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A B S T R A C T

The diagonal arguments by Cantor, Gödel and Turing constitute fun-
damental results that demonstrate limits to what is mathematically
possible. These results can easily appear to us as limits that must
hold, as if they were laws of nature that govern the ideal world of
platonic numbers and logic, giving them an “ultraphysical” appear-
ance of rigidity and hardness.

In all three cases, Wittgenstein critically examines the formal ideal
of consistency and points out that the conclusions of the diagonal
arguments only seem inevitable if we are not prepared to accept the
contradictory result of the diagonalisation as an object in the formal
system.

Wittgenstein’s intent is not to advocate for a trivialist or paracon-
sistent treatment of inconsistency, since such an interpretation of the
mathematical results would be just as dogmatic and philosophically
one-sided as the interpretations that Wittgenstein is critically examin-
ing. From his perspective, consistency is not an ideal in and of itself,
but merely a principle that has proven itself so useful in a large vari-
ety of language games that we accept it as an unquestioned rule even
in cases where the situation is radically different.

In Wittgenstein’s philosophy of mathematics, the actual language
games that might appear to act only as examples or as motivation for
their later formalisation are not merely primitive secondary stimuli
for the primary formal system, they are instead essential for an un-
derstanding of the formal system to begin with, because the actual
language games in all their variety lead to a surveyable representa-
tion of our concepts in a way that does not reveal itself by merely
considering the uniform treatment in the formal system.

Wittgenstein’s investigation of the three diagonal arguments shows
what is at stake in these particular proofs: Although the mathematical
proofs themselves are perfectly valid, we have the tendency to inter-
pret them not as merely demonstrating logical impossibilities, but as
“ultraphysical” impossibilities, comparable to laws of nature, govern-
ing the ideal realm of mathematics. Such a misleading picture is the
result of a “one-sided diet”, because we lack surveyability: We fail
to grasp the concepts in all their various uses and in the context of
how they fit into our form of life. The antidote is to describe them in
a surveyable representation, sometimes by imagining different forms
of life.
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Z U S A M M E N FA S S U N G

Die Diagonalargumente von Cantor, Gödel und Turing sind grundle-
gende Ergebnisse, die die Grenzen des mathematisch Möglichen
aufzeigen. Diese Ergebnisse können leicht als Schranken erscheinen,
die gelten müssen, als wären sie Naturgesetze, die die ideale Welt der
platonischen Zahlen und der Logik regieren, wodurch sie den “ultra-
physischen” Anschein von Starrheit und Härte erhalten.

In allen drei Fällen setzt sich Wittgenstein kritisch mit dem for-
malen Ideal der Konsistenz auseinander und weist darauf hin, dass
die Schlussfolgerungen der Diagonalargumente nur dann unauswe-
ichlich erscheinen, wenn wir nicht bereit sind, das widersprüchliche
Ergebnis der Diagonalisierung als Gegenstand des formalen Systems
zu akzeptieren.

Wittgenstein will nicht für eine trivialistische oder parakonsistente
Behandlung der Inkonsistenz eintreten, da eine solche Interpretation
der mathematischen Ergebnisse so dogmatisch und philosophisch
einseitig wäre wie die von Wittgenstein kritisch hinterfragten Inter-
pretationen. Aus seiner Sicht ist Konsistenz kein Ideal an sich, son-
dern lediglich ein Prinzip, das sich in einer Vielzahl von Sprachspie-
len als so nützlich erwiesen hat, dass wir es als unhinterfragte Regel
auch in Fällen akzeptieren, in denen die Situation radikal anders ist.

In Wittgensteins Philosophie der Mathematik sind die konkreten
Sprachspiele, die nur als Beispiele oder als Motivation für ihre spätere
Formalisierung zu dienen scheinen, nicht bloß primitive Sekundär-
reize für das primäre formale System, sondern sie sind für das
Verständnis des formalen Systems überhaupt erst wesentlich, weil
die konkreten Sprachspiele in ihrer ganzen Vielfalt zu einer über-
sichtlichen Darstellung unserer Begriffe in einer Weise führen, die
sich bei bloßer Betrachtung der einheitlichen Behandlung im for-
malen System nicht erschließt.

Wittgensteins Untersuchung der drei Diagonalargumente zeigt uns,
was in diesen besonderen Beweisen auf dem Spiel steht: Obwohl die
mathematischen Beweise selbst vollkommen valide sind, neigen wir
dazu, sie nicht als bloße Demonstration logischer Unmöglichkeiten
zu interpretieren, sondern als “ultraphysische” Unmöglichkeiten, ver-
gleichbar mit Naturgesetzen, die das ideale Reich der Mathematik
regieren. Ein solch irreführendes Bild ist das Ergebnis einer “einseit-
igen Diät”, da uns Übersichtlichkeit fehlt: Wir begreifen die Begriffe
nicht in all ihren verschiedenen Verwendungen und vor dem Kon-
text, wie sie in unsere Lebensform passen. Das Gegenmittel ist eine
Beschreibung mithilfe einer übersichtlichen Darstellung, manchmal
dadurch, dass man sich andere Lebensformen vorstellt.
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I N T R O D U C T I O N

You might say, “How is it possible that there should be a misunderstanding
so very hard to remove?”
It can be explained partly by a difference of education.
Partly by a quotation from Hilbert: “No one is going to turn us out of the
paradise which Cantor has created.”
I would say, “I wouldn’t dream of trying to drive anyone out of this par-
adise.” I would try to do something quite different: I would try to show
you that it is not a paradise — so that you’ll leave of your own accord. I
would say, “You’re welcome to this; just look about you.” [LFM XI, p. 103]

Some of the most confounding remarks in the philosophical writings
of Ludwig Wittgenstein are puzzling not because it is hard to under-
stand what Wittgenstein wants to say, but rather because it is often
unclear why he wants to say it. This is especially true for the Remarks
on the Foundations of Mathematics,1 which were compiled from a het-
erogeneous collection of posthumously published documents and in
the process sometimes heavily edited. Although they might appear as
a coherent work authored by Wittgenstein, he himself never intended
to write a self-contained philosophical work focused primarily on the
philosophy of mathematics. The closest comparable attempt is the
“pre-war version”2 of the Philosophical Investigations, whose second
part would have focused mostly on the philosophy of mathematics,
but which was abandoned in favour of the version of the PI that we
know today.

Given these circumstances, it seems puzzling that Wittgenstein
chose to write extensively on rather specialised issues and authors
in mathematics, such as Cantor’s diagonal argument and Gödel’s in-
completeness theorem. These remarks share very few obvious con-
nections with Wittgenstein’s more general philosophy and might ap-
pear to be hardly related even to the rest of his more mathematical
writings. It is then perhaps no surprise that these more specialised
investigations drew the most criticism during the initial reception of
the RFM and that Wittgenstein was accused of being out of his depth
concerning some of the more advanced mathematical details of the
proofs. Are these collections of remarks in the end only the missteps
of an otherwise brilliant philosopher, all the more understandable
in light of the fact that the writings in question were perhaps never
meant for publication?

This thesis wants to offer an alternative viewpoint, namely that
what might at first appear to be extremely specialised and only

1 From here on abbreviated as “RFM”, see “Writings and Lectures by Wittgenstein” at
the end of this thesis for a list of all abbreviations.

2 The “pre-war version” corresponds roughly to §§1-88 of the final version of the PI,
written in 1936 and typed up in 1937 (see Stern, 2004, p. 15).
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2 introduction

vaguely related collections of remarks are in fact closely connected
not just among each other, but also to Wittgenstein’s philosophy
as a whole. Wittgenstein’s writings on Cantor’s diagonal argument,
Gödel’s incompleteness theorems and to a lesser extent even his re-
marks on Turing are linked not only through the obvious fact that all
of these mathematical proofs are applications of the diagonal method,
but also in their tendency to give rise to similar conceptual confusions.
The following chapters attempt to show that the applications of diag-
onalisation and the diagonal method are not topics of niche interest, but
rather symptomatic examples for many of the philosophical problems
that Wittgenstein aimed to investigate and clarify throughout his life.

In light of the harsh criticism that Wittgenstein’s writings on these
diagonal arguments have faced, it is fruitful to state the philosoph-
ical assumptions and the overall perspective of the following chap-
ters before jumping into the more mathematical aspects of the proofs.
Most importantly among these assumptions, Wittgenstein’s goal of
non-interference in mathematical matters will be presupposed as a guid-
ing principle of all of the remarks on the various diagonal arguments
and will be assumed to hold in all of the following discussion. This
goal can briefly be summarised as follows: A philosophical investi-
gation in the sense of Wittgenstein cannot and must not contest the
validity of mathematical proofs or calculations, but can only clarify
conceptual misunderstandings, which arise at the frontier between
the formalisms of mathematical calculi and their interpretation in
‘prose’ (Ms-127, 185.2 / RFM V §46; Ms-124, 138.3 / RFM VII §41),
borrowing concepts from our everyday language. This goal or guid-
ing principle is most clearly expressed in Wittgenstein’s Lectures on
the Foundations of Mathematics from 1939:

That is not what I am going to do at all. In fact, I am going to avoid it at
all costs; it will be most important not to interfere with the mathematicians.
I must not make a calculation and say, “That’s the result; not what Turing
says it is.” Suppose it ever did happen — it would have nothing to do with
the foundations of mathematics. [LFM I, p. 13]

This goal of non-interference is also evident in various remarks in the
Nachlass, for example in Ts-227a, 89.2 / PI §124 or in Ms-124, 82.2–82.3
/ RFM VII §19.

Previous interpreters have often read Wittgenstein either as delib-
erately ignoring his own stated goal or as falling short of it, be it due
to a shift in priorities and method or simply due to a lack of attention
to detail.3 The strong form of these and similar indictments make the

3 See for example Dummett, 1959, p. 326: “Certainly in his discussion of Cantor he dis-
plays no timidity about ‘interfering with the mathematicians.’”; Steiner, 2001, p. 261:
“Wittgenstein slips into trying to refute the theorem, in what he takes to be Gödel’s
proof, itself!”; Steiner, 2001, p. 263: “In other words, Wittgenstein – in defiance of
his own doctrines and against his better judgment – attempted to refute an informal
version of a mathematical proof.”; Berto, 2009, p. 194: “Furthermore, I will not trust
Wittgenstein’s own declarations, according to which his remarks should not have
any strictly mathematical import.”
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task of the reader considerably easier, as many of the more idiosyn-
cratic remarks can be chalked up to a misplaced desire of contesting
standard mathematical practice, but they hardly hold up in light of
Wittgenstein’s own goal and his considerable attention to detail in his
other writings, as this thesis attempts to show. It must be pointed out,
however, that the weaker form of this criticism, namely that some of
the rather dogmatic and idiosyncratic remarks are a consequence of a
temporary lapse or of a lack of attention to detail, cannot be entirely
discarded, for two reasons:

First, it cannot be denied that Wittgenstein’s thinking experienced
a transition from more dogmatic to less dogmatic remarks over time
and that this same tendency is at work in his mathematical writings,
many of which were written before the (mostly undogmatic) final
version of the PI. It would thus be unreasonable to assume that all of
the more mathematical remarks in the years 1937–1944 could live up
to the high standard of the very late writings of Wittgenstein.

Second, it is important to keep in mind that with the exception of
the first part of the RFM, which is based on typescript Ts-222, none
of the ‘parts’ of the RFM ever advanced beyond the manuscript stage.
In the case of Wittgenstein, who usually worked on and reworked
remarks in multiple manuscripts over many years, this is an indica-
tion that none of the remarks that will be discussed in the following
chapters can be considered to have the same level of quality as those
in the PI. The most ‘polished’ of Wittgenstein’s remarks usually origi-
nated in small pocket notebooks, were then included, rearranged and
reworded in one or more larger notebooks, before making their way
into one or more typescripts, so that it is not uncommon for some
remarks in the PI to have moved through 5 or more stages before
reaching their final version. In the case of most of the parts of the
RFM, nearly all remarks have at least ‘survived’ the draft stage of the
pocket notebooks, but usually appear only in one, sometimes in two
large notebooks.

It would therefore be futile to defend all of Wittgenstein’s remarks
in his more mathematical writings, as some of them may simply be
the by-product of a developing train of thought, his way of exper-
imenting with different ideas. However, this does not imply carte
blanche and should instead lead to a more charitable reading, where
remarks are discarded only if there does not appear to be a reading
that is in line with Wittgenstein’s conception of philosophy. In many
cases, his more idiosyncratic remarks are not a consequence of mis-
understandings or negligence on the part of Wittgenstein, but simply
the result of his radically different outlook, compared to the large
majority of working mathematicians and even other philosophers.

Before taking a closer look at some of the most relevant concepts
of Wittgenstein’s philosophy in the context of the next chapters, it
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can be helpful to sketch out the approach of this thesis in very broad
strokes, with the main argument roughly summarised as follows:

It is only possible to clarify the philosophical issues at stake in the
different diagonal proofs if these proofs are investigated in the con-
text of their specific applications and uses. A general investigation that
tries to understand these proofs through their shared mathematical
essence will fail to do them justice philosophically, at least from the
perspective of Wittgenstein’s philosophy. When considered against
the backdrop of their use, the different diagonal arguments share the
tendency to present a logical impossibility as a kind of limitative result
for what we can do in theory and even more so in practice, which then
appears as a sort of “ultraphysical” impossibility. From the perspective
of Wittgenstein, however, the impossibilities demonstrated by these
diagonal proofs cannot be physical impossibilities (and neither “ult-
raphysical” impossibilities), only logical impossibilities. A philosoph-
ical investigation in the sense of Wittgenstein can clarify this differ-
ence by providing surveyability of the way these proofs use existing
non-mathematical concepts and of the way these proofs are used in
our (non-mathematical) practice. This is often achieved by imagin-
ing different forms of life, where the limits demonstrated by these
proofs have a different role or standing. It will then become clear that
the limits proved with the help of the diagonal method are rules of
our language. A philosophical investigation of these proofs will leave
each mathematical proof as it is, but can dispel conceptual confusion
arising from a mistaken interpretation and application of the proof.

0.1 logical and ultraphysical impossibility

One of the central aspects of Wittgenstein’s radically different outlook
is his distinction between logical and physical possibility and impossi-
bility. While the roots of this distinction can arguably be traced back
to the distinction between logical and empirical propositions that is
first developed in the Tractatus, one of the earliest notable and explicit
mentions of the distinction between logical and physical impossibility
appears as chapter 27 in the Big Typescript, where Wittgenstein also
speaks of “ultraphysical” possibility and impossibility:

27) “Logische Möglichkeit und Unmöglichkeit”. – Das Bild des ‘Könnens’
ultraphysisch angewandt. (Ähnlich: “Das ausgeschlossene Dritte”.) [Ts-213,
IIr.5]

27) "Logical Possibility and Impossibility". - The picture of ’being able to’
applied ultraphysically. (Similar: "The Excluded Middle.")

The relationship between these three forms of possibility and impossi-
bility can be roughly summarised as follows: A physical impossibility
is a limit imposed on us by the laws of physics, such as the speed
of light as the maximum speed that anything known to us could
travel. Surpassing the speed of light is therefore (to our knowledge)
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a physical impossibility, because our experience tells us that achiev-
ing faster-than-light travel is impossible. However, if our experience
changed and someone were to discover the possibility of faster-than-
light travel, we would be prepared to revise our views and call faster-
than-light travel a physical possibility.

In contrast, a logical impossibility is a possibility that is ruled out
in the literal sense of the word, it is in other words excluded by the
grammatical rules that govern our language use. A proposition such
as “There is no reddish green” (Ms-133, 25r.2; Ts-229, 332.2; Ts-233a,
71.4; Ts-245, 244.7 / Z §346 / RPP I §624) is an example of a logi-
cal impossibility, because there is nothing that we would ever call a
“reddish green”, no matter what scientific discoveries are made in
the future. Such a colour has no sense in our language and is ex-
cluded by the rules of our language games of colour concepts. Com-
pared to physical impossibilities, it is much harder to see whether
and how a logical impossibility could ever become a logical possibility:
It seems impossible to even imagine what we could call a “reddish
green” or how a logical law such as the law of the excluded middle,
p_¬p, could ever not hold.4 While the concepts of logical and physi-
cal (im-)possibility run through the whole Nachlass, appearing as late
as 15.4.1951 in Ms-176, 50r.3 / LW II and thus less than a month be-
fore Wittgenstein’s death, the concept of “ultraphysical” possibility
and impossibility occurs much more rarely in his writings, being con-
fined mostly to the period of the Big Typescript and a single remark
in RFM I. Strictly speaking, “ultraphysical” (im-)possibility is not a
distinct concept, but rather Wittgenstein’s term for mistaking what is
actually a logical possibility or impossibility for a physical one:

Ich darf aber doch nur folgern, was wirklich folgt! – Soll das heißen: nur
das, was den Schlußregeln gemäß folgt; oder soll es heißen: nur das, was
solchen Schlußregeln gemäß folgt, die irgendwie mit einer Realität überein-
stimmen? Hier schwebt uns in vager Weise vor, daß diese Realität etwas
sehr abstraktes, sehr allgemeines und sehr hartes ist. Die Logik ist eine
Art von Ultra-Physik, die Beschreibung des ‘logischen Baus’ der Welt, den
wir durch eine Art von Ultra-Erfahrung wahrnehmen (mit dem Verstande
etwa). Es schweben uns hier vielleicht Schlüsse vor wie dieser: “Der Ofen
raucht, also ist das Ofenrohr wieder verlegt.” (Und so wird dieser Schluß
gezogen! Nicht so: “Der Ofen raucht, und wenn immer der Ofen raucht, ist
das Ofenrohr verlegt; also .....”.) [Ms-117, 1.1, Ts-221a/b, 143.3, Ts-222, 11.3
/ BGM I §8]

But still, I must only infer what really follows! – Is this supposed to mean:
only what follows, going by the rules of inference; or is it supposed to mean:
only what follows, going by such rules of inference as somehow agree with
some (sort of) reality? Here what is before our minds in a vague way is
that this reality is something very abstract, very general, and very rigid.
Logic is a kind of ultra-physics, the description of the ‘logical structure’

4 Imaginability can thus be understood as a “criterion for logical possibility” (Trächt-
ler, 2020), but not in the sense of “a matter of someone’s power of imagination or
phantasy” (Trächtler, 2020, p. 171), rather as being “bound to and restricted by lan-
guage and grammar itself” (Trächtler, 2020, p. 174).
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of the world, which we perceive through a kind of ultra-experience (with
the understanding e.g.). Here perhaps inferences like the following come to
mind: “The stove is smoking, so the chimney is out of order again”. (And
that is how this conclusion is drawn! Not like this: “The stove is smoking,
and whenever the stove smokes the chimney is out of order; and so...”)
[RFM I §8]

To misunderstand logical structure and thus logical possibilities and
impossibilities as something “ultra-rigid”5 (LFM XX, p. 197–99) or
ultraphysical is according to Wittgenstein a source of conceptual con-
fusion that is symptomatic for theories and quarrels in philosophy:

In den Theorien und Streitigkeiten der Philosophie finden wir die Worte,
deren Bedeutungen uns vom alltäglichen Leben her wohlbekannt sind, in
einem ultraphysischen Sinne angewandt. [Ms-114, 10r.2; Ts-211, 747.2; Ts-
212, 1191.1; Ts-213, 429r.3]

In the theories and disputes of philosophy we find the words, whose mean-
ings are well known to us from everyday life, applied in an ultraphysical
sense. [Ms-114, 10r.2; Ts-211, 747.2; Ts-212, 1191.1; Ts-213, 429r.3]

Considering that according to Wittgenstein, the task of philosophy is
not to propose theories (Ts-220, 76.2, Ts-239, 76.3, Ms-142, 102.2, Ts-
227a/b, 84.2 / PI §109), an application of words in an “ultraphysical
sense” is already a harsh indictment, but an earlier version of the
remark is even more explicit, going so far as to call it a “wrong”
application:

In allen philosophischen Theorien finden wir Worte deren Sinn uns von
den Phänomenen des täglichen Lebens her wohl bekannt ist in einem ultra-
physischen Sinn, also falsch, angewandt. [Ms-107, 177.3]

In all philosophical theories we find words whose sense is well known to
us from the phenomena of everyday life applied in an ultraphysical sense,
i.e. wrongly. [Ms-107, 177.3]

Why did Wittgenstein remove this mention of a “wrong” application
from the subsequent versions? The most likely explanation is that

5 ‘Ultra-rigidity’ and ‘ultra-physicality’ are closely connected to Wittgenstein’s dis-
cussion of the “picture of a machine as a symbol of its mode of operation” in PI
§§191–197 and more generally the notion of superlatives such as “Über-Regeln”,
“Über-Sprache” and “Über-Propositionales” (Schulte, 2021). Schultes interpretation
seems generally compatible with the reading of “ultra-physical” possibility and im-
possibility proposed in this text, with a small exception: Schulte, 2021, p. 14 denies
that the role of paraconsistent systems plays a role in Wittgenstein’s thought and
instead reads the mention of contradictory propositions as something “Überpropo-
sitionales” (Ms-125, 67r.2 / RFM IV §59) to mean that such such a ‘contradiction’ is
excluded from logic altogether. This might be true for the specific remark discussed
in this context by Schulte, but seems hard to defend against the backdrop of Wittgen-
stein’s numerous other remarks on the position of contradictions in logic. Of course
Wittgenstein was not a paraconsistent logician (nor a logician of any other school
or conception of logic), but his remarks often argue precisely against prematurely
excluding a contradiction from logic instead of treating it within logic (which then
requires a paraconsistent approach). This does not make him a proponent of para-
consistency, but certainly a proponent for an openness towards a variety of logical
systems.
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calling it “wrong” is itself misleading: After all, calling something
“ultraphysical” instead of merely “physical” is precisely meant to in-
voke that it is not physical, the term “ultraphysical” is thus not wrong
in the strict sense. The problematic aspect is rather that this picture
of the logical as ‘sort-of-but-not-really-physical’ leads to conceptual
confusions, which can only be clarified through philosophical investi-
gations and careful examinations of the use and grammar of the con-
cepts involved. The misleading picture that such a conceptual confu-
sion gives rise to is not wrong, it is only generalised beyond its means
and thus appears as a general theory with explanatory power, when it
should really remain restricted to a description of concrete cases.

That the picture of logic as something ultraphysical is by no means
harmless becomes evident in another remark by Wittgenstein from
1931, two years after the remark from Ms-107 (with a similar remark
also appearing later in Ms-112, 113v.5, but there without a mention
of “Ultraphysik”):

Die einzig würdevolle Aufgabe der Philosophie ist: den alten Götzen (
:::
der)

{Ultraphysik // Philosophie} zu zerstören. (D.h. ihre einzige Verbindung
mit Göttern.) [Ms-153a, 164r.3]

The only dignified task of philosophy is: to destroy the old idol (
:
of) {ul-

traphysics // philosophy}. (I.e. its only connection with gods.) [Ms-153a,
164r.3]

Coming back to the diagonal arguments discussed hereafter, one of
the central theses of the following chapters is that the applications of
these arguments by Cantor, Gödel and Turing (or sometimes by their
interpreters) tend to be “ultraphysical” in the sense of Wittgenstein.
Wittgenstein is interested in these matters not because his aim were to
contest the validity of any of the proofs, but rather because these per-
fectly valid mathematical results are frequently applied in a way that
makes them appear as demonstrating ultraphysical instead of merely
logical impossibilities. One of the reasons is that the diagonal proofs
by Cantor, Gödel and Turing all appear to demonstrate a limit to what
is possible even under ideal conditions in theory and thus (this is the
misleading part) all the more so in practice. It is clear that the limita-
tive results of these proofs are not “physical” limits, but they seem
to be so similar to limits such as the speed of light that they often
appear to be “ultraphysical”.

The impossibility of trisecting an angle using only Euclidean means
shall serve as an introductory example that is much simpler than the
diagonal arguments discussed hereafter: As Euclid’s Elements demon-
strate, there are many constructions that can be carried out using
only a compass and a straightedge, such as the bisection of an angle
or the construction of a regular pentagon. There are, however, also
constructions that are impossible to carry out by using only a compass
and a straightedge in the manner of Euclid, such as the trisection of
an angle or the construction of a regular heptagon. The exact details
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of these proofs do not matter here, let us simply assume that we are
presented with a valid proof of the impossibility of trisecting an an-
gle.6 Why do we give up any attempt to trisect an angle using only
a compass and a straightedge once we understand the proof of the
impossibility of such a construction? In contrast to the proof of the
possibility of some particular construction, which guides us along a
path of concrete steps until we finally reach the construction we set
out to find and thus teaches us a certain method and capability that
we can use henceforth, the proof of the impossibility of some particu-
lar construction does not teach us how to do something, but rather
demonstrates a limit to our methods and capabilities, since it appar-
ently predicts that no matter which path we embark on, we will never
be able to reach our goal.

Seen from this angle, an impossibility proof might seem to survey
a vast part of the mathematical landscape in a way that explores and
tests an infinite number of possible routes in an instant, exhausting
all avenues until we finally accept that there is no arguing with the
proof and that any attempt to defy this mathematical prophecy is
doomed to fail. Taken to the extreme, we might thus interpret such
an impossibility proof as a discovery about the mathematical world,
which adds to our knowledge about the possibilities and limits in the
ideal realm of Euclidean geometry, a realm that is an idealised version
of our practical reality. Faced with the practical task of trisecting an
angle using only compass and straightedge, we could thus point to
the impossibility proof as a justification that any attempt will fail and
potentially give up the fruitless endeavour, based on the discovery
that we made through the proof.7 Seen from another angle however,

6 The choice of this particular example is no coincidence, Wittgenstein himself wrote
about it on several occasions, most notably in Ts-227a, 199.3 / PI §334 and Ts-227a,
250.3 / PI §463. The example reflects many of Wittgenstein’s views on impossibility
results and therefore also applies to his remarks on diagonal arguments, but a full
discussion would go beyond the scope of this thesis. See Floyd, 1995 for a discussion
of the impossibility of trisecting the angle in the context of Gödel. As Floyd, 1995,
p. 383 points out: “And yet, in accepting the proof [of the impossibility of trisecting
the angle with straightedge and compass], we see that what they were trying to
do was not only not done, but could not possibly (mathematically) be done.” What
Wittgenstein wants to investigate is exactly what it is that “could not possibly” be
done, and how the merely parenthetical addition “(mathematically)” distinguishes
this kind of impossibility from other forms of impossibility.

7 Wittgenstein’s remarks contain numerous occurrences of mathematics as being in-
vented instead of discovered, see for example LFM I, p. 22; Ts-222, 134.4 / RFM I
§168; Ms-121, 43r.1 / RFM II §38; Ms-121, 27r.2. However, these remarks should only
be read as an antidote against the one-sided view that mathematics is always dis-
covered, not as the equally dogmatic view that mathematics is always invented. As
Wittgenstein himself notes, sometimes it makes sense to say that we have discovered
a new aspect in mathematics:

I said: whoever invented calculation in the decimal notation surely made a mathematical
discovery. But could he not have made this discovery all in Russellian symbols? He would,
so to speak, have discovered a new aspect. [Ms-122, 87r.2 / RFM III §46]
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the impossibility proof is merely a reflection of the rules that govern
the Euclidean calculus. Proving that a trisection of an angle using
only a compass and a straightedge is impossible comes down to say-
ing that in Euclidean geometry there is nothing that we would call ‘a
trisection of an angle using only a compass and a straightedge’ and
that the proof simply shows how we use the word ‘trisection‘ when
we talk about Euclidean geometry. The proof itself does not and can-
not govern the application of these ideal rules to any practical task at
hand, because neither the proof nor the rules of the Euclidean calcu-
lus can on their own justify when and why these rules are applied.
Both the calculus and the impossibility proof are thus inventions and
there could certainly be something we would want to call ‘a trisec-
tion of an angle using only compass and straightedge’ if we invented
another calculus and another proof.

This is not to say that the result of such an impossibility proof were
arbitrary and that we could just as well have invented another calcu-
lus to prove the opposite result. The alternative to an interpretation
of proofs as discoveries is not a free-for-all constructivism, where an-
other calculus with different rules would work just as well as long as
we all agreed on this new convention and decided to call something
a valid trisection of an angle with compass and straightedge.8 Such a
reductionist view would ignore that the proof of the impossibility of
trisecting an angle with compass and straightedge is useful precisely
because Euclidean geometry as a whole is useful in a way that arbitrary
other calculi are not. But viewing mathematics as invented instead of
as discovered can nevertheless help us dispel the misleading picture
of Euclidean proofs as something “ultraphysical”, as if their applica-
tion in the physical world were already implied in their logical rules.

These abstract reflections are of course hardly convincing for some-
one who is interested in carrying out practical constructions. Sure, we
can certainly invent non-traditional applications for Euclidean geom-
etry or invent a new calculus and try to apply it to our physical world,
but is Euclidean geometry not in some sense the most ‘natural’ calcu-
lus for someone trying to trisect an angle using only a compass and a
straightedge? Is the ‘standard’ impossibility proof not ‘privileged’ in
a way that arbitrary other proofs would not be?

Let us consider the concrete example of someone who is tasked
with the trisection of an angle using a compass and a straightedge

8 See also Floyd, 1995, pp. 390–391, which also highlights the “decision” involved (a
wording that will become even more relevant in the context of Cantor and Gödel):

Thus part of Wittgenstein’s purpose in focussing on the formulation and the resolution of
the trisection problem is to emphasize that there is no absolute requirement - mathematical
or otherwise - that we restrict the conditions of "trisection" in the way we do. It is the
decision to require that proofs be given within a particular setting, and that solutions take a
particular form and be generally applicable which generates the unsolvable - this is, provably
unsolvable, hence, resolvable - problem. Of course, this in no way renders the unsolvability
of the task a matter of arbitrary human convention: God himself could not “trisect” an angle.
But we can always, in Lakatos’s words, bar - or create - what we call “monsters”.
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as a practical task. Armed with knowledge of the proof, this person
might give up and point out the impossibility of such a construction.
But what is it that is impossible here exactly? Is the answer perhaps
that even if we might be able to trisect an angle more or less ‘roughly’
using these tools (through skill or sheer luck) we could never reach
the same exact precision as in the case of the bisection of an angle?
But given that the bisection of an angle is possible using Euclidean
means and that we can approximate the trisection of an angle via re-
peated bisections to an arbitrary degree, even in theory, we are not practi-
cally limited in our ability to trisect angles using only Euclidean tools.
Faced with the proof of the impossibility of trisecting an angle, some-
one could thus answer “I see that it is not possible to trisect the angle
in this way, but here is how it is possible” and then proceed to ‘trisect’
an angle using repeated bisections as perfectly as practical physical
limitations such as the size of an atom allow.

Of course such a ‘trisection’ would not be a trisection in the Eu-
clidean sense, it would certainly not be what we meant.9 Neither is such
a ‘trisection’ in any way a refutation of the proof of the impossibility
of trisecting an angle, the example is meant only as a very rudimen-
tary way to illustrate that a theoretical impossibility need not nec-
essarily restrict our practical possibilities in any way. Someone who
proceeded to ‘trisect’ an angle through repeated bisection is definitely
not trisecting according to the ‘spirit’ of Euclid’s geometry, but does
that mean that they are wrong to do so and lack the justification to
regard their construction as a successful trisection, albeit not in the
Euclidean sense?

This example of a trisection through an approximation of infinitely
many bisections might at first seem far-fetched, but it is in other sit-
uations quite common in mathematics to treat an infinitely close ap-
proximation as equivalent to the result that is being approximated,
for example the repeated division that leads to periodic decimal num-
bers such as 0.33333... = 1

3 or the geometric series as an infinite sum
of terms such as 1

3 = 1
4 + 1

16 + 1
64 + 1

256 + ..., a series which corre-
sponds quite directly to a trisection through repeated bisection. The
point is not that we should call a trisection-through-approximation
a trisection, only that under different circumstances we conceivably
could call it so and that we might for practical reasons do so. To be
explicit, the trisection-through-approximation example is of course

9 Cf. Floyd, 1995, p. 390:

Hobbes not only boasted that he had trisected the angle, but also that he had squared the
circle and doubled the cube: three equally impossible feats. What Hobbes really did was
to give a method of construction approximating a solution. In fact it is possible to trisect in
Euclid any arbitrary angle within close approximation. But this sort of "solution", however
ingenious, was not (as we say) "what was wanted". We demanded (or wished to know about
the possibility of) an exact solution.

Here “exact” is to be understood in the mathematical and therefore theoretical sense,
because it is of course possible to approximate a trisection in a way that is practically
exact.
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not a refutation of the classic impossibility proof, its point is to clarify
the use of the concept of trisection ‘outside’ the purely mathematical
realm of Euclidean geometry, it is in other words concerned with the
‘standing’ of the impossibility of trisection in our lives.

Of course simply calling a trisection-through-approximation a tri-
section would amount to little more than a name change, which
would affect us only in so far as it would then require us to distin-
guish between trisections-without-approximations (which would cor-
respond to what can be constructed using only compass and straight-
edge without approximation) and ‘all’ trisections (which would in-
clude approximations). Such a trivial renaming would not clarify the
concepts involved in any way and would certainly fall short of the
sort of philosophical investigation that Wittgenstein was interested
in, since “to imagine a language means to imagine a form of life” (Ts-
227a, 15.4 / PI §19). Let us thus try to imagine a different form of life,
where the trisection of angles is performed in such a way that the dis-
tinction between trisections in the sense of Euclid on one hand and
trisections that are only possible through approximation on the other
hand ceases to matter:

Imagine a group of people that had not learned about Euclidean
geometry from the Greeks, but rather developed it much later, for ex-
ample primarily as an enjoyable and systematic way to draw beautiful
patterns, only after the invention of binary arithmetic and the intro-
duction of rudimentary computers. For these people, there would be
little difference in terms of practicality between a bisection that can
be carried out by hand in a few steps and a trisection that needs to
be painstakingly approximated through a large number of successive
bisections, because all of their ‘Euclidean’ drawings would be eval-
uated and calculated by computers, for which numerous repeated
bisections are hardly more complicated than a single bisection. We
could even imagine that their computers were programmed (for this
very specific task of drawing systematically) by specifying a list of in-
structions purely in terms of Euclidean commands such as ‘place the
compass at the point so-and-so’, ‘draw a circle with radius so-and-so’.
Someone might then at some point have tried to draw a picture that
required a trisection of an angle, failed to find a solution and sub-
sequently raised the question whether a trisection using their com-
puters was in fact possible. Is it not likely that these people might
consider the repeated approximation of a trisection through succes-
sive bisections a valid solution to this problem? If we ever came into
contact with them and explained the proof of the impossibility of
trisecting an angle using compass and straightedge, they might per-
haps comprehend and even accept the proof without difficulties, but
would dismiss its significance, considering that for them it is a valid
but ultimately useless exercise that misses the point of trisecting an
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angle, similar to how from our perspective their ‘solution’ misses the
point of Euclidean geometry.

Several aspects of the above example have been borrowed from
Wittgenstein, who frequently imagines a calculation or a proof to be
used purely as an ornament in the form of “Tapetenmuster” / “wall-
papers” (Ms-117, 159.3; Ms-124, 137.2; Ms-127, 195.4; Ts-221a/b, 165.2;
Ts-222, 26.2, with the last two remarks being nearly identical to the
earlier Ms-117, 38.2, where “Tapetenmuster” is still missing; LFM III,
pp. 36–37; LFM VI, pp. 59–63; and in passing in LFM VII, p. 70; LFM
XII, p. 120; LFM XVIII, p. 171), to emphasise “not what role it plays
in mathematics; because this suggests a wrong picture”, but rather
“to know what part of speech it is”, because it can be “an entirely
different part of speech from what you would expect it to be [from
its role] in mathematics” (LFM XVIII, p. 171). Even the idea of peo-
ple using calculating machines as purely practical tools without any
knowledge of their mathematical principles appears in Wittgenstein’s
writings, notably in Ms-126. Wittgenstein imagines “that a calculating
machine had come into existence by accident” (Ms-126, 30.3 / RFM V
§2) or “that calculating machines occurred in nature, but that people
could not pierce their cases” and that “people use these appliances,
say as we use calculation, though of that they know nothing” (Ms-126,
35.3 / RFM V §4). A related idea is that of a trained “human calculat-
ing machine” (Ms-126, 33.4 / RFM V §3), which mechanically follows
a certain system of rules (see also Chapter 3 on Turing’s computing
machines as “humans who calculate”). All these examples evoke the
image of a mathematical activity in the larger context of a practical
use, with the emphasis on a purely mechanical following of rules
and less regard for the mathematical insight or any other psychologi-
cal process which might ordinarily be involved in such a calculation.
It should be noted that these remarks appear shortly after an un-
published remark in which Wittgenstein considers a practical use for
Cantor’s diagonal argument and the impossibility of the trisection of
an angle (Ms-126, 10.3), underlining that for Wittgenstein these im-
possibility results are closely connected with questions of mechanical
rule following and the use of mathematical signs “in mufti”, their “use
outside mathematics” (Ms-126, 30.4 / RFM V §2).

