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Performing experiments for system identification of continuously operated plants 

might be restricted as it can impact negatively normal production. In such cases, 

using historical logged data can become an attractive alternative for system iden-

tification. However, operating points are rarely changed and parameter estimation

methods can suffer numerical problems.

Three main drawbacks of current approaches in this research area can be discussed. 

Firstly, detection tests are not adapted for dynamical systems. Secondly, methods to 

define upper interval bounds are not robust to colored noise that is more likely to be

found in real applications. Thirdly, model estimation with the retrieved data is not 

supported and the performance of the method cannot be assessed. In the method

proposed in this work, called data selection for system identification (DS4SID), pre-

vious drawbacks are addressed and robust tests are designed and implemented. 

The performance of DS4SID is evaluated in a simulated and laboratory multivari-

ate processes. A process unit of the lab-scale factory “µPlant” is used as industry-

oriented case study. Models estimated with selected data are shown to have similar 

performance than estimates with the entire data set.
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Abstract

Performing experiments for system identiĄcation of continuously operated plants
might be restricted as it can impact negatively normal production or cause
safety issues. In such cases, using historical logged data for system identiĄcation
can become an attractive alternative instead of carrying out new experiments.
However, since such plants work normally at operating points that are seldom
changed, parameter estimation methods with logged data can suffer numerical
problems.

Methods to locate and select informative data sequences is a promising
area that can support system identiĄcation in processes where performing
experiments is constrained. At least three main drawbacks of current approaches
can be discussed. Firstly, detection tests used in data selection methods are
based on time series models even though, they address dynamical systems where
the input sequence should also be considered. In case of processes operating
in closed loop, excitation caused by external disturbances is not detected if
current approaches only evaluate changes in the set points. Secondly, upper
interval bounds can be wrongly deĄned since the process is described by input-
output models that assume white Gaussian noise (WGN) as additive stochastic
disturbance. In practical applications, colored noise is more likely to be found
than white Gaussian noise (WGN). Thirdly, in current methods model estimation
with the retrieved selected intervals is not supported and therefore the quality
of selected data for data-driven modeling cannot be practically assessed. In the
data selection method proposed in the present thesis, called data selection for
system identiĄcation (DS4SID), previous drawbacks are addressed and robust
tests are designed and implemented. DS4SID can be applied to multivariate
processes operating in open or closed-loop. Two tests are proposed for detection
and bounding of informative intervals which simpliĄes the choice of user-deĄned
parameters. A model is computed using a data merging method which can
be used for further analysis. The performance of DS4SID is evaluated in a
simulated and laboratory multivariate processes. A process unit of the lab-scale
factory ŞµPlantŤ is used as industry-oriented case study. Models estimated
with selected informative intervals are shown to have similar performance than
estimates with the entire data set.





Zusammenfassung

Die Durchführung von Experimenten zur Erfassung von Daten für die Sys-
temidentiĄkation bei kontinuierlich betriebenen Prozessanlagen ist oft nur
eingeschränkt möglich, entweder weil ein Stillstand unerwünscht ist oder aus
Gründen der Betriebssicherheit. In diesem Fall stellt die Auswertung aufgeze-
ichneter Daten eine wertvolle Alternative zur Durchführung neuer Experimente
dar. Da die Betriebspunkte nur selten geändert werden, können Verfahren zur
Parameterschätzung unter numerischen Problemen leiden. Die Entwicklung
neuer Methoden zum Auffinden und Auswählen informativer Datensequenzen
ist ein vielversprechendes Forschungsgebiet, das die SystemidentiĄkation un-
terstützen kann, bei denen die Durchführung von Experimenten nur begrenzt
möglich ist.

Es gibt mindestens drei wesentliche Nachteile der derzeitigen Methoden:
Erstens arbeiten Datenselektionsverfahren zur Erkennung von Ausreißern nur
auf einzelnen Zeitreihen, obwohl sie aus dynamischen Systemen stammen, bei
denen auch die Eingangssignale berücksichtigt werden sollten. Zweitens können
die oberen Intervallgrenzen falsch deĄniert werden, wenn das angenommene
Rauschmodel nicht der Realität entspricht. Drittens wird in derzeitigen Datense-
lektionsverfahren keine Modellparameterschätzung durchgeführt und daher
kann der Wert der selektierten Daten nicht praktisch bewertet werden. Mit
der in dieser Arbeit vorgeschlagenen Datenselektionsmethode mit der Beze-
ichnung DS4SID werden die bisherigen Nachteile behoben und robuste Tests
vorgestellt. Das zweistuĄge Verfahren detektiert Ausreißer und bestimmt die
oberen Intervallgrenzen informativer Datensequenzen, was die Festlegung von
Entwurfsparametern vereinfacht. Mit Hilfe des Zusammenführens der selek-
tierten Datensequenzen wird ein Modell berechnet, welches für die weitere
Auswertung verwendet werden kann. Die Leistungsfähigkeit von DS4SID wird
mit Hilfe von Simulationsstudien und einer industrienahen Fallstudie eines realen
Mehrgrößensystems überprüft. Dabei wurde eine Prozessinsel der Modellfabrik
ŞµPlantŤ genutzt. Es konnte gezeigt werden, dass Modelle, die mit Hilfe von
selektierten Daten berechnet worden sind, vergleichbar sind mit Modellen, die
mit dem gesamten Datensatz berechnet wurden.
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CHAPTER 1

Introduction

The data selection method proposed in the present thesis can be used to
support system identiĄcation in processes where performing experiments for
data-driven modeling is constrained. In the present chapter, motivation and
contribution of this research work and the state of the art are presented.

1.1 Motivation
System identiĄcation involves mainly three aspects: data set, model and estima-
tion method. Data sets can be obtained, for instance, by performing designed
experiments or from logged records. In the case of performing an experiment,
design decisions such as type of excitation signal, sampling time and duration
of the experiment are made by the user. The goal is to perform an experiment
which results in maximally informative data i.e. data sets from which the
dynamics of a system can be modeled. However, performing experiments can
sometimes be restricted in continuously operated plants since it may impact
negatively production and it is time consuming. Alternatively, use of logged
process data is an attractive option. Such process records are, indeed, large data
sets that have often been logged for years. Decaying prices of storage devices
and sensors facilitates data logging resulting in large data bases. In a reĄnery,
for instance, measurements are recorded with sampling intervals between 1 s and
60 s from around 60000 sensors which results in approximately 300 GB per year
[8]. In [12], databases of 2.5 GB from a process in a chemical plant were used for
data selection to support system identiĄcation. A continuously operated process
in a lab-scale plant, that is introduced in Chapter 6, can generate databases of
around 1 GB from approximately 65 sensors with a sampling interval of 250 ms.

The latter examples introduce the data selection problem for system identi-
Ącation which consist in searching and extracting speciĄc data intervals from
historical records to support model estimation instead of collecting measure-
ments from new experiments.



2 Chapter 1 Introduction

Data selection for identiĄcation was proposed as a promising research Ąeld as
reported in [39, 58]. In both publications, the authors propose to adapt identiĄ-
cation methods for ŞminingŤ data sequences that contain useful information on
the system dynamics. The previously described situations are frequently found,
for instance, in continuously operated plants, that represent an interesting
application Ąeld for data selection methods.

This research work is focused on selection of informative data sequences from
large databases to support system identiĄcation. The motivation of searching
informative data intervals is to evaluate the possibility of performing data-driven
modeling from logged process data without performing new experiments. This
is a non-intrusive option that also has economical advantages since it is not
necessary to stop an operating process to perform tests for collecting data.
However, it is Ąrstly necessary to consider several aspects before using these
data for data-driven modeling. Since processes in continuously operated plants
are only occasionally excited, logged data exhibit seldom changes which can
affect parameter estimation.

In parameter estimation methods, some operations such as matrix inversions
can experience numerical problems when using data sets as previously described.
These numerical problems can be avoided by estimating parameters from
sequences that were recorded during dynamic changes in the process. Useful
data intervals for system identiĄcation may be located around change times
where a process leaves an operating point. The limits of an informative interval
will be referred to as lower and upper interval bounds. These will be further
explained in section 5.3 and section 5.4. Data selection for system identiĄcation
consists of three main tasks: locating change times, interval bounding and data
merging. Lower and upper interval bounds are deĄned by tests performed in
the Ąrst two stages. A model is estimated by merging informative data intervals
in a further stage.

Figure 1.1 positions the research area of the present thesis. Development of
data selection methods for identiĄcation requires to adapt different tools from
statistical signal processing and from data-driven modeling into this new Ąeld.
Data selection methods can be divided mainly into three groups: signal-, model-
or expert-based as shown in Figure 1.1. In the Ąrst approach, useful intervals
are selected by performing tests separately on input and output signals. In the
second approach, interval bounds are deĄned according to the conditioning of
the information matrix associated to a chosen estimation method. Expert-based
methods are performed manually which is too expensive and too time-demanding
for most applications.
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Figure 1.1: Data selection as a research Ąeld related to system identiĄcation

In order to propose a data selection method, several aspects should be
addressed. System identiĄcation using predominantly stationary data sets is
explored and major challenges are discussed. Available approaches for data
selection are investigated and their advantages and drawbacks are described.
Then, suitable methods are explored and adapted for selection of informative
data. A novel data selection method is Ąnally proposed which improves the
current state of the art in several aspects.

Available methods are limited to single-input single-output (SISO) systems
which is a signiĄcant drawback as a large number of multivariate processes are
found in different applications. Changes are detected by scanning input and
output signals separately. Moreover, additional tests are required to conĄrm
informative intervals which can be computationally demanding.

In real applications, measurement noise can be colored due to Ąlters im-
plemented in sensors and logging devices. Approaches used in current data
selection methods assume signals with added WGN which may differ from real
situations. The latter can result in wrong interval bounds and thus in wrong
models.

Current methods report use of at least four nested tests that are sequentially
activated which can be computationally demanding. These approaches can yield
a high rate of false alarms and misdetected intervals due to implementation of
tests that are not robust to high noise content or colored noise.



4 Chapter 1 Introduction

The state of the art is explained in the next section. Signal and model-based
techniques have dealt with data selection for identiĄcation. In the next section,
current methods are introduced and their main features are discussed. Moreover,
pitfalls are analyzed resulting in proposing a new method, DS4SID, which is
considered to address aspects not yet covered by the available methods.

1.2 State of the Art
Most of the reported data selection methods for identiĄcation can be grouped
into signal-based [15, 38, 92] and model-based approaches [5, 12, 17, 73]. Signal-
based methods are mainly focused on segmenting data either in steady-state or
changing intervals. In these methods, the time series contained in the data sets
are analyzed separately. The latter means that no input-output models are
considered for identiĄcation. Signal-based methods will usually require further
tests to conĄrm preliminary located intervals. Among others, detectors such as
the CUSUM test [10, 32, 87] or based on an R-statistic [15] have been tested
for location of changes in signals.

One of the Ąrst signal-based methods is found in [38]. In this approach, a
method as described in [15] is implemented for change detection. The working
principle can be summarized as follows: ŞStart selecting data after each signif-
icant set point change and continue until the data has reached steady-stateŤ.
False detection rate can be adjusted by setting the Ąlter parameters involved in
the method (see [16]).

In [92], a signal-based selection method is presented which follows a similar
approach as in [38]. In the Ąrst stage, transient changes in the input signals
are detected. Then, time instants where the process reaches steady-state are
determined. The method is evaluated in SISO processes operating in closed-loop.
A review of different approaches found in machine learning and signal processing
is presented in [71] where common topics with statistics are highlighted. Data
that represent an anomaly are labeled as abnormal, which can be considered
as a similar problem as change detection in statistics. In [62], support vector
machines are evaluated for anomaly detection in water distribution systems. The
proposed approach is tested using historical data of a real system demonstrating
its effectiveness in the selected case study.

In model-based methods, input-output models are used for process description.
Detection methods, which are usually designed for time series models, need
to be extended in the case of input-output models. Potentially informative
intervals are related to change times. Upper bounds of these intervals are
deĄned in further tests by evaluating the effect of including more data that does
not exhibit so much change in parameter estimation. In these methods, input
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signals are assumed to be sufficiently exciting so that generated data sets are
informative for data-driven modeling. A detailed analysis on the required degree
of excitation for different parametric models using prediction-error identiĄcation
methods (PEM) is presented in [24].

One of the Ąrst model-based methods was reported in [17]. A detailed study on
negative effects of using predominantly stationary data for parameter estimation
is presented. The proposed method is evaluated in a linear SISO process
operating in open-loop with additive colored Gaussian noise. The input transfer
function of the model and the system are in the same class. However, the noise
transfer function of the system is an autoregressive moving average (ARMA)
process while an autoregressive (AR) model is used for identiĄcation. The
ordinary least squares (OLS) method is implemented for parameter estimation
which is performed by singular value decomposition (SVD) of the regression
matrix. The process is seldom excited with an input signal that exhibits long
stationary periods with seldom changes. The bias of the estimates is constant
when persistently exciting (p.e.) signals are used to excite the process. The
least squares method (LSM) cannot guarantee consistent parameters in this
case due to the additive colored Gaussian noise.

In contrast, as reported in [17], bias of estimates using LSM increases when
predominantly stationary data sets are used for identiĄcation. To overcome
this limitation, a method is proposed to discard non-informative data i.e.
observations that negatively impact parameter estimation. Model accuracy can
then be improved since parameters are estimated only with informative data.
At least three main drawbacks of these methods can be mentioned. Firstly,
the proposed approach is limited to SISO systems. However, a large number
of applications are multivariate processes. Secondly, the identiĄcation method
used is non-recursive which is computationally demanding in the case of large
data sets. Thirdly, no change detection algorithm is used which results in
an approach where the parameter estimation method is always active while
scanning the data.

A second model-based approach was reported in [12, 70]. This method differs
in several aspects with the previous approach. A change detection algorithm was
implemented to determine potentially informative intervals. Input and output
signals are scaled between 0 and 1 before being processed for change detection.
However, detection tests are applied separately to the input and output signals
which leads to additional tests to conĄrm the validity of identiĄed intervals.
Interval bounds are deĄned based on the conditioning of the information matrix
associated with the parameter estimation method used. This scalar measure is
compared with a user-deĄned parameter that is initially set by trial and error.
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Several aspects such as computational precision are considered for setting this
user parameter.

In this model-based method, ARX-Laguerre Ąlters are used for the process
description. A recursive least squares (RLS) method is used for identiĄcation
instead of OLS. Causal relation between changes in the output generated by
an excitation in the input signal are conĄrmed in a last stage by the Granger
causality test. Four tests are proposed in this approach which can be computa-
tionally demanding. Moreover, informative intervals may be misdetected due to
wrong choice of user-deĄned parameters and false rejections in selection tests.
This method was applied to logged data from SISO systems of a pulp and paper
plant and it was concluded that only around 1.5 % of the process data should
be used for identiĄcation.

Several drawbacks of the method in [12] can be discussed. Firstly, the method
is oriented to SISO systems which represents a relevant pitfall as previously
described. Secondly, the implemented detection tests will usually yield a high
false alarm rate. Detection tests are based on the change in the sample mean
and in the variance assuming signals as DC levels embedded in WGN. Those
tests based on threshold of the sample variance are sensitive to high noise
content which usually result in false change detections. The proposed approach
for upper interval bounding may yield high misdetection rates i.e. a large
number of informative sequences that are discarded despite being informative.
Misdetection may occur due to wrong choices of the model order and the
threshold for upper interval bounding. A data pretreatment for scaling between
0 and 1 increases processing times. Thirdly, the QR-RLS method, which is used
for parameter estimation, is not robust to colored Gaussian noise which may
yield wrong interval bounds. Although consistent parameter estimation is not
the main goal in [12], this property is typically desired.

In [74], an extended version of the former method is presented and the effect
of the design parameters in the approach is analyzed. The performance of
the method is mainly affected by the parameters associated with the Laguerre
model and the threshold for upper interval bounding. A high number of
ARX-Laguerre models can be obtained depending on the quantity of retrieved
intervals. Thus, a merging procedure is proposed to reduce the number of
models. A measure based on entropy difference between input and output
signals is used for data merging. This modiĄcation improves the last stages in
the data selection procedure. However, this modiĄed version still suffers from
most of the drawbacks discussed for the approach in [12].

In [73], the condition number of the sample information matrix is proposed
as criterion to evaluate data quality for identiĄcation in routine operating
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records. Different thresholds for the condition number are proposed based on
computationally numerical precision. The presented quality index is analyzed in
simulation case studies using autoregressive with external input (ARX) models.
In [66], a slightly modiĄed version of the method in [12] is introduced. The Ąrst
stages of the method, namely change detection and changes in the variance, are
identical to the procedure explained in [12]. Data selection is performed using
a two-stage procedure where noise and input transfer functions are estimated
separately. Firstly, a noise model is computed with data that is predominantly
at steady-state. Then, the output and input signals are Ąltered by the inverse
of the noise transfer function computed in the Ąrst step. The resulting Ąltered
signals are used in a second step to estimate input transfer functions for each
informative interval. Since the transient detection follows a similar procedure
as in [12], the input-output data need to be normalized for transient detection.
Consistency problems can be also expected since LSM is used for identiĄcation.
Processing times can be large since recursive methods are not used in the
proposed technique.

A data selection method is proposed in [55] to extract sequences from process
data for identiĄcation of a selective catalytic reduction (SCR) system. A model
with input and noise transfer functions that are independently parameterized is
proposed for process description. Assessment of the quality of the data is based
on the evaluation of the associated Fisher information matrix that is computed
using the SteiglitzŰMcBride method. Two main drawbacks can be mentioned
related to the proposed approach. Firstly, identiĄcation is performed using a
batch method which for this scenario is not desirable due to computational
costs. Secondly, the beginning of the intervals is selected manually, which
can be demanding for very large data sets. Reported results show acceptable
performance for the proposed application to a real process.

Data selection was evaluated in [75] for a multivariate process corresponding
to a lead zinc concentrator. Several cases are considered: including all available
signals or manual section of most relevant for the process. In the Ąrst case,
no data could be selected due to correlation between some variables which
yields strongly ill-conditioned matrices. Results of this practical example shows
that a pre-selection of variables can help for data selection when dealing with
multivariate processes.

The formerly described data selection methods are based on linear modeling.
Despite the fact that a method described in [81, 83] was not originally proposed
for data selection, several common aspects with this Ąeld are worth mentioning.
In this approach, models are estimated Şon demandŤ of the user or process
requirements. Several nonlinear black box models such as nonlinear autore-
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gressive exogenous models (NARXs), nonlinear autoregressive moving average
models with exogenous inputs (NARMAX) and nonlinear Box-Jenkins (NBJ)
models are used for process description. Parameter estimation is performed by
local model optimization instead of a global approach. The method is Ćexible as
the user can choose between different models and methods for local parameter
estimation. This approach was extended for control of dynamical systems as
found in [82]. A model-on-demand (MOD) model predictive controller was
compared with a linear model predictive controller (MPC) and the former was
proved to lead a better performance at high bandwidths. However, the approach
in [81] can be computationally demanding and impractical to process large data
bases.

The main limitations of current data selection methods are:

• In data selection methods for multivariate processes as described in [75],
detection tests are evaluated sequentially for each output signal to locate
changes between operating points. This approach might yield multiple
detections of the same change due to possible correlations in the system
which results in drawbacks for parameter estimation since similar data
are contained in the selected intervals. Although methods for system
identiĄcation of multivariate system have been widely investigated (see, for
instance, [46, 95]) they have not been adapted in approaches for searching
for informative data for system identiĄcation.

• Current methods experience a high number of false alarms and misdetection
of informative intervals. Reported detection tests of such methods are
based on evaluation of the mean and variance of the process signals that
are treated separately. Those tests can be very sensitive to false alarms
in the case of high noise content. Misdetection may occur due to use of
thresholds that are applied to the entire data set. However, the value of
the threshold can depend on the operating point. Thus, some intervals
can be rejected when indeed those data are relevant for identiĄcation.
Misdetection of intervals yields models with worse performance when
compared with estimation using the entire data set.

• Available methods are not robust to colored noise. Evaluation of the
conditioning of the information matrix has been proposed for interval
bounding in data selection methods. Most of the available methods use
LSM whose consistency is guaranteed only in the case of WGN. Interval
bounding with this estimation method may yield wrong upper bounds in
the case of colored noise. This aspect may be considered for the design
of a selection method as signals from real processes may be more likely
embedded in colored noise than in WGN.
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1.3 Contributions
The major contributions of this research work are:

• The data selection method proposed in this work can be applied to mul-
tivariate systems operating in open- or closed-loop. Detection tests are
extended to input-output models which decreases false alarms and misde-
tection.

• In the proposed approach for data selection, upper interval bounding is
performed considering information retrieved locally from current operating
points. Interval misdetection is avoided because of implementation of local
thresholding instead of local approaches reported in other methods.

• In the present work, methods robust to colored noise are implemented
which cover more general situations regarding additive noise found in
real applications. This property can guarantee better interval bounding
since thresholding is performed with parameter estimation methods that
consider the presence of colored Gaussian noise. Correlated noise is an
important aspect that should be considered for the design of data selection
methods as data logged from processes often exhibit such behavior.

Besides the former major aspects, other contributions of this research work
are presented in the following:

• Data selection is stated as a problem which consists of two main tasks:
change detection and interval bounding. A detection method should choose
between two hypotheses in the Ąrst stage of the problem: either the process
is operating at the same point or it was externally excited. In current
data selection methods, lower interval bounding is performed by several
sequential tests that require data pretreatment including removal of mean
and data normalization. In this work, only a detection test is performed on
the raw data which simpliĄes locating of potentially informative intervals
and adds robustness to change detection. The proposed detector can also
reduce interval misdetection and false alarms.

• Upper interval bounds are determined by a local approach where the
conditioning of the sample information matrix is evaluated. Several criteria
have been proposed in the literature for upper interval bounding. Normally,
a norm retrieved from the information matrix is thresholded with a user-
deĄned parameter that is set without considering the dependency between
the value of the norm and the amplitude of the changes in the input
signals. Thus, intervals resulting from small changes in the excitation
signals may not be detected if the threshold was wrongly chosen. The
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proposed criterion for interval bounding can decrease misdetection as
local information of each retrieved interval is used instead of using global
thresholds.

• The number of user-deĄned parameters is reduced since only two tests are
evaluated. Current approaches require a demanding and time-consuming
setting of parameters used in several tests. In the proposed method, user-
deĄned parameters correspond mainly to choosing thresholds for change
detection, upper interval bounding and model order. Thus, a more practical
selection method is offered when compared with other techniques.

• A model is estimated from retrieved informative intervals using a data
merging method robust to colored noise. Current approaches do not
estimate a model with the retrieved intervals. Thus, performance of the
selection method cannot be evaluated based on the resulting model. In this
work, evaluation criteria are proposed to compare parameter estimation
with informative sequences and with the entire data set. The performance
of the proposed method is evaluated on data sets obtained from a simulated
binary distillation column and a lab-scale process unit.

• A recursive instrumental variables (RIV) method is used for upper interval
bounding which is robust to colored noise. It is computationally less
demanding when compared to other approaches reported for data selection
methods. Depending on the choice of instruments, the computed informa-
tion matrix can have smaller size than the ones found for other techniques.
As a consequence, faster computations are expected in comparison with
other methods such as QR-RLS. This represents a signiĄcant advantage
for processing mass data.

• A non-linear data-driven modeling approach in which the model output
is computed as the contribution of several linear models associated to
each informative interval is proposed. A measure related to the Şdegree
of informationŤ for each interval is determined based on the conditioning
of the sample information matrix. The output of the 𝑖-th linear model is
weighted by its respective factor 𝑤𝑖 which reĆects its contribution in the
global output.

1.4 Thesis Outline
This thesis is divided into seven chapters where data selection is covered from
problem statement to evaluation of the proposed approach. Suitable approaches
for the different tasks in data selection are discussed in the Ąrst chapters. Then,
the proposed selection method, DS4SID, is presented and its working principle
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is explained with an example. The last chapter is dedicated to discussion and
evaluation of the method.

In Chapter 2, detection methods and time series modeling are introduced.
Determining lower interval bounds is treated as a detection problem. Different
aspects related to upper interval bounding are introduced in Chapter 3. This
chapter also deals with modeling of multivariate processes. Then, parameter
estimation methods are evaluated for possible use in data selection. In Chapter 4,
data merging for system identiĄcation is introduced. Different techniques are
explored for model estimation from the retrieved informative intervals.

The proposed method is presented in Chapter 5 and explained using a
simulation example. Reduction of misdetection and false alarms are discussed
for each of the two tests proposed for data selection. The performance of the
method is evaluated in Chapter 6 using multivariate processes. A process unit
of the lab-scale factory µPlant, located in the Department of Measurement and
Control (MRT) in the University of Kassel, is used as a real case. Conclusions
and future research opportunities are formulated in Chapter 7.

1.5 Publications
Some results of this thesis were published in peer-reviewed issues. In [2], a
detection method with different sliding windows for input and output signals
is presented. BeneĄts of parameter estimation using informative intervals is
evaluated on bias and variance analysis of the estimates. An initial approach for
multivariate data selection is introduced in [1]. Statistical analysis on estimates
using informative data is extended to multivariate processes. The sample
information matrix is retrieved from the OLS method applied for estimation of
ARX models. BeneĄts in the quality of estimates using informative intervals is
discussed for additive noise with different signal-to-noise ratio (SNR). Several
possible criteria for upper interval bounding are explored in [3]. Among others,
trace, smallest eigenvalue and reciprocal of the condition number are proposed
for thresholding. Use of the reciprocal of the condition number has some
advantages over other scalar measures. This quantity is bound between 0 and 1
which simpliĄes threshold regardless of the application.

In [4], a robust method to colored noise is used for upper interval bounding.
This approach is compared with other methods available in the literature using a
multivariate case study. A new data selection method for multivariate processes
is presented in [5]. Drawbacks of current techniques are discussed and the
proposed method is contrasted with current techniques. A case study of a
lab-scale process plant is used for evaluation of the developed method under
conditions that simulate real scenarios.





CHAPTER 2

Change Detection

Determining lower bounds of potentially informative intervals is a similar task
to the detection problem found in statistical hypothesis testing. The detection
problem in the context of data selection for identiĄcation is to locate changes
in the process that result from an external excitation. Two hypotheses are
evaluated for locating of such changes that differ based on the model used for
process description in each situation. Thus, a detection test should choose
between one of both hypotheses. In this chapter, several detection methods are
considered for locating informative intervals. Transfer functions for time series
are brieĆy introduced for modeling stochastic processes.

2.1 Stochastic Processes
A stochastic or random process is a sequence of random variables ordered in
time [45, 47]. A random variable is represented by x and following the notation
proposed in [11], the probabilities of the values that x can take are deĄned
by its probability density function (PDF) denoted by 𝑝x(𝑥). For instance, the
probability that x takes values within the interval [𝑎,𝑏] is expressed as follows

P(𝑎 ⊘ x ⊘ 𝑏) =
ˆ 𝑏

𝑎

𝑝x(𝑥)d𝑥, x ∈ R (2.1)

A random variable taking values in an interval [𝑎,𝑏] is referred to as uniform or
uniformly distributed if its PDF is deĄned as follows

𝑝x(𝑥) =

⎧
⎨
⎩

1
𝑏⊗ 𝑎

, if 𝑎 ⊘ 𝑥 ⊘ 𝑏,

0, otherwise
(2.2)

A random variable can be described by its Ąrst moment and second central
moment, namely, expectation and variance, respectively [33]. The expected
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value of a random variable x is the quantity to which the average converges:

𝐸(x) = µx =
ˆ ∞

−∞

𝑥𝑝x(𝑥)d𝑥 (2.3)

The expected value is also known as expectation, mean or average.

The second central moment, also known as variance and denoted by Var(x),
is given by:

Var (x) = 𝐸
(︁

(x ⊗ 𝐸 (x))2
)︁

= 𝐸
(︀
x2
)︀
⊗ (𝐸 (x))2 (2.4)

The variance describes the average squared deviation from the mean.

The Gaussian distribution also called normal distribution and denoted by
𝒩 (µ,σ2), is of major interest in signal processing. The PDF of the normal
distribution is:

𝑝x(𝑥) =
1√

2πσ2
exp

(︂
⊗ 1

2σ2
(𝑥⊗ µ)2

)︂
⊗∞ < 𝑥 <∞ (2.5)

where σ2 > 0 and ⊗∞ < µ <∞. The parameters µ and σ2 correspond to the
mean and variance of the random variable x .

Consider that the random variables x1 and x2 are related to the same experi-
ment. The probabilities of the values of x1 and x2 are described by the joint
PDF, denoted by 𝑝x1,x2(𝑥1,𝑥2). In particular, the joint PDF that the previous
random variables take the values (𝑥1,𝑥2) is described by

𝑝x1,x2(𝑥1,𝑥2) = P(x1 = 𝑥1, x2 = 𝑥2) (2.6)

Two random variables x1 and x2 are independent if

𝑝x1,x2(𝑥1,𝑥2) = 𝑝x1(𝑥1)𝑝x2(𝑥2) (2.7)

holds. Let x = ¶x0, . . . , x𝑁−1♢ denote a vector of 𝑁 random variables. Assume
that x takes the particular value x = ¶𝑥0, . . . , 𝑥𝑁−1♢. The joint PDF of the
random variables of x which is described by an unknown parameter θ will be
denoted by [11]

𝑝x(x; θ) = 𝑝x(𝑥0, . . . , 𝑥𝑁−1; θ) (2.8)
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The term 𝑝x(x; θ) in (2.8) is called the likelihood function. Considering that
the random variables of the sequence x are independent, the joint PDF is:

𝑝x(𝑥0, . . . , 𝑥𝑁−1; θ) =
𝑁−1∏︁

𝑖=0

𝑝x𝑖(𝑥𝑖; θ) (2.9)

The expected value of a random vector, x, is a vector that contains the
expectations of each stochastic variable [47, 52]:

x =

⎛
⎜⎜⎜⎝

x1

x2
...
x𝑁

⎞
⎟⎟⎟⎠ ; µx = 𝐸 (x) =

⎛
⎜⎜⎜⎝

𝐸 (x1)
𝐸 (x2)

...
𝐸 (x𝑁)

⎞
⎟⎟⎟⎠ (2.10)

The covariance matrix Cx of a random vector x is

Cx = 𝐸
(︀
(x⊗ µx) (x⊗ µx)

T
)︀

=

⎛
⎜⎜⎜⎝

Var (x1) cov (x1,x2) . . . cov (x1,x𝑁)
cov (x2,x1) Var (x2) . . . cov (x2,x𝑁)

...
...

cov (x𝑁 ,x1) cov (x𝑁 ,x2) . . . Var (x𝑁)

⎞
⎟⎟⎟⎠ (2.11)

where µx is the mean of x as deĄned in (2.10). The term cov (x𝑖,x𝑗) , 𝑖 ̸= 𝑗, is
called the covariance between the random variables x𝑖 and x𝑗 and is deĄned as
follows:

cov (x𝑖,x𝑗) = 𝐸 ((x𝑖 ⊗ 𝐸 (x𝑖)) (x𝑗 ⊗ 𝐸 (x𝑗))) (2.12)

Alternatively, the covariance can be written as

cov (x𝑖,x𝑗) = 𝐸 (x𝑖x𝑗)⊗ 𝐸 (x𝑖) 𝐸 (x𝑗) (2.13)

Consider that 𝑁 experiments are performed sequentially at different time
instants 𝑘 = 0,1, . . . ,𝑁 ⊗ 1. The result of each experiment is associated to a
random variable x [𝑘] where the argument in the square brackets is explained
further. The random variables ¶x [0], x [1], . . . , x [𝑁 ⊗ 1]♢ are independent and
each normally distributed with mean values ¶µ0, µ1, . . . , µ𝑁−1♢ and variances{︀

σ2
0, σ2

1, . . . , σ2
𝑁−1

}︀
. Each random variable is denoted by x𝑖 ≍ 𝒩 (µ𝑖,σ

2
𝑖 ) and

included in the vector x = (x [0] x [1] . . . x [𝑁 ⊗ 1]) T. Since the random variables
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are independent, the PDF of x can be expressed using (2.9) as follows:

𝑝(𝑥[0], . . . ,𝑥[𝑁 ⊗ 1]) =
𝑁−1∏︁

𝑖=0

1

σ𝑖

√
2π

exp
(︂
⊗(𝑥𝑖 ⊗ µ𝑖)2

2σ2
𝑖

)︂

=
1(︁∏︀𝑁−1

𝑖=0 σ𝑖

)︁
(2π)𝑁/2

exp

(︃
⊗1

2

𝑁−1∑︁

𝑖=0

(︂
𝑥𝑖 ⊗ µ𝑖

σ𝑖

)︂2
)︃

(2.14)

The PDF of a multivariate Gaussian random vector is expressed by

𝑝x(x) =
1

(2π)𝑁/2 det1/2(Cx)
exp

(︂
⊗1

2
(x⊗ µx)

T C−1
x (x⊗ µx)

)︂
(2.15)

where µx and Cx are the mean vector and covariance matrix as deĄned in
(2.10) and (2.11), respectively. The covariance matrix is assumed to be positive
deĄnite, thus, Cx is invertible and det (Cx) > 0 holds.

Since sensor measurements are normally affected by noise, signals treated in
this work will be mostly assumed to be stochastic. Some examples of signals are
the level and temperature of the inventory of a continuously stirred tank reactor
(CSTR). Discrete or continuous in time random processes can be modeled
by time series models that are also called rational transfer function models
[48, 60]. In the present work, conventions for continuous- and discrete-time
random processes are taken from [49, 68]. The symbol 𝑡 denotes continuous-
time processes, whereas 𝑘 is used for discrete-time processes. Moreover, these
processes are additionally distinguished by enclosing the independent variable
𝑡 in parenthesis ( ≤ ) whereas the independent variable 𝑘 will be enclosed
by brackets [ ≤ ]. A discrete random process consisting of 𝑁 observations is
represented by [67]:

¶x [𝑘]♢ = ¶x [0], x [1], . . . , x [𝑁 ⊗ 1]♢ , 𝑘 ∈ Z
+ (2.16)

The present work focuses on discrete-time systems. Nevertheless, the notation
of a continuous random process is brieĆy introduced and denoted by

¶x(𝑡)♢ = ¶x(𝑡0), x(𝑡1), . . . , x(𝑡𝑁−1)♢ , 𝑡 ∈ R (2.17)

The random processes in (2.16) and (2.17) are related by

x(𝑡) = x [𝑇𝑠 ≤ 𝑘] (2.18)
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where 𝑇𝑠 is the sampling time used for collection of the measurements. In [18,
41, 61, 65], the selection of 𝑇𝑠 is discussed. For instance, as reported in [41],
the sampling time can be chosen as

𝑇𝑠 ≡ 𝑘𝑠 ≤ 𝑇95 (2.19a)

𝑘𝑠 =
1
5

, . . . ,
1
15

(2.19b)

where 𝑇95 is the 95 % settling time of the step response of a proportional acting
process.

