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Abstract An efficient approach based on the path-
independent interaction-integral (I -integral) is sug-
gested for assessing the crack tip loading in elastic
structures without having to geometrically model a
physical crack. Exploiting just the elastic solution of
the uncracked structure, the I -integral is adapted incor-
porating the closed formulation of crack tip stress and
displacement fields of an auxiliary crack, which in
this approach is interpreted as hypothetical physical
crack.Different specimens and crack configurations are
investigated, sparing the expensive numerical model-
ing of discontinuities, and stress intensity factors are
assessed according to the auxiliary crack approach.
Various results are verified based on classic crack tip
loading analyses.

Keywords Auxiliary crack fields · Interaction
integral · Crack initiation · Stress intensity factors ·
Approximation

1 Introduction

The fracture assessment plays a key role in the devel-
opment and operation of light-weight structures, par-
ticularly in safety-relevant systems. This incorporates
transportation systems for passengers and goods on
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ground, water or in the air, as well as hazardous facili-
ties in the chemical and power industry. In this context
important issues are where, into which direction and at
which load cracks will evolve and if stable or unstable
crack growth is to be expected.

The numerical modeling of structures with cracks
in terms of a finite element (FE) framework is time-
consuming, particularly if several hypothetical crack
configurations are investigated, and in general goes
alongwith specialmesh requirements to account for the
stress and strain singularities at the crack tip. Special
crack tip elements have been introduced to account for
the singular stress fields (Barsoum 1974, 1976). In the
extended FEmethod (XFEM), adapted shape functions
are included in the element formulation to represent the
discontinuity of crack faces and the typical stress and
displacement fields at crack tips (Belytschko and Black
1999; Moës et al. 1999). A different approach is taken
in the phase field method (Francfort andMarigo 1998).
Here, the crack is represented by a diffuse phase field,
continuously changing from solid to crack phase.

In classical numerical fracture mechanics, the crack
tip loading analysis is a challenging task and dif-
ferent approaches have been presented. Here, path-
independent integrals are beneficial and can be eval-
uated along arbitrary integration contours far from
the crack tip. First, the J -integral was introduced by
Cherepanov (1967) and Rice (1968), representing a
crack tip loading quantity in elastic and elastic-plastic
materials. Later, J = J1 was extended by a second
coordinate J2 in plane mixed-mode problems (Budian-
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sky and Rice 1973). In linear elastic fracturemechanics
(LEFM) Jk is related to the energy release rate (ERR)
(Griffith 1921; Irwin and Kies 1952) and the stress
intensity factors (SIF) (Bergez 1974). Later, the inter-
action integral, in the following denoted as I -integral,
was introduced for plane elastic problems (Stern et al.
1976; Chen and Shield 1977), employing Betti’s reci-
procity theorem (Betti 1872) and the superposition of
a physical and an auxiliary crack tip loading.

In the case of curved cracks, crack face integrals
must not be neglected for the accurate calculation of J -
and I -integrals (Judt and Ricoeur 2013, 2015a). Espe-
cially when applying the I -integral in connection with
straight auxiliary cracks and large integration contours,
this leads to the necessity of crack face integrals along
both the physical curved crack and the auxiliary straight
crack, tangentially approaching each other and finally
coinciding at the crack tip (Judt and Ricoeur 2015a;
Gosz and Moran 2002); see Fig. 1. The auxiliary stress
field at the position of the physical crack has to be incor-
porated as tractions on the physical crack faces and vice
versa. The approach has successfully been applied to
the loading analysis at single and multiple crack sys-
tems (Judt and Ricoeur 2015b).

