
On Optimal Test Signal Design and Parameter Identification
Schemes for Dynamic Takagi-Sugeno Fuzzy Models Using
the Fisher Information Matrix

Matthias Himmelsbach1 • Andreas Kroll1

Received: 22 December 2020 / Revised: 21 August 2021 / Accepted: 6 September 2021 / Published online: 21 November 2021

� The Author(s) 2021

Abstract This paper is concerned with the analysis of

optimization procedures for optimal experiment design for

locally affine Takagi-Sugeno (TS) fuzzy models based on

the Fisher Information Matrix (FIM). The FIM is used to

estimate the covariance matrix of a parameter estimate. It

depends on the model parameters as well as the regression

variables. Due to the dependency on the model parameters

good initial models are required. Since the FIM is a matrix,

a scalar measure of the FIM is optimized. Different mea-

sures and optimization goals are investigated in three case

studies.

Keywords Optimal experiment design � Fisher
information matrix � Takagi-Sugeno models � Nonlinear
system identification

1 Introduction

The most effective methods for simulation, prognosis, and

control of technical systems are based on parametric

models. In control design, these models are either used for

simulation during the control algorithm design or its

parameters are used to design a controller. Besides the

conventional physically motivated modelling, system

identification offers an alternative. Since the biggest effort

in control design is the modelling process [1, 2], the ever-

growing complexity of technological applications leads to

the necessity of expert knowledge that is not freely avail-

able. This difficulty is supplemented by the fact that not all

phenomena are well enough understood to be physically

modelled.

This contribution is concerned with shaping the process

of generating suitable data for the identification of

parameters with low parameter uncertainty. For this pur-

pose, the optimal experiment design for the identification

of TS-models is investigated. Multisine, multistep and a

combination of both signals are used as parametric signal

models to relax the optimization problem. The impact of

different scalar measures of the FIM are investigated as

well as different experiment design procedures that group

the TS model parameters into local model and partition

parameters. Two independent goals, the reduction of the

uncertainty and the improvement of the simulation quality

on arbitrary validation data, are investigated. After a short

introduction of the model class and the identification pro-

cess, the method is presented followed by the presentation

of three case studies, a simulated test system that has been

used as a benchmark system before [3] as well as a test

stand of a servo-pneumatic longitudinal drive (SPLD) that

was used in Zaidi and Kroll [4], and a three-tank system to

validate the results from the parameter study.

2 Literature Overview

The experiment design based on the works of Fisher at the

beginning of the twentieth century has been steadily

extended and improved [5–7]. This was driven by the need

to analyze the significance of impact factors in regression

applications. The industry has a high interest in generating

& Matthias Himmelsbach

matthias.himmelsbach@mrt.uni-kassel.de

Andreas Kroll

andreas.kroll@mrt.uni-kassel.de

1 Department of Measurement and Control, Faculty of

Mechanical Engineering, University of Kassel,

Mönchebergstr. 7, 34125 Kassel, DE, Germany

123

Int. J. Fuzzy Syst. (2022) 24(2):1012–1024

https://doi.org/10.1007/s40815-021-01185-9

http://orcid.org/0000-0001-5928-566X
http://crossmark.crossref.org/dialog/?doi=10.1007/s40815-021-01185-9&amp;domain=pdf
https://doi.org/10.1007/s40815-021-01185-9


system inputs to improve the data generation for para-

metrized models, e.g., to reduce the required experiment

time to obtain a suitable model quality.

Experiment design can be categorized in five ways:

model-based vs. model-free, online vs. offline, linear vs.

nonlinear, static vs. dynamic, and bias vs. variance reduc-

tion. There are other goals that can influence the experi-

ment design, e.g., structure selection or instrumentation.

These factors will not be addressed in this contribution. In

process model-free designs, space-filling approaches are

used. In the field of dynamic test signal design, these

approaches make use of standard test signals, comprehen-

sively presented in [8, 9] and their modification possibili-

ties w.r.t. the identification of nonlinear models in [10–12].

Model based approaches are often optimal experiment

designs (OED) that use the model equations to minimize

some criterion.

The minimization of a measure on the FIM is an OED

approach and is the focus of this contribution. Kroll and

Dürrbaum [13] and Dürrbaum and Kroll [14] are motiva-

tions for this work. In Kroll and Dürrbaum [13], the FIM is

used to determine the optimum experiment design for the

estimation of the parameters of a static TS model. Only the

determinant is used as a scalar measure on the FIM. In

Dürrbaum and Kroll [14], the aspect of using space-filling

designs to remedy the effect of wrongly assumed partition

parameters is introduced to static models. Although some

of the aspects are already present in the static case this

contribution addresses the dynamic case in a systematic

way, analyzing the impact of different optimization pro-

cedures and FIM measures with respect to achievable

uncertainty improvement as well as model prediction

quality. The actual implementation of the design

scheme for nonlinear dynamic systems is also addressed

which is left open in many other contributions. The broad

term ‘‘space-filling’’ design also means broadband excita-

tion signals in the dynamic case, making the actual

approach for dynamic systems very different from its

motivation based in static systems. The problems that arise

from the application of FIM-based experiment design to

nonlinear system identification are addressed in other

contributions but the actual implementation of such designs

for dynamic systems requires a holistic view of the prob-

lem. In the seminal work [15] the problem is stated in a

way making it similar to an optimal control problem. The

emergence of a parameter-dependent FIM is briefly dis-

cussed but the complete ramifications of using dynamic

models in context of the FIM are not addressed. In

Hametner [16], FIM-based test signal design is done online

to handle constraints locally. In Heinz [17], input signals

are not the result of an optimization but selected w.r.t.

model-based measures. Larsson and Hjalmarsson [18]

addresses the structure of the optimization problem. In

Fang and Shenton [19] the problem of backpropagation of

the model output for the construction of the FIM is

addressed for a model that is linear in its parameters (LiP)

which reduces the complexity of the FIM significantly.