A sequence of independent and identically distributed (i.i.d.) random variables
of zero-mean and variance σ2 is known as white Gaussian noise (WGN) [80].
Figure 2.1 shows different realizations of WGN on the 𝑥⊗ 𝑡 plane.

Consider a DC level subject to WGN expressed by

x [𝑘] = 𝐴 + w [𝑘] 𝑘 = 0, 1, . . . , 𝑁 ⊗ 1 (2.20)

where 𝐴 is a DC level to be estimated from data and ¶w [𝑘]♢ is WGN with
unknown variance. Then, the parameter vector to be determined is Θ T =

(︀
𝐴 σ2

)︀
.

x[0]

x[1]
x[2]

x[3]
· · ·

x[N − 1]

x

t

p
(x

)

Figure 2.1: Different realizations of WGN
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The likelihood function is expressed by

𝑝x
(︀
x; 𝐴,σ2

)︀
=

1

(2πσ2)
𝑁
2

exp

(︃
⊗ 1

2σ2

𝑁−1∑︁

𝑘=0

(x ⊗ 𝐴)2

)︃
(2.21)

and the log-likelihood function of (2.21) is

ln 𝑝x (x; Θ) = ⊗𝑁

2
ln 2π⊗ 𝑁

2
ln σ2 ⊗ 1

2σ2

𝑁−1∑︁

𝑘=0

(x [𝑘]⊗ 𝐴)2 (2.22)

The estimates of Θ are obtained by setting to zero the partial derivatives of
(2.22) w.r.t Θ (see, for instance, [49] for derivation details).

The estimated parameter vector is

Θ̂ =
(︂

𝐴

σ̂2

)︂
=

⎛
⎜⎜⎝

1
𝑁

𝑁−1∑︀
𝑘=0

x [𝑘]

1
𝑁

𝑁−1∑︀
𝑘=0

(︁
x [𝑘]⊗ 𝐴

)︁2

⎞
⎟⎟⎠ (2.23)

𝐴 and σ̂2 are known as the sample mean and the sample variance, respectively.
Frequently, more complex models as in (2.20) may be required to describe a

random process. Some widely known parametric models are addressed in the
next section.

2.2 Parametric Modeling of Time Series
A large number of discrete-time random processes found in practice can be well
described by rational transfer functions, also known as time series models [14,
48]. Consider a time series model, where ¶x [𝑘]♢ and ¶e [𝑘]♢ are related by

x [𝑘] = ⊗
𝑛𝑎∑︁

𝑛=1

𝑎 [𝑛] x [𝑘 ⊗ 𝑛] +
𝑛𝑐∑︁

𝑛=0

𝑐 [𝑛] e [𝑘 ⊗ 𝑛] (2.24)

The model in (2.24) is called ARMA and is used to describe a large number of
time series found in practice [48, 78]. This section will focus on the use of ARMA
models for description of time series. The terms 𝑛𝑎 and 𝑛𝑐 are the number of
parameters of the AR and moving average (MA) polynomials, respectively. The
transfer function between e [𝑘] and x [𝑘] for an ARMA model is

𝐻(𝑞−1,Θ) =
𝐶(𝑞−1,θ𝑐)
𝐴(𝑞−1,θ𝑎)

(2.25a)
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𝐴(𝑞−1,θ𝑎) = 1 + 𝑎1𝑞
−1 + . . . + 𝑎𝑛𝑎𝑞

−𝑛𝑎 (2.25b)

𝐶(𝑞−1,θ𝑐) = 1 + 𝑐1𝑞
−1 + . . . + 𝑐𝑛𝑐𝑞

−𝑛𝑐 (2.25c)

If 𝐶(𝑞−1,θ𝑐) = 1 in (2.25a), then x [𝑘] is an AR(𝑛𝑎) model. In the case of
𝐴(𝑞−1,θ𝑎) = 1, x [𝑘] results in a MA(𝑛𝑐) model. For ease of use, the parameter
vectors of the terms in (2.25b) and (2.25c) will be removed. The latter time
series models are summarized as follows:

ARMA : 𝐴
(︀
𝑞−1
)︀
y [𝑘] = 𝐶

(︀
𝑞−1
)︀
e[𝑘]

AR : 𝐴
(︀
𝑞−1
)︀
y [𝑘] = e[𝑘]

MA : y [𝑘] = 𝐶
(︀
𝑞−1
)︀
e[𝑘]

(2.26)

Assume that x [𝑘] can be described by an AR(𝑛𝑎) model. From (2.24), the
resulting equation is

x [𝑘] = ⊗
𝑛𝑎∑︁

𝑛=1

𝑎 [𝑛] x [𝑘 ⊗ 𝑛] + e[𝑘] (2.27)

The problem of linear prediction is to predict the value of x [𝑘] based on given
past values ¶x [𝑘 ⊗ 1] , x [𝑘 ⊗ 2] , . . . , x [𝑘 ⊗ 𝑛𝑎]♢. A linear predictor, that is
function of past samples, is expressed by

x̂ [𝑘] = ⊗
𝑛𝑎∑︁

𝑙=1

𝑎𝑙x [𝑘 ⊗ 𝑙] (2.28)

The coefficients ¶𝑎1, 𝑎2, . . . , 𝑎𝑛𝑎♢ are chosen in order to minimize the power of
the prediction error ε[𝑘] as found in [48]:

E
(︀
♣ε[𝑘]♣2

)︀
= E

(︀
♣x [𝑘]⊗ x̂ [𝑘]♣2

)︀
(2.29)

Note that the prediction error is a variable term. The notation ε[𝑘] has been
used following [80]. If the orders of the process (2.27) and the linear predictor
(2.28) are identical, the prediction error, ε[𝑘], is equal to e[𝑘] in (2.27) since

ε[𝑘] = x [𝑘]⊗ x̂ [𝑘] = x [𝑘]⊗
(︃
⊗

𝑛𝑎∑︁

𝑙=1

𝑎𝑙x [𝑘 ⊗ 𝑙]

)︃

= x [𝑘] +

(︃
𝑛𝑎∑︁

𝑙=1

𝑎𝑙x [𝑘 ⊗ 𝑙]

)︃

= e[𝑘] (2.30)
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Let Θ̂ = [𝑎1 𝑎2 . . . 𝑎𝑛𝑎]
T be the parameter vector of (2.28). The linear

predictor (2.28) is expressed in a matrix form as follows

x̂ = ΦΘ̂ (2.31a)

Φ =

⎛
⎜⎜⎜⎝

x [𝑛𝑎] . . . x [1]
x [𝑛𝑎 + 1] . . . x [2]

...
...

x [𝑁 ⊗ 1] . . . x [𝑁 ⊗ 𝑛𝑎]

⎞
⎟⎟⎟⎠ (2.31b)

Θ̂ =

⎛
⎜⎝

𝑎1
...

𝑎𝑛𝑎

⎞
⎟⎠ (2.31c)

x̂ =

⎛
⎜⎜⎜⎝

x̂ [𝑛𝑎 + 1]
x̂ [𝑛𝑎 + 2]

...
x̂ [𝑁 ]

⎞
⎟⎟⎟⎠ (2.31d)

Using (2.31b) and (2.31c), the resulting likelihood function is

𝑝 (x; Θ) =
1

(2πσ2)
𝑁
2

exp
(︂
⊗ 1

2σ2
(x⊗ ΦΘ) T (x⊗ ΦΘ)

)︂
(2.32)

The maximum likelihood estimator (MLE) is found by minimizing

𝐽 (Θ) = (x⊗ ΦΘ) T (x⊗ ΦΘ) (2.33)

The MLE of (2.32) is (see [49] for derivation details)

Θ̂ =
(︀

Φ T Φ
)︀−1 (︀

Φ T x
)︀

(2.34)

The estimator of the noise variance is

σ̂2 =
1

𝑁 ⊗ 𝑛𝑎
(x⊗ ΦΘ) T (x⊗ ΦΘ) (2.35)

The MLE for an AR model corresponds to the least squares estimate (LSE)
[49]. The AR model can be used in some situations to describe colored Gaussian
noise. For the previous reason, the AR model and its estimator (2.34) and
(2.35) is relevant for the next sections where measurement noise of dynamic
systems should be considered as colored.
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Estimated models should be evaluated and validated to analyze if they can
properly describe the process under study. Model validation includes residual
analysis to test, for instance, if the resulting residuals can be considered either
as WGN or not. The following example shows tests that can be used for residual
analysis. Consider a process described by:

x [𝑘] = 𝑠[𝑘] + n[𝑘], 𝑘 = 0, 1, . . . , 𝑁 ⊗ 1 (2.36)

where ¶𝑠[𝑘]♢ and ¶n[𝑘]♢ denote deterministic and random sequences, respectively.
In (2.36), n[𝑘] can represent, for instance, either WGN or colored Gaussian
noise. The sequence n[𝑘] is often called measurement noise in signal processing
(see e.g. [15]). Noise sources are normally related to spurious electronic signals
that inĆuence transmitted values.

The noise content in a signal can be deĄned as the ratio between the variance
of the signal and the variance of the noise which is expressed in dB [47]:

SNR = 10 log10

σ2
𝑠

σ2
n

(2.37)

where σ2
n

and σ2
𝑠 are the variances of the noise and signal, respectively.

Consider a signal that obeys the following relation:

x𝑖[𝑘] = 𝑠[𝑘] + n𝑖[𝑘], 𝑘 = 0, 1, . . . , 𝑁 ⊗ 1 (2.38a)

𝑠[𝑘] =
√

2 sin [0.2π𝑘] +
√

2 sin [0.4π𝑘] (2.38b)

n𝑖[𝑘] = 𝐻𝑖

(︀
𝑞−1
)︀
e[𝑘] (2.38c)

𝐻1

(︀
𝑞−1
)︀

= 1 (2.38d)

𝐻2

(︀
𝑞−1
)︀

=
1⊗ 0.9𝑞−1

1⊗ 0.25𝑞−1
(2.38e)

The term e[𝑘] is WGN with σ2
e

= 0.10 which yields SNR = 13 dB. The
transfer function 𝐻𝑖

(︀
𝑞−1
)︀

was chosen differently for 𝑖 = 1,2 to analyze the effect
of a WGN sequence or colored Gaussian noise. A realization of ¶x [𝑘]♢ in (2.38a)
for 𝐻2

(︀
𝑞−1
)︀

is shown in Figure 2.2 for 𝐻2

(︀
𝑞−1
)︀
.

Since the signal is explicitly deĄned in (2.38), the stochastic process n[𝑘]
can be computed as the difference between x [𝑘] and 𝑠[𝑘]. A histogram of n[𝑘]
and its corresponding autocorrelation are shown in Figure 2.3. The sequence
¶n2[𝑘]♢, which corresponds to colored Gaussian noise, exhibits correlations in
the Ąrst lags. In contrast, autocorrelations in n1[𝑘] are numerically negligible
as it corresponds to WGN (see 𝐻1

(︀
𝑞−1
)︀

in (2.38d)). Sequences as ¶n2[𝑘]♢
are likely to be found in real situations because of Ąlters embedded in sensors
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Figure 2.2: Measured signal (2.38) with additive white noise

or data logging devices. This situation should be considered when assuming
models for process description.

An ARMA process with 𝑛𝑎 = 1 and 𝑛𝑐 = 1 was chosen to model n2[𝑘].
The parameters were computed using the Newton-Raphson algorithm for min-
imization of the prediction error. Two hypotheses are stated to analyze the
model residuals: either ¶ε[𝑘]♢ is WGN or not. The Ąrst situation is called
null-hypothesis ℋ0 whereas the second is known as alternative hypothesis ℋ1.
The latter hypotheses are evaluated using two normality tests and the results
are shown in Table 2.1.

In those tests, the null-hypothesis is conĄrmed or rejected by comparing a
computed measure 𝑝 with a threshold α. Computed 𝑝-values larger than α in

Table 2.1: Normality tests on estimated stochastic sequences in (2.38), α = 0.05.
Left: Shapiro-Wilk (S-W) test. Right: Kolmogorov-Smirnov (K-S) test

S-W test K-S test

ν̂1(𝑡) ν̂2(𝑡) ν̂1(𝑡) ν̂2(𝑡)

ℋ 0 0 0 0
𝑝 0.8430 0.8720 0.7586 0.6898
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Figure 2.3: Histograms and autocorrelation of example signals

Table 2.1 conĄrm that the estimated ARMA can describe well n2[𝑘] since the
residuals are normally distributed. Thus, the null-hypothesis is not rejected
and the test decides for ℋ0. Results from the Kolmogorov-Smirnov test, that
are detailed in Table 2.1, also conĄrm that the computed residuals are normally
distributed. Importance of ARMA models and normality tests will be discussed
in further chapters with simulated and real signals. The K-S and S-W tests are
two well-known normality tests. These tests were preferred because of their
reliability to decide if a sequence is normally distributed as found in [57, 80].

2.3 Power Spectral Density
The power spectral density gives information about the power of a signal within
a frequency band. The spectral representation of signals plays a relevant role
in experiment design for identiĄcation (see, for instance, [44] for an optimal
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experiment design in closed loop). The power spectral density is deĄned as the
discrete Fourier transform of the covariance function [78, 80, 84]:

φ(æ) ,
1
2π

∞∑︁

τ=−∞

𝑟(τ)𝑒−𝑖τæ (2.39)

The expression in (2.39) is derived for discrete time processes following [84].
The square brackets introduced in section 2.1 for the discrete time arguments
will not be used in this section aiming at following the literature in spectral
estimation [48, 84].

The covariance function of a white noise process ¶e(𝑘)♢ is

𝑟𝑒(τ) = σ2
e
δτ,0 (2.40)

where δτ,0 is the KroneckerŠs delta deĄned by [80]:

δτ,0 =

{︃
1; τ = 0

0; τ ̸= 0
(2.41)

From (2.39), the spectrum of a white noise process with variance σ2
𝑒 is:

φ(æ) =
σ2

𝑒

2π
(2.42)

As expressed by (2.42), the spectral density of a white noise process is the same
over the entire frequency range. Consider an ARMA process described by

y(𝑘)+𝑎1y(𝑘⊗1)+. . .+𝑎𝑛𝑎u(𝑘⊗𝑛𝑎) = e(𝑘)+𝑐1e(𝑘⊗1)+. . .+𝑐𝑛𝑐e(𝑘⊗𝑛𝑐) (2.43)

where ¶e(𝑘)♢ is WGN with variance σ2
e
. The power spectral density of (2.43)

is:

φ(æ) =
σ2
e

2π

𝐴(𝑒𝑖æ)𝐴(𝑒−𝑖æ)
𝐶(𝑒𝑖æ)𝐶(𝑒−𝑖æ)

=
σ2
e

2π

⃒⃒
⃒⃒𝐴(𝑒𝑖æ)
𝐶(𝑒𝑖æ)

⃒⃒
⃒⃒
2

(2.44)

As an example, let 𝑛𝑎 = 𝑛𝑐 = 1 in (2.43) which yields the following ARMA
process

y(𝑘) + 𝑎y(𝑘 ⊗ 1) = e(𝑘) + 𝑐e(𝑘 ⊗ 1) ♣𝑎♣ < 1, 𝑐 ̸= 0 (2.45a)

𝐸 [e(𝑡)e(𝑠)] = σ2
e
δ𝑡,𝑠 (2.45b)
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Figure 2.4: Spectral density of the ARMA process (2.49)

The power spectral density of (2.45) is:

φ(æ) =
σ2
e

2π

1 + 𝑐2 + 2𝑐 cos æ

1 + 𝑎2 + 2𝑎 cos æ
(2.46)

In general, the spectral density for the ARMA process (2.43) is:

φ(æ) =
σ2
e

2π

1 + φnum(𝑐,æ)
1 + φden(𝑎,æ)

(2.47)

where the numerator and denominator are computed by:

φnum(𝑐,æ) =
𝑛𝑐∑︁

𝑛=1

𝑐2
𝑛 + 2

𝑛𝑐∑︁

𝑛=1

𝑐𝑛 cos(𝑛æ) + 2
𝑛𝑐−1∑︁

𝑛=1

𝑛𝑐∑︁

𝑚=𝑛+1

𝑐𝑛𝑐𝑚 cos ((𝑚⊗ 𝑛)æ)

(2.48a)

φden(𝑎,æ) =
𝑛𝑎∑︁

𝑛=1

𝑎2
𝑛 + 2

𝑛𝑎∑︁

𝑛=1

𝑎𝑛 cos(𝑛æ) + 2
𝑛𝑎−1∑︁

𝑛=1

𝑛𝑎∑︁

𝑚=𝑛+1

𝑎𝑛𝑎𝑚 cos ((𝑚⊗ 𝑛)æ)

(2.48b)
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The power spectral density of an ARMA process can be computed by (2.48)
and depends on the parameters of the polynomials 𝐶

(︀
𝑞−1
)︀

and 𝐴
(︀
𝑞−1
)︀

and
the noise variance σ2

e
.

As an example of the effect of the parameters in the power spectral density
(PSD), consider the following AR model:

(1⊗ 1.5𝑞−1 + 𝑎2𝑞
−2)y(𝑘) = e(𝑘) (2.49)

where ¶e[𝑘]♢ is white noise with variance σ2
𝑒 = 1. The power spectral density of

(2.49) for two different values of 𝑎2 are shown in Figure 2.4. The value of φ𝑦(æ)
is concentrated around the resonant frequency. Moreover, the PSD is Ćatter for
smaller values of 𝑎2.

2.4 Detection Problem
Change detection is a well-known problem in statistical hypothesis testing [10,
50, 87] that has been usually applied to time series. In radar applications, the
problem is to determine the presence or absence of an approaching aircraft. In
speech recognition, the task consists in determining a spoken word from among
a set of possible words. More recently, anomaly detection in IP networks for
denial of service (DoS) attacks has emerged as an application area in this Ąeld.
In all these applications, the problem consists in choosing a decision between
hypotheses based on observations.

Anomaly detection can be extended to dynamic processes where the task is
to Ąnd changes from a given operating point. Input-output models are used
for description of dynamic processes and a detector should choose between the
following hypotheses: either the process is operating at the same point or was
moved away from it. Change detection in dynamic processes is relevant for data
selection of informative intervals since changes in the process may be associated
with excitation of the system. The following 𝑁 -point data set is assumed to be
available:

Z𝑁 = ¶y [0], u[0], y [1], u[1], . . . , y [𝑁 ⊗ 1], u[𝑁 ⊗ 1]♢ (2.50)

where ¶u[𝑘]♢ and ¶y [𝑘]♢ represent the input and output of process, respectively.
In contrast to change detection in time series, in this work, the process input
¶u[𝑘]♢ is also analyzed since excitations in the system are associated to changes
in its input. This, represents an advantage because a change in the output
¶y [𝑘]♢ can be related to the input ¶u[𝑘]♢. Hypotheses are established based
on a collected data set. Then, a detection test, 𝑇 , is computed using the data
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𝑇 (y [0], u[0], . . . , y [𝑁 ⊗ 1], u[𝑁 ⊗ 1]). Finally, one of the hypothesis is chosen
based on the value of 𝑇 .

As an introductory problem, consider the detection of a DC level in WGN. In
the null-hypothesis, ℋ0, the observed sequence is WGN and in ℋ1 the observed
sequence corresponds to a DC level in WGN. The hypotheses are:

ℋ0 : x [𝑘] = e[𝑘] 𝑘 = 0,1, . . . ,𝑁 ⊗ 1

ℋ1 : x [𝑘] = 𝐴 + e[𝑘] 𝑘 = 0,1, . . . ,𝑁 ⊗ 1
(2.51)

where 𝐴 is unknown with ⊗∞ < 𝐴 < ∞ and e[𝑘] is WGN with unknown
variance σ2

e
. Thus, the problem is to decide between ℋ0 and ℋ1 when the PDF

for both hypotheses are unknown. The decision problem when the parameters
are unknown is called composite hypothesis testing. This problem is addressed
in the present work since the model parameters are estimated as part of the
detection problem.

The detection problem (2.51) can be also expressed as

ℋ0 : 𝐴 = 0, σ2
e

> 0

ℋ1 : 𝐴 ̸= 0, σ2
e

> 0
(2.52)

The likelihood functions for each hypothesis are given as (2.21). Although, σ2
e

is not the central part of the problem, it needs to be estimated since it affects
the likelihood functions. The parameter vector is then Θ T =

[︀
𝐴 σ2

e

]︀
.

The expressions in (2.51) and (2.52) represent the foundation to formulate the
detection problem. Dynamic systems are normally described by other models
than used in (2.51). Thus, since the focus of this work is the selection of infor-
mative data in dynamic systems, the detection problem will be adjusted using
models that can describe such dynamics as it will be presented in section 5.3.
As reported in [50], the choice of a detection test depends on the application and
the available information. One of the most known detectors is the generalized
likelihood ratio test (GLRT) which can be applied to the problem (2.51). In
the GLRT, the unknown parameters are replaced by their MLEs. The GLRT
chooses ℋ1 if

𝑇 (x) = 𝐿𝐺(x) =
𝑝(x; 𝐴, σ̂2

e1
, ℋ1)

𝑝(x; σ̂2
e0

, ℋ0)
> γ (2.53)

where 𝐴 and σ̂2
e1

are the MLEs of the parameters under ℋ1. Whereas, σ̂2
e0

is
the MLE of σ2

e
under ℋ0.
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The PDF under ℋ1 is found by maximizing (2.21). The MLEs of Θ under ℋ1

were found in (2.23). Moreover, under ℋ0, the PDF is obtained by maximizing

𝑝(x; σ̂2
e0

, ℋ0) =
1

(2πσ2)
𝑁
2

exp

(︃
⊗ 1

2σ2

𝑁−1∑︁

𝑘=0

x2[𝑘]

)︃
(2.54)

The MLE of σ̂2
e0

under ℋ0 is

σ̂2
e0

=
1
𝑁

𝑁−1∑︁

𝑘=0

x2[𝑘] (2.55)

Using the derived parameters under each hypothesis, the test 𝐿𝐺(x) results
in (see [50] for details on the derivation)

𝐿𝐺(x) =
(︂

σ̂2
e0

σ̂2
e1

)︂𝑁/2

(2.56)

The expression in (2.53) is known as a detector. Two main types of errors
can occur when implementing detectors. A false alarm or type I error occurs in
case (2.53) decides for ℋ1 when ℋ0 is true. In contrast, a misdetection or type
II error occurs in case (2.53) decides for ℋ0 when ℋ1 is true. A good detector
should have a low rate of false alarms as well as low misdetection rate.

Detection of informative intervals in logged data differs from (2.52) in that
dynamic models are used in each hypothesis and the problem becomes to
decide if the model has changed or not. In selection of informative intervals for
identiĄcation, the observation data set Z𝑁 needs to be evaluated sequentially to
search for changes in the process. Moreover, change detection should be multi
cyclic which means that the algorithm is reinitialized each time a change is
located. These conditions require adaption of the GLRT test to develop multi
cyclic detection methods.

The CUSUM test is a procedure for change detection that uses the likelihood
ratio of the PDF associated to each hypotheses. Use of the CUSUM test for
change detection in time series has been reported in [9, 22, 87] In section 3.5,
the CUSUM test is extended to dynamic processes modeled by input-output
models. For a further treatment of this topic see [10, 34, 87].

The following derivation of the CUSUM test is based on [30]. Let ¶x [𝑘]♢ , 𝑘 =
0,1, . . . ,𝑁 ⊗ 1 be a sequence of independent and identically distributed random
variables where x [0] and x [𝑁 ⊗ 1] represent the Ąrst and the last observation,
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respectively. Each variable of ¶x [𝑘]♢ has the following PDF

𝑝x(𝑥[𝑘]; θ) =
1√

2πσ2
exp

(︂
⊗ 1

2σ2
(𝑥[𝑘]⊗ 𝐴)2

)︂
(2.57)

where θ =
[︀
𝐴,σ2

]︀
T, σ2 > 0 and ⊗∞ < 𝐴 <∞.

A change may occur in ¶x [𝑘]♢ at the time 𝑘11 which is represented by a
variation of the parameter θ. Thus, θ = θ0 for 𝑖 < 𝑘11 and θ = θ1 for 𝑖 ⊙ 𝑘11.

Consider the problem of detecting a change in the parameter θ at some
unknown time 𝑘11 in the sequence ¶x [𝑘]♢. The corresponding hypotheses are:

ℋ0 : x [𝑘] = 𝐴0 + e[𝑘], e[𝑘] ≍ 𝒩 (0,σ2
0), 𝑘 = 0,1, . . . ,𝑘11 ⊗ 1

ℋ1 : x [𝑘] = 𝐴1 + e[𝑘], e[𝑘] ≍ 𝒩 (0,σ2
1), 𝑘 = 𝑘11,𝑘11 + 1, . . . ,𝑁 ⊗ 1

(2.58)

The log-likelihood ratio of x [𝑘] considering the hypotheses in (2.58) is derived
based on (2.57) as follows

s[𝑘] = ln
(︂

𝑝x(𝑥[𝑘]; θ1)
𝑝x(𝑥[𝑘]; θ0)

)︂
= ln

⎛
⎜⎝

1

(2πσ2
1)

1/2
exp

(︁
⊗ 1

2σ2
1

(𝑥[𝑘]⊗ 𝐴1)
2
)︁

1

(2πσ2
0)

1/2
exp

(︁
⊗ 1

2σ2
0

(𝑥[𝑘]⊗ 𝐴0)
2
)︁

⎞
⎟⎠ (2.59a)

= ln

(︃(︂
σ2

0

σ2
1

)︂1/2

exp
(︂

1
2σ2

0

(𝑥[𝑘]⊗ 𝐴0)
2 ⊗ 1

2σ2
1

(𝑥[𝑘]⊗ 𝐴1)
2

)︂)︃
(2.59b)

=
1
2

ln
σ2

0

σ2
1

+
1

2σ2
0

(𝑥[𝑘]⊗ 𝐴0)
2 ⊗ 1

2σ2
1

(𝑥[𝑘]⊗ 𝐴1)
2 (2.59c)

=
1
2

ln
σ2

0

σ2
1

+
ε2

0[𝑘]
2σ2

0

⊗ ε2
1[𝑘]
2σ2

1

(2.59d)

where ε𝑖[𝑘] = 𝑥[𝑘]⊗ 𝐴𝑖, 𝑖 = 0,1. Following [10, 30], the CUSUM algorithm is
summarized:

g [𝑘] = (g [𝑘 ⊗ 1] + s[𝑘])+ (2.60a)

(g [𝑘 ⊗ 1] + s[𝑘])+ = max (0, g [𝑘 ⊗ 1] + s[𝑘]) (2.60b)

If g [𝑘] > γ𝑐 then 𝑘11 = 𝑘 (change detected) (2.60c)

The algorithm is initialized with s[0] = g [0] = 0.
In general, the value of θ0 and θ1 are unknown and they are replaced by

their maximum likelihood estimates using the sequence ¶x [0], x [1], . . . ,x [𝑘 ⊗ 1]♢.
The parameters under each hypotheses are computed using different data sets
determined by data windows as proposed in [10] and discussed in section 5.3. The
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beginning of potentially informative intervals will be associated with change
times determined by the detectors such as the CUSUM. Some parametric
dynamic models will be introduced in Chapter 3 and an extension of detectors
to these models will be treated in Chapter 5.

Data selection methods as described in [12] implement detection tests to time
series even though the studied process is a dynamic system. As a consequence,
additional tests are required to determine if a detected change was caused by an
excitation of the process. In those detectors, the sample mean and variance are
compared with thresholds which can result in false alarms for signals with high
noise content. Misdetection can mainly occur in tests used for upper interval
bounding. These drawbacks will be further discussed in Chapter 5.

2.5 Discussion
In this chapter, a brief introduction on stochastic processes, time series models
and detection problems is presented. A signal is a time-indexed collection of
process measurements. Measurements collected by sensors contain usually a
noise component which results, for instance, from the electronics itself. Thus,
signals from dynamical systems may be considered as realizations of stochastic
processes. AR models are of special interest since they can be used to describe
colored Gaussian noise which is more likely to be found in real applications.
The MLE of AR models can be computed using the LSM which is simple to
be implemented.

The GLRT was introduced as a detection method. This approach can be
extended to dynamical systems. In data selection for system identiĄcation,
detection of such instants is of interest because they represent possibly infor-
mative data sequences as a result of excitation in the process. The GLRT is a
well-known test which is computed as the ratio between the MLEs under each
hypothesis. Alternatively, the CUSUM test can be used for change detection
based on the prediction errors.

A detection problem is stated as a decision between different hypotheses.
The problem of detecting a change in a Gaussian process was presented and
detectors were derived. In the null-hypothesis, ℋ0, the mean value is assumed
to be close to zero. Whereas in the alternative hypothesis, ℋ1, the mean value
is assumed to be apart from zero. Lower bounds of informative intervals can be
determined using detectors as presented in this section. However, they should
be adapted for dynamic systems described by input-output models i.e. the data
set consists of an input and an output sequence.



CHAPTER 3

System Identification of Parametric Models

This chapter introduces mathematical modeling of dynamical systems. Some of
the most known batch and recursive parameter estimation methods as well as
their computational implementation are introduced. The content of this chapter
is based on [13, 19, 57, 80].

3.1 Discrete-Time Systems
Most of the systems are time-continuous but process variables are collected by
digital logging systems. A paired input-output observation in continuous-time
is represented by ¶z(𝑡)♢ = ¶y(𝑡), u(𝑡)♢. Assuming that signals are logged with
the same sampling period 𝑇𝑠, the following deĄnitions are stated:

y [𝑘] := y(𝑘𝑇𝑠) = y(𝑡) (3.1a)

u[𝑘] := u(𝑘𝑇𝑠) = u(𝑡) (3.1b)

with 𝑘 ∈ Z, 𝑡 ∈ R and ¶y(𝑡)♢ , ¶u(𝑡)♢ ∈ R
𝑁×1 where 𝑁 is the number of

observations.
A difference equation expresses the output at instant 𝑘 in terms of earlier

values of the input and output. For a linear digital system, the latter is expressed
as follows

y [𝑘] + 𝑎1y [𝑘 ⊗ 1] + . . . + 𝑎𝑛𝑎y [𝑘 ⊗ 𝑛𝑎] = 𝑏1u[𝑘 ⊗ 1] + . . . + 𝑏𝑛𝑏
u[𝑘 ⊗ 𝑛𝑏]

(3.2a)

y [𝑘] +
𝑛𝑎∑︁

𝑖=1

𝑎𝑖y [𝑘 ⊗ 𝑖] =
𝑛𝑏∑︁

𝑖=1

𝑏𝑖u[𝑘 ⊗ 𝑖] (3.2b)

Applying the 𝑧-transform to (3.2b) yields (see [67])

𝒵 ¶y [𝑘]♢+
𝑛𝑎∑︁

𝑖=1

𝑎𝑖𝑧
−𝑖𝒵 ¶y [𝑘]♢ =

𝑛𝑏∑︁

𝑖=1

𝑏𝑖𝑧
−𝑖𝒵 ¶u[𝑘]♢ (3.3a)



32 Chapter 3 System Identification of Parametric Models

𝒵 ¶y [𝑘]♢ =

∑︀𝑛𝑏

𝑖=1 𝑏𝑖𝑧
−𝑖

1 +
∑︀𝑛𝑎

𝑖=1 𝑎𝑖𝑧−𝑖
𝒵 ¶u[𝑘]♢ (3.3b)

The transfer function from U(𝑧) to Y (𝑧) is deĄned by

𝐺(𝑧) =
Y (𝑧)
U(𝑧)

=

∑︀𝑛𝑏

𝑖=1 𝑏𝑖𝑧
−𝑖

1 +
∑︀𝑛𝑎

𝑖=1 𝑎𝑖𝑧−𝑖
(3.4)

Let 𝑞−1 be the backward shift operator:

𝑞−1u[𝑘] = u[𝑘 ⊗ 1] (3.5)

Using (3.5), the linear difference equation (3.2) can be expressed as

y [𝑘] + 𝑎1𝑞
−1y [𝑘] + . . . + 𝑎𝑛𝑎𝑞

−𝑛𝑎y [𝑘] = 𝑏1𝑞
−1u[𝑘] + . . . + 𝑏𝑛𝑏

𝑞−𝑛𝑏u[𝑘]

(3.6a)

y [𝑘] +
𝑛𝑎∑︁

𝑖=1

𝑎𝑖𝑞
−𝑖y [𝑘] =

𝑛𝑏∑︁

𝑖=1

𝑏𝑖𝑞
−𝑖u[𝑘] (3.6b)

Analogously to (3.4), the transfer operator in (3.6) is

𝐺
(︀
𝑞−1
)︀

=

∑︀𝑛𝑏

𝑖=1 𝑏𝑖𝑞
−𝑖

1 +
∑︀𝑛𝑎

𝑖=1 𝑎𝑖𝑞−𝑖
(3.7)

The term transfer function should be reserved for the 𝑧-transform as in (3.4).
However, it will also be used for expressions as in (3.7) to agree with most of
the literature in system identiĄcation [29, 57, 80].

3.2 Parametric Models
A system transforms a set of input signals into set of output signals. Systems
addressed in this work are dynamic which implies that their current states
depends on past state values. A set of 𝑁 collected measurements from a system
is represented by

Z𝑁 = ¶u[0],y [0],u[1],y [1], . . . , u[𝑁 ⊗ 1],y [𝑁 ⊗ 1]♢ (3.8)

It is assumed that the system dynamics can be modeled as follows [81]

y [𝑘] = 𝑓 (ϕ [𝑘 ⊗ 1]) + ν[𝑘], 𝑘 = 0,1, . . . ,𝑁 ⊗ 1 (3.9)
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Figure 3.1: A linear dynamic system with additive disturbance

where ϕ [𝑘 ⊗ 1] is called regression vector which is constructed from past elements
of Z𝑘 deĄned as follows:

Z𝑘 = ¶u[𝑘 ⊗ 1],u[𝑘 ⊗ 2], . . . , u[𝑘 ⊗ 𝑛𝑏],y [𝑘 ⊗ 1], y [𝑘 ⊗ 2], . . . ,y [𝑘 ⊗ 𝑛𝑎]♢ (3.10)

where n = [𝑛𝑎 𝑛𝑏] the model order and ν[𝑘] is a stochastic term that is usually
assumed as a sequence of i.i.d. random variables i.e. white noise. Dynamic
systems can be approximately described by mathematical models.