The submodeling technique (Kuna 2013; Gloger
et al. 2012) has been developed to avoid the explicit
modeling of cracks in complex boundary value prob-
lems (BVP), providing an approximate crack tip load-
ing. In a global analysis, the BVP without a crack is
solved and resulting displacements are applied to the
boundary nodes of a simple submodel containing the
crack. The crack’s loading state is subsequently deter-
mined applying a classical loading analysis approach.
Applying the technique of crack weight functions
(Bueckner 1970; Rice 1972) in connection with the
principle of linear superposition, a further increase
of efficiency can be achieved, exploiting stresses just
in the crack plane of the global analysis and insert-
ing them into SIF solutions of an arbitrary test load.
Although the computation of complex crack problems
thus is mapped onto much simpler BVP, the modeling
of cracks is basically unavoidable.

In the following, an efficient approach is suggested
for numerically determining approximate crack tip
loadings. This approach is beneficial compared to oth-
ers, as neither a crack is explicitly modeled in the BVP
of the investigated structure, nor a submodel is required.
In contrast to our approach in (Judt andRicoeur 2015a),
here the I -integral is applied to the numerical solu-

tion of the defect-free BVP, where the physical crack
is introduced in terms of discontinuous stress and dis-
placement near tip fields of an auxiliary crack. With
the freedom in the choice of location, orientation and
length of the crack, very low effort is required for
the assessment of crack tip loadings. The so-called
auxiliary crack approach (ACA), on the other hand,
lacks a rigorous theoretical background, and thus still
requires fundamental research. Various plane struc-
tures are investigated applying the ACA. The promis-
ing results of SIF are compared to those of classical
fracture mechanics calculations.

2 Interaction integral technique and the auxiliary
crack approach

Crack tip loading quantities such as the J -integral, ERR
or SIF provide information about crack growth and
deflection behavior. The path-independent Jk-integral
(Rice 1968) is defined as

Jk = lim
ε→0

∫

�ε

Qkjn jds =
∫

�

Qkjn jds

=
∫

�

(
uδk j − σi j ui,k

)
n jds, (1)

where �ε represents an infinitesimal and � a finite
integration contour enclosing the crack tip. In the lat-
ter case, � includes the integration along crack faces
and volume or inertia forces have to be excluded. The
integrand Qkj is Eshelby’s energy-momentum tensor
(Eshelby 1975) and n j the unit normal vector on �.
The energy-momentum tensor is composed of the elas-
tic strain energy density

u = 1

2
σmnεmn (2)

with stress and strain tensors σi j and εi j , respectively,
and of the displacement gradient ui,k . The identity ten-
sor is represented by δk j . The superpositions of field
variables of two loading conditions (a) and (b) in a lin-
ear elastic structure are obtained as

σ
(a)+(b)
i j = σ

(a)
i j + σ

(b)
i j , (3a)

ε
(a)+(b)
i j = ε

(a)
i j + ε

(b)
i j , (3b)
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u(a)+(b)
i, j = u(a)

i, j + u(b)
i, j . (3c)

Substituting the superimposed field variables into the
energy-momentum tensor of Eq. (1) and considering
Eq. (2) provides

Q(a)+(b)
k j = 1

2

(
σ (a)
mn + σ (b)

mn

) (
ε(a)
mn + ε(b)

mn

)
δk j

−
(
σ

(a)
i j + σ

(b)
i j

) (
u(a)
i,k + u(b)

i,k

)

=
[
1

2
σ (a)
mnε(a)

mnδk j − σ
(a)
i j u(a)

i,k

]

+
[
1

2
σ (b)
mn ε(b)

mnδk j − σ
(b)
i j u(b)

i,k

]

+
[
1

2

(
σ (a)
mnε(b)

mn + σ (b)
mn ε(a)

mn

)
δk j

−
(
σ

(a)
i j u(b)

i,k + σ
(b)
i j u(a)

i,k

)]

= Q(a)
k j + Q(b)

k j + Q(a/b)
k j . (4)

The Jk-integral of two loading conditions results from
integrating Eq. (4) according to Eq. (1):

J (a)+(b)
k = lim

ε→0

∫

�ε

(
Q(a)

k j + Q(b)
k j + Q(a/b)

k j

)
n jds

= J (a)
k + J (b)

k + J (a/b)
k . (5)