In recent works [20], confidence regions obtained from a

posteriori analysis are parametrized and used for subse-

quent designs. [21] circumvents the calculation of the

posterior by representing the desired samples as a reference

trajectory, such that the input design task is transformed

into an optimal control problem. Neilsen [22] uses the FIM

to assess the uncertainty of other quantities than the model

parameters that are more important to the applications dealt

with. Pleşu [23] uses the FIM to assess the global sensi-

tivity before any experimental design because the impor-

tance of high-quality initial models is emphasized. In Walz

et al. [24], the importance of task-oriented experiment

design is stressed to significantly reduce the experiment

costs both in time and computation, because irrelevant

system behavior is excluded from the modelling as well as

the experiment design. Current works on fuzzy systems

focus on the control design, such as Wang et al. [25] and

Shen et al. [26] that make use of the persistent dwell-time

switching law to design multi-objective fault-tolerant and

H1 controllers.

The focus of this contribution is the investigation of

design choices of the complete process from initial design

to optimal experiments. In previously mentioned works

that use an optimization procedure to generate an optimal

input the problem of constraints is either bypassed using

online designs or the problem of finding constraints is

moved to the specific application. Without suitable con-

straints, no technically feasible signals will arise. In this

contribution, parametrized signal models are used to reduce

the number of optimization parameters as well as to exploit

the inherent signal structure. This contribution specifically

targets TS models and therefore their unique model struc-

ture can be exploited in the design process. This contri-

bution addresses the details of using optimal model-based

designs for dynamic nonlinear modelling like the necessity

of a (high quality) initial simulation model (obtained using

process model-free designs) to run the optimization. In

many other works, the determinant is used as a measure for

the FIM [27, 28]. In this contribution, the impact of dif-

ferent measures is investigated.

3 Problem Statement

The goal is to estimate parameters of locally affine TS

models given a system
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yðkÞ ¼ f ðyðk � 1Þ; . . .; yðk � nÞ;
uðk � 1Þ; . . .; uðk � mÞÞ þ �ðkÞ

ð1Þ

with additive noise �ðkÞ, input u(k), and output y(k). In

order to identify the model parameters with minimal

uncertainty, a test signal design scheme is deployed to

generate suitable data. The scheme is based on the FIM that

is used to estimate the covariance matrix of the model

parameters. In the case of independently and identically

normally distributed noise (i.i.d.) with variance r2 and

mean l ¼ 0 and for an unbiased estimator the FIM is given

as

I ¼ 1

r2
XN

k¼1

oŷðkÞ
oH

� �
� oŷðkÞ

oH

� �>" #

H¼H0

ð2Þ

with the number of observations N and the parameter

vector H. In the case of a nonlinear dynamic system, the

following holds: The FIM depends on the model parame-

ters, therefore an initial parameter vector H0 is necessary

for the optimization scheme. The derivatives of the model

output ŷðkÞ contain lagged values of the output and the

input u(k), therefore a change in u(K) affects all values in

ŷðk[KÞ.
To assess the uncertainty, scalar measures of the FIM

are used, which leads to the following optimization

problem:

uopt ¼ argmin
u

JðIÞ ð3Þ

u ¼ uðkÞf g is the vector of the input timeseries and J is a

scalar measure of the Fisher Information Matrix (FIM) I.

To solve this problem, an (initial) simulation model is used

to calculate the output values during the optimization

which is similar to optimal control problems. However, due

to the nonlinearity of the cost functions J, which will be

introduced later, general purpose optimization tools must

be used. To achieve feasibility, different signal models are

used to reduce the number of optimization parameters. The

focus of this contribution is the analysis of the impact of

design choices like signal models, FIM measures, and

optimization procedures on the ability of the test signals to

generate suitable identification data, as shown in Fig. 1.

The computation inputs describe all explicit inputs to the

optimization procedure like the hyperparameterization of

the optimization algorithm or the boundaries of the signal

model parameter values.

In preliminary investigations, variation of these factors

resulted in vastly different results, therefore the focus of

this contribution is the impact analysis of said factors.

4 Model Class and Identification Process

4.1 Locally Affine Fuzzy Takagi-Sugeno Models

In this contribution, locally affine dynamical Takagi-

Sugeno models are considered. They are universal

approximators [29]. TS models are a superposition of c

local models ŷiðkÞ that are weighted by their respective

fuzzy basis functions /iðkÞ (FBF). The prediction equation

of such a model is:

ŷðkÞ ¼
Xc

i¼1

/i z kð Þ;HMFð Þ � ŷi u kð Þ;HLM;i

� �
ð4Þ

In (4), the FBF depend on the scheduling variable zðkÞ and
the fuzzy membership (MF) parameters HMF (see 10)

which determine the partitioning into local models. The

local models depend on the regression variable uðkÞ and

the i-th local parameter vectorHLM;i. Local models in ARX

configuration (autoregressive with exogenous input) can be

written as:

ŷiðkÞ ¼ u>ðkÞ �HLM;i ð5Þ

with the regression variable:

u>ðkÞ ¼ 1 yðk � 1Þ � � � yðk � nÞ½
uðk � 1� sÞ uðk � m� sÞ�

ð6Þ

The dead time s is not considered in the following and the

i-th local parameter vector is comprised of the coefficients

ai;j of the lagged outputs, bi;j of the lagged inputs and the

affine term ci.