Processes may exhibit nonlinearities that should be accounted for in the
chosen model. However, a linear time-invariant model can be used to describe
a nonlinear process in the vicinity of a certain operating point [35, 91].

Figure 3.1 shows a system with 𝐺
(︀
𝑞−1
)︀

and 𝐻
(︀
𝑞−1
)︀

as the input and noise
transfer function, respectively. A digital system is used for data logging and
the resulting data set is represented by (3.8). The output sequence ¶y [𝑘]♢ is
assumed to be stochastic. Moreover, ¶e[𝑘]♢ is WGN with 𝒩 (0,σ2

e
). A linear

time-invariant (LTI) model is used for process description. The input transfer
function, 𝐺

(︀
𝑞−1
)︀
, is deĄned in (3.7). A time series model from (2.26) is used

to describe the stochastic sequence ¶ν[𝑘]♢.
The one-step-ahead prediction of y [𝑘] for a linear model is [57]

ŷ [𝑘♣𝑘 ⊗ 1] = 𝐻−1
(︀
𝑞−1,θ̂

)︀
𝐺
(︀
𝑞−1,θ̂

)︀
u[𝑘] +

(︀
1⊗𝐻−1

(︀
𝑞−1,θ̂

)︀)︀
y [𝑘] (3.11)

where u[𝑘] and y [𝑘] are the process input and output, respectively. The sequence
¶u[𝑘]♢ is considered stochastic as it represents a more general case. In the case
of open-loop processes, ¶u[𝑘]♢ can be considered as a deterministic quantity.
Terms denoted by (̂≤) represent estimated values .
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Thus, θ̂ is an estimation of the parameter vector from data. From (3.11), the
model residuals or prediction error is

ε[𝑘] = y [𝑘]⊗ŷ [𝑘♣𝑘⊗1] = ⊗𝐻−1
(︀
𝑞−1,θ̂

)︀
𝐺
(︀
𝑞−1,θ̂

)︀
u[𝑘]+𝐻−1

(︀
𝑞−1,θ̂

)︀
y [𝑘] (3.12)

The term ε[𝑘] represents the part of y [𝑘] that cannot be predicted from past
data. For ease of use, the model residuals are represented in a non-cursive
notation following [80]. In a good prediction model, ε[𝑘] should be as small
as possible and represent white noise. Moreover, the estimated input transfer
function 𝐺

(︀
𝑞−1,θ̂

)︀
may be as close as possible to the true transfer function

𝐺
(︀
𝑞−1,θ0

)︀
. The Ąlters 𝐺(𝑞−1,θ̂) and 𝐻(𝑞−1,θ̂) in (3.11) represent the input and

noise transfer functions of the model, respectively, that depend on the estimated
parameter vector θ̂.

If 𝐻
(︀
𝑞−1
)︀

= 1 in Figure 3.1 the stochastic sequence ¶ν[𝑘]♢ is white noise.
However, in the case of 𝐻

(︀
𝑞−1
)︀
̸= 1, the noise transfer function is an AR

process and ¶ν[𝑘]♢ is colored noise. In real situations, a sequence corresponding
to colored noise is more likely to be expected than white noise because data
logging may include Ąltering or because the process noise is more complicated
to be modeled only as WGN.

In what follows, the parameter vector θ̂ will be omitted from the input and
noise transfer function for short notation. Thus, 𝐺

(︀
𝑞−1
)︀

and 𝐻
(︀
𝑞−1
)︀
, will be

used instead. Several models can be deĄned depending on the parameterization
of the transfer functions in (3.11). Consider the following linear model called
ARX:

𝐴
(︀
𝑞−1
)︀
y [𝑘] = 𝐵

(︀
𝑞−1
)︀
u[𝑘] + e[𝑘] (3.13a)

where e[𝑘] is white Gaussian noise and the transfer functions are:

𝐺
(︀
𝑞−1
)︀

=
𝐵
(︀
𝑞−1
)︀

𝐴 (𝑞−1)
𝐻
(︀
𝑞−1
)︀

=
1

𝐴 (𝑞−1)
(3.13b)

and the polynomials are deĄned by:

𝐴
(︀
𝑞−1
)︀

= 1 + 𝑎1𝑞
−1 + 𝑎2𝑞

−2 + . . . + 𝑎𝑛𝑎𝑞
−𝑛𝑎 (3.13c)

𝐵
(︀
𝑞−1
)︀

= 𝑏1𝑞
−1 + 𝑏2𝑞

−2 + . . . + 𝑏𝑛𝑏
𝑞−𝑛𝑏 (3.13d)

If u[𝑘] = 0 in (3.13) the model reduces to an AR process. As mentioned earlier,
in real situations, the additive noise may be represented by colored Gaussian
noise. Thus, a more general model is proposed as follows:

𝐴
(︀
𝑞−1
)︀
y [𝑘] =

𝐵
(︀
𝑞−1
)︀

𝐹 (𝑞−1)
u[𝑘] +

𝐶
(︀
𝑞−1
)︀

𝐷 (𝑞−1)
e[𝑘] (3.14)
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with the following polynomial deĄnitions

𝐶
(︀
𝑞−1
)︀

= 1 + 𝑐1𝑞
−1 + 𝑐2𝑞

−2 + . . . + 𝑐𝑛𝑐𝑞
−𝑛𝑐 (3.15a)

𝐷
(︀
𝑞−1
)︀

= 1 + 𝑑1𝑞
−1 + 𝑑2𝑞

−2 + . . . + 𝑑𝑛𝑑
𝑞−𝑛𝑑 (3.15b)

𝐹
(︀
𝑞−1
)︀

= 1 + 𝑓1𝑞
−1 + 𝑓2𝑞

−2 + . . . + 𝑓𝑛𝑓
𝑞−𝑛𝑓 (3.15c)

In some processes, the system dynamics from u[𝑘] to y [𝑘] contain a delay of 𝑛𝑘

samples. Thus, it is convenient to rewrite (3.14) as:

𝐴
(︀
𝑞−1
)︀
y [𝑘] =

𝐵
(︀
𝑞−1
)︀

𝐹 (𝑞−1)
ū[𝑘] +

𝐶
(︀
𝑞−1
)︀

𝐷 (𝑞−1)
e[𝑘] (3.16a)

ū[𝑘] =
{︁

𝑞−(𝑛𝑘−1)u[𝑘]
}︁

(3.16b)

In the case of a process with a single time delay i.e. 𝑛𝑘 = 1, the delay operator
in (3.16b) vanishes (𝑛𝑘 ⊗ 1 = 0).

Several parametric models are listed in Table 3.1. These models can be
divided into two main categories: equation and output error models. Input and
noise transfer functions have common poles in equation error models. Note that
the 𝐴

(︀
𝑞−1
)︀

polynomial appears in the input and noise transfer function of these
models. Equation error models are a suitable choice for closed-loop identiĄcation
as their predictor is stable. In contrast to equation error models, the transfer

Table 3.1: Common black-box model structures
Model structure Model name 𝐺

(︀
𝑞−1
)︀

𝐻
(︀
𝑞−1
)︀

Equation error

ARX
𝐵
(︀
𝑞−1
)︀

𝐴 (𝑞−1)
1

𝐴 (𝑞−1)

ARMAX
𝐵
(︀
𝑞−1
)︀

𝐴 (𝑞−1)
𝐶
(︀
𝑞−1
)︀

𝐴 (𝑞−1)

ARARX
𝐵
(︀
𝑞−1
)︀

𝐴 (𝑞−1)
1

𝐴 (𝑞−1) 𝐷 (𝑞−1)

ARARMAX
𝐵
(︀
𝑞−1
)︀

𝐴 (𝑞−1)
𝐶
(︀
𝑞−1
)︀

𝐴 (𝑞−1) 𝐷 (𝑞−1)

Output error

FIR 𝐵
(︀
𝑞−1
)︀

1

OE
𝐵
(︀
𝑞−1
)︀

𝐹 (𝑞−1)
1

BJ
𝐵
(︀
𝑞−1
)︀

𝐹 (𝑞−1)
𝐶
(︀
𝑞−1
)︀

𝐷 (𝑞−1)
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functions are independently parametrized in output error models. These models
should be preferred for system identiĄcation in open-loop, since consistent
estimates can be obtained regardless of the presence of colored Gaussian noise.

Two models in Table 3.1 are of a particular interest: Ąnite impulse response
(FIR) and ARX. These models are linear-in-the-parameters (LiP) and simple
computational methods for parameter estimation can be implemented. However,
FIR models may require a large number of parameters to describe the system
dynamics adequately. The residuals of ARX models are assumed to be white
noise which may be rarely fulĄlled in real systems. Moreover, a large number
of terms in the 𝐵

(︀
𝑞−1
)︀

polynomial can be required for processes with a large
input-output delay.

More Ćexible models can be obtained by replacing the 𝐵
(︀
𝑞−1
)︀

polynomial
in (3.16a) by Ąlters constructed with orthonormal basis functions (OBF). Two
transfer functions are called orthonormal if their vectorial inner product equals
zero and their norms are 1, i.e.

⟨︀
𝑓1

(︀
𝑞−1
)︀

, 𝑓2

(︀
𝑞−1
)︀⟩︀

= 0⃦⃦
𝑓1

(︀
𝑞−1
)︀⃦⃦

=
⃦⃦
𝑓2

(︀
𝑞−1
)︀⃦⃦

= 1

Laguerre Ąlters are well-known OBF and represent a good choice for processes
that do not exhibit resonating dynamics. These Ąlters can be used in ARX
models resulting in an alternative model called ARX-Laguerre model. Figure 3.2
shows a schematic representation of an ARX-OBF model. In contrast to
ŞclassicalŤ ARX models, the input u[𝑘] is Ąltered using OBF. The main properties
of this model are:

• ARX-Laguerre models are LiP which results in a convex optimization
problem for parameter estimation.

• In contrast to FIR models, less parameters are required for acceptable
process description.

• Some prior knowledge of the system dynamics is required to set the poles
of the Laguerre polynomials.

• The model can be used for closed-loop identiĄcation as its predictor is
stable.

The transfer functions 𝑓𝑖

(︀
𝑞−1,θ

)︀
, 𝑖 = 1,2, . . . , 𝑛𝑏 in Figure 3.2 are constructed

using orthonormal basis Ąlters whose parameters are set according to the
dynamic of the system. A Ąrst choice is to use Laguerre polynomials but other
functions can be used to describe processes with resonant poles as reported in [89].
First-order lag Ąlters with real poles are obtained with Laguerre polynomials
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e[k]

u[k] y [k]
1

A(q−1,θ)f1
(

q−1,θ
) b1

f2
(

q−1,θ
) b2

fnb

(

q−1,θ
)
bnb

b

b

b

b

b

b

b

b

b

Figure 3.2: Laguerre representation

that are suitable to describe well-damped systems. The resulting Ąlters are
described by

𝑓𝑖

(︀
𝑞−1, ξ

)︀
=

√︀
1⊗ ξ2

𝑞−1 ⊗ ξ

[︂
1⊗ ξ𝑞−1

𝑞−1 ⊗ ξ

]︂𝑖−1

𝑖 = 1,2, . . . , 𝑛𝑏 (3.17)

where ξ is the dominating system pole which is approximated by:

ξ = 𝑒−
𝑇𝑠
τ (3.18)

where 𝑇𝑠 is the sampling time and τ the dominating time constant of the system.
Laguerre Ąlters can also be expressed as state space models as described in [37].
Robust parameter estimation methods can be implemented using this latter
representation.

Next sections address modeling of single-input single-output (SISO) and
multi-input multi-output (MIMO) models.

3.2.1 Single-Input Single-Output models

Consider the general model (3.16) with dim(y) = dim(u) = 1. The transfer
functions are deĄned using the polynomials 𝐴

(︀
𝑞−1
)︀
, 𝐵
(︀
𝑞−1
)︀

and 𝐶
(︀
𝑞−1
)︀
. A

block diagram of the SISO model is depicted in Figure 3.1. The additive noise
is represented as an MA process:

ν[𝑘] = 𝐶
(︀
𝑞−1
)︀
e[𝑘] (3.19)
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where ¶e[𝑘]♢ is white Gaussian noise with variance σ2
𝑒. The input and noise

transfer functions are:

𝐺
(︀
𝑞−1
)︀

=
𝐵
(︀
𝑞−1
)︀

𝐴 (𝑞−1)
(3.20a)

𝐻
(︀
𝑞−1
)︀

=
𝐶
(︀
𝑞−1
)︀

𝐴 (𝑞−1)
(3.20b)

And the difference equation is

y [𝑘] + 𝑎1y [𝑘 ⊗ 1]+ . . . + 𝑎𝑛𝑎y [𝑘 ⊗ 𝑛𝑎] = 𝑏1u[𝑘 ⊗ 1] + . . . + 𝑏𝑛𝑏
u[𝑘 ⊗ 𝑛𝑏]

+e[𝑘] + 𝑐1e[𝑘 ⊗ 1] + . . . + 𝑐𝑛𝑐e[𝑘 ⊗ 𝑛𝑐] (3.21)

The model described by (3.21) is called autoregressive moving average with
external input (ARMAX) (see Table 3.1) and is commonly used for data-driven
modeling as the additive stochastic sequence is represented by colored Gaussian
noise. Parameter estimation of ARMAX models should be performed with
numerical methods such as the Newton-Raphson algorithm.

System identiĄcation of other models such as ARX or ARX-Laguerre is
carried out using the LSE method. These models are also an attractive choice
since satisfactory process description is reached and parameter estimation is
computationally simple. Consider an ARX-Laguerre model with the following
input transfer function

𝐺(𝑞−1,θ) =
𝐺𝑓(𝑞−1,θ𝑓)

𝐴 (𝑞−1)
(3.22a)

𝐺𝑓(𝑞−1,θ𝑓) =
𝑛𝑏∑︁

𝑖=1

𝑏𝑖𝑓𝑖

(︀
𝑞−1
)︀

(3.22b)

where ¶𝑏𝑖♢𝑖=1,2,...,𝑛𝑏
are the model parameters and 𝑓𝑖

(︀
𝑞−1
)︀

are the orthonormal
basis Ąlters as in (3.17). Note that (3.20a) and (3.22a) differs on the numerator.
In the second case, the 𝐵

(︀
𝑞−1
)︀

polynomial is replaced by a Laguerre Ąlter.
Consider the state-space representation of (3.22b) as presented in [37]

x[𝑘 + 1] = 𝐴𝑓x[𝑘] + 𝐵𝑓u[𝑘] (3.23a)

y [𝑘] = 𝐶𝑓x[𝑘] (3.23b)

where x[𝑘] ∈ R
𝑛𝑏×𝑛𝑏. A balanced realization using Laguerre polynomials is

obtained as follows (see [36, 37] for details of the derivation). Let 𝐺(𝑞−1) be
a Ąrst order stable SISO-system with a real pole in ξ and let [ξ, 𝑏, 𝑐, 𝑑] be a
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realization of 𝐺(𝑞−1), then
[︁

ξ, η
1
2 , η−

1
2 𝑏𝑐, 𝑑

]︁
is an input balanced realization of

𝐺(𝑞−1). Let ξ ∈ R, with ♣ξ♣ < 1 and let η := 1 ⊗ ξ2. A balanced state-space
representation of an OBF using Laguerre Ąlters is:

𝐴𝑓 =

⎛
⎜⎜⎜⎜⎜⎝

ξ 0
η ξ 0
⊗ξη η ξ 0
ξ2η ⊗ηξ η ξ 0
...

...
...

...
...

⎞
⎟⎟⎟⎟⎟⎠

𝐵𝑓 =

⎛
⎜⎜⎜⎝

√
η

⊗ξ
√

η

ξ2√η
...

⎞
⎟⎟⎟⎠ (3.24a)

𝐶𝑓 =
(︀
𝑏1 𝑏2 . . . 𝑏𝑛𝑏

)︀
𝐷𝑓 = 0 (3.24b)

where 𝐶𝑓 contains the parameters ¶𝑏𝑖♢𝑖=1,2,...,𝑛𝑏
of the ARX-Laguerre model.

The realization (3.24) of 𝐺𝑓 (𝑞−1,θ𝑓 ) in (3.22b) is practical for implementation
purposes. Note that 𝐺𝑓 (𝑞−1,θ𝑓 ) represents the numerator of the transfer function
in (3.22a) whereas the denominator is deĄned by the polynomial 𝐴

(︀
𝑞−1
)︀
. Once

the Laguerre pole ξ and the order of 𝐺𝑓(𝑞−1,θ𝑓) are deĄned, a state space
representation can be constructed using (3.24). The output of an ARX-Laguerre
model can be expressed in vectorial form as

y [𝑘] =ϕ T[𝑘]θ (3.25a)

ϕ[𝑘] = (⊗y [𝑘 ⊗ 1] ⊗ y [𝑘 ⊗ 2] . . . ⊗ y [𝑘 ⊗ 𝑛𝑎]

u𝑓 [𝑘 ⊗ 1] u𝑓 [𝑘 ⊗ 2] . . . u𝑓 [𝑘 ⊗ 𝑛𝑏]) T (3.25b)

θ = (𝑎1 𝑎2 . . . 𝑎𝑛𝑎 𝑏1 𝑏2 . . . 𝑏𝑛𝑏
) T (3.25c)

In contrast to an ARX model, the regression vector contains Ąltered versions
of the input signal by the OBF. Parameter estimation of ARX-Laguerre models
results in a linear regression problem that can be solved using the LSM.

3.2.2 Multi-Input Multi-Output models

In this section, the parametric model introduced in (3.16) is extended for descrip-
tion of multivariate processes. For a more detailed treatment on multivariate
modeling and estimation see [63, 95].

Consider the model (3.16) with dim(y) = 𝑛y , dim(u) = 𝑛u. The noise
sequences for each output ¶e𝑖[𝑘]♢𝑖=1,2,...,𝑛y

are WGN with variance ¶σ2
e𝑖
♢𝑖=1,2,...,𝑛y

.

The resulting covariance matrix is Λe = diag
(︁

σ2
e1

, σ2
e2

, . . . , σ2
e𝑛y

)︁
.

The general parametric MIMO model is described by

A
(︀
𝑞−1
)︀

y[𝑘] = B
(︀
𝑞−1
)︀

ū[𝑘] + ε[𝑘] (3.26a)
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ū[𝑘] =
{︁

𝑞−(𝑛𝑘𝑖𝑗
−1)u[𝑘]

}︁
(3.26b)

A
(︀
𝑞−1
)︀

= I + A1𝑞
−1 + . . . + A𝑛𝑎𝑞

−𝑛𝑎 (3.26c)

B
(︀
𝑞−1
)︀

= B1𝑞
−1 + . . . + B𝑛𝑏

𝑞−𝑛𝑏 (3.26d)

where A
(︀
𝑞−1
)︀

and B
(︀
𝑞−1
)︀

are matrix polynomials with size (𝑛y ♣𝑛y ) and (𝑛y ♣𝑛u),
respectively. The term 𝑛𝑘𝑖𝑗 , 𝑖 = 1,2, . . . , 𝑛u, 𝑗 = 1,2, . . . , 𝑛y in (3.26b) represent
the input-output delay from the 𝑖-th input to the 𝑗-th output. The MIMO
model can be expressed in compact form by:

y[𝑘] = Φ T[𝑘]Θ + ε[𝑘] (3.27a)

Φ T[𝑘] =

⎛
⎜⎝

ϕ T[𝑘] 0
. . .

0 ϕ T[𝑘]

⎞
⎟⎠ (3.27b)

ϕ T[𝑘] =
(︀
⊗y T[𝑘 ⊗ 1] . . . ⊗ y T[𝑘 ⊗ 𝑛𝑎] u T[𝑘 ⊗ 1] . . . u T[𝑘 ⊗ 𝑛𝑏]

)︀

(3.27c)

Θ T =
(︀

θ1 . . . θ𝑛y
)︀

(3.27d)⎛
⎜⎝

(︀
θ1
)︀

T

...
(θ𝑛y ) T

⎞
⎟⎠ = (A1 . . . A𝑛𝑎 B1 . . . B𝑛𝑏

) (3.27e)

The model (3.26) is called matrix fraction description (MFD) which, in
contrast to the SISO case, (3.26) is not a unique representation for a given
process. Canonical forms have been proposed in order to have unique models
for a given system. One of the simplest canonical forms is the diagonal MFD
that has the following advantages:

• The model order selection is done for each multi-input single-output (MISO)
submodel which reduces the complexity of the problem.

• The identiĄcation algorithms for SISO systems can be extended straight-
forward when using the diagonal MFD form.

• The input-output delay term can be adjusted independently for each
submodel.

The advantages of the diagonal MFD form is analyzed with an example.
Consider a multivariate process with 𝑛y = 3, 𝑛u = 4, with orders 𝑛𝑎 = 1, 𝑛𝑏 = 2.
The regression and parameter vectors are described by:

Φ T[𝑘] = (⊗y1[𝑘 ⊗ 1] ⊗ y2[𝑘 ⊗ 1] ⊗ y3[𝑘 ⊗ 1]
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u1[𝑘 ⊗ 1]u2[𝑘 ⊗ 1] u3[𝑘 ⊗ 1] u4[𝑘 ⊗ 1]

u1[𝑘 ⊗ 2] u2[𝑘 ⊗ 2] u3[𝑘 ⊗ 2] u4[𝑘 ⊗ 2]) (3.28a)

θ1 =
(︀
𝑎11 𝑎12 𝑎13 𝑏11

1 𝑏12
1 𝑏13

1 𝑏14
1 𝑏11

2 𝑏12
2 𝑏13

2 𝑏14
2

)︀
T (3.28b)

θ2 =
(︀
𝑎21 𝑎22 𝑎23 𝑏21

1 𝑏22
1 𝑏23

1 𝑏24
1 𝑏21

2 𝑏22
2 𝑏23

2 𝑏24
2

)︀
T (3.28c)

with the following parameter matrices:

A1 =
(︂

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

)︂
(3.29a)

B1 =
(︂

𝑏11
1 𝑏12

1 𝑏13
1 𝑏14

1

𝑏21
1 𝑏22

1 𝑏23
1 𝑏24

1

)︂
(3.29b)

B2 =
(︂

𝑏11
2 𝑏12

2 𝑏13
2 𝑏14

2

𝑏21
2 𝑏22

2 𝑏23
2 𝑏24

2

)︂
(3.29c)

Using the diagonal form, the multivariable process (3.26) can be decoupled into
𝑛y MISO subprocesses. A MISO model is described by:

𝐴𝑗

(︀
𝑞−1
)︀
y𝑗[𝑘] = B

(︀
𝑞−1
)︀

ū[𝑘] + ε[𝑘] (3.30a)

𝐴𝑗

(︀
𝑞−1
)︀
y𝑗[𝑘] =

𝑛𝑢∑︁

𝑖=1

𝐵𝑖

(︀
𝑞−1
)︀
ū𝑖[𝑘] + ε[𝑘] (3.30b)

with the following deĄnitions

𝐴
(︀
𝑞−1
)︀

= 1 + 𝑎1𝑞
−1 + . . . + 𝑎𝑛𝑎𝑞

−𝑛𝑎 (3.30c)

𝐵𝑖

(︀
𝑞−1
)︀

= 𝑏1,𝑖𝑞
−1 + . . . + 𝑏𝑛𝑏,𝑖𝑞

−𝑛𝑏,𝑖 (3.30d)

ū[𝑘] =
(︁

𝑞−(𝑛𝑘𝑖
−1)u𝑖[𝑘] . . . 𝑞

−(𝑛𝑘𝑛𝑢𝑖
−1)

u𝑛𝑖[𝑘]
)︁

T (3.30e)

In order to express the model output in a compact form, the following vectors
are introduced:

ϕ T[𝑘] = (⊗y [𝑘 ⊗ 1] . . . ⊗ y [𝑘 ⊗ 𝑛𝑎] u1[𝑘 ⊗ 𝑛𝑘1] . . . u1[𝑘 ⊗ 𝑛𝑘1 ⊗ 𝑛𝑏,1 + 1]

u2[𝑘 ⊗ 𝑛𝑘2] . . . u2[𝑘 ⊗ 𝑛𝑘2 ⊗ 𝑛𝑏,2 + 1] . . .

u𝑛𝑢[𝑘 ⊗ 𝑛𝑘𝑛𝑢
] . . . u𝑛𝑢[𝑘 ⊗ 𝑛𝑘𝑛𝑢

⊗ 𝑛𝑏,𝑛𝑢 + 1]) (3.31a)

Θ = (𝑎1 . . . 𝑎𝑛𝑎 𝑏1,1 . . . 𝑏𝑛𝑏,1 . . . 𝑏1,𝑛𝑢 . . . 𝑏𝑛𝑏,𝑛𝑢) T (3.31b)

Then, the model in (3.30a) is expressed in vector notation as

y [𝑘] = ϕ T[𝑘]Θ + ε[𝑘] (3.32)
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where ϕ[𝑘] and Θ are column vectors of dimension dim(Θ) = dim(ϕ) = 𝑛𝑎 +∑︀𝑛𝑢

𝑖=1 𝑛𝑏𝑖.
The ARX-Laguerre model presented in (3.22) can be extended to the multi-

variate case as follows. Consider a MISO model as in (3.30). The input transfer
function for the 𝑗-th output is

G(𝑞−1,θ) =
G𝑓(𝑞−1, θ𝑓)

𝐴𝑗 (𝑞−1)
(3.33a)

G𝑓(𝑞−1,θ𝑓) =
𝑛𝑢∑︁

𝑖=1

𝑛𝑏𝑖∑︁

𝑙=1

𝑏𝑖𝑙𝑓𝑖𝑙(𝑞−1) (3.33b)

where 𝐴𝑗

(︀
𝑞−1
)︀

is deĄned as in (3.30c). A state-space model of (3.33b) is

X(𝑖)[𝑘 + 1] = A
(𝑖)
𝑓 X(𝑖)[𝑘] + B

(𝑖)
𝑓 u[𝑘] (3.34a)

y(𝑖)[𝑘] = C𝑓
T X(𝑖)[𝑘] (3.34b)

where the state space matrices are described by

A𝑖
𝑓 =

⎛
⎜⎝

A
(𝑖)
𝑓1

. . . 0
... . . . ...
0 . . . A

(𝑖)
𝑓𝑛𝑢

⎞
⎟⎠ B𝑖

𝑓 =

⎛
⎜⎜⎜⎜⎝

B
(𝑖)
𝑓1

0 . . . 0

0 B
(𝑖)
𝑓2

. . . 0
...

... . . . ...
0 0 . . . B

(𝑖)
𝑓𝑛𝑢

⎞
⎟⎟⎟⎟⎠

(3.35a)

C
(𝑖)
𝑓 =

(︀
𝑏11 𝑏12 . . . 𝑏1𝑛1 𝑏21 𝑏22 . . . 𝑏2𝑛2 𝑏1𝑛𝑢 𝑏2𝑛𝑢 . . . 𝑏𝑛𝑦𝑛𝑢

)︀
T

where C
(𝑖)
𝑓 is the parameter vector and the block-diagonal matrices A

(𝑖)
𝑓𝑗 and

B
(𝑖)
𝑓𝑗 are deĄned similarly to (3.24).
The models (3.30b) and (3.33a) will be further used in this work for modeling

of multivariate process.

3.3 Parameter Estimation
Parameter estimation from input-output data is introduced in this section. One
of the Ąrst publications related to the parameter estimation problem is found
in [7]. For a practical and brief treatment of this topic, the reader is referred
to [51]. Three parameter estimation methods are introduced in this section.
They can be applied for identiĄcation of SISO and MIMO systems in open
or closed-loop. Firstly, the LSM as well as its advantages and drawbacks are
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described. Secondly, the instrumental variables method (IVM) is introduced
and its robustness to colored noise is discussed. Lastly, the PEM are introduced
as a more general procedure that can also deal with colored noise.

3.3.1 Least Squares Method

The one-step-ahead predictor of y for the linear models of Table 3.1 is

ŷ [𝑘♣𝑘 ⊗ 1; Θ̂] = 𝐻−1(𝑞−1; Θ̂)𝐺(𝑞−1; Θ̂)u[𝑘] +
(︀
1⊗𝐻−1(𝑞−1; Θ̂)

)︀
y [𝑘] (3.36)

where u[𝑘] and y [𝑘] are the process input and output, respectively. Replacing
the input and noise transfer functions of the ARX-Laguerre model (3.13c) and
(3.24) yields:

ŷ [𝑘♣𝑘 ⊗ 1; Θ̂] = ϕ T[𝑘]θ̂ (3.37)

where ϕ and θ are deĄned as in (3.25b) and (3.25c) and the prediction error is:

ε[𝑘,θ̂] = y [𝑘]⊗ ϕ T[𝑘]θ̂ (3.38)

The sum of the squared errors is:

𝑉𝑁(Θ) =
1
𝑁

𝑁∑︁

𝑘=1

ε2[𝑘] (3.39)

The parameter vector Θ which minimizes (3.39) is (see [49] for derivation details):

Θ̂𝑁 =

(︃
1
𝑁

𝑁∑︁

𝑘=1

ϕ[𝑘]ϕ T[𝑘]

)︃−1(︃
1
𝑁

𝑁∑︁

𝑘=1

ϕ[𝑘]y [𝑘]

)︃
(3.40)

The method in (3.40) is called the LSM. It is computationally simple but has
some consistency issues in the case of colored noise as following discussed.

Consistent estimates is a desired property for a chosen identiĄcation method.
A parameter estimate Θ̂ is consistent if it converges to the true value Θ0 as the
number of data, 𝑁 , tends to inĄnity. Assume that the data is generated by the
following system:

𝐴0

(︀
𝑞−1
)︀
y [𝑘] = B0

(︀
𝑞−1
)︀

u[𝑘] + ν[𝑘] (3.41a)

y [𝑘] = ϕ T[𝑘]Θ0 + ν[𝑘] (3.41b)
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where Θ0 is the ŞtrueŤ parameter vector. Replacing (3.41b) in (3.40) yields:

Θ̂𝑁 =

(︃
1
𝑁

𝑁∑︁

𝑘=1

ϕ[𝑘]ϕ T[𝑘]

)︃−1(︃
1
𝑁

𝑁∑︁

𝑘=1

ϕ[𝑘]
(︀

ϕ T[𝑘]Θ0 + ν[𝑘]
)︀
)︃

(3.42a)

Θ̂𝑁 = Θ0 +

(︃
1
𝑁

𝑁∑︁

𝑘=1

ϕ[𝑘]ϕ T[𝑘]

)︃−1(︃
1
𝑁

𝑁∑︁

𝑘=1

ϕ[𝑘]ν[𝑘]

)︃
(3.42b)

Θ̂𝑁 ⊗ Θ0 =

(︃
1
𝑁

𝑁∑︁

𝑘=1

ϕ[𝑘]ϕ T[𝑘]

)︃−1(︃
1
𝑁

𝑁∑︁

𝑘=1

ϕ[𝑘]ν[𝑘]

)︃
(3.42c)

The estimate Θ̂𝑁 tends to Θ0 if

𝐸
(︀

ϕ[𝑘]ϕ T[𝑘]
)︀

is non-singular and (3.43a)

𝐸 (ϕ[𝑘]ν[𝑘]) = 0 (3.43b)

The condition (3.43a) is satisĄed assuming that the input signal is (p.e.) of
sufficient order. In contrast, (3.43b) is satisĄed only if ¶ν[𝑘]♢ is white noise (a
sequence of uncorrelated random variables). In that particular case, (3.43b)
holds since ¶ν[𝑘]♢ will be uncorrelated with all past data and in particular with
ϕ[𝑘]. Measured signals in real applications are rarely embedded in white noise.
Colored noise is a more realistic situation since signals are frequently Ąltered in
the logging process. Alternative identiĄcation methods should be considered
if consistent estimates are pursued. The IVM and PEM, as discussed in next
sections, can overcome the drawbacks related to LSM.

3.3.2 Instrumental Variable Methods

Instrumental variables methods are well known approaches for parameter esti-
mation (see, for instance, [94] for a detailed treatment on this topic). Parameter
estimation of models for multivariate systems using instrumental variables can
be found in [42, 85]. In contrast to LSM, IVM are robust to colored Gaussian
noise. In these methods, the identiĄcation problem is formulated so that input
and noise transfer functions are independently parametrized. The measurement
noise can be colored and described, for instance, using an ARMA process.

Instrumental variables (IV) methods are mainly focused on estimating the
input transfer function (3.20a). However, estimation of the noise transfer
function is also possible when an optimal instrumental variables (IV) approach
is used since this Ąlter is estimated within the method. An extensive comparison
between optimal IV methods is presented in [79].
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Assume that the data is described by (3.41). Consider an instrumental vector
ζ[𝑘] of size (𝑛𝑧♣1) whose elements are uncorrelated with ν[𝑘]. The elements of
ζ[𝑘] are called instruments or instrumental variables. Pre-multiplying ζ[𝑘] by
the equation errors yields

1
𝑁

𝑁∑︁

𝑘=1

ζ[𝑘]ε[𝑘] =
1
𝑁

𝑁∑︁

𝑘=1

ζ[𝑘]
(︀
y [𝑘]⊗ ϕ T[𝑘]Θ

)︀
= 0 (3.44)

If ζ[𝑘] is chosen so that (𝑛ζ = 𝑛Θ), the basic IV estimate is computed by

Θ̂𝑁 =

(︃
𝑁∑︁

𝑘=1

ζ[𝑘]ϕ T[𝑘]

)︃−1(︃ 𝑁∑︁

𝑘=1

ζ[𝑘]y [𝑘]

)︃
(3.45)

To analyze the consistency of IVM, replace (3.41b) in (3.45)

Θ̂𝑁 = Θ0 +

(︃
1
𝑁

𝑁∑︁

𝑘=1

ζ[𝑘]ϕ T[𝑘]

)︃−1(︃
1
𝑁

𝑁∑︁

𝑘=1

ζ[𝑘]ν[𝑘]

)︃
(3.46a)

Θ̂𝑁 ⊗ Θ0 =

(︃
1
𝑁

𝑁∑︁

𝑘=1

ζ[𝑘]ϕ T[𝑘]

)︃−1(︃
1
𝑁

𝑁∑︁

𝑘=1

ζ[𝑘]ν[𝑘]

)︃
(3.46b)

From (3.46b), the following is required for consistent estimates using IVM:

𝐸
(︀

ζ[𝑘]ϕ T[𝑘]
)︀

is non-singular and (3.47a)

𝐸 (ζ[𝑘]ν[𝑘]) = 0 (3.47b)

Conditions in (3.47) are satisĄed if the instruments are correlated with the regres-
sion vector ϕ[𝑘] and uncorrelated with the measurement noise ν[𝑘]. Instruments
can be chosen in different ways as described in the next section.