0.2 surveyability, philosophy and mathematics

Imagining a group of people who have no use for the proof of the im-
possibility of the trisection using only compass and straightedge can
shed light on the role of imaginability in relation to logical and ult-
raphysical impossibility: Imaginability can serve as the criterion for
logical impossibility because it is impossible for us to imagine that
any discovery or experience would lead us to reject the impossibility
of trisecting an angle or the law of the excluded middle, in contrast to
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the possibility of imagining that a future discovery in physics might
lead to a rejection of the speed of light as the ultimate speed bar-
rier. The former is impossible to imagine not because we might lack
imagination but because such a possibility is logically excluded from
our rules of language, whereas the latter is ‘only’ physically impos-
sible. But while we cannot imagine a logical impossibility against
the backdrop of our form of life, we can often imagine different forms
of life with different rules of language, where a logical possibility with
resemblances to our own concept is not logically excluded. Such a
logical possibility would certainly not be identical to ‘our’ concept,
but can sometimes show enough similarities to our own use of the
concept that we might see why other people would want to say that
something logically impossible (in the context of our form of life) is
possible (in the context of their form of life), without declaring them
as “mad” (LFM XXI, p. 202).

These two different aspects of imaginability, imaginability as a cri-
terion for logical possibility and imaginability of other forms of life,
explain why Wittgenstein should not be read as espousing a particu-
lar mathematical position. To imagine language games and forms of
life in which formal reasoning proceeds without principles such as
the law of the excluded middle or the law of non-contradiction is not
by itself an advocacy for a logico-mathematical position such as in-
tuitionism or dialetheism but only the attempt to present alternative
uses for certain concepts.10 It is clear that based on such a conception,
philosophy of mathematics as understood by Wittgenstein cannot ar-
gue for or against particular mathematical positions, because what is
at stake is not the truth but rather the usefulness of a logical possibility
or impossibility. While neither mathematics nor philosophy can pro-
vide justification for this usefulness, philosophy can help alleviate the
“one-sided diet” which is caused by a “thinking with only one kind of
example” and is the “main cause of philosophical diseases” (Ms-116,

10 While many of Wittgenstein’s remarks are very compatible with dialetheism, for
example (the position that there are true contradictions and that the law of non-
contradiction does not hold), such a dogmatic position is quite alien to Wittgen-
stein’s philosophy. From the perspective of Wittgenstein, it is nonsensical to posit
the existence of true contradictions as if they were some sort of ultraphysical entities
existing in the platonic realm of mathematics, but it might be sensible in certain situa-
tions to play language games in which the law of non-contradiction is not applicable.
One aspect that appears at different points in most of these diagonal proofs is their
tendency to reject the contradictory conclusion and thus to exclude inconsistency
from the system in favour of some sort of hierarchy of consistent but incomplete
stages. It shall be argued that (at least the later, but in some aspects also the early)
Wittgenstein’s aversion to this kind of higher-order scheme motivates his philosoph-
ical investigation of these matters and explains some of the more notorious remarks
on logical contradictions. This does not make Wittgenstein a dialetheist, but makes
certain paraconsistent readings possible and even fruitful. He should nevertheless
not be read to say that we must or should accept inconsistency, only that a different
form of life could lead to a different conceptual decision when faced with a choice
between inconsistency and incompleteness.
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255.3; Ms-120, 135v.2; Ts-227a/b, 291.2; Ts-228, 53.3; Ts-230a/b/c, 11.5
/ PI §593).

This method of imagining new uses is closely related to another
fundamental concept of Wittgenstein’s philosophy: “surveyability”
and “surveyable representation”. The corresponding German terms
“übersehen”, “übersichtlich”, “übersehbar”, “Übersicht” and “Über-
sichtlichkeit” have unfortunately traditionally been translated in a
variety of ways, which has led to this concept being relatively over-
looked in the anglophone reception of Wittgenstein, at least in com-
parison to concepts that were translated more uniformly, such as “lan-
guage game” or “form of life”.11 The terms appear several times in
the PI: As Wittgenstein mentions in PI §5 in reference to Augustine’s
picture of language, a language game can help to “clearly survey the
purpose and functioning of the words”. A more explicit discussion
of what he means by “survey”, “surveyable” and “surveyability” oc-
curs in §92, where Wittgenstein opposes his philosophy, which aims
to understand the “nature of language” as something “that already
lies open to view, and that becomes surveyable through a process of or-
dering”, to the common understanding of the essence of language as
something “that lies beneath the surface”. The central remark in the PI
on surveyability and surveyable representation, however, is §122, one
of a series of remarks revolving around Wittgenstein’s philosophical
method and the goal of philosophy in general:

Es ist eine Hauptquelle unseres Unverständnisses, daß wir den Gebrauch
unserer Wörter nicht übersehen. – Unserer Grammatik fehlt es an Über-
sichtlichkeit. – Die übersichtliche Darstellung vermittelt das Verständnis,
welches eben darin besteht, daß wir die ‘Zusammenhänge sehen’. Daher
die Wichtigkeit des Findens und des Erfindens von Zwischengliedern.
Der Begriff der übersichtlichen Darstellung ist für uns von grundlegender
Bedeutung. Er bezeichnet unsere Darstellungsform, die Art, wie wir die
Dinge sehen. (Ist dies eine ‘Weltanschauung’?) [Ts-227a/b, 88.3 / PU §122]

A main source of our failure to understand is that we don’t have an overview
of the use of our words. a Our grammar is deficient in surveyability. A
surveyable representation produces precisely that kind of understanding
which consists in ‘seeing connections’. Hence the importance of finding
and inventing intermediate links.
The concept of a surveyable representation is of fundamental sign- ificance
for us. It characterizes the way we represent things, how we look at matters.
(Is this a ‘Weltanschauung’?) [PI §122]

A full discussion of the role of surveyability for Wittgenstein’s phi-
losophy would go beyond the scope of this introduction,12 but two
aspects of the remark should be highlighted: First, although surveya-
bility is not explicitly mentioned as often as other more famous con-
cepts in the PI, it is nevertheless of “fundamental significance” and

11 See Majetschak, 2016 on the problematic translations of this concept and for a dis-
cussion of its central role in Wittgenstein’s philosophy.

12 See Baker and Hacker, 2005a, pp. 259–65, Baker and Hacker, 2005b, pp. 307–334 and
Majetschak, 2016 for an extensive discussion of PI §122.
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can therefore be assumed to play an important role for Wittgenstein’s
philosophy of mathematics, given that his more mathematical re-
marks are not clearly delineated but rather form a part of a larger
philosophical corpus. Second, Wittgenstein emphasises “the impor-
tance of finding and inventing intermediate links”, and it is significant
that Wittgenstein explicitly calls out the invention of new intermediate
links, which becomes especially relevant in the context of his remarks
on the philosophy of mathematics.13 Although an earlier version of
what later became §122 first appeared in Ms-110 in 1931 and was
revisited by Wittgenstein in several manuscripts and typescript over
the next years, the addition of “Erfindens” / “inventing” occurred
only much later, only appearing in Ts-239, 77f.1 in 1937 and then in
Ts-227a/b in 1944. The versions in Ms-110, 257.3; Ts-211, 282.2; Ts-212,
1144.2; Ts-213, 417r.3; Ts-220, 80.2; Ts-237, 80.1 and Ms-142, 107.2 only
mention “Findens” / “finding”. The original version, written in the
context of Wittgenstein’s remarks on James George Frazer’s Golden
Bough,14 reads as follows:

„Und so deutet das Chor auf ein geheimes Gesetz” möchte man zu der
Frazerschen Tatsachensammlung sagen. Dieses Gesetz, diese Idee, kann ich
nun durch eine Entwicklungshypothese {ausdrücken // darstellen} oder
auch, analog dem Schema einer Pflanze durch das Schema einer religiösen
Zeremonie oder aber durch die Gruppierung des Tatsachen-Materials allein,
in einer „übersichtlichen” Darstellung.

Der Begriff der übersichtlichen Darstellung ist für uns von grundlegender
Bedeutung. Er bezeichnet unsere Darstellungsform, die Art wie wir die
Dinge sehen. (Eine Art der ‚Weltanschauung’ wie sie scheinbar für unsere
Zeit typisch ist. Spengler)

Diese übersichtliche Darstellung vermittelt das {Verstehen // Verständnis}
welches eben darin besteht daß wir die „Zusammenhänge sehen”. Daher
die Wichtigkeit {der Zwischenglieder // des Findens von Zwischengliedern}.
[Ms-110, 256.6–257.3 / GB]

One would like to say of Frazer’s collection of facts ‘And so the choir points
to a secret law’. It is possible to represent this law, this idea, by an hypoth-
esis of development, or again, in analogy with the schema of a plant, by

13 As Majetschak, 2016, p. 73 (footnote) points out, “‘übersichtliche Darstellung’ might
not only be translated as ‘surveyable re-presentation’ but also as ‘surveyable presen-
tation’. The structure presented by the form, which Wittgenstein has in mind, must
not factually exist.” Another closely related reason in favour of translating it sim-
ply as “surveyable presentation” can be added here: As Wittgenstein makes clear
throughout the Nachlass, there is no essence behind many of the concepts in our lan-
guage that we could point to as an object of reference, there is thus no ‘thing’ that
the surveyable ‘representation’ could represent. Rather, the surveyable presentation is
itself a part of our language and interwoven with the very concepts that it surveys. It
can present concepts and their intermediate links, but is not secondary or superficial
to anything supposedly primary or essential. Although “surveyable presentation”
might therefore be a better translation than “surveyable representation”, the latter
term will be used in this text, purely for reasons of familiarity and consistency with
other literature.

14 See Majetschak, 2012 on the influence of Frazer on Wittgenstein and the central im-
portance of the “Remarks on Frazer’s Golden Bough” for Wittgenstein’s philosophical
method.
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the schema of a religious ceremony, or by grouping the facts alone, in a
‘surveyable’ representation.

The concept of a surveyable representation is of fundamental significance
for us. It characterizes the way we represent things, how we look at mat-
ters. (A kind of ‘Weltanschauung’ as it is apparently typical for our time.
Spengler)

A surveyable representation produces precisely that kind of understanding
which consists in ‘seeing connections’. Hence the importance of finding
intermediate links. [GB15]

In contrast to the version in Ts-227a/b, the links to the morphology of
Goethe and Spengler are made explicit in Ms-11016, but more impor-
tantly Wittgenstein emphasises the difference between “an hypoth-
esis of development” or a general “schema” (of a “plant” or a “reli-
gious ceremony”) on the one hand and his method on the other hand,
which proceeds “by grouping the facts alone, in a ‘surveyable’ repre-
sentation”. While a hypothesis of development or a schema could be
said to capture the essence of a concept and might be used to predict
which yet undiscovered specimen would fall under a particular con-
cept, a surveyable representation in the sense of Wittgenstein does
not attempt to provide such a predictive model of the world. While
a hypothesis of development could potentially become useless if it
turned out that one its presupposed intermediate links had never ex-
isted, the same is not true for a surveyable representation: Since such
a representation is not ‘judged’ based on the merits of its predictive
power, an intermediate link can even be merely “hypothetical”, as
the purpose of such a representation is not to predict something, but
rather to “sharpen our eye for a formal connection”, as Wittgenstein
explains in the next remark:

Ein hypothetisches Zwischenglied aber soll in diesem Falle nichts tun als
die Aufmerksamkeit auf die Ähnlichkeit, den Zusammenhang, der Tat-
sachen lenken. Wie wenn man eine interne Beziehung der Kreisform zur
Ellipse dadurch {illustrieren

:::::
wollte // illustrierte} daß man eine Ellipse

allmählich in einen Kreis überführt; aber nicht um zu behaupten daß eine
gewisse Ellipse tatsächlich, historisch, aus einem Kreis entstanden wäre (Entwick-
lungshypothese) sondern nur um unser Auge für einen formalen Zusam-
menhang zu schärfen.
Aber auch die Entwicklungshypothese kann ich als weiter nichts sehen als
{die // eine} Einkleidung eines formalen Zusammenhangs. [Ms-110, 257.4
/ GB]

A hypothetical link is not meant to do anything except draw attention to
the similarity, the connection, between the facts. As one might illustrate the
internal relation of a circle to an ellipse by gradually transforming an ellipse
into a circle, but not in order to assert that a given ellipse in fact, historically came
from a circle (hypothesis of development) but only to sharpen our eye for a
formal connection.

15 Translation from Majetschak, 2016 and PI §122, with minor additions.
16 See Schulte, 1990 for a detailed discussion of the influence of Goethe and Spengler

on Wittgenstein’s surveyable representation.
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But I can equally see the hypothesis of development as nothing but a way
of expressing a formal connection. [GB17]

As the example of the circle and the ellipse makes clear, the idea
of inventing hypothetical intermediate links plays an important role
even in Ms-110, 6 years before Wittgenstein explicitly emphasises the
aspect of the “Erfindens” / “inventing” by adding it to the Ts-239
version in 1937. We can use invented intermediate links as part of a
surveyable representation without negatively impacting its value be-
cause the adequacy of intermediate links is measured by the “formal
connection” that we want to focus on, which is part of our grammar
and expressed by logical and not empirical propositions. Of course,
this does not mean that any hypothetical intermediate link would do
the job: To use a square as a hypothetical intermediate link would
be useless if our goal were to shed light on the formal connection
between a circle and an ellipse.

This brings us back to imaginability as the criterion for logical pos-
sibility and impossibility. As has been mentioned before, imaginabil-
ity in this context must not be understood as depending on one’s
power of imagination, so that one person possesses enough phantasy
to imagine something as logically possible while another does not,
but rather as a reflection of what is included in or excluded from a
particular language game. A surveyable representation can help in
this regard by providing examples that we are otherwise unable to
imagine purely due to a lack of imagination, but which we readily ac-
cept as imaginable once they are presented to us. In this way, a nearly
circular ellipse as an intermediate link between an elongated ellipse
and a circle can compensate for a lack of imagination or phantasy,
whereas a square as an intermediate link is useless for that purpose.

However, this distinction between ‘imaginability as phantasy’ and
logical imaginability is not always clear cut, which is why it should
not be stretched beyond its limits, or else the resulting interpretation
will misread Wittgenstein as putting forth a dogmatic criterion that
supposedly holds in all cases. Especially in his later years, Wittgen-
stein frequently imagines tribes of people with very different forms of
life from our own, where a lot of imaginary background is necessary
to make their seemingly “mad” behaviour (LFM XXI, p. 202) under-
standable to us. An example that appears both in the LFM and RFM I
is the tribe of people who buy and sell wood by the area, regardless of
how high it is stacked, so that one can increase or decrease the price
by stacking it higher or lower, thereby changing its area (LFM XXI,
p. 202–03; Ms-117, 47.2–49.2; Ms-118, 34v.5–36v.1; Ts-221a/b, 172.5–
174.3; Ts-222, 116.5–118.3 / RFM I §§147–52). At first, these people
appear mad to us, but we could certainly imagine a form of life that
makes their way of ‘calculating’ appear understandable to us, for ex-
ample if there were such an abundance of wood that any method of

17 Translation from Majetschak, 2016, with minor additions.
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calculating a price would be merely ceremonial and the people would
not feel cheated if someone restacked the pile to get a ‘better’ price.
Here, the example implicitly presupposes a whole way of life, which
requires us to imagine more than just a new use of a concept that we
are familiar with but had missed due to a lack of imagination, as in
the case of the ellipse and the circle.

Coming back to the example of people trisecting routinely through
approximation by repeated bisection, such an imaginary group of
people could serve as a first step toward an intermediate link in a
surveyable representation. From a dogmatic perspective, the impos-
sibility of a trisection using only compass and straightedge (together
with its corresponding proof) is akin to the discovery of a mathemat-
ical fact with ultraphysical implications for what we can or cannot
do, with any alternative as merely a misunderstanding bordering on
madness. The example of a group of people with a different form of
life can form an intermediate link between these two extreme view-
points, of fact on the one side and madness on the other, not by at-
tacking the validity of the proof (an act which would fall under the
auspices of mathematics, not philosophy), but rather by attacking the
role and standing of the proof as an ultraphysical discovery. By imag-
ining how people could be entirely unimpressed by the proof, we can
decouple the mathematical aspect of the proof, which demonstrates
a logical impossiblity, from its interpretation in ‘prose’ as a limitative
result with ultraphysical consequences.

The standing and “civic status” of a contradiction is explicitly
called out by Wittgenstein as “the philosophical problem” in PI §125,
a remark which is all the more relevant in the current context because
the diagonal arguments of the following chapters all proceed via a re-
ductio ad absurdum, with a contradiction arising at the same crucial
point from the diagonalised construction. The remark is worth quot-
ing in full, as it mirrors the approach of the following chapters:

a) Es ist nicht Sache der Philosophie, den Widerspruch durch eine mathema-
tische, logisch-mathematische, Entdeckung zu {beseitigen // lösen}. Son-
dern den Zustand der Mathematik, der uns beunruhigt, den Zustand vor
der {Lösung // Vermeidung} des Widerspruchs, übersehbar zu machen.
(Und damit geht man nicht etwa einer Schwierigkeit aus dem Wege.)
b) Die fundamentale Tatsache ist hier: daß wir Regeln, eine Technik, für
ein Spiel festlegen, und daß es dann, wenn wir den Regeln folgen, nicht so
geht, wie wir angenommen hatten. Daß wir uns also gleichsam in unseren
eigenen Regeln verfangen.
Dieses Verfangen in unseren Regeln ist, was wir verstehen, d.h. übersehen
wollen.
Es wirft ein Licht auf unsern Begriff des Meinens. Denn es kommt also in
jenen Fällen anders, als wir es gemeint, vorausgesehen, hatten. Wir sagen
eben, wenn, z.B., der Widerspruch auftritt: “So hab’ ich’s nicht gemeint.”
c) Die bürgerliche Stellung des Widerspruchs, oder seine Stellung in der
bürgerlichen Welt: das ist das philosophische Problem. [Ms-130, 14.5 & Ms-
130, 12.2–12.3 & Ms-130, 13.5; Ts-228, 160.4 & Ts-228, 159.2–159.3 & Ts-228,
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159.7; Ts-230a/b/c, 36.4 & Ts-230a/b/c, 35.2–35.3 & Ts-230a/b/c, 35.7; Ts-
227a/b, 88a.1 / PU §125]

It is not the business of philosophy to resolve a contradiction by means of
a mathematical or logico-mathematical discovery, but to render surveyable
the state of mathematics that troubles us – the state of affairs before the
contradiction is resolved. (And in doing this one is not sidestepping a diffi-
culty.)
Here the fundamental fact is that we lay down rules, a technique, for play-
ing a game, and that then, when we follow the rules, things don’t turn out
as we had assumed. So that we are, as it were, entangled in our own rules.
This entanglement in our rules is what we want to understand: that is, to
survey.
It throws light on our concept of meaning something. For in those cases,
things turn out otherwise than we had meant, foreseen. That is just what
we say when, for example, a contradiction appears: “That’s not the way I
meant it.”
The civic status of a contradiction, or its status in civic life – that is the
philosophical problem. [PI §125]

Here Wittgenstein emphasises once again that the task of philosophy
must not be to “resolve a contradiction by means of a mathematical
or logico-mathematical discovery”, but rather to investigate the trou-
bling state of the contradiction and make it “surveyable”. A purely
mathematical perspective can easily lead to the belief that a contradic-
tion is always a sign of trouble, which forces us to abandon a particular
path so that we must move into a different direction, but as Wittgen-
stein points out, a contradiction is not always a sign of trouble, it
can be merely a reflection of running into something unexpected, so
that we say: “That’s not the way I meant it.” In such a case, we will
often discard an assumption (reductio ad absurdum, see also Ms-126,
124.2–125.2), but we also could conceivably accept the rules in ques-
tion as contradictory and use them in practice. Whether we do one or
the other depends on the “civic status” of the contradiction, in other
words on its role and standing in our form of life. It can certainly
be the case that we reject an assumption that leads to a contradiction,
but not because something physical or ultraphysical would force us to
do so, rather simply because this is what we do. As Wittgenstein notes
in another context: “No, it is not true that it must — but it does follow:
we perform this transition” (Ms-117, 1.1 [p. 13–14], Ts-221a/b, 147.2,
Ts-222, 15.1 / RFM I §12, see Section 1.1).

Up until this point, surveyability has been treated in this introduc-
tion as a uniform concept across all of Wittgenstein’s remarks. But is
this really a justified assumption? It must be pointed out that Witt-
genstein’s concepts sometimes changed in meaning and significance
over the years and that he frequently mentioned surveyability not
only in his more meta-philosophical remarks in the PI, but also in the
RFM. This raises the question of whether Wittgenstein’s notion of sur-
veyability in the PI (together with his meta-philosophical remarks in
Ms-110 and later Ts-211/Ts-212/Ts-213) can be considered to be the
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same as in his more mathematical remarks in the RFM, especially in
RFM III, where the surveyability of proofs is of central concern.

At the risk of giving a disappointing answer, neither ‘yes’ nor ‘no’
seem to capture the relationship between surveyability in mathemat-
ics and surveyability in philosophy: It would be hard to argue that
the two notions fully coincide, but it is similarly improbable that they
are completely distinct, either, because there is a strong family re-
semblance between surveyability in mathematics and surveyability
in philosophy. This is partly explained by the observation that ‘sur-
veyability in mathematics’ can be understood in two ways: It can refer
to the use of and need for surveyability in proofs or calculations that
are worked on by mathematicians, or it can refer to the use of and
need for surveyability in a surveyable representation of mathemati-
cal concepts as investigated by philosophers. Briefly, in contrast to the
surveyability in philosophy, which results from “a grouping of facts”
(Ms-110, 256.6 / GB I) and of “intermediate links” (Ms-110, 257.3 /
GB I), the surveyability of a proof depends on being able to repro-
duce it repeatedly without error (Ms-122, 5r.2 / RFM III §1) and use
the proof as a paradigm (Ms-122, 34v.2 / RFM III §14). It is undeni-
able that there are striking differences in form and content between a
mathematical proof and a surveyable representation of the concepts
involved in such a proof, with Wittgenstein leaving the mathematical
work with all of its proofs and calculations to the mathematicians.18

However, there is a close and important connection between the sur-
veyability of a proof in the mathematical sense and a surveyable rep-
resentation in the philosophical sense, as Wittgenstein’s investigation
of proofs of arithmetic in the Russellian framework of the Principia
Mathematica makes clear (see also Section 1.4): While an unsurveyably
large ‘proof’ of the addition of large numbers in Russell’s notation
might be of little concern to a mathematician, who would see it as
merely impractical but nevertheless foundational for our more infor-
mal way of adding numbers, the unsurveyability of such a ‘proof’ is
absolutely crucial to Wittgenstein because he flips the relation of the
‘formal’ Russellian ‘proof’ and our ‘informal’ way of adding natural
numbers on its head: We recognise the Russellian ‘proof’ as a proof of
the addition only because we already have a concept of addition that
stems from our ‘informal’ way of adding numbers, which gives us a

18 This explains why Mühlhölzer, 2010 considers mechanical reproducibility to be the
distinguishing characteristic of surveyability in RFM III, in contrast to Wittgenstein’s
concept of surveyability in the PI. A proof that cannot be reliably reproduced is not
a proof. At least in this strict form, it is not clear why or how the same would be
true for a surveyable representation in the philosophical sense. This is certainly a
very valuable observation, which clarifies the relationship between surveyability in
mathematics and surveyability in philosophy, but does not appear to be sufficient
on its own to draw a hard line between the two notions. Crucially, both notions of
surveyability situate a concept in a variety of uses and applications, which explains
why surveyable representations in philosophy can act as an antidote to unsurveyable
proofs in mathematics.
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standard of measurement for what is to be considered a correct addi-
tion, in contrast to a large Russellian ‘proof’, which is impossible to
reproduce without frequently making mistakes. In this way, Russell’s
uniform logical framework actually depends on a variety of more
specialised and less formally-logical language games. It is this math-
ematical variety that Wittgenstein wants to survey, with a surveyable
representation (in the philosophical sense) acting as a clarification of
the use of a surveyable proof, or the lack of use of an unsurveyable
‘proof’. The mistake of Russell is not mathematical but philosophi-
cal, because he views his logical system as a way to generalise the
more specialised mathematical systems in a foundational system that
is supposedly independent from them, while failing to see that this
‘foundation’ cannot be used in the absence of the more specialised
systems.

Surveyability in mathematics and surveyability in philosophy are
thus closely linked: Mathematicians will often strive for proofs that
are mechanically reproducible and thus naturally make their proofs
surveyable. Sometimes, however, a ‘proof’ will seem surveyable (and
thus appear as a proof) when it actually is not usable as such, with
the appearance of surveyability being suggested purely through its
analogy with a less formal but surveyable counterpart, such as in
the case of Russell’s proofs of addition and our usual way of adding
numbers. The conceptual confusion arising from this mistake can be
clarified with the help of a surveyable representation in philosophy,
which groups and describes the different uses of a mathematical con-
cept without attempting to explain it in general.

0.3 methodology and scope

As already mentioned, a critical investigation of diagonal impossibil-
ity proofs in the tradition of Cantor, Gödel and Turing might at first
glance be seen as an attempt to contest their validity. After all, what
could be the point of critically examining well established proofs, if
not to find faults in them? Quite often then, commentators have read
Wittgenstein’s remarks on Gödel or Cantor as an attempt to suppos-
edly show how these proofs are false or trivial. It should be reiterated
that this is decidedly not the intention of the following investigation.
In the process, it shall hopefully become clear that such an interpre-
tation is at odds with a charitable reading of Wittgenstein, which is
to say a reading that takes seriously his stated intention of mathemat-
ical non-interference. A philosophical investigation in the sense of
Wittgenstein will leave mathematical work to the mathematician and
abstain from passing judgement on the validity of proofs. Instead,
the focus will be on investigating how these proofs are used, not only
inside their respective fields, but also ‘at the edges’ of their practi-
cal applications. Such an investigation must at times depart from the
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problems that Wittgenstein himself studied explicitly and instead en-
ter uncharted territory, precisely because the object of study cannot
be limited to Wittgenstein and his body of work, but must encompass
our use of mathematical proofs and their application. Understanding
or explaining Wittgenstein’s philosophy is therefore explicitly not the
only goal of the following investigation, even though an application
of Wittgenstein’s remarks in new contexts might in the end have the
welcome side effect of illuminating some of these very remarks.

The following chapters are therefore not purely exegetical and will
in fact transition from a more exegetical investigation of authors that
Wittgenstein explicitly engaged with (Cantor and to a lesser degree
Gödel) to a discussion of more implicit connections (between Witt-
genstein and Turing) that draws on more heterogeneous sources in
Wittgenstein’s Nachlass. Despite this strong focus on Cantor, Gödel
and Turing, the issues at stake will at all times be investigated from
the perspective of Wittgenstein and presuppose his conception of phi-
losophy and philosophical methods. Given that the views of the ‘later
Wittgenstein’ shifted sometimes quite substantially over the period of
his later life and that there is no single canonical source that would
be applicable in all contexts, some clarifications are in order: All the
texts by Wittgenstein discussed hereafter stem primarily from the
years 1937 to 1944 and are thus written shortly after the “pre-war
version” of the Philosophical Investigations. These mathematical writ-
ings by Wittgenstein either directly lead up to the PI or are roughly
contemporary with it, which justifies a reading from the perspective
of the Wittgenstein of the PI.

Some of the more ‘general’ concepts that will be relevant in the
coming chapters have already been mentioned and include concepts
that originate in earlier periods of Wittgenstein’s writings but remain
relevant (for example the distinction between logical, physical and ult-
raphysical impossibility as well as surveyability), others serve as guid-
ing principles for Wittgenstein’s philosophy of mathematics, even
if they are not always explicitly called out (for example his inten-
tion of non-interference and the distinction between empirical and logico-
mathematical propositions).

Although most of the tools and concepts will be drawn from Witt-
genstein’s Nachlass and Wittgenstein will be the most important pri-
mary source over the course of the whole dissertation, each of the
three main chapters will nevertheless focus on the application of a
particular diagonal argument and structure the chapter according to
the diagonal proof, not always following the exact order of Wittgen-
stein’s remarks. In light of the fact that Wittgenstein’s conceptual in-
vestigations are often independent of each other and do not build up
to a systematic treatment or a grand unified theory, the three main
chapters similarly only presuppose the more general concepts of Witt-
genstein’s philosophy sketched out in this introduction and can thus
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be read in any order, with each chapter focusing on a particular di-
agonal argument. The different threads will then be brought together
in the concluding chapter, which by its nature acts as a slightly more
general outlook, with all the problems that such a general perspective
might bring in the eyes of Wittgenstein.

Two appendices attempt to situate Wittgenstein’s view of diago-
nal arguments in a larger context, with the more philosophical Ap-
pendix A focusing on a more contemporary application of the di-
agonal argument in Algorithmic Information Theory, and Appendix B
serving as a philological high-level overview of the editorial decisions
in the Remarks on the Foundations of Mathematics.

The resulting investigations in the three main chapters and the
appendices will hopefully elucidate both the philosophical issues at
stake in the diagonal proofs as well as the reasons for Wittgenstein’s
approach and interest in these matters.

All of the following chapters will draw heavily on different Nach-
lass documents and quote from the “linear” transcriptions of these
documents, as provided by the Wittgenstein Archives Bergen, usu-
ally with minor typographic or grammatical alternatives omitted. If
the remark in question has been published as part of the Remarks on
the Foundations of Mathematics or in other ‘works’, the section num-
ber in the published version will additionally be mentioned. Apart
from making it easier to trace these remarks back to the Nachlass, di-
rect references to the Nachlass documents are crucial in the context
of the RFM, as this ‘work’ has the questionable distinction of being
one of the most heavily edited works that have been published by
Wittgenstein’s literary executors after his death (see Appendix B for
more details on the editorial status of this work). Many of the edito-
rial omissions and changes are quite minor and often reasonable, but
especially in the context of RFM II, which discusses Cantor’s diago-
nal argument, the editorial interventions sometimes paint a different
picture than Wittgenstein’s own documents, which justifies a close
inspection of the Nachlass documents.

The remarks that will be discussed hereafter are drawn primarily
from the following documents in Wittgenstein’s Nachlass:

1. Chapter 1 will focus on the documents belonging to part II
of the RFM, which include a clearly delineated part of Ms-117
(probably written between the beginning of October 1937 and
the end of June 1938) and selections from Ms-121 (written be-
tween the end of April 1938 and the beginning of January 1939).
Further, the remarks discussed will also include many unpub-
lished remarks from Ms-121 as well as from the entirely un-
published pocket notebooks Ms-162a and Ms-162b (which start
in January 1939). Ms-117 and Ms-121 contain the first and also
final versions of the remarks in RFM II, in other words there
are no (surviving) earlier pocket notebooks or later notebooks
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or typescripts that would contain identical or textually similar
versions of these remarks. Additionally, a short fragment of 6
loose sheets (Ms-178d), which does not appear to have been
discussed in existing literature, will be briefly examined and a
more precise dating proposed.

2. Chapter 2 revolves primarily around the remarks on Gödel in
appendix III of part I of the RFM, compiled from Ts-221a/b,
246–55 and most likely typed in 1938 (with sources in Ms-118
dating back to 1937), as well as several remarks on Gödel in
RFM VII, compiled from Ms-124, 82–95 and written between
27.6.1941 and 4.7.1941. A passage from Ms-121, 72–85 on Gödel,
which was not published as part of the RFM, and the continu-
ation of the remarks from RFM VII in Ms-163 will also be dis-
cussed. The remarks belonging to RFM I App III in Ts-221a/b
and to RFM VII in Ms-124 appear in similar versions also in
other documents, for Ts-221a/b there are related versions in Ms-
118 and Ts-223, for Ms-124 in the notebook Ms-163.19

3. Chapter 3 is, as mentioned, less exegetical and not strictly fo-
cused on a single corpus of documents in Wittgenstein’s Nach-
lass. The main remark on Turing, published as RPP I §1096, ap-
pears in Ms-135, 59v.2 as well as in the typescripts Ts-229, 448.1
and Ts-245, 319.3. Most other remarks are drawn from Ms-124
and were in many cases published in RFM VII, with other ver-
sions of the remarks appearing mostly in Ms-161, Ms-163 and
in some cases in Ms-127.

Given that the edited version of a remark published by Wittgen-
stein’s literary executors and its source in the Nachlass sometimes
differ substantially (with additional variants in the source documents
left out by the editors), a short note on the way remarks are cited is
in order: In all instances where a Nachlass source exists (which is the
case for all remarks in the published ‘works’, but not the lectures)
the version cited is from the Nachlass, with all variants except minor
typographic variations preserved. Remarks are not cited by page, but
rather by unique remark identifier, which combines the page of the
beginning of the remark with a number distinguishing between re-
marks on the same page (with “Ms-124, 138.3” corresponding to the
third remark on page 138 of manuscript 124 in the Nachlass, accord-
ing to the von Wright catalogue, see Von Wright, 1993). In the case of
remarks extending over multiple pages, the remark identifier refers
to the page of the beginning of the remark. Whenever the remark in
question has been published in a ‘work’ compiled by Wittgenstein’s

19 There are a few other references to Gödel in the Nachlass, but they are all made in
passing and do not constitute a sustained treatment of the topic, these remarks will
therefore not be discussed in this text: Ms-117, 147.1; Ms-117, 151.5; Ms-122, 28v.2;
Ms-124, 115.1 and Ms-126, 131.2.
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literary executors, the sigil of the work (which are listed at the end
of this thesis) together with its section number is cited, for example
“Ms-124, 138.3 / BGM VII §41”. English translations for German re-
marks are given in a two-column layout, with translations taken from
the published work if the remark has been published (in which case
variants are usually not preserved), indicated by the sigil specifying
the work in question (“BGM VII §41”), and otherwise translations be-
ing my own (in which case variants are usually preserved), indicated
by the lack of a sigil or any other reference.

0.4 related work

The status of Wittgenstein’s philosophy of mathematics in the con-
text of Wittgenstein’s philosophy as a whole has traditionally been
problematic, a situation that is also reflected in its reception in the lit-
erature: For one, there is no ‘work’ authored by Wittgenstein himself
that deals specifically with mathematical topics as there is in the case
of the Tractatus or the PI, which are both based on typescripts created
by Wittgenstein. While the mathematical remarks of Wittgenstein’s
‘middle period’ in the Philosophical Remarks all stem from the type-
script Ts-209, there is no such single manuscript for Wittgenstein’s
later writings on mathematics in the late 1930s and early 1940s. Apart
from part I, the different parts of the RFM are all compiled from dif-
ferent manuscripts (of varying quality and editorial status).

Consequently, Wittgenstein’s remarks on the diagonal arguments
of Cantor, Turing and Gödel have received relatively little attention
compared to the PI or the very late writings such as On Certainty. Fur-
thermore, especially the initial reaction was mostly dismissive, with
many remarks considered as “a surprisingly insignificant product of
a sparkling mind” (Kreisel, 1958, p. 158). To this date, there does not
appear to be a single monographic treatment of Wittgenstein’s re-
marks on the diagonal argument across all the documents spanning
the RFM, only publications that consider Wittgenstein’s remarks on
one of the three diagonal arguments in isolation.