H>
LM;i ¼ ci ai;1 � � � ai;n bi;1 � � � bi;m½ � ð7Þ

This leads to an alternative formulation of (5):

ŷiðkÞ ¼
Xn

j¼1

ai;jyðk � jÞ þ
Xm

j¼1

bi;juðk � jÞ þ ci ð8Þ

In locally affine TS models, the nonlinear behavior of the

global system is encoded in the partitioning that is defined

by the FBF. Therefore the choice of the scheduling variable

zðkÞ and the membership function parameters HMF define

the global nonlinear structure. The FBF depend on the

scheduling variable as well as the membership function
Fig. 1 Impact factors of the optimization scheme
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parameters. In practice, the scheduling variable is chosen

using prior knowledge. Without the use of brute force

methods [30], it is typically set to be equal to the regressor.

The case of external scheduling is excluded in this con-

tribution. In this contribution it is assumed that the

scheduling space is part of the regression space. This is a

plausible approach for the modelling of dynamic systems.

Additionally, in this contribution it is assumed that zðkÞ can
be derived with a linear mapping from the regression

vector.

The FBF are chosen as prototype-based membership

functions of the fuzzy-c-means (FCM) cluster algorithm:

li z kð Þ;HMFð Þ ¼
Xc

j¼1

z kð Þ � vik k
z kð Þ � vj
�� ��

 ! 2
m�1

2
4

3
5
�1

ð9Þ

In (9), m[ 1 is the fuzziness parameter that regulates how

sharp the transitions between partitions are. It can be shown

that membership functions (9) are normalized, meaningPc
j¼1 lj z kð Þ;HMFð Þ � 1 8 zðkÞ. It is possible to choose

different distance norms �k k. In this contribution, the

Euclidean distance is used. The prototypes vi make up the

vector of membership function parameters:

H>
MF ¼ v>1 � � � v>c

� �> ð10Þ

4.2 Identification Process

The identification of the parameters in (4) is conducted in

four steps:

1. Determination of the hyperparameters n, m, c, m
2. Calculation of the initial partitioning through

clustering

3. Calculation of the initial local model parameters using

ordinary least-squares (LS) estimation

4. Optimization of the model parameters using para-

meter values from previous steps for initialization

Step 1. It can be conducted in various ways. Cluster

validity measures like in Juhász et al. [31] should be used

with caution in context of dynamic models, since these

measures treat the problem as quasi-static which might not

reflect the dynamical dependencies. In the model equa-

tions, m, c as well as the input and output lags n and m are

hyperparameters. These parameters are determined by

structure selection methods and prior knowledge.

Step 2. With the chosen scheduling variable and

hyperparameters c and m, the initial partitioning can be

calculated. By FCM-clustering [32] the prototypes vi are

obtained. Since the FCM-clustering algorithm converges

locally, it is conducted multiple times with random

initializations.

Step 3. For each data point zðkÞ its membership

li;kðzðkÞÞ to each cluster is known. Using (5), (4) can be

rewritten as follows:

ŷ kð Þ ¼
Xc

i¼1

liu
>HLM;i

¼ l1u
> � � � lcu>� �

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
u>
E

� H>
LM;1 � � �H>

LM;c

h i>

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
HLM

:¼ u>
E �HLM

ð11Þ

For readability, the arguments of the terms in (11) are

dropped. In (11), u>
E is called the extended regression

vector and HLM the local model (LM) parameter vector.

The evaluation of the model in N � n datapoints in the case

of n�m leads to the following equations:

ŷ nð Þ
..
.

ŷ Nð Þ

2

664

3

775

|fflfflfflfflffl{zfflfflfflfflffl}
Ŷ

¼

u>
E nð Þ
..
.

u>
E Nð Þ

2

664

3

775

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
UE

HLM ð12Þ

Setting the model output equal to the measured output

Y> ¼ yðnÞ � � � yðNÞ½ � leads to an overdetermined system of

linear equations. If a quadratic cost function is minimized,

the resulting parameters ĤLM are the local model param-

eters of the nonlinear ARX (NARX) model. The quadratic

cost function in the prediction error method (PEM)

framework is:

JPEM HLMð Þ ¼ Ŷ HLMð Þ � Y
�� ��2 ð13Þ

For the Euclidean norm, the minimizing argument is:

ĤLM ¼ argmin
HLM

JPEM ¼ U>
EUE

� ��1
U>

EY ð14Þ

Step 4. Parameter values determined in steps 2 & 3 can be

used to initialize the nonlinear optimization. The partition

parameters from clustering and the local model parameters

from (14) are not optimal w.r.t. the recursive model eval-

uation. The recursive model evaluation will be called

simulation, since only initial conditions are needed. The

local model parameters and the partition parameters are

subsumed into the model parameter vector:

H> ¼ H>
LM H>

MF

� �> ð15Þ

The objective function of the nonlinear optimization

problem is:

Ĥ ¼ argmin
H

XN

k¼1

yðkÞ � ŷ k;Hð Þð Þ2 ð16Þ
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The nonlinear optimization is conducted using the

MATLAB function lsqnonlin with the Levenberg-

Marquardt algorithm.

