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Abstract. Efficient duplicate detection and deletion is an algorithmic
challenge both in practical terms and from a theoretical stand point.
Duplicates may occur in database tables after a projection, in tracking
web traffic, experimentation and statistics. To reduce these multisets to
proper sets, the most common approach is to sort the file first and then
– in an additional sweep – take one instance, say the first, from each
multiplicity of keys. If done in place, ideally the front of the file contains
afterwards the sorted subset of unique keys and the duplicates are in
the back. Sorting methods which can be engineered to do early duplicate
deletion may reduce the effort spent to O(n log k), where k is the num-
ber of distinct keys. General wisdom had it that this smooth behaviour
wasn’t achievable with heapsort unless the sort was totally redesigned
in the style of Dijkstra’s Smoothsort. Here we show that this is a mis-
perception and present DDHeapsort as a duplicate elimination method
which achieves the lower bound of O(n log k) steps – both on the average
and in the worst case – and requires O(1) extra space. Empirical evi-
dence suggests that DDHeapsort comes with very little penalty in the
case of no duplicates when compared to a fast heapsort with subsequent
duplicate detection sweep.
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1 Introduction

In May 1987, the last named author of this contribution was invited to hold a
one week long series of lectures on Sorting at the University of Turku. The idea
for this visit had come from the second named author. Emphasis was placed
on novel methods dealing with multisets and presortedness. A revised edition of
the presented algorithms was recently published as Lecture Note of the Turku
Centre for Computer Science [13].

One open issue during the lectures concerned a possible modification of the
classical heapsort [4, 5, 14] with the aim of elegantly eliminating duplicates, i.e.
separating a given multiset s.t. the subset of records with pairwise distinct keys is
afterwards in front and the duplicates at the back, all with only O(1) extra space
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and in at most O(n log n) time. Normally, the common approach to this task is
to sort the file first and then – in an additional sweep – take one instance, say the
first, from each multiplicity of keys. Alternatively, suitable forms of hashing can
identify and separate the subset of pairwise distinct keys and their duplicates,
as suggested by Teuhola and Wegner [11].

When the problem was presented in 1987, the participants agreed that it
could be solved by intelligently dividing the file into three parts: a sorted prefix
of records with unique keys, a sequence of duplicates, and a heap, respectively
sequence of yet untreated records3. Extra key comparisons on equality were
needed to identify a duplicate. Clearly they would occur when parent-child and
sibling orderings take place in the sift-operations in heapsort.

When in building the heap and in the selection phase a duplicate is detected,
it could be replaced by the rightmost leaf (or leftmost leaf in a min-heap with
root to the right). Note that this node with new value might continue up or
down the heap or be again a duplicate to parent, child or sibling. This led to the
notion of a locally duplicate-free heap, or df-heap for short.

2 Locally duplicate-free heaps

As an example for a df-heap, consider a worst case heap4 s.t. no two siblings
are equal, respectively no parent is equal to one of its children. Figure 1 is a
min-heap. The maximal values of n for k = 1, 2, . . . , 8 in this example are 1, 2,
4, 6, 10, 14, 22, 30.

1

2

3

4

5 6

5

6 7

4

5

6 7

6

7 8

3

4

5

6 7

6

7 8

5

6

7 8

7

8 9

Fig. 1. A df-heap: no parent-child or sibling-nodes have equal keys.

Observation: A df-heap with k distinct values has at most n = f(k) = 2k/2+1−
2 nodes, for k even, and n = (f(k − 1) + f(k + 1))/2 nodes for k odd.

3 We often equate keys with records for shortness, although our sorting model is based
on records having a key component and satellite information.

4 Worst case in the sense that we want the largest df-heap with N nodes that can be
build with k distinct keys.
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At that point the hand-waving started in 1987 and the idea was never
followed-up with a concise algorithm. Instead Teuhola and Wegner later pre-
sented a minimal space, average linear time duplicate deletion algorithm, termed
DDT, which is based on hashing and was already mentioned above [11].

