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Fully Implicit RUNGE-KUTTA Schemes for Ideal Elastoplasticity
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The present paper derives a multifield formulation of ideal elastoplasticity to enable the consistent application of higher order

accurate RUNGE-KUTTA schemes. With the help of an axisymmetric model problem the appearing time discretization errors
of distinct schemes are determined and compared.
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1 Motivation

Industrial manufacturing strategies are often characterized by high speed process steps where dynamic effects within plastic
deformations can’t be neglected any longer, cf. [5]. Hence, the application of high order time discretization schemes and the
assessment of corresponding errors are of great importance. A first step in that direction is the reformulation of plasticity as a
multifield problem.

2 The Principle of JOURDAIN for Dynamic Ideal Elastoplasticity
The principle of JOURDAIN for dissipative continua is based on the stationarity of the balance of energy

stat sup inf P(4,, &y, €p,0,7) with P=K+E+P" +D. ()
W& o >0
Equation (1) consists of the rate of kinetic energy K, the rate of internal energy F, the power of external loads P* and
the pseudopotential D characterizing plastic effects, cf. [2,4]. It furthermore depends on the stress tensor o, the plastic
multiplicator +y, the displacement vector u, the plastic strain tensor €, as well as on corresponding first and second time
derivatives. Evaluating Equation (1), performing a spatial discretization, and applying a semi-smooth NEWTON method
yields the linearized semidiscrete form

MAW + DAw + K;Aw = R} — Ry, KoAw = —Ro, R =0 v e TF, )
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Therein the vector of unknowns w = [u, €,, 0, 7], the generalized mass matrix M, the generalized damping matrix D, the
generalized stiffness matrices K;, Ko, the generalized residual load vectors Rq, Ro, the external load vector R} and the

inactive as well as active set Z, A are included. Moreover, r;’kﬂ represents the nodal evaluation ¢ of the VON MISES yield
function at iteration k£ 4 1 and d > 0 an arbitrary constant, cf. [3,4].

3 RUNGE-KUTTA Schemes in Multifield Plasticity

For a temporal solution of Equation (2) higher order stiffly accurate fully implicit RUNGE-KUTTA integrators can be applied.
Therefore, the time interval of interest [0, T is split into time steps At = t,,+1 — ¢, and the stages t,; = ¢, + ¢;tn; with
¢; €[0,1]and i = 1, .., s are introduced. At the latter points in time Equation (2) is solved simultaneously. Therefore, the link
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is established, whereby the matrix A, represents an extension of the RUNGE-KUTTA coefficients a;;, cf. [1]. Furthermore, the
stage values are aggregated in the vector wy = [W,,1, ..., W], the corresponding time derivatives in W, and the vector wy ,
consists of s copies of w,,. Inserting the linearization of Relation (3) into Equation (2), yields the linear system of equations
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20f3 Section 4: Structural mechanics

“

AL = (iR dry i s 0}, I = (iR 1 dry i <0}, d> o,

where the incorporated matrices are extended properly. For a final solution a solver for linear systems of equations is applied.

4 Time Discretization Error Analysis for an Axisymmetric Model Problem

With the preceding procedure at hand, a time discretization error analysis for the axisymmetric benchmark problem of Fig. 1,
where a time dependent sinusoidal load is applied to a cylinder with LAME constants A, i, density pg and yield stress o, is
performed, cf. [4]. Hence, at the end of each time interval the global h-error of a quantity X is calculated by subtracting the
numerically determined values X, s from those obtained with a very small time step size X ﬁf/ '%, while identical initial values
are taken into account. The local h-error estimator, however, is obtained, by performing two calculations with two distinct
time step sizes simultaneously and comparing the results after each time step. Additionally, the results from the calculation
using the bigger time step size are passed to the other one as initial condition for the next time step.

8% = || X210 (1) — Xns (o) ||, ens = [| X% — Xys]|, ¢°/8°° =mean(linear fit(log(At), log(el</€))). (5)
If these errors are determined for distinct time step sizes and collocated in vectors, expression (5); can be used to determine the
order of convergence of the time discretization scheme. A more detailed explanation is given in [4,6] and references therein.
For distinct RUNGE-KUTTA schemes the orders of convergence for different field variables, obtained from the local and the

15 mm A =0N/mm?
pu o=1-10° N/mm?
iz po = 7.8 - 1076 kg/mm?®

T T T =0.0126s
o, = 900 N/mm?
tz7 = —2mm sin(1000/s t)
;12 [mm] qloc (u) qloc(sp) qloc (0.) qglob(u) qglob(ep) qglob(o.)
LoBATTO ITIC(2) 1.54 1.51 1.38 1.89 1.76 1.22

Table 1: Estimation of the order of convergence

100 mm

LosarTo ITIIC(3) 3.76 3.87 3.65 2.33 2.34 2.84
RADAU ITA(2) 2.58 2.69 248 2.51 2.40 2.24

9r RADAU ITA(3) 4.77 4.98 4.7 222 2.19 248

0 0.005 0.01 ¢[s]

Fig. 1: Axisymmetric benchmark problem

global error, are shown in Table 1. Considering the local estimates, it becomes apparent that the Lobatto IIIC(2) method is
quite far away from its theoretical order of two. In contrast, the Lobatto IIIC(3) scheme almost reaches its theoretical order
of four for all considered field variables. A similar behavior can be recognized within the Radau IIA schemes. Analyzing the
corresponding global measurements, however, yields a deviating picture. Apart from the Lobatto IIIC(2) scheme, all methods
are estimated to reach orders well above two but not more.

5 Conclusion and Outlook

In the present paper the applicability of higher order accurate fully implicit RUNGE-KUTTA schemes to ideal elastoplasticity
using a multifield approach is demonstrated. With the help of a model problem time discretization errors and the linked
orders of convergence for distinct time integrators are compared. Orders of convergence of about five are obtained if the
local h-error estimator is considered. But for the global h-error estimator an order of convergence greater than three could
not be determined. An explanation for this order reduction phenomenon is still missing and hence an open task for further
investigations.
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