4.3 Fisher Information Matrix for Dynamical TS

Models

The Fisher Information Matrix I for i.i.d. normally dis-

tributed noise is given in (2). The Cramér-Rao-Lower-

Bound (CRLB) relates the covariance matrix of the esti-

mated parameters with the FIM:

cov Ĥ

 �

� I Ĥ

 �
 ��1

ð17Þ

Since the parameters of a TS model can be divided into two

groups, the FIM is treated in the same way. The derivatives

with respect to the local model parameters result in the

extended regression vector:

oŷðkÞ
oHLM

¼ uE ð18Þ

The derivatives in the NARX case with respect to the

partition parameters are more complicated:

oŷðkÞ
oHMF

¼
Xc

i¼1

oliðkÞ
oHMF

ŷiðkÞ þ liðkÞ
oŷiðkÞ
oHMF|fflffl{zfflffl}

¼0

0
BB@

1
CCA ð19Þ

oliðkÞ
oHMF

¼ oliðkÞ
ov1

� � � oliðkÞ
ovp

� � � oliðkÞ
ovc

� �
ð20Þ

oliðkÞ
ovp

¼

2liðkÞ
2

m� 1

zðkÞ � v

zðkÞ � vij j
1

liðkÞ
� 1

� 
i ¼ p

� 2liðkÞ
2

m� 1
zðkÞ � vp
� � zðkÞ � vij j

2
m�1

zðkÞ � vp
�� ��mþ1

m�1

i 6¼ p

8
>>>><

>>>>:

with m[ 1

ð21Þ

5 FIM-Based Test Signal Design

In this section, the application of the FIM-based optimal

test signal design to nonlinear dynamic TS models is

presented.

5.1 Design Process

There are significant differences in procedures w.r.t. static

and/or linear FIM-based OED problems of which not all

have been addressed in the literature:

– A change in the input at time k impacts all future output

values.

– The input sequence fuðkÞg is a trajectory.

– fuðkÞg is too long to be optimized for each u(k).

– The FIM cannot be evaluated without model parameter

values.

The consequences of these aspects are significant. In the

case of a linear static problem, the FIM only depends on

the choice of independent inputs, therefore an optimization

procedure places these input values within specified

bounds. In case of a nonlinear static problem, the opti-

mization procedure is localized since model parameters are

needed to calculate the FIM. In the case of a dynamic

problem, the FIM contains system outputs that change

based on the iterations of the input. Therefore, during the

optimization a simulation model is needed to generate the

system outputs in each iteration. The proposed test signal

design method follows in five steps:

1. Initial signal model parameters b0 are used to generate

a test signal uð0Þðb0Þ using the signal model.

2. The initial model M0 is used to generate the initial

output yð0Þ.
3. The test signal, the output, and the initial model

parameters are used to calculate the FIM.

4. A scalar measure on the inverse FIM is calculated.

5. IF: Termination criterion is not met, THEN: Signal

parameters are adjusted, ELSE: Optimal test signal is

found.

The procedure is presented in Fig. 2. The process model as

well as the FIM calculation depend on the initial model

parameters H0 that have been obtained from process

model-free identification. Since gradient-based optimiza-

tion schemes converge to local minima, a particle swarm

algorithm has been used. Since the absolute values differ

w.r.t. various factors, a convergence-based criterion was

chosen. A threshold of �termination ¼ 10�4 for the relative

change of the best solution has been selected as a termi-

nation criterion. This means that in each iteration step, the

model has to be simulated for each particle, causing sig-

nificant computational cost. Before different aspects of the

method are clarified in the following subsections, problem

(3) has to be reformulated to correspond to Fig. 2:

bopt ¼ argmin
b

J I ŷ u b;Hð Þ; u b;Hð Þð Þð Þð Þ ð22Þ

The goal is an optimal test signal, but the test signal

depends on signal model parameters b. Therefore the actual

optimization is w.r.t. those parameters. The adjustment of

the signal model parameters is subject to a measure on the

FIM. The FIM depends on a test signal, a simulated model

output as well as the initial model parameters. The simu-

lated output itself depends on the test signal and the model

parameters. Therefore, the optimization of the FIM is a

1016 International Journal of Fuzzy Systems, Vol. 24, No. 2, March 2022
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highly complex, non-convex, and cascaded problem which

is addressed in empirical studies in this contribution.

5.2 Measures on the Fisher Information Matrix

Due to the CRLB there is an inverse relation between the

FIM and the covariance matrix of the parameter estimates.

With i.i.d. normally distributed zero mean noise, the

eigenvalues of the covariance matrix represent the spread

in the direction of the half-axes of an ellipsoidal uncer-

tainty region that is characterized by the eigenvectors.

Therefore, the most commonly used measures on the FIM

use eigenvalues. (2) can be viewed as a matrix that contains

the sensitivity of the model output w.r.t. the model

parameters. Therefore, the optimization goal is reformu-

lated without rigorous statistical assumptions: The input

should be chosen in a way that the model output is most

sensitive to a change in the parameters. If the sensitivities

are high, the values that any parameter can take are reduced

and therefore indirectly the spread of the model parameters

is reduced, even though ‘‘the spread’’ cannot be interpreted

as an estimation of statistical quantities in a rigorous

manner. If a matrix is assessed by a scalar measure,

information is lost. Therefore, different measures will be

compared:

– M1: Determinant of the inverse FIM Jdet
– M2: Maximum Eigenvalue of the inverse FIM Jeig
– M4: Scaled trace of the inverse FIM Jstr
– M3: Trace of the inverse FIM Jtr
– M5: Squared sum of the inverse FIM elements Jsens

The measures are implemented as follows:

Jdet ¼ log detðI�1Þ
� �

¼ �log det Ið Þð Þ ð23Þ

Jeig ¼ max eig Ið Þ�1

 �

ð24Þ

Jstr ¼
Xnp

k¼1

kI;init;k
kI;opt;k

ð25Þ

Jtr ¼ �log tr Ið Þð Þ ð26Þ

Jsens ¼
Xnp

k¼1

Xnp

l¼1

g2k;l ð27Þ

In (23) and (26) the negative logarithm of the determinant

and the trace is used to avoid calculating the inverse as well

as to address the large range of values. In (24) the maxi-

mum of the inverse eigenvalues of the FIM are used. In

(25), the eigenvalues are normalized to the corresponding

eigenvalue of the original test signal to consider the rela-

tive change of the eigenvalues. In (27), gk;l are the elements

of the inverse FIM and np is the number of model

parameters. The sensitivity sum is the sum of squared

elements of the FIM. The choice of measure is a multi-

objective optimization problem that is addressed by

scalarization through weighted aggregation.