Wittgenstein’s remarks on Cantor are perhaps not as scandalous as
his infamous remarks on Gödel, but they have nevertheless elicited
their faire share of criticism, mostly due to Wittgenstein’s rather dog-
matic rejection of set theory. Many commentators consider Wittgen-
stein to fall short of his stated ideal of non-interference and non-
revisionism, e.g. Rodych, 2000 and Putnam, 2007, and read his po-
sition in RFM II to be revisionist and as advocating philosophical the-
ses. There are recent attempts to rehabilitate Wittgenstein’s seemingly
mistaken remarks, e.g. Wheeler, 2021, where Wittgenstein’s rejection
of set theory is interpreted not as a wholesale dismissal of the appli-
cations of set theory inside mathematics, but rather as a rejection of
the sense of concepts such as denumerability prior to a proof such
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as Cantor’s. Such a reading manages to explain Wittgenstein’s rejec-
tion from the admittedly radical perspective of Wittgenstein’s larger
philosophy and is quite compatible with the reading in this thesis.

Given the largely negative reception of Wittgenstein’s remarks on
Cantor’s diagonal argument, it is not surprising that detailed ex-
egetical readings of these remarks have been exceedingly rare. The
only monographic treatment of RFM II appears to be Redecker, 2006,
which unfortunately does not include a discussion of any of the un-
published remarks in Ms-121. While Redecker finds value in Wittgen-
stein’s remarks, she nevertheless reads Wittgenstein as falling short of
his ideal of non-interference in mathematical matters and to advocate
theses (see e.g. Redecker, 2006, pp. 31–50 and especially Redecker,
2006, pp. 319–320). Similarly, Ramharter, 2018 holds the view that
Wittgenstein’s remarks in RFM II contain definite mathematical er-
rors which are attributable to his lack of a proper mathematical back-
ground, even if many of the remarks offer interesting philosophical
insights. More charitable readings, which also include a discussion of
the unpublished remarks in Ms-121, Ms-162a and Ms-162b, are pre-
sented in the chapters of Mühlhölzer, 2020 and Floyd, 2020. Floyd’s
chapter takes a broader perspective and includes an examination of
the remarks on Cantor in the context of Turing (which is relevant for
Chapter 3), whereas Mühlhölzer presents a closer reading of Wittgen-
stein’s remarks and offers a charitable interpretation that is closest to
the reading in this thesis.

Most charitable interpretations take Wittgenstein to attack the pro-
saic interpretations of the proof, not the mathematical proof itself (the
reading in the following chapters also falls into this category), while
more critical interpretations read Wittgenstein as attacking the mathe-
matical proof, either deliberately or by mistake. A third option, which
is put forward in both Steiner, 2001, pp. 269–270 and Gefwert, 1998,
p. 246, is to deny that Cantor’s diagonal argument is a genuine math-
ematical proof in the eyes of Wittgenstein (which then turns his seem-
ingly mathematical critique into an attack of a purely philosophical
pseudo-proof). While such a reading might be interesting, it is chal-
lenging to see how this would resolve the accusation of interference
and revisionism, as such an interpretation challenges the mathemati-
cal status of a universally accepted proof.

The remarks on Cantor’s diagonal argument have sometimes been
interpreted as an attack on the mathematical concept of infinity, with
Wittgenstein advocating for a form of finitism (Marion, 1998) or even
strict finitism (Dummett, 1970) and thereby taking a revisionist posi-
tion in mathematics. Marion focuses on Wittgenstein’s middle period,
which certainly exhibits a stronger dogmatism and more pronounced
finitistic tendencies, but Marion, 1998, pp. 193–202 explicitly connects
this finitistic interpretation with Wittgenstein’s remarks on Cantor in
RFM II. Evidence against such a finitistic reading is provided by Fras-
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colla, 2006, pp. 142–156, where Wittgenstein is instead read as “quasi-
revisionary”: not attacking or attempting to refute mathematical re-
sults, but working towards philosophical clarification that might lead
mathematicians to lose interest and thereby give up certain branches
of mathematics of their own accord (Frascolla, 2006, p. 160). Such
a “quasi-revisionary” interpretation does not conflict with Wittgen-
stein’s goal of non-interference and is entirely compatible with the
following chapters.

Wittgenstein’s remarks on Gödel’s first incompleteness theorem
have without a doubt generated the most interest out of all three diag-
onal arguments. The initial reviews of the published remarks in RFM
I; App. III and RFM VII by Kreisel, 1958, Bernays, 1959 and Dummett,
1959 were scathing and for the next 30 years Wittgenstein’s remarks
on Gödel were seen as the mistaken attempt to refute a mathematical
theorem that was beyond reproach.

This started to change with Shanker, 1988, who presented the first
charitable reading of Wittgenstein’s remarks and interpreted them
as attacking Gödel’s interpretation metaphysical of the theorem, not
the mathematical theorem itself. Shanker’s paper was followed a few
years later by another equally charitable reading, Floyd, 1995, which
presented Wittgenstein’s remarks on Gödel in the context of remarks
on Wittgenstein’s favourite example of impossibility proofs: the im-
possibility of trisecting an angle using only compass and straightedge.
In comparison to Shanker, Floyd presented a much closer reading of
the remarks in RFM I; App. III. (These two charitable interpretations
are closest in spirit to the reading presented in this thesis, with the
notable exception of how Wittgenstein’s remarks on inconsistency are
interpreted.)

Rodych, 1999 and Rodych, 2002 presented a reading that was less
charitable and saw definite mistakes to Wittgenstein’s remarks, while
nevertheless emphasising the value of the remarks in the context of
Wittgenstein’s philosophy as a whole. The papers thus exhibit an in-
teresting balance and show how Wittgenstein’s remarks can be reha-
bilitated even if one understands him as a dogmatic philosopher ad-
vocating for a particular position in logic. (Rodych’s emphasis on the
role of inconsistency and the conditional nature of Gödel’s proof is
entirely compatible with the interpretation in the following chapters,
although his interpretation of Wittgenstein as advocating a dogmatic
position is explicitly rejected.)

Floyd and Putnam, 2000 constitutes a seminal paper in the debate
around Wittgenstein and Gödel, as it introduces what is now known
as the “Floyd-Putnam Thesis”. According to the thesis, Wittgenstein’s
“notorious paragraph” in RFM I; App. III §8 shows a remarkable in-
sight on the part of Wittgenstein and is to be understood as a model-
theoretic clarification of Gödel’s theorem. The Floyd-Putnam Thesis
has led to a lively debate, including rebuttals from Steiner, 2001, Bays,
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2004, Bays, 2006, answers in Floyd and Putnam, 2006, Floyd and Put-
nam, 2008, as well as further rebuttals of the rebuttals (specifically of
Steiner, 2001), e.g. Rodych, 2003 and Rodych, 2006. The debate is far
from over, with papers as recent as Lajevardi, 2021. (For the present
thesis, the Floyd-Putnam Thesis is only of minor importance, but nev-
ertheless presents a very interesting insight into Gödel’s theorem.)

In addition to the charitable readings by Shanker or Floyd, dismis-
sive interpretations by Steiner or Bays, and readings that fall some-
where in between by Rodych, there is also another notable position
that reads Wittgenstein as presenting a paraconsistent reading that ex-
plicitly accepts the diagonal conclusion as a contradiction, e.g. Priest,
2004 and Berto, 2009. These readings interpret Wittgenstein rather
charitably, but nevertheless ascribe to him a particular logical posi-
tion. As a result, they have often been dismissed by Wittgenstein re-
searchers as attributing to Wittgenstein a view that goes against his
intention of not advocating a particular position in logic (for exam-
ple in the close reading of Kienzler and Grève, 2016), but offer the
advantage of explaining some of Wittgenstein’s more outrageous re-
marks on inconsistency in logic. (This thesis will read these particular
remarks in a way that is often compatible with paraconsistent read-
ings, while rejecting any attempt to treat this position dogmatically
as the single and only correct position that one could take regarding
the different diagonal arguments.)

Among Wittgenstein scholars, the least discussed of the three diag-
onal arguments investigated in this thesis is certainly Turing’s diag-
onal argument. This is explained by the fact that direct references in
the Nachlass to Turing are exceedingly rare and there are only three
direct points of connection that could be discussed in the context of
Wittgenstein:

First, one might focus on Turing’s philosophy of mind, more specif-
ically the idea of the “Turing test” for machines, and discuss the
question of whether machines can be said to think from the general
perspective of Wittgenstein’s philosophy of psychology, without lim-
iting the discussion to specific remarks on Turing (e.g. Trächtler, 2021,
pp. 99–111). Since the focus of this thesis is Wittgenstein’s philosophy
of mathematics, such a perspective will not be discussed here in any
detail (although some of the later sections in Chapter 3 border on
issues normally classified as philosophy of mind).

Second, Turing’s notion of computation, his concept of Turing ma-
chines and the Church-Turing Thesis can be investigated from the
perspective of Wittgenstein’s philosophy of mathematics in general
and his remark on Turing’s diagonal argument in particular (which
is also what this thesis attempts to do). Publications on these topics in
the Wittgenstein community have been rare, the first detailed discus-
sions of Wittgenstein’s remark on Turing’s diagonal argument appear
to be Shanker, 1987 and Shanker, 1998. The other notable exception is
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a series of papers by Juliet Floyd: Most directly applicable to Turing’s
diagonal argument are Floyd, 2012 and Floyd, 2019, other publica-
tions in this area include Floyd, 2016, Floyd, 2017, Floyd, 2018 and
Floyd, 2020. These papers make a compelling argument for a deeper
connection between the two thinkers than one might expect based on
the rare textual references, Floyd’s interpretation is largely compati-
ble with the discussion of Turing in this thesis (though the following
chapters explore a slightly different direction, primarily focused on
the role of consistency in Turing’s diagonal argument).

Third, the ‘debate’ between Wittgenstein and Turing on the impor-
tance of consistency in formal systems in the LFM has led to some dis-
cussion that is focused more on consistency and less on issues specific
to Turing machines and computability, e.g. Wrigley, 1980, Matthías-
son, 2021 and Persichetti, 2021. While the exchange between Turing
and Wittgenstein will be discussed briefly (see Section 3.3), the views
expressed by Wittgenstein in the LFM echo more general remarks
on contradictions in the Nachlass and will be examined in this larger
context.





1
C A N T O R , N U M B E R S A N D E N U M E R A B I L I T Y

Unser Verdacht sollte immer rege sein, wenn ein Beweis mehr beweist, als
seine Mittel ihm erlauben. Man könnte so etwas einen ‘prahlerischen Be-
weis’ nennen. [Ms-117, 109.3 / BGM II §21]

Our suspicion ought always to be aroused when a proof proves more than
its means allow it. Something of this sort might be called ‘a puffed-up
proof’. [RFM II §21]

At first glance, one of the most puzzling aspects of Wittgenstein’s
remarks on mathematics is certainly their tendency to seemingly crit-
icise and even contradict pieces of mathematics that are widely con-
sidered beyond reproach. The remark quoted above, part of a series
of remarks on Georg Cantor’s diagonal method, is an illustrative ex-
ample of the difficulties posed by Wittgenstein’s philosophy of math-
ematics. How could a proof be said to prove more than its means
allow?

The most natural interpretation might be that such a proof must be
mathematically wrong and that Wittgenstein’s aim is to demonstrate
a fault in Cantor’s diagonal method. Wittgenstein would then put for-
ward arguments against a flawed piece of mathematics and his philos-
ophy could consequently be judged on its mathematical merits. But
while Wittgenstein was undoubtedly a brilliant philosopher, his math-
ematical erudition was certainly lacking compared to mathematicians
of his time, which might call into question the significance of his writ-
ings on the philosophy of mathematics, at least in comparison to what
are traditionally considered to be his ‘main works’.1 An interpretation

1 Georg Kreisel, a contemporary and friend of Wittgenstein, is an often cited example
of this viewpoint: “Wittgenstein’s significant contributions [...] concern very elemen-
tary computations” (Kreisel, 1958, p. 135), but his comments on ‘higher mathematics’
“are, for the most part, uninformed” (Kreisel, 1958, p. 136). Kreisel continues: “Witt-
genstein’s views on mathematical logic are not worth much because he knew very
little and what he knew was confined to the Frege-Russell line of goods” (Kreisel,
1958, pp. 143–44). The review ends scathingly: “I did not enjoy reading the present
book. Of course I do not know what I should have thought of it fifteen years ago;
now it seems to me to be a surprisingly insignificant product of a sparkling mind”
(Kreisel, 1958, p. 158). Quite tellingly, Kreisel holds the view that the characteristic
traits of Wittgenstein’s more popular writings hold no significance in the context of
his writings on mathematics: “What has been described so far is not at all like the
popular impression of ‘Wittgenstein’s philosophy’ such as his anti-metaphysics, his
panaceas of rule of language and application, his attitude to traditional schools of phi-
losophy. Certainly, the book is not free from these traits of Wittgenstein’s writings:
but I do not believe they are of any significance, and, in point of fact, when he em-
barks on serious analysis [...], there is no trace of them” (Kreisel, 1958, pp. 136–37).
One of the aims of this chapter is to emphasise that Wittgenstein’s philosophy of
mathematics appears insignificant only if it is read completely detached from his

31
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along these lines, of Wittgenstein’s mathematical writings as criticis-
ing concrete pieces of mathematics on a mathematical level, does pose
a number of challenges, however: Not only would such a reading fail
to engage with Wittgenstein’s thoughts and instead reduce his philo-
sophical discussion of these issues to a mere misunderstanding, such
an interpretation would more importantly be incompatible with Witt-
genstein’s goal of not interfering in mathematical matters (LFM I, p.
13, Ts-227a, 89.2 / PI §124, Ms-124, 82.2–82.3 / RFM VII §19). The
purpose of this chapter is to present an interpretation which does not
exhibit these problems, but instead takes Wittgenstein at his word
and considers the contexts that motivate his remarks, with the ulti-
mate aim of showing the importance of Wittgenstein’s reflections on
Cantor’s diagonal method for a philosophical understanding of its
applications in foundational issues in mathematics and logic.

Before discussing Wittgenstein’s remarks in detail, it might be help-
ful to sketch out in broad strokes the topic of this chapter and how it
relates to some of the more general aspects of Wittgenstein’s philoso-
phy. Part II of Wittgenstein’s Remarks on the Foundations of Mathemat-
ics, a collection of remarks that were heavily edited and drawn from
a range of different documents in Wittgenstein’s Nachlass, revolves
around Cantor’s diagonal argument and can at first glance appear to
be concerned only with a very specific mathematical proof, namely
of the uncountability of the real numbers. Briefly, countability in this
context can be roughly and informally explained as follows: A set of
objects is said to be countable (or “countably infinite”) if it is possi-
ble to form a 1:1 correspondence with the set of the natural numbers
so that each natural number maps to a single object, with no object
left out in this mapping. For example, the set of integers (which in-
cludes natural numbers and their negative counterparts) is countable,
because we can map the natural numbers to the integers in an alter-
nating fashion, so that odd natural numbers get mapped to positive
integers and even natural numbers to negative integers (0 to 0; 1 to
1; 2 to -1; 3 to 2; 4 to -2; etc.). Even though the set of integers is in
some sense ‘larger’ than the set of natural numbers (because each
natural number except 0 corresponds to two integers, a positive num-
ber and its negative counterpart), the two sets can be brought into
the desired 1:1 correspondence. The same is true even for the set of
rational numbers, a result that can appear counter-intuitive at first,
because there are infinitely many rational numbers already between
the first two natural numbers (12 , 1

3 , 2
3 , 1

4 , 2
4 , 3

4 , etc.) and thus seem-
ingly ‘not enough’ natural numbers for a 1:1 correspondence. But if
we arrange all positive rational numbers two-dimensionally, with the
numerator in one dimension and the denominator in the other, we

‘general’ philosophy, as Kreisel does, a view which is admittedly facilitated by the
problematic editorial policy of Wittgenstein’s literary executors and their decision to
present his writings on mathematics as a sustained and isolated treatment of partic-
ular topics.
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can easily bring all the positive rational numbers into a 1:1 corre-
spondence with the natural numbers by starting in the ‘corner’ of the
two-dimensional table and proceeding outward from there, skipping
all the fractions that can be simplified (as shown in Table 1, with 2

2

skipped). It is then trivial to extend this scheme from the positive ra-
tional numbers to all rational numbers, by including their negative
counterparts in an alternating fashion, exactly as in the case of the
integers mentioned above. The rational numbers are thus countable,
they can be ordered in such a way that they are enumerable by the
natural numbers.

1 2 3 4 . . .

1 1
1

1
2

1
3

1
4 . . .

2 2
1 (22 ) 2

3 . . . . . .
3 3

1
3
2 . . . . . . . . .

4 4
1 . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

Table 1: Enumerating the Positive Rational Numbers

The same does not hold for the real numbers, however, as Cantor
proved with his diagonal argument. The details of diagonalisation
will be discussed later in this chapter, but the overall idea is simple
enough: Imagine that we are faced with a list of 1000 numbers, each
1000 decimal places long. How can we construct a new number that
is guaranteed to be different from all the numbers in the list? If we
ensure that the newly constructed number differs from the first num-
ber in the first decimal place, from the second number in the second
decimal place and so forth, the number thus constructed must differ
from all the numbers in the list. If we write out the 1000 numbers
vertically, with their decimal places arranged horizontally, we only
need to look at the diagonal to construct a new number that differs
from all the numbers in the list by adding or subtracting 1 from the
decimal place on the diagonal (Table 2).

№1 0 ! 1 0 0 0 0 . . .
№2 4 1 ! 2 4 2 1 . . .
№3 7 3 2 ! 3 0 5 . . .
№4 0 0 0 0 ! 1 0 . . .
№5 2 3 6 0 6 ! 7 . . .
. . . . . . . . . . . . . . . . . . . . .

Table 2: Constructing a Number by Adding 1 to the Diagonal
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Cantor’s diagonal argument is a generalisation of this idea to the
infinite set of real numbers: Let us focus on the real numbers between
0 and 1 and assume that there is a way to order all these numbers and
write them out vertically one after another, each in decimal notation
with their decimal expansion stretching out horizontally to infinity, so
that this enumeration of real numbers would form a two-dimensional
table of decimal places infinitely stretching out to the bottom and to
the right. We can now construct a real number that is not contained
in this infinite enumeration, by constructing a number that differs
from each number in the table in the diagonal, in other words with
the number differing from the first number in the first decimal place,
from the second number in the second decimal place and so forth.
Since the number differs from any number in the table in at least
one decimal place, it cannot be contained in the table, contrary to the
assumption that there is a way to give a countable ordering of all the
real numbers. Faced with any such ordering of the real numbers, we
can always construct a diagonalised number that will ‘escape’ from
this ordering, the real numbers are therefore uncountable.

But why is Wittgenstein interested in this seemingly rather spe-
cialised piece of mathematics, so much in fact that he devotes the
whole of part II of the “Remarks on the Foundations of Mathemat-
ics” (compiled by the literary executors from documents spanning the
years 1937 to 1939) to this topic? Most of Wittgenstein’s other writings
on mathematics are much broader in scope and usually deal with con-
cepts such as ‘proof’ and ‘calculation’ on a more abstract level, with
concrete examples that are drawn almost exclusively from elemen-
tary mathematics and logic. Along with part II, the other notable ex-
ception is Wittgenstein’s preoccupation with Gödel’s incompleteness
theorem (Part I, Appendix III in the RFM), another application of the
diagonal method with close connections to Cantor’s original diagonal
argument. Are these two collections of remarks merely a misguided
attempt to engage with concrete pieces of mathematics, when Witt-
genstein’s strengths really lie in his treatment of more abstract con-
cepts? The editorial decisions of the literary executors, which present
RFM II as a distinct treatment of a single topic with little connections
to other remarks, certainly give rise to such an interpretation. Even
then it is still possible to unearth interesting aspects in these writings,
but they will inevitably appear to be far less important than most of
Wittgenstein’s remaining work.

In contrast to such a view, RFM II becomes much more illuminating
once it is read against the backdrop of Wittgenstein’s other writings
on mathematics. To put it a bit crudely, Wittgenstein is not especially
interested in the uncountability of the real numbers itself, but rather
in the use (and abuse) of the sort of diagonal arguments that originate
with Cantor and for which the proof of the uncountability of the
real numbers is merely symptomatic. Seen in this light, RFM II is
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only the first (albeit the most extensive) examination of a number of
more abstract issues with a multitude of connections to other aspect
of Wittgenstein’s writings, an examination that has as much to do
with Gödel (Chapter 2) and with Turing (Chapter 3) as it has to do
with Cantor. This is hard to see when Cantor’s use of the diagonal
argument is considered on its own, because it is much more purely
‘intra-mathematical’ than the other examples of diagonal arguments
with their applications in logic and computability.

This viewpoint will be further supported by the rest of the chapter.
For now, two introductory examples of the connections with other
parts of Wittgenstein’s writings must suffice:

1. While the rudimentary exposition of diagonalisation presented
above proceeded from the finite (1000 numbers with 1000 deci-
mal places) to the infinite case (the assumption of a countable or-
dering of the infinitely many real numbers, with infinitely many
decimal places) without giving much thought to the question
of whether this transition from the finite to the infinite is a in-
nocuous as it seems, this is precisely the step that Wittgensteins
wants to investigate. The preoccupation with the transition from
a finite collection of concrete examples to the infinite case (with
a rule that holds for all elements) is a theme that plays an im-
portant role in Wittgenstein’s thought, reaching far beyond the
confines of set theory and the real numbers. Accordingly, his
interest in Cantor’s diagonal argument should be read in the
context of these larger issues.

2. It is important to note that the (countable) rational numbers are
distinguished from the (uncountable) real numbers by the fact
that the rational numbers form an explicit system (of fractional
numbers, each with a numerator and a denominator), whereas
the real numbers are much more heterogeneous, forming a mul-
titude of systems2, a “system of systems”, as Wittgenstein calls
it in one of the unpublished remarks belonging to the RFM
II corpus. That the rational numbers all share the same struc-
ture, while the real numbers are a family of different structures
(namely the rational numbers, numbers such as ⇡, numbers de-
fined through diagonalisation, etc.), is of extreme importance
to Wittgenstein and very easy to overlook in Cantor’s diagonal
argument, which has the tendency to treat all numbers equally
under the guise of extensionality. This aspect, of definitions of
systems in different formalisms and languages and of questions
of ‘higher-order systems’, links RFM II with Wittgenstein’s re-
marks in the PI on family resemblances, “orthography” and

2 One might argue that the real numbers form a single clearly defined system, as
they can all be constructed extensionally with the help of the Dedekind cut. But it
is precisely this idea, that such an extensional definition works just as well as an
intensional definition to define a system, which Wittgenstein wants to investigate.
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“second-order philosophy” (PI §121), as well as his concept of a
“surveyable representation” (PI §122).

Despite these links to other, less mathematical remarks in the Nach-
lass, the temptation to read Wittgenstein as a systematic philosopher
(and consequently his writings on Cantor’s diagonal argument only
as a concrete example of a more general and abstract philosophical ar-
gument) must be resisted if one wants to do justice to Wittgenstein’s
conception of philosophy as a therapeutic activity, where concepts
are usually considered against the backdrop of their use in language
games. Presenting and discussing links to other parts of the Nach-
lass should not be understood as an attempt to abstract away all the
‘messy’ mathematical details of Cantor’s diagonal argument. On the
contrary, Wittgenstein’s remarks are often subtle enough to require
a discussion of what might at first appear to be mere details. Con-
necting the more mathematical investigation of Cantor’s diagonal ar-
gument in RFM II with other less purely mathematical uses of the
diagonal method can help to illuminate the context in which these
concepts are used. This can then be a first step towards a “surveyable
representation” in the sense of Wittgenstein, which describes the con-
cepts that are involved in the different diagonal arguments instead of
trying to explain them as part of a unified and systematic theory.

The approach of this chapter will therefore be primarily exegetical
and focus on the context of Wittgenstein’s remarks in the Nachlass
documents Ms-117 (probably written between the beginning of Octo-
ber 1937 and the end of June 1938), Ms-121 (end of April 1938 until
beginning of January 1939) and Ms-162a/Ms-162b (starting in Jan-
uary 1939), with the former two being the basis for RFM II. The first
22 sections of RFM II correspond almost exactly to a part of Ms-117
that is clearly delineated from the non-mathematical parts before and
after it. The editorial work by the literary executors is more problem-
atic for the remarks RFM II §§23–62, however, which are all selected
from Ms-121, but omit many remarks which are related to Wittgen-
stein’s discussion of the diagonal method.3 The focus of the following
discussion will thus be mostly on these later remarks in RFM II and
subsequently consider remarks from Ms-162a and Ms-162b, which
were not published in RFM and form Wittgenstein’s last extensive
discussion of Cantor and the diagonal method. Apart from these two
pocket notebooks (of which only a selection of remarks will be dis-
cussed) and a larger passage on provability and Gödel in Ms-121, the
present chapter aims to present a comprehensive discussion of both
the published and unpublished remarks related to RFM II, sometimes
trading in a detailed discussion of particular remarks for a more holis-
tic perspective of Wittgenstein’s aim in the remarks on Cantor.

3 For more details on the parts of Ms-117 and Ms-121, see Joachim Schulte’s “Text
genetic-philosophical note” in the wittgensteinsource.org metadata for Ms-117 and
Ms-121.

http://wittgensteinsource.org
http://wittgensteinsource.org/book/annotable-description-boxview/141/28?data-title=By+Joachim+Schulte+%28March+2017%29&data-verticalTitle=By+Joachim+Schulte+%28March+2017%29&data-type=&data-id=28&data-boxTitle=By+Joachim+Schulte+%28March+2017%29&data-replaceContent=&data-url=%2Fbook%2Fannotable-description-boxview%2F141%2F28&data-maxWidth=300&title=By+Joachim+Schulte+%28March+2017%29
http://wittgensteinsource.org/book/annotable-description-boxview/40/32?data-title=By+Joachim+Schulte+%28March+2017%29&data-verticalTitle=By+Joachim+Schulte+%28March+2017%29&data-type=&data-id=32&data-boxTitle=By+Joachim+Schulte+%28March+2017%29&data-replaceContent=&data-url=%2Fbook%2Fannotable-description-boxview%2F40%2F32&data-maxWidth=300&title=By+Joachim+Schulte+%28March+2017%29
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The outline of the present chapter follows the more or less clearly
delineated parts of the aforementioned documents: §§1–22 (Ms-117)
of RFM II introduce Cantor’s diagonal argument and will be dis-
cussed relatively quickly (Section 1.1). The next 5 sections of this chap-
ter all discuss remarks from Ms-121, with the first of these focusing
mostly on unpublished remarks that connect Wittgenstein’s discus-
sion of the diagonal method with remarks on higher-order systems
(Section 1.2, RFM II §§23–34), the overarching theme of this chapter.
The next section examines remarks from Ms-121 that investigate vari-
ous concepts of numbers (Section 1.3, RFM II §§35–39), before looking
at unpublished remarks on the notion of surveyability (Section 1.4),
which could be read as an excursion from the remarks on Cantor,
but will prove to be relevant for the larger picture of Wittgenstein’s
discussion of the diagonal argument. The next section proceeds rela-
tively quickly and deals with most of the remaining remarks of RFM
II (Section 1.5, RFM II §§40–57). The following section acts as a pre-
liminary conclusion of the published remarks (Section 1.6, RFM II
§§58–62) and connects the previous remarks on surveyability with
Wittgenstein’s critique of the misleading aspects of Cantor’s concept
of infinity. The last section contains a discussion of selected remarks
in Ms-162a and the beginning of Ms-162b (Section 1.7), focusing on
enumerability in formal systems, which brings the chapter back to
the notion of a “system of systems” and the surveyability of these
higher-order systems.

1.1 cantor’s diagonal argument

Wittgenstein’s introduction of the diagonal method in Ms-117, 97.3 /
§1 can seem somewhat unorthodox, as he does not consider the di-
agonalisation of all real numbers (to then show the uncountability of
the real numbers), but merely the series of all square roots. The diag-
onalisation proceeds in the usual way: If we imagine the square roots
arranged vertically in an infinite series, with their decimal expansions
extending infinitely horizontally, we can construct a number that dif-
fers from the first square root in the first decimal place (by adding
or subtracting 1 from the first decimal place), from the second square
root in the second decimal place (by adding or subtracting 1 from
the second decimal place) and so on. This newly constructed num-
ber will then differ from every square root in the series (at least in
the decimal place on the ‘diagonal’ of each square root) and we have
therefore proved that there must be a real number that is not a square
root.

This result seems rather uninteresting, for two reasons: First of
all, there are numerous other examples of real numbers that are not
square roots, Wittgenstein himself gives “ 3

p
2” as an example, the di-

agonal method is thus not needed and arguably a rather complex tool
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p
x1

p
x2

p
x3

p
x4

p
x5 . . .

p
1 = 1. 0 0 0 0 0 . . .

p
2 = 1. 4 1 4 2 1 . . .

p
3 = 1. 7 3 2 0 5 . . .

p
4 = 2. 0 0 0 0 0 . . .

p
5 = 2. 2 3 6 0 6 . . .

. . . . . . . . . . . . . . . . . . . . .

Table 3: Square Roots and the Diagonal Method

for the job. Second, the interest in the diagonal method stems from
showing the uncountability of the real numbers by starting from the
assumption that the real numbers are countable (and can therefore
be arranged in an infinite vertical series, with their decimal places
extending horizontally) and showing that the diagonalisation can al-
ways be used to give a rule for constructing a number that is different
from all numbers in the vertical at least in the decimal place on the
diagonal, which means that this number is not part of the countable
series of real numbers but is a real number, proving that the assump-
tion leads to a contradiction and the real numbers therefore cannot
be countable. Cantor’s diagonal argument thus shows that there is
always a real number that escapes from the (assumed to be count-
able) real numbers, a number that escapes its own kind, so to speak,
whereas Wittgenstein’s example merely shows that there is always a
real number that escapes the square roots, a fact that was never in
doubt.4

Wittgenstein’s choice may be mathematically trivial5, but is philo-
sophically quite interesting, as it immediately sets the tone for the
following investigation. The choice of the square roots as the intro-
ductory example is important exactly because the use of the diagonal
method is impractical in this context. Similarly, in 1939, Wittgenstein
begins his reflections on the diagonal method in Ms-162a, 20.2–21.1
by asking for the “ordinary” and “practical purpose” of diagonalisa-
tion, before considering only finite cases, at least at first. Ms-162a will
be discussed in more detail below (see Section 1.7), but it is important
to note that the question of ‘practicality’ lies at the root of Wittgen-
stein’s remarks. In contrast to the case of the real numbers, where the
diagonalised construction is the only obvious choice to ‘escape’ the

4 While Cantor’s second proof of the uncountability of the real numbers proceeds
non-constructively from the assumption that the real numbers are countable, it is
also possible to proceed similarly but in a constructive fashion to show that for any
ordering of the (countable) algebraic numbers, the diagonalised number cannot be
part of this ordering and must thus be transcendental, as explained in Mühlhölzer,
2020, pp. 131–33.

5 Even “mathematically ridiculous” (Mühlhölzer, 2020, p. 134).
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countable set and could, as a number, be considered ‘as good as it
gets’, the example of the square roots pits a ‘practical’ number such
as “ 3

p
2” (which is frequently used in practical calculations) against

the diagonalised construction, which is a number constructed only
for the purpose of diagonalisation and which does not have the same
practical uses.

In Ms-117, 98.2–99.1 / §§2–3, Wittgenstein then goes on to discuss
whether the diagonalised number can be considered a satisfying an-
swer to a task of the form “Show me a number that is different from
all of these numbers”. An even simpler case that requires no diago-
nalisation is the task “Name a number that agrees with

p
2 in every

other decimal place!”6: It can be answered either by a number which
is used in practical calculations (similar to 3

p
2) but just happens to

match
p
2 in every other decimal place, or it can be answered by: “It

is the number obtained according to the rule: develop
p
2 & add 1 or

-1 to every second decimal place”. The latter answer can be unsatisfy-
ing, because what the person formulating the task had in mind were
practical numbers like 3

p
2. The alternative seems rather artificial and

we could say that it follows the letter but not the spirit of the task.
Similarly, the diagonalisation could be met with the reaction “But
that’s not what I meant!”, because the diagonalised number, while
being a real number, is not a number such as 3

p
2, which we might

have had in mind as the ‘kind’ of number that we expected when we
first formulated the task. We can make this more concrete by pointing
out an aspect of diagonalisation not explicitly mentioned by Wittgen-
stein in his remark: The diagonalised number depends on the base of
the numbering system used, as it depends on the ability to explicitly
modify a particular decimal place by addition or subtraction. The di-
agonalised number in a decimal system will thus be different from
the one in a binary system. This stands in stark contrast to our under-
standing of numbers such as ⇡, for which the concrete base chosen for
their expansion is merely a ‘superficial’ detail that does not detract
from their ‘essence’ as numbers.7

This is also the reason why in the case of numbers constructed
through diagonalisation, the method of calculating the number and the

6 As pointed out in Mühlhölzer, 2020, p. 134, the task as stated by Wittgenstein does
not make much sense in the context of the diagonal method, since the purpose of
the diagonalisation is to produce a number that differs from another number, not
one that matches it. The task should thus be read either as Mühlhölzer proposes,
“Name a number that does not agree with

p
2 precisely at every second decimal

place”, or could alternatively also be read as “Name a number that agrees with
p
2

only at every other decimal place”, which is how Redecker, 2006, p. 33 interprets
the task. Mühlhölzer interprets Wittgenstein’s “1 or -1” as meaning that -1 is to be
applied if the decimal place is a 9, which makes sense, but Wittgenstein’s “or” could
alternatively be read to suggest that there are many different ways of constructing
such a number, either by adding 1 (modulo 10, thus wrapping 9 to 0) or subtracting
1 (and wrapping 0 to 9). In any case, these are minor points and Wittgenstein’s intent
remains sufficiently clear.

7 Cf. Mühlhölzer, 2020, p. 134.
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result, the calculated number, could be said to be one and the same,
because the method that calculates the decimal places and the result-
ing decimal expansion are ‘as good as it gets’, there are no other in-
teresting mathematical properties (such as for

p
2) that could lead us

to view a decimal expansion as ‘merely’ a surface expression (using
a particular base) of a deeper mathematical form.8 For diagonalised
numbers the ‘inessential’ decimal expansion is all there is. Neverthe-
less, we can certainly use the numbers constructed in this way in our
calculations and find out whether such a number is less than another
number, for example, by comparing the decimal expansion of a di-
agonalised number with the decimal expansion of, say,

p
2. But in

contrast to comparing
p
2 with

p
3, two numbers that use the same

method of calculation, comparing such a square root with a diago-
nalised number comes down to comparing different methods of cal-
culating numbers, as Wittgenstein notes in Ms-117, 99.3–100.2 / §§4–5.
As a result, we enter murky conceptual waters: We might be lead to
believe that the method of comparison must be clear, since what we
want to compare are ‘straightforward’ numbers with decimal expan-
sions, but simply viewing them as calculated results obscures the fact
that these numbers are of a very different kind, as they are calculated
using very different methods.

The variety of methods and ways of comparing numbers is eas-
ily ignored or dismissed as unimportant in the wake of the diagonal
method, since diagonalisation shows a way in which the diagonalised
number and the numbers in the infinite series that the diagonal is
based upon are similar, at the cost of glossing over what makes them
different. This situation is aggravated by speaking of the results of the
diagonal method in ordinary language without keeping in mind how
this result was calculated (Ms-117, 100.4 / §7). We then call the diag-
onalised number a “real number” and the real numbers as a whole
“uncountable”, but it is easy to overlook what made us call the diago-
nalised number a real number and how the impossibility of counting
these numbers originates from the diagonalisation. Without the cal-
culation, a statement such as “the real numbers are uncountable” can
conjure up the image of the discovery of something ‘greater’ than the
infinite, which fills us with awe.9

8 The equivalence of method and result is also echoed in Ts-222, 61.3 / RFM §8: “(I
once wrote: “In mathematics process and result are equivalent.”)”, which the editors
of the RFM trace back to TLP 6.1261. There, Wittgenstein speaks only of logic, but
an earlier version of the remark in Ms-102, 75r.3 reads “In der Logik (Mathematik)
sind Prozeß & Resultat gleichwertig. (Darum keine Überraschungen.)”. A discussion
of the relation between logic and mathematics in the Tractarian period would go
beyond the scope of this thesis, but it should be pointed out that there is another
relevant remark from the middle period (Ms-113, 84r.3), which reads “(Im Kalkül
sind Prozeß & Resultat einander äquivalent.)”.