3 Where to search for duplicates?

The idea to design a duplicate deletion algorithm based on the principle of a
df-heap is tempting. We remove the root (minimum) from a df-heap, place the
leftmost leaf in its position, do a sift-operation which again brings the new
minimum to the root and restores as postcondition the df-heap property.

However, as soon as one starts to implement this idea, doubts arise as to
the usefulness of locally testing for a duplicate that could be anywhere in the
heap. In particular, to establish the df-heap property in phase 1 (heap building
bottom-up), the leaf layer of a heap has to be included. Normally, building
starts at position N/2 working its way up to the root. To make sure that no two
siblings are equal, we must compare nodes at position i and i + 1 which adds
N/4 comparisons with little benefit.

Secondly, we would like to use the Floyd-improvement of letting a hole sink
down first which saves parent-child comparisons and thus halfs the number of
key comparisons. Overall it is known to improve the asymptotic speed from
16N logN + 0.2N to 13N logN + O(N). Now, if we detect a duplicate in that
phase, what should we do? Turn it into yet another hole? This quickly creates
a bookkeeping problem. Thus we abandoned the idea of maintaining a df-heap
early on.

Rather we used the Floyd-improvement, but checked for duplicates in the sift-
up phase only. If a duplicate is detected in this sift-up phase, it is turned into a
hole and sinks down again, so there is no bookkeeping problem. It is known that
keys which came from a leaf-position don’t climb very high. The probabilities of
an inserted leaf to climb up i levels are [6, p. 619, answer to ex. 18]:

i = 0 : 0.848
i = 1 : 0.135
i = 2 : 0.016

The rationale was that we invest little added overhead in searching for duplicates.
Should, however, the input contain a very large number of duplicates, they have
a chance to be detected and deleted in the first heap building phase which is
known to be linear in time.

Unfortunately, a first implementation showed no real speed-up for duplicates,
even though duplicates were detected in the sift-up phase and removed imme-
diately. The reason for the poor speed-up is that the path-length for the sift-
operations remains almost unchanged, even though a larger number of leaves are
pruned from the tree.

Overall, searching for duplicates as part of the child-child and parent-child
comparisons in the sift-phase isn’t as good an idea as the concept of a df-heap
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suggests. Rather, the root region of the heap is the only relevant area for dupli-
cate handling. To understand this, consider the following Figure 2 for a min-heap
with fixed multiplicities m and keys 1, 2, . . ., k.
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Fig. 2. Perfect min-heap for a multiset.

The example uses k = 4 and m ≤ 8. Clearly, the neat level-wise ordering will
rarely occur for input in random order but illustrates the point here. The point
is that the m (or rather m − 1) occurrences of the minimum (here key value
1) form a tree of height log2 m, whereas the next m occurrences of the second
minumum form a single layer of width m, the third and fourth minima occupy
half a layer etc.

To gain a speed-up for multiset input it is thus necessary and sufficient to
skip the unary root area of the heap thus shortening each sift-path by O(log2 m)
comparisons. Indeed this is what DDHeapsort does.5

4 Solution

The solution has two parts which must be explained. First, how to shorten the
sift-path. Second, how to keep the sorted sequence of unique keys, the duplicates,
and the remaining heap separate without additional space.

To shorten the sift-path, we do not extract the root from the heap, replac-
ing it with the leftmost leaf, as done in heapsort. Rather we scan levelwise for
duplicates of the root starting at the root. The first key not equal to the root
stops the scan and the key before it, say at position r, which still is a duplicate,
is removed from the heap. The leaf enters here at r and is sifted down (as a hole
as in Floyd’s improvement). This does not violate the heap property because
everything above and including the node at r is a duplicate to the root node.

