis. Subsequently, Section 8.2 revis-
its the requirements defined in Section 1.1 and discusses their fulfilment. Finally,
Section 8.3 concludes this thesis and provides an outlook on future research.

8.1 Summary

The first contribution is the organisation of the distributed knowledge base (Know-
ledge Group) tailored for highly dynamic and loosely coupled domains. The back-
bone is formed by a Multi-Agent System consisting of agents that act in two roles,
Registry Nodes and Registry Leaves. Registry Nodes manage the tree-like structure
of the Knowledge Group and compensate failures. In contrast, Registry Leaves store
semantically annotated knowledge and answer queries. Each Registry Leaf manages
knowledge in its General Knowledge Store, which utilises ASP and Clingo to provide
an efficient representation of the knowledge. Furthermore, we introduce mechanisms
and protocols that replace failed agents, repair the structure of the knowledge base,
and enable the exchange of knowledge between several Knowledge Groups.

The second contribution of this thesis is the handling of symbolic commonsense
knowledge, which is employed by the Knowledge Groups to annotate Knowledge
Items and by the Adaptive Semantic Routing to aggregate Routing Entries. This
contribution is divided into two parts. First, a generation of commonsense ontologies
utilising ASP, Clingo, and a hypergraph-based commonsense knowledge source. By
incorporating External Statements and Program Sections, we generate ontologies
and taxonomies that can be dynamically adapted during run-time. Furthermore,
we provide the graphical user interface ARRANGE, which supports a user during
the generation and adaption of ontologies as well as the definition of facets. The
second part is a mechanism to handle semantic inconsistencies. While commonsense
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knowledge is essential in our everyday life, its incorporation into a knowledge base
can introduce semantic inconsistencies. To prevent these, we evaluate the properties
of a concept and generate ASP rules to prevent contradictions. By incorporating
the resulting rules into a knowledge base, multiple consistent solutions are created,
which can be selected by the user.
The third contribution provides an Adaptive Semantic Routing tailored for loosely

coupled environments. It is based on Semantic Routing Tables that utilise taxonomy
branches to aggregate semantically close routing entries. This shifts the focus of the
routing from the location (e. g., IP-based) of the managed knowledge to its semantics.
By only propagating changes, the Adaptive Semantic Routing reduces the number
of messages and thus additional stress on loosely coupled networks.

8.2 Requirements Revisited

The handling of knowledge in dynamic environments has several requirements on
the used knowledge base. Section 1.1 outlines four main requirements derived from
highly dynamic application environment like Search&Rescue scenarios. The presen-
ted Self-Organising Multi-Agent Knowledge Base addresses and fulfils these require-
ments, which is discussed in the following paragraphs.

R1 - Handling Dynamic Environments The distributed knowledge base presented
in this thesis utilises a Multi-Agent System to manage its knowledge. Depending
on their roles, agents either focus on maintaining the tree-like structure or store se-
mantically annotated knowledge. Furthermore, it relies on a single formalism (ASP)
to represent the topology of the network (Network Topology), the storage of gen-
eral knowledge (General Knowledge Store), and routing entries (Adaptive Semantic
Routing). This enables the use of all relevant knowledge without a need to translate
between representations. Thus, the Self-Organising Multi-Agent Knowledge Base
fulfils this requirement.

R2 - Efficient Management of Knowledge The presented knowledge base has to
manage and store semantically annotated knowledge efficiently and decentrally. To
fulfil this requirement, we presented the generation of ASP-based ontologies in Sec-
tion 5.2. They rely on the efficient knowledge representation of ASP (see Section 2.4)
and provide a common vocabulary to annotate decentrally stored knowledge. Fur-
thermore, the use of ASP and the multi-shot capabilities of Clingo enable the dy-
namic adaption of the ontologies during run-time. For example, ontology edges can
be removed by changing the truth value of an External Statement without restarting
the complete ontology reasoning process. The evaluation results underline the effi-
ciency of the presented approach (see Section 7.2.2). Even when incorporating huge
ontologies (over 200.000 edges), both ontology reasoning and classification queries
achieve low run times.
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R3 - Handling Semantic Inconsistencies The usage of commonsense knowledge
is a central aspect of human communication [29]. However, simply providing ac-
cess to a commonsense knowledge source can introduce semantic inconsistencies to
a knowledge base. Thus, our solution has to be able to detect and prevent this kind
of inconsistencies. This requirement is fulfilled by the mechanism presented in Sec-
tion 5.3. It extracts commonsense knowledge from a hypergraph-based source and
generates special rules which create several consistent solutions instead of a single
inconsistent one. Section 7.2.4 evaluates the run time of the presented approach.
The detection of inconsistencies has a high impact on the extraction of commonsense
knowledge. Nevertheless, it scales linearly with the number of considered properties
and enables the creation of a semantically consistent knowledge base.