9 Redecker, 2006, pp. 31–50, holds the view that Wittgenstein’s aim is to put forward
a thesis, namely that the number constructed via the diagonal method is not a real
number. Ramharter, 2010, p. 298 explicitly avoids stating a thesis, but points out that
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The danger of being mislead by the result of the diagonal method
in the absence of the calculation itself is exhibited in §8, which is
concise enough to be quoted in full:

‘Ich will Dich eine Methode lehren wie Du in einer Entwicklung allen
diesen Entwicklungen nach der Reihe ausweichen kannst.’ So eine Meth-
ode ist das Diagonalverfahren. – “Also erzeugt sie eine Reihe, die von allen
diesen verschieden ist.” Ist das richtig? – Ja; wenn Du nämlich diese Worte
auf diesen, oben beschriebenen Fall anwenden willst. [Ms-117, 101.2 / BGM
II §8]

“I want to shew you a method by which you can serially avoid all these
developments.” The diagonal procedure is such a method. – “So it produces
a series that is different from all of these.” Is that right? – Yes; if, that is, you
want to apply these words to the described case.

That the diagonal method “dodges” all the decimal expansions it is
being applied to is a very apt description of what happens on the
diagonal. To say that it “therefore produces” a series that is “differ-
ent from all of them” is an example of the misleading consequence
of considering the diagonalised expansion in the absence of the diag-
onal method. Yes, we may want to use these words (and usually we
will), but only if we choose to apply these words to such a case. The idea
that it must follow (instead of simply saying that it follows) is what
Wittgenstein is concerned with here (which becomes very clear in
Ms-117, 102.2 / §10, where he explicitly emphasises the “Therefore”).
Our notion that it must follow stems from the finite case, where it is
easy to see that the diagonal method can ‘wait out’ the (finite) list of
decimal expansions and then construct a new expansion that dodges
all of them. It may be difficult for us to see how and why we would
not choose the exact same words to describe even the infinite case,
but Wittgenstein gives an example in Ms-117, 101.3 / §9 and Ms-117,
103.2 / §11 of someone not agreeing that the words used in the finite
case are applicable to the infinite case. This person would frame the
situation as follows: Faced with an infinite list of decimal expansions,
the diagonal method could be used to construct a new decimal expan-
sion that dodges every expansion in the square, but there will always
be other decimal expansions occurring later in the infinite list (the
lower part of the rectangle in Ms-117, 103.2 / §11 that is not part of
the square with the diagonal) that the diagonal could not yet dodge.
We can thus not be sure that the diagonal really is different even from

the objection by Wittgenstein in §§5–7 would, in the face of a more rigorous for-
mulation of the diagonal argument, “make Analysis impossible altogether”, a view
echoed in Ramharter, 2018, pp. 130–31. The following interpretation stands in stark
contrast to such a view and attempts to show that a more natural reading results if
Wittgenstein’s remarks are interpreted as showing the conceptual variety of numbers
that is at play in the diagonal method, not an attempt to disagree with mathemati-
cians on what constitutes a real number. Any reading that interprets Wittgenstein as
criticising the diagonal method on mathematical grounds must deal with his claims
of not putting forward theses (Ts-227a, 89.6 / PI §128) and of not interfering with
mathematicians (Ts-227a, 89.2 / PI §124, but also Ms-124, 82.2–82.3 / RFM VII §19).
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these later decimal expansions. Wittgenstein is of course aware that
such a view would be a misunderstanding of the application of the
diagonal method, which is why he immediately adds what we would
reply to such a person:

“Aber Deine Regel reicht doch schon in’s Unendliche, also weißt Du doch
schon genau daß die Diagonal-Reihe von jeder andern verschieden {sein
wird // ist}!” [Ms-117, 101.3 / BGM II §9]

“But your rule already reaches to infinity, so you already know quite pre-
cisely that the diagonal series will be different from any other!” – [RFM II
§9]

This is exactly the reason why we say that the diagonal series is dif-
ferent from all the other series, but it is superfluous and misleading
to say that it must follow or that it “therefore” follows from the diago-
nal argument, because there is nothing that we could appeal to in an
attempt to convince such a person of our view. This shows a striking
parallel to an earlier remark from Wittgenstein in Ms-117:

“Aus ‘alle’, wenn es so gemeint ist, muß doch das folgen.” – Wenn es wie
gemeint ist? Überlege es Dir, wie meinst Du es? Da schwebt Dir etwa noch
ein Bild vor – und mehr hast Du nicht. – Nein, es muß nicht – aber es folgt:
Wir vollziehen diesen Übergang.
Und wir sagen: Wenn das nicht folgt, dann waren es eben nicht alle! – – und
das zeigt nur, wie wir mit Worten in so einer Situation reagieren. – [Ms-117,
1.1 (p. 13–14), Ts-221a/b, 147.2, Ts-222, 15.1 / BGM I §12]

“From ‘all’, if it is meant like this’, this must surely follow!” – If it is meant
like what? Consider how you mean it. Here perhaps a further picture comes
to your mind – and that is all you have got. – No, it is not true that it must
– but it does follow: we perform this transition.
And we say: If this does not follow, then it simply wouldn’t be all – and
that only shews how we react with words in such a situation. [RFM I §12]

Either the other person plays our language game or they do not, but
in the latter case we have to convince them through other means and
cannot point to the “therefore” as if this would somehow make the
argument more convincing.10 This also explains the addition of the
“ad inf.” to the modified diagram in Ms-117, 103.2 / §11, compared to
the diagram in §1: While for us this addition might seem superfluous
and the two diagrams interchangeable, the person rejecting the appli-
cability of the diagonal method for producing a series that is different
from all the others would consider this addition far from superfluous
and point to it as demonstrating that the finite case (which is cap-
tured by the first diagram) is not at all like the infinite case (which is
captured by the second diagram). For them, the “ad inf.” is exactly

10 Mühlhölzer, 2020, p. 163 mentions Z §134 as another illuminating remark in this
context, which begins “Do not say “one cannot”, but say instead: “it doesn’t exist in
this game”.”, which apart from Ts-233a, 28.2 also appears in Ms-116, 178.4, Ms-158,
5r.1 and Ts-228, 37.4 (the latter two are mistakenly cited as “MS 158, p. 57” and “TS
222”).
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the reason why the diagonal can never catch up with the lower part
of the rectangle.

Of course we must be careful not to ascribe the view of such an
imagined interlocutor to Wittgenstein himself. That he is in no way
advocating for a dismissal of Cantor’s diagonal argument is made
clear in Ms-117, 102.2 / §10:

Es heißt nichts zu sagen: “Also sind die X-Zahlen nicht abzählbar”. Man
könnte etwa sagen: Den Zahlbegriff X nenne ich unabzählbar, wenn fest-
gesetzt ist, daß, welche der unter ihn fallenden Zahlen immer Du in eine
Reihe bringst die Diagonalzahl dieser Reihe auch unter ihn {fällt. // fallen
solle.} [Ms-117, 102.2 / BGM II §10]

It means nothing to say: “Therefore the X numbers are not denumerable”.
One might say something like this: I call number-concept X non-denumer-
able if it has been stipulated that, whatever numbers falling under this
concept you arrange in a series, the diagonal number of this series is also
to fall under that concept. [RFM II §10]

The issue is to say “Therefore the X-numbers are uncountable”, be-
cause the “Therefore” cuts off the conclusion from the diagonal
method and makes it seem as if by using the diagonal method as a tool
we had reached a discovery that can now be used independently from
the diagonal proof itself. What Wittgenstein seems to be driving at is
not that calling these numbers “uncountable” were somehow wrong,
but that we call these numbers “uncountable” if “it has been stipu-
lated that, whatever numbers falling under this concept you arrange
in a series, the diagonal number of this series is also to fall under that
concept”, meaning that the concept of something being “uncountable”
derives its meaning from the diagonal method and does not have a
sense in the absence of it. Put more plainly, Wittgenstein wants to
point out that being uncountable is a conceptual stipulation, an inven-
tion, not a discovery in the realm of the infinite.

To show that a concept exhibits a logical instead of a physical impos-
sibility, Wittgenstein often asks how such a concept is used, which is
exactly how he proceeds in Ms-117, 104.2–104.3 / §§12–13. To prove
via the diagonal argument that it is impossible to count the irrational
numbers11 could convince a person looking for such an ordering to
give up their attempt, which appears to be the only use of the diag-
onal argument. But such a use is very vague, we can only picture
the person somehow working “idiotically” on the infinite series, but
we have no clear picture which methods of calculation cannot be or-
dered in the same way as the natural numbers.12 Of course we know

11 Mühlhölzer, 2020, p. 161 notes that a proof of the uncountability of the irrational
numbers with the help of the diagonal method is not as straightforward as it seems
and that, in contrast to the real numbers, the uncountability of the irrational numbers
cannot be demonstrated purely by means of the diagonal method. This seems to
have been an oversight on the part of Wittgenstein, but it does not negatively impact
his line of reasoning, as we could usually read “real numbers” where he writes
“irrational numbers” and still follow his philosophical argument.

12 Following Mühlhölzer, 2020, p. 170, the term “natural numbers” will sometimes be
used when Wittgenstein is talking about “cardinal numbers”, because “[w]hen he
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which numbers we call irrational, but that does not mean that we
have a clear picture of how an ordering of these methods of calcula-
tion could even be attempted, since the irrational numbers are pro-
duced through a variety of different methods, not through a single
uniform method as in the case of the series of square roots. This is
why Wittgenstein draws our attention to the ”idiotic” aspect of such
a picture, which is crucial for understanding his critique: In the case
of the square roots, we can “idiotically” and mechanically13 list the
square roots one by one, because we have a uniform method that
produces them, which is why we know what we mean when we talk
about ordering them. We are then mislead to believe that because we
know how an idiotic attempt to order square roots or natural num-
bers looks like we also know how such an idiotic attempt would look
like for the irrational numbers, even if our picture might be a bit more
‘vague’.

But what Wittgenstein wants to show is that this vague picture is
not just an imprecise view that is then brought into sharp focus by
Cantor’s diagonal argument. Instead, Cantor’s diagonal argument in-
troduces this new picture in the first place, it does not provide us
with a better lens which helps us to discover a mathematical fact, it in-
vents the concept of (the impossibility of) an ordering of the irrational
numbers. This is what is dangerous about Cantor’s diagonal argu-
ment: Not the mathematical result in and of itself, but its tendency to
make the “formation of a concept” look like a “fact of nature” Ms-117,
108.3 / §19. The reaction to the diagonal argument, if understood as
a conceptual invention, can be to give up an attempt to find an order-
ing for the real numbers, but not because the result of the argument
were a fact that cannot be argued with (like the speed of light in
physics), rather because it convinces us to adopt this new concept in
our language. But exactly because the notion of attempting to find
an ordering of the real numbers is so vague, another picture could
perhaps lead to a more suitable concept than Cantor’s diagonal ar-
gument and cause the person to take up their efforts again (Ms-117,
104.3 / §13), depending on the use the person had in mind for their
attempt to order these numbers.14

uses the term “cardinal number” here [Mühlhölzer is referring to §16], Wittgenstein
means, as always, finite cardinal numbers, that is the natural numbers 0, 1, 2, etc.”

13 The connection between “idiotic” and mechanical calculations is not made explicit
in this remark, but can be seen in the only other remark where Wittgenstein speaks
of humans as “calculating machines” which we can picture to be “completely idi-
otic” (Ms-126, 33.4), but also in remarks where Wittgenstein associates calculating
“without thinking” (“gedankenlos” and “ohne nachzudenken”) with the notion of
mechanical calculation, most notably in Ms-124, 58.2 and in a remark from 1944
that occurs both in Ms-124, 164.5 and Ms-127, 118.2: “‘Mechanisch’, das heißt: ohne
zu denken. Aber ganz ohne zu denken? Ohne nachzudenken.” See Section 3.2 for a
discussion of the remark in the context of Turing’s diagonal argument.

14 It is unfortunate that Wittgenstein does not give an example of a picture that would
lead someone to resume their ordering attempts, because it is quite hard to imagine
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This is the big picture, which Wittgenstein tackles in more detail in
Ms-117, 104.3–108.3 / §§13–19. In Ms-117, 105.1 / §14, Wittgenstein
readily admits that in the case of the irrational numbers the diagonal
method can be said to demonstrate that “these methods of calculation”
cannot be ordered in a series. But we started with a vague picture of
what the “these” refers to, because we know of no way to even at-
tempt to produce a complete list of irrational numbers, we only know
what we will call an irrational number once we have a candidate in
front of us.15 In the case of the rational numbers, this is different, here
we have both a criterion that allows us to check whether a number
is rational and a method to produce all rational numbers. When the di-
agonal argument assumes that an ordering of the irrational numbers
exists, it assumes such a method, but what it is that we assume here
exactly if we have no concept of such a method for the real numbers?
When we say that the natural numbers can be ordered in a series, this
conjures up the misleading picture of ordering a finite series, ‘just’
extended infinitely. But in contrast to the finite case, where we can

a suitable picture that is not completely absurd or misunderstands the most basic
aspects of Cantor’s argument. Mühlhölzer, 2020, p. 166 suggests as an example “the
picture that the diagonal number of a given series of numbers may subsequently
be put at the beginning of the series and so would now belong to this new series.“,
but perhaps an equally fitting (though still somewhat absurd) picture would be to
put the diagonal number at the end of the series, especially in light of §9 and §11,
which could convince someone that in this way the diagonalised number will never
‘dodge itself’ as it has to run through all other numbers in the series ‘before’ being
able to dodge its own diagonal decimal place. A person convinced by this picture
could then argue that since there will always be infinitely many other numbers
before the diagonalised number, diagonalisation will never lead to a conflict and
the diagonalised number can still be considered to be part of the series, simply
infinitely far away at the end. Such a picture of putting a number at the ‘end’ of an
infinite list of numbers could seem nonsensical, but it should be pointed out that it
must not appear any more nonsensical than Cantor’s own picture of !, the lowest
transfinite ordinal number, appearing ‘after’ the infinite list of finite ordinal numbers.
Again, the aim here is not to suggest that Cantor’s proof were somehow wrong,
but merely to point out that our pictures, for example of the transfinite, might not
appear any more convincing or less absurd to a person than the picture of putting
the diagonalised number ‘at the end’ is for us. We are justified in our use of pictures
by the mathematical techniques that give them meaning, but we are often mislead to
think that these pictures are the only ‘natural’ or ‘reasonable’ pictures that anyone
could take up, if they only understood the proof properly. The alternative picture
is certainly absurd to us, but it could be convincing in certain contexts and might
perhaps help to explain Wittgenstein’s aim in §9 and §11.

15 At first glance, we might think that a computational procedure could supply exactly
the kind of precision that our vague concept of the real numbers seems to be lacking.
Although a computational procedure can indeed be used to recursively list all com-
putable numbers and these numbers will thus be enumerable (Turing, 1936, p. 68),
they are not enumerable “by finite means” (Turing, 1936, p. 72) and there will al-
ways be “(in the ordinary sense) definable numbers” that are not computable, which
Turing shows on the basis of his application of the diagonal argument (Turing, 1936,
pp. 78–79). As a result, computational procedures cannot sharpen the vague concept
of “these” numbers, but only replace it with an entirely new concept that differs con-
siderably from our concept of the real numbers. Additionally, computable numbers
raise new philosophical questions, which are considered in more detail in Chapter 3.
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explain our concept of ordering a series by pointing to the concrete
elements purely extensionally, the ability to order an infinite list of
natural numbers depends on a very specific method and the concept
of ordering these numbers is only used analogously to the concept in
the finite case. To ask whether it is possible to order the real numbers
thus comes down to asking whether we can do something with the
real numbers that we would consider to be analogous to the case of the
natural numbers, but before Cantor’s argument we have no concept of
what we could call analogous for “‘all real numbers‘”:

Wenn man also fragt: “Kann man die Reellen Zahlen in eine Reihe ord-
nen?” So könnte die gewissenhafte Antwort sein: “Ich kann mir vorläufig
gar nichts Genaues darunter vorstellen”. – “Aber Du kannst doch z.B. die
Wurzeln & die algebraischen Zahlen in eine Reihe ordnen; also verstehst
Du doch den Ausdruck!” – Richtiger gesagt ich habe hier gewisse analoge
Gebilde, die ich mit dem gemeinsamen Namen “Reihen” benenne. Aber
ich habe noch keine sichere Brücke von diesen Fällen zu dem ‘aller reellen
Zahlen’. Ich habe auch keine allgemeine Methode um zu versuchen ob sich
die oder die Menge ‘in eine Reihe ordnen läßt’. [Ms-117, 105.3 / BGM II
§16]

Asked: “Can the real numbers be ordered in a series?” the conscientious
answer might be: “For the time being I can’t form any precise idea of that”.
– “But you can order the roots and the algebraic numbers for example in a
series; so you surely understand the expression!” – To put it better, I have
got certain analogous formations, which I call by the common name ‘series’.
But so far I haven’t any certain bridge from these cases to that of ‘all real
numbers’. Nor have I any general method of trying whether such-and-such
a set ‘can be ordered in a series’. [RFM II §16]

As a result of Cantor’s diagonal argument, we can (and usually will)
take up his concept of “uncountable” and use it in our language, but
it is important to note that this ‘concept formation’ does not give
us a clear picture of what it was that we assumed in Cantor’s ar-
gument when we assumed “this” way of ordering (“dieses Ordnen
hier”) to be possible. Cantor can give us a new concept, but he can-
not illuminate a vague concept that was unclear to us before. Once
again, Wittgenstein’s aim is to speak of Cantor’s diagonal method
as an invention instead of a discovery. Cantor does not and cannot
discover what it is that is not possible and we can always answer: “I
don’t know – to repeat – what it is that can’t be done here” (Ms-117,
105.3 / §16). The task of a philosopher is then neither to invent a new
concept nor discover what we ‘really’ meant (which would amount
to a philosophically misguided attempt to search for the essence of
a vague concept), but only to show that we had no clear concept of
such an ordering to begin with. Interpreted more modestly, Cantor’s
diagonal method can clarify a difference in our use of the concept of
the real numbers in comparison to square roots:

Die Wurzeln nennen wir “reelle Zahlen” & die Diagonalzahl, die aus den
Wurzeln gebildet ist auch. Und ähnlich mit allen Reihen reeller Zahlen. Da-
her hat es keinen Sinn von einer “Reihe aller reellen Zahlen” zu reden, weil
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man ja auch die Diagonalzahl {der // jeder} Reihe eine “reelle Zahl” nennt.
[Ms-117, 105.3 / BGM II §16]

Such a difference as e.g. this: roots are called “real numbers”, and so too is
the diagonal number formed from the roots. And similarly for all series of
real numbers. For this reason it makes no sense to talk about a “series of
all real numbers”, just because the diagonal number for each series is also
called a “real number”. [RFM II §16]

Seen in such a light, the diagonal method immediately appears much
more down to earth, more “homespun” / “hausbacken” (Ts-213,
412r.2, Ms-126, 58.4 / RFM V §9). In Ms-117, 107.2–108.2 / §17–18,
Wittgenstein imagines that the method could even have been taught
to school children long before set theory had been invented, to gen-
erate a number that is different from all the numbers in a long but
finite list. The diagonal method itself could then have a very practical
use in our day-to-day activities.

This leads Wittgenstein to Ms-117, 108.3 / §19 and the danger of
mistaking the “formation of a concept” for a “fact of nature”, already
briefly discussed above. He then proposes a more “modest” phrasing
of the result of Cantor’s diagonal argument:

Bescheiden {heißt // lautet} der Satz: “Wenn man etwas eine Reihe reeller
Zahlen nennt, so heißt die Entwicklung des Diagonalverfahrens auch eine
‘reelle Zahl’ {& zwar eine die ‘von allen Gliedern der Reihe verschieden’ {sei
// ist}. // & zwar sagt man, sie sei von allen Gliedern der Reihe verschie-
den.} [Ms-117, 109.2 / BGM II §20]

The following sentence sounds sober: “If something is called a series of real
numbers, then the expansion given by the diagonal procedure is also called
a ‘real number’, and is moreover said to be different from all members of
the series”. [RFM II §20]

Such a wording expresses what we call a real number and what we
call “different from all members of the series” instead of talking about
infinite sets being ‘greater’ than other infinite sets and of something as
being ‘uncountable’, as if that notion had a sense even in the absence
of the diagonal method. This is then what is “boastful” (Ms-117, 109.3
/ §21, translated by Anscombe as “puffed-up”) in the context of Can-
tor’s diagonal argument: Not the mathematical result in itself but the
tendency to view it as a discovery of infinities that are greater than
other infinities.

A boastful expression of Cantor’s result (over-)emphasises the sim-
ilarity of natural and real numbers, by suggesting that we could com-
pare the size of the set of real numbers with the natural numbers,
when in fact we have no uniform method of comparison that could be
applied to both. A modest expression of the mathematical result em-
phasises exactly the opposite, namely that our concept of real num-
bers differs in an important aspect from the concept of natural num-
bers, an aspect which we can easily overlook if we are mislead by the
vague picture of an analogy borrowed from the finite case. Wittgen-
stein ends his remarks in Ms-117 with a beautifully succinct expres-
sion of this misleading tendency:
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Wenn gesagt würde: “Die Überlegung über das Diagonalverfahren zeigt
Euch, daß der Begriff ‘reelle Zahl’ viel weniger Analogie mit dem Begriff
Kardinalzahl hat, als man, durch gewisse Analogien verführt, zu glauben
geneigt ist” so hätte das einen guten &

:::::::
ehrlichen Sinn. Es geschieht aber

gerade das Gegenteil: indem die ‘Menge’ der reellen Zahlen angeblich
der Größe nach mit der der Kardinalzahlen verglichen wird. Die Artver-
schiedenheit der beiden Konzeptionen wird durch eine schiefe Ausdruck-
sweise als Verschiedenheit der Ausdehnung

:::
dar

:::
ge

::::
stellt. Ich glaube & hoffe

eine künftige Generation wird über diesen Hokus Pokus lachen. [Ms-117,
109.4 / BGM II §22]

If it were said: “Consideration of the diagonal procedure shews you that
the concept ‘real number’ has much less analogy with the concept ‘cardinal
number’ than we, being misled by certain analogies, are inclined to believe”,
that would have a good and honest sense. But just the opposite happens:
one pretends to compare the ‘set’ of real numbers in magnitude with that
of cardinal numbers. The difference in kind between the two conceptions
is represented by a skew form of expression, as difference of extension. I
believe, and hope, that a future generation will laugh at this hocus pocus.
[RFM II §22]

How is the last statement of this remark to be interpreted, the belief
that “a future generation will laugh at this hocus pocus”? It is all too
easy to read it as an indictment of set theory as a whole, but this
would amount to an interference in mathematical matters. Of course
it is possible that in 1937, when the remarks of Ms-117 were written,
the aim of non-interference was not yet a central tenet of Wittgen-
stein’s philosophy of mathematics, or that, alternatively, he simply
‘slipped’ and could not help but insert this dig at mathematical prac-
tice. A more charitable interpretation, however, is that what a future
generation will laugh at is not set theory or Cantor’s diagonal argu-
ment, not any piece of mathematics in fact, but only the misleading
interpretations of the diagonal method in situations where they eas-
ily seep into our day-to-day language and extra-mathematical prac-
tice. Seen from the perspective of mathematicians, Wittgenstein’s talk
of “hocus pocus” must seem absurd or just plain wrong, even today,
because set theory is clearly an important part of mathematics.16 But

16 Such a view is for example expressed in Putnam, 2007, but is echoed in many other
discussions of RFM II and Wittgenstein’s philosophy of mathematics as a whole.
As Wheeler, 2021, p. 2 notes: “Wittgenstein’s biggest issues with Cantor’s diagonal
procedure lies in the fact that he (Cantor) attempted to use a concept (nondenumer-
ability) which he took to already have a sense before his development of the diagonal
procedure” and consequently “Putnam claims that Wittgenstein’s issue with Cantor
is that he uses a concept that is indeterminate; but he (Putnam) does not recognise
the distinction between ‘determined before the diagonal proof’ and ‘determined af-
ter (and by way of ) the diagonal proof.’” As Wheeler points out, the fact that mathe-
maticians have found a use for set theory or even that we could find a use for it does
in no way contradict Wittgenstein’s apparently dogmatic rejection of it, because Witt-
genstein is concerned with the appearance of sense that is conjured up by Cantor’s
proof alone, by its misleading picture (its interpretation, not the mathematical proof
itself). Wheeler, 2021, p. 8: “This is not to say that these pictures or expressions are
ones that are necessarily useless, but rather, ones that we presently have no use for.”
This also applies to Wittgeinstein’s view on inconsistency (see Chapter 2 and Chap-
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Wittgenstein does not seem to be talking to the average mathemati-
cian, at least not to one that agrees with the dominant conception
of mathematics as practiced today. Instead, he seems to be envision-
ing a future generation that has lost interest in Cantor’s diagonal
argument or views it as nothing more than a rather obvious but ulti-
mately pointless exercise. Such a view is much more radical than it
might first appear und would require a fundamental change in our
way of life. It is unlikely, then, that Wittgenstein was under the illu-
sion of being able to convince his contemporaries or even present-day
mathematicians.17

1.2 a system of systems

In May of 1938, about half a year after the remarks in Ms-117, Witt-
genstein returns to Cantor’s diagonal argument in Ms-121. The first
published remark of that period in RFM II serves as a good example
of the ‘cultural’ distance between Wittgenstein and mathematicians
making use of the diagonal method:

Die Krankheit einer Zeit heilt sich durch {eine // die} Veränderung in der
Lebensweise der Menschen & die Krankheit der philosophischen Probleme
könnte nur durch eine veränderte Denkweise & Lebensweise geheilt wer-
den nicht durch eine Medizin die ein Einzelner erfand.
Denke, daß der Gebrauch des Wagens gewisse Krankheiten hervorruft oder
begünstigt & die Menschheit von dieser Krankheit geplagt wird, bis sie
sich, aus irgendwelchen Ursachen, als Resultat irgendeiner Entwickelung,
das Fahren wieder abgewöhnt. [Ms-121, 27r.4 / BGM II §23]

The sickness of a time is cured by an alteration in the mode of life of human
beings, and it was possible for the sickness of philosophical problems to get
cured only through a changed mode of thought and of life, not through a
medicine invented by an individual.
Think of the use of the motor-car producing or encouraging certain sick-
nesses, and mankind being plagued by such sickness until, from some cause

ter 3), because Wittgenstein views undecidable or contradictory propositions only as
presently useless, not necessarily useless (and we might find a use for an inconsistent
formal system).

17 Mühlhölzer, 2020, pp. 177–79 presents a more detailed discussion of the “hocus
pocus” sentence and interprets it as a “vehement rejection of set theory”. But then
it was clear even in 1938, following a wager between Weyl and Pólya, that “the “I
believe” in his hocus-pocus statement is wrong”. Mühlhölzer is surely correct that
if the statement is read as a rejection of set theory, the statement has to be consid-
ered wrong when judged by present-day mathematical practice, but this commits
Wittgenstein to a rather extreme position that is at odds with his quite nuanced fo-
cus on the conceptual interpretations surrounding Cantor’s diagonal argument, not
mathematical practice itself. As Mühlhölzer points out, Wittgenstein “de-dramatizes”
uncountability and “is looking at mathematical situations in precisely such a sober
way, far from all verbal mystifications, concentrated only on the actual mechanisms
used in the proofs.” If this captures the spirit of the hocus-pocus statement (and it is
certainly compatible with Wittgenstein’s remarks leading up to that statement) the
hocus-pocus statement can and should be read as “primarily emphasizing this sort
of distinction”, without rejecting set theory.
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or other, as the result of some development or other, it abandons the habit
of driving. [RFM II §23]

This can be seen as a more detailed explanation of what Wittgenstein
has in mind when he thinks of a “future generation”: It amounts to
a fundamental change in their “mode of life”, their “Lebensweise”,
comparable to a whole society giving up their custom of driving cars,
with all the related changes in their way of life that it entails.18 It is
clear that such a change cannot be triggered by the (philosophical)
“medicine” of a single person. The remark is a sign of Wittgenstein’s
keen awareness of how little inroads his philosophy would be able to
make in mathematics departments and the activities of professional
mathematicians.

But while this remark might read like an unbroken continuation of
his thoughts from Ms-117, it is far from the only choice with which
the editors of RFM II could have continued after §22. Apart from
several remarks on the use of the word “{infinite // transfinite}” and
infinity in connection with cardinal numbers at the beginning of Ms-
121 (the 8 remarks from Ms-121, 1r.1–2v.2, which are, however, all
marked with the curved “S” expressing Wittgenstein’s dissatisfaction
with the quality of these remarks), there is also a remark comparing
“to want the impossible” with the game of “Daumenfangen” (Ms-
121, 26r.2), a short remark on provability (Ms-121, 26v.2), and most
notably the following enigmatic remarks that immediately precede
the remark selected as §23 and were written three days prior to it:

18 There are obvious similarities between “mode of life” / “Lebensweise” and “form
of life” / “Lebensform”, raising the question of how these two terms differ. Here
and in the following chapters, “Lebensform” will be interpreted not as a technical
term on the same level as e.g. “language game”, but merely as one of several terms
that emphasise related aspects, with “pattern of life” / “Lebensmuster”, “stencil of
life” / “Lebensschablone” and “mode of life” / “Lebensweise” being other exam-
ples. Majetschak, 2010 shows convincingly that Wittgenstein uses the term “Lebens-
form” sparingly and that, more importantly, most of the occurrences of the term in
the Nachlass clash with the standard interpretation of “Lebensform” as a cultural
embedding, but can be explained by interpreting “forms of life” as the more down-
to-earth expression “patterns of life”. In the following text, “Lebensform” will thus
be interpreted as a non-technical term that can often be used interchangeably with
“Lebensmuster” (contra Moyal-Sharrock, 2015, see also the further exploration of this
topic in Majetschak, 2020). For the sort of embedding that is usually associated with
“Lebensform” the term “life” / “Leben” will be used. But in contrast to a fully syn-
onymous reading of “Lebensform” and “Lebensmuster”, the different terms will be
read here as a continuum, with “Leben” and “Lebensmuster” on opposite ends of
the spectrum, the former emphasising the cultural embedding and the latter em-
phasising a particular constellation of expressions and acts that are part of our life.
A term such as “mode of life” / “Lebensweise” is then closer to “Leben” than to
“Lebensmuster”, whereas “form(s) of life” / “Lebensform(en)” move into the direc-
tion of “Lebensmuster”, especially if used as a plural. Such a reading has the advan-
tage of being able to explain the rare occurrences of “Lebensform” in works such as
On Certainty, while still allowing for a use compatible with the standard interpreta-
tion (such as in the Brown Book). In particular, “Lebensform” can be distinguished
from “Lebensformen” by interpreting them as two points (very close together) on a
crowded spectrum of related terms.
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Das Vergnügen, das wir an einem aufgeblasenen Gummiballon haben. Wir
sind nicht gewöhnt mit Körpern zu hantieren, die so groß im Verhältnis zu
ihrem Gewicht sind.

Es hilft wenn man sagt: der Beweis des Fermatschen Satzes ist nicht zu
entdecken, sondern zu erfinden.

‘Ein “System aller Systeme” ist ein Widerspruch.’
Wie läßt sich dieser Satz anwenden? [Ms-121, 26v.4–27r.3]

The pleasure we get from an inflated rubber balloon. We are not used to
handling bodies that are so big in relation to their weight.

It helps to say: the proof of Fermat’s theorem is not to be discovered, but to
be invented.

‘A “system of all systems” is a contradiction.’
How can this sentence be applied?

The editors of the RFM can hardly be faulted for not including the
rather obscure first two remarks. But as we will see in the other re-
marks on Cantor’s diagonal method, Wittgenstein returns frequently
to the notion of a “system of systems”, which first appears in Ms-
121, 27r.3. The above three remarks, though hardly self-explanatory,
serve as guiding thread for the rest of his reflections and can help
to explain his interest in Cantor’s diagonal argument. In contrast to
Ms-117, which could be read mostly as an investigation of the con-
cept of “uncountable” numbers, Wittgenstein’s interest in Ms-121 is
broader and focuses on the use of Cantor’s diagonal method as a tool
to escape a “system” and talk of a “system of all systems”, which inti-
mately connects Wittgenstein’s remarks in Ms-121 with his reflections
on Russell, Gödel and the idea of provability in a system.

The following interpretation will be supported by a more detailed
look at the later remarks in Ms-121, but could be summarised in the
light of the above three remarks as follows:

1. Our fascination with Cantor’s diagonal method is in need of a
careful philosophical investigation. We are fascinated because
something huge (the ‘greater than infinite’) is apparently pro-
duced by something so small (the simple method of diagonali-
sation), similar to an inflated rubber balloon, which is “so large
in relation to its weight”.

2. A new proof of something that is as of yet undecided does not
shed light on an ‘unexplored corner’ inside the existing system,
it instead creates a new system that shows some analogies to the
old system but is not always directly comparable to it. Cantor’s
diagonal argument does not shed light on a vague concept of
ordering the real numbers, it invents a new concept.

3. In the wake of Cantor’s diagonal method, it can be tempting to
think that it makes sense to speak of a “system of all systems”
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and show that such a system leads to a contradiction, similar to
how the assumption of an (ordered) system of the (variety of)
systems of real numbers leads to a contradiction. But to under-
stand what such a statement means, we need to look at its use,
which requires us to look at how we speak of a “system of all
systems” if we want to understand the diagonal method.

Immediately after Ms-121, 27r.4 / §23, Wittgenstein’s reflections
revolve around the “greatest cardinal number” and he starts by con-
sidering the following task (in a remark not published in RFM II):

“Nenn’ mir eine Zahl, die größer ist, als die Zahl aller ganzen Zahlen!” –
{diese // Diese} Aufgabe hat den Charakter einer mathematischen Scherz-
frage. [Ms-121, 27v.2]

“Name me a number that is greater than the number of all integers!” - this
task has the character of a mathematical trick question.

A mathematician could answer such a question quite seriously: @0 is
the size of the set of the natural numbers, it could therefore be consid-
ered the “number of all natural numbers”. The task then is to answer
with a cardinal number greater than @0, with @1 (the smallest cardi-
nal number greater than @0) being the obvious choice. Wittgenstein
is of course aware of this, his remark explicitly wants to leave this
mathematical perspective behind (at least for the duration of the ar-
gument) and thus mirrors the “But that’s not what I meant!” sentence
in Ms-117, 99.1 / §3. Cantor’s diagonal method with its cardinal num-
bers beyond @0 can give us the impression that there is something
greater than the “number of all natural numbers”, that there must
be a number that fits such a description, not just that there is some-
thing that we call greater than infinite in a very restricted language
game. How we use these cardinal numbers outside this mathematical
language game is however largely undetermined: We cannot use the
proposition “@1 is greater than @0” in the same way that we can use
the sentence “6 is greater than 5”, because the “... is greater than ...”
belongs to very different language games in these two cases. In the
latter case, we can use it in a language game where we compare the
number of apples for example, something that only works for finitely
many apples. Seen from the perspective of these practical uses of “...
is greater than ...”, the task mentioned by Wittgenstein is a riddle: It
can be answered through the use of cardinal numbers, but the answer
will have the appearance of a joke, because it gives a useless answer
where the question appeared to ask for a useful one. The analogy
between the two different uses of “... is greater than ...” only takes
us some distance before the paths eventually diverge. It would be
hardly surprising if someone reacted by saying “But that’s not what
I meant!” when faced with @1 as the answer to the above question,
or alternatively accepts it, but only as the answer to a riddle without
any practical uses.
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The use of such a mathematical answer is also the topic of the next
remark, where Wittgenstein considers the task “Give me a number
between 1

n and 1
m” and notes that the “usefulness [of this exercise]

lies in the fact that there is a system of such {tasks // problems} here”
(Ms-121, 27v.3). We can imagine that such an exercise is quite useful
to introduce students to basic concepts of calculations involving frac-
tions, a student could for example solve such an exercise by giving
m+1
m⇥n as an answer and thereby demonstrate (or fail to demonstrate)
a certain understanding of the simplification and comparison of frac-
tions. Crucially, the usefulness of the exercise depends on the fact that
there is a whole system of calculations with rational numbers that is
used in practice.

