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Fully Implicit RUNGE-KUTTA Schemes for Ideal Elastoplasticity
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The present paper derives a multifield formulation of ideal elastoplasticity to enable the consistent application of higher order
accurate RUNGE-KUTTA schemes. With the help of an axisymmetric model problem the appearing time discretization errors
of distinct schemes are determined and compared.

© 2021 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH.

1 Motivation

Industrial manufacturing strategies are often characterized by high speed process steps where dynamic effects within plastic
deformations can’t be neglected any longer, cf. [5]. Hence, the application of high order time discretization schemes and the
assessment of corresponding errors are of great importance. A first step in that direction is the reformulation of plasticity as a
multifield problem.

2 The Principle of JOURDAIN for Dynamic Ideal Elastoplasticity

The principle of JOURDAIN for dissipative continua is based on the stationarity of the balance of energy

statp
u̇,ε̇p

supp
σ

infp
γ≥0

P (u̇, ü, ε̇p, εp,σ, γ) with P = K̇ + Ė + P ∗ +D. (1)

Equation (1) consists of the rate of kinetic energy K, the rate of internal energy E, the power of external loads P ∗ and
the pseudopotential D characterizing plastic effects, cf. [2, 4]. It furthermore depends on the stress tensor σ, the plastic
multiplicator γ, the displacement vector u, the plastic strain tensor εp as well as on corresponding first and second time
derivatives. Evaluating Equation (1), performing a spatial discretization, and applying a semi-smooth NEWTON method
yields the linearized semidiscrete form

M∆ẅ +D∆ẇ +K1∆w = R∗
1 −R1, K2∆w = −R2, γi,k+1 = 0 ∀i ∈ Ik, (2)

Ak+1 := {i|γi,k+1 + d ri,k+1
2 > 0}, Ik+1 := {i|γi,k+1 + d ri,k+1

2 ≤ 0}.
Therein the vector of unknowns w = [u, εp,σ, γ], the generalized mass matrix M, the generalized damping matrix D, the
generalized stiffness matrices K1,K2, the generalized residual load vectors R1,R2, the external load vector R∗

1 and the
inactive as well as active set I,A are included. Moreover, ri,k+1

2 represents the nodal evaluation i of the VON MISES yield
function at iteration k + 1 and d ≥ 0 an arbitrary constant, cf. [3, 4].

3 RUNGE-KUTTA Schemes in Multifield Plasticity

For a temporal solution of Equation (2) higher order stiffly accurate fully implicit RUNGE-KUTTA integrators can be applied.
Therefore, the time interval of interest [0, T ] is split into time steps ∆t = tn+1 − tn and the stages tni = tn + citni with
ci ∈ [0, 1] and i = 1, .., s are introduced. At the latter points in time Equation (2) is solved simultaneously. Therefore, the link

wt = wt,n +∆tAtẇt with At =


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...
. . .

...
...

. . .
... · · ·

...
. . .

...
as1 · · · as1 as2 · · · as2 · · · ass · · · ass



,

(3)

is established, whereby the matrix At represents an extension of the RUNGE-KUTTA coefficients aij , cf. [1]. Furthermore, the
stage values are aggregated in the vector wt = [wn1, ...,wns], the corresponding time derivatives in ẇt and the vector wt,n
consists of s copies of wn. Inserting the linearization of Relation (3) into Equation (2), yields the linear system of equations

[
1

∆t2
MtA

−1
t A−1

t +
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∆t
DtA

−1
t +K1,t

]
∆wt = R∗

1,t−R1,t, K2,t∆wt = −R2,t, γi,k+1
t = 0 ∀i ∈ Ik,
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(4)

Ak+1
t := {i|γi,k+1

t + d ri,k+1
2,t > 0}, Ik+1

t := {i|γi,k+1
t + d ri,k+1

2,t ≤ 0}, d > 0,

where the incorporated matrices are extended properly. For a final solution a solver for linear systems of equations is applied.

4 Time Discretization Error Analysis for an Axisymmetric Model Problem

With the preceding procedure at hand, a time discretization error analysis for the axisymmetric benchmark problem of Fig. 1,
where a time dependent sinusoidal load is applied to a cylinder with LAMÉ constants λ, µ, density ρ0 and yield stress σy , is
performed, cf. [4]. Hence, at the end of each time interval the global h-error of a quantity X is calculated by subtracting the
numerically determined valuesXns from those obtained with a very small time step sizeX∆t/16

ns , while identical initial values
are taken into account. The local h-error estimator, however, is obtained, by performing two calculations with two distinct
time step sizes simultaneously and comparing the results after each time step. Additionally, the results from the calculation
using the bigger time step size are passed to the other one as initial condition for the next time step.

eglob
ns = ||X∆t/16

ns (t0)−Xns(t0)||, ens = ||X∆t/2
ns −Xns||, qloc/glob =mean(linear fit(log(∆t), log(eloc/glob

ns ))). (5)

If these errors are determined for distinct time step sizes and collocated in vectors, expression (5)3 can be used to determine the
order of convergence of the time discretization scheme. A more detailed explanation is given in [4, 6] and references therein.
For distinct RUNGE-KUTTA schemes the orders of convergence for different field variables, obtained from the local and the
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Figure 6.5: (a) Steel shaft in the reference configuration. (b) Deformed steel shaft.
(c) Sketch of the steel shaft and its dimensioning. (d) Axisymmetric model of the
steel shaft and its dimensioning.