5.3 Optimization and Identification Procedures

The parameters can be separated into the local model HLM

and membership function parameters HMF. The sensitivi-

ties w.r.t. different parameter groups of a TS model are on

different scales which was confirmed by preliminary

experiments. Two approaches to rescale the sensitivities

have been investigated. First, the sensitivities were nor-

malized to a percentage change in the parameter. This

approach did not yield any improvements on the optimal

experiment design. Second, the derivatives have been

rescaled with the determinants of the block matrices of

local model and partition parameters. This also did not

improve the optimal experiment design.

Therefore, another path has been chosen in this contri-

bution. The optimization of the local model parameters and

the partition parameters is separated which leads to smaller

matrices. The FIM for the local model parameters ILM is

just composed of the ‘‘squared’’ extended regression

matrix. The FIM for the partition parameters IMF is more

complicated:

I ¼ 1

r2
ILM Icoupl

I>coupl IMF

" #
ð28Þ

with

ILM ¼
XN

k¼1

uEu
>
E ¼ U>

EUE ð29Þ

Fig. 2 Test signal Optimization scheme
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IMF ¼
XN

k¼1

Xc

i¼1

oli
oHMF

� 
oli

oHMF

� >
ŷiðkÞ

2 ð30Þ

Those matrices lack the couplings in the complete FIM

which is subject to the investigation. It is not clear what

constitutes a fair comparison in this type of investigation.

The following procedures have been determined:

– P1: local model and membership function parameters

– P2: only local model parameters

– P3: only membership function parameters

– P4: merged test signal

– P5: sequential

The mentioned procedures are combinations of identifica-

tion schemes, optimization schemes of the FIM as well as

the construction of the complete test signal. The procedures

P1 - P5 have been selected specifically to reduce the

number of possible combinations in a way to enable a fair

comparison. P1 is the baseline and denotes the optimization

of the FIM (28) and the simultaneous estimation of all

model parameters in the optimization step. In the other

procedures the block structure of the FIM has been

exploited. In P2 and P3, the optimization of the test signal

has been conducted w.r.t. the local model parameters and

the partition parameters, using the partial FIMs (29) and

(30), respectively. Since the signals resulting from P2 and

P3 are optimized for the identification of the respective

parameter group only those parameters have been esti-

mated during the nonlinear optimization step.

Procedures P4 and P5 use the FIM optimization

scheme from P2 and P3 but each only with half-length

signals. In P4 the two half-length signals are concatenated

to obtain a full-length signal. Even for multisine signals,

the introduced step at the merging point has no significant

impact. This signal is used for a simultaneous estimation of

all model parameters. In P5 the half-length signals from P4

are used to sequentially estimate the membership function

parameters based on a half-length P3-signal first, and then

local model parameters based on a half-length P2 signal.

FIM-based test signal design (for nonlinear models) is

localized in the region of the true model parameters H0 that

are substituted by the initial model parameters Hpmf.

Therefore, the nonlinear optimization based on optimal

datasets is initialized with the initial model parameters.

FCM partitioning and NARX local model parameters

might result in an initialization that has no connection to

the optimal design and therefore no conclusions about the

parameter uncertainty reduction could be drawn.

6 Case Studies

In this section the results of two extensive and one compact

case studies are presented. The presented procedures are

applied to a simulation case study (SIM) as well as a servo-

pneumatic longitudinal drive test stand (SPLD) and in parts

to a 3-tank system (3TK). Multisine, multistep and a

combination of both signal types are considered as test

signals. Different measures on the FIM as well as different

optimization procedures to exploit the TS model structure

are investigated. The method is assessed mainly by the

simulation error on validation datasets and secondarily by

the model parameter uncertainty.

6.1 Experimental and Identification Setups

For the two extensive case studies, an artificial simulation

system in the form of a difference equation and a labora-

tory test stand have been used. For a third compressed case

study another laboratory test stand was used.

6.1.1 Narendra System (SIM)

The system

yðkÞ ¼ yðk � 1Þ � yðk � 2Þ � yðk � 1Þ þ 2:5ð Þ
1þ yðk � 1Þ2 þ yðk � 2Þ2

þ uðk � 1Þ þ �ðkÞ
ð31Þ

was first presented in Narendra and Parthasarathy [3] and

serves as an identification benchmark. It is defined by a

nonlinear 2nd order difference equation in the output y(k).

u(k) is the input and �ðkÞ 2 N 0; 0:52ð Þ is chosen to be an

i.i.d. normally distributed random variable. The noise

variance has been chosen as r2 ¼ 0:52 to obtain a relatively

low signal to noise ratio (SNR).

The hyperparameters c and m of the model are chosen to

be c ¼ 5 and m ¼ 1:1 based on the work in Gringard et al.