5 Deapsort would have been a nicer name, but unfortunately there is a name clash
with the data structure “deap” which is a special min-max-heap proposed by Svente
Carlsson [1, 2]. We stick to the name DDHeapsort for the moment.
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Should the sift-routine bring another duplicate to the node at r, we repeat
the process, otherwise r retreats stepwise to the root, deleting duplicates in each
step. Note that we do not claim that this removes all duplicates in one scan, as
Figure 2 might suggest. In fact, one non-duplicate might appear right under the
root, stopping the scan, as shown in Figure 3.
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Fig. 3. Min-heap with skewed distribution for a multiset.

The second part, keeping track of duplicates and already sorted prefix, is easily
explained through the following Figure 4. To have the duplicates afterwards at

sorted sequence duplicates heap

u jd

duplicates heap under construction untreated

d ju

detected duplicate

Fig. 4. Heap build-up and extraction of the minima

the right end of the file, a min-heap is constructed whose root is to the right.
Everything is thus mirrored and the heap levels run from the right to the left.
The formula for converting an index i in heapsort into j in DDHeapsort is
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j = n − i + 1. The right child of a node j in DDHeapsort is in location
2∗ j−n−1, the left child in 2∗ j−n−2. Otherwise the algorithm follows closely
the ordinary heapsort principle6, i.e. in phase 1 a heap is constructed bottom
up and phase 2 extracts continuously the minimum value (but not from the root
position) which is thrown to the left. There it is compared to the previously
extracted key in order to recognized it as a possible duplicate. Duplicates roll to
the right in what we termed a wheel in [11].

Scanning keys in the root area for equality to the root node before extraction
and checking for duplicates after removal from the heap is done for each key once
and adds 2n key comparisons. Combining both into one check would be nice but
seems complicated. Even without optimizations, DDHeapsort has some nasty
special cases, e.g. when a duplicate is at the same time the leftmost leaf that
should be swapped with a key from the root-area.

Listing 1.1. DDHeapsort – heapsort with on-the-fly duplicate deletion.

{DDHeapsort i s a va r i an t o f heapsor t which does }
{ dup l i c a t e d e l e t i o n on−the− f l y . I t s input i s an}
{ array a from 1 to n . I t has the minimum at i t s }
{ roo t and the roo t i s to the r i g h t . Afterwards , }
{ the so r t ed sequence o f unique keys i s to the }
{ l e f t in a [ 1 . . u ] and dup l i c a t e s on the r i g h t in }
{a [ u+1 . . n ] . DDHeapsort r e turns the number o f }
{ pa i rw i s e d i s t i n c t keys . }

function ddheapsort (var a : sequence ; n : l o n g i n t ) : l o n g i n t ;
var r , d , u : l o n g i n t ;

t : item ;

procedure d s i f t (var a : sequence ; i , k : l o n g i n t ) ;
{ f o r a newly p laced key at a [ k ] , d s i f t r e s t o r e s }
{ the heap proper ty . I t works wi th the Floyd− }
{ improvement f o r heaps ( Si f tUp ) , i . e . s t a r t s }
{with s i n k in g a ho l e . No search ing f o r d u p l i c a t e s }
{ i n s i d e d s i f t . The heap ends at a [ i ] , i . e . k i s }
{ the r i g h t end ( roo t ) , i the l e f tmo s t l e a f , which}
{ i s one pas t the l a s t d u p l i c a t e . The o r i g i n a l }
{ array s t r e t c h e d from 1 to n . }

var s ta r t , j : l o n g i n t ;
x : item ;

begin
s t a r t := k ;
x := a [ k ] ;