Choice of instruments

The choice of the instrumental variables can be inĆuenced by the operating
mode of a system. In the case of open-loop operation, the input signal u[𝑘] is
uncorrelated with the measurement noise ν[𝑘]. A suitable choice for instruments
can be, for instance, a vector of delayed input terms and a Ąltered sequence of
the input signal as follows

ζ[𝑘] = (⊗η[𝑘 ⊗ 1] . . . ⊗ η[𝑘 ⊗ 𝑛𝑎] u[𝑘 ⊗ 1] . . . u[𝑘 ⊗ 𝑛𝑏]) T (3.48a)

where, 𝐶
(︀
𝑞−1
)︀

η[𝑘] = 𝐷
(︀
𝑞−1
)︀
u[𝑘] (3.48b)
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The sequence η[𝑘] is obtained by Ąltering the input signal u[𝑘]. The Ąlters
in (3.48b) can be initial estimates of 𝐴

(︀
𝑞−1
)︀

and 𝐵
(︀
𝑞−1
)︀
, respectively. Alter-

natively, let 𝐶
(︀
𝑞−1
)︀

= 1 and 𝐷
(︀
𝑞−1
)︀

= 𝑞−𝑛𝑎 which results in the following
instruments

ζ[𝑘] = (u[𝑘 ⊗ 1] . . . u[𝑘 ⊗ 𝑛𝑎 ⊗ 𝑛𝑏]) T (3.49)

In the case of closed loop identiĄcation, delayed values of the reference
signal 𝑟[𝑘] are a suitable choice as instruments. Assuming 𝐶

(︀
𝑞−1
)︀

= 1 and
𝐷
(︀
𝑞−1
)︀

= 𝑞−𝑛𝑎 in (3.48b), the resulting instrumental vector is

ζ[𝑘] = (𝑟[𝑘 ⊗ 1] . . . 𝑟[𝑘 ⊗ 𝑛𝑎 ⊗ 𝑛𝑏]) T (3.50)

An instrumental vector, that can be used for open or closed-loop identiĄcation,
is obtained by choosing its elements as delayed inputs and outputs starting
from certain time 𝑘ζ. Consider a MISO model as in (3.30) and assume that the
noise is described by an ARMA process with 𝐶

(︀
𝑞−1
)︀

and 𝐷
(︀
𝑞−1
)︀

as monic
polynomials described by (3.15a) and (3.15b), respectively. The model output
at time 𝑘 can be expressed as:

y [𝑘] =𝑓 (Θ,y [𝑘 ⊗ 1], . . . ,y [𝑘 ⊗ 𝑛𝑎],

u1[𝑘 ⊗ 𝑛𝑘1 ⊗ 1], . . . , u1[𝑘 ⊗ 𝑛𝑘1 ⊗ 𝑛𝑏,1 + 1], . . . ,

u𝑛𝑢[𝑘 ⊗ 𝑛𝑘𝑛𝑢
⊗ 1], . . . , u𝑛𝑢[𝑘 ⊗ 𝑛𝑘𝑛𝑢

⊗ 𝑛𝑏,𝑛𝑢 + 1],

e[𝑘], . . . ,e[𝑘 ⊗ 𝑛𝑐]) (3.51)

Delayed inputs and outputs from 𝑘 = 𝑘ζ ⊗ 1, where 𝑘ζ ⊙ 𝑛𝑐, are no more
correlated with the additive disturbance. Thus, a suitable choice for instruments
that can be used in open and closed loop identiĄcation is

ζ[𝑘] = (⊗y [𝑘 ⊗ 𝑘ζ ⊗ 1] . . . ⊗ y [𝑘 ⊗ 𝑘ζ ⊗ 𝑛𝑎]

u1[𝑘 ⊗ 𝑘ζ ⊗ 𝑛𝑘1 ⊗ 1] . . . u1[𝑘 ⊗ 𝑘ζ ⊗ 𝑛𝑘1 ⊗ 𝑛𝑏,1 + 1] . . .

u𝑛𝑢[𝑘 ⊗ 𝑘ζ ⊗ 𝑛𝑘𝑛𝑢
⊗ 1] . . . u𝑛𝑢[𝑘 ⊗ 𝑘ζ ⊗ 𝑛𝑘𝑛𝑢

⊗ 𝑛𝑏,𝑛𝑢 + 1]) T (3.52)

where 𝑛𝑎 > 𝑛𝑎 and 𝑛𝑏𝑖 > 𝑛𝑏𝑖.
Optimal IVMs yield consistent estimates for a correct choice of the instruments.

Implementation of optimal IVMs for (3.45) requires an iterative approach where
the instruments are obtained by Ąltering the noise-free regression vector as
described in [57, 80]. In [43], optimal instrumental variable methods are extended
to multivariate processes. In the present work, IVM are preferred over LSM
because of their robustness to colored Gaussian noise. Moreover, since processes
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addressed in this work can be operating in open or closed-loop, ζ[𝑘] will be
chosen as in (3.52).

3.3.3 Prediction Error Methods

In many applications, models are used for prediction. For instance, in control
applications, it is necessary to know what the model output is likely to be at time
𝑘 considering past information up to 𝑘 ⊗ 1. In order to obtain good prediction
models, the parameter vector is estimated by minimizing the prediction errors:

ε[𝑘, Θ] = y [𝑘]⊗ ŷ [𝑘♣𝑘 ⊗ 1; Θ̂] (3.53)

The term ŷ [𝑘♣𝑘⊗ 1; Θ̂] denotes the model prediction of y [𝑘] computed with data
up to and including time 𝑘 ⊗ 1 and using Θ̂. This can be expressed by:

ŷ [𝑘♣𝑘 ⊗ 1; Θ̂] = 𝑓
(︀

Θ̂,y [𝑘 ⊗ 1],y [𝑘 ⊗ 2], . . . ,u[𝑘 ⊗ 1],u[𝑘 ⊗ 2], . . .
)︀

(3.54)

Consider the following general predictor of (3.11)

ŷ [𝑘♣𝑘 ⊗ 1; Θ̂] = 𝐿1(𝑞−1; Θ̂)y [𝑘] + 𝐿2(𝑞−1; Θ̂)u[𝑘] (3.55)

which is a function of past data if the following holds for the Ąlters 𝐿1(𝑞−1; Θ̂)
and 𝐿2(𝑞−1; Θ̂):

𝐿1(0; Θ̂) = 0 and 𝐿2(0; Θ̂) = 0 (3.56)

The assumption (3.56) implies that ŷ [𝑘♣𝑘 ⊗ 1; Θ̂] depends only on previous
inputs and outputs and not on y [𝑘] and u[𝑘].

The predictor (3.55) can be deĄned in different ways for any of the models
presented in Table 3.1. Commonly, the predictor is chosen so that the Ąlters
𝐿1(𝑞−1; Θ̂) and 𝐿2(𝑞−1; Θ̂) make the sample variance as small as possible [57,
80]. The optimal linear predictor and the prediction errors are obtained by:

ŷ [𝑘♣𝑘 ⊗ 1; Θ̂] = 𝐻−1(𝑞−1; Θ̂)𝐺(𝑞−1; Θ̂)u[𝑘] +
(︀
1⊗𝐻−1(𝑞−1; Θ̂)

)︀
y [𝑘]

(3.57a)

ε[𝑘; Θ̂] = 𝐻−1(𝑞−1; Θ̂)
(︀
y [𝑘]⊗𝐺(𝑞−1; Θ̂)u[𝑘]

)︀
(3.57b)

The predictor (3.57) for each model in Table 3.1 is obtained by replacing the
corresponding input and noise transfer functions. In addition to the optimal
predictor, a minimizing criterion for the prediction errors in (3.57b) should be
chosen.
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A class of criteria can be proposed based on the sample covariance matrix
𝑅𝑁 :

𝑅𝑁(Θ̂) =
1
𝑁

𝑁−1∑︁

𝑘=0

ε[𝑘,Θ̂]ε T[𝑘,Θ̂] (3.58)

where 𝑁 is the number of measurements. In the case of SISO systems, 𝑅𝑁(Θ̂)
is a scalar that can be used directly as minimizing criterion. For multivariable
processes, 𝑅𝑁(Θ̂) is a positive deĄnite matrix and the following function is
proposed:

𝑉𝑁(Θ̂) = ℎ(𝑅𝑁(Θ̂)) (3.59)

where ℎ(𝑅𝑁(Θ̂)) is a scalar-valued function deĄned upon the set of positive
deĄnite matrices. Some suitable choices for ℎ(𝑅𝑁(Θ̂)) are:

ℎ(𝑅𝑁(Θ̂)) = tr 𝑆𝑅𝑁(Θ̂) (3.60a)

ℎ(𝑅𝑁(Θ̂)) = det 𝑅𝑁(Θ̂) (3.60b)

where 𝑆 in (3.60a) is a symmetric positive deĄnite weighting matrix.
Once the optimal predictor and the minimizing cost function have been

selected, parameter estimation using the PEM is performed as follows:

• Choose a model structure of the form (3.11) and determine its predictor
as in (3.57).

• Select a scalar-valued function ℎ(𝑅𝑁(Θ̂)).

• Compute the parameter estimate Θ̂ as the (global) minimum of the loss
function 𝑉𝑁(Θ̂)

Θ̂ = arg min
Θ

ℎ(𝑅𝑁(Θ̂)) (3.61)

To evaluate 𝑉𝑁 (Θ̂) at any Θ̂, the prediction errors
{︀

ε[𝑘,Θ̂]
}︀𝑁−1

𝑘=0
are computed by

(3.53) using the optimal model predictor. Then, the sample covariance matrix
is evaluated using (3.58).

The minimum of 𝑉𝑁(Θ̂) in (3.59) can be found analytically for the ARX or
ARX-Laguerre model. In that case, the solution is the least squares estimate
(3.40). Thus, the LSM is a special case of the PEM. For other models, the
solution cannot be found analytically and numerical methods such as the
Newton-Raphson algorithm (see [80]) should be implemented. In this numerical
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method, the parameter vector is computed by:

Θ̂
(𝑚+1)

= Θ̂
(𝑚) ⊗ α𝑚

(︁
𝑉

′′

𝑁(Θ̂
(𝑚)

)
)︁−1

𝑉
′

𝑁

(︁
Θ̂

(𝑚)
)︁

T (3.62)

where Θ̂
(𝑚)

denotes the estimate at the 𝑚-th iteration. The scalar quantity α𝑚

is used to control the step length and is a user-deĄned parameter. The following
choice can, for instance, improve the convergence of (3.62):

α𝑚 = arg min
α

𝑉𝑁

(︂
Θ̂

(𝑚) ⊗ α
(︁

𝑉
′′

𝑁(Θ̂
(𝑚)

)
)︁−1

𝑉
′

𝑁(Θ̂
(𝑚)

) T

)︂
(3.63)

To Ąnd the derivatives of 𝑉𝑁

(︀
Θ̂
)︀
, let ψ[𝑘,Θ] be:

ψ[𝑘,Θ] = ⊗
(︂

𝜕ε[𝑘,Θ]
𝜕Θ

)︂
T (3.64)

Then, by straightforward differentiation and for 𝑛𝑦 = 1:

𝑉
′

𝑁

(︀
Θ̂
)︀

= ⊗ 2
𝑁

𝑁−1∑︁

𝑘=0

ε[𝑘, Θ]ψ T[𝑘,Θ] (3.65a)

𝑉
′′

𝑁

(︀
Θ̂
)︀

= ⊗ 2
𝑁

𝑁−1∑︁

𝑘=0

ψ[𝑘, Θ]ψ T[𝑘,Θ] +
2
𝑁

𝑁−1∑︁

𝑘=0

ε[𝑘,Θ]
𝜕2

𝜕Θ2 ε[𝑘,Θ] (3.65b)

The resulting method, called Gauss-Newton algorithm, is

Θ̂
(𝑚+1)

= Θ̂
(𝑚)⊗α𝑚

(︃
𝑁−1∑︁

𝑘=0

ψ[𝑘,Θ̂
(𝑚)

]𝐻ψ T[𝑘,Θ̂
(𝑚)

]

)︃−1

≤
(︃

𝑁−1∑︁

𝑘=0

ψ[𝑘,Θ̂
(𝑚)

]𝐻ε[𝑘,Θ̂
(𝑚)

]

)︃

(3.66)

where 𝐻 is the noise covariance matrix.

In [88], a PEM method for OBF-ARMAX models is introduced and demon-
strated for open and closed loop identiĄcation. This practical implementation
can be useful in real applications when prior knowledge about input-output
delay is limited.

Despite the fact that the predictor was introduced in this section for para-
metric models, it also plays an important role in subspace identiĄcation [21].
Additional aspects regarding consistency, however, should be considered for



50 Chapter 3 System Identification of Parametric Models

subspace methods as explained in [20]. In [90], a subspace method for closed
loop identiĄcation is explained and evaluated with a simulation case study.

In multivariable processes, simultaneous or independent excitation should
also be examined as it can affect parameter estimation. In [26] a detailed
variance analysis for the multivariate models in Table 3.1 is performed. In the
case of equation error models, the covariance of all parameter estimates will
decrease if the system is simultaneously excited in all the inputs.. The authors
conclude that it is always recommended to excite all inputs simultaneously in
multivariable processes.

An interesting alternative to (3.66) is to apply a recursive algorithm to the
data several times. The Ąnal values of a run are used as initial ones for the
next run. This approach will often result in faster convergence and will save
computational time.

3.4 Recursive Parameter Estimation
In the identiĄcation methods presented in section 3.3, called off-line or batch
methods, the entire identiĄcation data set is used at once for parameter esti-
mation. In contrast, recursive methods are computationally less demanding as
the estimate Θ̂[𝑘] is computed recursively by modifying Θ̂[𝑘⊗ 1]. For a detailed
discussion on these approaches, the reader is referred to [6, 28, 59]. Recursive
identiĄcation methods are less demanding than batch methods because esti-
mates are updated recursively based on past information. Recursive methods
can be easily adapted for real time applications, for instance, tracking time-
varying parameters. These methods represent a Ąrst choice for fault detection as
changes in the parameters may be related to anomalies in the process. Recursive
identiĄcation methods are suitable choices for upper interval bounding for data
selection methods. The next sections describe the recursive versions of the least
squares and the instrumental variables method.

3.4.1 Recursive QR Least Squares Method

In order to explain this method, the QR solution to the batch least squares
problem is Ąrstly introduced. Given an identiĄcation data set Z𝑁 the weighted
least squares cost function is formulated as (cf. (3.39))

𝑉 (Θ) =
⃦⃦
⃦W

1/2
𝑁 (y⊗ ΦΘ)

⃦⃦
⃦

2

=
𝑁−1∑︁

𝑘=0

λ[𝑘]ε2[𝑘] (3.67a)

ε[𝑘] = y [𝑘]⊗ ϕ T[𝑘]Θ (3.67b)

with
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y = (y [0] . . . y [𝑁 ⊗ 1]) T (3.67c)

Φ =
(︀

ϕ T[0] . . . ϕ T[𝑁 ⊗ 1]
)︀

T (3.67d)

W = diag (λ[0] . . . λ[𝑁 ⊗ 1]) (3.67e)

where ϕ and Θ are vectors deĄned by (3.31a) and (3.31b), respectively. In
(3.67e), W is a diagonal positive deĄnite weighting matrix with [W]𝑖𝑖 = λ𝑘−𝑖

and λ is the forgetting factor.

Consider that instead of Z𝑁 , a data set Z𝑚, 𝑚 < 𝑁 is given. The norm in
(3.67a) is not affected if it is pre-multiplied by an orthonormal matrix Q ∈ R

𝑚×𝑚:

𝑉 (Θ𝑚,Z𝑚) =
⃦⃦
⃦Q
(︁

W
1/2
𝑁 (y⊗ ΦΘ)

)︁⃦⃦
⃦

2

(3.68)

Applying QR-factorization to (3.68) results in

(︁
W

1/2
𝑁 Φ W

1/2
𝑁 y

)︁
= QR, R =

⎛
⎝

R0

. . .

0

⎞
⎠ (3.69)

where R0 ∈ R
(𝑛θ+1)×(𝑛θ+1) is an upper triangular and 𝑛θ = dim(θ). The matrix

R0 can be decomposed as

R0 =
(︂

R1 R2

0 R3

)︂
, R1 ∈ R

𝑛θ×𝑛θ, R2 ∈ R
𝑛θ×1, R3 ∈ R (3.70)

Using QR-factorization, the cost function (3.68) can be reformulated as follows

𝑉
(︀

Θ̂𝑚,Z𝑚
)︀

=
⃦⃦
⃦Q T W

1/2
𝑁

(︀
y⊗ ΦΘ̂

)︀⃦⃦
⃦

2

=

⃦⃦
⃦⃦
(︂

R2

R3

)︂
⊗
(︂

R1Θ̂

0

)︂⃦⃦
⃦⃦

2

(3.71)

=
⃦⃦
R2 ⊗ R1Θ̂

⃦⃦2
+ ‖R3‖2

which is minimized for

Θ̂𝑚 = (R1)
−1

R2 and the cost function yields 𝑉 (Θ̂𝑚,Z𝑚) = ‖R3‖2 (3.72)

The solution (3.72) is a batch method since the entire data set is used simulta-
neously. A sequential solution can be proposed as follows [86]. Assume that the
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weighting matrix at time 𝑘 satisĄes the following partitioning scheme

W[𝑘] =

1 0 0

0 λ

λ2

0

0 0 λ𝑘−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

=

⎛
⎜⎜⎜⎝

1 0 . . . 0
0
... λW[𝑘 ⊗ 1]
0

⎞
⎟⎟⎟⎠ (3.73)

then, the cost function 𝑉 at the instant 𝑘 can be expressed as

𝑉𝑘(Θ̂) =

⃦⃦
⃦⃦
(︂

λ1/2W1/2[𝑘 ⊗ 1]y[𝑘 ⊗ 1]
y [𝑘]

)︂
⊗
(︂

λ1/2W1/2[𝑘 ⊗ 1]Φ[𝑘 ⊗ 1]
ϕ[𝑘]

)︂
Θ̂

⃦⃦
⃦⃦

2

2

(3.74)

where λ is a forgetting factor, which ranges between 0 and 1, representing the
relevance of past measurements in the computations at 𝑘. A typical value for
the forgetting factor is λ = 0.975 [80]. Similarly to (3.71), the cost function
(3.74) can be expressed as

𝑉𝑘

(︀
Θ̂
)︀

=

⃦⃦
⃦⃦
⃦⃦

⎛
⎝

λ1/2R2[𝑘 ⊗ 1]
λ1/2R3[𝑘 ⊗ 1]

y(𝑡)

⎞
⎠⊗

⎛
⎝

λ1/2R1[𝑘 ⊗ 1]
0

ϕ(𝑡)

⎞
⎠ Θ̂

⃦⃦
⃦⃦
⃦⃦

2

(3.75)

Applying the QR-factorization to (3.75) yields

⎛
⎝

λ1/2R1[𝑘 ⊗ 1] λ1/2R2[𝑘 ⊗ 1]
0 λ1/2R3[𝑘 ⊗ 1]

ϕ(𝑡) y [𝑘]

⎞
⎠ =

(︂
λ1/2R0[𝑘 ⊗ 1]
ϕ[𝑘] y [𝑘]

)︂
= Q[𝑘]R[𝑘] (3.76)

The solution to (3.76) is obtained by:

Θ̂[𝑘] = R−1
1 [𝑘]R2[𝑘] (3.77)

In (3.77), Θ̂[𝑘] is computed recursively at each 𝑘. The matrix R0 in (3.76) is
initialized as R0 = 1/β ≤ I(𝑛θ+1)×(𝑛θ+1) where β is a user-deĄned parameter with
0 < β < 0.01.

The recursive QR least squares method has been already used for data
selection as reported in [12]. Upper interval bounds are deĄned according
to the conditioning of the matrix R1[𝑘]. This recursive method has similar
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properties to its batch version. Thus, estimates will be biased in the case of
colored Gaussian noise. This drawback can result in wrong interval bounds
since the information matrix is also affected by correlated noise. Alternatively,
identiĄcation methods robust to colored noise are required to overcome these
limitations. In the next section, a recursive approach based on instrumental
variables is introduced as an alternative method for data selection.

3.4.2 Overdetermined Recursive Instrumental Variables Method

Optimal instrumental variables methods are computationally simpler than PEM
and can guarantee consistent estimates in the case of correlated noise [80]. The
parameters at time 𝑘 are estimated in an iterative procedure where the instru-
ments are obtained by Ąltering the regressor vector at 𝑘 ⊗ 1. Implementation
of optimal IV methods in closed loop can be more demanding than direct PEM
as the controller may be required for computations.

Extended instrumental variables (EIV) methods can be used for open or
closed-loop identiĄcation. In this method, the number of instruments is larger
than the number of parameters. The instrumental variables can be chosen as
delayed inputs and outputs as presented in (3.52). This choice of instruments
yields an overdetermined system which is solved, as found in [80], by:

Θ̂
EIV

𝑁 =
(︀
R𝑁

T QR𝑁

)︀−1 (︀
R𝑁

T Qr𝑁

)︀
(3.78a)

R𝑁 =
1
𝑁

𝑁∑︁

𝑘=1

ζ[𝑘]𝐹 (𝑞)ϕ T[𝑘] (3.78b)

r𝑁 =
1
𝑁

𝑁∑︁

𝑘=1

ζ[𝑘]𝐹 (𝑞)y [𝑘] (3.78c)

where 𝐹 (𝑞) is an asymptotically stable pre-Ąlter and 𝑄 is a positive deĄnite
weighting matrix.

The algorithm (3.78) is called extended instrumental variables (EIV). This
method is not suitable for practical applications as it can be computationally
unstable and it is time demanding due to the large size of the matrices to be
processed [80]. Instead, a recursive implementation, proposed in [23, 80] and
called ORIV, can be used. Two user-deĄned parameters should be set to deĄne
instruments as in (3.52). The delay time is often selected with 𝑘ζ > 5 which
indicates that from that instant possible correlation between the input and
noise practically vanishes. The number of instruments, 𝑛𝑎 and 𝑛𝑏, are normally
chosen larger than the model order. A detailed derivation of the ORIV is found
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in [23]. The algorithm is summarized as follows

(︀
L[𝑘] S T[𝑘]

)︀
= λ

(︀
L[𝑘 ⊗ 1] S[𝑘 ⊗ 1] T

)︀
+ ζ[𝑘] (y [𝑘] ϕ[𝑘]) (3.79a)

Θ̂ =
(︀
S T[𝑘]

)︀†
L[𝑘] (3.79b)

where L[𝑘] ∈ R
𝑛ζ×1 and S[𝑘] ∈ R

𝑛Θ×𝑛ζ. The symbol (≤)† corresponds to the
pseudoinverse of (≤). The forgetting factor λ is normally set as 0.98 ⊘ λ ⊘ 0.995.
The algorithm can be initialized as follows:

S[0] = β [I ♣ 0] L[0] = 0 (3.80)

where β is a scalar parameter in the range β ∈ [0.001, 0.01]. The choice of λ

and β is discussed in Chapter 5.
In the ORIV, the conditioning of S T[𝑘] can be evaluated to deĄne upper

interval bounds. The ORIV can then be proposed as an alternative for data
selection to the method in section 3.4.1. The use of this method can yield
better interval bounds particularly in real applications and it is a distinguishing
feature when compared with available approaches.

3.5 The CUSUM Test for Input-Output Models
In the case of an ARX model as in (3.13), the log-likelihood ratio increment is:

s[𝑘] =
1
2

ln
σ̂2

0

σ̂2
1

+
ε2

0[𝑘]
2σ̂2

0

⊗ ε2
1[𝑘]
2σ̂2

1

(3.81)

where ε𝑖[𝑘] = y [𝑘]⊗ ŷ𝑖[𝑘] is the residual at time 𝑘 for the 𝑖-th hypothesis.
The test statistic g [𝑘] of the CUSUM algorithm is:

g [𝑘] = (g [𝑘 ⊗ 1] + s[𝑘])+ (3.82)

where (g [𝑘 ⊗ 1] + s[𝑘])+ = max(0, g [𝑘 ⊗ 1] + s[𝑘]). A change is detected if

g [𝑘] > γ𝑐 (3.83)

where γ𝑐 is a user-deĄned parameter corresponding to the threshold for detection.
The algorithm is initialized with g [𝑘] = 0 and this term is reset each time (3.83)
holds. The CUSUM test can be extended to different transfer functions as in
Table 3.1 by adapting (3.81) to the corresponding model residuals. The models
under each hypothesis ℋ0 and ℋ1 are estimated using sliding windows that are
further explained in section 5.6.
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3.6 Persistence of Excitation

Persistently exciting signals are required for system identiĄcation when using
methods such as instrumental variables or PEM. The degree of excitation
depends among others on the model order, the operating mode i.e. if the data
is collected from a process in open or closed-loop and the order of the controller
in the latter case. A detailed analysis on the required conditions for system
identiĄcation with the models listed in Table 3.1 and using the PEM is presented
in [24]. The following deĄnition of persistence of excitation is based on [80].
Consider a truncated weighting function model deĄned by:

𝑦[𝑘] =
𝑛−1∑︁

𝑙=0

ℎ[𝑘]𝑢[𝑘 ⊗ 𝑙] + w [𝑘], 𝑘 = 0, 1, . . . , 𝑁 ⊗ 1 (3.84)

For the asymptotic case (𝑁 ⊃ ∞), the parameters ¶ℎ[𝑘]♢𝑛−1
𝑘=0 are obtained

by solving
⎛
⎜⎝

𝑟𝑢[0] . . . 𝑟𝑢[𝑛⊗ 1]
... . . . ...

𝑟𝑢[𝑛⊗ 1] . . . 𝑟𝑢[0]

⎞
⎟⎠

⎛
⎜⎝

ℎ[0]
...

ℎ[𝑛⊗ 1]

⎞
⎟⎠ =

⎛
⎜⎝

𝑟𝑦𝑢[0]
...

𝑟𝑦𝑢[𝑛⊗ 1]

⎞
⎟⎠ (3.85)

To solve the system of equations in (3.85), the matrix on the left side needs to
be inverted i.e. it must be non-singular. The latter condition yields the concept
of persistent excitation which is introduced as presented in [80]. A signal ¶𝑢[𝑘]♢
is persistently exciting (p.e.) of order 𝑛 if:

(1) the following limit exists:

𝑟𝑢(τ) = lim
𝑁→∞

1
𝑁

𝑁−1∑︁

𝑘=0

𝑢[𝑘 + τ]𝑢 T[𝑘], and (3.86a)

(2) the matrix:

𝑅𝑢[𝑝] =

⎛
⎜⎜⎜⎝

𝑟𝑢[0] 𝑟𝑢[1] . . . 𝑟𝑢[𝑛⊗ 1]

𝑟𝑢[⊗1] 𝑟𝑢[0]
...

... . . . ...
𝑟𝑢[1⊗ 𝑛] . . . 𝑟𝑢[0]

⎞
⎟⎟⎟⎠ (3.86b)

is positive deĄnite.

If the stochastic process is ergodic, the term lim𝑁→∞
1
𝑁 can be replaced by the

expectation operator 𝐸(≤). Then, 𝑅𝑢[𝑝] is the usual covariance matrix. The
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ergodicity theorem states that, for a stationary i.i.d. random signal x with mean
𝐸 (x), the sample mean converges with probability one to µx provided that the
number of observations 𝑁 tends to inĄnity. The deĄnition for persistence of
excitation previously presented applies for univariate signals and asymptotic
cases i.e. 𝑁 ⊃ ∞. In contrast to univariate signals, additional aspects such
as orthogonality need to be considered for the design of persistently exciting
signals for multivariate processes as reported in [41]. The following deĄnition
can be stated for persistently exciting multivariate signals.

Definition 1 Persistent excitation ⊗ finite-length multivariate signal [46]. A
multivariate deterministic sequence of length 𝑁 and size 𝑝, r ∈ R

𝑁×𝑝, is said
to be persistently exciting (p.e.) of order 𝑚 if the matrix:

R𝑁−1 =

⎛
⎜⎜⎜⎝

r[0] r[1] . . . r[𝑁 ⊗𝑚]
r[1] r[2] . . . r[𝑁 ⊗𝑚 + 1]

...
...

. . .
...

r[𝑚⊗ 1] r[𝑚] . . . r[𝑁 ⊗ 1]

⎞
⎟⎟⎟⎠ (3.87)

where r[𝑘] = (𝑟1[𝑘] 𝑟2[𝑘] . . . 𝑟𝑝[𝑘]) T, has rank 𝑝 ≤𝑚.

White noise is persistently exciting of all orders because the resulting co-
variance matrix, 𝑅𝑢(𝑛) = σ2I𝑛, is always positive deĄnite. In contrast, a step
function of magnitude 𝐿 is persistently exciting of order 1. Consider an input-
output model with input 𝑢[𝑘] and additive disturbance ε[𝑘] as in (3.13). The
regression and parameter vector are deĄned by (3.25b) and (3.25c), respectively.
The model is expressed in vector notation as in (3.25a). The existence of an
estimate for Θ̂ using, for instance, the LSM is subject to the nonsingularity
(positive deĄniteness) of the covariance matrix:

C(Θ) = 𝐸
(︀

Φ T Φ
)︀

(3.88)

The input requires some degree of excitation to fulĄll i.e. C(Θ) > 0. Consider
ε = 0:

Φ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⊗𝑏1 . . . ⊗𝑏𝑛𝑏
. . . 0

... . . . ... . . . ...
0 . . . ⊗𝑏1 . . . ⊗𝑏𝑛𝑏

𝑎1 . . . 𝑎𝑛𝑎 . . . 0
... . . . ... . . . ...
0 . . . 𝑎1 . . . 𝑎𝑛𝑎

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

1
𝐴 (𝑞−1)

u[𝑘 ⊗ 1]

...

...
1

𝐴 (𝑞−1)
u[𝑘 ⊗ 𝑛𝑎 ⊗ 𝑛𝑏]

⎞
⎟⎟⎟⎟⎟⎟⎠

(3.89a)



3.6 Persistence of Excitation 57

with the deĄnition Φ , ℐ(⊗𝐵,𝐴)̃︀Φ, where the model parameters are grouped
in ℐ(⊗𝐵,𝐴). Then, replacing Φ from (3.89a) in (3.88):

R = ℐ(⊗𝐵,𝐴)𝐸̃︀Φ[𝑘]̃︀Φ T[𝑘]ℐ T(⊗𝐵,𝐴) , ℐ(⊗𝐵,𝐴)̃︀R ℐ T(⊗𝐵,𝐴) (3.90)

it can be concluded from (3.90) that

¶R > 0♢ ⇐⇒
{︁
ℐ nonsingular and ̃︀R > 0

}︁

The term ℐ(⊗𝐵,𝐴) is nonsingular if the polynomials (⊗𝐵,𝐴) are coprime. Thus,
R is positive deĄnite if and only if u[𝑘] is (p.e.) of order 𝑛𝑎 + 𝑛𝑏.

Next, consider ε ̸= 0 in (3.25a):

ε̄[𝑘] = ⊗ 1
𝐴 (𝑞−1)

ε[𝑘] (3.91a)

𝑥[𝑘] =
𝐵
(︀
𝑞−1
)︀

𝐴 (𝑞−1)
u[𝑘] (3.91b)

In the case of open-loop i.e. 𝐸 [u[𝑘]ε[𝑠]] = 0 for all 𝑘 and 𝑠, then it follows that:

𝑅 =𝐸

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

𝑥[𝑘 ⊗ 1]
...

𝑥[𝑡⊗ 𝑛𝑎]
u[𝑘 ⊗ 1]

...
u[𝑘 ⊗ 𝑛𝑏]

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(︀
𝑥[𝑘 ⊗ 1] . . . 𝑥[𝑘 ⊗ 𝑛𝑎] u[𝑘 ⊗ 1] . . . u[𝑘 ⊗ 𝑛𝑏]

)︀
+

𝐸

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ε̄[𝑘 ⊗ 1]
...

ε̄[𝑘 ⊗ 𝑛𝑎]
0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(︀
ε̄[𝑘 ⊗ 1] . . . ε̄[𝑘 ⊗ 𝑛𝑎] 0 . . . 0

)︀
(3.92a)

,

(︂
Ã B

B T C

)︂
+
(︂

Ā 0
0 0

)︂
(3.92b)

As explained in [80], C > 0 is necessary for 𝑅 > 0. If this holds, then

Ã⊗ BC−1B T ⊙ 0 (3.93)
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and the following equation can be stated

rank R = 𝑛𝑏 + rank
(︀
Ã + Ā⊗ BC−1B T

)︀
(3.94)

Assuming Ā > 0,

rank R = 𝑛𝑎 + 𝑛𝑏 (3.95)

Finally, under weak conditions on the noise i.e. Ã > 0, the required order of
excitation of the input signal is

R > 0 ⇐⇒ u[𝑘] is (p.e.) of order (𝑛𝑏) (3.96)

IdentiĄability conditions can be derived for different models depending on
the operating mode (open or closed loop) and the model to be computed. A
detailed analysis on identiĄability conditions for ARMAX systems in closed-loop
is presented in [76]. In multivariate processes, excitation signals should be (p.e.)
and uncorrelated. An analysis for the MISO case is presented in [25]. Although
simultaneous excitation is preferred as the variance of the parameters can be
decreased, this scenario is not commonly found in processes addressed in this
work. In such processes, it is more frequent that inputs are excited only one
at a time. In this situation, parameter estimation can then suffer numerical
problems due to ill-conditioning in matrix operations. Data merging, as it will
be shown in Chapter 4, can alleviate this problem.

3.7 Discussion
Algorithms for parameter estimation can suffer numerical problems when con-
sidering data sets that exhibit few changes. This concept will be used further
to propose a selection method for informative data. Matrix conditioning for
parameter estimation will be evaluated to determine useful sequences for iden-
tiĄcation. LTI models and different methods for parameter estimation were
introduced in this chapter. The one-step-ahead predictor computes the output
of a process at time 𝑘 from past input-output data up to 𝑘 ⊗ 1. Parametric
models are classiĄed into two groups: equation and output error models. The
input and noise transfer functions are independently parameterized in output
error models whereas, in the equation error class the transfer functions share
common parameters.

Three identiĄcation methods were introduced: LSM, IVM and PEM. The
LSM can yield consistent estimates only in case of WGN which is a strong
requirement as, in real situations, noise is more likely to be colored. To
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overcome this drawback, IVM and PEM can be used as they are robust to
colored noise. In the present work, implementation of IVM is preferred as
they are less computationally demanding than PEM and have satisfactory
accuracy. In batch identiĄcation methods, the entire data set is used at once
which can be computationally demanding in case of large data sets. Instead,
recursive methods can be considered. Although the convergence rate of recursive
estimation methods depends on the initialization of the algorithm and user-
deĄned parameters, these methods are a practical solution for interval bounding.
This idea will be used as part of the data selection method in Chapter 5.