The first coordinate (k = 1) of the last term in Eq. (5)
represents the I -integral (Stern et al. 1976; Chen and
Shield 1977). According to Irwin (1958) the SIF are
related to the energy release rate G of a straight crack
extension and thus to the J -integral according to

J1 = G = K 2
I + K 2

II

E ′ , (6)

with the generalized Young’s modulus E ′ = E for
plane stress and E ′ = E/(1− ν2) for plain strain con-
ditions. In LEFM the superposition of two crack tip
loading conditions (a) and (b) leads to

K (a)+(b)
i = K (a)

i + K (b)
i , (7)

where the index i represents the opening modes I or II
for plane problems. Substituting the superimposed SIF

x1

x2

x1x2 r

ϕ

Γ0

Γphys
C

Γaux
C

Fig. 1 Integration paths containing the external contour�0, aux-
iliary straight crack faces �aux

C and actual curved crack faces

�
phys
C , corresponding crack tip coordinate system xk of auxiliary

and actual crack, global coordinate system xk

into Eq. (6) provides

J (a)+(b)
1 = 1

E ′

[(
K (a)
I + K (b)

I

)2 +
(
K (a)
II + K (b)

II

)2]

= 1

E ′

[(
K (a)
I

)2 +
(
K (a)
II

)2]

+ 1

E ′

[(
K (b)
I

)2 +
(
K (b)
II

)2]

+ 2

E ′
[
K (a)
I K (b)

I + K (a)
II K (b)

II

]

=J (a)
1 + J (b)

1 + J (a/b)
1 . (8)

From Eqs. (5) and (8) a relation of I -integral and SIF
is obtained:

I1 = J (a/b)
1 = lim

ε→0

∫

�ε

Q(a/b)
1 j n jds

= 2

E ′
[
K (a)
I K (b)

I + K (a)
II K (b)

II

]
. (9)

The SIF K (a)
i and K (b)

i and associated stress and dis-
placement fields are related to possible solutions of the
crack problem, no matter if going back to the actual
loading or just a fictitious one, or even a fictitious aux-
iliary crack, as long as the crack faces (a) and (b) meet
at a joint crack tip, see Fig. 1. Typically, solution (a) is
obtained from numerical calculations representing the
physical solution of the BVP with a crack exposed to
the actual external loading. The fields (b) result from a
closed-form analytical solution, e.g. the near tip stress
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and displacement fields (Irwin 1958; Williams 1957),
representing an auxiliary solution in the I -integral. The
unknown mode-I SIF K (a)

I of the physical problem
is then determined from the numerically evaluated I -
integral according to Eq. (9) with the auxiliary field
variables related to a unit mode-I crack tip loading, i.e.
K (b)
I = 1 and K (b)

II = 0:

K (a)
I = E ′

2
I I1. (10)

Similar to the mode-I SIF, K (a)
II is determined choosing

the auxiliary SIF according to a unit mode-II loading
with K (b)

I = 0 and K (b)
II = 1, yielding

K (a)
II = E ′

2
I II1 . (11)

Typically, to apply the I -integral to curved cracks,
small integration contours are employed in order to
avoid the implementation of additional line integrals,
however, resulting in a lower accuracy. Judt and
Ricoeur (2015a) showed, that in the case of curved
cracks and large integration contours, additional crack
face integrals along both physical and auxiliary cracks
are necessary to maintain the path-independence of the
I -integral

I1 =
∫

�0

Q(a/b)
1 j n jds +

∫

�
phys
C

Q(a/b)
1 j n jds

+
∫

�aux
C

Q(a/b)
1 j n jds, (12)

see Fig. 1. The stresses along the physical and auxiliary
crack surfaces, respectively, being attributed to both
cracks in each case, are interpreted as surface tractions
(Judt and Ricoeur 2015a; Gosz and Moran 2002).