6.2.1 Classical Approach towards Elastoplasticity

In order to be able to apply the classical approach of small strain elasto(visco)plasticity
of section 5.1 to the described axisymmetric example, modifications of the tangential
quantities in (5.29) have to be performed. In the first step the existence of zero entries in
the stress (6.8) and strain tensor (6.7) is exploited by a rearrangement into

ε =




εRR
εΦΦ

εZZ
εRZ


 σ =




σRR
σΦΦ

σZZ
2σRZ


 G =




GRRRR GRRΦΦ GRRZZ 2GRRRZ

GΦΦRR GΦΦΦΦ GΦΦZZ 2GΦΦRZ

GZZRR GZZΦΦ GZZZZ 2GZZRZ

2GRZRR 2GRZΦΦ 2GRZZZ 4GRZRZ


 (6.9)

Consequently, the algorithmic constitutive tensor G is recast, too. Furthermore, it is taken
into account that the dimension of the tangential mass matrix is reduced, compared to the
general three dimensional case, since the axisymmetric displacement vector only consists
of the two unknowns u(X) = [uR, uZ ]. The displacement based load leads to the fact that
the volume forces and the surface forces within the load vector can be neglected. But the
greatest change has to be carried out within the tangential stiffness matrix. Due to the
introduction of polar coordinates and their position dependent base vectors an additional
term has to be considered concerning gradient impaired quantities, see Appendix B.
This is achieved by expressing the strains using the B-operator in conjunction with the
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Moreover, Figure 6.13 (a) does not show an increase in the stress if the number of elements
is extended in gZ-direction, as it is the case in Figure 6.13 (a). A variation of the number
of elements in gR-direction has results in only small changes in the stress-strain diagram
as well as in the plastic strain-time diagram, see Figure 6.14 (c)-(d). Hence, with the
investigated biquadratic meshes a good spatial discretization seems to be found. For a
further analysis the horizontal section a-a and the vertical section b-b of Figure 6.6 (a) are
considered for a variety of biquadratic meshes. In Figure 6.15 and Figure 6.16 the courses
of the normed axial displacement as well as the normed radial displacement are depicted
in these sections at two arbitrarily chosen points in time t = 120∆t and t = 240∆t.
Figure 6.15 (a) as well as Figure 6.16 (a) demonstrate the expected result that the equally
applied inhomogeneous boundary condition leads to a constant axial displacement in
section a-a. The radial displacement in this section follows a linear behavior at both
points in time, see Figure 6.15 (c) and Figure 6.16 (c). Within the section b-b, however,
nonlinearities are perceptible which can be attributed to the prevalent inertia effects, see
Figure 6.15 (b)/(d) and Figure 6.16 (b)/(d). Nevertheless, the influence of the spatial
discretization on the results obtained in sections a-a and b-b is negligible. Together with
the results depicted in Figure 6.13 and Figure 6.14 it can be seen that a biquadratic mesh
containing NER = 2 as well as NEZ = 15 elements leads to a spatially convergent solution.
Hence, further on only this spatial configuration will be investigated.
In order to emphasize the differences between the quasi-static and the dynamic analysis a
series of contour plots for 16 selected points in time is displayed. These points are marked
by black circles in Figure 6.17, where the applied inhomogeneous boundary condition
and its time derivatives can be observed. Thus, it can be recognized that t1 − t3 and
t9− t11 coincide with a compression of the steel shaft, whereas t4− t8 embody a tensional
deformation.
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Figure 6.17: Temporal course of the applied boundary condition and its time derivatives.

Figure 6.18 shows the corresponding deformation process of the steel shaft over time,
scaled by the factor 20, together with the contour plots of the von Mises stress. While
at the beginning of the simulation at t1 = 5∆t a purely elastic behavior can be observed,
the point in time t2 = 40∆t is already characterized exclusively by plastic effects. Such
homogeneous stress distributions can be recognized in Figure 6.8 within the quasi-static
case as well. The contour plot at the point in time t3, however, clearly portrays an
inhomogeneous stress distribution. Despite the continuously performed compression, a
local unloading within the steel shaft can be observed.This phenomenon is founded in the
consideration of inertia effects. Due to the high frequency of ω = 1000 1/s included in the
boundary condition and the linked inertia forces, an elastic wave front is induced to move
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λ = 0 N/mm2

µ = 1 · 105 N/mm2

ρ0 = 7.8 · 10−6 kg/mm3

T = 0.0126 s
σy = 900 N/mm2

ûZ = −2mm sin(1000/s t)

Fig. 1: Axisymmetric benchmark problem

Table 1: Estimation of the order of convergence

qloc(u) qloc(εp) qloc(σ) qglob(u) qglob(εp) qglob(σ)
LOBATTO IIIC(2) 1.54 1.51 1.38 1.89 1.76 1.22

LOBATTO IIIC(3) 3.76 3.87 3.65 2.33 2.34 2.84

RADAU IIA(2) 2.58 2.69 2.48 2.51 2.40 2.24

RADAU IIA(3) 4.77 4.98 4.71 2.22 2.19 2.48

global error, are shown in Table 1. Considering the local estimates, it becomes apparent that the Lobatto IIIC(2) method is
quite far away from its theoretical order of two. In contrast, the Lobatto IIIC(3) scheme almost reaches its theoretical order
of four for all considered field variables. A similar behavior can be recognized within the Radau IIA schemes. Analyzing the
corresponding global measurements, however, yields a deviating picture. Apart from the Lobatto IIIC(2) scheme, all methods
are estimated to reach orders well above two but not more.

5 Conclusion and Outlook

In the present paper the applicability of higher order accurate fully implicit RUNGE-KUTTA schemes to ideal elastoplasticity
using a multifield approach is demonstrated. With the help of a model problem time discretization errors and the linked
orders of convergence for distinct time integrators are compared. Orders of convergence of about five are obtained if the
local h-error estimator is considered. But for the global h-error estimator an order of convergence greater than three could
not be determined. An explanation for this order reduction phenomenon is still missing and hence an open task for further
investigations.
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