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Modified Patankar-Runge-Kutta (MPRK) schemes are numerical one-step methods for the solution of positive and conser-
vative production-destruction systems (PDS). They adapt explicit Runge-Kutta schemes in a way to ensure positivity and
conservation of the numerical approximation irrespective of the chosen time step size. Due to nonlinear relationships between
the next and current iterate, the stability analysis for such schemes is lacking. In this work, we introduce a strategy to analyze
the MPRK22(α)-schemes in the case of positive and conservative PDS. Thereby, we point out that a usual stability analysis
based on Dahlquist’s equation is not possible in order to understand the properties of this class of schemes.
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1 Introduction

Many applications can be modeled by positive and conservative production-destruction systems (PDS) that can be expressed
in the form

y′i(t) =
N∑

j=1

(pij(y(t))− dij(y(t))), y(0) = y0 ∈ RN
>0, pij(y), dij(y) ≥ 0, i = 1, . . . , N,

where y = (y1, . . . , yN )T denotes the vector of state variables. A PDS is called positive, if y(t) > 0 holds for all t ≥ 0, and
called conservative, if the condition

∑N
i=1 yi(t) =

∑N
i=1 yi(0) is satisfied for all t ≥ 0.

For a one-step method given in the form yn+1 = Φ(yn,yn+1,∆t) these notions translate to the conditions yn+1
i > 0 for

all yni > 0 and positive step sizes ∆t > 0 for the unconditionally positivity, and
∑N

i=1 y
n+1
i =

∑N
i=1 y

n
i for all n ∈ N and

∆t > 0 for the unconditionally conservativity of the method, respectively.
Given an explicit two-stage RK scheme with nonnegative parameters with the butcher array

0
α α

1− 1/(2α) 1/(2α)
, α ≥ 1

2
,

the two-stage MPRK22(α) scheme is defined by

y
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)
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,

for i = 1, . . . , N , see [2]. MPRK schemes were first mentioned in [1], and proven to be unconditionally positive and
unconditionally conservative in [2]. Whereas the MPRK22(α) method is proven to be second order accurate in [2], there are
also results about third order MPRK schemes, see [3], [4].

The classical analysis based on Dahlquist’s equation is not suitable due to the specific properties of the PDS. Instead, one
can investigate the positive and conservative system

y′(t) = Ay(t), y(0) = y0 ∈ R2
>0 with A :=

(
−a b
a −b

)
and a, b > 0. (1)

We require then that yn → y∗ := ∥y0∥1

a+b

(
b
a

)
as n → ∞ in order to mimic the behavior of the exact solution.
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2 Analysis of the Linearized Method

Applying the MPRK22(α) scheme to the linear test problem (1) leads to yn+1
i = fi(y

n) with

fi(y
n) = yni +∆t

hj(y
n)ynj − hi(y

n)yni
1 + ∆t(h1(yn) + h2(yn))

,

where h1 and h2 are nonlinear functions and i, j ∈ {1, 2}, i ̸= j. The linearized method reads wn+1 = y∗ +Df(y∗)(wn −
y∗), w0 := y0, where Df stands for the Jacobian of f . One then can prove that indeed, we have Df(y∗)y∗ = y∗, and thus,
end up with wn+1 = Df(y∗)wn. One eigenvalue of the Jacobian at the stationary solution y∗ of (1) is 1, and the other is
given by the stability function R(α, λ∆t), where λ := −(a+ b) is the non-zero eigenvalue of the matrix A and

R(α, z) :=
2− z2 − 2zα

2(1− z)(1− zα)
.

One can prove that for all α ≥ 1
2 and all z < 0 we have |R(α, z)| < 1. Hence, we can show wn → y∗ as n → ∞ for

all y0
1,y

0
2 > 0. Indeed, analyzing R(α, z) results in prognoses that can be verified in numerical experiments. For instance,

the larger the absolute value of z and the smaller the value of α ≥ 1
2 , the more R(α, z) tends to −1 which should lead to

stronger oscillations. This can be seen in the following figure. However, further theory is needed in order to understand that
the function R indeed leads to local convergence of the nonlinearized method.

(a) z = −10 (b) z = −100

(c) z = −1000 (d) z = −10000

Fig. 1: We have chose ∆t = 500, a = b, z = −(a + b)∆t and compared different values of α for the MPRK22(α) method applied to
(1). For the sake of simplicity we only plot first component of the numerical approximation vector ynum shifted by y∗

1 and compare it to the
shifted exact solution of (1). From the top left to the bottom right, |z| is increasing by factors of 10.
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