Alternatively, we can imagine a student who, after having seen Can-
tor’s diagonal argument, decides to solve the exercise by developing
the decimal expansions of 1

n and 1
m one by one in parallel and by then

comparing the decimal places at each step. A number between 1
n and

1
m can then be constructed by carefully choosing decimal places so
that the newly constructed number lies between these two numbers.
The specifics do not matter here, but it is easy to see that if the two
numbers are unequal there will be a point in the development of the
expansions where a decimal place can be chosen for the ‘in-between-
number’ so that the remaining decimal places cease to matter and
the constructed number must lie between 1

n and 1
m . This approach

could be considered a valid solution, but it would completely miss
the point of the exercise, since the result of the construction is not
connected to the system of rational numbers through concepts such
as the simplification of a fraction, at least not without the help of the
concept of decimal expansions of rational numbers.

Similarly, it is unclear how the concept of cardinal numbers can be
usefully applied outside of mathematics, as Wittgenstein notes in Ms-
121, 28r.2. We have a practical extra-mathematical use for the concept
of natural numbers, we can use them to count apples etc., but as
Wittgenstein points out, it is far from clear why we use the word
“number” in the case of cardinal numbers if we do not know which
role they could play outside of mathematical propositions.

Similarly, it is unclear what the practical use could be for a proposi-
tion such “There is no greatest cardinal number.”, which Wittgenstein
considers in Ms-121, 28v.2 / §24. In contrast to a proposition such as
“25⇥ 25 = 625”, which could be a useful answer to a practical calcu-
lation, the proposition that there is no greatest cardinal number does
not serve such a purpose, but instead only appears to reflect an aspect
of our concept of cardinal numbers.19

19 As Felix Mühlhölzer has helpfully pointed out, Wittgenstein uses the term “cardi-
nal number” only in the sense of “natural number”, the proposition “There is no
greatest cardinal number” should consequently be read as “There is no greatest nat-
ural number.” The former proposition follows immediately from Cantor’s theorem,
which states that for any set A, the power set of A has a strictly greater cardinality
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The fact that we even ask whether there is a greatest cardinal num-
ber is notable, as it suggests that the answer is not entirely obvious
(Ms-121, 28v.3 / §25). Wittgenstein draws our attention to an impor-
tant difference between the questions “Is there a greatest cardinal
number” and “Is there a greatest number of apples”: In the case of
numbers of apples, it seems nonsensical to even ask the question in
such an abstract way, but in the case of the greatest cardinal numbers
the question is sensible enough to deserve a proof and we might have
been unsure or doubtful of the answer before seeing it proved. Leav-
ing the proof aside for a minute, the difference is even more basic: We
would never state “there is no greatest number of apples” as a theorem,
we simply act this way. For every imaginable number of apples, we
can always imagine a situation where we have one more apple. We
can do so because the certainty that there is no greatest number of ap-
ples shows itself in our practical use of the words “greatest number”,
it is part of our way of counting and comparing different numbers,
which is an important part of many of our forms of life. But no such
corresponding (extra-mathematical) use exists for “greatest cardinal
number”.20

To say that there is no greatest cardinal number can conjure up the
extensional image of an infinite row of numbers with no end in sight.
A better picture would be to speak of a “permission” or “licence”:
If we give someone a licence to produce an unlimited number of
a particular item, we do not mean that this person will produce a
number of items that is infinite, but rather that their ability to keep
producing these items is not limited by the permission or licence (Ms-

than A. As a result, a greater cardinal number can always be produced by consid-
ering the power set of a given set and then the power set of this power set, and so
forth. The proof of Cantor’s theorem is quite simple and employs at its heart also a
diagonal argument (Priest, 1995, pp. 131–32), which opens up the proof to the kind
of investigation that Wittgenstein is engaging in. His emphasis on the uselessness of
such a proposition would then all the more apply if “There is no greatest cardinal
number” is read as referring to transfinite numbers, even if it is more likely that
Wittgenstein is thinking of the natural numbers here.

20 It is tempting to dismiss this conceptual distinction between “greatest number of ap-
ples” and “greatest cardinal number” by pointing out that our practice of counting
apples can be captured quite easily by a simple axiomatisation of the natural num-
bers without any appeal to actual practice. In other words, it does not matter that
we count apples, because we can give a formal definition of what it means to count
in general, which can then be extended to and compared with the cardinal numbers.
For example, using the well known Peano axioms we can define natural numbers
as the constant 0 together with a successor function S, so that 1 is defined to be
S(0), 2 is defined to be S(S(0)) and so on. But such an objection would fundamen-
tally misunderstand that these seemingly innocuous definitions are a central point
of Wittgenstein’s critique and that our practical arithmetic cannot simply be reduced
to these logical axioms, not because these axioms were somehow wrong, but rather
because these definitions depend on and only make sense in the context of our or-
dinary practice of counting and calculating. This topic lies at the heart of RFM III,
but also appears in unpublished remarks between his published RFM II remarks in
Ms-121, for example Ms-121, 57v.1 (see Section 1.4).
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121, 29r.2 / §26). The permission / licence is unlimited, it has no
end.21

We allow ourselves to say that there are ever greater cardinal num-
bers because we use them in this way. We do not set an end to our
ability to play these language games, but it is misleading to say that
the cardinal numbers have no end. The fact that we do not set an
end to our ability to play language games with cardinal numbers is a
grammatical proposition of a very particular kind:

[...] Es wäre also wieder ein grammatischer Satz, aber von ganz anderer Art
als “25⇥ 25 = 625”. Er wäre aber von großer Bedeutung, wenn der Schüler
etwa geneigt wäre (vielleicht weil er einer ganz andern Kultur erzogen wor-
den wäre) ein definitives Ende dieser Reihe von Sprachspielen zu erwarten.
[Ms-121, 29r.3 / BGM II §27]

[...] So it would again be a grammatical proposition, but of an entirely dif-
ferent kind from ‘25⇥ 25 = 625’. It would however be of great importance
if the pupil were, say, inclined to expect a definitive end to this series of
language-games (perhaps because he had been brought up in a different
culture). [Ms-121, 29r.3 / RFM II §27]

It is of an entirely different kind because the ‘embedding’ of this
proposition in our life is entirely different, as the language game of
cardinal numbers is used in much more abstract contexts than arith-
metic with its myriad of practical extra-mathematical uses. It would
thus be imaginable for a pupil from a different culture to expect a
definitive end to this series, but much harder to imagine a pupil
brought up with an entirely different understanding of arithmetic.

21 In the first edition of RFM, Anscombe translates Wittgenstein’s “Von einer Erlaubnis
sagen wir, sie habe kein Ende.” rather awkwardly as “We say of a licence that it
does not terminate.”, which was changed in the revised 1978 edition to read: “We
say of a permission that it has no end”. The translation in the first edition can easily
be (mis-)read to mean that the “licence” has no temporal end, in other words that
it is an ‘irrevocable’ licence, which does not seem to be Wittgenstein’s point here.
Rather, it is a licence that does not limit the licensee’s ‘rights’ and can be used to
produce as many cardinal numbers as one wishes. This does not mean that it has to
be ‘eternally’ valid, in fact it might be revoked if the form of life changes. But even
such an alternative wording that tries to counterbalance Anscombe’s translation is
still misleading, because the proposition “there is no greatest cardinal number” is
a mathematical proposition and thus not temporal, not because it were somehow
eternal, but because time does not enter into it. Anscombe’s translation in the first
edition emphasises this temporal aspect much more than the original German and
can thus be quite confusing. It has to be kept in mind that the licence is unrestricted
or unlimited in its use, but not necessarily irrevocable. Anscombe’s translation is all
the more puzzling in light of Ms-121, 63r.4 / §45, where Wittgenstein clearly spells
out these notions: “Von einer Technik zu sagen, sie sei unbegrenzt, heißt nicht, sie
laufe ohne aufzuhören weiter – wachse ins Ungemessene; sondern, es fehle ihr die
Institution des Endes, sie sei nicht abgeschlossen.” Anscombe translates it as: “To say
that a technique is unlimited does not mean that it goes on without ever stopping –
that it increases immeasurably; but that it lacks the institution of the end, that it is not
finished off.” This translation is much better, but also shows that Anscombe’s “does
not terminate” is much closer to “goes on without ever stopping” than to “unlimited”
and thus evokes exactly the opposite of what is intended by Wittgenstein.



56 cantor , numbers and enumerability

In the next remark, unpublished in RFM II, Wittgenstein explicitly
connects the notion of a “system of all systems”, which first appeared
in Ms-121, 27r.3, with the proposition that there is no greatest cardinal
number:

Wie ist es nun mit dem Satz, daß es kein System aller Systeme gibt, der
dem Satz, daß es keine größte Kardinalzahl gibt, in gewisser Weise ähnlich
ist? [Ms-121, 29v.1]

Now what about the proposition that there is no system of all systems,
which is in some ways similar to the proposition that there is no greatest
cardinal number?

The proposition “There is no system of all systems.” (or, correspond-
ingly in Ms-121, 27r.3, “A ‘system of all systems’ is a contradiction.”)
is similar to the proposition “There is no greatest cardinal number.”
in so far as both state the inexistence of an end in a ‘hierarchy’ of
language games, but not (if we keep in mind the picture of a “per-
mission” / “licence”) because there were something like a ‘collection’
of all systems or all cardinal numbers and this collection is simply
too large to be ‘captured’ by the system of all systems. Such a too-
large-to-be-captured picture would once again lead us to believe that
we know what we mean when we talk about a “system of all systems”
or a “greatest cardinal number”, that we have a clear concept of what
such a system would be like, similar to a blueprint of a construction
that we are as of yet unable to construct. But instead “we have no
idea how such a system of all real numbers could look like” (Ms-121,
29v.3).

This conceptual confusion is the target of Wittgenstein’s critique,
not our use of cardinal or real numbers. Consequently, he is not at-
tacking set theory itself, but only our “Betrachtungsart der Mengen-
lehre”:22

Es ist in der Betrachtungsart der Mengenlehre etwas von {der // einer}
primitiven Denkweise {eines wilden Volksstammes // wilder Völkerschaf-
ten}. Ich meine: ich könnte mir denken, daß ein solcher die Mathematik
eines zivilisierten Volkes {erlernt // aufgegriffen} & {ihr nun eine // ihr
diese} barbarische Deutung gegeben hätte. [Ms-121, 29v.2]

There is something of the primitive way of thinking of a wild tribe in the
way of looking at set theory. I mean: I could imagine such a person {learning

22 This contrasts with Steiner’s view, who reads Wittgenstein as attacking set theory as
a form of metaphysics in superficially mathematical clothing: Steiner, 2001, p. 270:
“In short, then, attacking Cantor did not seem like attacking any branch of math-
ematics, since he viewed set theory as academic philosophy in sheep’s clothing:
a pseudoexplanatory ’theory’ having no redeeming applications to anything other
than metaphysics. To assault set theory, therefore, was not to revise mathematics”;
Steiner, 2001, p. 271: “Wittgenstein regarded set theory as not fully mathematics.”
As Wittgenstein’s remarks in Ms-121 make clear, it is unlikely that Wittgenstein held
such an extreme view. The more charitable interpretation would be that Wittgenstein
did see the mathematical content of set theory (and did not intend to attack this part),
but attempted to investigate the tendency of set theory to lead us to philosophically
nonsensical interpretations of these perfectly valid mathematical results.
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// taking up} the mathematics of a civilised people & would now have
given it {a // this} barbaric interpretation.

The German “Betrachtungsart der Mengenlehre” can be read in two
ways: It can either mean our perspective on set theory, in other words
our way of looking at set theory, or it can alternatively be read as
the viewpoint which we adopt when we look at something under the
lens of set theory. The latter interpretation might seem more natu-
ral, but the remark makes it clear that the former is also intended:
Someone with the “primitive way of thinking” of a wild tribe could
learn the mathematics of a more civilised people and then give it
a “barbaric interpretation”. The barbaric, set-theoretic interpretation
is thus independent of the mathematical system itself, which can be
learned (and presumably applied) in a more civilised manner and is
only later interpreted barbarically. This is an important point, because
Wittgenstein’s remarks can often appear as a sweeping dismissal of
set theory, while his point of interest is actually much more specific
and concerns the “barbaric” interpretations of such a theory.

We can now see more clearly why Wittgenstein is interested in the
concept of a greatest cardinal number in the first place: His remarks
on Cantor’s diagonal argument and the idea of a greatest cardinal
number are only partly directed at the concept of the real numbers,
but crucially also at the idea of a “system of all systems” with all its
outgrowth in logic and the foundations of mathematics. It is no co-
incidence that Wittgenstein’s reflections in Ms-121 on Cantor’s diag-
onal method flow seamlessly into remarks on provability in Russell’s
logic and (implicitly) also the use of the diagonal method by Gödel. If
these seemingly unrelated remarks are left out, as happened in RFM
II, Wittgenstein’s critique of Cantor’s diagonal method must appear
much more myopic than it actually is, because he appears to be at-
tacking normal mathematical practice that is practically universally
considered beyond reproach.

But what if someone said: “There must be a system of all systems!”
(Ms-121, 30r.2)? This could be the position of a logician attempting
to formalise mathematics, who believes that a suitable logical system
could form the foundation of all specialised mathematical systems.
Accordingly, Wittgenstein considers questions concerning provability
and truth in Russell’s logic in the following remarks, which might at
first appear to mark a departure from his thoughts on the diagonal
method, but are still linked to it through the overarching theme of the
system of all systems.

Leaving aside the remark Ms-121, 30r.3 (marked with a curved
“S” expressing Wittgenstein’s dissatisfaction), the central issue is ex-
pressed in the next two remarks:

Beweisbarkeit ist eine ‘interne Relation’ des Satzes zu den Axiomen.

Soll ich nun sagen: der Beweis von p ist ein Beweis {dieses Satzes // der
Wahrheit dieses Satzes} & seiner Beweisbarkeit? [Ms-121, 30v.2–30v.3]
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Provability is an ’internal relation’ of the proposition to the axioms.

Shall I now say: the proof of p is a proof {of this proposition // of the truth
of this proposition} & of its provability?

Wittgenstein is concerned here with the move from provability to
truth: A proof of p could be said to be a proof of both of these aspects,
truth and provability, because it explicitly asserts the proposition p at
the end of a chain of steps of inference, it says that p, but it also implic-
itly demonstrates the provability of p through the construction of the
proof. The provability of p is thus an internal relation, which shows
itself as a “geometric property” of the “structure of the proposition”
(Ms-121, 30v.4). Viewed through this lens, we could further choose to
adopt the wording “Construct the proposition ...” instead of “Prove
the proposition ...” (Ms-121, 31r.2). But then, even though we have
only substituted an expression, these different wordings emphasise a
different attitude towards truth: If we say that we prove a proposition,
we think of this proposition as being true, the truth of the proposi-
tion thus seems to follow from the proof of it. But if we say that we
construct a proposition, we can certainly construct a false proposition
just as well as a true one. It can seem as if Russell’s logic said that
something ‘really is true’ if it can be proved, that a Russellian proof
is more than ‘just’ a construction, but this is exactly the misleading
idea that Wittgenstein wants to shed light on:

Aber sagt die Russellsche Logik nicht daß etwas wahr ist, wenn es so kon-
struierbar ist? Sie sagt gar nichts darüber, sie konstruiert diese Sätze & weit-
ere Sätze mittels ihnen.
“Aber die Logik behauptet diese Sätze doch?” – Nein, sie konstruiert ihre
Behauptungen. [Ms-121, 31v.2]

But doesn’t Russellian logic say that something is true if it is constructible
in this way? It says nothing at all about it, it constructs these propositions &
further propositions by means of them.
"But logic does assert these propositions?” - No, it constructs their asser-
tions.

The step from provability to truth is not something that Russell’s logic
can ever make on its own, the proof can only lead to a proposition,
but it cannot say “it is provable, therefore it is true”. It makes no sense
to say “therefore it follows”, it just follows and to add any “therefore”
to it does not lead any closer to truth than without it. This shows strik-
ing parallels to Wittgenstein’s remarks on Cantor’s diagonal method
in Ms-117 and his attack on the “therefore” (See Section 1.1) and
makes it clear once more that his reflections on provability in Ms-121
simply change the object of study, but are still part of the same (or at
least a closely related) investigation.

Of course we could object that what can be constructed in Russell’s
logic is precisely what is true and that this differentiates Russell’s
logic from less interesting logical systems. Wittgenstein considers this
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objection in the next remark and points out that even if we were to
say this, the more interesting question is how this shows itself. It is
certainly correct that “what is constructible is considered to be true”
is a rule in our course of action in Russell’s logic (Ms-121, 31v.3), but
this rule cannot be justified logically ‘inside’ the logical system, it is
justified by our use in other proofs:

Nicht: “Was bewiesen ist, ist wahr”, sondern: was bewiesen ist, wird zu
weiteren Beweisen verwendet! [Ms-121, 32r.2]

Not: "What is proved is true", but: what is proved is used for further proofs!

It might seem as if a logical system that acted as the foundation for all
of mathematics, in other words a system of all systems, could once
and for all settle what is true by giving us a certainty of the form
“What is proved is true”. But this would amount to attempting to say
what needs to show itself. In the end, the truth of a proposition and
as a consequence the relation between provability in a logical system
and the truth of propositions proved in such a system will depend
on how the truth of such propositions shows itself in the use of these
propositions.

Wittgenstein then shifts his focus slightly and considers proofs by
induction, starting in Ms-121, 32r.3. Only those remarks that show
some connections to his remarks on the diagonal method and the
“system of all systems” will be discussed here. At first glance, it might
seem as if Cantor’s diagonal proof and inductive proofs had little in
common, but Wittgenstein is interested in the shift from the finite
to the infinite, which is obviously inductive: Cantor’s diagonal proof
is convincing precisely by stating that for every finite ‘sub-table’ of
rows and columns, the diagonalised number will be different from
all rows, therefore the infinite diagonal will be different from all rows
of numbers. (It is exactly the innocuous-looking “u.s.f. ad inf.” that
Wittgenstein will examine in the next remark.)23

Second, Wittgenstein seems interested in induction as an example
of the kind of laws of inference that we use without hesitation in
mathematics but which are general enough that, if formalised, would
belong to the rules of a system of all systems, which gives us system-
atic rules that apply in all systems. Inference by induction seems to be

23 For a discussion of Wittgenstein’s remarks on induction that focuses on his middle
period, where the majority of his remarks on this topic can be found, see Ramharter,
2014. Ramharter interprets Wittgenstein as being at least partly revisionist, which
may be unavoidable for Wittgenstein’s more dogmatic middle period, but is not the
reading employed here for his later remarks, which could be said to be “merely
a dispute over words” (cf. Ramharter, 2014, p. 199). Remarks on induction appear
much more rarely in the years after 1937, apart from the short discussion in Ms-121
they are mostly restricted to the later part of Ms-117 and the last third of Ms-122,
which form the basis of RFM III and mainly revolve around Wittgenstein’s concept
of “surveyability” in mathematics. The connection with this concept is explored in
more detail below (Section 1.4 and Section 1.6), it is certainly no coincidence that in
Wittgenstein’s later philosophy these concepts often go hand in hand.



60 cantor , numbers and enumerability

“a matter of logic” (Ms-121, 32r.3). We accept the validity of this law
of inference instinctively by “intuition” (Ms-121, 32v.3) and a system
of all systems would presumably allow us to replace this informal
intuition with formal laws.24

But at the root of such a notion lies the implicit assumption that
inference by induction is a clear-cut concept that we can simply apply
in a system where previously no inference by induction was known
or used. We thus think of a proof by induction as an abbreviation,
as ‘just’ a shortcut that essentially leaves the logical system as it is,
similar to how the “ad inf.” is ‘just’ an abbreviation in the picture
of Cantor’s diagonal argument (Ms-117, 103.2 / §11, see Section 1.1),
which Wittgenstein wants to warn against:

“u.s.f. ad inf.” ist keine abgekürzte Schreibweise.

Wenn man den Induktionsbeweis als eine Abkürzung auffaßt, dann ist er
eine Abkürzung die gleichsam durch einen

:::::
neuen Raum führt; als kürzte

man den Weg von hier nach Wien dadurch ab, daß man durch die Erde statt
auf ihrer Oberfläche fährt. [Ms-121, 33r.4–33r.5]

“a.s.f. ad inf.” is not an abbreviated spelling.

If one regards the proof of induction as a shortcut, then it is a shortcut
which leads, as it were, through a

::::
new space; as if one shortened the way

from here to Vienna by driving through the earth instead of on its surface.

Such a shortcut tunnelling through the earth is not just a faster way to
reach the same destination, it is a new construction, we introduce “a
new technique into logic” (Ms-121, 33v.2). Slightly exaggerating, we
could say that the apparent ‘harmlessness’ of a mere ‘abbreviation’
such as “ad inf.” is the central issue that motivates Wittgenstein’s
remarks on Cantor’s diagonal argument. This is the part of the ar-
gument that does not arouse any suspicion, it seems absolutely clear,
which is exactly why Wittgenstein is interested in it. It seems as if we
already knew what the ordered series of all real numbers would look
like, if only vaguely, because we know what the “ad inf.” means in
our picture of such an ordering that we then use for the diagonalisa-
tion. Similarly, it seems as if we already knew how and when infer-
ence by induction can be applied even in the infinite case, because we
have a clear picture of how we count finite objects and assume that
induction is a clear generalisation of the concepts involved in count-
ing and proceeding from one item to the next. But as Wittgenstein
notes in Ms-127, 23.3 / RFM V §37, “the irrational numbers are – so
to speak – special cases.” The ‘general’ technique of induction, the
‘general’ “u.s.f. ad inf.” is a new invention in a particular logical sys-
tem, the logical system in which we reason by proof of induction is
not the same logical system as the one without this proof technique
(as if the proof by induction were some kind of innocuous ‘tool’ that

24 See Section 3.5 for a discussion of the concept of intuition in relation to comput-
ing machines, which also touches on the issue of replacing informal intuition with
mechanical rule following.
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we could either apply or leave in the toolbox without any impact on
the ‘system itself’).

But since there is no system of systems in the background that
could justify our application of laws of inference, the application of
something like proof by induction needs to be justified in the special
case, by the use of the specialised system. Wittgenstein thus flips the
traditional view, that a concrete system such as arithmetic rests on a
more abstract and foundational system of formal logic, on its head:
A concrete proposition like 2⇥ 2 = 4 can be considered to rest on the
foundations of the whole system of arithmetic and consequently on
a whole system of axioms and rules of inference, but we could just
as well say that this whole system rests on the useful application of
the concrete proposition. The multiplication thus proves something
in the “geometry of the numerals” (Ms-121, 34r.2), which is why the
practical applications are paramount for a philosophical investigation
of something like Cantor’s diagonal argument:

Es ist also wichtig zu fragen: Wie kann der Satz, daß die Rationalzahlen
sich in eine Reihe ordnen lassen, praktisch angewandt werden? [Ms-121,
35v.2]

So it is important to ask: How can the proposition that the rational numbers
can be ordered in a series be applied practically?

Here we can imagine many possibilities, for example as part of a de-
scription of an automated machine that sequentially runs through all
the rational numbers and tests them for a particular property. But in
the case of the irrational numbers, we had no practical use for such
an ordering in mind and then Cantor came along and showed us
the futility of such an endeavour. Instead of originating in practical
requirements, Cantor’s proof of the impossibility of such an order-
ing for the real numbers closed off this avenue before a practical,
extra-mathematical use was even considered. It gives us a method to
“destroy” any imaginable ordering of the irrational numbers (Ms-121,
35v.3 / §28).25

We might think that by giving us the possibility to construct a diag-
onalised number for any ordering of the irrational numbers Cantor’s
diagonal method shows us an irrational number that differs from all
the numbers in the (ordering) system. This is certainly true for the al-
gebraic numbers, where we can use the diagonal method to construct

25 Wittgenstein uses “(zer)stören”, with the “(zer)” inexplicably dropped from RFM
and the “stören” translated by Anscombe as “upsetting any order”. Mühlhölzer,
2020, p. 180 (footnote), notes the inadequacy of Anscombe’s translation and uses
“to disrupt” instead, while following Anscombe in emphasising the “stören” more
than the “zerstören”. But a disrupted ordering could still be considered an ordering,
merely slightly deficient, whereas Cantor’s proof convinces us to completely give up
the idea that there is or could be anything that we would call an ordering of the real
numbers, it destroys the idea of such an ordering. Mühlhölzer, 2020, p. 180: “[O]ne
might wish rather to say that this method does not “disrupt” any order but shows
that there isn’t a way to order all the real numbers and that, therefore, they cannot be
ordered” (emphasis in the original).
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a transcendental number. But in the case of the irrational numbers,
the diagonal method is purely ‘destructive‘, it destroys an possible or-
dering, but it does not construct a concrete irrational number, because
it depends on a system that is immediately rejected at the conclusion
of the diagonal argument. Instead of showing us an irrational num-
ber that is different from all the numbers in the system, the diagonal
method gives meaning to the concept of a number that is different
from all the numbers in the system:

Das Cantorsche Diagonalverfahren zeigt uns nicht eine Irrationalzahl die
vor allen im System verschieden ist, aber es gibt dem mathematischen Satz
Sinn die Zahl so & so sei von allen des Systems verschieden. Cantor könnte
sagen: Du kannst dadurch beweisen, daß eine Zahl von allen des Systems
verschieden ist, daß Du beweist daß sie in der ersten Stelle von der ersten
Zahl, in der zweiten Stelle von der zweiten Stelle von der zweiten Zahl u.s.f.
verschieden ist.
Cantor sagt etwas über die Multiplizität des Begriffs “{Reelle Zahl // En-
twicklung}, verschieden von allen eines Systems.” [Ms-121, 36r.2 / BGM II
§29]

Cantor’s diagonal procedure does not shew us an irrational number differ-
ent from all in the system, but it gives sense to the mathematical proposition
that the number so-and-so is different from all those of the system. Cantor
would say: You can prove that a number is different from all the numbers
in the system by proving that it differs in its first place from its first number
and in its second place from its second number and so on.
Cantor is saying something about the multiplicity of the concept “Real num-
ber different from all the ones of a system”. [RFM II §29]

By considering numbers in systems of extensions and showing how,
extensionally, we can methodically dodge the decimal places of the
extensions in the system, Cantor gives meaning to the concept of ex-
tensions that are different from all other extensions in the system.
This can appear to present us with a clear and systematic picture of
extensions, but in fact “the grammar of the word “extension” is not
yet determined” (Ms-121, 36v.2 / §30).26 We have no concept of the
totality of all irrational or real numbers, exactly because irrational
numbers are, intensionally seen, “special cases” (Ms-127, 23.3 / RFM
V §37, quoted above) and Cantor achieves more conceptual clarity
only by “proposing” to call an extension different from the others
in a system if it is “diagonally different” (Ms-121, 36v.3 / §31).27 It
might seem as if the extensional view were the full picture, but by

26 Translation from Mühlhölzer, 2020, p. 187, who convincingly argues for the trans-
lation of the German “Extension” as “extension” against Anscombe’s translation as
“expansion”. It also contains a much more detailed interpretation of Wittgenstein’s
“non-extensionalist” stance in RFM II as well as RFM V than can be touched upon
here.

27 As Frascolla, 2006, p. 159 puts it: “The task of a creative mathematician like Cantor is
not to establish an indisputable truth, but to induce us to enrich in a certain way our
linguistic apparatus. [...] The ability of the creative mathematician is shown by his
proposing a sign construction (proof) which produces, in all those who have received
a certain training, the willingness to introduce a certain new conceptual tool.”



1.2 a system of systems 63

sidestepping the variety of intensional language games in favour of
a uniform view focused solely on the decimal expansions of a sys-
tem of extensions Cantor’s diagonal argument gives up the ability to
clarify our use of the word “extension”. This is not surprising, since
such a clarification of grammar is usually not a focus of interest for
mathematicians and requires a philosophical investigation of our use
of the word.

What Cantor gives us is a “task”: “Find a number whose expan-
sion is diagonally different from those in this system” (Ms-121, 37r.2 /
§32), not a number itself. We might think that this distinction is either
unimportant or that it collapses in the case of the diagonal number,
but for Wittgenstein the misleading aspect of Cantor’s diagonal argu-
ment is precisely that it tends to blur this very conceptual distinction.
This becomes clear in the next four remarks between §32 and §33,
which were unfortunately not published in RFM, but which form a
very succinct summary of the issue that motivated Wittgenstein’s in-
terest in Cantor’s diagonal argument since the very first remarks in
Ms-117.28 In the first of the unpublished remarks (Ms-121, 37r.3), Witt-
genstein draws our attention to the fact that the decimal expansion of
⇡ is usually of no interest to us in mathematics, it is secondary to the
use of ⇡ as a number. What then follows is a very succinct summary
of this distinction and is worth quoting in full:

Wenn wir ein System von Regeln der Entwicklung haben, können wir eine
Regel {bilden // geben}, so daß ihre Entwicklung Schritt für Schritt von
denen des Systems verschieden ist.
{Es ist nun ein großer Unterschied // Aber hier ist ein Unterschied}, ob die
Regel von den Entwickelungen ausgehend durch ihre Änderung die neue
Entwickelung hervorbringt, oder ob sie einen andern Ausgangspunkt hat
aber ein Beweis dafür existiert, daß ihre Entwickelung Schritt für Schritt
von denen des Systems verschieden ist. [Ms-121, 37r.4]

If we have a system of rules of expansion, we can {form // give} a rule so
that its expansion, step by step, is different from those of the system.
{Now // But here,} there is a great difference, whether the rule, start-
ing from the expansions, by its change brings forth the new expansion, or
whether it has a different basis but there is a proof that its expansion is,
step by step, different from those of the system.

The diagonalised number clearly corresponds to the former case.
There is no “other origin” for the diagonalised number and then addi-
tionally a proof that it is different from all the other numbers in the sys-
tem, it is solely based on the diagonal modification of decimal expan-
sions. The diagonal “sleight of hand” (“Taschenspielerkunststück”29)

28 See Mühlhölzer, 2020, pp. 135–37, which not only discusses the importance of the un-
published remarks in this context but also highlights the inadequacy of Anscombe’s
translation of §32 (“Thus it can be set as a question” for “Es gibt also eine Aufgabe”).

29 This expression is used by Wittgenstein in multiple remarks, most notably in Ms-122,
117v.1 concerning the use of Russell’s logic as an “abbreviation”, which shows par-
allels to the “u.s.f. ad inf.” in the diagonal method, but also as “Taschenspielertrick”
in Ms-159, 23r.1. Another important use is Ts-227a, 189.4 / PI §308 and its variants
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makes us overlook this important difference, however. This does not
usually happen in our practical use of numbers, for example when
a textbook (such as Hardy’s) gives examples of irrational numbers,
where the examples consist only of numbers of the second kind, for
which the decimal expansion is not an inherent part of their definition
(Ms-121, 37v.2).

It is the difference between a rule that “results in” a different expan-
sion (as a side effect) and one that “produces” a different expansion (as
its only purpose). In a way, a diagonally produced number lacks the
“essence” of what we usually call a number, because it is as if there is
no number that the decimal expansion belongs to (Ms-121, 38r.2).

The next two remarks are published in RFM again, and here Witt-
genstein returns quite explicitly to the notion of a system of all sys-
tems, an “Über-System” for the irrational numbers. While at first
glance these remarks might seem to express little more than his first
remarks in Ms-117, they actually build heavily on the previous re-
marks in Ms-121 with its focus on “systems” and introduce an impor-
tant new aspect, the comparison of an element in the system with the
system as a whole. It has by now become clear that Wittgenstein consid-
ers the irrational numbers as being far from uniform (in contrast to
the rational numbers), they consist of “diverse systems” in the number
line:

Man könnte sagen: Außer den rationalen Punkten befinden sich auf der
Zahlenlinie diverse Systeme irrationaler Punkte.
Es gibt kein System der Irrationalzahlen – aber auch kein Über-System,
keine ‘Menge der irrationalen Zahlen’ von einer Unendlichkeit höherer Ord-
nung. [Ms-121, 38v.1 / BGM II §33]

It might be said: Besides the rational points there are diverse systems of
irrational points to be found in the number line.
There is no system of irrational numbers – but also no super-system, no ‘set
of irrational numbers’ of higher-order infinity. [RFM II §33]

The first paragraph is clear enough, but what can we make of second
part of the remark? That Wittgenstein does not dispute the concept of
the set of real numbers, nor the uncountability of this set, has become
clear on a number of occasions, though he certainly tries to clarify
the expressions surrounding these proofs so that they appear less like
mathematical discoveries and more like conceptual stipulations. His
rejection of a system of irrational numbers and of an “Über-System”
of higher-order infinity should thus not be read as a dogmatic the-
sis30, but only as a description of our grammar: We simply do not
use irrational numbers in a way that presupposes a system or could

(with “Taschenspielerkunststück” replaced with “Taschenspielerstück”) in Ms-116,
335.1, Ts-228, 182.5 and Ts-230a/b/c, 94.3.

30 Contra Mühlhölzer, 2020, p. 189, who holds the view that “[i]t is not only too dog-
matic, but also smacks of “ontology”, which is far removed from Wittgenstein’s
intent in his later philosophy.”
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make use of such a system, nor do we have any concept of an “Über-
System” that we apply in our use. Cantor’s diagonal argument, on the
other hand, by making it seem as if there were such an “Über-System”
of a higher-order infinity, disregards and misunderstands the gram-
mar of “irrational number”. Or rather, Cantor’s diagonal argument
changes our grammar by introducing a new concept but leads us to
believe that the diagonal method merely presents us with a precise
expression of an already existing concept. This is made even more
clear in the next remark, which acts as the central junction point of
the reflections in Ms-121 up until now:

Cantor definiert eine Verschiedenheit höherer Ordnung nämlich eine ‘Ver-
schiedenheit’ einer Entwicklung von einem System von Entwicklungen.
Man kann diese Erklärung so benützen, daß man zeigt daß eine Zahl in
diesem Sinne von einem System von Zahlen verschieden ist: sagen wir
⇡ von dem System der algebraischen Zahlen. Aber wir können nicht gut
sagen, die Regel, die Stellen in der Diagonale so & so zu verändern, sei
{dadurch // nun} als von den Regeln des Systems verschieden {bewiesen
// demonstriert}, weil diese Regel selbst ‘höherer Ordnung’ ist denn sie
handelt von der Veränderung eines Systems von Regeln & daher ist es von
vornherein nicht klar, in welchem Fall wir die Entwickelung so einer Regel
von allen Entwicklungen des Systems verschieden erklären wollen. [Ms-121,
38v.2 / BGM II §34]

Cantor defines a difference of higher order, that is to say a difference of an
expansion from a system of expansions. This definition can be used so as to
shew that a number is in this sense different from a system of numbers: let
us say ⇡ from the system of algebraic numbers. But we cannot very well say
that the rule of altering the places in the diagonal in such-and-such a way
is as such proved different from the rules of the system, because this rule is
itself of ‘higher order’; for it treats of the alteration of a system of rules, and
for that reason it is not clear in advance in which cases we shall be willing
to declare the expansion of such a rule different from all the expansions of
the system. [RFM II §34]

According to Wittgenstein, Cantor’s diagonal argument can be ac-
cused of applying double standards: Going in to the proof, we have
a clear picture only of what it means to compare rules that describe
decimal expansions with each other, but then Cantor compares a rule
inside the system with the whole system while appearing to use only
the normal standard of comparison. Instead of comparing only rules
of the form that we already know, the diagonal method in fact creates
a new kind of “higher-order” rule, it presupposes the whole system
and changes the system of rules. It is not a discovery in the realm of
the infinite, but rather a conceptual invention.

1.3 what counts as a number?

That Wittgenstein is not entirely satisfied with the quality of the re-
marks in Ms-121 becomes evident in the 11 remarks leading up to
the next remark published in RFM II, where he is constantly revisit-
ing and reworking the problematic aspects of treating decimal expan-



66 cantor , numbers and enumerability

sions as numbers. Wittgenstein laments that showing where an ab-
surdity lies is much harder than merely noticing that a mathematical
interpretation is absurd in the first place (Ms-121, 39r.3) and then com-
pares multiple rules that explicitly change the decimal expansions of
⇡ with ⇡ itself, for example:

Wie wäre es mit diesem Satz: Es gibt eine Zahl, die an jeder Stelle von ⇡

verschieden ist. Nämlich die Regel, jede Stelle von ⇡ in irgend einer Weise
zu verändern –? [Ms-121, 40v.3]

How about this sentence: There is a number that is different in every place
from ⇡. Namely, the rule to change each place of ⇡ in some way -?