A superposition of SIF according to Eq. (7), how-
ever, is only valid if both physical and auxiliary cracks
are approaching each other tangentially at the joint
crack tip, which is intrinsically satisfied for straight
cracks. Only in this case, near tip stresses on the
ligament σ 0

i j (r) = σi j (r, ϕ = 0) may be superim-

posed, being controlled by loads σ̂
(a/b)
i j and geomet-

rical aspects, e.g. represented by crack lengths a(a/b),
finally yielding the mode-I and mode-II SIF

K (a)+(b)
I = lim

r→0

√
2πr

(
σ 0
22(r, σ̂

(a)
i j , a(a))

+ σ 0
22(r, σ̂

(b)
i j , a(b))

)
, (13a)

K (a)+(b)
II = lim

r→0

√
2πr

(
σ 0
12(r, σ̂

(a)
i j , a(a))

+ σ 0
12(r, σ̂

(b)
i j , a(b))

)
. (13b)

It is clear that at BVP without cracks, the crack
length is a(a) = 0 and therefore K (a)

i = 0. As a
result, the interaction integrals according to Eqs. (9)
or (12) must vanish and on the right hand side of Eq.
(12) the contribution of the integration along the non-
existing physical crack face �

phys
C vanishes indepen-

dently. Accordingly, for a pure auxiliary crack problem
the integrals along �0 and �aux

C are related as:

I aux1 =
∫

�0

Q(a/b)
1 j n jds = −

∫

�aux
C

Q(a/b)
1 j n jds. (14)

For the numerical assessment of the crack tip loading
following the ACA, the integration contour �0 com-
pletely encloses the auxiliary crack faces, the latter
representing an equivalent physical crack, both inter-
secting at the external boundary of the structure, see
Fig. 2. Meeting these requirements, the integral I aux1 is
independent of the chosen path �0. The procedure now
is as follows. Numerically, just the integral along �0

in Eq. (14) is calculated including continuous stress,
strain and displacement fields σ

(a)
mn , ε

(a)
mn and u(a)

i , see
Eq. (4), from the FE solution of the crack-freeBVP.The
discontinuity of an equivalent crack problem is incor-
porated just by the auxiliary fields σ

(b)
mn , ε

(b)
mn and u(b)

i
taken from closed-form near tip solutions (Irwin 1958;
Williams 1957). A single unit mode-I or mode-II auxil-
iary crack tip loading is chosen and substituted into Eq.
(10) or (11) with I1 = I aux1 , finally obtaining SIF KI

or KII of the presumed crack. For a vanishing contour
�aux
C , Eq. (14) illustrates that I aux1 = 0, thus the limiting

condition KI/II = 0 for a → 0 is satisfied. While Eqs.
(9) and (14) are exact for themselves, their equating
is an approximation. The results in Sect. 3 will show
that the approach denoted as ACA definitely provides
suitable results for a variety of crack problems.
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Fig. 2 CT-specimen with
U-shaped notch and pin
holes for displacement
controlled loading with
integration contour �0 and
(auxiliary) crack length a
(left); normalized mode-I
SIF vs. normalized crack
length (right)
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ū
2
/
a
2
)

a/w

physical crack
auxiliary crack

0
0

0.05

0.05

0.1 0.15 0.2 0.25

0.01

0.02

0.03

0.04

0.06

0.07

3 Examples of numerical crack tip loading
analyses

Different crack problems have been analyzed with the
ACA. Reference values of SIF have been generated
computing the J -integral according to Eqs. (1) and (6)
for the physical crack.

3.1 Crack in CT-specimen with U-notch

Figure 2 shows a CT-specimen (h/w = 5/8) with a
U-notch (
/w = 0.525) subjected to a symmetric dis-
placement loading ū2. The normalized mode-I SIF is
furthermore depicted vs. the normalized crack length.
It is noted that the latter is calculated starting from the
root of the notch, since themore commonmeasurement
starting at the points of load incidence obscures the
results of shorter cracks. The solutions of the ACA are
labeled as auxiliary crack and the reference values are
denoted as physical crack. Both, the conventional anal-
ysis of the physical crack and the ACA provide similar
results. The error depends on the crack length, reaching
from 3% at a/w = 0.075 to 7% at a/w = 0.25, see
Fig. 2, disregarding larger errors for very short cracks,
where KI asymptotically approaches zero.