[33]. Since the true system is known and the assumption of

fuzzy TS models is that the nonlinear behavior is captured

by the partitioning, the dynamic orders of the input and

output of the TS model are chosen to be the same as in

(31): n ¼ 2 and m ¼ 1. From (31) we also understand that

the nonlinear behavior depends on the first and second lag

of the output. Therefore, the regression vector is chosen as:

u>ðkÞ ¼ 1 yðk � 1Þ yðk � 2Þ uðk � 1Þ½ � ð32Þ

With the knowledge about the system’s nonlinearity, the

scheduling variable z is chosen as:

zðkÞ> ¼ yðk � 1Þ yðk � 2Þ½ � ð33Þ

This model has 30 parameters in total.
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6.1.2 Servo-Pneumatic Longitudinal Drive (SPLD)

The SPLD test stand is described in detail in [4]. Further

details can be found in [34]. The system input is the voltage

applied to the servo valve and the output is the longitudinal

position of the piston rod. The nonlinear behavior is due to

the friction. The friction is reduced by dithering. W.r.t. the

test signal design, a maximum frequency of fmax ¼ 3Hz for

the multisine signals as well as the slowest time constant

Tslow ¼ 0:28 s for the multistep signals have been deter-

mined in preliminary experiments. To achieve a trade-off

between reactivation effects of the FBF and smoothing

model behavior, a fuzziness parameter of m ¼ 1:3 has been

selected. Using cluster-validation and assessing prediction

errors, c ¼ 6 local models are chosen. The orders of the

input and output dynamics have been selected as n ¼ 4 and

m ¼ 3, respectively, based on initial experiments. The

scheduling vector is chosen equal to the regression vector.

This results in 90 model parameters in total.

6.1.3 Three-Tank System (3TK)

The three-tank system [35] consists of three tanks that are

serially connected. The system input is the volumetric flow

rate q fed into the first tank by a pump. Since the fluid

dynamics are significantly slower than the pump dynamics,

the latter is neglected. The measured system output is the

level h2 of a tank on the other end. The slowest time

constant Tslow ¼ 900 s has been used to determine the

minimum and maximum lengths of the steps for S1 test

signal design. In preliminary experiments c ¼ 4, n ¼ 3,

m ¼ 1, and the fuzziness parameter m ¼ 1:3. The schedul-

ing variable has been determined to be the first 3 lags of the

output variable, resulting in 32 model parameters in total.

6.2 Test Signal Design

Table 1 shows the experiment design variables and how

they are applied to the two extensive case studies. The

signal model parameters for the multistep signals are the

step lengths and step amplitudes, for the multisine signals

the parameters are the amplitudes and phases of frequen-

cies on a preselected grid. In the SIM and SPLD case study

some of the design variations differ. The results from the

SPLD as well as preliminary studies on the SIM case study

have shown that the combined test signal (S3) is not suit-

able for this task and has been removed from experiment

design for the SIM. The sensitivity sum (M5) was not used

for the SPLD because the PSO was not able to consistently

find a minimum, due to the high number of parameters.

Therefore, M5 was removed from experiment design in the

SPLD case study. The scaled trace (M2) and the scaled

trace (M3) did not yield any significant difference on the

SIM case study and therefore have been removed from the

SIM case study. The eigenvalues (M2) have not been used

for the SIM case study, because preliminary experiments as

well as the results from the SPLD have shown that the

measure has no impact. In the 3TK case study, one com-

bination (S2, M1, P3) is used to design an optimal test

signal to indicate that the proposed method can be trans-

ferred to different systems. The variations for the artificial

test system (SIM) result in 30 (2 (Signals) � 3 (Measures)

� 5 (Procedures)) optimal designs, the variations for the

SPLD test stand result in 108 (3 (Signal) � 4 (Measures) �
9 (Procedures)) optimal designs. The number of data points

of the signals for the SIM case study is around 5000, for the

SPLD around 2500, and for the 3TK around 6000. How-

ever, the signal lengths of all signals within the case studies

are comparable and will therefore not be discussed further.

For each signal type and system an initial test signal has

been designed using process model-free methods. Repeated

experiments have been conducted to choose the best model

w.r.t. simulation quality on the validation dataset (that is

used for assessment of the optimized models). This model

is used to initialize the model-based designs.

6.3 Conducting the Experiments

To statistically investigate the impact of experiment design

choices on the reduction of the uncertainty of the estimated

parameters and the simulation quality, large amounts of

data were collected. The initial models were obtained using

Table 1 Experiment design variations

Symbol Description SIM SPLD

Test signals

S1 Multisine Yes Yes

S2 Multistep Yes Yes

S3 Combination No Yes

FIM measures

M1 Determinant Yes Yes

M2 Eigenvalues No Yes

M3 Scaled Trace No Yes

M4 Trace Yes Yes

M5 Sensitivity Sum Yes No

Optimization Procedures

P1 All parameters Yes Yes

P2 LM parameters only Yes Yes

P3 MF parameters only Yes Yes

P4 Concatenated signal Yes Yes

P5 Seq. ID (MF!LM) Yes Yes
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standard test signal design methods. For the optimization, a

particle swarm optimization (PSO) algorithm is used,

because preliminary investigations have shown that gradi-

ent-based methods cannot handle the search space. If a

solution candidate is found by the particleswarm, a gradi-

ent-based algorithm (fmincon) efficiently finalizes the

optimization. The MATLAB function particleswarm was

used with a swarm size of 100. The inertia range has been

set to 0:1 1:1½ �. Both adjustment weights were set to

1.49. The meaning of those parameters is described in [36].

From preliminary works it is known that the PSO itself is

robust w.r.t. random swarm initializations as well as for

model parameter uncertainties.