The importance of this remark becomes clear if it is read in the context
of Ms-117, 98.2–99.1 / §§2–3, where Wittgenstein brought up the task
“Name a number that agrees with

p
2 [only] in every other decimal

place” and considered why a diagonalised number would not be a
satisfying answer but might elicit a reaction of the form “But that’s
not what I meant!”. Now, in Ms-121, Wittgenstein arrives at the most
absurd way of ‘answering’ such a question, which is to answer it by
merely restating the task as a rule. It is immediately obvious that
such an ‘answer’ is shallow and ‘contains’ no ‘surplus meaning’ so to
speak, its meaning depends entirely on the question and is trivially
derived from it. It thus forms the trivial end of the scale of possible
answers, with something like “⇡” being on the other end of the scale.
But then why do we accept the diagonal method as a valid answer?
If it lies somewhere on the scale between a meaningful answer such
a “⇡” and the trivial reformulation of the task, are we really certain
that it is closer to a meaningful answer than to a trivial one? Where
and why do we draw the line?

It might be objected that such a trivial restatement of the question
as an answer is only possible if we are looking for a number that is
different from a single other number, but not applicable in the case
of an infinite list of numbers, because Cantor’s insight lies in the ap-
plication of the modification of decimal places to a whole system of
expansions, with the actual mechanism of modification (subtraction
or addition of 1, for example) being secondary and trivial. This is
of course correct, but if we consider the mechanism of changing the
decimal places unimportant and trivial, why not the whole applica-
tion of the diagonal method? Of course in our culture the diagonal
method is associated with important proofs and thus enjoys a certain
standing, but as Wittgenstein mentioned, we might also imagine that
the diagonal method had originally been taught to school children. If
we had been accustomed to the diagonal method from an early age,
we might reject the notion that something as trivial as a diagonally
different number could be considered a ‘proper’ or ‘real’ number. At
the crucial point of Cantor’s diagonal argument, such a person might
then reply: “Yes, I agree that at present we have no way of ordering
the real numbers in a way that would correspond to the ordering of
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the rational numbers, but the diagonal ‘number’ just constructed is
not really a number and thus not a proof that an ordering of the real
numbers cannot exist. Who knows, we might invent something in the
future that we would call such an ordering but even then your diago-
nal method will do no harm, because it can never construct a number
‘on its own’. (And if it by chance constructs a ‘proper’ number such
as ⇡ then it does not matter because the number will already be in
the list.)” We would certainly say that such a person does not under-
stand our mathematics or has a completely different conception of
it, but does that mean that their conception of mathematics must be
flawed? What Wittgenstein seems to be driving at is not that Cantor’s
diagonal argument should be abandoned, but that we could imagine
a way of doing mathematics that remains completely unimpressed
with Cantor’s diagonal argument and any talk of the transfinite or in-
finities greater than other infinities. These people would simply reject
any methods that “tamper with the extension”:

Warum sollten wir nicht sagen: die Regel, die Diagonale zu verändern, sei
mit den Regeln des Systems unvergleichbar?
“tamper with the extension” [Ms-121, 41r.3]

Why should we not say: the rule of changing the diagonal is incomparable
with the rules of the system?
“tamper with the extension”

That Cantor’s diagonal argument considers the “higher-order” diago-
nal rule, which depends on and compares its expansion with a whole
system of decimal expansions, as comparable to the other decimal ex-
pansions is a conceptual decision. We allow such a tampering with the
extension in our mathematical calculus, but it is by no means imme-
diately obvious why we choose to do that. Cantor’s proof, with its
extensionalist language, has the tendency to obscure the differences
between the different conceptions of numbers at play here. Wittgen-
stein takes one more shot at this sleight of hand:

Ich verstehe, daß man von zwei arithmetischen Regeln sagt, sie seien ver-
schieden wenn die eine an der ersten Stelle eine andre Ziffer ergibt, als die
andere – – – aber kann man auch sagen, die Regel, die Entwicklung von �

hinzuschreiben, aber die erste Stelle zu verändern, sei von � verschieden,
da die Entwicklungen an der ersten Stelle nicht übereinstimmen?? [Ms-121,
41r.4]

I understand that one says of two arithmetical rules that they are different
if one produces a different digit in the first place than the other - - but can
one also say that the rule of writing down the expansion of �, but changing
the first place, is different from �, because the expansions in the first place
do not agree??

This is a beautiful clarification of the different concepts of numbers
at play in Cantor’s proof. What counts as a number might seem abso-
lutely clear and of course it is clear in most situations. We can say that
two numbers are different if they show a difference in their decimal
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expansions, because the decimal expansions are only the ‘inessential
surface’ of numbers. Wittgenstein does not want to deny this fact, nor
our practice of using comparisons of decimal expansions in practice
to decide the equality of numbers. But Cantor’s diagonal argument
plays a new kind of language game, it suddenly compares numbers
that are only different because they are different decimal expansions.
An inessential surface feature has become the essence. We thus need
to carefully revisit even concepts that we have until now taken for
granted or risk being mislead by a “boastful” interpretation.31

This boastful aspect of Cantor’s proof is also discussed in a short
fragment of loose pages, Ms-178c,32 where Wittgenstein explicitly
calls out the different number concepts at play in Cantor’s diagonal
argument. This is what makes Cantor’s diagonal argument boastful,
it promises more than it actually delivers:

Das Bild der Cantorschen Überlegungen ist ungemein irreführend. Es zeigt
uns nämlich Extensionen & Zahlzeichen, die doch nicht als Zahlzeichen zu
benützen sind.
[“Aber ist das nicht im Beweis vermieden: – – –?”] So daß es nicht klar ist,
ob wir den Extensionen eine neue Extension einfügen (wie es ja aussieht)
{oder ein neues Gesetz aufzeigen. // oder {den Gesetzen // dem System
der Gesetze} ein neues Gesetz beifügen.}

Wie kommt es, daß dies kleine Stück {Mathematik // Rechnung} so {Großes
// viel} leistet? – {Weil es etwas verspricht, nicht ein Versprechen hält. //

31 Wittgenstein’s remark in Ms-121 shows a striking resemblance to a much earlier
remark that first appeared as Ms-107, 63.6 in 1929 and was also included in two
typescripts from 1930 (Ts-208, 78r.8; Ts-209, 102.1):

Man kann nicht sagen: zwei reelle Zahlen sind identisch wenn sie in allen Stellen übere-
instimmen. Man kann nicht sagen: sie sind verschieden, wenn sie an einer Stelle ihrer En-
twicklung nicht übereinstimmen. Man kann ebensowenig sagen, die eine sei größer als die
andere, wenn {ihre // die} erste {

:::
nicht

::::::::::::::
übereinstimmende // unpaarige} Stelle größer sei

als die entsprechende der anderen.

One cannot say: two real numbers are identical if they agree in all places. One cannot say:
they are different if they do not agree at one point of their expansion. Nor can one say that
one is greater than the other if the first digit is greater than the corresponding digit of the
other.

At first, this earlier remark seems to stand in direct opposition to Wittgenstein’s later
view in Ms-121, but on closer inspection of the context in Ms-107 the remarks show
an important continuity in Wittgenstein’s thinking from 1929 to 1938. In his earlier
remarks, Wittgenstein is occupied with numbers that are different from other real
numbers only through an explicit modification of their decimal expansions (much
like the diagonalised number in Ms-121). The comparability of these ‘numbers’ is
what Wittgenstein wants to deny, because in his view real numbers are more than
just their extensional aspect (“A real number yields extensions, it is not an extension.”,
Ms-107, 62.7), with its echo in the “essence” of numbers in Ms-121, 38r.2, quoted
above. But even back in 1929 he does not deny that numbers such as ⇡ and e can
be compared by comparing their decimal expansions (Ms-107, 64.2). The difference
between 1929 and 1938 is less a total rejection of earlier viewpoints and more a
clarification of the conceptual confusion in a short remark that strikes more precisely
at the heart of these issues while at the same time being much less dogmatic.

32 Ms-178c was most likely written after the remarks in Ms-121, as one of the remarks
shows textual similarities with the other document (Ms-178c, 3.2 and Ms-121, 90v.2),
with the version in Ms-178c apparently written later.
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Weil seine Leistung ist, zu versprechen; nicht: Versprechen zu halten.} [Ms-
178c, 1.1–1.2]

The picture of Cantor’s reflections is extremely misleading. It shows us
extensions & number signs, which however are not to be used as number
signs.
[“But is this not prevented in the proof: - - -?”] So that it is not clear whether
we are adding a new extension to the extensions (as it seems) {or showing a
new law. // or {attaching a new law to the laws // to the system of laws}}

How is it that this little piece of mathematics does {such a big thing // so
much}? - {Because it promises something, not because it keeps a promise.
// Because its achievement is to promise, not to keep a promise.}

The next remark in Ms-121 is published in RFM II and forms both
a return to Wittgenstein’s earlier thoughts on the greatest cardinal
number and a continuation of the idea that we choose to adopt the new
number concept exhibited by the diagonalised number in Cantor’s
proof. That these considerations “may lead us to say” that there is no
greatest cardinal number, that “we can let the considerations lead us
there”33, that “we can say this and give this as our reason” (Ms-121,
41v.2 / §35) is not to be taken lightly. Wittgenstein is very careful
not to paint a picture of mathematics as an arbitrary formal game,
to the contrary: The fact that “2⇥ 2 = 4” is ‘only’ a rule does not
mean that we can simply swap the language game of arithmetic with
another made up game, because “2⇥ 2 = 4” is anchored in our whole
fabric of life with its myriad of related language games in a way
that another arbitrary game is not. But can the same be said about
the conceptual decision at the heart of Cantor’s diagonal argument,
the decision to count a ‘pure’ decimal expansion (without any other
intensional number rule behind it) as a number? Wittgenstein raises
this question in the second part of the remark:

Aber wenn wir es nun sagen – was ist weiter damit anzufangen? In welcher
{Praxis // Anwendung} ist dieser Satz verankert? Er ist vorläufig ein Stück
{mathematischen Gerüsts // mathematischer Architektur}, das in der Luft
hängt, so aussieht als wäre es, sagen wir, ein Architrav, aber von nichts
getragen wird & nichts {trägt // tragen kann}. [Ms-121, 41v.2 / BGM II
§35]

But if we do say it – what are we to do next? In what practice is this proposi-
tion anchored? It is for the time being a piece of mathematical architecture
which hangs in the air, and looks as if it were, let us say, an architrave, but
not supported by anything and supporting nothing. [RFM II §35]

Is this not exactly the kind of dogmatism that Wittgenstein is sup-
posedly trying to dispel? What can we make of such a blanket crit-
icism, targeted at a beautifully simple mathematical method with a

33 Anscombe translates this quite misleadingly as “we can make the considerations lead
us to that”, putting the focus on our action instead of reading it as letting ourselves
be lead by something else.



70 cantor , numbers and enumerability

variety of uses in different mathematical fields?34 It might seem as
if Wittgenstein went too far here, but this remark actually follows
as a rather natural continuation of his previous (and sadly unpub-
lished) remarks. Importantly, Wittgenstein says that “for the time be-
ing” the proposition that there is no greatest cardinal number is “not
supported by anything and supporting nothing”. The critique is not
targeted at mathematical practice and even less at practical uses of
such a proposition (and how could philosophy ever be certain that
no such use might be found in the future), but only at our acceptance
of such a propositions solely based on Cantor’s diagonal argument. As
Wittgenstein remarks in Ms-121, 42r.3 / §37, the proposition “sup-
ports as much as the grounds that support it do”, but Cantor’s proof
alone does not give us sufficient “grounds” to accept or reject the
conceptual decision of what to count as a number. It is a valid and
perhaps even interesting invention, but one for which we have not yet
found a practical use.

This is further spelled out in the next three remarks, the first of
which is unpublished in RFM II. Wittgenstein compares the proposi-
tion that there is no greatest cardinal number with the proposition
“25⇥ 25 = 625” in isolation, that is to say as a single proposition with-
out the context of the whole technique of arithmetic around it. We
might think that even in isolation, such a proposition is at least the
“rudiment of a mathematical technique”, so that it represents “a small
selection of the great truth of the whole system” (Ms-121, 42v.1). Witt-
genstein does not explicitly speak of discovery and invention in this
remark, but it is clear that this notion of a small slice of a larger truth
commits us to a picture of mathematical discovery and convinces us
to look for the “whole system” that is yet to be discovered.

Here we are mislead by the ostensible analogy between a finite se-
ries of numbers (which we can count and for which we have a whole
grammar of talking about the size of a series) and an infinite series
whose size can be @0. But according to Wittgenstein, a “series in the
mathematical sense is a {method of construction for series of linguis-
tic expressions // series of possibilities of linguistic constructions}”

34 Ramharter, 2018, p. 136 offers a harsh interim conclusion: “[Wittgenstein] knew nei-
ther the mathematical considerations nor the theological-philosophical motives that
led Cantor to the development of the cardinal numbers” (my translation). But Priest,
1995, pp. 127–138 cites a number of examples of Cantor’s own philosophical inter-
pretation of the “transfinite” and “absolute infinity” that can be considered prime
examples of the kind of mathematical over-interpretation and resulting philosophi-
cal confusion that Wittgenstein is attacking here. Whether or not Wittgenstein knew
these “theological-philosophical motives” is of secondary importance, what matters
is that he is certainly not attacking a straw man, but an actual source of conceptual
confusion. (Whether mathematicians nowadays still hold these views is of course an-
other matter, but even here Ramharter seems to be focused primarily on the ‘working
mathematician’ and less on philosophical issues in foundational areas of mathemat-
ics or logic, where Wittgenstein’s critique is still relevant, though sometimes more
polemical than strictly necessary.)
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(Ms-121, 43r.1 / §38)35, for which the ‘size’ @0 is only “a kind of num-
ber”, but without the grammar that characterises our use in the finite
case. We can certainly form the expression “class of all classes which
are equinumerous with the class ‘infinite series’”, but we have no use
for it. As Wittgenstein notes at the end of the remark, it is “not: yet to
be discovered, but: still to be invented”. This is beautifully illustrated
by the next remark (Ms-121, 44v.2 / §39), where Wittgenstein com-
pares the situation with a game that shows superficial similarities to
chess, with a “playing-board divided into squares” and with “pieces
likes chess pieces on it”. Someone could then explain:

“{Das ist der // Diese Figur ist der} ‘König’, das sind die ‘Ritter’, das die
‘Bürger’. – Mehr wissen wir von dem Spiel noch nicht; aber das ist immerhin
etwas. – Und mehr wird vielleicht noch entdeckt werden.” [Ms-121, 44v.2 /
BGM II §39]

“This piece is the ‘King’, these are the ‘Knights’, these the ‘Commoners’. – So
far that’s all we know about the game; but that’s always something. – And
perhaps more will be discovered. [RFM II §39]

It is immediately obvious why such an explanation sounds quite
strange. A game is defined by its rules, but it does not make sense to
say that we will discover more rules if the rules of the game are not yet
fully specified. We are mislead by the similarities with the other, fully
specified game of chess and think that we could ‘discover’ more rules
in our new game by looking at the existing game of chess. But these
existing rules cannot give us the justification or the “grounds” for new
rules in our new game. They can certainly inspire us to give the new
game some rules with certain analogies to chess, but these new rules
will be an invention nonetheless. The same is true for Cantor’s diago-
nal argument, even though the lofty mathematical language makes it
much less obvious.

The remarks on Cantor’s diagonal argument then trail off and in-
stead Wittgenstein focuses mostly on other topics for the next 15
pages, with a break of around two months in between (from July
to September of 1938).

1.4 surveyability, russell and numbers

During his ‘excursion’ between §39 and §40, Wittgenstein returns
briefly to Cantor in Ms-121, 49v.3 before writing about “unfolding”
certain properties of a number of marbles Ms-121, 51r.1–55r.4. This is
an example that Wittgenstein already used in Ts-222, 30.3 / RFM I
§36, where 100 marbles are arranged in 10 rows of 10 marbles.36

35 RFM II contains only the first variant. Furthermore, Anscombe puts the first “se-
ries” in single quotes, even though there is no indication for this in the original
manuscript.

36 Most of the remarks between Ms-121, 51r.2 and Ms-121, 53r.2 occur also at the end of
Ts-221a/b in Ts-221a/b, 267.1–268.5, but were not included in Ts-222, which forms
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Such an arrangement accomplishes two things: First, it “unfolds”
the mathematical property that 100 marbles are 10⇥ 10 marbles and
can thus act as a proof of the proposition “10⇥ 10 = 100”. This obser-
vation is closely connected with Wittgenstein’s distinction between
experiment and calculation, which is more thoroughly explored in
Ts-221a/b, Ts-222 / RFM I, but is of secondary importance for the
present discussion. Second, it gives us a more surveyable or perspicuous
representation of the 100 marbles, because the arrangement of 10 by
10 allows us to count the whole collection much more quickly. If the
marbles are sufficiently uniform and the arrangement tidy enough,
we can see at a glance that the arrangement forms a square, we thus
need to count only the number of marbles in a row, square it and
arrive at the result of the whole calculation.

The arrangement could be said to be a new notation for the number
of marbles, which instead of showing the number as a unary row
of 100 single marbles (“||||||||||...”) shows them as a square of
10 marbles (“||||||||||2”). By “unfolding” the marbles in such a
way, first as an experiment and then later as a calculation, as a rule, we
have made the first step towards our (even more surveyable) decimal
notation, where unary rows of single strokes up to “|||||||||” are
replaced by 0 to 9, so that “|||||||||| ⇥ ||||||||||” is instead
written as “10⇥ 10”.

The next remarks are unique to Ms-121, but continue the line of
thought. As Wittgenstein mentions in Ms-121, 55v.2, his aim is to
compare the use of counting in mathematics with the use outside
of mathematics. In purely mathematical situations, especially when
considering foundational questions, we can often be lead to believe
that the particular manner of counting were unimportant, so that the
difference between unary counting and decimal counting would be
only an inessential matter of definition. This is the case for Russell’s
Principia Mathematica (Ms-121, 55v.3), a system in which calculations
such as 2 + 3 = 5 are possible but become so unwieldy that they
resemble a unary calculation such as || + ||| = |||||. As a conse-
quence, additions and multiplications in Principia Mathematica are in
theory calculable for any natural number, but become too error-prone
in practice for any except very small numbers. From the perspective
of a logician, this practical difference is an unimportant detail and a
system such as Russell’s Principia Mathematica shows us the founda-
tion of our techniques of arithmetic. A logical system thus provides
us with the certainty that 12 ⇥ 12 must equal 144, it gives us confi-
dence that our arithmetic is correct. But for Wittgenstein, the inverse
is true: A proof can only act as a proof if it is “surveyable” (“über-

the basis of RFM I. Their inclusion in Ts-221a/b underscores their close connection
with the beginning of Ms-162a, which can be assumed to have been written around
the same time as the remarks in Ms-121: Ms-162a, 1.1–8.4 correspond to the remarks
Ts-221a/b, 268.6–271.2, in other words exactly to the remarks in Ts-221a/b that follow
the remarks in Ms-121.
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sichtlich” / “übersehbar”), because we must be able to use a proof as
a paradigmatic picture which we can “reproduce with certainty”:

[...] {Zum Beweis gehört, daß seine Vorgänge übersichtlich sind // Die
Vorgänge eines mathematischen Beweises müssen übersehbar sein}, d.h.
wir müssen im Stande sein, ihn mit Sicherheit immer wieder richtig re-
produzieren zu können. (Was ist das Kriterium dieser Sicherheit?) [Ms-121,
55v.3]

[...] {For a proof it is essential that its processes are surveyable // The
processes of a mathematical proof must be surveyable}, i.e. we must be
able to reproduce it correctly again and again with certainty. (What is the
criterion of this certainty?)

In practice, we cannot reproduce large numbers written in unary no-
tation without making a lot of mistakes, nor can we use them in arith-
metical proofs without being unsure that we have not miscounted
such a number at some step along the way. As a consequence, we can-
not calculate with unary numbers once they exceed a certain size, in
the same way that we could not play chess if we could not distinguish
the chess pieces. But even this way of phrasing the situation is dan-
gerously misleading, because it still appears as if the unary numbers
were still numbers in the same way that decimal numbers are num-
bers, merely more cumbersome, so that the ‘mathematical essence’ of
“|||||” and “5” remains the same. But as Wittgenstein remarks in
the context of the chess piece example, a game with uniform pieces
ceases to be chess and its pieces cease to be chess pieces, because only a
game with distinguishable pieces can be called chess, is chess (Ms-121,
56v.2).

This sheds light on the philosophically misleading role of defini-
tions, even (or especially) if they are used to ‘merely’ introduce a
more convenient notation. A calculation such as 129⇥ 336 = 43344

does not have a surveyable representation in Russell’s Principia Math-
ematica and thus does not follow from a proposition expressed in such
a system. To say that “it follows via suitable definitions” is of course
true, but (contrary to what Russell’s Principia Mathematica might sug-
gest) entirely meaningless, as there is nothing forcing us to adopt
these particular definitions over any others (Ms-121, 56v.2).

The justification of the proposition 12⇥ 12 = 144 cannot be stated
and proved by Russell’s system, instead it shows itself in our tech-
niques of addition and multiplication, which are embedded in and
given meaning by a whole form of life. Arithmetic using decimal no-
tation is not secondary to the more foundational Russellian logic, but
the other way around, because we would have no concept of arith-
metic if not for our more ‘primitive’ non-logical notation.37 This flips

37 This is also emphasised by Marion, 1998, pp. 232–233:

This is why Wittgenstein claimed that there is a danger in looking ‘at the shortened proce-
dure as a pale shadow of the unshortened one’ (RFM iii, § 19). On the contrary, the shortened
procedure (decimal notation) tells us the outcome of the unshortened procedure (stroke no-
tation). [...] It is important in this context to understand that Wittgenstein’s argument rests
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on its head the idea of a ‘primitive’ culture that has not yet developed
mathematics rigorously enough to be able to calculate with certainty,
so that their calculation of 10⇥ 10 sometimes results in 99, sometimes
in 100 and sometimes in 101, but where “all three are considered
correct”, an example that Wittgenstein gives in Ms-121, 57v.2, albeit
without the link to the notion of a ‘primitive’ form of mathematics
as proposed here.38 Such an uncertain form of arithmetic, however,
is precisely the arithmetic of a supposedly certain and rigorous sys-
tem such as Principia Mathematica, which we can only rescue from its
primitive state by discarding it as our standard of measurement in
favour of our traditional decimal arithmetic. In other words, if some-
one proved to us repeatedly and without any discernible mistake that
in Russell’s system 10⇥ 10 resulted in 99, we would nevertheless con-
sider the proof to be flawed, because we know that 10⇥ 10 must equal
100, thanks to our knowledge of arithmetic. In case of a conflict be-
tween Russell’s logic and our traditional arithmetic, the latter will be
the judge of what is considered correct, which shows the absurdity
of believing that the logical calculus could justify arithmetic.

This is why it is highly misleading to say of a definition that it “only
abbreviates” an expression. Instead, we should think of it as “intro-
ducing a new calculus”, as Wittgenstein suggests in Ms-121, 57r.4.
Of course Russell’s Principia Mathematica is only an extreme exam-
ple, the same philosophical observation applies even to basic Peano
arithmetic, numbers defined in terms of a single base number 0 and
a successor operation, or the equivalent example that Wittgenstein
gives in Ms-121, 57v.1, “1, 1+ 1, 1+ (1+ 1), 1+ (1+ (1+ 1)) etc”. This
is why to the philosopher, a mathematical definition cannot be an
afterthought, but rather the start of a detailed philosophical investi-
gation that examines the “role” of the definition (Ms-121, 59v.2–59v.3),
which requires asking “a hundred more questions” to resolve or dis-

not just on the fact that the change in complexity implied by the change of notation is to
be taken into account, but also on the fact that the introduction of a new notation usually
means more than the introduction of a method of abbreviation. Wittgenstein was pointing
out against Russell that the positional notation is not dependent on the stroke notation but
has a life of its own.

38 Even though Wittgenstein does not explicitly use the word “primitive” in this con-
text, the connection between Russell’s unsurveyable logic and mathematics of prim-
itive tribes is not as far-fetched as it might at first seem: That Wittgenstein com-
pares another foundational system, set theory, with a “primitive way of thinking”
(Ms-121, 29v.2) was already discussed above (see Section 1.2). Additionally, there
is a close connection between Wittgenstein’s idea of a “surveyable representation”
/ “perspicuous representation” (“Übersichtliche Darstellung”) and his Remarks on
Frazer’s Golden Bough (see Majetschak, 2012). In the same way that Frazer’s sup-
posedly more ‘civilised’ “English parson” (Ts-211, 316.7 / GB p. 125) actually has
a much more ‘primitive’ conception of the rituals of ‘primitive’ people than these
people themselves, the supposedly more advanced logical calculi are actually much
more primitive than their less formalised counterparts. For a more detailed explo-
ration of ‘primitive’ forms of mathematics and the connection with Frazer, Spengler
and “Übersicht” see Brusotti, 2014, pp. 28, 42–57.
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solve a single one (Ms-121, 59v.4). Once we adopt the view that a
definition does not abbreviate, but instead introduces a new calculus,
it becomes obvious that a ‘foundational’ calculus can only be a very
small and specialised part of mathematics, not the foundation for all
of mathematics, which is only a secondary abbreviation for it:

(Die Mathematik ist aber nicht symbolische Logik; sondern diese ein kleiner
Teil der Mathematik. Der Teil, der, durch ein Mißverständnis,

:::
(die) ‘Grund-

lage der Mathematik’ zu sein schien.) [Ms-121, 60r.1]

(Mathematics, however, is not symbolic logic; but rather the latter a small
part of mathematics. The part which, through a misunderstanding, ap-
peared to be

::::
(the) ‘foundation of mathematics’).

Incidentally, this remark as well as Ms-121, 59v.4 are nearly identi-
cal to two remarks in the fragment Ms-178d, consisting of 6 loose
sheets.39 There, Wittgenstein discusses self-referencing propositions
and the role of contradictions in logic, with the link to Ms-121 not
only established through the textual similarity of the remarks but also
through the idea that in the case of ‘abbreviating’ definitions and self-
referencing paradoxes, were are not forced to choose a particular path
(Ms-121, 56v.2), contrary to what mathematical orthodoxy would sug-
gest (see Section 3.4 for a discussion of other remarks in Ms-178d).
Additionally, Ms-178d, 5.1 mentions the sleight of hand that is part of
a “Taschenspielerkunststück” (see Section 1.2), echoing the “boastful”
interpretation of Cantor’s proof.

Although Wittgenstein’s investigation of Cantor in Ms-121 can at
times appear as a meandering exploration of unrelated topics, these
excursions often turn out to be part of a larger investigation treat-
ing Cantor’s diagonal argument not as its main object of study, but
merely as a symptomatic case of conceptual confusion caused by a
lack of “surveyability”, resulting in conceptual confusions and the in-
ability to clearly see the role of definitions. In the case of Cantor’s
diagonal argument, the “u.s.f. ad inf.” is one of these seemingly in-
nocuous definitions, but for other uses of the diagonal method the
philosophical investigation has to branch off in other directions.

1.5 a general form of comparison

On 25 December 1938, three months after the preceding remark in Ms-
121 and nearly half a year after his last explicit remark on Cantor’s

39 Ms-178d is dated as “1.1.1940? – 31.12.1940?” in the Wittgenstein Archives Bergen
Nachlass metadata. This dating is questionable, as the remark Ms-178d, 4.2 contains
more variants than the one in Ms-121 (with only the last variant of Ms-178d appear-
ing in the version of Ms-121) and is much more ‘draft-like’ than the entry in the
latter notebook. The same is true for the corresponding remarks Ms-178d, 4.1 and
Ms-121, 59v.4, with the last variants from Ms-178d used in Ms-121 and the version in
Ms-121 additionally containing the insertion “noch” above “hundert”, which is not
present in Ms-178d, suggesting that Ms-178d was in fact written before Ms-121, 59v.4,
in other words before 5 September 1938 and not in 1940.
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diagonal argument, Wittgenstein returns to questions loosely related
to Cantor’s diagonal argument and its treatment of the infinite. The
topic now occupying Wittgenstein is the proposition that fractions
cannot be ordered according to their size. Of course they can be or-
dered in other ways and thus brought into a 1:1 correspondence with
the natural numbers (in other words they are countably infinite), but
in contrast to the natural numbers the fractions cannot be countably
ordered according to size, since between any two rational numbers
there are always infinitely more rational numbers. It is this talk of
‘infinitely many’ rational numbers ‘that lie between’ any two rational
numbers that interests Wittgenstein, as it seems to hint at one of the
“mysteries of the mathematical world” (Ms-121, 60r.2 / §40).

That Wittgenstein sees this ‘mysterious’ infinity as being related
to the infinity of the cardinal numbers (and thus his earlier remarks
with more explicit connections to Cantor’s diagonal method) is made
evident in a remark not published in RFM II, Ms-121, 60v.4, where
he revisits the infinite series of cardinal numbers and the astonish-
ment that their infinity brings with it. Upon hearing that there is no
greatest cardinal number, that their series is endless, we picture this
infinite series as something that is “monstrously long”, even “more
than monstrously long”. But as soon as we change the aspect and
speak of a “technique” without a designated end, the astonishment
disappears:

Daß dagegen die Technik des Bildens von Kardinalzahlen (etwa durch
Addition von 1) kein Ende hat, daß in ihr kein Ende vorgesehen ist, {ist
ein sehr leicht {verständlicher Satz // verständliches Sätzchen} & nichts
daran, worüber wir staunen würden. // ist ein ganz einfaches & leicht
verständliches Sätzchen.} Niemand wäre versucht die Technik des Zählens
oder des Multiplizierens im unbegrenzten Zahlenraum eine “unendlich
lange Technik” zu nennen. [Ms-121, 60v.4]

That, on the other hand, the technique of forming cardinal numbers (for in-
stance by adding 1) has no end, that in it no end is envisaged, {is a very eas-
ily understandable sentence & there is nothing about it that would amaze
us. // is a very simple & easily understandable sentence.} No one would be
tempted to call the technique of counting or multiplying in the unlimited
number space an “infinitely long technique”.

Similarly, the proposition that fractions cannot be ordered according
to their size conjures up an image of an endless series of trees with
new trees shooting up between every two trees and so forth with-
out end, an image that “can make our head spin” (Ms-121, 61v.1 /
§42). The astonishment brought up by such a picture disappears once
we change the “(re-)presentation of facts” (“Darstellung des Sachver-
halts”) / search for a new “(form of) (re-)presentation” (“Darstellung-
(sweise)”) / fall back on the “((re-)presentation) of the technique of
calculating fractions” (“(Darstellung) der Technik”)40 That there is no

40 The version in RFM II omits all these variants of “Darstellung”. Perhaps not too
much should be read into these variants, but Wittgenstein’s struggle to find new
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“next greatest fraction” is entirely unsurprising once we realise that
we teach a “technique of continuous interpolation” as part of our
technique of calculating fractions and would thus never “want to call”
any fraction the “next greatest” (Ms-121, 63r.2–63r.3 / §§43–44).

The next remark is a central remark that should be read together
with §26 (see footnote in Section 1.2) and summarises what Wittgen-
stein sees as the problematic interpretation of the diagonal method:

Von einer Technik zu sagen, sie sei unbegrenzt, heißt nicht, sie laufe ohne
aufzuhören weiter – wachse ins Ungemessene; sondern, es fehle ihr die
Institution des Endes, sie sei nicht abgeschlossen. Wie man von einem
Satz sagen {könnte // kann}, es mangle ihm der Abschluß, wenn der
Schlußpunkt fehlt oder von einem Spielfeld es sei {nicht begrenzt // un-
begrenzt}, {wenn ihm die Regeln des Spiels keine gezogene Grenze vor-
schreiben. // wenn die Spielregeln keine Begrenzung – etwa durch einen
Strich – vorschreiben.} [Ms-121, 63r.4 / BGM II §45]

To say that a technique is unlimited does not mean that it goes on without
ever stopping – that it increases immeasurably; but that it lacks the insti-
tution of the end, that it is not finished off. As one may say of a sentence
that it is not finished off if it has no period. Or of a playing-field that is
unlimited, when the rules of the game do not prescribe any boundaries –
say by means of a line. [RFM II §45]

We can easily picture a large number of activities without an “institu-
tion of the end”, but we are not astonished by their incompleteness,
nor do we call these activities “infinite”. That certain techniques give
us the ability to go on indefinitely is hardly surprising, but we would
usually not describe them in terms of an infinite series. It is clear that
this critique applies to much more than just the restricted example
of the ordering of fractions, it is instead a more general examination
of our interpretation of the diagonal method. This method is a tech-
nique that can be used to indefinitely produce diagonalised elements
which we then call different from all the elements in the system.

The misleading aspect of the diagonal method as producing an
infinite series instead of as a technique without end (infinitely vs.
indefinitely) is the tendency of the former interpretation to suggest
an analogy where none exists. It is a “new form of expression”, which
we however try to describe “by means of the old expressions” (Ms-
121, 63v.2 / §46).

If we say “A fraction has not a next biggest fraction but a cardinal
number has a next biggest cardinal number” (Ms-121, 64r.2 / §47),
we tend to think that there is something analogous to the next biggest
cardinal number even in the system of fractions, only that it does
not exist (but that we have a clear picture of what it is that cannot
exist). A better picture, however, is a comparison of two different
games: There is nothing in our game of fractions that we call “the
next biggest fraction” (Ms-121, 64r.3 / §48), we have not included

forms of representation that leave all facts as they are while resolving our conceptual
confusion suggests a certain affinity with his conception of philosophy as clarifying
through a “surveyable representation” (PI §122, cf. also PI §92).
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any rule in this system that we could call analogous to the system of
cardinal numbers.

We might be tempted to think that there is a general notion of “next
biggest element” in a series, a notion that is independent of any par-
ticular system, so that we could then say “there is no next biggest ele-
ment in the system of fractions” and “there is a next biggest element
in the system of cardinal numbers”. These two propositions might
indeed be used in certain contexts, but what Wittgenstein seems to
be arguing for is twofold: First, the use of these propositions is much
more restricted than it first appears, because they are not general
mathematical observations, as we might be inclined to believe based
on Cantor’s diagonal argument, but only useful as propositions after
we have introduced a “new concept” that allows us to compare and
distinguish different types of games (Ms-121, 64v.3 / §50). Second,
there is no general, system-independent ‘vantage point’ from which
we could gain an understanding of a general concept such as “next
biggest element”, which becomes clear once we consider the piece
of the King in chess: We can certainly say “In draughts there isn’t a
King”, but the King as a concept exists only in the context of chess.
In the context of draughts we have no idea what could be meant by
“King”, we can only say that there is nothing that we could call a King
in draughts. This distinction is quite delicate and hard to clothe into
words. As Wittgenstein remarks in another context: “These things are
finer spun than crude hands have any inkling of.” (First appearance
in 1939 in Ms-162b, 25v.2, also appears in 1944 in Ms-127, 110.3 and
Ms-124, 161.2, which is published as RFM VII §57). This fine distinc-
tion is beautifully expressed in an unpublished remark that follows
shortly after §50:

‘Wenn Einer Dich fragt: “welches ist der nächst größere Bruch?”, antworte
ihm: “so etwas gibt’s nicht”! (N.B. “So etwas gibt’s nicht” – nicht: “es gibt
keinen nächst größeren Bruch”.) [Ms-121, 65v.3]

If someone asks you: “what is the next biggest fraction?”, answer him:
“there is no such thing”! (N.B. “There is no such thing” - not: “there is
no next biggest fraction”).