3.2 Crack in plate with hole

A plate with a hole and applied tensile stress σ̄22,
as shown in Fig. 3a, was analytically investigated by
Kirsch (1898). The stress field exhibits a stress con-
centration factor of SF = σ/σ̄22 = 3 at the points of

vertical tangents and SF = −1 at those of horizontal
tangents. Thus, for σ̄22 > 0 cracks may initiate along
the horizontal and for σ̄22 < 0 along the vertical axis.
In Fig. 3b–d, normalized SIF of cracks emanating from
the hole are depicted vs. the normalized crack lengths.
The ratio of hole diameter to plate width in all speci-
mens is d/w = 0.2.

Figure 3b is obtained from a crack along the hor-
izontal symmetry axis (ϕ = 0) emanating from the
right side of the hole with tensile external loading σ̄22.
Just as with the CT-specimen in Fig. 2, the error of the
ACA exhibits a pronounced dependence on the crack
length with appropriate results for all except for very
short cracks. The problem in the latter case is due to
the large gradient of KI(a) for a → 0, which is not
apparent in Fig. 3b and d due to the normalized graphs.

The normalized SIF of a crack emanating at ϕ =
π/4 from the hole with again tensile loading σ̄22 are
depicted vs. the normalized crack length in Fig. 3c. KII

is obtained following Eq. (11), applying a unit mode-II
auxiliary loading. Alternatively, KII is provided iden-
tically from the second coordinate I I2 applying a unit
mode-I auxiliary loading (Judt and Ricoeur 2015a). As
a result of both ACA and physical crack approaches,
KII(a) exhibits a horizontal tangent at a = 0, while
KI(a) starts with a vertical one, albeit not being obvi-
ous in the normalized depiction of Fig. 3. As a conse-
quence thereof, the analysis of KII based on the ACA is
sufficiently accurate for all investigated crack lengths,
whereas for KI errors decrease with increasing crack
length, taking more than 10% just for very short cracks
2a/d < 0.2 and being almost exact for 2a/d > 0.7.

Finally, in Fig. 3d the mode-I SIF due to a compres-
sive loading σ̄22 of a crack emanating vertically from
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Fig. 3 Comparison of
physical and auxiliary crack
analyses in a plate with a
hole
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(a) Finite plate with central hole of diameter d and ex-
ternal load σ̄22; hypothetical crack of length a emanat-
ing from the hole at angle ϕ
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(c) Normalized SIF vs. normalized crack length for σ̄22 > 0
and ϕ = π/4
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(d) Normalized mode-I SIF vs. normalized crack length for
σ̄22 < 0 and ϕ = π/2

Fig. 4 2D model of
specimen (radius R, height
h) with indenter (radius r )
and load σ̄22 (left) and
normalized mode-I SIF vs.
normalized crack length
(right)
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the hole at ϕ = π/2 is plotted vs. the normalized crack
length. Again, the error of KI from the ACA decreases
quickly with increasing crack length, asymptotically
approaching zero.

3.3 Crack due to Hertzian pressure

Indentation fracture was first experimentally and ana-
lytically investigated byHertz (1882a, b). The observed
cone cracks in brittle materials such as glass or ceram-
ics have further been analyzed by several researchers
(Frank and Lawn 1967; Mouginot and Maugis 1985;
Fischer-Cripps 1997; Strobl et al. 2017). In the state of
crack initiation, however, the circumferential crack is
cylindrical.