For each of the initial test signals, repeated experiments

have been conducted. For the artificial system, NSIM ¼ 25

repeats for the multisine and multistep signals each have

been conducted. For the SPLD, each initial test signal has

been applied NSPLD ¼ 20 times. On the 3TK system each

test signal has been applied N3TK ¼ 10 times. The best

performing models were selected for further use in the

model-based design process and as a baseline for the

simulation quality. The optimization of a test signal has

only been initialized with a model identified with a signal

of the same type. From the repeated experiments, infor-

mation about the parameter uncertainty can be extracted for

the process model-free test signal design.

The calculation of the optimal test signals as well as the

identification and model evaluations have been conducted

on an Intel(R) Xeon(R) CPU E3-1270 v5 @

3.60GHz 3.60GHz PC with 64.0 GB of RAM.

6.4 Results

The data collected in the parameter case study is used to

assess the simulation quality as well as the parameter

estimation uncertainty. Since the experiments have been

conducted with many repeating experiments, ‘‘a model’’

refers to all models that have been identified from a dataset

generated with the same test signal. This way, ‘‘a model’’ is

defined by the combination of the signal model (S), the

FIM measure (M) as well as the optimization procedure

(P). Fundamentally, the RMSE is used to assess the sim-

ulation quality:

JRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

k¼1

ŷðkÞ � yðkÞð Þ2
vuut ð34Þ

All models have been evaluated on several validation

datasets. Since there is no normalization method that is

invariant w.r.t. different signals, the change relative to the

initial model’s simulation quality is used. This enables a

fair comparison over different validation signals. The

parameter estimation uncertainty is assessed by comparing

the empirical covariance matrices based on optimal

experiments to the empirical covariance matrices based on

the respective process model-free experiment. As an

additional assessment, the method is applied to a system

with different dynamics and evaluated based on the simu-

lation error as well as direct uncertainty analysis.

6.4.1 Simulation Quality

The simulation quality is assessed in two ways. The first

criterion is the fraction of improvement by at least 25%
over the respective initial model’s performance, which will

be called ‘‘success rate’’. Figures 3, 4, 5, and 6 show the

percentages of models reaching this threshold.

Figures 3 and 4 show the results for the Narendra sys-

tem, Figs. 5 and 6 for the SPLD. The simulation error

improvements are either grouped by the procedures or by

the FIM measures.

Tables 2, 3, 4, 5 show the average improvements of the

successful models regarding the first criterion. The num-

bers show to which percentage of the initial model’s per-

formance the optimal model’s performance can be lowered

by the method. Figure 7 shows an evaluation of several

models on a validation datasets for the compact 3TK case

study. The FIM-based model outperforms both the model

based on a PRBS as well as the PMF-based model.

6.4.2 Parameter Uncertainty

The investigation of the parameter uncertainty yielded the

result that there is no significant change of uncertainty

w.r.t. different FIM measures. Therefore, the results have

been aggregated. A threshold is used to determine the

fraction of models that have reduced uncertainty of at least

25%. The uncertainty is assessed the measures on the

empirical covariance matrices of the optimal models as

well as the initial models. It is presented for M4 in Table 6.

The covariance matrices are calculated separately for each

parameter group. Since P2 and P3 do not make changes to

the partition parameters and the local model parameters,

respectively, the corresponding fields are left out. P5 is

disregarded in this analysis because it is just the sequential

Fig. 3 Reduction of the RMSE in % by at least 25% w.r.t. the initial

model for different FIM measures (SIM)
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identifications with P2 and P3 signals. To verify the results

from the extensive case study, models based on different

test signal designs have been analyzed. Table 7 shows the

measure M1 of the models. FIM-based design yields more

accurate parameters than identification based upon a PRBS

as well as PMF design.

6.5 Discussion

The choice of the signal model is significant for the

resulting model quality, therefore it is important to char-

acterize the type of excitation. The choice can have an

impact in three ways. First, a signal model may not be

suitable for identifying the plant in general. Second, using a

plant model based on a signal type for optimal experiment

design of another signal type yields worse results. Third,

choosing an input signal type that fits the operating sce-

nario is more likely to cover the relevant behavior. For the

Narendra system, multistep signals performed superior, as

can be seen in Figs. 3 and 4. S1 and S2 performed com-

parably for the SPLD, but multisine-based models do not

perform well for the Narendra system. From Figs. 4 and 6 it

follows that P1 and P3 measures perform very well both on

the SPLD as well as the Narendra system, disregarding the

overall mediocre performance of S1 models on that test

system. P2 focusses on the local model parameters,

resulting in a high variability of the partition parameters

Fig. 4 Reduction of the RMSE in % by at least 25% w.r.t. the initial

model for different procedures (SIM)

Fig. 5 Reduction of the RMSE in % by at least 25% w.r.t. the initial

model for different FIM measures (SPLD)

Fig. 6 Reduction of the RMSE in % by at least 25% w.r.t. the initial

model for different procedures (SPLD)

Table 2 Avg. Improvement by

FIM measure in % (SIM)
M1 M4 M5

S1 43.87 47.06 53.20

S2 42.28 44.94 40.49

Table 3 Avg. improvement by procedure in % (SIM)

P1 P2 P3 P4 P5

S1 48.89 54.85 54.19 38.32 46.45

S2 37.71 45.57 41.04 46.01 44.10

Table 4 Avg. improvement by FIM measure in % (SPLD)

M1 M2 M3 M4

S1 43.66 43.22 45.73 46.00

S2 37.64 38.04 36.50 45.20

S3 61.92 63.01 65.91 66.72

Table 5 Avg. improvement by procedure in % (SPLD)

P1 P2 P3 P4 P5

S1 44.31 48.19 40.28 47.37 48.38

S2 37.74 35.99 32.74 40.15 43.79

S3 64.97 63.11 61.23 67.48 66.60

Fig. 7 Simulation results on the 3TK system
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and therefore of the simulation results. The signal results in

P4 is not optimal w.r.t. either parameter group or therefore

resulting in mediocre simulation performance. The break-

down w.r.t. the measures in Figs. 3 and 5 implies that the

choice of the measure has no significant impact on the

results, which was verified by an analysis of the variance

(ANOVA).