6 The actual code was derived from a C-implementation of Floyd’s improvement which
the second author had published on the Internet [10].
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j := 2∗k − n − 1 ; { j on r i g h t c h i l d }
while j >= i do
begin

i f j > i then
begin

i f a [ j ] . key > a [ j −1] . key then dec ( j ) ;
end ; {a [ j ] i s sma l l e r c h i l d }
a [ k ] := a [ j ] ; k := j ; j := 2∗k − n −1;

end ; { ho l e at a [ k ] has reached bottom}
j := ( k + n + 2) div 2 ; { j i s f a t h e r o f k}
while j <= s t a r t do
begin

i f a [ j ] . key > x . key then
begin { f a t h e r moves down , ho l e moves up}

a [ k ] := a [ j ] ;
k := j ; j := ( k + n + 2) div 2

end
else Break

end ;
a [ k ] := x

end { o f d s i f t } ;

begin { ddheapsor t }
for r := n − (n div 2) + 1 to n do

d s i f t ( a , 1 , r ) ;
{ f i r s t key i s never a dup l i c a t e ; }
{ s o r t then by e x t r a c t i n g con t inuous l y the }
{minimum , but check f o r d u p l i c a t e s f i r s t . }
t := a [ n ] ; a [ n ] := a [ 1 ] ; a [ 1 ] := t ;
u := 2 ; {u i s one pas t the end o f so r t ed p r e f i x }
d := 2 ; {d i s one pas t the end o f d u p l i c a t e s }
while d <= n do
begin

d s i f t ( a , d , n ) ;
r := n − 1 ;
while ( r >= d) and ( a [ r ] . key = a [ n ] . key ) do

dec ( r ) ;
{a [ r ] i s r i gh tmos t non−dup l i c a t e to roo t }
i n c ( r ) ;
while ( r <= n) and ( r >= d) do
begin

t := a [ r ] ; a [ r ] := a [ d ] ; a [ d ] := a [ u ] ; a [ u ] := t ;
inc (d ) ;
d s i f t ( a , d , r ) ;
i f a [ u ] . key <> a [ u−1] . key then i n c (u ) ;
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while ( a [ r ] . key = a [ n ] . key ) and ( r >= d) do
dec ( r ) ;

i nc ( r )
end

end ;
ddheapsort := u − 1 ;

end { ddheapsor t } ;

As an example consider an input of n = 12 records with k = 4 distinct values,
each occuring m = 3 times (Figure 5). In the following Figure 6 we see the
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Fig. 5. Start situation – no min-heap yet.

situation after phase 1. The min-heap is almost optimal with only one inversion
on the second lowest level. Phase 1 does not search for duplicates.
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Fig. 6. Situation at end of phase 1.
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Next, we show the situation when all 1s and 2s have been removed from the
heap (Figure 7) and four records have been eliminated as duplicates. Note that
the boldface 4 denotes the leftmost leaf. The remaining nodes above it happen
to form an optimal multiset heap.

3
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2 4 4 4

1 2 2 1 1

1 2 2 1 1 2 4 4 4 3 3 3

duplicates︷ ︸︸ ︷

Fig. 7. Situation after removal of all 1s and 2s.

Finally, when sorting is completed, the duplicates are all in the back as shown in
Figure 8. We should also emphasize that the algorithm is not stable in the sense
defined by Knuth [7, p. 4], i.e. equal keys do not retain their relative order and
thus the one we extract and attach to the list of unique keys is not guaranteed
to be the first in input order. As can be seen from Figures 5 to 8, duplicates are
shuffled heavily.
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2 2 1 3

1 2 3 4 4

1 2 3 4 4 2 2 1 3 3 1 4

duplicates︷ ︸︸ ︷

Fig. 8. Final outcome – unique keys are in front.
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As another remark, the number of key comparisons observed for this particular
input permutation is 69. Other permutations for this particular multiset pro-
duced 68 or 70 comarisons, so there seems little deviation from the average.
This leads directly to the question of effectiveness in general.

5 Performance

When Dijkstra introduced Smoothsort as a heapsort-variant for presorted in-
put [3], he claimed a smooth transition from O(n log n) for no presortedness to
O(n) for input already in ascending order. Indeed we would like to have the
same smooth transition for multiset input. In the case of quicksort, Sedgewick
has proven a lower bound for partition-exchange programs of the quicksort-type
when sorting n-ary input [9]. With MIX-comparisons the number of comparisons
for fixed multiplicities M is 2(N+M)Hn−3N−n which is O(N log n), n = N/M
the number of distinct keys. In [12] Wegner shows that several of his quicksort
derivatives both for linked lists and arrays achieve this lower bound.