The cut-awayviewof a cylindrical specimenexposed
to a cylindrical indenter punch loaded with σ̄22 is
depicted in Fig. 4. The indenter radius is r = 0.025R,
the crack formation is supposed to occur at d = 0.06R
and the cylinder height is h = 2R. The problem is sim-
plified investigating just a planar model instead of a
cylindrical one. The induced stress distribution is such
that tensile stresses are present close to the upper speci-
men’s surface, allowing for crack initiation at a distance
d > r . With increasing distance to the upper surface of
the specimen, the stresses field changes from tensile to
compressive and thus crack growth is stopped.

This specific characteristic is also observed in the
mode-I SIF of a crack growing vertically into the spec-
imen. After a short range of positive crack driving force
(KI > 0), the SIF becomes negative at a/h ≈ 0.001,
seeFig. 4.Contact of crack faces is not considered in the
auxiliary fields and therefore unphysical overlapping
occurs providing negative values. According to Fig. 4,
the results from the ACA and the conventional analysis
of the physical crack qualitatively coincide very well.
Relative errors are only unacceptable for crack lengths
going along with vanishing KI.

4 Conclusions

The auxiliary crack approach (ACA) is based on the
interaction integral of fracture mechanics, commonly
applied to calculate stress intensity factors (SIF) from
the numerical solution of a boundary value problem
with a crack in connection with auxiliary stress and
displacement fields emanating from arbitrary auxiliary

crack solutions. The idea is to exclude the crack phys-
ically from the structure and mathematically from the
interaction integral, leaving the auxiliary crack and its
discontinuous fields, adopted from available closed-
form near-tip solutions. The auxiliary crack then tak-
ing the role of the physical one, the SIF of a cracked
structure can be determined reasonably,which has been
demonstrated with examples. Qualitatively, the behav-
ior of SIF vs. crack length is always predicted correctly
by the ACA. Quantitatively, errors depend on the crack
length, mostly being below 10%. Being an approxima-
tion on the one hand, the ACA gives the opportunity
of very efficient fracture mechanical assessment of a
structure on the other. Based on the data of e.g. a FE
solution of the uncracked structure, arbitrary configu-
rations of straight cracks are easily investigatedwithout
any further numerical effort.

From these promising results, the ACA might be
established in fracture mechanical loading analyses in
the future. Presently, the research in this field, however,
is a work in progress, leaving open questions both from
the theoretical and application-oriented points of view.
A reliable application of the ACA in engineering frac-
ture mechanics requires deeper insight into the nature
of errors and their influencing factors.

Acknowledgements Open Access funding enabled and orga-
nized by Projekt DEAL.

Funding Open Access funding enabled and organized by Pro-
jekt DEAL.

Open Access This article is licensed under a Creative Com-
mons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in anymedium
or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or
other third partymaterial in this article are included in the article’s
Creative Commons licence, unless indicated otherwise in a credit
line to thematerial. If material is not included in the article’s Cre-
ative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder. To view
a copy of this licence, visit http://creativecommons.org/licenses/
by/4.0/.

References

Barsoum R (1974) Application of quadratic isoparametric finite
elements in linear fracture mechanics. Int J Fract 10:603–
605

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


220 P. O. Judt, A. Ricoeur

Barsoum R (1976) On the use of isoparametric finite elements in
linear fracture mechanics. Int J NumerMethods Eng 10:25–
37

Belytschko T, Black T (1999) Elastic crack growth in finite ele-
ments with minimal remeshing. Int J Numer Methods Eng
45:601–620

Bergez D (1974) Determination of stress intensity factors by use
of path-independent integrals. Mech Res Commun 1:179–
180

Betti E (1872) Theoria della elasticita. Il Nuovo Cimento 7–
8(1):69–97

Budiansky B, Rice J (1973) Conservation laws and energy-
release rates. J Appl Mech 40(1):201–203

Bueckner H (1970) Novel principle for the computation of stress
intensity factors. Zeitschrift für angewandte Mathematik
und Mechanik 9:529–546

Chen H, Shield R (1977) Conservation laws in elasticity of the
J-integral type, Journal of Applied. Math Phys 28:1–22