Persistently exciting signals are required to generate informative data. This
relevant concept associated to input signals was presented at the end of this
section. The concept was introduced for FIR models and further extended
to input-output models. Under weak conditions on the measurement noise, a
signal needs to be (p.e.) of order 𝑛𝑏 to permit to identify an input-output model.
IdentiĄcation methods are formulated assuming persistently exciting signals
[57, 80]. This condition is also considered in DS4SID since estimation methods
were adapted based on the state of the art. However, identiĄability conditions
as in (3.96) can be used in a data selection method to conclude if the data is
informative for the given conditions.





CHAPTER 4

Combination of Data Sets for System Identification

In some applications, parameter estimation needs to be performed with data
sets collected from different experiments. This context has some similarities
with data selection for identiĄcation. Models should be computed with selected
sequences that correspond to informative intervals. Informative intervals
cannot be simply concatenated for model estimation. Suitable data merging
techniques for identiĄcation are introduced in this chapter. They will be used
in a later stage of the proposed data selection method.

4.1 Data Merging Problem
The data merging problem [57], applied to data selection, is to estimate a model
from separate informative intervals. This problem is called combination of data
sets in [54]. Data intervals cannot be simply concatenated as the connecting
points may generate transients that will affect the parameter estimation. Thus,
identiĄcation methods should be modiĄed to estimate a model with informative
intervals. These useful sequences can be interpreted as data obtained from
separate experiments. The topic treated in this chapter is a practical aspect of
system identiĄcation. Other issues such as possibly non-zero mean data (see,
for instance, [40]) need also to be considered. In fact, the mean values of ¶y [𝑘]♢
and ¶u[𝑘]♢ corresponding to an operating point should be estimated. (see [41,
80]) Next, the data merging problem and suitable solutions are presented.

The combination of 𝑞 informative intervals yields a new subset ZD:

ZD =
𝑞⋃︁

𝑖=1

Z𝑛𝑖 (4.1a)

where 𝑖 = 1,2, . . . ,𝑞 represents the 𝑖-th informative interval of length 𝑛𝑖

Z𝑖 = ¶y [𝑘𝑖1],u[𝑘𝑖1], y [𝑘𝑖1 + 1],u[𝑘𝑖1 + 1], . . . , y [𝑛𝑖],u[𝑛𝑖]♢ (4.1b)

the lower and upper bounds of the 𝑖-th interval are represented by

𝑘𝑖1 and 𝑘𝑖2, respectively, where 𝑘𝑖2 = 𝑘𝑖1 + 𝑛𝑖 ⊗ 1
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Informative intervals as presented in (4.1b) will be expressed in compact notation
by

¶Z[𝑘]♢𝑘𝑖2

𝑘=𝑘𝑖1
(4.2)

A modelℳ(Θ̂𝑖) can be estimated for each informative interval. Assume that all
intervals have models of the same class. Then, the resulting estimate considering
the subset ZD is [57]:

Θ̂ = 𝑃

𝑞∑︁

𝑖=1

(︁
𝑃 (𝑖)

)︁−1

Θ̂
(𝑖)

(4.3a)

𝑃 =

(︃
𝑞∑︁

𝑖=1

(︁
𝑃 (𝑖)

)︁−1
)︃−1

(4.3b)

where the least squares estimate Θ̂
(𝑖)

is computed by:

Θ̂
(𝑖)

=

(︃
𝑘𝑖2∑︁

𝑘=𝑘𝑖1

ϕ[𝑘]ϕ T[𝑘]

)︃−1(︃ 𝑘𝑖2∑︁

𝑘=𝑘𝑖1

ϕ[𝑘]y [𝑘]

)︃
(4.4)

The computation of Θ̂ in (4.3a) also requires the estimated covariance matrix
of the parameters obtained for the 𝑖-th interval. The covariance matrix 𝑃 (𝑖) is
estimated by:

𝑃 (𝑖) = σ̂2
𝑒𝑖

(︃
𝑘𝑖2∑︁

𝑘=𝑘𝑖1

ϕ[𝑘]ϕ T[𝑘]

)︃−1

(4.5)

The noise variance σ2
𝑒𝑖

is estimated by:

σ̂2
𝑒𝑖

=
1
𝑛𝑖

𝑘𝑖2∑︁

𝑘=𝑘𝑖1

(︁
y [𝑘]⊗ ϕ T[𝑘]Θ̂

(𝑖)
)︁2

(4.6)

Parameter estimation for each informative interval involves matrix inversion
that can suffer numerical problems due to poorly excited processes. The value
of a scalar measure can also be used to evaluate the contribution of each new ob-
servation in the numerical conditioning of the corresponding information matrix.
A weighting matrix can then be included in the parameter estimation method
whose weights are determined based on a scalar measure of the information
matrix. The next section introduces weighted identiĄcation methods that will
be used together with data merging in the last stage of data selection.
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4.2 Weighted Identification Methods
The identiĄcation methods presented in section 3.3.1 and section 3.3.2 can be
modiĄed by including a weighting matrix W that is associated, for instance, to
the relevance of each regressor. In data selection methods, large weights will be
associated to data located close to changes in the process. The weighted least
squares cost function for the MISO model (3.30) is

𝑉 (Θ̂) =
(︀
y⊗ ΦΘ̂

)︀
T W

(︀
y⊗ ΦΘ̂

)︀
(4.7a)

y = (y [0] y [1] . . . y [𝑁 ⊗ 1]) T (4.7b)

Φ =

⎛
⎜⎝

ϕ T[0]
...

ϕ T[𝑁 ⊗ 1]

⎞
⎟⎠ (4.7c)

where ϕ and Θ are represented by (3.31a) and (3.31b), respectively. The term
W denotes a positive deĄnite weighting matrix. In the case W is a diagonal
matrix with w𝑖 > 0, the LS error is:

𝑉 (Θ̂) =
1
𝑁

𝑁−1∑︁

𝑘=0

w [𝑘]ε2[𝑘] (4.8)

The solution to the weighted least squares problem (4.7a) is:

Θ̂ =
(︀

Φ T WΦ
)︀−1 (︀

Φ T Wy
)︀

(4.9)

In the case W = I, the solution is the ordinary least squares estimate as
presented in (3.40).

Weighted IVM are analogous to the EIV method (3.78). The resulting cost
function of the MISO model (3.30) including instrumental variables and a
weighting matrix is:

𝑉 (Θ̂) =
1
2

ε T W T ζζ T Wε (4.10a)

ζ =

⎛
⎜⎝

ζ T[0]
...

ζ T[𝑁 ⊗ 1]

⎞
⎟⎠ (4.10b)

where ζ are instrumental variables as in (3.52). 𝑉 (Θ̂) is minimized by:

Θ̂ =
(︀

ζ T WΦ
)︀−1

(ζWy) (4.11)
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where y and Φ are deĄned by (4.7b) and (4.7c), respectively.
Further, it will be shown that information retrieved from the data selection

method can be used to propose a weighting matrix. The resulting matrix W

can be used in the last step of the data selection method aiming at estimating
better models than when using ŞstandardŤ identiĄcation methods.

4.3 Least Squares Approach for Data Merging
Consider informative intervals Z𝑖, 𝑖 = 1,2, . . . ,𝑞 associated to 𝑞 informative
intervals each of length of lengths 𝑛𝑖. The resulting data set 𝒟 is obtained as
the union of the informative sequences:

𝒟 :
{︀
¶Y1,U1♢, ¶Y2,U2♢, . . . , ¶Y𝑛𝑞 ,U𝑛𝑞♢

}︀
(4.12)

with,

Y𝑖
T =

(︀
y[0] T . . . y[𝑛𝑖 ⊗ 1] T

)︀
∈ R

𝑛𝑖×𝑛𝑦 (4.13)

U𝑖
T =

(︀
u[0] T . . . u[𝑛𝑖 ⊗ 1] T

)︀
∈ R

𝑛𝑖×𝑛𝑢 (4.14)

and 𝑛𝑢 and 𝑛𝑦 correspond to the number of inputs and outputs, respectively.
Let 𝑉𝑖 be a cost function applied to the 𝑖⊗th informative interval. The total

cost function is expressed by:

𝑉total(Θ̂) =
𝑞∑︁

𝑖=1

𝑉𝑖(Θ̂𝑖) (4.15)

The parameter vector Θ̂ is then estimated by minimizing the total cost function
(4.15).

Assume that two informative intervals are available (𝑞 = 2), the least squares
error is used as a minimizing criterion in the following cost functions 𝑉𝑖.

𝑉𝑖(Θ̂𝑖,Z
𝑖) = ε𝑖

T ε𝑖 (4.16)

Replacing (4.16) in (4.15) and taking the derivative for 𝑖 = 1,2 yields

𝜕𝑉total

𝜕Θ
= Φ1

T Φ1Θ̂⊗ Φ1
T Y1 + Φ2

T Φ2Θ̂⊗ Φ2
T Y2 (4.17)

The gradient (4.17) is zero if and only if the following holds:

(︀
Φ1

T Φ1 + Φ2
T Φ2

)︀
Θ̂ = Φ1

T Y1 + Φ2
T Y2 (4.18)
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The least squares estimate is then computed as

Θ̂ =

(︃
𝑞∑︁

𝑖=1

𝐻𝑖

)︃−1 𝑞∑︁

𝑖=1

𝑔𝑖 (4.19)

with, 𝐻𝑖 = Φ𝑖
T Φ𝑖 , 𝑔𝑖 = Φ𝑖

T Y𝑖 and 𝑞 = 2 (4.20)

The method (4.19) will yield biased estimates in the case of colored noise.
Thus, alternative identiĄcation methods are necessary to deal, for instance, with
correlated additive noise. data merging by the LSM should be performed using
(4.19) since better conditioned matrices are obtained instead of solving (4.3).

4.4 Instrumental Variables Approach for Data Merging

Consider 𝑞 informative intervals each of size 𝑛𝑖 = 𝑘𝑖2 ⊗ 𝑘𝑖1, 𝑖 = 1,2, . . . ,𝑞. The
resulting data set is

𝒟 :
{︀
¶y1,U1♢, ¶y2,U2♢, . . . , ¶y𝑞,U𝑞♢

}︀
(4.21a)

y𝑖 = (y [𝑘𝑖1] . . . y [𝑘𝑖2]) T ∈ R
(𝑘𝑖2−𝑘𝑖1+1)×1 (4.21b)

U𝑖 = (u[𝑘𝑖1] . . . u[𝑘𝑖2]) T ∈ R
(𝑘𝑖2−𝑘𝑖1+1)×𝑛𝑢 (4.21c)

where 𝑘𝑖1 and 𝑘𝑖2 are the lower and upper interval bounds, respectively. The
equation (3.44) needs to be solved for each of the retrieved intervals as follows

1
𝑘12 ⊗ 𝑘11 + 1

𝑘12∑︁

𝑘=𝑘11

ζ1[𝑘]ε1[𝑘] + . . . +
1

𝑘𝑞2 ⊗ 𝑘𝑞1 + 1

𝑘𝑞2∑︁

𝑘=𝑘𝑞1

ζ𝑞[𝑘]ε𝑞[𝑘] = 0

(4.22a)

ε𝑖[𝑘] = y [𝑘]⊗ ϕ T[𝑘]Θ̂ 𝑘 = 𝑘𝑖1,𝑘𝑖1 + 1, . . . ,𝑘𝑖2 (4.22b)

The parameter vector is computed by substituting (4.22b) in (4.22a):

Θ̂ =

(︃
𝑞∑︁

𝑖=1

𝐻𝑖

)︃−1(︃ 𝑞∑︁

𝑖=1

𝑔𝑖
−1

)︃
(4.23a)

𝐻𝑖 =
𝑘𝑖2∑︁

𝑘=𝑘𝑖1

ζ[𝑘]ϕ T[𝑘] 𝑔𝑖 =
𝑘𝑖2∑︁

𝑘=𝑘𝑖1

ζ[𝑘]y [𝑘] (4.23b)
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Parameter estimation using (4.23) yields better conditioned matrices than when
considering the entire data set. Moreover, the computational time decreases
since the resulting matrices have a smaller size than presented in (3.78).

4.5 Multiple-cost Approach for Data Merging
The multiple-cost approach as presented in [54] aims at Ąnding a minimum of a
cost function 𝑉total w.r.t the parameter vector Θ. The total cost function is:

𝑉total =
𝑞∑︁

𝑖=1

𝑉𝑖 (4.24)

where 𝑉𝑖 is the cost function for the 𝑖⊗th informative interval. Cost functions
as in (3.39) or (3.44) can be used for 𝑉𝑖. The estimation problem using the
multiple-cost approach is formulated as:

Θ̂ = Θ̂
(︁

ZD

)︁
= arg min

Θ∈𝐷ℳ

𝑉total (4.25)

where 𝐷M is the set of values over which Θ ranges. Consider that the parameter
vector associated with each interval Θ̂𝑖 and Θ̂ are related as follows

Θ̂ =
𝑞∑︁

𝑖=1

Θ̂𝑖 + ∆Θ̂𝑖 (4.26)

where ∆Θ̂𝑖 represent increments required to equal the individual-run estimates
to the multiple-cost one. Minimization of (4.24) yields

𝜕𝑉total

𝜕Θ

⃒⃒
⃒⃒

Θ

=
𝑞∑︁

𝑖=1

𝜕𝑉𝑖

𝜕Θ𝑖

⃒⃒
⃒⃒
⃒

Θ̂𝑖+∆Θ̂𝑖

(4.27)

For a minimum, the following equality must hold

𝑞∑︁

𝑖=1

𝜕𝑉𝑖

𝜕Θ

⃒⃒
⃒⃒
⃒

Θ𝑖+∆Θ̂𝑖

= 0 (4.28)

Expanding the left-hand side in the vicinity of the estimates and neglecting
higher-order terms results in

𝑞∑︁

𝑖=1

𝜕𝑉𝑖

𝜕Θ

⃒⃒
⃒⃒
⃒

Θ̂𝑖

+
𝑞∑︁

𝑖=1

𝜕2𝑉𝑖

𝜕Θ2

⃒⃒
⃒⃒
⃒

Θ̂𝑖

∆Θ𝑖 ≡ 0 (4.29)
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By deĄnition, the Ąrst term in (4.29) is zero. Then, replacing (4.26) in (4.29)
yields

𝑞∑︁

𝑖=1

𝜕2𝑉𝑖

𝜕Θ2

⃒⃒
⃒⃒

Θ𝑖

(Θ⊗ Θ𝑖) ≡ 0 (4.30)

The parameter vector Θ is then estimated by:

Θ̂ =

(︃
𝑞∑︁

𝑖=1

𝜕2𝑉𝑖

𝜕Θ2

⃒⃒
⃒⃒
⃒

Θ̂𝑖

)︃−1(︃ 𝑞∑︁

𝑖=1

𝜕2𝑉𝑖

𝜕Θ2

⃒⃒
⃒⃒
⃒

Θ̂𝑖

Θ̂𝑖

)︃
(4.31)

In short notation, (4.31) can be expressed by

Θ̂ =

(︃
𝑞∑︁

𝑖=1

M𝑖

)︃−1(︃ 𝑞∑︁

𝑖=1

M𝑖Θ̂𝑖

)︃
(4.32)

where M𝑖 is the information matrix associated to the 𝑖-th informative interval.

The solutions in (4.19) and (4.23a) yield similar results as when using the
multiple-cost approach. However, an additional operation is required when
using multiple-cost as local estimates need to be computed for each informative
interval. The information matrix M𝑖 can be replaced by one of the obtained
in section 3.3. Models estimated with entire data sets and with informative
intervals will be further discussed in Chapter 6.

4.6 Discussion
The data merging problem refers to estimating a model with data retrieved
from different informative intervals. The data cannot be simply joined as
each informative interval has a different non-zero mean value and, consequently,
the total estimate will be affected. Models associated to informative sequences
should have the same structure and order for data merging. The total estimate
is obtained by minimizing a total cost function which is a sum of cost functions
for each interval.

Three solutions to this problem were presented in this chapter: least squares,
instrumental variables and multiple-cost. The Ąrst two approaches have similar
features as their counterpart methods used for batch off-line identiĄcation.
The least squares approach cannot guarantee consistent estimates in case of
correlated additive noise. As previously discussed, this is a signiĄcant drawback
as correlated noise is likely to be expected in real applications.
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The IV method for data merging is robust against correlated noise. It is based
on the EIV and represents an alternative to the least squares approach which is
commonly found in the literature. A multiple-cost approach is a more general
technique where the estimate is computed minimizing the sum of individual cost
functions. Although it represents a general method, it is computationally more
demanding than the other two approaches as estimates are computed for each
interval. An approach for nonlinear system identiĄcation using different data
sets is presented in [56]. Results from simulation and real case studies show
that suitable models are obtained using the method in [56] with different data
sets. The procedures presented in this chapter will be compared and discussed
using simulation and real case studies.



CHAPTER 5

Data Selection Method for System Identification (DS4SID)

In the present chapter, a new and modular method, DS4SID, is introduced
as data selection approach which addresses limitations found in the avail-
able methodologies. The problem of selecting informative intervals is divided
into three main tasks: change detection, interval bounding and data merging.
DS4SID differs in several aspects from current methods. Firstly, it can be
applied to multivariate processes which is a relevant extension to the current
state of the art. Additional tests to evaluate if a change in the process was gen-
erated by an excitation in the input, are not required. This aspect is implicitly
evaluated in the detection test. Secondly, upper interval bounds are deĄned by
thresholding the gradient of the reciprocal of the condition number computed for
the information matrix obtained from a chosen parameter estimation method.
This feature can decrease misdetection of informative intervals and enhances
the performance when compared to current approaches. Additionally, data
normalization is not required which saves processing time. Thirdly, the proposed
detection method is robust to colored noise that is most likely to be found in
real applications.

5.1 Identifying Data Sets Predominantly at Steady-state
Parameter computation with predominantly stationary data sets can have
negative effects on the estimates. To analyze this situation, consider a process
described by:

(︀
1⊗ 0.3𝑞−1 + 0.5𝑞−2

)︀
𝑦[𝑘] = 1.5𝑞−1𝑢[𝑘] +

(︀
1 + 0.8𝑞−1 + 0.3𝑞−2

)︀
𝑒[𝑘] (5.1)

where ¶𝑒[𝑘]♢ is an i.i.d. normally distributed random sequence with 𝒩 (0, σ2
𝑒).

From (5.1), the input transfer function is

𝐺0

(︀
𝑞−1
)︀

=
1.5𝑞−1

1⊗ 0.3𝑞−1 + 0.5𝑞−2
(5.2)
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The ŞtrueŤ parameter vector of the input transfer function is

Θ0 = (⊗0.3 0.5 1.5) T (5.3)

The order for the parameters of 𝐴
(︀
𝑞−1
)︀

and 𝐵
(︀
𝑞−1
)︀

are 𝑛𝑎 = 2 and 𝑛𝑏 = 1,
respectively.

The following model is used to identify (5.1):

(︀
1 + 𝑎1𝑞

−1 + 𝑎2𝑞
−2
)︀

𝑦[𝑘] = 𝑏1𝑞
−1𝑢[𝑘] + ε[𝑘] (5.4)

The input transfer function of the model (5.4) is:

𝐺(𝑞−1; Θ̂) =
𝑏1𝑞

−1

1 + 𝑎1𝑞−1 + 𝑎2𝑞−2
(5.5)

The process (5.1) can be identiĄed using an input signal with order of
excitation 𝑛𝑏 (see section 3.6). The following signal is used for experiments:

𝑢[𝑘] =

{︃
0; 0 ⊘ 𝑘 < 25

1; 25 ⊘ 𝑘 ⊘ 1000
(5.6)

The use of step signals as (5.6) represents a typical case found in continuously
operated plants. Processes are moved from a current to a new operating point
as a result of excitation signals as previously described.

The stochastic process in (5.1) is colored Gaussian noise which represents
a situation that is likely to be found in logged data. The variance of ¶e[𝑘]♢
was adjusted for several SNR (cf. (2.37)). Two identiĄcation methods are used
for parameter estimation: the LSM and optimal IVM (see section 3.3.1 and
section 3.3.2). Estimated input transfer functions and resulting information
matrices are analyzed. The following criterion is used to evaluate the resulting
input transfer function:

𝑁𝑜𝑟𝑚 =
1
𝑙

𝑙∑︁

𝑗=1

ˆ ⃒⃒
⃒𝐺0(𝑒𝑖æ)⊗𝐺𝑗(𝑒𝑖æ)

⃒⃒
⃒
2

dæ (5.7)

where 𝐺𝑗(𝑒𝑖æ) represents the estimated input transfer function for the 𝑗-th
experiment, 𝑙 is the total number of experiments and 𝑁𝑜𝑟𝑚 evaluates the
difference in the magnitude of the frequency response between the real and
the estimated input transfer functions. Even though repetition of experiments
is constrained in real applications, the proposed example helps to give an
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overview of the effect of poorly excited data sets on parameter estimation. The
conditioning of the auxiliary information matrix at 𝑘, Ĩ(𝑘, Θ̂)) is evaluated with
the reciprocal of the condition number κ̃[𝑘]

κ̃[𝑘] =
λmin(Ĩ(𝑘; Θ̂))

λmax(Ĩ(𝑘; Θ̂))
(5.8)

Since the additive disturbance in (5.1) is colored noise, the least squares
estimate will be biased. The estimated parameter vector will not converge
asymptotically to the true value but will exhibit a difference called bias. In the
case of using input signals with high order of excitation, sample information
matrices are well-conditioned. However, a different situation is observed if
signals with low order of excitation as in (5.6) are used.

The following notation is adopted for the estimated input transfer functions,
the sample information matrices and the reciprocal of the condition number:

Ĝ1(𝑘; 𝑞−1), I(𝑘; Θ̂1), κ̃(I(𝑘; Θ̂1)) : estimated input transfer function,

information matrix and reciprocal of the

condition number using least squares

Ĝ2(𝑘; 𝑞−1), I(𝑘; Θ̂2), κ̃(I(𝑘; Θ̂2)) : estimated input transfer function,

information matrix and reciprocal of the

condition number using instrumental variables

The input transfer functions as well as the information matrices were computed
for the following identiĄcation data sets:

Z0 = ¶y [0],u[0],y [1],u[1], . . . , y [𝑘0 ⊗ 1],u[𝑘0 ⊗ 1]♢ (5.9a)

Z1 = ¶y [0],u[0],y [1],u[1], . . . , y [𝑘0],u[𝑘0]♢ (5.9b)
...

Z𝑘2 = ¶y [0],u[0],y [1],u[1], . . . , y [𝑘2 ⊗ 1],u[𝑘2 ⊗ 1]♢ (5.9c)
...

Z𝑁 = ¶y [0],u[0],y [1],u[1], . . . , y [𝑁 ⊗ 1],u[𝑁 ⊗ 1]♢ (5.9d)

where Z𝑁 corresponds to the entire data set and 𝑁 is the number of observations.
The initial data set Z0 is chosen so that 𝑘0 ⪰ 𝑛𝑝, where 𝑛𝑝 is the model order.
This choice will avoid numerical problems. In Z𝑘2, 𝑘2 = 𝑘step + 𝑛 where 𝑘step

is the instant when the system is excited with the step signal and 𝑛 > 𝑛𝑝.
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The term Z𝑘2 will represent the ideal data set for parameter estimation since,
for 𝑘 > 𝑘2, the conditioning of the sample information matrix will start to
exhibit ill-conditioning. This means, that, in case the model order is correctly
chosen, the entire data set should not be preferred for parameter estimation.
Instead, the estimates should be computed with selected sequences as otherwise
numerical problems can appear when performing computations.

A total of 100 experiments were performed using different realizations of
¶e[𝑘]♢ in (5.1) and the same input signal (5.6). The norm (5.7) of the estimated
transfer functions using the LSM is shown in the top left plot of Figure 5.1.

In the case of input signals with high order of excitation, for instance a
pseudorandom binary sequence (PRBS), the bias of the estimated input transfer
function is approximately constant [17]. However, (5.7) increases for 𝑘 > 𝑘2

with the input signal in (5.6). Thus, parameters should be estimated with the
data set ¶Z♢𝑘2

𝑘=𝑘1
so that the parameter bias does not increase as more data are

used for identiĄcation. In real applications, the time 𝑘2 cannot be retrieved
from a criterion such as (5.7) since the ŞtrueŤ transfer function 𝐺0(𝑞−1,Θ0) is
unknown.

The reciprocal of the condition number is a criterion that has been shown to
work well in practice. It is scaled between 0 and 1, which facilitates the choice
of thresholds that can be used in different applications. The reciprocal of the
condition number κ̃ for the information matrix using the LSM is shown in the
bottom left plot of Figure 5.1. As a general guideline, large values of κ̃ indicate
well conditioned matrices whereas ill-conditioning is associated to small values
of κ̃.

The information matrix I(𝑘; Θ̂1) is better conditioned with larger data sets
as shown in the bottom left of Figure 5.1. This is observed for different SNRs
used in simulations. The conditioning of I(𝑘; Θ̂1) using the LSM starts to
improve after a certain instant. However, worse estimates of the input transfer
function are obtained as shown in the top left of Figure 5.1 because identiĄcation
with largely stationary data sets increases the parameter bias. A criterion for
selecting informative data based on the conditioning of the information matrix
resulting from the LSM is unreliable in the considered example since the matrix
conditioning improves as more data are used for estimation but, simultaneously,
parameter bias increases. A discarding criterion based on κ̃(I(𝑘; Θ̂1)) will
indicate that more stationary data should be used for identiĄcation since the
conditioning is improving but, indeed, this will increase the parameter bias.

When dealing with very large data sets, practical implementations show that
model quality evaluated for instance using normalized root mean square error
(NRMSE) will just improve slightly if more observations are used for estimation.
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[5, 12]. Thus, only a selection of the identiĄcation data set should be used in the
case of processes that are externally seldom excited. Alternative identiĄcation
methods other than LSM need to be considered for selection of informative
intervals. Among others, methods based on instrumental variables (IV) and the
PEM can be used as part of a procedure for selection of informative data based
on the evaluation of the conditioning of the corresponding information matrix.

The top right plot of Figure 5.1 shows the norm (5.7) of input transfer
functions for different SNRs estimated using an optimal IV method. In contrast
to the LSM, the bias of the input transfer function vanishes as the length of
the interval increases for 10 dB. However, IV estimates also show an increasing
bias in case of 7 dB. This can be explained by the ŞshortŤ length of the data
sets used for estimation.

As shown in Figure 5.1, the optimal IV method is robust to colored noise
since the bias of Ĝ2(𝑘; 𝑞−1) asymptotically tends to zero.. The bias of the
estimates will slightly change with the length of intervals used for computations.
Thus, parameter estimation with ¶Z♢𝑘21

𝑘=𝑘1
or ¶Z♢𝑘22

𝑘=𝑘1
where 𝑘2 < 𝑘21 < 𝑘22

will yield slightly improved estimates but computations using those data sets
will be more demanding. Consequently, a small data set instead of the entire
data set should be used for identiĄcation. In practical situations, the sample
information matrix I(𝑘; Θ̂2) should be evaluated to deĄne informative intervals
for identiĄcation.

The conditioning of I(𝑘; Θ̂2) is shown in the bottom right of Figure 5.1. The
condition number worses when using an optimal IV method and identiĄcation
data sets that are predominantly at steady-state. The condition number reaches
a maximum around 𝑘 = 𝑘2 which corresponds to an instant some samples
after the process is excited with the step signal. From that instant, the larger
the identiĄcation data set becomes the smaller is κ̃(I(𝑘; Θ̂2)) that shows a
degradation in the conditioning of the corresponding information matrix. Thus,
as suggested by the bottom right plot of Figure 5.1, parameters should be
estimated with a selected data set which will avoid numerical problems. If the
subset ¶Z♢𝑘2

𝑘=𝑘1
was used for identiĄcation, it will represent around 10 % of the

entire data set Z𝑁 .

The information matrix associated with the LSM is better conditioned than
its counterpart obtained by the IV method as can be concluded from the values
of κ̃(Ĩ(𝑘; Θ̂1)) and κ̃(Ĩ(𝑘; Θ̂2)), respectively. In case of using the optimal IV
method, additional parameters are estimated since the input and noise transfer
functions are independently parametrized. Thus, the information matrices are
Ĩ(𝑘, Θ̂1) ∈ R

𝑛1×𝑛1 when using LSM and Ĩ(𝑘, Θ̂2) ∈ R
𝑛2×𝑛2 when using the IV
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Figure 5.1: Estimated transfer functions and conditioning of the sample informa-
tion matrices dependent on the data interval length using the LSM (left) and an
optimal IV method (right)

method where 𝑛1 < 𝑛2. Consequently, computation of additional parameters in
case of using the IV method yields lower values of κ̃ than when using the LSM.

The effect of identiĄcation data sets predominantly at steady-state on param-
eter estimation was examined with the system (5.1). The condition number
κ̃(Ĩ(𝑘; Θ̂2)) degrades as shown in the bottom right of Figure 5.1. It was shown
that the corresponding information matrix, called instrumental product mo-
ment matrix (IPMM), degrades as larger identiĄcation data sets are used for
parameter estimation. Former analysis suggests that the ŞmostŤ informative
data for system identiĄcation represents only a small part of predominantly
stationary data sets.
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Figure 5.2: Reciprocal of the condition number for different models for the system
(5.1) excited with (5.6) (Solid black line: 𝑛𝑎 = 3. Solid gray line: 𝑛𝑘 = 2)

The behavior of κ̃(Ĩ(𝑘; Θ̂)) when the model and the process are not in the
same class i.e. 𝒢 ̸∈ ℳ is analyzed for two different models described as follows:

ℳ1 :
(︀
1 + 𝑎1𝑞

−1 + 𝑎2𝑞
−2 + 𝑎3𝑞

−3
)︀

𝑦[𝑘] = 𝑏1𝑞
−1𝑢[𝑘] + ε[𝑘] (5.10)

ℳ2 :
(︀
1 + 𝑎1𝑞

−1 + 𝑎2𝑞
−2
)︀

𝑦[𝑘] = 𝑏1𝑞
−2𝑢[𝑘] + ε[𝑘] (5.11)

The order of the ŞtrueŤ model (5.1) is 𝑛𝑎 = 2, 𝑛𝑏 = 1, 𝑛𝑘 = 1, where 𝑛𝑘

denotes the dead time. Note that ℳ1 and ℳ2 differ wrt. 𝒢 in 𝑛𝑎 and 𝑛𝑎,
respectively. The process in (5.1) was excited with the input signal in (5.6), the
model (5.4) was used for identiĄcation and the noise variance σ2

e
was chosen

such that SNR = 10 dB. The models and corresponding information matrices
were computed using identiĄcation data sets as described in (5.9). A total of 100
experiments were performed to analyze the behavior of the information matrix
for 𝒢 ̸∈ ℳ. The results of the conditioning of the information matrix are shown
in in Figure 5.2. The solid black line represents a wrong choice in the model
order for the 𝐴(𝑞−1) polynomial, i.e. 𝑛𝑎 = 3, whereas the gray solid line shows
the behavior for 𝑛𝑘 = 2 i.e. the time delay is wrongly chosen. For both proposed
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cases, the information matrix is worse conditioned than when the model order
is correctly chosen. The conditioning of the information matrix for a wrong
choice of 𝑛𝑎 shows a similar progression as when the model and the process
are in the same class. Low values of the reciprocal of the condition number
as depicted in Figure 5.2 are explained by the computation of an additional
parameter with a data set generated by an input signal of low order of excitation
(cf. (5.6)). A criterion for selection of informative data as reported in [12, 73]
might not be robust for a situation as the one previously described. Consider
that the threshold to deĄne the bound for discarding uninformative data for
estimation is set to κ̃min = 0.8 ≤ 10−4 since considering more elements will yield
computational problems. The interval bound is deĄned at 𝑘 ≡ 600 for 𝑛𝑎 = 3
and 𝑘 ≡ 100 for 𝑛𝑘 = 2. The choice of the model order affects the retrieval of
informative intervals. Since in real cases the true process is not known, the
condition 𝒢 ∈ ℳ cannot be accessed. Thus, a model that represents the process
ŞwellŤ should be chosen and used for a data selection method.

Selection of informative data can support system identiĄcation when dealing
with data sets predominantly at steady-state. The IV method shows the negative
effect on the corresponding information matrix as depicted in the bottom right
of Figure 5.1. In the next sections, a novel method, DS4SID, is introduced
as a suitable solution for the problem of selecting informative sequences for
identiĄcation.

5.2 General Overview of DS4SID
The main goal of DS4SID is to retrieve informative data intervals from logged
process records to support system identiĄcation. The input transfer function,
𝐺(𝑞−1,Θ̂), is also estimated using retrieved intervals. A simpliĄed block diagram
of DS4SID is shown in Figure 5.3. The input of DS4SID is logged data
represented by Z𝑁 . The output of DS4SID are informative data intervals
and a model estimated with the retrieved data.

Two main tasks are performed in the block Şchange detection and interval
boundingŤ. Changes caused by external excitations are located by a detection
test and lower bounds of potentially informative intervals are set to these change
times. The notation Z𝑖 = ¶Z♢𝑘𝑖2

𝑘=𝑘𝑖1
, 𝑖 = 1,2, . . . ,𝑞 will be used to represent

informative intervals. The lower and upper bounds of the 𝑖-th interval are
represented by 𝑘𝑖1 and 𝑘𝑖2, respectively. The subset containing informative
intervals is expressed as the following union (cf. Figure 5.3):

ZD =
𝑞⋃︁

𝑖=1

Z𝑖 (5.12)
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Figure 5.3: SimpliĄed block diagram of the DS4SID

where 𝑞 is the number of potentially informative intervals. A model 𝐺(𝑞−1,Θ̂)
is estimated with ZD by merging data of informative intervals.

A more detailed block diagram of DS4SID is shown in Figure 5.4. The
detection test 𝑇𝐺(u,y) is computed in a Ąrst step represented by the lower
branch of Figure 5.4. In the null-hypothesis ℋ0 of the detection test, the
parameter vector is deĄned by Θ̂0 whereas the parameter for the alternative
hypothesis ℋ1 is Θ̂1. The detection test chooses ℋ0 if the process is not moved
from the current operating point. The hypothesis ℋ1 is accepted if the process
is externally excited which causes a change in the model.

If 𝑇𝐺(u,y) chooses ℋ1, the lower bound of a potentially informative interval is
set to the instant when a change was located which is denoted by 𝑘𝑖1. Then, the
ORIV is used to evaluate the conditioning of the information matrix κ̃(I(Θ̂1))
with a data set ¶Z♢𝑘𝑖2

𝑘=𝑘𝑖1
where 𝑘𝑖2 = 𝑘𝑖1 + 𝑚 ≤ 𝑛𝑝. In the second test of DS4SID,

κ̃(I(Θ̂1)) is updated recursively using the ORIV until the sample information
matrix is ill-conditioned due to data that exhibit poor excitation.