As it turns out, DDHeapsort shows this O(n log k) performance on the
average. This comes from saving log2 m path-length on the sift-operations for
each of the n records by skipping duplicates at the root. Given each key occurs m
times, we have O(n log n−n log m) = O(n log k) key comparisons for k = n/m.

Figures 9 and 10 show the number of comparisons and running times for
DDHeapsort and a heapsort with Floyd-improvement and an subsequent sweep
to eliminate duplicates in-situ. Note that the x-axis for the multiplicities m has
a logarithmic scale.
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Fig. 9. Key comparissons on the average for n = 10, 000, 000
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Fig. 10. Execution times on the average for n = 10, 000, 000

In summary, we have shown how to do smooth, on-the-fly duplicate deletion
with a heapsort-variant and have proven that this comes with little penalty
when competing with one of the better heapsorts with duplicate elimination
afterwards. As compared to methods based on hashing, the records with unique
keys are in ascending order afterwards. Also the first (and minimal) unique key
is delivered in linear time as the building phase continues to be of order O(n) as
with heaps in general.

On the negative side, timings show no speed-up that would match the de-
crease in key comparisons for DDHeapsort. The reason seems to be that with
multisets the ordinary heapsort can profit from caching effects as leaves sink
along the same path all the time. Things would change completely when we
started to prune the tree from the root as Smoothsort does, organizing its
data as a forest of Leonardo-trees. However, Smoothsort is not competitive at
all for ordinary input in random order.

6 What if ternary comparisons came for free?

As a last remark we would like to comment on the difference between binary
and ternary key comparisons. When discussing solutions for sorting or duplicate
deletion in connection with multisets, the difference is an issue. Consider the
following code fragment (Listing 1.2).

Listing 1.2. Nested if-then-else.

i f a[i].key < a[j].key
then begin . . . end
else
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i f a[i].key = a[j].key
then begin . . . end
else {a[i].key > a[j].key} begin . . . end ;

A smart optimizing compiler might turn this three-way comparison into

CMP Op1, Op2

JLT Addr1

JEQ Addr2

#code for the case > a[j].key

...

As to our understanding of processor architectures, a CMP Op1, Op2-instruction
(compare Operand1, Operand2 ) delivers a result to a flag register, from which the
three orderings <,=, > may be deduced. The comparison is followed by jump-
instructions like a JLE or BLE, i.e. a jump on less or equal, branch on less or equal.
They come with a jump target as operand from which execution continues when
the condition is fulfilled, otherwise execution continues with the next instruction
in sequence.

If a compiler recognizes the nature of the nested if-then-else construct above
and generates the sequence of three maschine instructions shown, then this is
hardly more expensive than a binary comparison and most likely faster than
branching via jump tables. This would also explain why there aren’t any con-
ditional branches with two jump targets, say something like J3LE R1, R2 with
indirect jumps via two address registers R1, R2. If it existed, a given compari-
son result -1 made us jump to [R1], a 0 directed us to [R2] and with a +1 the
instruction counter was incremented.

The way things are, programmers would be on the safe side if high-level
programming languages would provide constructs for three-way comparisons.
This is only the case with a few exotic languages. The C-language offers a built-
in strcmp-function (string comparison) which returns a three-valued result. The
result must then be further processed with, say, a case-instruction which is not
what we have in mind.

If three-way comparisons came for free and algorithm designers were aware of
the advantages, quite a few algorithms might look differently. One example would
be three-way partitioning in quicksort (the Dutch national flag problem [8]).
Another is DDHeapsort here, where we would test for equality all along the
path of a sift-operation, deleting duplicates near the root of a heap much earlier.
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