It is unfortunate that the editors of the RFM chose not to publish
the above or any of the other 10 remarks between §50 and §51, be-
cause there Wittgenstein repeatedly imagines practical uses for the
expression “the next biggest fraction”, mostly in the context of teach-
ing someone how to calculate with fractions (and interpolate between
them). The remarks are a beautiful example of Wittgenstein’s way of
philosophising: Exactly because the distinction between “there is no
such thing” and “there is no next biggest fraction” is so delicate, it
is important to look at the practical grammar of these expressions.
Otherwise, this distinction risks being blurred, or worse, collapses
completely under the pressure of generality.
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Saying that “there is no next biggest number” does not mean that
there is such a thing in general, but that it does not exist in this partic-
ular game (at least not in the absence of an extra concept that allows
us to compare different systems with each other, which something
like the diagonal method does not give us on its own). It says that
there is no such concept in the context of this game, nothing that we
would call the “next biggest number”, “here, in this game”:

‘In dieser Technik gibt es also keine Verwendung für den Ausdruck {des
‘nächst größeren Reihengliedes’ // der ‘nächst größeren Zahl’}

::::
oder: ‘Was

wolltest Du hier die ‘nächstgrößere Zahl’ nennen?’ Wir werden sagen: es
gibt hier keine. Hier, in diesem Spiel. [Ms-121, 66v.3]

‘So in this technique there is no use for the expression {‘next biggest series
member’ // ‘next biggest number’}

::
or: ‘What did you want to call the ‘next

biggest number’ here?’ We will say: there is none here. Here, in this game.

It is this “here” that Cantor’s diagonal argument obscures by seem-
ingly being able to say something about any possible form of game,
even games that have not been invented. But the use of a proposition
such as “there is no next biggest fraction” is to show us where an
analogy breaks down between different systems, not to test whether
the propositions holds in two different systems, which would empha-
sise their similarity and comparability. In the context of fractions, the
proposition “there is a next biggest fraction” is not wrong, but sim-
ply nonsense. As a consequence, “what is the next biggest fraction”
is already nonsensical as a question. It cannot be answered by saying
“there is no next biggest fraction”, unless we mean it in the defla-
tionary sense of “there is nothing that we would call the next biggest
fraction”:

‘Frag also nicht, durch die Analogie mit den Kardinalzahlen {verführt //
verleitet}: “welches ist der nächstgrößere Bruch”!’ Dies hat offenbar Sinn.
[Ms-121, 67r.1]

‘So don’t ask, {seduced // misled} by the analogy with the cardinal num-
bers: “which is the next biggest fraction”!’ This apparently makes sense.

This makes it clear why it is misleading to treat these propositions as
a “fact of nature” (Ms-117, 108.3 / §19). The existence or inexistence
of a “next biggest fraction” is not a fact in the mathematical realm,
eternally ‘true’ and independent from the rest of the system of frac-
tions, but only meaningful against the backdrop of this technique. It
is not a “fact of nature” for fractions, only a fact of the “nature of
their use”:

‘Die Brüche lassen sich nicht ihrer Größe nach in eine Reihe ordnen’ – {aber
nicht ihrer Natur nach, sondern den Regeln nach, & der Natur ihrer Ver-
wendung {nach // gemäß}. // {Aber // aber} es liegt nicht in ihrer Natur,
sondern in den Regeln & in der Natur ihrer Verwendung.} [Ms-121, 67r.2]

‘Fractions cannot be arranged in a series according to their size’ - {but not
according to their nature, rather according to the rules, & according to the
nature of their use. // But it is not due to their nature, rather due to the
rules & the nature of their use.}



80 cantor , numbers and enumerability

But even if we accept this reasoning and see an expression such as
“the next biggest number” as a case that depends on the special mean-
ing given to it inside the system of fractions, what about the fact that
there is a way to order all fractions in an infinite series, just not ac-
cording to their size? Once we realise that we can order fractions by
seeing them as pairs of numbers arranged in a table (with the fraction
1
2 as the cell in the first column and the second row), we can order
them by walking through the table in an ever increasing triangle: 1

1 ,
1
2 , 2

1 , 1
3 , 2

2 , 3
1 , etc. Have we then not learned a general technique that

we can apply to a whole range of systems? Does it not make sense to
ask the very general question which systems can be ordered in such
a way, with the rational numbers being a system that can be ordered,
while for the real numbers this is impossible (as a consequence of
Cantor’s diagonal argument)?

Wittgenstein considers these questions in §§51–57 (Ms-121, 67r.3–
69v.2). Someone who learns about a way to order fractions in the way
describe above unquestionably learns something, for example to give
each fraction a number (in the series) and to determine the number of
a given fraction (Ms-121, 67r.3/ §51). The method described above is
a general technique that can be applied not just to fractions, but to any
pair of numbers and even more generally to any tuple of numbers. It
seems as if we had not only learned a special technique in the context
of fractions, but more generally about the existence of such a technique
(Ms-121, 67v.2 / §52).

As a result, it can seem as if it must have sense to speak of the
applicability of the technique itself, as a concept that stands on its
own. Yes, we have learned that the concept is applicable to the system
of fractions, but more generally we have learned that the application
of this concept is possible. We might then think of “... can be ordered
in an infinite series” as a general predicate that we can use to test
any imaginable system, and as a consequence distinguish systems
that can be ordered from those that cannot, as a systematic way of
classifying systems.

To warn against such a view, Wittgenstein considers the simpler
example of multiplication. It would be strange to say that by teaching
someone to multiply this person has not only learned the technique
of multiplication, but also that “it is possible to multiply”. It is possi-
ble to use the concept of multiplication more generally and apply it to
different systems and even explain one in terms of each other, such as
when we teach the multiplication of fractions in analogy to the mul-
tiplication of natural numbers. (Ms-121, 68r.2 / §54) But even this is
misleading, because it is not a general application of a general concept
(which would belong to the “system of all systems” that Wittgenstein
mentioned earlier in Ms-121), but only an analogous application that
is justified by and dependent on a concrete concept of comparison
between these two systems.



1.5 a general form of comparison 81

We might be tempted to think that this ‘defect’ of the concept “...
can be ordered in an infinite series” is a fault of our imprecise lan-
guage, that we could create and apply a truly general concept if we
only had a more general language in which to express the concept.
As Wittgenstein says, our ordinary expressions are merely an “ap-
proximate description of the technique one is teaching, say a not un-
suitable title, a heading to this chapter” (Ms-121, 68v.1 / §55). But the
view that we could go beyond this merely superficial way of describ-
ing a technique to unambiguously capture the essence of a concept,
by employing a more rigorous formalisation along the lines of Frege
and Russell, is exactly what Wittgenstein wants to deny. Yes, it is
possible to formalise and prove a proposition such as “multiplying
is possible”, but it does not get us any closer to the ‘essence’ of the
concept than the ‘imprecise’ picture we had before: The use of such a
proposition is not any clearer than before and it never will be, if the
use of the ‘imprecise’ picture was restricted to being a “memorable
picture” in our process of teaching (Ms-121, 68v.2 / §56).

The right way to avoid and clarify philosophical confusions is not
to formalise the imprecise picture until all the impreciseness has been
extinguished, but rather to see the picture as a picture and focus on
the “interest of this calculation in its application” (Ms-121, 69v.2 /
§57), ignoring the chapter “titles”.41

In the next 7 remarks, none of which were published in RFM II,
Wittgenstein returns explicitly to Cantor’s diagonal argument. In the
first of these remarks, he once again considers the difference between
saying that a number is different from others and saying that we call a
number different from others. In the first case, the resulting number is
embedded in a calculus, the proposition that the number is different
thus has a use. But in the second case, the resulting number (such as
the result of the diagonalisation) is not used in any calculus (Ms-121,
69v.3). In other words, only in the second case are we free to say that
we call it a number because we could also imagine the alternative of
not calling it a number, whereas in the first case we say that it is a
number because we would otherwise have to give up a multitude of
interconnected language games that use such a number.

The next remark continues this line of thought. Wittgenstein readily
admits that we learn a new rule for constructing a decimal expansion,
but what does Cantor’s proof actually prove? We could imagine the
diagonal method to be the answer to a riddle, as “mathematical fire-
works”. But does it not have to be more than that? Does it not force
us to say that the diagonalised number is a number? As Wittgenstein
points out, here we are thinking about the finite case:

[...] Hast Du mir eine von allen diesen Zahlen verschiedene Zahl gezeigt?
Du hast mir etwas gezeigt was ich ({vielleicht // etwa}) geneigt bin eine

41 This explicit reference to §55 is evident in the unpublished variants of Ms-121, 69v.2:
“Trenne Dich [...] von [...] {diesen Phantasien // phantasieanregenden Titeln // von
diesen Titeln}”
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{solche // von allen diesen verschiedene neue} Zahl zu nennen. [...] Ich
möchte das rechtfertigen indem ich sage: Es ist eben hier alles anders, ich
bin nicht mehr – wie im {

:::::
andern //

::::::::
endlichen} Fall – gezwungen dies so

zu nennen. Aber hier ist doch nur ein Gradunterschied! Du {könntest doch
auch im andern Fall sagen, Du seist nicht gezwungen // kannst ja eben
von jedem neuen Fall sagen hier gelte die alte Regel nicht mehr}. Jeden
mathematischen Unterschied kannst Du Unterschied der Art nennen!
Du kannst überall

::::
(oder

::::::::
nirgends) eine scharfe Biegung sehen. Gewiß; aber

auf diesen Gradunterschied muß man aufmerksam {machen // sein}. Denn
{durch diese Gradunterschiede // über diese Stufenleiter // auf dieser
Stufenleiter} geht, was jeder einen Beweis nennt, in etwas über, was nie-
mand mehr einen Beweis nennen würde. Wenn Du Dir des Unterschieds
bewußt wirst, redest Du nun noch so wie früher? [Ms-121, 70r.2]

[...] Have you shown me a number different from all these numbers? You
have shown me something which I am perhaps inclined to call {such a
number // a different number from all of these}. [...] I would like to justify
this by saying: Here everything is different, I am no longer – as in the {

::::
other

//
::::
finite} case – forced to call it that. But here we have only a difference of

degree! {You could also say in the other case that you are not forced // can
just say of every new case that the old rule no longer applies here}. You can
call every mathematical difference a difference of kind!
You can see a sharp bend everywhere

::
(or

::::::::
nowhere). Certainly; but one must

draw attention to this difference of degree. Because {through these differ-
ences of degree // over this ladder // on this ladder} what everybody calls
a proof turns into something which nobody would call a proof anymore.
When you become aware of the difference, do you still speak as before?

The above remark acts as a focal point of the previous reflections
in Ms-121 and explains quite concisely why Wittgenstein wants to
distinguish between the finite and the infinite case: In the finite case,
the result of the diagonalisation is a number with a finite number of
decimal places, in other words a fraction. This is why we say that it is
a number, the alternative would be to give up our whole concept of
fractions as number and all the language games that are linked to it.
But in the infinite case “everything is different”, we are not “forced”
to call the diagonalised number a number, because it can be clearly
distinguished from what we usually call a number: As Wittgenstein
mentioned before, the diagonalised number is “essentially” a decimal
expansion, whereas for our ‘usual’ numbers a decimal expansion is
only an “inessential” aspect.

But then why not object that this line of reasoning applies to any
step of following a rule, not just the step from finite to infinite case
in Cantor’s diagonal argument? After all, nothing forces us to follow
rules the way we do. Wittgenstein seems to sidestep the issue slightly:
Just because we can question every step in a mathematical argument
does not mean that it is useful or of interest to question it. Wittgen-
stein’s investigation of Cantor’s diagonal argument is not a trivial
form of scepticism, but a very targeted examination of a few central
points in the proof. Whether we see the proof in a new light and
consider some of these differences to be more than gradual is up to
us. This will decide whether we change our manner of speaking or
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not, but it is not Wittgenstein’s aim to point out ‘defects’ in the proof,
because there is obviously nothing wrong with it, only to show us dif-
ferences in use that could perhaps allow us to see otherwise neglected
aspects.

By pointing out that the infinite diagonalised number is not embed-
ded in a calculus in the same way as in the finite case, Wittgenstein
has already mostly dealt with the objection. Cantor’s diagonal argu-
ment cannot “force” us to call the infinite diagonalised number a
number, but not due to some trivial scepticism, rather because the di-
agonalised number does not have the same ‘standing’ in our language
as other more traditional numbers: In the words of the later writings,
the diagonalised number is not as fixed, it is not a “hinge” in the same
way as other numbers are, because it lacks the surrounding language
games that restrict its degrees of freedom.42 To deny that something
like 2 or 12.5 is a number would be to give up a whole form of life, but
to deny that the diagonalised number is a number is to give up only
a comparatively small number of mathematical language games.43

Cantor thus leaves us with a choice: If we call diagonalisation a
way to construct a new real number, then we will give up speaking
of a system of all real numbers (Ms-121, 71r.2). But exactly because
it is a choice, it is “highly misleading” to say that the real numbers
“cannot” be ordered in a series, in analogy to the contrary proposition
for rational numbers. This would suggest that the proposition were
applicable to the real numbers but simply has a different truth value
than in the case of rational numbers. Instead, our choice has made
the proposition inapplicable, except as a non-mathematical “chapter
title”, a “mock facade”.

It is these non-mathematical sentences, these mock facades that
Wittgenstein wants to attack, or rather, not so much the use of mock
facades in mathematics, but cases in which we mistake these mock
facades for facades with mathematical substance behind them (Ms-
121, 71v.2–71v.3). In these cases we risk using mock facades instead
of mathematical calculi, we think of them as mathematics, when they
are really only “prose” (which is the term that Wittgenstein employs

42 Cf. Ramharter, 2019 and the distinction between a mathematical proposition such as
“25⇥ 25 = 625” on the one hand, which is a grammatical proposition and a hinge
proposition, and a mathematical proposition such as “There is no greatest cardinal
number” on the other hand, which is also a grammatical proposition but not a hinge
propositions.

43 To be fair, even this ‘sacrifice’ is already quite substantial and it is understandable
that most mathematicians do not want to follow Wittgenstein here. But it should be
pointed out that Wittgenstein is not advocating for a denial of Cantorian infinity, he
merely wants to show that these concepts are much less firmly embedded in our
way of life than Cantor’s diagonal argument suggests and that we could imagine a
different form of life, where Cantor’s proof is viewed in a completely different light.
It should also be kept in mind that Wittgenstein’s critique of Cantor is not a critique
of Cantor alone, but includes the applications of the diagonal method, for example
by Gödel, in the ‘foundations of mathematics’, a field that Wittgenstein regards with
suspicion.
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in Ms-127, 185.2 / RFM V §46 and Ms-124, 138.3 / RFM VII §41, both
from 1944). Wittgenstein gives an example of such a mock facade:

Zu sagen “man kann sie nicht in ein System ordnen, weil ihrer mehr sind
als in einem System Platz haben” ist greulicher Unsinn.

Die Frage ist ja doch: wer sind die sie die ich nicht in ein System ordnen
kann? Ist es denn nicht so daß mir der Cantorsche Beweis einen andern
Sinn von “sie” zeigt? Wir haben hier eine andre Art von Begriff, eine neue
Verwendungsart für ein Begriffswort. [Ms-121, 72r.1–72r.2]

To say “you can’t put them in a system because there are more of them than
there is room for in a system” is atrocious nonsense.

The question is: who are the they that I cannot arrange in a system? Is it not
the case that Cantor’s proof shows me another sense of “they”? We have
here a different kind of concept, a new mode of use for a conceptual word.

Cantor’s diagonal argument does not show us a number in the fa-
miliar sense that is different from all the others, the proof does not
discover a concrete number. There are no “they” / “them”, there is no
collection of numbers like 2, 12.5 or ⇡ that resist our attempt to order
them. Instead, the diagonal argument invents a new concept of “they”
/ “them”, a new use of “they” / “them”, not a collection of elements
that are simply too numerous to be ordered.

Wittgenstein then separates the next remark with a horizontal line,
what follows afterwards mostly revolves around contradictions in
logic and Gödel’s incompleteness theorem.44 These remarks diverge
too far from Wittgenstein’s direct discussion of Cantor’s diagonal ar-
gument to be discussed here at length, but the separating line should
not be interpreted as the beginning of an entirely new topic: As the
unpublished remarks after §57 have shown, Wittgenstein wraps up
his line of thought by going back to points that were first brought
up earlier in Ms-121 and Ms-117, albeit with more clarity than in his
first attempts. He can now investigate another aspect of the diagonal
method: its application in Gödel’s incompleteness theorem. The dis-
cussion of contradictions and Gödel is not unrelated to the rest of
Ms-121, merely important enough to deserve its own investigation.
The remarks on Russell and Gödel in Ms-121 do not stand on their
own, but are symptomatic cases of “mock facades” that appear as
solid buildings, solid enough, in fact, to act as foundations of mathe-
matics. It is understandable that the editors of RFM II chose to focus
on the more explicit remarks on Cantor’s diagonal argument, but
a faithful reading of Wittgenstein must try to take into account the

44 While these remarks seem to treat a distinct issue, it would be mistake to read Witt-
genstein’s remarks ‘on’ contradictions in different parts of the Nachlass as a sustained
and uniform treatment of a single topic. Instead, Wittgenstein’s discussions of contra-
dictions are as varied as the use (and distrust) of contradictions in mathematics and
logic. Some of the different aspects of these remarks on contradictions are discussed
in Ramharter, 2010, with Cantor’s diagonal argument as the “guideline”.
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motivation for his engagement with this particular proof or risk mis-
understanding his remarks as an overreaching attack of sound math-
ematical practice.

Apart from the general observation that Gödel’s incompleteness
theorem is a limitative result demonstrating the logical impossibility
of a (consistent) “system of all systems” (see Section 1.2), there are a
number of more direct links with explicit remarks on Cantor that can
serve as a supporting argument for reading Wittgenstein’s remarks
on Cantor in connection with his interest in Gödel and Russell’s Prin-
cipia Mathematica. For example, the third remark after the separating
line reflects on the view of propositions in Principia Mathematica as a
list, which links Wittgenstein’s discussion of contradictions, inconsis-
tency and completeness with questions of enumerability and count-
ability:45

Man könnte die Principia Mathematica auffassen, nicht als fortlaufende

::::::::
Mitteilung, sondern als Liste, als Katalog, von Sätzen gewisser Form (mit
beigefügten Analysen dieser Formen). [Ms-121, 72v.2]

One could regard the Principia Mathematica not as a continuous
::::
mes

::::
sage,

but as a list, a catalogue, of propositions of a certain form (with attached
analyses of these forms).

Furthermore, the following remarks make it clear that Wittgenstein
is not interested in contradictions in general, but wants to focus on
very specific occurrences of contradictions in situations like those
produced by the diagonal method (where the assumption that all
elements lie inside the system leads to a contradiction with the di-
agonalised element, that lies outside the system). It is only in these
very specific situations that a contradiction can potentially be entirely
harmless, because there is no (practical, extra-mathematical) use for
contradictions produced through diagonalisation:

Wenn Einer {dort einen Widerspruch // einen Widerspruch dort} findet,
oder erzeugt, wo für die satzartigen {

::::::
Gebilde // Zeichenverbindungen}

die {einander widersprechen // den Widerspruch bilden}, keinerlei Ver-
wendung vorgesehen ist, dann ist gegen diesen Widerspruch vorerst nichts
einzuwenden. [Ms-121, 73v.2]

If one finds, or creates, a contradiction where no use is intended for the
proposition-like {

:::::::::::
constructions // sign combinations} which {contradict

each other // form the contradiction}, then there is nothing to object to
this contradiction for the time being.

Wittgenstein immediately makes it clear that he is not advocating for
logical trivialism (so that a single contradiction in a system would
entail every imaginable proposition), but rather suggests a more nu-
anced, even paraconsistent view for these specific situations:

45 An even more explicit connection in that regard are the two remarks Ms-162a, 68.2–
69.2, which were written in January 1939, shortly after the last remarks in Ms-121
and should be seen as a continuation of that document. In Ms-162a, Wittgenstein
discusses diagonalisation and then remarks: “Dann sind aber auch die Sätze der
Arithmetik nicht abzählbar. Dagegen sind aber die in Russells System beweisbaren
Sätze abzählbar.”
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“Aber aus einem Widerspruch folgt ja jeder Satz! Was würde dann aus der
Logik?”
Nun so folgere nichts aus einem Widerspruch! [Ms-121, 74r.3]

“But from a contradiction follows any proposition! What would then be-
come of logic?”
Well, then don’t infer anything from a contradiction!

As Wittgenstein made clear in the context of Cantor’s diagonal argu-
ment, we have a certain leeway in calling or not calling the diago-
nalised result a number, because its use is not as ‘fixed’ as in the case
of the natural numbers that are embedded in a multitude of language
games and hold a prominent position in our forms of life. The same
applies to contradictions that are similarly ‘artificial’:

Erinnere Dich hier Deiner Freiheit, möchte ich sagen, zu gehen, wie Du
willst.

Und heißt das nicht: Verstehe, was Dich sonst gebunden hat & daß Du also
hier frei bist? [Ms-121, 75r.3–75r.4]

Remember here your freedom, I want to say, to go as you will.

And doesn’t that mean: Understand what has otherwise bound you & that
you are therefore free here?

We are free to choose how to proceed, for two reasons (which are
closely linked in the case of diagonalised contradictions): First, the
contradiction gives us two options, p and ¬p. Second, we are free to
choose which option to take because the contradiction itself has no
use, it is not embedded in our way of life. The second reason is crucial
and applies only because the contradiction does not have “any kind
of work to accomplish”:

Nicht {das // dies} ist {
::

ein
:::::::
Unglück // perniziös}: einen Widerspruch zu

erzeugen {in der Region, in der // dort, wo} weder der widerspruchsfreie
noch der widerspruchsvolle Satz {eine // irgend welche} Arbeit zu leisten
hat; wohl aber das: nicht zu wissen, {wo man in diese Region eingetreten ist
// wie man dorthin gekommen ist // wo man in diese Region gekommen
ist wo der Widerspruch nicht mehr schadet}. [Ms-121, 74v.2 / BGM IV §60]

The pernicious thing is not: to produce a contradiction in the region which
neither the consistent nor the contradictory proposition has any kind of
work to accomplish; no, what is pernicious is: not to know how one reached
the place where contradiction no longer does any harm. [RFM IV §60]

Lastly, the passage on contradictions and Gödel also revisits Wittgen-
stein’s earlier remarks on inductive proof (see Section 1.2, especially
the remarks Ms-121, 31v.2 and Ms-121, 32r.3):

Nennen wir die Russellschen Beweise ‘Konstruktionen von Sätzen’ – was
ist aber dann ein Induktionsbeweis? Er kann doch als Konstruktion nicht mit
den andern verglichen werden. [Ms-121, 77v.2]

If we call Russellian proofs ‘constructions of propositions’ - what then is a
proof by induction? After all, it cannot be compared with the others as a
construction.
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Wittgenstein continues his remarks on contradictions and Gödel for
10 more pages, before returning more directly to Cantor in Ms-121,
86r.1, without separating this ‘return’ by a line or even implicitly
through a chronological break, however.

1.6 beyond a system of operations

Wittgenstein begins his return to an explicit discussion of Cantor’s
diagonal argument with an interpretation of Cantor’s proof that side-
steps any misleading talk of uncountable sets being more numerous
or in some way bigger than the infinity of the natural numbers. In-
stead, we could say that the proof shows us “that one has no con-
ception of a system of infinite decimal fractions”, contrary to what
the “similarity of their notation with that of the cardinal numbers”
might suggest (Ms-121, 86r.1). Such an interpretation emphasises the
difference between the two cases: the systematic case of the cardinal
numbers stands thus in stark contrast to the inherently unsystematic
case of the real numbers, instead of talking about two supposedly
systematic cases by comparing their ‘number of numbers’. In the
case of the real numbers, the “number of all real numbers” is only
a “metaphor”, which does not mean that the metaphor were wrong
or worthless, only that the use of this picture is yet to be established
by the calculus standing behind it (Ms-121, 86r.2). It matters not only
that such a picture can be used, but how, as Wittgenstein explains a
few remarks later:

Laß {uns // mich} hinter die Kulissen dieser Definition schauen! (Ich will
mich dann ruhig wieder in den Zuschauerraum setzen.) Die Frage scheint
irrelevant – aber warst Du wirklich ganz ahnungslos, als Du sie gabst, hast
Du sie nicht im Hinblick auf eine bestimmte Anwendung gegeben? Nun, es
macht ja nichts, wenn es so ist. Nur schillert ({Frege // Freges Ausdruck})

:::::
Deine Definition: man kann sie einmal als unangreifbare, weil willkürliche,
Festsetzung der Bezeichnung verstehen & {zugleich aber

:::::
wieder // dann

wieder} als Satz über die Natur der Zahlen.
“Aber was kann man mehr von einer Konvention des Ausdrucks wollen, als
daß sie sich hinterher als äußerst brauchbar erweist?!”
Aber {da // hier} ist es eben schwer, {daß man sich & dem Andern kein x
für ein u vormacht // sich & dem Andern kein x für ein u vorzumachen}:
{denn ist {sie // die Definition} nun brauchbar, {weil // indem} sie unsrer
Phantasie Nahrung gibt, oder in anderer Weise? // denn besteht nun die
Brauchbarkeit dieser Definition darin, daß sie unserer Phantasie durch das
Bild, {

:::
was // welches} sie einführt, allerlei Nahrung gibt; oder besteht sie

in etwas anderm?} [Ms-121, 86v.3]

Let {us // me} look behind the scenes of this definition! (I will then sit
quietly back down in the audience again.) The question seems irrelevant
- but were you really quite clueless when you gave it, did you not give it
with a particular application in mind? Well, it doesn’t have to matter if it
happens to be so. Except that

:::
your definition shimmers ({Frege // Frege’s

expression}): one can understand it on one hand as an unassailable, because
arbitrary, stipulation of the denotation & {but at the same time

::::
again //

then again} as proposition about the nature of numbers.
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“But what more can one want from a convention of expression than that it
should afterwards prove to be extremely serviceable!”
But {there // here} it is just difficult that one does not lead oneself & the
other up the garden path: {After all, is {it // the definition} useful because
it gives food to our imagination, or in some other way? // For does the
usefulness of this definition consist in the fact that it gives all kinds of food
to our imagination by the image

:::::
which it introduces; or does it consist in

something else?}

As Wittgenstein mentions in the third paragraph, we could certainly
call a definition useful even if it does nothing more than feed our
imagination, in the same way that even a mock facade can be useful
by being aesthetically pleasing. But as the first paragraph points out,
the question that motivates a diagonal proof such as Cantor’s (for
example: “Can we sequentially number all the elements in the collec-
tion X?”) matters, because it hints at the practical applications that
gave rise to it and made us search for an answer. The definition that
we adopt as a result of the diagonal proof (the “uncountable number
of all real numbers”, for example) seems to be entirely independent
of our original motivation, however, as it depends solely on the math-
ematical proof. As a consequence, the definition appears to be either
an entirely arbitrary stipulation (the formalist view) or a deep discov-
ery about the nature of numbers (the platonist view).

Wittgenstein has made it repeatedly clear that these extreme view-
points are a consequence of our failure to “look behind the scenes”
(an image used again a few days later in Ms-162a, 87.1 and further ex-
plored in Ms-162a, 92.1), a result of our neglect of the real mathemat-
ical building behind the mock facade and our myopic focus on the
prose instead of the mathematical substance. He now adds another
picture, that of the suburb consisting entirely of mock doorways and
mock windows:

Ein Tor ist etwas durch das Haus, was dahinter steht, ein Fenster durch
den Raum in den es Licht läßt. Denke Dir eine Stadt mit Häusern, Straßen
& Gärten & eine ihrer Vorstädte bestünde aus Toren ohne Häusern, Fen-
stern in Mauern ohne Zimmer dahinter, Gartenzäune die keinen Garten
umgeben, Gaslaternen, die mit keinem Gaswerk in Verbindung stehen. [Ms-
121, 87v.2]

A gate is something by virtue of the house that stands behind it, a win-
dow by virtue of the room into which it admits light. Think of a city with
houses, streets & gardens & one of its suburbs would consist of gates with-
out houses, windows in walls without rooms behind them, garden fences
surrounding no garden, gas lamps not connected to any gasworks.

Not only is it a beautiful image, it also emphasises the parallels to
other parts of the Nachlass (see the other occurrence of “Vorstädte” in
Ms-142, 12.2, from where it is transferred to Ts-220, 10.2, Ts-239, 9.4
and finally Ts-227a, 15.3 / PI §18) and the close connection of the idea
of mock facades and prose in mathematics with the idea of imagining
a form of life.
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The remarks that follow were all published in RFM II and form
the concluding sections §§58–62. The first three of these deal with the
use of the word “infinite” in mathematics and revisit ideas similar to
the mock facades and the suburb. As Wittgenstein emphasises in Ms-
121, 87v.3 / §58, the use of the word “infinite” in mathematics is not
dangerous in and of itself, but it becomes misleading when it gives
the calculus its meaning instead of vice versa.

That there is nothing infinite to be found ‘inside’ the calculus (Ms-
121, 88v.2 / §60), as if we had peaked into a box and found nothing
extraordinary inside, only finite rules, is of course the finitist view
of mathematics. Wittgenstein does not want to advocate for finitism,
which would amount to an interference in our language and the ex-
clusion of a possibly useful concept. Instead, he wants to lead the
investigation back to the “everyday employment of the word “infi-
nite””, so that we look at how it is used “in connexion with these
mathematical calculi”: not in a mathematical vacuum, but embedded
in our whole way of life.46

The last two remarks of RFM II are some of the most holistic and
meta-philosophical in all of Wittgenstein’s remarks on Cantor, it is
thus understandable that they were chosen as the end of the pub-
lished work. In the first remark (Ms-121, 89r.2 / §61), Wittgenstein
draws a parallel between “finitism and behaviourism”, which “both
deny the existence of something” (the infinite and the inner, respec-
tively), a remark that is mirrored in LFM XII, p. 111 (“Finitism and
behaviourism are as alike as two eggs”). More interestingly, however,
it shows a striking parallel to the very last remark of Philosophy of Psy-
chology – A Fragment (previously published under the title Philosophi-
cal Investigations – Part II), §xiv (Ms-144, 40r.2, with a nearly identical
variant in Ms-138, 12a.2):

46 Wittgenstein’s emphasis on surveyable proofs (which become unsurveyable if they
contain too many elements to be reproduced without errors) has sometimes been
interpreted as an irrevocably finitist, even strictly finitist, position. But while it is
true that Wittgenstein wants to deny that we could directly use a system such as
Peano arithmetic to calculate with large numbers, this does not imply that we can-
not have a concept of peano-unsurveyably large numbers or a concept of infinity
that has mathematical sense, nor does it preclude the possibility of speaking of the
infinity of the natural numbers without running into philosophical confusions. In all
of those instances, the concepts are given a meaning in other languages games, our
mistake is simply that we are misled by the analogy to Peano arithmetic in the small
and finite cases, believing that the other language games could fall away and the
concepts be reduced to Peano arithmetic (and other foundational systems). As Fras-
colla, 2006, p. 145 correctly points out while discussing surveyability in the context
of Wittgenstein’s perceived revisionism:

Wittgenstein moves some criticisms against the platonistic interpretation of the true import
of Cantor’s proof; nevertheless they do not originate in any way from a presupposed iden-
tification of legitimate mathematics with finitist mathematics and, even less so, from the
violation, by Cantor’s proof, of the requirements imposed by strict finitism. Once the ap-
propriate clarifications have been made about what, in his opinion, it really demonstrates,
Cantor’s proof is more than good enough for Wittgenstein, in spite of the certainly non-finite
nature of the “objects” it deals with.
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Es ist für die Mathematik eine Untersuchung möglich ganz analog unsrer
Untersuchung der Psychologie. Sie ist ebensowenig eine mathematische, wie
die andre eine psychologische. In ihr wird nicht gerechnet, sie ist also, z.B.,
nicht Logistik. Sie könnte den Namen einer Untersuchung der ‘Grundlagen
der Mathematik’ verdienen. [Ms-144, 40r.2 / PPF §xiv]

An investigation entirely analogous to our investigation of psychology is
possible also for mathematics. It is just as little a mathematical investigation
as ours is a psychological one. It will not contain calculations, so it is not,
for example, formal logic. It might deserve the name of an investigation of
the ‘foundations of mathematics’. [PPF §xiv]

As Wittgenstein mentions in LFM XII, the position of the “opponents”
are equally absurd (although this way of phrasing it is rather dog-
matic). In the case of psychology, it is the mentalist view that privi-
leges the inner above all else, or more precisely the “pneumatic con-
ception of thought” (Ts-227a, 84.2 / PI §109)47. In the case of mathe-
matics, it is the platonist conception that views the uncountability of
the real numbers as a discovery in the ideal realm of mathematics, Can-
tor’s paradise of set theory (which Wittgenstein explicitly mentions
in Ms-144, 39v.5 / PPF §xiv).

The parallels to his remark in PPF §xiv continue into the last re-
mark of RFM II (Ms-121, 89r.3 / §62): Wittgenstein’s philosophical
investigation of Cantor’s diagonal argument must not interfere in
mathematical matters, it is not the task of the philosopher to “shew
that calculations are wrong, but to subject the interest of calculations
to a test”, not even to say: “That is absurd” (in contrast to his more
dogmatic statement in LFM XII). Instead, the aim of a philosophical
investigation is to “survey” (“übersehen”) the “justification of an ex-
pression” by clarifying its use.48

47 See Trächtler, 2021 for a detailed discussion of the “pneumatic conception” in Witt-
genstein’s later philosophy. Majetschak, 2020 provides an overview of the “mislead-
ing parallel between outer and inner” and also includes an examination of the role of
“Übersicht” in Wittgensteins late writings on the philosophy of psychology, which is
arguably one of the links between the seemingly disconnected fields of mathematics
and psychology.

48 Contra Mühlhölzer, 2010, the use of “übersehen” in Ms-121, 89r.3 / §62 should be
interpreted as being intimately linked with the earlier use of “übersehbar” in the
context of mathematical proofs (Ms-121, 55v.3, see Section 1.4). The variety of En-
glish translations (“surveyable”, “perspicuous”, “synoptic” and others) often ob-
scures that “Übersicht” and “übersichtliche Darstellung” are in fact some of the
central terms in Wittgenstein’s philosophy (Majetschak, 2016). In fact, the lack of
“surveyability” caused by ‘abbreviating’ definitions is one of the core issues in Witt-
genstein’s philosophy of mathematics and explains why only a philosophical inves-
tigation, resulting in a surveyable representation, can clarify these situations: For a
mathematician, the difference in surveyability between unary and decimal notation
is negligible, a (surveyable) unary number with 3 strokes is just as much as number
as one with a million. The only way to clarify these mathematical concepts, then, is
to describe and compare the practical techniques in their specific language games, a
task which falls to Wittgenstein and his surveyable representation. As a consequence,
surveyability in mathematics and philosophy are not two separate concepts, but
heavily interrelated, with the unsurveyability of mathematical logic and the ‘founda-
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Furthermore, the remark and its use of “survey” / “übersehen”
highlight the fundamental importance of Wittgenstein’s comparison
of two different ways of counting in Ms-121, 91r.2 / §59 (the unary
“||||” and the decimal “4”), which can only be understood in light
of his development of the concept of “Übersicht” / “übersehen”:
Mathematically, all natural numbers can be defined as the repeated
application of a successor “operation” (to use Wittgenstein’s own
term from the Tractatus) to the “base” 0, in other words as the re-
peated addition of a single stroke. The difference between the nota-
tions “S(S(S(S(0))))”, “||||“ and “4” is merely a difference of nota-
tion, easily bridged by suitable definitions (which is the central point
of TLP 6.02). Such a view considers numbers as a single system, which
produces its element through the repeated application of an opera-
tion. Cantor’s diagonal method extends this viewpoint to systems of
numbers, by giving us an operation which can be used to repeatedly
produce elements that are not yet elements in the (assumed ordering
of the) existing system. This repeated application of the diagonalisa-
tion operation allows us to ‘escape’ from any assumed ordering of
the real numbers into an even greater infinity than that of the natu-
ral numbers, but it also allows us to build up a hierarchy of these
ever greater infinities in the form of cardinal numbers (through the
repeated construction of the diagonal set, see footnote in Section 1.2).
This two-step procedure of first ‘escaping’ a system but then ‘approx-
imately capturing’49 these escaped elements in an infinite hierarchy
lies at the root of many other applications of the diagonal argument,
with Cantor’s own diagonal argument merely being the original ex-
ample. It can more generally be used as a systematic method to pro-
duce elements that cannot be captured in the totality of a system and
forms the nucleus of Gödel’s incompleteness theorem, Turing’s diago-
nal argument (see Section 3.1) and (less directly through analogy with
the diagonal set) even Russell’s paradox. While the diagonal method
acknowledges that there is no possibility of ever finding a single sys-
tem, in return it offers the possibility of a systematic series of systems
(the systematic treatment of infinity as the cardinal numbers, for ex-
ample). It systematises a series of systems and presents us with the
“general form of the operation” (of moving from one system to the
next), similar to what Wittgenstein attempted to do in the Tractatus
(TLP 6.01), as he points out in Ms-121:

Man könnte das auch so sagen: Es gibt nicht (wie ich in der Log. Phil. Abh.
{gemeint habe // meinte}) eine ‘allgemeine Form der Operation’, die {eine
Zahl in eine andere verwandelt // aus einer Kardinalzahl eine andre macht}
– das wäre ein System der Operationen; [Ms-121, 90v.1]

tions of mathematics’ as the impetus for Wittgenstein’s philosophical aspiration for
surveyability.