The data selection method proposed in this thesis differs from current ap-
proaches mainly in the following aspects. Firstly, DS4SID can be applied to
multivariate processes in open or closed-loop which is an advantage over cur-
rent approaches that are limited to SISO systems. Secondly, misdetection of
informative intervals is reduced because of utilizing robust detection methods
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method
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UIB

UIB: upper interval bound
LIB: lower interval bound

Informative
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Figure 5.4: Data selection using DS4SID
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and interval bounding. Thirdly, DS4SID is robust to colored noise which is a
situation likely to be found in real applications. As an added feature, a Ąnal
model is computed with the retrieved informative intervals. For Ąrst analysis of
DS4SID, consider the process (5.1) operating in closed loop with the following
PI controller:

𝐶
(︀
𝑞−1
)︀

= 0.112
1 + 𝑞−1

1⊗ 𝑞−1
(5.13)

The input signal is deĄned by

u[𝑘] = 𝐶
(︀
𝑞−1
)︀

(𝑟[𝑘]⊗ y [𝑘]) (5.14)

where 𝑟[𝑘] is the external reference signal described by

𝑟[𝑘] =

⎧
⎪⎨
⎪⎩

0; 0 ⊘ 𝑘 < 25

1; 25 ⊘ 𝑘 < 485

-1.5; 485 ⊘ 𝑘 ⊘ 1000

(5.15)

Figure 5.5 shows the system response to 𝑟[𝑘] according to (5.15). The noise
variance was adjusted so that SNR = 7 dB. Two steps of different sign and
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Figure 5.5: Closed-loop response of the system (5.1)
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amplitude were entered at 𝑘 = 25 and 𝑘 = 485 to evaluate DS4SID under
different process conditions.

The input-output data set used for searching of informative intervals is
denoted by Z𝑁 = ¶u[0],y [0], . . . ,u[𝑁 ⊗ 1],y [𝑁 ⊗ 1]♢. The Ąrst task is to locate
change times in Z𝑁 using a detection test. These instants are related to lower
bounds of informative intervals. Next, these data sequences are evaluated in
a further stage and bounds of informative intervals are set by evaluating the
conditioning of the information matrix resulting from ORIV.

5.3 Determining Lower Interval Bounds
Lower bounds of potentially informative intervals are change times located by a
detection test. Dynamic models are used to describe the process under each
hypothesis of the detection test. Consider that the process can be modeled
around an operating point by:

y [𝑘] = 𝑦00 + 𝑠[𝑘] + ν[𝑘], 𝑘0 ⊘ 𝑘 ⊘ 𝑘2 (5.16)

where the data set for the operating point is deĄned between 𝑘0 and 𝑘2 and
given by Z = ¶y [𝑘0],u[𝑘0], y [𝑘0 + 1],u[𝑘0 + 1], . . . ,y [𝑘2],u[𝑘2]♢. The term 𝑦00

represents a possible non-zero mean and ν[𝑘] ≍ 𝒩 (0,C(θν)) is colored Gaussian
noise. The sequence ¶𝑠[𝑘]♢ is described by a linear model so that s = ΦΘ where
Φ and Θ are deĄned as in (3.25b) and (3.25c), respectively.

In vector notation, (5.16) can be described by:

y = y00 + ΦΘ + e, 𝑘0 ⊘ 𝑘 ⊘ 𝑘2 (5.17)

A data selection method should choose between the following two hypotheses
in order to locate changes due to external excitations:

ℋ0 : y = y00 + ΦΘ0 + e, 𝑘0 ⊘ 𝑘 ⊘ 𝑘1 ⊗ 1

ℋ1 : y = y01 + ΦΘ1 + e, 𝑘1 ⊘ 𝑘 ⊘ 𝑘2

(5.18)

where 𝑘2 ⊗ 𝑘0 ⪰ 𝑛𝑝.
Assume that the parameter vector is Θ = Θ0 for 𝑘 < 𝑘0. Then, in ℋ0, the

process is assumed to be operated at the same operating point i.e. the process is
not excited by changes in the input. In contrast, ℋ1 indicates that the process
was moved from that operating point at 𝑘 = 𝑘1 which is denoted by the change
in the parameter vector Θ = Θ1.

A detection test chooses between the latter hypotheses based on the data
set ¶Z♢𝑘2

𝑘=𝑘0
. The PDFs under ℋ0 and ℋ1 differ in the unknown parameter
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vector. The CUSUM algorithm as presented in section 3.5 can be used for
change detection in dynamic systems. This test decides ℋ1 if

g [𝑘 ♣ y,u] > γ𝑐 (5.19)

where g [𝑘 ♣ y,u] denotes that the test statistic is computed based on input and
output sequences. As presented in (3.81), the log-likelihood ratio increment
s[𝑘] is computed based on the PDF under each hypothesis.

Since the change time 𝑘1 in (5.18) is unknown, (5.19) must be computed
for different possible change times. The detector in (5.19) can be sequentially
evaluated using two windows for computations (see [10, 87]). The PDF under
ℋ0 is estimated using a growing time window with size 𝑀0 = 𝑘2⊗ 𝑘0. Whereas,
PDF under ℋ1 is computed using a sliding Ąxed-size time window of size 𝑀1.

Consider part of the identiĄcation data set described by:

Z𝑀 = ¶y [0],u[0], y [1],u[1], . . . ,y [𝑀 ⊗ 1],u[𝑀 ⊗ 1]♢ (5.20)

where 𝑀 < 𝑁 and a change occurs at 𝑘 = 𝑘1. The Ąrst window has size 𝑀0

and corresponds to the data set ¶Z♢𝑘2

𝑘=𝑘0
. At each iteration, 𝑀0 is increased

by one so that a new data set is generated and the PDF under ℋ0 is updated.
The resulting data sets for computation of the PDFs under ℋ0 and ℋ1 after 𝑛

iterations, where 𝑙 is the iteration counter, are

𝑙 = 0 ℋ0 : ¶Z♢𝑘2

𝑘=𝑘0
ℋ1 : ¶Z♢𝑘2

𝑘=𝑘2−𝑀1

𝑙 = 1 ℋ0 : ¶Z♢𝑘2+1
𝑘=𝑘0

ℋ1 : ¶Z♢𝑘2+1
𝑘=𝑘2−𝑀1+1

...

𝑙 = 𝑛 ℋ0 : ¶Z♢𝑘2+𝑛
𝑘=𝑘0

ℋ1 : ¶Z♢𝑘2+𝑛
𝑘=𝑘2−𝑀1+𝑛

(5.21)

As expressed by (5.21), the data sets used to compute the PDF under
ℋ0 correspond to growing time windows that are increased at each iteration.
Whereas, the PDF under ℋ1 is computed with a sliding Ąxed-size time window
of length 𝑀1. The test statistic g [𝑘] is then evaluated and compared at each
iteration with the threshold γ𝑐. The procedure to locate lower interval bounds
is shown in Algorithm 1.

Lower bounds of informative intervals are denoted by:

𝑘𝑖1, 𝑖 = 1, 2, . . . , 𝑞 (5.22)
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Algorithm 1: Detection of lower interval bounds using the CUSUM test
Input: Threshold γ𝑐, data window length 𝑀1 and model order

𝑛 = [𝑛𝑎 𝑛𝑏 𝑛𝑘]. The data set for computation of Θ̂0 is deĄned by
setting 𝑘 = 𝑚 ≤ 𝑛𝑝. Whereas, 𝑀1 = 𝑚/2 ≤ 𝑛𝑝 where 𝑛𝑝 is the number
of parameters and 4 ⊘ 𝑚 ⊘ 10 as discussed in section 5.7. The
value of 𝑀1 determines the size of the data set for computation of
Θ̂1.

Output: Lower bounds of informative intervals 𝑘𝑖1, 𝑖 = 1, 2, . . . , 𝑞

Data: Z𝑁 = ¶y [0],u[0], y [1],u[1], . . . ,y [𝑁 ⊗ 1],u[𝑁 ⊗ 1]♢
Initialization: g [𝑖] = s[𝑖] = 0, 𝑖 = 0,1, . . . ,𝑘 ⊗ 1
while 𝑘 ⊘ 𝑁 ⊗ 1 do

Compute the current estimates of Θ̂𝑖[𝑘], 𝑖 = 0,1 for each hypotheses
with the following data sets:

ℋ0 : Z0 = ¶y [0],u[0], y [1],u[1], . . . ,y [𝑘 ⊗ 1],u[𝑘 ⊗ 1]♢ (5.23a)

ℋ1 : Z1 = ¶y [𝑘 ⊗𝑀1 ⊗ 1],u[𝑘 ⊗𝑀1 ⊗ 1],

y [𝑘 ⊗𝑀1],u[𝑘 ⊗𝑀1], . . . ,y [𝑘 ⊗ 1],u[𝑘 ⊗ 1]♢ (5.23b)

Compute ε𝑖[𝑘] and σ̂2
𝑖 [𝑘] for 𝑖 = 0,1 as follows

ε0[𝑘] = y [𝑘]⊗ ϕ T[𝑘]Θ̂0[𝑘] (5.24a)

ε1[𝑘] = y [𝑘]⊗ ϕ T[𝑘]Θ̂1[𝑘] (5.24b)

σ̂2
0[𝑘] =

1
𝑘 ⊗ 𝑛𝑝

𝑘−1∑︁

𝑖=0

ε2
0[𝑖] (5.24c)

σ̂2
1[𝑘] =

1
𝑀1 ⊗ 𝑛𝑝

𝑘−1∑︁

𝑖=𝑘−𝑀1−1

ε2
1[𝑖] (5.24d)

Compute the log-likelihood ratio as follows

s[𝑘] =
1
2

ln
σ̂2

0

σ̂2
1

+
ε2

0[𝑘]
2σ̂2

0[𝑘]
⊗ ε2

1[𝑘]
2σ̂2

1[𝑘]
(5.25)

Compute g [𝑘] as follows

g [𝑘] = (g [𝑘 ⊗ 1] + s[𝑘])+ = max(0, g [𝑘 ⊗ 1] + s[𝑘]) (5.26)

if g [𝑘] > γ𝑐 then
𝑘𝑖1 ⊂ 𝑘

Evaluate conditioning of the information matrix to deĄne upper
interval bounds (refer to section 5.4)

else
𝑘 = 𝑘 + 1
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Initial upper bounds of informative intervals are denoted by 𝑘𝑖1 + 𝑛𝑝. Thus,
an informative interval is initially denoted by ¶Z♢𝑘𝑖1+𝑛𝑝

𝑘=𝑘𝑖1
but the upper bound

should be deĄned in a further step. Once (5.19) holds, the lower bound of
a potentially informative interval is set and a further procedure is started to
evaluated the conditioning of the information matrix. Informative intervals
with deĄned upper bounds are denoted by:

¶Z♢𝑘𝑖2

𝑘=𝑘𝑖1
, 𝑖 = 1, 2, . . . , 𝑞 (5.27)

5.4 Determining Upper Interval Bounds

Parameter estimation can be negatively affected when data sets that exhibit poor
excitation are used for computations. Data-driven modeling usually involves
matrix inversion which can yield numerical problems since matrix columns may
become nearly linearly dependent. In the case of the LSM, the information
matrix is:

I(Θ̂) = σ−2
e

(Φ T Φ) (5.28)

where σ2
e

is the noise variance and Φ is the regression matrix as deĄned in
(3.25b). The information matrix in (5.28) can also be expressed as

I(Θ̂) = σ−2
e

Ĩ(Θ̂) (5.29)

where Ĩ(Θ̂) = Φ T Φ, Ĩ(Θ̂) ∈ R
𝑛𝑝×𝑛𝑝 will be called auxiliary information matrix.

In the LSM, Ĩ(Θ̂) should be full-rank and well-conditioned since it is inverted for
parameter estimation as expressed in (3.42). To evaluate the conditioning of
information matrices, the use of Ĩ(Θ̂) is preferred over I(Θ̂) because computation
of parameters involves matrix operations on Ĩ(Θ̂). The conditioning of Ĩ(Θ̂)
can degrade with data sets that exhibit poor excitation.

Upper bounds of informative intervals can be deĄned based on a test that
evaluates the conditioning of the auxiliary information matrix. Lower bounds
of useful intervals, 𝑘𝑖1, 𝑖 = 1,2, . . . ,𝑞, are located by detectors as explained in
section 5.3.

An initial data interval used to compute Ĩ(Θ̂) is:

Z(𝑛𝑖0) = ¶Z♢𝑘𝑖1

𝑘=𝑘𝑖1−𝑛𝑙−1

= ¶y [𝑘𝑖1 ⊗ 𝑛𝑙 ⊗ 1],u[𝑘𝑖1 ⊗ 𝑛𝑙 ⊗ 1], y [𝑘𝑖1 ⊗ 𝑛𝑙],u[𝑘𝑖1 ⊗ 𝑛𝑙], y [𝑘𝑖1],u[𝑘𝑖1]♢
(5.30)
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where 𝑛𝑙 ⪰ 𝑛𝑝 should be chosen so that the size of the resulting data set
guarantee a reliable computation of Ĩ(Θ̂) since identiĄcation methods can be
affected when using small data sets. The data set in (5.30) is used only for
initial computations of the condition number of Ĩ(Θ̂). This is a reference value
that is required in further steps for determining upper interval bounds. The
data set in (5.30) is used at the iteration 𝑙 = 0. The upper bound of potentially
informative intervals is increased by 1 at each iteration and the conditioning of
the auxiliary information matrix is evaluated. The resulting data sets after 𝑚

iterations are:

𝑙 = 1 : Z(𝑛𝑖1) = ¶Z♢𝑘𝑖1+1
𝑘=𝑘𝑖1−𝑛𝑙−1

𝑙 = 2 : Z(𝑛𝑖2) = ¶Z♢𝑘𝑖1+2
𝑘=𝑘𝑖1−𝑛𝑙−1

...

𝑙 = 𝑚 : Z(𝑛𝑖𝑚) = ¶Z♢𝑘𝑖1+𝑚
𝑘=𝑘𝑖1−𝑛𝑙−1

(5.31)

The matrix Ĩ(Θ̂) is computed until the 𝑚-th iteration where the conditioning
starts to deteriorate and that computation of Θ̂ can be affected by numerical
problems. This procedure is repeated for each change time located by the
detection test. Consider the following short notation for κ̃(Ĩ(Θ̂)) computed
using data sets as deĄned by (5.30) and (5.31):

κ̃(𝑛𝑖0) : computed with Z(𝑛𝑖0)

κ̃(𝑛𝑖1) : computed with Z(𝑛𝑖1)

...

κ̃(𝑛𝑖𝑚) : computed with Z(𝑛𝑖𝑚)

(5.32)

The conditioning of Ĩ(Θ̂) with Z(𝑛𝑖0) yields low values since the data exhibit
seldom changes. The value of κ̃(Ĩ(Θ̂)) becomes larger until some instant 𝑘 = 𝑚.
Thus, the following can be stated:

κ̃(𝑛𝑖0) < κ̃(𝑛𝑖1) < . . . < κ̃(𝑛𝑖𝑚) < κ̃(𝑛𝑖𝑚+1) < κ̃(𝑛𝑖𝑚+2) < . . . < κ̃(𝑛𝑖𝑚+𝑛) < κ̃(𝑚)

(5.33)

Locating upper bounds for informative intervals consists of determining
the instant 𝑘 where κ̃(Ĩ(Θ̂)) changes from high to low values which means a
worsening of the matrix conditioning. Figure 5.6 shows κ̃(Ĩ(Θ̂)) for the two
useful sequences generated by the excitation signal (5.15). The value of κ̃(Ĩ(Θ̂))
exhibit an abrupt change at 𝑘 = 100 which represents that the conditioning
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Figure 5.6: Upper interval bounding using the ORIV method

of Ĩ(Θ̂) improved signiĄcantly. Low values of Ĩ(Θ̂), as shown before the abrupt
change, describe poor conditioning of the auxiliary information matrix since
data used for estimation exhibit little excitation.

As shown in Figure 5.6, conditioning of Ĩ(Θ̂) starts to degrade after the change
time as more data that exhibit poor excitation are used for estimation. This
indicates that system identiĄcation should be performed with a selected data
set to avoid numerical problems.

Upper interval bounds should be deĄned based on a trade-off between the
quality of the resulting model and the conditioning of the auxiliary information
matrix. Thus, upper interval bounding can be proposed as follows:

Evaluate recursively κ̃1 and extend the informative interval

until κ̃1[𝑘] ⊘ η ≤ κ̃1[𝑘𝑠,1] (5.34)

The user-deĄned parameter η can be set, for instance to 0.25 < η ⊘ 0.50.
This means that an interval is extended until the condition number has decayed
below 25 % of κ̃1[𝑘𝑠,1]. The two informative intervals ¶Z♢𝑘12

𝑘=𝑘11
and ¶Z♢𝑘22

𝑘=𝑘21
in

Figure 5.6 were obtained using this criterion.
In [12], a discarding criterion based on absolute bounds for the reciprocal of

the condition number is proposed. The choice of thresholds for that criterion is
deĄned based on computationally numerical precision. The value of κ̃(Ĩ(Θ̂))
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Figure 5.7: Reciprocal of the condition number of the information matrix for the
model in (5.4) using a ramp signal for excitation. Solid black line: correct model
order. Solid gray line: 𝑛𝑎 = 3. Dashed black line: 𝑛𝑘 = 2

depends on the data used for computation. Thus, informative sequences can
be wrongly discarded if the value of κ̃ is compared with thresholds that are
valid for the entire data set as proposed in [12]. In contrast, (5.34) proposes a
thresholding based on the value of κ̃(Ĩ(Θ̂)) for each interval. This can decrease
misdetection of informative intervals when compared to [12]. Informative
intervals can, however, be wrongly discarded using such approach specially in the
case of small changes in the amplitude of the input signal. In contrast, interval
bounding as in (5.34) can guarantee that upper bounds of informative intervals
are located regardless of the magnitude of the change between operating points.

Changes in the set points can be represented by ramp-like signals different to
the step representation in (5.15). However, the values follow a similar progression
as observed in the case of excitation with a step as shown in Figure 5.7. Input
signals with greater order of excitation than a step yield larger interval bounds
since the information matrix will be better conditioned than in the Ąrst case.
However, a criterion as presented in this section can also be proposed for interval
bounding in case of excitation with ramp-like signals.
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5.5 Combination of Informative Intervals
The resulting data set that includes informative intervals is denoted by:

Z̃ =
{︁
¶Z♢𝑘12

𝑘=𝑘11
, ¶Z♢𝑘22

𝑘=𝑘21
, . . . , ¶Z♢𝑘𝑞2

𝑘=𝑘𝑞1

}︁

Z̃ = ¶y [𝑘11],u[𝑘11], y [𝑘11 + 1],u[𝑘11 + 1], . . . , y [𝑘12],u[𝑘12],

y [𝑘21],u[𝑘21], y [𝑘21 + 1],u[𝑘21 + 1], . . . , y [𝑘22],u[𝑘22],
...

y [𝑘𝑞1],u[𝑘𝑞1], y [𝑘𝑞1 + 1],u[𝑘𝑞1 + 1], . . . , y [𝑘𝑞2],u[𝑘𝑞2]♢

(5.35)

where 𝑞 is the number of retrieved informative intervals.
Figure 5.8 shows the two informative intervals retrieved by DS4SID for the

system (5.1) operating in closed-loop with the controller (5.13) and with ref-
erence signal (5.15). Data sets logged in industrial processes of continuously
operated plants are normally very large and exhibit seldom changes between
operating points. Tests with logged data from real processes show that informa-
tive sequences can represent between 5 % and 10 % of the entire data set (see
[5, 12]).

The intervals Z̃1 and Z̃2 are merged using approaches introduced in Chapter 4.
Since satisfactory estimates can be computed from the retrieved informative
intervals, models estimated with Z̃ show similar performance than when using
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Figure 5.8: Informative intervals selected by DS4SID
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the entire data set as will be discussed in Chapter 6. Model estimation with
large data sets is, however, computationally demanding. Therefore, selection of
informative intervals should be considered as an attractive trade-off between
quality of the estimated models and computational cost for estimation.

5.6 DS4SID Algorithm
Lower and upper interval bounds are deĄned by two tests in DS4SID. The
number of tests is thus reduced when compared to other approaches that propose
at least four sequential evaluation stages [12, 74]. Lower interval bounds are
deĄned using a detection test. Upper interval bounds are determined by
evaluating the conditioning of the sample information matrix retrieved from a
parameter estimation method. A model is estimated in a Ąnal stage by merging
the data of the informative intervals.

In the null-hypothesis of the detection test, ℋ0, the model is described using
a model parametrized by Θ0. In this application, Θ0 denotes the parameter
vector of the model for the null-hypothesis. This use should be distinguished
from modeling applications where Θ0 usually represents the ŞtrueŤ parameter
vector which, unless otherwise indicated, is assumed to be unknown in this
work. In the alternative hypothesis, ℋ1, the process is described using a model
parametrized by Θ1.

Firstly, the detection test is computed with the data set Z(1) as in (5.19). The
size of this data set is deĄned by 𝑀0 = 𝑘2 ⊗ 𝑘0 with 𝑀0 ⪰ 𝑛𝑝 where 𝑛𝑝 is the
number of parameters of the model and 𝑘0 is the starting discrete-time index of
the data set. The value of 𝑘2 is, thus, chosen so that the former condition for
𝑀0 holds. For instance, 𝑘2 can be set as 𝑘2 = 𝑐 ≤ 𝑛𝑝 + 𝑘0 with 4 ⊘ 𝑐 ⊘ 10 which
guarantees the condition for 𝑀0. This choice avoids numerical problems in the
parameter estimation methods involved in the computation of the detection
test. The detection test is iteratively evaluated until a change is detected. Then,
the detector is reset and searches for further changes. The detection test is
computed with increasing number of data sets as follows,

Z(1) = ¶y [𝑘0],u[𝑘0],y [𝑘0 + 1],u[𝑘0 + 1], . . . ,y [𝑘2],u[𝑘2]♢
Z(2) = ¶y [𝑘0],u[𝑘0],y [𝑘0 + 1],u[𝑘0 + 1], . . . ,y [𝑘2 + 1],u[𝑘2 + 1]♢

...

Z(𝑚) = ¶y [𝑘0],u[𝑘0],y [𝑘0 + 1],u[𝑘0 + 1], . . . ,y [𝑘2 + 𝑚],u[𝑘2 + 𝑚]♢

(5.36)

Change detection by evaluating of the null and the alternative hypothesis
with the data windows 𝑀0 and 𝑀1 is shown in Figure 5.9. The bigger the data
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set Z becomes the larger the size of the matrices required for computation of
the detection test is. If ℋ0 is accepted for all iterations (5.36), the detection
test can be restarted from 𝑘0 = 𝑘2 + 𝑚 + 1 as the lower bound of the new data
set. Then, the detection test is computed with data sets similarly deĄned as in
(5.36). However, if ℋ1 is accepted with the data set Z(𝑚), the lower bound of
an informative interval is set and the conditioning of the auxiliary information
matrix is evaluated in a second step.

The Ąnal informative interval is denoted by ¶Z♢𝑘𝑖2

𝑘=𝑘𝑖1
. Then, the detection test

is restarted for computations with a data set whose lower bound is 𝑘0 = 𝑘𝑖2 + 1
and the data sets are similarly deĄned as in (5.36) but replacing 𝑘0 by 𝑘0 = 𝑘𝑖2+1
and setting 𝑘2 = 𝑐 ≤𝑛𝑝 +𝑘𝑖2 +1. These computations are repeated until the entire
data set Z𝑁 is processed. Figure 5.9 shows the data windows for evaluating ℋ0

and ℋ1. The data window 𝑀0 is increased from 𝑘2 while g [𝑘] < γ𝑐. The lower
bound of an informative interval is set when the detection test chooses ℋ1 i.e.
g [𝑘] > γ𝑐 which occurs at 𝑘1 as shown in Figure 5.9.

The Ćow diagram of DS4SID is shown in Figure 5.10. Two user-deĄned
parameters should be chosen for lower interval bounding in the detection
test: the model order and the threshold γ𝑐. Knowledge about the process is
required for setting the model order. The threshold η is also required as
user-deĄned parameter for upper interval bounding. Moreover, parameters
for the computation of ORIV need to be deĄned by the user. Less hyper-
parameters are required for DS4SID when compared with other approaches
which represents a simpler and more practical design. At least six parameters
are required, for instance in [12], due to four tests proposed for data selection.
Setting of parameters can be more challenging in the previous method. Choice
of parameters for DS4SID is discussed in section 5.7.

The initialization block in the Ćow diagram of Figure 5.10 shows the variables
that are set before starting computations. The initial data set ¶Z♢𝑘2

𝑘=𝑘0
contains

observations between 𝑘0 and 𝑘2. Assuming 𝑘0 = 0, the value of 𝑘2 is selected so
that 𝑀0 = 𝑘2 ⊗ 𝑘0 ⪰ 𝑛𝑝 which avoids numerical problems in the computation
of the detection test. At each iteration, the data set used for computation of
the detection test is updated by increasing 𝑘2. Since ¶Z♢𝑘2

𝑘=𝑘0
can become large

after several iterations, the maximum size of this data set is limited to 𝑛1 to
avoid large processing times.

The variable 𝑤 is used to decide which test is computed: either the detection
test or the conditioning of the information matrix. In the case of 𝑤 = 0, the
detection test is computed with ¶Z♢𝑘2

𝑘=𝑘0
. If g [𝑘] > γ𝑐 does not hold, 𝑘2 is

increased and the detection test is computed with an updated data set. In
case a change is detected, g [𝑘] > γ𝑐 holds and the lower interval bound 𝑘𝑖1 is
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deĄned. The variable 𝑤 is set to 1 which indicates that the lower bound of an
informative interval was located and the upper bound should be deĄned in a
second stage. A data set ¶Z♢𝑘𝑖1

𝑘=𝑘𝑖1−𝑛𝑙−1 is deĄned to start computations using a
second test to evaluate the conditioning of the information matrix. The value
of 𝑛𝑙 should be chosen so that 𝑘𝑖1 ⊗ 𝑛𝑙 ⪰ 𝑛𝑝.

The conditioning of the information matrix is evaluated at each iteration by
thresholding κ̃(Ĩ(Θ̂)) against the user-deĄned parameter η. If the information
matrix is well-conditioned, the data set used for computations is increased
i.e.¶Z♢𝑘𝑖1+1

𝑘=𝑘𝑖1−𝑛𝑙−1. If the information matrix is ill-conditioned, the upper interval
bound 𝑘𝑖2 is deĄned based on the data set Z with which this condition is fulĄlled.
The resulting informative interval is denoted by ¶Z♢𝑘𝑖2

𝑘=𝑘𝑖1
. The variable 𝑤 is

reset so that the detection test is further computed for change detection. Once
an informative interval is conĄrmed, the lower and upper bounds of ¶Z♢𝑘2

𝑘=𝑘0

are updated, the value of 𝑘0 is set to 𝑘𝑖2 + 1 and 𝑘2 = 𝑘0 + 𝑀0 which yields a
data set of length 𝑀0 = 𝑘2 ⊗ 𝑘0.

The data should be informative for the model chosen in DS4SID since the
identiĄcation method used as part of the approach considers this assumption.
In [24], conditions for informative data are derived for the models introduced
in Table 3.1. These requirements are derived for data collected in open and
closed-loop. Logged process data can be used for identiĄcation when informative
conditions are satisĄed. These conditions depend, among others, on the model
order and the controller when the process is operated in closed-loop. Properties
of the estimators obtained by identiĄcation methods used in DS4SID are
discussed in [57, 80]. The situation when model and system do not belong to
the same class is represented by 𝒮 /∈ ℳ. In this situation, computation of
the associated information matrix can yield wrong upper interval bounds. To
discuss this case, a wrong choice for the process in (5.1) is analyzed.

The detection test in Algorithm 5.10 is based on PDFs resulting from input-
output models which agrees with the data collected from a dynamic system.
In other approaches such as in [12, 74], detection tests are applied to the time
series ¶u[𝑘]♢ and ¶y[𝑘]♢ independently. This may yield errors since changes in
the process output cannot be directly linked to an excitation in the input. Thus,
additional tests are required to conĄrm the input-output dependency in the
detected change. Only two tests are computed to locate informative intervals
instead of four procedures as described in [12]. The CUSUM algorithm and
the gradient of the information matrix are used for lower and upper interval
bounding, respectively. Use of only two tests can decrease false alarms and
misdetection. Other approaches implement detection tests that are applied
separately in the input and output signal. Choice of thresholds for these tests



92 Chapter 5 Data Selection Method for System Identification (DS4SID)

can be challenging and they normally result in large false alarms. Moreover,
additional computations such as the Granger causality tests are required to
conĄrm that the dynamic change was caused by an excitation in the input. The
detection problem as proposed in DS4SID is stated using two hypothesis that
represent a system driven around the same operating point or deviated from
it. Input-output models are used in the hypothesis formulation which avoids
performing further computations such the Granger causality test.

The value of κ̃(Ĩ(Θ̂)) depends on the auxiliary information matrix which is
deĄned based on observations contained in an informative interval. Thus, κ̃(Ĩ(Θ̂))
can have large values for abrupt changes from an operating point. In contrast,
small excitations in the process can yield lower values for the conditioning of
the auxiliary information matrix. Next, choice of user-deĄned parameters is
further discussed.

5.7 Choice of Design Parameters
General guidelines on the parameters choice for the detection test can be found
in [10, 50]. For a more detailed discussion on the parameters for the ORIV, the
reader is referred to [23, 80]. The model order and the threshold γ𝑐 are required
in the detection test. The choice of an appropriate order of the input-output
model requires knowledge about the process. Thus, identiĄcation tests with
part of the data may be required to determine the model order. For instance,
the model order of a MISO ARX model is denoted by 𝑛 = [𝑛𝑎 nb nk]. Setting
nk can be especially challenging for processes with large input-output delay and
a wrong choice will affect upper interval bounding. In case an ARX-Laguerre
model is used, the pole of the Laguerre Ąlter should also be deĄned. However,
this model can be a suitable choice for processes where setting the input-output
delay is a difficult choice due to lack of knowledge about the process. This lack
of information can be compensated by a proper selection of the pole of the
Laguerre Ąlter. The threshold γ𝑐, used in the detection test, is set by trial and
error as a trade-off between misdetection and false alarms. Depending on the
application, the value of γ𝑐 needs to be adjusted as previously described.

For computation of the detection test, data are scanned using two time
windows. The PDF for ℋ0 is estimated with a growing time window of length
𝑀0 = 𝑘2 ⊗ 𝑘0. The choice of 𝑀0 is set so that 𝑛𝑝 ⪯𝑀0 ⪯ 𝑁 where 𝑛𝑝 is the
number of parameters and 𝑁 the size of the entire data set. Thus, 𝑀0 is selected
to be larger than the number of parameters i.e. 𝑀0 > 𝑚 ≤ 𝑛𝑝, 𝑚 ∈ Z

+ ∧𝑚 > 1.
Usually, initial choices such as 4 ⊘ 𝑚 ⊘ 10 can yield a suitable length for 𝑀0.
However, the value of 𝑀0 requires Ąne tuning depending on the application. A
second data set of length 𝑀1 is called sliding Ąxed-size time window used for
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computation of the PDF under ℋ1. Initial choices for 𝑀1 can be 𝑀1 = 𝑀0/2

but the size of 𝑀1 is also adjusted by trial and error.
Several design parameters are also required in ORIV. The forgetting factor λ

used for initialization is normally chosen between 0.95 and 0.985 as found in [57].
The auxiliary information matrix S T is initialized by setting 0.001 ⊘ µ ⊘ 0.01.
The parameter 𝑘ζ, required for deĄning the instant from which the instruments
are considered, can be set to 1 for processes operating in open loop. In the case
of closed loop operation, this value can be chosen in the range 5 ⊘ 𝑘ζ ⊘ 15.
The parameters 𝑛𝑎 and 𝑛𝑏 should be larger than the model order. Since the
input signals have low order of excitation, a suitable choice is 1 ⊘ 𝑛𝑏 ⊘ 2. An
acceptable value for 𝑛𝑎 may depend on the system dynamics for instance if a
process exhibits a well damped or oscillating behavior. As a rule of thumb,
this parameter can be adjusted to 1 ⊘ 𝑛𝑎 ⊘ 3. Finally, the parameter η used
for upper interval bounding is chosen between 0.25 and 0.50. According to
results obtained in simulation and real case studies treated in section 6.2 and
section 6.3 the value of η might be less dependent on the application since a
similar degradation of the conditioning of the information matrix was observed
for different processes. This behavior was observed in simulation and real case
studies that are treated in the further chapter. However, since the size of
the information matrix and its conditioning depend on the model order, this
parameter should be adjusted according to the application.

5.8 Discussion
A new data selection method, DS4SID, was introduced in this chapter. In-
formative intervals are located only by two tests which is a notable feature
when compared to other approaches where at least four tests have been re-
ported. DS4SID differs in the following main aspects from other available
methods. Firstly, it can be used for multivariate processes and, therefore,
covers a large number of systems that are not addressed by current approaches.
Secondly, DS4SID consists of well-deĄned tests for lower and upper interval
bounding that decrease misdetection and false alarms when compared to current
methods. Thirdly, the tests used in DS4SID are also robust to colored noise
which represents a differencing feature with current methods, particularly, when
real applications are addressed. This aspect has not been considered in other
approaches which may result in wrong interval bounds.

Some practical problems found in logged process data correspond to com-
pressed data, missing data or outliers. The presence of outliers can trigger the
detection test for lower interval bounding. There exist several methods that
can be applied in case outliers and missing data occur. Outliers can be either
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removed or be included with an associated weight that reduces their inĆuence.
Alternatively, they can be replaced by estimated values as described in [69].
Thus, data can be preprocessed before using DS4SID for selection of informative
intervals.

Data-driven modeling can be affected by compressed data as the process
dynamics cannot be correctly extracted. The previously described situation can
yield problems in the upper interval bounding since the model cannot correctly
describe the process.

An informative interval is deĄned by time instants that describe lower and
upper bounds of the data sequence. Lower interval bounds are related to
change times resulting of moving away a process from a current operating
point. Detection tests should be performed with input-output models instead
of time series models because dynamic processes are treated in the context of
selecting informative intervals. Moreover, we are interested in changes caused
by external excitations in the input of a process. Such changes can be observed
using input-output models in the detection test. If the change detection is
evaluated using only time series models, additional tests such as the Granger
causality test [12, 31] are required to conĄrm that a change observed in the
output was generated by an excitation in the input. Performing additional tests
is computationally demanding and will increase the false alarms rate. Thus,
the approach proposed here can overcome some of the drawbacks of current
methods.