R4 - Efficient Knowledge Discovery The last requirement is the efficient discovery
of knowledge in a loosely coupled network. To fulfil this requirement, we developed
the Adaptive Semantic Routing in Dynamic Environments. It relies on taxonomy
branches to annotate Knowledge Items or individuals, respectively. Furthermore,
it utilises the taxonomy branches to aggregate routing entries and only forwards
routing entries to neighbours if Knowledge Items with new semantics arrive. The
evaluation discussed in Section 7.3 underlines the efficiency of the Adaptive Semantic
Routing in Dynamic Environments by comparing its message complexity to similar
approaches. Especially the aggregation based on semantics reduces the required
messages. Furthermore, the low average run time of the table generation and query
resolution underlines its efficiency.

8.3 Future Work

We discovered several challenging research aspects and extensions of the system
during the creation of this thesis that deserve further attention but are out of the
scope of this thesis. The following paragraphs present a selection of these aspects.

Distributed Access Control The first aspect is the introduction of a distributed
access control. So far, the Self-Organising Multi-Agent Knowledge Base does not
consider the identity of the agents. Thus, potentially malicious agents could gain
access to the knowledge base, harm its structure, influence the routing entries, and
alter Knowledge Items. An access control mechanism could prevent this. Typically
such mechanisms require a central instance either on the network or in the Cloud
to manage the access rights. Hence, they are not suited for loosely coupled environ-
ments. A possible solution would be a distributed access control. A highly prom-
ising distributed access control and team management platform is developed by Jahl
in [71]. It utilises a Blockchain to decentrally store access rights to groups, which are
granted by the group members themselves by applying voting mechanisms. Thus,
the application of this access control mechanism would provide additional security
measures without introducing a central component.
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Application of ALICA Agents The ALICA framework has been applied in several
highly dynamic domains like robotic soccer and autonomous driving. Thus, ALICA
could be suited to implement the agents of the Self-Organising Multi-Agent Know-
ledge Base. However, some aspects of the current ALICA implementation have to
be adapted to enable its application. While we have already introduced a discov-
ery module in [108] that is capable of adding unknown agents to an ALICA team,
further features have to be added. For example, in its current implementation, the
role assignment of agents is fixed and predefined by a configuration file, preventing
agents from switching roles and the inclusion of completely unknown agents. Fur-
thermore, ALICA assumes that all agents work in a single team. Thus, agents of
a Knowledge Group could be assigned for tasks in another Knowledge Group. In
the case of a Registry Leaf, its knowledge would be transferred to the other Know-
ledge Group requiring the creation of new routing tables and the replacement of the
missing Registry Leaf in its original Knowledge Group. Both points, the static role
assignment and the single team, are addressed by Jahl in [71]. Thus, the resulting
ALICA implementation would provide a sophisticated method to remodel the agents
of the Self-Organising Multi-Agent Knowledge Base.

Consistency Mechanisms and Knowledge Priority Classes In its current imple-
mentation, the Self-Organising Multi-Agent Knowledge Base only provides eventual
consistency of the stored knowledge if it is distributed among several Knowledge
Groups. This means that duplicates of a Knowledge Item are updated over time and
that there is no explicit mechanism that guarantees the consistency of all Knowledge
Items at any time. However, application domains may demand stronger consistency
models. Thus, the optional provision of stronger consistency models would increase
the applicability of the Self-Organising Multi-Agent Knowledge Base. However,
this would increase the overall complexity of the used algorithms and would intro-
duce further messages to achieve consensus. Furthermore, knowledge priority classes
could foster the duplicated storage of critical knowledge. A class with lower priority
could be recoverable network knowledge, e. g., the Network Topology presented in
Section 4.2.2 and a class with high priority could, for example, be the location and
health status of injured people in Search&Rescue scenarios.
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Multi-Shot Solving G
1 #program instance.
2 peg(a;b;c).
3 disk(1..4).
4 init_on(1..4,a).
5 goal_on(1..4,c).
6 on(D,P,0) :- init_on(D,P).
7 #show move/3.
8

9 #program step(t).
10 1 { move(D,P,t) : disk(D), peg(P) } 1.
11 move(D,t) :- move(D,P,t).
12 on(D,P,t) :- move(D,P,t).
13 on(D,P,t) :- on(D,P,t-1), not move(D,t).
14 blocked(D-1,P,t) :- on(D,P,t-1).
15 blocked(D-1,P,t) :- blocked(D,P,t), disk(D).
16 :- move(D,P,t), blocked(D-1,P,t).
17 :- move(D,t), on(D,P,t-1), blocked(D,P,t).
18 :- disk(D), not 1 { on(D,P,t) } 1.
19

20 #program check(t).
21 #external query(t).
22 :- goal_on(D,P), not on(D,P,t), query(t).

Listing G.1: Multi-Shot Encoding for the Towers of Hanoi [51]

Algorithm G.1: Iteratively Solving the Tower of Hanoi Game [51]
Input : ASP Program of Listing G.1
Output: Sequence of Moves to Solve the Tower of Hanoi Game

1 iteration = 0
2 ground(instance)
3 ground(check(iteration))
4 assignExternal(query(iteration), true)
5 solution = solve()
6 if solution 6= ∅ then return solution
7 while solution == ∅ do
8 releaseExternal(iteration)
9 iteration++

10 ground(step(iteration))
11 ground(check(iteration))
12 assignExternal(query(iteration), true)
13 solution = solve()
14 if solution 6= ∅ then return solution
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