Table 6 exemplifies the results regarding the uncer-

tainty. It can be observed that the goal of reducing the

parameter uncertainty was achieved in the majority of the

experiments. However, accurately estimated parameters do

not necessarily result in a high simulation quality. Con-

sidering the results for the uncertainty reduction of P3 as

well as the simulation results, focussing on the membership

function parameters leads to better models.

There are several reasons why P3 yields the best results.

The membership function parameters determine the non-

linear behavior of the TS model. The quality of the local

model parameter estimation is limited by the estimation of

the membership function parameters. If this is not con-

sidered during the design, local model parameters cannot

be estimated accurately. The optimization problem

becomes more complex using all model parameters,

explaining the inferior performance of P1 compared to P3.

S3 underperforms in every case. The signals have been

observed during optimization. During optimization all

signal model parameters are treated equally, leading to

‘‘chaotic’’ behavior that is not present if the two signal are

optimized individually. For the compact case study of the

three-tank system (3TK) an optimal test signal was

designed (S2, M1, P3). The uncertainty was reduced con-

sidering M1 as shown in Table 7. The assessment of the

simulation quality based on the 3TK case study is exem-

plary shown in Fig. 7.

6.6 Conclusions

The targeted test signal design goal is the reduction of

parameter estimation uncertainty as well as the improve-

ment of the simulation quality. The design performance

regarding both goals has been investigated. Table 6 shows

that the first design goal is achieved, in principle. However,

this does not necessarily lead to an improvement of the

simulation quality. This is not a case of a bias-variance

trade-off but rather that the partitioning conditions the

estimation of the local model parameters. Even though

local model parameters might be estimated accurately, a

low confidence in the partitioning results in worse global

simulation properties. Therefore, the design should

emphasize the partition parameters. The estimation of the

local model parameters is easier and their consideration

during the optimal test signal design increases the com-

plexity of the optimization problem in a way that is

detrimental to the solution. The choice of the FIM measure

does not significantly impact the results, therefore the

measure should be chosen considering the computational

complexity. Even though P3 is only optimal w.r.t. the

partition parameters, it performs better than P1. This is an

interesting result, since the computational costs reduce

significantly, if the FIM measure is chosen correctly. FIM-

based test signal design for TS models assumes that at least

the model structure is roughly correct and that the partition

parameters are already in a region around their ‘‘optimal

value’’ or a computationally demanding robust design

(such as sequential) must be applied. This again stresses the

importance of model-free test signal design before

attempting an optimal design. FIM-based optimal experi-

ment design for dynamic TS models should include a well-

designed preceding model-free design stage, consider the

operating conditions, and focus on the estimation of par-

tition parameters to achieve low uncertainty as well as high

simulation quality models. In a previous study [33], the

method has been applied to an electro-mechanical throttle.

The results are comparable, even though less design

choices were studied.

Table 6 Fraction of models in % with reduced uncertainty using M4

of at least 25%

SIM P1 P2 P3 P4

S1 LM 78.33 71.67 - 80.00

MF 73.33 - 86.67 90.00

S2 LM 58.67 59.67 - 70.00

MF 64.33 - 78.33 75.00

SPLD P1 P2 P3 P4

S1 LM 83.86 62.50 - 75.53

MF 86.91 - 89.29 85.12

S2 LM 78.65 51.57 - 81.25

MF 70.24 - 85.12 73.81

S3 LM 69.28 49.48 - 51.57

MF 89.89 - 69.65 83.93

Table 7 Uncertainty assessment of the 3TK with M1

Signal Binary PMF FIM

Jdet 92.0046 51.8493 28.3429
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7 Summary and Outlook

In this contribution a novel method for FIM-based optimal

experiment design for the identification of nonlinear

dynamic Takagi-Sugeno multi-models was presented. The

impact of design choices was analyzed on a simulated

system as well as a laboratory test stand and tested on

another laboratory test stand. It was demonstrated that the

approach leads to improvements in parameter uncertainty,

which was the stated goal, but also to significant

improvements in simulation quality.

The presented method is a holistic approach, consider-

ing all aspects of FIM-based test signal design for the

identification of nonlinear dynamic models combined and

analyzing the impact of design choices, whereas many

other contributions focus on a specific aspect and assume

the choice of measure and signal model. It was shown that

the design choices have a significant impact on the

achievable results, especially exploitation of the unique

multi model structure. It was also shown that different

measures on the FIM do not result in significant changes

either in uncertainty or simulation quality but that the

computational cost can be reduced by choosing less com-

plex measures.
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30. Kahl, M., Kroll, A., Kästner, R., Sofsky, M.: Application of

model selection methods for the identification of a dynamic boost

pressure model. In: Proc. 17th IFAC Symposium on System

Identification (SysID), pp. 829–834. Beijing, China (2015)
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