Cherepanov G (1967) Crack propagation in continuous media
(translation from Russian). J Appl Math Mech 31(3):503–
512

Eshelby J (1975) The elastic energy-momentum tensor. J Elast
5:321–335

Fischer-Cripps A (1997) Predicting Hertzian fracture. J Mater
Sci 32:1277–1285

Francfort G, Marigo J (1998) Revisiting brittle fracture as
an energy minimization problem. J Mech Phys Solids
46(8):1319–1342

Frank F, Lawn B (1967) On the theory of Hertzian fracture. Proc
R Soc Lond Ser A 299:291–306

GlogerD, EnderleinM,KunaM:Error analysis for FEManalysis
of cracks using submodels. In: Proceedings of the ASME
Pressure Vessel and Piping Conference, Toronto, Canada,
vol. 2, 41–47

Gosz M, Moran B (2002) An interaction energy integral method
for computation of mixed-mode stress intensity factors
alongnon-planar crack fronts in three dimensions. EngFract
Mech 66:299–319

Griffith A (1921) The phenomena of rupture and flow in solids.
Philos Trans R Soc Lond Ser A 221:163–198

Hertz H (1882a) Über die Berührung fester elastischer Körper.
Journal für die reine und angewandte Mathematik 92:156–
171

Hertz H (1882b) Über die Berührung fester elastischer Körper
und die Härte, Verhandlungen des Vereins zur Beförderung
des Gewerbefleißes 449–464

Irwin G (1958) Fracture. In: Fluegge S (ed) Encyclopedia of
physics: elasticity and plasticity, vol 6. Springer, Berlin, pp
551–590

Irwin G, Kies J (1952) Fracturing and fracture dynamics. Weld
J Res Suppl 31:95s–100s

Judt P, Ricoeur A (2013) Accurate loading analyses of curved
cracks under mixed-mode conditions applying the J-
integral. Int J Fract 182:53–66

Judt P, Ricoeur A (2015a) Consistent application of path-
independent interaction integrals to arbitrary curved crack
faces. Arch Appl Mech 85(1):13–27

Judt P, Ricoeur A (2015b) Crack growth simulation of multiple
cracks systems applying remote contour interaction inte-
grals. Theor Appl Fract Mech 75:78–88

Kirsch E (1898) Die Theorie der Elastizität und die Bedürfnisse
der Festigkeitslehre. Zeitschrift des Vereines deutscher
Ingenieure 42:797–807

Kuna M (2013) Finite elements in fracture mechanics. Springer,
Dordrecht

MoësN, Dolbow J, Belytschko T (1999) A finite elementmethod
for crack growth without remeshing. Int J Numer Methods
Eng 46:131–150

Mouginot R, Maugis D (1985) Fracture indentation beneath flat
and spherical punches. J Mater Sci 20:4354–4376

Rice J (1968) A path independent integral and the approximate
analysis of strain concentration by notches and cracks. J
Appl Mech 35(2):379–386

Rice J (1972) Some remarks on elastic crack-tip stress fields. Int
J Solids Struct 8:751–758

Stern M, Becker E, Dunham R (1976) A contour integral com-
putation of mixed-mode stress intensity factors. Int J Fract
12(3):359–368

Strobl M, Dowgiallo P, Seelig T (2017) Analysis of Herzian
indentation in the framework of finite fracture mechanics.
Int J Fract 206:67–79

Williams M (1957) On the stress distribution at the base of a
stationary crack. J Appl Mech 24:109–114

Publisher’s Note Springer Nature remains neutral with regard
to jurisdictional claims in published maps and institutional affil-
iations.

123


	An auxiliary crack approach for efficient approximative crack tip loading analyses
	Abstract
	1 Introduction
	2 Interaction integral technique and the auxiliary crack approach
	3 Examples of numerical crack tip loading analyses
	3.1 Crack in CT-specimen with U-notch
	3.2 Crack in plate with hole
	3.3 Crack due to Hertzian pressure

	4 Conclusions
	Acknowledgements
	References