Current approaches require a larger number of user-deĄned parameters than
DS4SID since they implement more tests for change detection in time series
models and the Granger causality test. This is an advantage of DS4SID since
setting suitable parameters is simpler when compared to other methods. The
model order is a relevant hyperparameter for current approaches as well as for
DS4SID since the results of tests for lower and upper interval bounds depend on
this value. Parameters for the detection test are chosen as a trade-off between
false alarm and detection rate. The choice of the threshold γ𝑐 can be adjusted
with a test data set until satisfactory results are obtained. Choice of parameters
for recursive parameter estimation is straightforward and widely discussed in
the literature [29, 57, 59, 80].

In the two tests of DS4SID, the parameter estimation method is robust to
Gaussian colored noise. In real applications, colored noise is more likely to
be found than WGN. Thus, DS4SID has a signiĄcant advantage over current
approaches whose tests are limited to signals with additive WGN.

The CUSUM algorithm is used for change detection and the PDFs under
each hypothesis are computed for dynamic models. These intervals are further
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evaluated using an identiĄcation method. The ORIV was proposed in section 5.4
as a robust method for parameter estimation where the conditioning of the
auxiliary information matrix is evaluated. Upper interval bounds are set to time
instants where the conditioning of Ĩ(Θ̂) decays below values yielding numerical
problems for parameter estimation. The ORIV is robust to colored noise and
can be applied to systems operating in open- or closed-loop. Instead of using
a discarding criterion with absolute values as proposed in available methods,
upper interval bounding based on relative values is stated.

The test for lower interval bounding proposed in DS4SID can detect changes
from a current operating point regardless of the signal type that caused the
excitation. Thus, changes generated by step- or ramp-like signals will be detected
with possible adjustment of lower interval bounds.

The size of the data set can be a constraint depending on the processing
hardware. This can be overcome by using, for instance, high-performance
computing clusters. A second option can be to use a program that reads
the logged data and send them sequentially to the selection method. Thus,
requirements of the RAM memory are decreased and very large data sets can
be processed.

Finally, the proposed data merging procedure in section 5.5 can also yield
satisfactory models and can be considered as an alternative to the approaches
introduced in Chapter 4. To further develop data merging of informative
intervals, a weighted approach can be proposed. Weights that can be deĄned
based on the retrieved sequence ¶κ̃[𝑘]♢. These values are computed in the test
to evaluate the conditioning of the auxiliary information matrix. DS4SID is
evaluated in simulation and real case studies in the next chapter.

A correct choice of the user deĄned parameters described in section 5.7 can
help to obtain acceptable results using DS4SID. The value of γ𝑐 is set as a
trade-off between misdetection and false alarms. Small excitation in the process
can result in misdetection of intervals through the computation of g [𝑘]. Thus,
potentially transient changes in the process might not be located, which results
in a small number of intervals and, consequently, degradation of the resulting
model. Upper interval bounding can be affected by a wrong choice of the model
order as discussed at the end of section 5.1. For practical use, knowledge from
an expert can support choosing a suitable model order that yields acceptable
data segments.

Table 5.1 compares DS4SID with two related approaches reported in the
literature (see [12, 74]). In each of the comparison categories, DS4SID has
competitive properties and improved design that results in an improvement of
the state of the art of data selection for linear system identiĄcation.
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CHAPTER 6

Case Studies

In this chapter, DS4SID is evaluated in simulation and real case studies. Identi-
Ącation data sets are predominantly at steady-state for continuously operated
plants since processes are seldom driven away from a given operating point.
DS4SID is Ąrstly tested in a simulated process which describes a multivariate
binary distillation column operating in closed-loop. A process unit from the
lab-scale factory ŞµPlantŤ is used as industry-oriented case study. This is a
multivariate process that consists of several sub-systems each with different
dynamics.

6.1 Performance Assessment

The performance of DS4SID is evaluated using two criteria. The UINR describes
the ratio between the size of the resulting data set that contains informative
intervals and the entire data set. It will be shown that a small part of the data
set is sufficient to estimate models that can describe a process well. The model
performance is evaluated using the goodness of Ąt whose computation is based
on the NRMSE between the real observations and the model output..

6.1.1 Data Reduction Ratio

The data sets corresponding to the collection of informative intervals and the
entire data set itself are represented by Z𝑛 and Z𝑁 , respectively. The ratio of
the size of these data sets is:

UINR =
size(Z𝑛)

size(Z𝑁)
≤ 100 % (6.1)

The UINR is a criterion used to assess the down-sizing of the given dataset to
what should be used for model estimation.
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6.1.2 Goodness of Fit

The goodness of Ąt compares the model output with the real signal using a cost
function as follows:

Ąt(𝐺(𝑞−1,Θ̂)) =
(︀
1⊗ NRMSE

(︀
y(𝑘),ŷ(𝑘,Θ̂)

)︀)︀
≤ 100 % (6.2)

where ŷ𝑖 and y are the model output and the output signal, respectively. The
NRMSE is used as cost function in (6.2). This scalar measure is described by:

NRMSE =

⎯⎸⎸⎷
∑︀𝑁−1

𝑘=0 (y [𝑘]⊗ ŷ [𝑘])2

∑︀𝑁−1
𝑘=0 (y [𝑘]⊗ ȳ [𝑘])2

(6.3)

The NRMSE ranges between 0 and 1 whereas (6.2) results in 100 % for a perfect
model and 0 % otherwise. Since (6.2) can be better interpreted for model quality,
this performance criterion is preferred over the NRMSE. Model quality using
(6.2) is evaluated on validation data sets for the simulation case study. For the
industry-oriented case study, (6.2) is computed on an identiĄcation data set
and results are conĄrmed by cross-validation using additional data sets. In the
next section, a simulation case study, with unknown ŞtrueŤ transfer function is
presented. Estimated and ŞrealŤ transfer functions are compared. In the real
case study two models are evaluated: one is estimated using the entire data set
whereas a second one is computed with informative intervals.

6.2 Simulation Case Study: Binary Distillation Column
First results of the DS4SID application were reported in [4]. In this section,
a more detailed analysis is presented. The operation of the proposed system
yields suitable data sets for the evaluation of DS4SID.

6.2.1 Process Description

Consider a multivariate binary distillation column described by the following
continuous-time transfer function as described in [93]

(︂
Y1(𝑠)
Y2(𝑠)

)︂
=
(︂

𝐺11(𝑠) 𝐺12(𝑠)
𝐺21(𝑠) 𝐺22(𝑠)

)︂(︂
U1(𝑠)
U2(𝑠)

)︂
(6.4)

where 𝐺𝑖𝑗 corresponds to the transfer function from the 𝑗-th input to the 𝑖-th
output deĄned by:

𝐺11(𝑠) =
12.8𝑒−𝑠

16.7𝑠 + 1
𝐺12(𝑠) =

⊗18.9𝑒−3𝑠

21𝑠 + 1
(6.5a)
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𝐺21(𝑠) =
6.6𝑒−7𝑠

10.9𝑠 + 1
𝐺22(𝑠) =

⊗19.4𝑒−3𝑠

14.4𝑠 + 1
(6.5b)

Each transfer function has an associated dead-time as expressed in (6.5). The
function 𝐺21 has the largest dead-time. The input and output signals of the
multivariate process represent the following physical variables:

y1(𝑡) : overhead composition in wt. % methanol u1(𝑡) : reĆux Ćow in g/s

y2(𝑡) : bottom composition in wt. % methanol u2(𝑡) : steam Ćow in g/s

where wt. refers to weight percent. This process is highly interacting since
inputs and outputs are mutually coupled. This interaction is evaluated using
the condition number of (6.5). The steady-state relative gain array (RGA) of
(6.5) is evaluated at ω = 0 which yields (dimensionless):

Λ(0) =
(︂

12.8 ⊗18.9
6.6 ⊗19.4

)︂
(6.7)

Then, the SVD of (6.7) results in

Σ =
(︂

30.4048 0
0 4.0645

)︂
(6.8)

The condition number κ is computed from (6.8) as the ratio between eigenvalues

κ =
30.4048
4.0645

= 7.48 (6.9)

The transfer functions (6.5) were converted to discrete-time using the Zero-
Order Hold (ZOH) method with sampling time 𝑇𝑠 = 1 s. The resulting discrete-
time transfer functions are as follows:

𝐺11

(︀
𝑞−1
)︀

= 𝑞−1 0.744𝑞−1

1⊗ 0.9419𝑞−1
𝐺12

(︀
𝑞−1
)︀

= 𝑞−3 ⊗0.8789𝑞−1

1⊗ 0.9535𝑞−1

(6.10a)

𝐺21

(︀
𝑞−1
)︀

= 𝑞−7 0.5786𝑞−1

1⊗ 0.9123𝑞−1
𝐺22

(︀
𝑞−1
)︀

= 𝑞−3 ⊗1.302𝑞−1

1⊗ 0.9329𝑞−1

(6.10b)

Figure 6.1 shows the step response of the discrete-time transfer functions.
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Figure 6.1: Step response of system in (6.4) with transfer functions in (6.5)

Since κ yields a large value, the system is considered to be strongly coupled
(see [77]). In the process, the overhead and bottom composition should exhibit
large and low values, respectively, which means that most of the raw material
is converted to methanol and extracted from the distillation column. This is
not the case as shown in Figure 6.1 since a control action in u1(𝑡) increases
simultaneously y1(𝑡) and y2(𝑡).

In this process, the goal is to control simultaneously overhead and bottom com-
position. This is particularly challenging since the process is highly-interacting.
As a result, the two control loops interact which leads to a deterioration in the
performance of both composition loops [93]. Thus, a non-interacting controller
is required to guarantee a simultaneous control of the overhead and bottom
composition. A procedure for controller design of the system (6.4) is described
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in [93] and was followed here for implementation in closed-loop. Contrarily to
available data selection methods that are limited to SISO processes and cannot
be applied to this case study, DS4SID can be used for multivariable processes.

6.2.2 Controller Design

Figure 6.2 shows a block diagram of the process (6.4) using the control scheme
proposed in [93]. The process outputs are embedded in colored noise obtained
by Ąltering WGN using the transfer functions 𝐻1

(︀
𝑞−1
)︀

and 𝐻2

(︀
𝑞−1
)︀
:

𝐻1

(︀
𝑞−1
)︀

=
1

1⊗ 0.3𝑞−1 + 0.5𝑞−2
(6.11a)

𝐻2

(︀
𝑞−1
)︀

=
1

1⊗ 0.5𝑞−1 + 0.8𝑞−2
(6.11b)

where e𝑖(𝑡) ≍ 𝒩 (0,σ2
𝑒𝑖

), 𝑖 = 1,2.
Two noninteracting controllers 𝐷21(𝑠) and 𝐷12(𝑠) are required to eliminate the

interacting effect of the control in u1(𝑡) and u2(𝑡) on y2(𝑡) and y1(𝑡), respectively.
The desired decoupling is expressed as follows

𝐷21(𝑠)𝑃22(𝑠) + 𝑃21(𝑠) = 0 (6.12a)

𝐷12(𝑠)𝑃11(𝑠) + 𝑃12(𝑠) = 0 (6.12b)

−

r1(t) C1

D21

P11

P21

y1(t)

H1e1(t)

−

r2(t) C2

D12 P12

P22 y2(t)

H2e2(t)

u1(t)

u2(t)

Figure 6.2: Block diagram of the non-interacting control system
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where 𝐷𝑖𝑗(𝑠) is the noninteracting compensator to eliminate the effect of the
control action associated to the 𝑖-th input on the 𝑗-th output.

In general, the following relation applies to express the desired non-interacting
control

𝐷𝑖𝑗(𝑠)𝑃𝑖𝑖(𝑠) + 𝑃𝑖𝑗(𝑠) = 0 (6.12c)

The decoupling controllers are then obtained from (6.12c) by:

𝐷𝑖𝑗(𝑠) = ⊗𝑃𝑖𝑗(𝑠)
𝑃𝑖𝑖(𝑠)

(6.13)

The process transfer functions in (6.5) are of identical order. Then, the
decoupling controllers are realizable if the time delay of the transfer function
𝑃𝑖𝑗(𝑠) is larger than the delay of 𝑃𝑖𝑖(𝑠). This guarantees that the order of
the denominator is larger than the numerator and the designed controller is
realizable. This condition is satisĄed by the transfer functions in (6.5). Thus,
(6.12c) is used for designing of the decoupling controllers.

As shown in Figure 6.2, two additional controllers 𝐶1 and 𝐶2 are included
in the closed-loop system. Several methods published in the literature such as
internal model control (IMC) or symmetric optimum can be used for designing
𝐶1 and 𝐶2. The IMC showed satisfactory closed-loop system performance
and was therefore used in this case study. In order to design the controllers
as explained in [93], equations (6.5) were converted to discrete time transfer
functions using the Zero-Order Hold (ZOH) method with sampling time 𝑇𝑠 = 1 s.
The resulting discrete-time controllers are:

𝐷12

(︀
𝑞−1
)︀

=
1.174𝑞−3 ⊗ 1.106𝑞−4

1⊗ 0.9535𝑞−1
(6.14a)

𝐷21

(︀
𝑞−1
)︀

=
0.4494𝑞−2 ⊗ 0.4196𝑞−3

1⊗ 0.9123𝑞−1
(6.14b)

𝐶1

(︀
𝑞−1
)︀

=
0.4886⊗ 0.4593𝑞−1

1⊗ 𝑞−1
(6.14c)

𝐶2

(︀
𝑞−1
)︀

=
⊗0.1375 + 0.1279𝑞−1

1⊗ 𝑞−1
(6.14d)

where 𝐶1

(︀
𝑞−1
)︀

and 𝐶2

(︀
𝑞−1
)︀

are PI controllers.

Simulations with discrete time controllers result in a small interaction between
the off-diagonal components for 0 < 𝑘 < 20 as shown in Figure 6.3. Note that
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Figure 6.3: Closed-loop step response of system (6.5) with controllers (6.14)

no effect of the inputs on their non-diagonal output is observed from around
𝑘 = 30 as shown in the closed-loop response in Figure 6.3.

6.2.3 Performed Experiments

Different simulations were performed in an operating range where the model
(6.5) applies (see [93]). The continuous-time transfer functions from the process
(6.5) were converted to discrete-time and the resulting system is excited using
step-like signals that are seldom changed. The external references of the process
are described by:

𝑟𝑖[𝑘] = 𝑅𝑖𝑗, 𝑘𝑗1 ⊘ 𝑘 ⊘ 𝑘𝑗2, 𝑖 = 1,2 𝑗 = 1,2, . . . ,𝑛𝑠 (6.15)
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Table 6.1: External reference signals used to generate test data sets

𝑗 𝑟1[𝑘] Disc. time 𝑟2[𝑘] Disc. time

1 90 0 ⊘ 𝑘 ⊘ 499 2 0 ⊘ 𝑘 ⊘ 499
2 98 500 ⊘ 𝑘 ⊘ 1149 1 530 ⊘ 𝑘 ⊘ 1189
3 93 1150 ⊘ 𝑘 ⊘ 1769 2 1190 ⊘ 𝑘 ⊘ 2194
4 90 1770 ⊘ 𝑘 ⊘ 2489 1 2195 ⊘ 𝑘 ⊘ 2749
5 95 2490 ⊘ 𝑘 ⊘ 3500 3 2750 ⊘ 𝑘 ⊘ 3500

where 𝑅𝑖𝑗 is the amplitude of the 𝑖-th reference at the operating point between
𝑘𝑗1 ⊘ 𝑘 ⊘ 𝑘𝑗2 and 𝑛𝑠 is the total number of changes in the reference. The
sequences listed in Table 6.1 for 𝑟1[𝑘] and 𝑟2[𝑘] were generated considering
admissible ranges reported in [93] and used to excite the process (6.5).

The simulations are started with zero initial conditions using the references
in Table 6.1. Three values of SNR are used for simulations: 25, 20 and 15 dB
that are obtained by adjusting the noise variance σ2

𝑒𝑖
, 𝑖 = 1,2 where 𝑖 represents

the process output. These SNRs represent values from low to high noise content
in the signal and were chosen to evaluate DS4SID under different conditions.
The SNR is deĄned as in (2.37) where σ2

e and σ2
yu

are the variances of the WGN
and the noise-free process output, respectively.

Figure 6.4 shows the process outputs y1[𝑘] and y2[𝑘] under the formerly
described SNRs in one of the data sets used for experiments. The external
references 𝑟1[𝑘] and 𝑟2[𝑘] are shown as dashed lines for each output. The input
signals u1[𝑘] and u2[𝑘] are shown in the bottom plot of Figure 6.4 and their
values can be read on the right y-axis.

The system inputs are also embedded in noise due to the feedback loop. The
resulting signals exhibit seldom changes as the system is predominantly at
steady-state.

The test data sets are used to evaluate DS4SID. The data selection method
reported in [12] was adapted for comparison. For the latter approach, the GLRT
was implemented for lower interval bounding and the auxiliary information ma-
trix was computed using the QR-RLS. In DS4SID, the ORIV was implemented
for upper interval bounding. For each test data set, the intervals from DS4SID
and the method reported in [12] are used for model estimation. Moreover, a
third model is computed using the entire data set.
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The resulting parameter vectors for each iteration are denoted by:

Θ̂1,𝑗:
parameter vector estimated using the entire data set and the
Gauss-Newton algorithm to minimize the prediction error

Θ̂2,𝑗:
parameter vector estimated using informative data set obtained
using the method adapted from [12] and LSM for data merging

Θ̂3,𝑗:
parameter vector estimated using informative data set obtained
with DS4SID and using an IV method for data merging

where 𝑗 = 1,2, . . . ,𝑛exp denotes the 𝑚-th test data set and 𝑛exp. = 200 is the
number of test data sets. The goodness of Ąt (6.2) is computed for each model
parametrized by Θ̂𝑖,𝑗, 𝑖 = 1,2,3, 𝑗 = 1,2, . . . ,𝑛exp.

The sample mean of this criterion is computed on the total number of test
data sets and the following value is used for comparison:

Ątident(𝐺(𝑞−1, Θ̂𝑖)) =
1

𝑛exp.

𝑛exp.∑︁

𝑗=1

Ątident(𝐺(𝑞−1, Θ̂𝑖,𝑗)), 𝑖 = 1,2,3

=
1

𝑛exp.

𝑛exp.∑︁

𝑗=1

(︀
1⊗ NRMSE

(︀
y(𝑘),ŷ𝑖,𝑗(𝑘,Θ̂)

)︀)︀
≤ 100 %

(6.16)

The sample parameter vector over the total number of experiments is:

^̄Θ𝑖 =
1

𝑛exp.

𝑛exp.∑︁

𝑗=1

Θ̂𝑖𝑗, 𝑖 = 1,2,3 (6.17)

Three models are parameterized using (6.17) and evaluated in validation data
sets. The reference signals also represent step-like signals as in (6.15) but the
amplitude and duration of the operating points are generated randomly within
admissible ranges. The following criterion for goodness of Ąt on the validation
data sets is also used for comparison

Ątval(𝐺(𝑞−1, ^̄Θ𝑖)) =
1

𝑛val.

𝑛val.∑︁

𝑗=1

Ątval(𝐺(𝑞−1, ^̄Θ𝑖)), 𝑖 = 1,2,3

=
1

𝑛val.

𝑛val.∑︁

𝑗=1

(︀
1⊗ NRMSE

(︀
y(𝑘),ŷ𝑖,𝑗(𝑘,Θ̂)

)︀)︀
≤ 100 %

(6.18)

where 𝑛val. = 50 is the number of validation data sets.
The length of test and validation data sets is each 𝑁 = 3500 samples. The

starting discrete-time index 𝑘 of these data sets correspond to the instants
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where the process reaches steady-state for the Ąrst operating points deĄned by
𝑅11 and 𝑅21 (Ąrst row of Table 6.1).

The detection test is used for locating lower interval bounds of possibly
informative intervals corresponds to the change times located by the detection
test. Then, the conditioning of Ĩ(Θ̂) is evaluated and upper interval bounds are
set to instants where the auxiliary information matrix becomes ill-conditioned.

Current data selection methods, as reported in [12], locate change times
based on detection tests whose hypotheses are based on time series models.
As a consequence, the relation between an excitation in the input and the
change in the output needs to be further evaluated with other tests e.g. the
Granger causality test. The latter can be avoided by using the detection method
proposed in DS4SID since the hypothesis of the detector are stated based on
dynamic models. Thus, the causal relation between a dynamic change and
excitation in the inputs is implicitly considered in the detection test. Thus,
only two tests are required in DS4SID for lower and upper interval bounding
which simpliĄes data selection and choice of user-deĄned parameters. Moreover,
it is further discussed that misdetection and false alarms for change detection
are reduced with the methods proposed in DS4SID.

ARX models are used for modeling and the model order, n𝑗 =(︀
𝑛𝑎𝑗 nb𝑖𝑗 nk𝑖𝑗

)︀
, 𝑖,𝑗 = 1,2, is assumed to be known and is deĄned by:

𝑛𝑎1 =1 n𝑏𝑖1 = (1 1) n𝑘𝑖1 = (1 3)

𝑛𝑎2 =1 n𝑏𝑖2 = (1 1) n𝑘𝑖2 = (7 3)
(6.19)

The parameter vector for the null-hypothesis ℋ0 is computed with the data
contained in the growing time window 𝑀0, where 𝑛𝑝𝑗 is the number of parameters
for the 𝑗-th MISO model. Thus, the initial size of 𝑀0 should be set so that
𝑀0 ⪰ 𝑛𝑝𝑗 . For this case study, 𝑀0 was empirically initialized setting 20𝑛𝑝𝑗 ⊘
𝑀0 ⊘ 50𝑛𝑝𝑗 . The estimates for the alternative hypothesis ℋ1 are computed
with sliding Ąxed-size time window 𝑀1 whose size is set following a similar
approach as formerly discussed for 𝑀0. However, 𝑀1 < 𝑀0 and by trial and
error 𝑀1 = 𝑀0/2 yielded satisfactory results for the estimates under ℋ1. The
threshold γ used for the detection test is set as a trade-off between detection
rate and false alarms. For this case study, 250 < γ < 400 yielded acceptable
values for the detection test. Upper interval bounds are deĄned by thresholding
κ̃(Ĩ(Θ̂)) with η = 3 ≤ 10−4 where the value of η was obtained from [73] which
indicates a limit for ill-conditioning of the auxiliary information matrix Ĩ(Θ̂).
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Figure 6.5: Selected intervals for ¶y1[𝑘]♢ and ¶y2[𝑘]♢ from a test data set
(SNR = 15 dB). Top: selected intervals using DS4SID. Middle: Detection test for
locating lower interval bounds. Bottom: Conditioning of the information matrix for
determining upper interval bounds. Continuous line: DS4SID using IVM. Dashed
line: method as presented in [12] using QR-RLS.

6.2.4 Results and Discussion

A total of 200 test data sets were generated for each SNR. Detectors for data
selection methods based on time series models result in a large number of false
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alarms, particularly, in the case of high noise content. In contrast, the detection
test proposed for DS4SID can successfully locate change times while keeping
false alarm rate in acceptable ranges.

Figure 6.5 shows the selected intervals for the process outputs y1[𝑘] and
y2[𝑘] using DS4SID for SNR = 15 dB. The conditioning of the information
matrix associated to the method reported in [12] and for DS4SID are shown
in the bottom row of Figure 6.5. The detection test detects four intervals that
coincide with the number of changes between operating points. Change times
are successfully detected by the GLRT since the condition 𝐿𝐺(y,u) > γ only
holds for the instants where the process is moved out from an operating point.
The value of 𝐿𝐺(y,u) is lower than the threshold γ regardless the additive noise
which results in few false alarms for change detection.

The conditioning of two auxiliary information matrices are computed for each
test data set that are denoted by:

κ̃(Ĩ(Θ̂2))

κ̃(Ĩ(Θ̂3))
(6.20)

where Θ̂2 and Θ̂3 are the estimates with intervals retrieved from the method in
[12] and DS4SID, respectively.

The value of (6.20) has a maximum at the instant where the process reaches
steady-state conditions for a new operating point. Then, the conditioning of
the auxiliary information matrix decays below values that can cause numerical
computational problems. Upper interval bounds are deĄned differently for each
method since the noise is colored and this aspect is not addressed by the method
in [12]. The auxiliary information matrix from DS4SID becomes ill-conditioned
earlier than with the other method. Thus, informative intervals using DS4SID
are shorter than the ones obtained from the method adapted from [12]. This
results in models with better goodness of Ąt as further discussed. Consequently,
less data are selected and performance of estimated models is satisfactory.

The results of DS4SID and the method adapted from [12] are compared in
Table 6.2. In this application, the number of the instruments could be chosen so
that computations in ORIV have some computational advantages over QR-RLS.
In the ORIV, the left part of (3.79a) has size 𝑛ζ× (𝑛 + 1) where 𝑛 is the model
order and 𝑛ζ is the number of instruments. Whereas, an analogous matrix of
(3.79a) in the QR-RLS method has size (𝑛+2)×(𝑛+1). In the present example,
𝑛 < 𝑛ζ ⊘ (𝑛 + 2) holds and, consequently smaller matrices are obtained for
ORIV. This results in a smaller processing time as shown in Table 6.2.



110 Chapter 6 Case Studies

10−3 10−2 10−1 100

0

10

20

10−3 10−2 10−1 100

0

10

20

10−3 10−2 10−1 100

−150

−100

−50

0

10−3 10−2 10−1 100
−100

0

100

200

Frequency in rad/sec

M
ag

n
it

u
d
e

in
d
B

P
h
as

e
in

d
eg

T
o
y

1
T

o
y

1
Bode Diagram (SNR: 20 dB)

From u1 From u2

G(𝑞−1, Θ̂3)

G(𝑞−1, Θ̂2)

G(𝑞−1, Θ0)
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The multiple-cost approach introduced in section 4.5 was used for model
estimation. The information matrices as well as the model parameters for the
method in [12] and for DS4SID were obtained using the QR-RLS and the ORIV,
respectively. The goodness of Ąt of 𝐺(𝑞−1,Θ̂3) for the test and validation data
sets is better than for models obtained using the other approaches which conĄrms
the improved performance of DS4SID. Interestingly, models estimated with
informative intervals using DS4SID have a similar goodness of Ąt as estimates
using the entire data set.

Figure 6.6 shows the resulting bode plots of the models computed with
informative intervals and listed in Table 6.2. The transfer functions were
obtained with parameters averaged over the total number of experiments.
Models estimated with the intervals retrieved using DS4SID and using the
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Table 6.2: DS4SID for ¶y1[𝑘]♢ and ¶y2[𝑘]♢ (Θ̂1: parameter vector using the entire
data set; Θ̂2: estimates using intervals retrieved from [12] and Θ̂3: parameter vector
using intervals from DS4SID). Test data sets as in Figure 6.4.

y1 y2

SNR in dB SNR in dB

25 20 15 25 20 15

UINR in %
ORIV 27.00 25.61 25.31 18.00 24.10 22.35

QR-RLS 24.02 22.67 21.87 28.17 24.25 22.15

Computational ORIV 0.876 0.868 0.889 0.890 0.880 0.885
time in s QR-RLS 0.821 0.813 0.832 0.842 0.820 0.839

fit(yident,ŷ) in %
𝐺(𝑞−1,Θ̂1) 74.12 67.21 53.47 70.12 62.28 52.10

𝐺(𝑞−1,Θ̂2) 65.60 58.81 45.16 62.20 55.25 40.58

𝐺(𝑞−1,Θ̂3) 71.77 64.66 48.26 68.54 60.45 45.87

fit(yval,ŷ) in %
𝐺(𝑞−1,Θ̂1) 74.01 67.09 53.31 70.01 62.09 50.31

𝐺(𝑞−1,Θ̂2) 61.18 54.79 42.26 59.18 52.79 40.26

𝐺(𝑞−1,Θ̂3) 71.05 63.44 46.42 70.05 60.44 44.42

multiple-cost approach for parameter estimation presented in section 4.5 yields
better models than when using the intervals obtained with [12]. The beneĄts of
using the proposed method for data merging are even more noticeable as the
SNR increases.

6.3 Industry-oriented Case Study: The Process Unit II
The process unit II is part of the µPlant [53], which is a lab-scale chemical
production plant where continuous and batch industrial operation scenarios
can be recreated. The µPlant consists of two process units, two stations for
emptying and Ąlling, a product storage area with articulated robot, a Ąnishing
unit and four autonomous mobile robots that transport products in the plant.
In this section, the process unit II is Ąrstly described and experiments as well
as performance of DS4SID are further discussed. In order to avoid operational
risks during performing the experiments and to prevent drainage of chemical
substances, water was used as Ćuid in the process unit II.

6.3.1 Process Description and Control Scheme
The process unit II or Prozessinsel II (see Figure 6.7) was designed, built-up and
commissioned in the Department of Measurement and Control (MRT) at the
University of Kassel. Three main operations are performed in the process unit
II: two of them correspond to processing of raw material while a Ąnal blending
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Figure 6.7: Process unit II used for case study

process is carried out in the CSTR. A simpliĄed process and instrumentation
diagram (P&ID) of the process unit II is shown in Figure 6.8. The raw material
is pumped from the reservoir 𝐺𝑅 to the reactors 𝐺100 and 𝐺200. Processing in
the former reactors result in intermediate products that further pumped to the
CSTR 𝐺300. The Ąnal product is obtained by blending the inĆow streams in
𝐺300 and it can be stored in several storage tanks (not shown). Alternately, it
can be pumped back to the reservoir which recreates material recycling. The
external references of the closed-loop process are the production rate (outĆow
from 𝐺300) and the tank levels.
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The process unit II is equipped with sensors to measure different variables
such as pressure, temperature, level and Ćow. Sensors are wired to input-output
modules and measurements are processed in an ABB® AC 700F controller.
Measurements are logged in a data historian system with a predeĄned sampling
time of 𝑇𝑠 = 250 ms. This value is preconĄgured by the manufacturer but it
can be adjusted by the user in the program of the control system. However,
the logged data can be downsampled by setting 𝑘𝑜𝑠 = 𝑐𝑜𝑠 ≤ 𝑘 where 𝑘 and 𝑘𝑜𝑠

are the discrete-time index for the original and the modiĄed data sets and
𝑐𝑜𝑠 ∈ Z, 𝑐𝑜𝑠 > 1. For the case studies in the process unit II the following holds:

𝑇𝑠

𝑇95
≡ 1

5
, . . . ,

1
15

(6.21)

where 𝑇95 is the 95 % settling time of the step response of a proportional acting
process. In the process unit II, 𝑇95 ≡ 4.5 s which yields 𝑇𝑠/𝑇95 = 0.25/4.5 = 0.056



114 Chapter 6 Case Studies

that agrees with (6.21). Thus, digital controllers can be successfully designed
as described in [41]. The process unit II is supervised and operated using a
human machine interface (HMI) that was developed with ABB® Freelance. The
logged data represents a process which is operated between 7 h and 18 h with
seldom changes between operating points.

Five control loops are implemented in the process unit II. Three controllers
regulate the level of the three reactors while the other two control the production
rate and the mixing ratio of the reactants, respectively. The control concept is
explained from the bottom to the top of Figure 6.8. The signals referred to in
the following are deĄned in Figure 6.9.

The production rate is controlled by the feedback loop FC-320 which regulates
the pump 𝑃320. The pump voltage, u320(𝑡), is the manipulated variable and the
output Ćow, y320(𝑡), measured by the device FT-320, is the controlled variable.
The Ćow streams of the reactants delivered to the CSTR 𝐺300 are related by
the ratio factor 𝑅. The output Ćow of the reactant in the Ąrst reactor 𝐺100 is
regulated by the loop FC-220 that controls the pump 𝑃220. The set point of the
Ćow control loop FC-220 is obtained by multiplying the mixing ratio 𝑅 with
the Ćow stream of the second reactant from 𝐺200 whose control was designed
following [72]. The set point of the Ćow control loop FC-220 is obtained by

𝑤220(𝑡) = 𝑅 ≤ y310(𝑡) (6.22)

where 𝑅 represents the ratio between the two reactants and is a user-deĄned
parameter. For this case study, the value of 𝑅 is set to 1 i.e. it is assumed that
the reactant streams are required to be the same.

For performing of experiments, a controller system based on decentralized
PID controllers was designed and implemented in the process unit II. The level
of the CSTR 𝐺300 is regulated by the control loop LC-300. The controlled
variable y300(𝑡) is measured by the instrument LT-300 whereas the manipulated
variable is the voltage of the pump 𝑃310, u310(𝑡). In the Ąrst reactor, the level
is controlled by the feedback loop LC-100. In this loop, the controlled and
manipulated variables are y100(𝑡) and u100(𝑡), respectively. The level of the
second reactor, y200(𝑡) is regulated by the control loop LC-200. The voltage of
the pump 𝑃200, u200(𝑡), is the manipulated variable. The input Ćow streams
from the reservoir 𝐺𝑅 to the Ąrst 𝐺100 and second reactor 𝐺200 are regulated
by u100(𝑡) and u200(𝑡), respectively.

The set points corresponding to the levels of the reactors are 𝑤100(𝑡), 𝑤200(𝑡)
and 𝑤300(𝑡). Moreover, the user-deĄned production rate is represented by 𝑤320(𝑡).
The level controllers are represented by 𝑅𝑃100, 𝑅𝑃200 and 𝑅𝑃310. Whereas, the
Ćow controllers are 𝑅𝑃220 and 𝑅𝑃320 for the mixing ratio and production rate,
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respectively. The transfer functions of the reactors are described by 𝐺100, 𝐺200

and 𝐺300. The transfer functions of the pumps used in the level control loops are
𝐺𝑃100, 𝐺𝑃200, 𝐺𝑃310. The pumps used in the Ćow control loops correspond to 𝐺𝑃220

and 𝐺𝑃320. All sensors are standard industrial devices and measurements are
transmitted to remote I/Os using 4/20 mA standard. Proportional-Integral (PI)
controllers were implemented and used for the operation of the process unit II.
The designed controllers have an anti-windup feature and the sampling time was
chosen as the default value for the process i.e. 𝑇𝑠 = 250 ms. These regulators
were designed within several student projects and are listed in Table 6.3.

6.3.2 Noise Analysis

The measurement noise is denoted by ν(𝑡) in Figure 6.9 and it can represent
WGN or colored noise. In real applications, ν(𝑡) is more likely to be colored
than white noise because measurements are usually Ąltered before they are
logged. This aspect is further discussed for the collected signals from the process
unit II in Appendix B. Noise analysis is based on data recorded from open-
loop operation. Since the data was collected in a digital control system, the
time argument of the variables will be changed to 𝑘, where 𝑘 = 0,1, . . . ,𝑁 ⊗ 1
represents the discrete time and 𝑁 is the number of observations. Thus, y [𝑘]
represents the value of y at the discrete time 𝑘. Set points for level and Ćow
were kept at the same value during long periods to collect enough data for
analysis. Logged data denoted by the sequence x𝑖[𝑘], 𝑖 = 1,2, . . . ,𝑛x were Ąrstly
modeled as DC level in WGN:

x𝑖[𝑘] = 𝐴𝑖 + e𝑖[𝑘] (6.23)

Table 6.3: Level and Ćow controllers used in the process unit II

Transfer function

Level control

𝑅𝑃100
(𝑞−1) =

10.68⊗ 8.785𝑞−1

1⊗ 𝑞−1

𝑅𝑃200
(𝑞−1) =

11.38⊗ 8.942𝑞−1

1⊗ 𝑞−1

𝑅𝑃300
(𝑞−1) =

8.923⊗ 8.456𝑞−1

1⊗ 𝑞−1

Flow control
𝑅𝑃220

(𝑞−1) =
0.18⊗ 0.1556𝑞−1

1⊗ 𝑞−1

𝑅𝑃320
(𝑞−1) =

0.4⊗ 0.3553𝑞−1

1⊗ 𝑞−1



6.3 Industry-oriented Case Study: The Process Unit II 117

where e[𝑘] is WGN and 𝐴𝑖 is the sample mean (DC level), 𝐴𝑖 = x̄𝑖[𝑘], computed
using (2.23). The following sequence was calculated for analysis of the noise

ν[𝑘] = x𝑖[𝑘]⊗ x̄𝑖[𝑘] (6.24)

The term ν[𝑘] in (6.24) should be WGN if the model (6.23) Ąts to the observa-
tions. The autocorrelations and distributions of ν[𝑘] are shown in Appendix B.

The sequence ν[𝑘] is considered WGN if the sample autocorrelation yields
small values so that ν[𝑘] is assumed to be a sequence of i.i.d. random variables.

Even though the noise analysis is not the main focus of the present work, the
estimation method should be robust to the measurement noise.

As shown in Figure 6.10, ¶ν[𝑘]♢ differs from WGN as it exhibits correlation up
to approximately 𝑘 = 5. The model (6.23) can not properly describe the signal
and, consequently, other models should be evaluated. The measurement noise
is not white but colored and this important aspect should be considered when
proposing methods for data selection. In industrial applications, measurement
noise is also more likely to be colored than WGN. Detection and parameter
estimation methods should be robust to colored noise so that interval bounds
are well deĄned.

Different time series models, namely AR and ARMA models were chosen
to describe the data logged in open-loop. The residuals of the estimated AR
models result in a sequence that can be considered WGN. The latter conĄrms
that there exist correlation in the measurement noise and, thus, it should be
treated as colored. This conclusion supports choice of robust methods for upper
interval bounding such as ORIV instead of LSM.

⊗25 ⊗15 0 15 25
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Figure 6.10: Autocorrelation of residuals for model (6.23)
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6.3.3 Performed Experiments

The ratio factor 𝑅 in (6.22) was set to 1 i.e. the Ćow rate of the reactants is
the same during the experiments. The process unit II is operated in continuous
mode and the set points are seldom changed. The purpose is to generate data
sets where the process is occasionally excited so that the proposed selection
method locates relevant data for identiĄcation.

As an example, consider the production rate for one of the experiments. The
set point for this variable, 𝑤320(𝑡), is seldom changed in time periods that range
between 50 min and 80 min (see Figure 6.11). The control system of the process
unit II was programmed to change automatically the value of the set points.
To simplify the implementation of this program, the set points in Figure 6.11
and Figure 6.12 are changed simultaneously. This aspect does not affect the
evaluation of DS4SID since, as discussed in section 6.2.4, the proposed method
can locate informative intervals if changes occur at different instants. Values
for amplitudes are deĄned based on admissible ranges to avoid saturation of the
controllers. Measurements of the production rate for the Ąrst experiment are
shown in Figure 6.11. DS4SID is evaluated on different test data sets and the
goodness of Ąt of models estimated with retrieved intervals is compared with
other models computed using the entire data set.

Figure 6.12 shows the level of the Ąrst reactor for the experiment previously
described. Similarly to the production rate, the references for the level in
the Ąrst reactor, 𝑤100(𝑡), is seldom changed (approx. every 60 min). In the
experiment of Figure 6.12, the process unit II was operated approximately
during 13.5 h and data were logged using the pre-deĄned sampling time of the
historian system, 𝑇𝑠 = 250 ms. Since the process dynamics is slower than the
sampling time, underlying data-driven modeling in DS4SID is not affected by
the predeĄned value of 𝑇𝑠.

The performance of DS4SID was assessed on data retrieved from two sub-
systems: the production rate ¶y320[𝑘]♢ of the CSTR and the level ¶y100[𝑘]♢ of
the Ąrst reactor that correspond to a SISO and a MISO process, respectively.
The input and output variables for the Ąrst subprocess are u320[𝑘] and y320[𝑘],
respectively. The level y100[𝑘] is regulated by the control signals u100[𝑘] and
u220[𝑘].

A total of seven experiments were performed in the process unit II for
evaluation of DS4SID. Table 6.4 describes the experiments performed in the
process unit II. The duration of the experiments ranges between 6 h and 18 h.
Duration of steady-state regions was varied to analyze inĆuence of this condition
on the length of the retrieved intervals.
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Figure 6.11: Production rate and control voltage of the pump 𝑃320 for the Ąrst
experiment (see Table 6.5)
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Figure 6.12: Output and input signals for the Ąrst experiment (see Table 6.5)
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Table 6.4: Summary of experiments in the process unit II

Exp. 1 2 3 4 5 6 7
Duration in h 13.2 8.0 8.7 11.5 18.0 6.1 6.8

No. of changes 10 6 9 12 21 6 8
Min. change in % 2.5 1.5 4.5 2.5 1.5 18 8
Max. change in % 30 15 35 50 30 40 35

The method proposed in [12] was implemented to compare its performance
with DS4SID. The fourth and Ąfth experiment were selected for tests of the data
selection methods. The data sets of the remaining experiments were used for
cross-validation to evaluate the models estimated with the retrieved informative
intervals. The computed input transfer functions are denoted by 𝐺(𝑞−1,Θ̂𝑖)
where the parameter vectors are deĄned as follows:

Θ̂1:
parameter vector estimated using the entire data set and the Gauss-
Newton algorithm to minimize the prediction error

Θ̂2:
parameter vector estimated using informative data set obtained
with method adapted from [12] and using LSM for data merging

Θ̂3:
parameter vector estimated using informative data set obtained
with DS4SID and using an IV method for data merging

The performance of DS4SID was evaluated using the UINR and goodness of
Ąt as introduced in (6.1) and (6.2), respectively, and with (6.3) as cost function.
The misdetection rate (MR) is deĄned as the fraction of non-detected intervals
among the total of informative intervals. In a data selection method, this value
should be small regardless process conditions such as change in amplitude of
the excitation signal or the noise content expressed by the SNR.

For this case study, 𝑀0 was empirically initialized setting 100 ⊘ 𝑀0 ⊘
200 samples. Similarly to the simulated case study, the sliding window 𝑀1 = 𝑀0

2

yielded satisfactory results for the estimates under ℋ1. For the industry-oriented
case study, 250 < γ < 400 yielded acceptable values for the detection test. The
parameters for the ORIV method were set to µ = 10−3, 𝑘ζ = 10 and λ = 0.995.
The value of κ̃(Ĩ(Θ̂)) is thresholded with η = 3 ≤ 10−4 where the value of η was
obtained from [73] which indicates a limit for ill-conditioning of the auxiliary
information matrix Ĩ(Θ̂).

6.3.4 Results and Discussion

Table 6.5 shows the results of the data selection methods applied to the produc-
tion rate which corresponds to a SISO process.
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Table 6.5: Subprocess: output Ćow rate. Goodness of Ąt (6.2) for selected
intervals using DS4SID (𝐺(𝑞−1,Θ̂3)), using [12] (𝐺(𝑞−1,Θ̂2)) and for entire data set
(𝐺(𝑞−1,Θ̂1)). Bold font: best results for test experiments.

GP320

Experiments used for tests

Exp. no. 4 Exp. no. 5
Selection Method [12] DS4SID [12] DS4SID

Missdetection rate 5/12 2/12 12/21 3/21

UINR in % 7.12 20.28 10.19 18.19

Exp. Duration
𝐺(𝑞−1,Θ̂1) 𝐺(𝑞−1,Θ̂2) 𝐺(𝑞−1,Θ̂3) 𝐺(𝑞−1,Θ̂1) 𝐺(𝑞−1,Θ̂2) 𝐺(𝑞−1,Θ̂3)

no. in h

1 13.2 85.73 76.64 82.51 85.51 82.15 84.04
2 8.0 74.47 64.18 71.70 73.77 71.48 72.88
3 8.7 90.24 69.83 80.97 87.05 80.46 83.21
4 11.5 95.27 76.36 85.07 91.42 84.52 87.06
5 18.0 90.54 73.85 84.06 88.63 83.63 86.20

6 6.1 83.78 65.66 76.30 81.66 75.83 78.13
7 6.8 79.54 63.88 74.39 78.42 74.03 76.24

The goodness of Ąt of 𝐺(𝑞−1,Θ̂1) is slightly better than for models estimated
with informative intervals 𝐺(𝑞−1,Θ̂2) and 𝐺(𝑞−1,Θ̂3). However, it is worth
noting that considering less than 20 % of the entire data sets, the goodness
of Ąt decreases only around 4 %. This difference can be acceptable specially
when dealing with very large data sets where model estimation can require long
computational time.

The method adapted from [12] has a larger misdetection rate than DS4SID
which conĄrms limitations of the Ąrst approach where intervals can be wrongly
discarded in one of the stages for interval bounding. Misdetection occurs in part
due to rejection of the third test reported in [12] since κ̃(𝑡) > η3 does not hold
because the threshold is wrongly set. In the Ąrst experiment (cf. Figure 6.11),
the transition between the second and third operation point is small and the
detection test fails detecting this change since 𝐿𝐺 > γ does not hold. As
shown in Table 6.5, the higher the misdetection rate is, the lower the UINR is.
Results obtained from the Ąfth experiment conĄrm these observations. The high
misdetection rate is explained by the fact that the amplitude of the changes
ranges within values that affects largely the test of the condition number.

Results of DS4SID applied to the level in the Ąrst reactor are shown in
Table 6.6. This system corresponds to a MISO process with two inputs. The
misdetection rate of DS4SID is also smaller for this process than the approach
in [12] which conĄrms the results discussed for the SISO case. The increase of
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Table 6.6: Subprocess: level in the Ąrst reactor. Goodness of Ąt (6.2) for selected
intervals using DS4SID (𝐺(𝑞−1,Θ̂3)), using [12] (𝐺(𝑞−1,Θ̂2)) and for entire data set
(𝐺(𝑞−1,Θ̂1)). Bold font: results for test experiments.

G100

Experiments used for tests

Exp. no. 4 Exp. no. 5
Selection Method [12] DS4SID [12] DS4SID

Missdetection rate 7/12 3/12 15/21 5/21

UINR in % 10.25 24.30 15.35 28.20

Exp. Duration
𝐺(𝑞−1,Θ̂1) 𝐺(𝑞−1,Θ̂2) 𝐺(𝑞−1,Θ̂3) 𝐺(𝑞−1,Θ̂1) 𝐺(𝑞−1,Θ̂2) 𝐺(𝑞−1,Θ̂3)

no. in h

1 13.2 90.30 80.22 88.37 89.43 88.31 89.00
2 8.0 68.38 59.37 65.15 66.98 65.05 66.30
3 8.7 69.48 56.93 63.49 66.85 63.29 65.41
4 11.5 76.97 67.61 73.15 75.32 73.02 74.43
5 18.0 81.98 74.24 78.81 80.60 78.71 79.89

6 6.1 80.37 70.91 75.40 78.20 75.22 77.01
7 6.8 59.87 45.70 51.12 56.18 50.79 53.94

the misdetection rate is explained by partial excitation in only one of the two
inputs. Misdetection in DS4SID occurs when the detection test cannot locate
changes in the process particularly in case of small changes in the amplitude.
The UINR results in larger values for DS4SID because of its better detection
rate when compared to the other selection approach. Larger values of UINR
with respect to the SISO case can be explained because the controllers require
longer time to regulate the process and, consequently, the MISO system is
excited for larger periods when compared to the SISO example.

Models estimated with informative intervals, retrieved using DS4SID, have
better goodness of Ąt than other models estimated used the alternative approach.
The results listed in Table 6.6 conĄrm the satisfactory performance of the
DS4SID also for the analyzed multivariate process. 𝐺(𝑞−1,Θ̂3) outperforms
between 3 % and 5 % 𝐺(𝑞−1,Θ̂2). Parameter estimation using the entire data set
also results in models with better goodness of Ąt as found for the production rate.
However, identiĄcation using only selected intervals yields better conditioned
information matrices than when using the entire data set. Thus, data selection
for identiĄcation can offer additional advantages for multivariate processes that
are seldom excited.

In the experiments selected for testing DS4SID, relevant data subsets for iden-
tiĄcation represent between 7 % and 30 % of the entire data sets. The goodness
of Ąt of the models computed with the informative intervals is satisfactory when
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compared with 𝐺(𝑞−1,Θ̂1). The computational load can be considerably reduced
for model estimation as only a small part of the recorded data is required to
estimate satisfactory models.

6.4 Discussion
The proposed data selection method, DS4SID, was evaluated on simulation
and industry-oriented case studies. A model of a binary distillation column,
which represents a 2× 2 highly interacting multivariate process, was used as
simulation example. The controller consists of two non-interacting regulators
and two PI controllers. The process was simulated in closed-loop recreating
conditions where operating points are seldom changed. Colored Gaussian noise
was added to the outputs to recreate real scenarios where this type of noise is
more likely to be found than WGN.

A total of 200 experiments were performed for the binary distillation column.
Models were estimated using the retrieved intervals from each experiment
and the goodness of Ąt was compared with other estimates obtained using
an alternative data selection approach and the entire data set. The UINR
was around 20 % regardless the SNR which shows the robustness of DS4SID
to different levels of noise content. The goodness of Ąt for models estimated
with DS4SID was found to be better than for estimates using the alternative
approach which shows a better performance of the proposed method. Moreover,
the goodness of Ąt of models computed with informative intervals is satisfactory
when compared with estimates using the entire data set. The goodness of
Ąt degrades between 5 % and 8 % which represents an acceptable trade-off
considering the size of the data subset used for model estimation.

A lab-scale plant operated in continuous mode was used as industry-oriented
case study. The process unit II mainly consists of two reactors and a CSTR
where batch and continuous processes can be recreated. DS4SID was tested in
a SISO and a MISO process. Several experiments with duration between 6.5 h
and 13.2 h and seldom changes in the set points were performed.

Location of deviations from current operating points using DS4SID is robust
to changes in the amplitude and noise content in the signals. The UINR for the
output Ćow rate changed between 15 % and 20 % depending on the experiment.
This difference is explained by a larger variation in the corresponding set point
in the fourth experiment. The goodness of Ąt for models computed with the
entire data set was better by around 4 % compared with models estimated with
informative intervals using DS4SID. This represents an acceptable trade-off
considering that only one Ąfth of the data was used for model estimation. Models
estimated with intervals from DS4SID, have better performance than when
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using intervals retrieved from the approach in [12]. This is explained by the
fact that DS4SID has better detection rate and can retrieve more informative
intervals which results in better data sets for parameter estimation.

The process with output corresponding to the level of the Ąrst reactor tank,
y100[𝑘], and inputs, u100[𝑘] and u220[𝑘], was used as MISO system. The misde-
tection rate of DS4SID is smaller than when using [12] which conĄrms results
discussed for the SISO case. The goodness of Ąt of 𝐺(𝑞−1, Θ̂3) is acceptable
as it represents a difference of around 7 % when compared with other models.
Models estimated with informative intervals, retrieved using DS4SID, yield
better performance than their counterpart computed with data sequences from
the method in [12]. The results reported in Table 6.6 conĄrm the satisfactory
performance of the DS4SID also for the multivariate case. The UINR was
slightly larger than values obtained for the SISO case which is explained by
the control conĄguration of this sub-process. The process corresponding to the
regulation of the level is slightly longer excited and the informative intervals are
thus larger. The goodness of Ąt for models in this sub-process is smaller than
for the output Ćow rate due to additional challenges in modeling of multivariate
processes.



CHAPTER 7

Conclusions and Outlook

7.1 Conclusions
Selection of informative data for system identiĄcation is a promising alternative
when performing new experiments is constrained. As mentioned in section 1.1,
data-driven modeling involves three main aspects: data, model and identiĄcation
method. Tools from statistical signal processing and parameter estimation can
be adapted to support data selection for system identiĄcation. In the present
work, available techniques for data selection were investigated and research
opportunities were explored. A modular and Ćexible data selection method,
DS4SID, applicable to multivariable systems and robust to colored noise is
presented. Three main aspects were investigated in this research: change
detection for dynamic systems, interval bounding and merging of informative
data. DS4SID addresses limitations and drawbacks found in available approaches
and achieves notable performance in terms of goodness of Ąt for models estimated
with retrieved informative intervals.

The DS4SID consists of two main stages to locate and deĄne informative
intervals. Firstly, potentially informative intervals are identiĄed using a detection
method and lower interval bounds are set where a change is located. Upper
interval bounds are deĄned by evaluating the resulting information matrix using
parameter estimation method. Finally, as mentioned before, a model is obtained
by merging the retrieved intervals.

Potentially informative intervals are usually associated to changes in the
process due to external excitations. In available approaches for selecting infor-
mative data in multivariable systems simple tests such as change in the mean
and in the variance are performed separately on output signals for detecting
changes from an operating point. This methodology might yield multiple acti-
vations of the detection test for the same change due to possible correlations
present in multivariable processes. In DS4SID, these changes are located using
available detection tests that are extended to cover multivariable dynamical
models. It is assumed that multivariable systems addressed in this work can
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be decomposed using MISO models. The detection test chooses between two
hypothesis: either the system is at steady-state or not. In the hypotheses, ℋ0

and ℋ1, the considered models are described using parameter vectors Θ0 and Θ1,
respectively. In the present work, ARX and ARX-Laguerre models are chosen
for local modeling in the vicinity of an operating point.

Available data selection methods require a preliminary step to normalize
the input and output signals between 0 and 1 for change detection which can
be time-demanding in the case of very large data sets. Moreover, in available
approaches signals are processed separately for change detection using time
series models even though they are collected from a dynamical system. Thus,
additional tests are required in a last stage to conĄrm the causal relation between
the detected change and an excitation in the input. These additional steps are
avoided in DS4SID as they are implicitly considered within the GLRT since the
hypotheses are based on dynamical models.

For change detection in DS4SID, two windows are used for data processing
and computations of the GLRT. The PDF under ℋ0 is computed using a
growing time window whereas for ℋ1 a sliding Ąxed time window is used. The
growing time window is increased at each iteration until a change is located by
the detector.

Potentially informative intervals are conĄrmed or rejected in a second test
which involves an identiĄcation method. Informative intervals are determined by
thresholding a scalar measure retrieved from the information matrix associated to
the chosen parameter estimation method. Current methods propose global user-
deĄned thresholds for upper interval bounding that are related to computational
precision. Despite the pragmatic aspect of this solution, some limitations arise
from use of this criterion. Some intervals can be misdetected if the threshold is
set to a value that does consider the matrix conditioning resulting from small
amplitude changes in the input. To overcome this limitation, the gradient of the
information matrix conditioning is proposed in DS4SID. This criterion considers
local information for interval bounding and misdetection can be reduced when
compared with global thresholds.

Different models and parameter estimation methods are presented in Chap-
ter 3. An identiĄcation method robust to colored noise was chosen for this second
stage of DS4SID. Available works propose use of recursive least squares based
on QR factorization of the information matrix as identiĄcation method. Even
though the least squares method is computationally simple, it yields consistent
estimates only in the case of WGN. However, in most real applications, signals
are embedded in colored noise. Thus, using the previously mentioned methods
will result in imprecise interval bounds and biased parameters. This important
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aspect is considered in DS4SID since identiĄcation is performed using methods
robust to colored noise such as instrumental variables and the generalized least
squares. Contrarily to QR-RLS, the ORIV can be computationally faster when
𝑛 ⊘ 𝑛η ⊘ (𝑛 + 2) holds where 𝑛 is the model order and 𝑛η is the number of
instruments.

Two categories of user-deĄned parameters should be set in DS4SID. The Ąrst
one is the model order for each hypothesis that are required for computation
of the detection test. Thresholds for the detection test and upper interval
bounding is the second type of user-deĄned parameters. General guidelines
are given in the literature to choose thresholds but a Ąne tunning is usually
necessary in practice.

In the available literature, the problem of data selection is limited to Ąnd-
ing informative data sequences. A further aspect, namely merging of useful
intervals is also considered in the present work. Suitable techniques found
in the literature were presented in Chapter 4. Some of these methods are
adapted and implemented as part of DS4SID. As an additional feature, the
proposed method can provide a model computed with the retrieved intervals. A
weighted least squares data merging method that can improve model quality is
introduced in section 4.2. The weights are obtained from the information matrix
conditioning. Information retrieved by DS4SID from interval bounding is used
in a post-processing stage for model estimation. All the models are assumed to
have the same order for data merging. This can be a considerable drawback
as the system dynamics can depend on the operating point which may require
models of different orders. To overcome this limitation, an alternative local
modeling is proposed. In this approach, the output is constructed from the
sum of models estimated from each informative interval. The weights of each
model are computed based on the information matrix conditioning obtained for
each informative interval. This approach is Ćexible as each local model can be
assigned a different order that can be set empirically. The suitability of this
method was demonstrated on two case studies.

The validity of the method was tested by comparing the goodness of Ąt
between models estimated with informative intervals and others computed with
the entire data set. Tests carried out in simulation and in real case studies show
the validity of the IV method for data merging. Models estimated by DS4SID
using less than 25 % of the data usually yield a goodness of Ąt comparable
to the models computed with the entire data set. Thus, computational time
for system identiĄcation can be reduced by considering informative intervals
instead of the entire data set.
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The designed method is endowed with a Ćexible and modular methodology
as explained in Chapter 5. In DS4SID, data selection is stated as a problem
consisting of three main tasks: lower and upper interval bounding and data
merging. Different detection and parameter estimation methods are investigated
and adapted in DS4SID. Additionally, the problem statement proposed in the
present work allows the user to explore other techniques and extend the state
of the art.

7.2 Outlook
The method developed in the present thesis, DS4SID, provides a reliable solution
to the problem of data selection for system identiĄcation. This is a promising
research Ąeld where the following directions should be further explored.

Process description/Modeling: multivariable processes are described in
this work using MISO parametric models. State space models are well-known
mathematical descriptions for multivariable systems. DS4SID can be extended
with a bank of models. Estimation methods should be adjusted for computation
of some speciĄc models. As general features, parameter estimation should be
fast, computationally efficient and recursively implementable. The PEM is an
attractive approach that covers such requirements. Batch implementations of
selected identiĄcation methods are also required for data merging.

Decoupling of multivariate processes can be challenging in highly-interacting
systems [77]. In such situations, state space modeling is recommended as it
offers a general description of the system without requiring decomposition in
MISO sub-processes. Detection methods as the one proposed in the present
work can be adapted depending on the model selected for each hypothesis. For
an extensive analysis on available subspace identiĄcation methods the reader
might refer to [20]. Alternatively, Ąlters constructed with OBF can be used
for modeling [64]. Transfer functions with those Ąlters have been proven to
properly describe systems with unknown input-output delays [57].

Interval bounding: a criterion based on the gradient of the reciprocal of
the condition number is used in the present work to deĄne upper bounds of
informative intervals. Alternative criteria such as interval bounding based on
statistical hypothesis testing should be further investigated.

IdentiĄcation methods implemented in the present work for interval bounding
can be applied to systems operating in open or closed-loop. Alternative identiĄ-
cation methods other than ORIV should be considered for interval bounding in
closed-loop systems. Methods for closed-loop identiĄcation based on instrumen-
tal variables (IV) may require the controller parameters for model estimation
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[80]. Implementation of IV methods for closed-loop systems is presented in [27]
where measurement noise is assumed to be generated by an ARMA process.

Data merging: different estimation methods for data merging can be
implemented using the multi-cost approach presented in section 4.5. For instance,
the PEM can be evaluated using different models that can better describe
the system dynamics. Alternatively, model computation using optimal IV
methods can yield better results as parameter estimation is performed by more
sophisticated techniques. Further use of estimated models with informative
intervals should be considered. Simulation, prediction, controller design or fault
detection are possible tasks that can be performed using the resulting models.

Determination of weights for local models: a suitable procedure to
ponder the relevance of each local model would be required if different identiĄ-
cation methods are used for interval bounding. An additional stage previous
to data merging would be necessary to determine weights for each local model
using a unifying approach. As an alternative, an evaluation criterion such as the
NRMSE can be considered. The goodness-of-Ąt of each local model can be used
to ponder individual contributions related to each interval. Use of a common
identiĄcation method in the model-based stage would simplify this step since
the same discarding criterion is used for the entire data set. Computation of
weights will be straightforward as relevance of each interval is compared with
the others using the same measure.

Condition monitoring: satisfactory models can be obtained by merging
data of informative intervals. Intervals that reĆect changing conditions are in-
cluded in the model estimation. Using one of the proposed weighting techniques,
current system dynamics can be better explained by data merging. Estimated
models can be used to track the system state and to detect possible anomalies.
This is a relevant application that can be further explored.

Case studies: additional tests will improve discussion about the support
offered by data selection method to system identiĄcation. As the price of storage
devices decreases, more process data can be collected which offers new chances
for data selection. Further tests on real processes are highly encouraged as
challenges encountered in such systems are different from simulation case studies.
Measurement noise is more likely colored and differ from WGN. Moreover, real
data can exhibit outliers or errors in the data collection that cannot be simulated.
Thus, the presented method DS4SID can be improved and further developed
accordingly.
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A Experiments in the Process Unit II

In this appendix, measurements collected during the experiments in the process
unit II and discussed in section 6.3.4 are shown. The main features of these
experiments are listed in Table 6.4. In order to evaluate the performance of
DS4SID using real data, a SISO and a MISO process of the process unit II were
used for analysis. The experiments were performed while operating the process
unit II in closed-loop as described in section 6.3.1. The detection test of DS4SID
was evaluated for small and large changes between operating points. Small
changes in the set point are shown in Figure A.1 for the Ąrst experiment between
the second and third operating point. Another example of small changes in the
process is shown in Figure A.2 for the sixth experiment between the third and
fourth operating point.

The top rows of Figure A.1 to Figure A.3 show the signals y320[𝑘], u320[𝑘] as
well as 𝑤320[𝑘] that represent the output, input and set point for the production
rate, respectively. The output signal y100[𝑘] and the two input signals u100[𝑘] and
u220[𝑘] for the multivariable process are shown in the bottom row of Figure A.1
to Figure A.3.

The set points 𝑤320[𝑘] and 𝑤100[𝑘] were Ąrstly generated in a simulation
program and further implemented in the control system of the process unit
II that was operated mainly automatically. This recreates situations found
in continuously-operated plants. Experiments 4 and 5 were used for data
selection using DS4SID and an approach based on [12] was also adapted for
tests and comparison. Models were estimated with the selected intervals of
these experiments and the NRMSE using these data was computed. The models
were cross-validated with the remaining data sets.
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Figure A.3: Experiment 7 (see Table 6.4) from left to right



B Evaluation of Model Residuals

In this chapter, model residuals for the two processes considered in the process
unit II are evaluated. The model residuals are computed as the difference
between the output sequence and the one-step-ahead prediction of the model.
The resulting residuals are Ąltered according to the assumed model and the
resulting sequence is evaluated with a normality test. First, results are discussed
for the output rate. Then, the model residuals of the level in the Ąrst reactor
are analyzed.

B.1 Output Flow Rate
In this section, model residuals for the output Ćow rate are analyzed. The
output signal is denoted by y320[𝑘] whereas the input signal is the pump control
voltage u320[𝑘] and the process sampling time is 𝑇𝑠 = 250 ms. The fourth
experiment, shown in the top-left of Figure A.1 was used for evaluation of model
residuals. The process is operated between 12 different operating points. An
ARMAX model is used for process description with the following model order:

n = [𝑛𝑎 𝑛𝑏 𝑛𝑐 𝑛𝑘] = [2 1 3 4] (B.1)

Model parameters were estimated using the PEM. The model residuals are
computed by:

ε[𝑘] = y [𝑘]⊗ ŷ [𝑘] (B.2)

where y [𝑘] and ŷ [𝑘] are the observations and the one-step ahead prediction,
respectively.

The residuals ¶ε[𝑘]♢ are estimated by the identiĄcation method and analyzed
using normality tests. As null-hypothesis, ℋ0, it is assumed that ¶ε[𝑘]♢ is
considered to be WGN. In the alternative-hypothesis, ℋ1, the sequence ¶ε[𝑘]♢
is considered to be colored noise.

Results of normality tests for the fourth experiment are shown in Table B.1.
In most of the operating points, the ARMAX model describes the process
well. The operating points, where the null-hypothesis is accepted, are shaded.
This indicates that the resulting sequence ¶ε[𝑘]♢ is WGN. Thus, the ARMAX
model is suitable to describe this process. In order to conĄrm these results,
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ARX models were also used for modeling. Despite the fact that the model
quality was satisfactory, the null-hypothesis was always rejected which indicates
that the residuals do not fulĄll the assumptions of the ARX model Histograms
and correlations of the computed sequence ¶ε[𝑘]♢ are shown in Figure B.1 to
Figure B.4.

Table B.1: Normality tests for ¶ε[𝑘]♢ (cf. (B.2)) for the output rate of the fourth
experiment: Shapiro-Wilk (S-W) test: Ð = 0.05

Op. point 𝑤320 ℋ pValue χ̂2 dof σ̂𝑦 σ̂ε Meas. error in % SNR in dB

1 4.4 0 0.1957 8.6259 6 0.0074 0.0037 4.8424 3.1563
2 5.4 1 0.1328 7.0591 4 0.0082 0.0047 8.0690 3.6485
3 6.2 0 0.0020 16.9209 4 0.0075 0.0050 2.1120 3.5857
4 6.9 1 0.0359 13.4889 6 0.0079 0.0053 1.5595 3.5491
5 6.3 0 0.1718 10.3071 7 0.0077 0.0053 1.4086 3.1887
6 5.6 0 0.4019 6.1928 6 0.0076 0.0047 1.9249 4.2071
7 6.7 1 0.0178 15.3387 6 0.0082 0.0052 3.1418 3.9967
8 5.7 0 0.6960 3.0259 5 0.0077 0.0049 3.1461 3.8620
9 4.5 0 0.2198 8.2578 6 0.0061 0.0038 5.1083 4.1483
10 4.7 0 0.4054 7.2288 7 0.0072 0.0041 4.2106 4.7966
11 6.0 0 0.0994 12.0353 7 0.0088 0.0052 4.4777 4.5250
12 5.3 0 0.2661 8.8163 7 0.0075 0.0046 2.0130 4.1725
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B.2 Level of the first Reactor
The process is operated in closed-loop using PI controllers that regulate the
reactor level. The controlled variable is the reactor level, y100(𝑡). The reactor
level is operated at the same operating point and it is kept on that set value
between 50 to 60 min, approximately. The level is measured using a hydrostatic
sensor located at the bottom part of the reactor. The control variables, are
u100(𝑡) and u220(𝑡). Similar to the analysis presented in section B.1, the model
residuals for the level in the Ąrst reactor were evaluated. The level of the reactor
is kept at the same value during long periods in order to evaluate characteristics
of the measurement noise.

The model residuals are computed by:

ε[𝑘] = y [𝑘]⊗ ŷ [𝑘], 𝑘 = 0,1, . . . ,𝑁 ⊗ 1 (B.3)

The residuals ε[𝑘] were analyzed following a similar procedure as presented in
section B.1 and normality tests were applied. Results of the normality tests for
the fourth experiment (bottom-left of Figure A.1) are shown in Table B.2.

Table B.2: Normality tests for the level of the Ąrst reactor in the fourth experiment.
Shapiro-Wilk (S-W) test: Ð = 0.05

Op. point 𝑤100 ℋ pValue χ̂2 dof σ̂𝑦 σ̂ε Meas. error in % SNR in dB

1 140 0 0.2001 7.3052 6 0.0120 0.0053 5.0120 7.0981
2 172 1 0.1520 6.8251 4 0.0143 0.0062 7.8526 7.2589
3 202 0 0.0014 12.1456 4 0.0134 0.0080 2.2598 4.4803
4 154 1 0.0219 13.9635 6 0.0125 0.0054 1.4926 7.2903
5 135 0 0.2015 9.4895 7 0.0102 0.0053 1.5792 5.6865
6 176 0 0.3584 6.2416 6 0.0148 0.0065 1.7492 7.1470
7 180 1 0.0187 15.4251 6 0.0158 0.0058 3.4852 8.7046
8 185 0 0.4218 3.1423 5 0.0134 0.0064 3.1416 6.4185
9 210 0 0.2036 8.7496 6 0.0192 0.0073 4.9587 8.3996
10 236 0 0.1428 6.5078 7 0.0136 0.0083 4.3216 4.2892
11 215 0 0.1796 12.0125 4 0.0154 0.0087 3.8753 4.9600
12 220 0 0.2248 8.9675 6 0.0110 0.0071 6.4521 3.8027
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Performing experiments for system identification of continuously operated plants 

might be restricted as it can impact negatively normal production. In such cases, 

using historical logged data can become an attractive alternative for system iden-

tification. However, operating points are rarely changed and parameter estimation 

methods can suffer numerical problems.

Three main drawbacks of current approaches in this research area can be discussed. 

Firstly, detection tests are not adapted for dynamical systems. Secondly, methods to 

define upper interval bounds are not robust to colored noise that is more likely to be 

found in real applications. Thirdly, model estimation with the retrieved data is not 

supported and the performance of the method cannot be assessed. In the method 

proposed in this work, called data selection for system identification (DS4SID), pre-

vious drawbacks are addressed and robust tests are designed and implemented. 

The performance of DS4SID is evaluated in a simulated and laboratory multivari-

ate processes. A process unit of the lab-scale factory “µPlant” is used as industry-

oriented case study. Models estimated with selected data are shown to have similar 

performance than estimates with the entire data set.
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