49 Compare Turing’s “approximation of truth” in Section 3.6.
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One could also put it this way: There is no such thing as a ‘general form
of the operation’ (as I thought in the Tractatus Logico-Philosophicus), which
transforms one number into another – that would be a system of operations;

Mathematically (and philosophically from the perspective of the Witt-
genstein of the Tractatus), the difference between “||||” and “4” is a
negligible definition and numbers can be entirely explained by a finite
successor operation, which is then applied ad infinitum (“u.s.f. ad
inf.”). In other words, in the same way that “||||” and “4” are equal
in the finite case, the relation between picture and calculus holds even
in the infinite case, thanks to a seemingly innocuous application of in-
ductive inference.50

From the philosophical standpoint of the Wittgenstein of Ms-121,
however, the picture changes radically if we consider the similarity of
different notations regarding their use: “||||” and “4” are very simi-
lar, but “|||||||||||” and “11” much less so, while even longer se-
quences of strokes and their decimal ‘counterparts’ may not be alike
at all. This is because “||||” is surveyable, it can be taken in at a
glance, exactly like “4”. But while 11 and 1000 are still surveyable
in decimal notation, their unary ‘counterparts’ are not, and even deci-
mal notation itself stops being surveyable in the face of large numbers,
which we can bring into a more surveyable form if we employ a nota-
tion such as “1010”.51 The notations “||||” and “4” have a very simi-
lar use, but the difference in “Übersicht” concerning “|||||||||||”
and “11” has implications for their use: We cannot add numbers made
up of thousands of strokes without making mistakes, while we can
easily perform these additions if we use decimal notation. As a re-
sult, a philosophical investigation of their grammar must adequately
describe these differences, however subtle they may be, while for a
mathematician these notational differences do not matter and cannot
impact the mathematical validity of a proof in any way, at most its
practical feasibility. But for a philosopher, these notational differences
matter, as they are linked to different techniques:

{Du denkst // Man denkt}: alles was notwendig ist sind geeignete Definitio-
nen. Und man vergißt, daß eine Definition in der Mathematik nicht bloß ein
‘Aktuar zu’ der Schreibweise ist, sondern die Einführung einer (mehr oder
weniger) verwandten Technik des Rechnens. Wo aber steht geschrieben, wie
ich Russells Technik durch andre Techniken fortsetzen soll? [Ms-121, 92v.3]

{You think // one thinks}: all that is necessary are suitable definitions. And
one forgets that a definition in mathematics is not merely an ‘actuary to’
the notation, but the introduction of a (more or less) related technique of
calculation. Where however is it written how I should continue Russell’s
technique through other techniques?

50 See Ramharter, 2014, pp. 186–190 for a discussion of the relation between numerals
and induction in the context of Wittgenstein’s middle period, where his remarks on
induction are more frequent but often show a revisionist bent.

51 Another example of such a shift from a less to a more surveyable notation is Knuth’s
“up-arrow notation” for numbers that are so large that even exponentiation stops
being surveyable, see Knuth, 1976.
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Philosophically, the different language games played with numbers
cannot be reduced to a single general form, which could then be uni-
formly calculated in a formal system such as Principia Mathematica.
Instead, different ‘parts’ of the real numbers each form their own sys-
tem and stand in complex relationships with each other. Mathemat-
ically, we can of course play Cantor’s diagonal game and view ev-
erything uniformly and extensionally, but philosophically, the game
loses its point once we see that the envisaged uniformity fails to cap-
ture the variety of different language games.52

But even if we were to follow Wittgenstein in his emphasis of the
“Übersicht”, his critique might still seem overly pedantic. After all,
does Cantor not show us something entirely compatible with this
view, namely that the real numbers (or any other system considered
under diagonalisation) lead to a variety of infinities, not just ‘one’ uni-
form infinity? Is Wittgenstein’s argument for the plurality of systems
not also an argument for the infinity of the cardinal numbers instead
of a single ‘general’ infinity? If we only consider the diagonal argu-
ment as a piece of mathematics, Wittgenstein’s critique can indeed
appear rather shallow. But the crucial difference in interpretation is
related to the conclusion that we draw from Cantor’s diagonal argu-
ment, not the argument itself: Wittgenstein does not want to deny
that we can ‘escape’ from a system through the ‘loop hole’ of diag-

52 Ramharter, 2018, pp. 138–39 notes the connection between surveyability and Can-
tor’s diagonal argument and points out that for mathematicians, something being
“merely a question of representation” (“nur eine Frage der Darstellung”) is often
taken to be “merely a question of didactics” (“nur eine Frage der Didaktik”), in
other words unimportant to the core business of mathematics. Ramharter empha-
sises the importance of this question for Wittgenstein, but comes to the conclusion
that Wittgenstein’s critique is void if cardinal arithmetic and the diagonal argu-
ment are properly considered inside their mathematical surroundings with their
connections to established practices. Compared to Wittgenstein’s remarks on Rus-
sell’s Principia Mathematica, his discussion of Cantor’s diagonal method shows an
“opposite turn” (“gegenteilige Wendung”) regarding surveyability: arithmetic be-
comes surveyable only when Russell’s logic is enriched with suitable abbreviations
for numbers, whereas Cantor’s diagonal argument becomes surveyable only when
expanded with its surrounding mathematical practice. This interpretation suggests
that there was nothing wrong with Cantor’s diagonal argument to begin with and
that Wittgenstein failed to do what he claims to do, namely to look at the use of this
piece of mathematics. But such an interpretation ignores that Wittgenstein is inter-
ested in the standing of the diagonal method and its (ab-)use in our prose, not its
intra-mathematical rigorous use. To show that Russell’s logic depends (if not math-
ematically, at least philosophically and practically) on seemingly secondary defini-
tions does not just make the system more surveyable for its own sake, it is meant
to break the spell by showing how “boastful” (Ms-117, 109.3 / §21) it really is. This
can only be achieved by a combination of (mathematical) surveyability as abbreviat-
ing definitions and (philosophical) surveyability as a description of our techniques
of arithmetic, in fact the latter must include a description of these definitions. The
same is true for Cantor’s diagonal method (with its “u.s.f. ad inf” as an abbreviating
definition) and is not obviated by intra-mathematical practice as long as the standing
of Cantor’s diagonal method (including at the heart of foundational proofs) inspires
astonishment.
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onalisation, but he wants to question the importance of this method
of constructing loop holes (and consequently the extra-mathematical
role and standing of the diagonal method and its diagonalised result).
What is philosophically questionable is the need to construct an infi-
nite hierarchy in the first place, a hierarchy that was motivated mainly
by the necessity to banish the troubling contradiction that the diago-
nalisation produced. Instead of accepting the contradictory aspect of
the diagonalised element, the hierarchy seems to assign a place even
to this diagonalised result, which allows us to cling to our idea of a
systematisation, even if it is only of a ‘higher order’.

1.7 enumerating rules

Wittgenstein’s discussion of Cantor’s diagonal argument continues
seamlessly in Ms-162a (and later in Ms-162b), with the first dated re-
mark in Ms-162a from 6 January 1939, a day after his last entry in
Ms-121. Unfortunately, none of these remarks have been published in
RFM II, despite them being Wittgenstein’s last extensive treatment of
the diagonal argument (there are remarks in later notebooks, most no-
tably Ms-135, 59v.2–60v.4 from 1947, discussed in Chapter 3, but the
remarks in those later notebooks remain relatively short and isolated).
One reason could have been that Ms-162a/b, being part of the “draft”
pocket notebooks in the 160’s range of Nachlass documents, were con-
sidered too unfinished by the editors to be included (though Ms-164
was later published as RFM VI), but such a verdict is hard to justify
given the remarkable quality of most of Ms-162a and at least the first
part of Ms-162b. It is more likely that the editors considered these
remarks to be too ‘scandalous’ or too focused on a specific mathemat-
ical issue, similar to many of Wittgenstein’s remarks on Gödel, and
decided to stick to the (comparatively) more conservative remarks in
Ms-117 and Ms-121.53

Wittgenstein begins by imagining “everyday purposes”, a “practi-
cal purpose” (Ms-162a, 20.2, Ms-162a, 21.1) for Cantor’s diagonal
method. The remarks that follow on the next 10 pages in Ms-162a are
interesting and revisit many issues brought up in Ms-117 and Ms-121,
but will not be discussed here. Instead, the following text will high-
light only a few other remarks in passing and then focus on remarks
on Cantor that stand in particularly close connection to Wittgenstein’s

53 Floyd, 2020, pp. 249–250, on Ms-162b: “The notebook itself is an immediate continu-
ation of what Felix Mühlhölzer rightly called the “wonderful” pocket notebook 162a.
Notebook 162b is less wonderful, because it is much less clear. And yet its ambi-
tion is wonderful in its own way. For here we see Wittgenstein attempting to draw
lessons from his discussion of Cantor’s diagonal method into the wider purview of
his mature philosophy.” And concerning the remarks on Cantor in both Ms-162a and
Ms-162b: ”It seems the editors, perhaps attempting to protect Wittgenstein, decided
against publication of such remarks”.
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thoughts on formal systems, more specifically Russell’s logic.54 Lead-
ing up to the discussion of Russell, Wittgenstein writes on page 30:

Der allgemeine Satz mag sagen, was alle speziellen sagen, aber die allge-
meine Technik {tut // lehrt} nicht was alle besonderen Techniken tun. [Ms-
162a, 30.2]

The general proposition may say what all the special ones say, but the gen-
eral technique does not {do // teach} not what all the special techniques
do.

This remark does not introduce an entirely new aspect, but very suc-
cinctly distinguishes Wittgenstein’s aim from that of many mathe-
maticians and helps to explain the need for a surveyable represen-
tation. Propositions of formal logic (such as in Russell’s Principia
Mathematica) can be seen to abstract from concrete situations in or-
der to arrive at a general proposition, and similarly Cantor’s diago-
nal argument can be seen as a stepping stone away from numbers as
concrete intensions (the “special cases”, Ms-127, 23.3 / RFM V §37,
quoted above) towards a more general extensionalist view that treats
all real numbers uniformly. Of course Wittgenstein does not explic-
itly say that he associates general propositions with mathematics and
specific techniques with philosophy (and of course many mathemati-
cians are in fact very interested in specific techniques), nor should he
be interpreted as advocating for a clear demarcation between mathe-
matics and philosophy based on this distinction. Instead, the remark
articulates a troubling tendency that Wittgenstein perceives both in
the logical work of Russell and the mathematical work of Cantor, or
rather our tendency to perceive more general pieces of mathematics
as more interesting or astonishing than their more specific counter-
parts. But while these general propositions might be mathematically
fascinating, they do little to explain our concepts (of numbers for ex-
ample), because these concepts are reflected in a myriad of specific
techniques, each with their own language games. Irrational numbers
are “special cases”, they form a family of related kinds of numbers
and are themselves related to cardinal numbers and rational num-
bers through different techniques (Ts-227a, 58.2–58.3 / PI §§67–68),
they share a family resemblance in other words. Reducing this variety
to its most general essence would fail to explain these concepts, the
philosophical alternative is then to describe the concepts with the
help of a surveyable representation of their techniques.

The remarks that follow in Ms-162a continue this line of thought
and are remarkably clear reflections that revisit many of the issues
from Ms-121, most notably the three remarks Ms-162a, 33.2–36.2, with
Ms-162a, 39.3 re-emphasising the freedom of reaching a different con-
ceptual decision. While certainly interesting, these remarks will be
skipped, in favour of remarks several pages later:

54 For a discussion of many of the remaining remarks in Ms-162a/b, see Floyd, 2020
and Mühlhölzer, 2020.
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Es scheint Cantor {lehrt // lehre} mich keine neue Technik; er braucht mir
nur das Bild zu zeigen, & ich kann sie schon; er nenne mir nur eine die ich
schon kannte. Aber das {Schema // Bild} ist neu & bringt etwas neues in
Vorschlag wenn wir den Vorschlag allerdings auch gleich verstehen. [Ms-
162a, 49.2]

It seems Cantor is not teaching me a new technique; he only needs to show
me the picture, & I already know it; he is only telling me one that I already
know. But the {scheme // picture} is new & brings something new to the
proposal, even if we understand the proposal at the outset.

Wittgenstein wants to emphasise that Cantor teaches us a new tech-
nique, which we find so intuitive that we adopt it immediately and
cannot even imagine an alternative. As a result, we fail to see that
it is a technique and instead interpret it as a fact. Exactly because
the argument is so persuasive and seemingly employs only concepts
that we supposedly already knew (though perhaps only vaguely), we
are mislead into thinking that Cantor had made a discovery about
the real numbers, when he has instead proposed a conceptual choice.
We cannot order the real numbers because we have decided that there
cannot be anything that we call an ordering of the real numbers. As
Wittgenstein writes shortly after:

Man kann ‘sie’ nicht in eine Reihe ordnen, – wer sind die sie, die man
nicht ordnen kann? Ich habe eine Begriffsbestimmung gemacht, in der ich
die Ordnung ausgeschlossen habe, indem ich bestimme, jede Ordnung sei
immer nur als Teilordnung anzusehen; nun darin ‘kann’ man diesen Begriff
nicht ordnen. Der Schein der Unmöglichkeit (des Nicht-Könnens) entsteht
hier durch die Art wie wir den Begriff einführen. Indem {die Bestimmung
// eine Bestimmung}, die das Ordnen ausschließt, nachträglich wie eine
Entdeckung über den schon fertigen Begriff eingeführt wird. [Ms-162a,
51.2]

One cannot order ‘them’ in a series, – who are the them that one cannot
order? I have made a definition in which I have excluded the order by stating
that every order is always to be regarded only as part of an order; now in
this sense one cannot order this concept. The appearance of impossibility
(of not being able) arises here through the way we introduce the concept.
In that {the determination // a determination}, which excludes ordering, is
introduced afterwards like a discovery about the already final concept.

But if the impossibility of ordering the real numbers is, as Wittgen-
stein says, only an “appearance of impossibility”, what is the alter-
native that would be open to us if we made a different conceptual
decision? This talk about the “freedom” to “go as you please” (Ms-
121, 75r.3) is all well and good, but, we might want to object, is there
an actual alternative? Wittgenstein does not propose a general alterna-
tive here, which is only natural considering his explicit emphasis on
the use of the diagonal method as a specific technique, but he offers
us a therapeutic alternative in the specific context of Russell’s logic.
A preliminary hint is found on page 68, where Wittgenstein explicitly
connects countability with propositions in Russell’s system:

‘Eigenschaft einer Zahl’
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O’a = b

Man zeigt, daß die Operationen mit Kardinalzahlen nicht abzählbar sind,
indem man zeigt daß jedem System S solcher Operationen eine neue Op-
eration D’S entspricht. Dann sind aber auch die Sätze der Arithmetik nicht
abzählbar. Dagegen sind aber die in Russells System beweisbaren Sätze
abzählbar.

Wenn wir die Zeichen Russells als Ziffern auffassen, so wird jeder seiner
Sätze ein Zahlzeichen & jeder seiner Beweise eine bestimmte Konstruktion-
sart einer Zahl (aus den Zahlen der primitive propositions). Wir könnten
jeden solchen Satz schreiben: “die Zahl n ist aus r, s, t, u, beweisbar” wo
Beweisbarkeit eben eine Eigenschaft von Zahlen ist. [Ms-162a, 68.2–69.2]

’Property of a number’

O’a = b

One shows that the operations with cardinal numbers are not countable by
showing that a new operation D’S corresponds to each system S of such
operations. But then the propositions of arithmetic are not countable either.
On the other hand, the propositions that are provable in Russell’s system
are countable.

If we take Russell’s signs to be numbers, then each of his propositions
becomes a number sign & each of his proofs a particular form of construct-
ing a number (out of the numbers of the primitive propositions). We could
write each such proposition: “the number n is provable from r, s, t, u” where
provability is precisely a property of numbers.

By “D’S” Wittgenstein means the diagonalisation operation of a par-
ticular system S, which, when applied to S, forms a new element
that is not a part of the system S (with “O’a” being Wittgenstein’s ex-
pression for the application of an operation “O” to an argument “a”,
reaching back to the Tractatus). As Wittgenstein already expressed in
Ms-121, 90v.1 (see Section 1.6), this diagonalisation operation ‘escapes’
the countable system of operations, the collection of all operations is
thus uncountable. There are of course systems that are closed under
diagonalisation, so that their diagonalisation operation would not ‘es-
cape’ from the system but already be a part of it, which Wittgenstein
certainly does not want to deny. The remark is rather vague and could
certainly be interpreted in a number of ways, which is not surprising
given that Ms-162a is primarily a draft notebook. What matters is
that in the following remarks Wittgenstein considers a system that is
open to diagonalisation and thus uncountable (such as the real num-
bers in Cantor’s diagonal argument) and compares this system with
Russell’s system, where propositions are countable. Countability in
Russell’s system follows immediately from the fact that we can de-
scribe a systematic way to (recursively) construct all possible propo-
sitions and could thus number each constructed proposition one by
one. Russell’s system is of course not unique in this regard, the follow-
ing discussion will treat it interchangeably with other formal systems
for which propositions are recursively enumerable.

What Wittgenstein points out may sound rather trivial, but has in-
teresting philosophical repercussions: Formal systems are supposed
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to be general enough to allow for the expression of arbitrary propo-
sitions of arithmetic, yet their propositions are countable, while the
propositions of arithmetic are uncountable, assuming that we can con-
struct a proposition involving any of the uncountable real numbers.
How can this be?

Wittgenstein does not answer the question immediately. Instead,
the remarks Ms-162a, 70.4 until at least Ms-162a, 89.2, but arguably
up to and including Ms-162a, 100.2, discuss provability in Russell’s
logic, more specifically the difference between being true and being
provable, both seen from within Russell’s system and ‘from the out-
side’. These issues lie at the heart of Wittgenstein’s remarks on Gödel
(with his application of the diagonal method) and should be read in
the context of Wittgenstein’s earlier writings on that topic, even if
Wittgenstein does not explicitly refer to Gödel here. While certainly
interesting, such an interpretation would go beyond the scope of the
present text, these remarks will thus be skipped in favour of remarks
at the very end of Ms-162a, where Wittgenstein returns to the issue
of countability:

‘Du kannst nicht alle Kisten der Welt, in eine Kiste legen.’ Warum? Weil
ihrer zu viele sind? – Ich werde Dir beweisen, daß es eine unendliche Zahl
von Kisten gibt; denn keine Kiste, wie groß Du sie auch machst kann alle
Kisten {enthalten // beherbergen}.

Man kann nicht alle Systeme auf die Kardinalzahlen aufteilen, weil, sie
aufteilen, ein System bilden heißt. [Ms-162a, 101.2–102.1]

‘You can’t put all the boxes in the world in one box.’ Why? Because there
are too many of them? – I will prove to you that there is an infinite number
of boxes; for no box, no matter how large you make it, can contain all the
boxes.

One cannot apportion all the systems to the cardinal numbers, because to
apportion them is to form a system.

The reason why we cannot put all of the world’s boxes into a single
box is not that there were such an enormous number of boxes that it
would be physically impossible to construct a sufficiently large box
to hold them all. This would be a physical impossibility and Cantor’s
diagonal argument has the tendency to paint an analogous picture for
the real numbers, so that we are lead to believe that the real numbers
are too ‘numerous’, ‘too many’ to be ordered. But as the box example
makes clear, the impossibility at play here is a logical impossibility,
because even if there were only a single box in the world, the moment
we constructed another box to hold the first box this new box would
not be contained in a box and could not be called a box that contains
all boxes. The logical impossibility of constructing a box that contains
all boxes is thus a direct consequence of our concept of boxes, because
our concept of boxes excludes boxes that contain themselves.

What Wittgenstein’s example makes remarkably clear is twofold:
First, the ‘unboxability’ of boxes does not depend on any large num-
bers, the situation already occurs with just a single box in the world.
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Similarly, the uncountability of the real numbers does not depend on
an ‘enormously large’ number of real numbers, only on our ability
to construct a new diagonalised number once an ordering system is
fixed. As Wittgenstein has made clear before, it is a consequence of
an endless permission, not of an astonishingly large number. Second,
the simplicity of the box example shows us the ‘freedom’ to make a
different conceptual decision: It may be hard to see how a box in our
physical world could contain itself, but we have no trouble imagining
such a mise en abyme in literature, for example in a fairy tale, a picture
that Wittgenstein himself uses in a very similar context in RFM V:

Denke Dir unendliche Zahlen in: einem Märchen gebraucht. Die Zwerge
haben soviele Goldstücke aufeinander {gelegt // getürmt}, als es Kardi-
nalzahlen gibt – etc. Was in einem Märchen vorkommen kann, muß doch
Sinn haben. – [Ms-126, 54.3 / BGM V §6]

Imagine infinite numbers used in a fairy tale. The dwarves have piled up
as many gold pieces as there are cardinal numbers – etc. What can occur in
this fairy tale must surely make sense. – [RFM V §6]

All well and good, but what use is the example of boxes containing
themselves outside of this kind of fairy tale logic? If we are free to
make a different conceptual decision even in the case of uncountable
systems, as Wittgenstein has repeatedly suggested, then how would
such a different conceptual decision look like? This is what Wittgen-
stein investigates next:

Numeriere die Systeme {einfach // eben} mit Brüchen zwischen 1 & 2 &
behalte die Brüche zwischen 2 & 3, 3 & 4, u.s.w.,

:
in
::::::

Vorrat. Dann kannst Du
die Systeme der Systeme nach Herzenslust numerieren, wenn auch nicht in
eine Reihe ordnen.

“Du kannst nicht alle Systeme in ein System bringen; daher kannst Du nicht
allen Systemen Namen geben; denn Du kannst alle Namen in ein System
bringen.” – Du kannst allen Systemen Namen geben, solange Du nur die
Namen nicht (dadurch) verschwendest, {daß // indem} Du {mit dem Sys-
tem aller Namen anfängst // das System aller Namen verwendest}. [Ms-
162a, 101.2–BCr.1]

Number the systems simply by using fractions between 1 & 2 & keep the
fractions between 2 & 3, 3 & 4, etc.,

:
in

:::::
stock. Then you can number the

systems of systems to your heart’s content, though not in order.

"You cannot fit all systems into one system; therefore, you cannot give
names to all systems; for you can fit all names into one system." - You
can give names to all systems, as long as you just don’t waste the names by
{starting with the system of all names // using the system of all names}.

The first remark might appear trivial: Of course we can assign num-
bers to all results of the repeated diagonalisation operation if we use
only the fractions between 1 and 2 (which are countably infinite, after
all) to enumerate the ‘regular’ non-diagonalised elements and keep
all the other numbers “in stock”. Then, whenever the diagonalisation
operation produces a new element that cannot be part of the infinite
list of elements already in the system, we can assign it a number
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from the (countably infinite) stockpile of numbers greater than 2, in
contrast to Cantor’s diagonal argument. As Wittgenstein notes in the
second remark, we thus can enumerate all systems (including their
diagonalisations), as long as we do not “squander” the “system of
all names” by immediately using up all names for our ‘regular’ or-
dered systems without keeping a “stock”, a reserve of names for all
diagonalisations to come.

That Wittgenstein uses rational instead of natural numbers in his
example is not essential in this context. Any 1:1 correspondence be-
tween systems and fractions could of course also be enumerated us-
ing just natural numbers, given that the rational numbers are count-
ably infinite. The choice of fractions in this example illuminates Witt-
genstein’s point in a way that would have been obscured by the natu-
ral numbers, however, because in contrast to the natural numbers the
rational numbers cannot be countably ordered according to their size,
as Wittgenstein has pointed out multiple times before. The fact that
there are always infinitely many fractions between two fractions is ex-
actly what we need in this picture, because in this way fractions allow
us to generate numbers as we go, while leaving the stockpile of num-
bers for diagonalisations untouched. By using fractions instead of
natural numbers, Wittgenstein emphasises a certain aspect of count-
ably infinite numbers, namely that we can picture them as systems of
series (in plural, “Reihen”):

Wenn die Brüche die Namen sind so kann man sie {den // allen} Systemen
zuordnen, indem man [break between Ms-162a and Ms-162b] Brüche ihrer
Größe nach in Reihen ordnet. Aber nicht {dadurch daß // indem} man alle
Brüche in eine Reihe ordnet. [Ms-162a, BCr.2 & Ms-162b, 1r.1]

If the fractions are the names then they can be assigned to {the // all}
systems by [break between Ms-162a and Ms-162b] arranging fractions in
series according to their size. But not by arranging all fractions into a series.

But given that we can name all systems in this way using countably
infinite names, the next remarks are rather puzzling:

“Ich kann Einem nicht alle Techniken durch eine Technik beibringen.”

Man kann wohl die Namen aller Systeme in eine Reihe ordnen, {aber sie
nicht alle den Systemen der Reihe nach zuteilen // aber nicht die Namen
allen Systemen der Reihe nach zuordnen}.

D.h. man hat, wenn man eine endlose Reihe von Namen hat, nicht zu wenig
Namen; wenn sie (nur) nicht so aufteilt, daß dem System von Namen ein
System von Systemen entspricht. Verwendet man diese besondere Art der
Zuteilung, dann hat man zu wenig Namen; und das kann man so aus-
drücken: “man kann nicht alle Namen allen Systemen zuteilen” – weil man
unter dem Verteilen aller Namen an Systeme das Verteilen aller Namen an
ein System von Systemen versteht. [Ms-162b, 1r.2–1v.2]

“I can’t teach one person all the techniques through one technique.”

One may well put the names of all the systems in order, {but not assign
them all to the systems in order // but not assign the names to all the
systems in order}.
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That is, if one has an endless series of names, one does not have too few
names; if (only) one does not divide them in such a way that a system of
systems corresponds to the system of names. If one uses this particular
kind of allocation, then one has too few names; and this can be expressed
as “one cannot allocate all names to all systems” - because by allocating
all names to systems one understands allocating all names to a system of
systems.

What does Wittgenstein mean when he says that we “can order the
names of all systems in a series”, but “cannot assign the names to all
systems sequentially"? There are two ways to read this remark:

The more straightforward reading is that the assignment between
names and systems is a ‘one way’ assignment, going from systems to
names. Given a system, we can assign it a name (a fraction between
1 and 2 for non-diagonalised numbers, for example), but we cannot
know which system corresponds to a number reserved in the stock-
pile until we have produced the system via diagonalisation. This way,
it is not possible to diagonalise over the whole system of names, be-
cause we cannot produce all the systems as a series. In other words,
we have no technique to produce all techniques.55

Another, more interesting reading follows from the idea of the box
of all boxes and the third remark quoted above, according to which
countably infinite names are sufficient if “the system of names does
not correspond to a system of systems”. The previous reading as-
sumes that the “system of names” does not correspond to any sys-
tem, it is out of reach inside the systems and thus immune to diago-
nalisation. But the alternative is that the system of names is simply a
system, period, not a “system of systems”. In other words, countably
infinite names are sufficient not only if there is nothing that corre-
sponds to the system of names, but also if the system of names is
itself just a regular element in the series, not a higher-order system.
But there is a price to pay for the inclusion of the system of names
as a regular first-order system, because the diagonalisation operation
will then operate on itself, meaning that the (diagonalising) system
corresponding to the system of names is paradoxical.

The two readings correspond to the choice between incompleteness
and inconsistency, but they are not as far apart as it might seem, be-
cause they both illuminate a different aspect of what it might mean
to say that we cannot teach all techniques through a single technique.

55 An example would be Turing’s computing machines, which are enumerable, but for
which it is not possible to decide in general using finite means whether or not a
computing machine corresponds to a number. Computable numbers are thus enu-
merable, just not using finite means. As a result, we can easily assign numbers to
computing machines and list these numbers sequentially, but we cannot know in
general which of these numbers correspond to a ‘number system’ or just nonsense.
But given a computing machine that computes a number, we can immediately and
unambiguously assign it a number, its “description number”. The correspondence
between computable number and ‘computable-machine-number-as-name’ is thus a
‘one way’ correspondence. For more details, see Chapter 3.
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The incompleteness reading emphasises that a single general tech-
nique can give us access to a complete system of names, but that
these names are rather shallow if the correspondence with the tech-
niques that they name is only ‘one way’. The inconsistency reading
emphasises that we can have not only a system of names but also
their corresponding techniques, at the cost of not knowing which of
these techniques are worth learning or using, because the system con-
tains both ‘useful’ techniques as well as paradoxical diagonalisations.
To say that we can teach all techniques through a single techniques is
not wrong, but obviously quite meaningless, as it is akin to showing
someone the letters of the alphabet and then saying: “See, now you
can form all possible sentences in the English language!”

The first reading corresponds to saying that there is nothing that
we call a box that contains all boxes, the second reading to saying
that the box of all boxes is a paradoxical box, because it must contain
itself. That Wittgenstein is interested not only in the first but also the
second reading is made clear not only by his use of the box-of-all-
boxes example, but also his explicit remark about a self-referential
function fx(x):

{‘Wir wollen {nicht // unter keinen Umständen} sagen: eine Reihe von
Funktionen f1(x), f2(x), f3(x), . . . enthielte alle Funktionen, da sie fx(x)
nicht enthält.’ // ‘Wir wollen unter keinen Umständen von einer Reihe von
Funktionen f1(x), f2(x), . . . sagen sie enthielte alle Funktionen, {weil fx(x),
(z.B.) nicht in ihr enthalten ist.’ // weil fx(x) (z.B.) keines ihrer Glieder
ist.’}}

‘Wir wollen unter keinen Umständen von einer Reihe aller Reihen spre-
chen.’
‘Wir wollen unter keinen Umständen von einer Kiste sagen, sie enthielte
alle Kisten.’ [Ms-162b, 2v.2–3r.2]

{‘We do {not // not under any circumstances} want to say: a set of functions
f1(x), f2(x), f3(x), ... contained all functions, because it does not contain
fx(x).’ // ‘Under no circumstances do we want to say of a set of functions
f1(x), f2(x), ... it contains all functions, {because fx(x), (e.g.) is not contained
in it.’ // because fx(x), (e.g.) is not one of its members.’}}

‘We do not want to speak of a series of all series under any circumstances.’
‘Under no circumstances do we want to say of a box that it contains all
boxes.’

As Wittgenstein adds in Ms-162b, 5r.1, knowing a “technique to
form the signs fv(x) does not teach us anything about the particular
systems behind the signs of this series, unlike the series ⇡x, which is
explained by the system of exponentiation (Ms-162b, 4v.2). In the case
of the system of all names fv(x), we can order these signs systemati-
cally, but such an ordering is not a systematic explanation:

Man kann alle Funktionsnamen in {eine Reihe // ein System} ordnen; aber
man kann sie nicht alle systematisch erklären.

‘Ein System von Funktionsnamen systematisch erklären’ heißt: eine Erk-
lärung an den Kopf zu stellen.
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‘Den Gebrauch {eines Systems von Zeichen // der Zeichen eines Systems}
systematisch erklären’ heißt: eine Erklärung an den Kopf des Systems
stellen, die die richtige Verwendung der Zeichen des Systems {bewirkt //
verbürgt}.

Kann diese Erklärung selbst ein Zeichen des Systems sein?

Die Erklärung der Funktionszeichen geschieht systemweise.
[Ms-162b, 5v.2–6r.3]

One can order all function names into {a series // a system}; but one cannot
explain them all systematically.

‘To explain a system of function names systematically’ means: to place an
explanation at the beginning.

‘To explain systematically the use {of a system of signs // of the signs of
a system}’ means: to place at the beginning of the system an explanation
which {ensures // vouches for} the correct use of the signs of the system.

Can this explanation itself be a sign of the system?

The explanation of the functional signs is done system by system.

Wittgenstein shows us the different implications of the conceptual de-
cision at the heart of Cantor’s diagonal argument: In so far as a sys-
tematic way to construct the elements of a series can be understood
as an explanation of this series, we can choose whether we want to
preface our series of systems with this system of systems (and thus
exclude it from the series proper) or whether we want to include it
as a sign inside the system. In the latter case, it is clear that the inclu-
sion of this system of systems makes the series (of the real numbers,
for example) more general than without it (the series of algebraic
numbers, for example), but the general series cannot explain the va-
riety of special cases in the same way that specialised explanations
could (“systemweise”). The conceptual decision is one between inclu-
sion and exclusion, between including the diagonalisation in the real
numbers (calling it a number and thus excluding it from the assumed
ordering of the real numbers) on the one hand and including it (as
a paradoxical diagonalisation) in the ordering (and thus excluding
it from the non-paradoxical real numbers) on the other hand. Can-
tor himself chooses the first option and excludes the diagonalisation
from his concept of numbers:

‘Habe ich Dich {gelehrt // geübt}, ein System von Funktionen zu be-
herrschen, so habe ich Dich damit auch abgerichtet, eine außerhalb des
Systems stehende Funktion zu beherrschen.’ [Ms-162b, 6v.1]

If I have {taught // trained} you to master a system of functions, I have also
trained you to master a function that stands outside the system.

What is philosophically problematic about Cantor’s diagonal argu-
ment is that the diagonalised number is never given ‘a fair chance’.
Of course it is not possible to order all real numbers if we have already
made up our mind that we will not accept the diagonalised number
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in this series but that we also want to call this diagonalised number
a real number. If we give up one of these two assumptions, Cantor’s
proof might not need to bother us very much, let alone astonish us
with its uncountable infinity.

We could say that the diagonalisation does not produce a real num-
ber of the same sort as other real numbers (and part of the problem of
Cantor’s proof is that it leads us to believe that we have a clear picture
of this ‘sort’ of number), it can even be argued that we only accept
the diagonalised number as a real number because the concept of
real numbers is sufficiently vague to begin with. Yes, we know what
counts as a real number by viewing all numbers as decimal expan-
sions, but such an extensionalist view does not give us a systematic
way to produce the variety of systems that are the irrational numbers.

The more interesting perspective would be to freely accept the di-
agonalised number in the ordering of the real numbers, an option
that is only available because the diagonalised number is not fixed
by its use in the same sort of language games as other numbers. If
Cantor’s proof convinces us that the diagonalised number is a real
number, then, we might choose to say, why not include it in the or-
dering if we want to order all real numbers? This would of course
mean that we need to go ‘all the way’ and consider what happens if
a diagonalisation meets itself (and it is clear that we must leave the
neatly organised land of the real numbers that we have grown accus-
tomed to and change our concept of what we call a real number in
the process).

Wittgenstein’s aim is not to advocate for a particular perspective.
Instead, his remarks investigate the different conceptual paths that
are open to us, so that we gain an understanding of the philosophical
landscape:

Meine Aufgabe ist es Euch die Geographie eines Labyrinths zu lehren, so
zwar, daß Ihr Euch vollkommen darin auskennt. [Ms-162b, 6v.2]

My task is to teach you the geography of a labyrinth, in such a way that
you are perfectly familiar with it.

One result of this survey is that we gain an understanding of what
it means for a system to be uncountably large. Yes, the real num-
bers are uncountable and in a certain sense we can even say that the
infinity of the real numbers is greater than that of the natural num-
bers. But we can turn the tables: Everything expressible in a natural
language, English for example, can be expressed with a (finite, but
arbitrarily long) string of symbols (such as the letters of the alpha-
bet and digits) and can thus be counted, simply lexicographically. We
can then imagine these countably infinite strings written down in an
infinitely long book (evoking Borges’ infinite Library of Babel, Borges,
1964), with some of these strings describing real numbers, such as
“2”, “The first prime number greater than 3” and even Berry’s pa-
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radox: “The first number not nameable in under ten words”.56 Any
possible description of real numbers, including any imaginable de-
scription of diagonalised numbers, would then be a part of this book
of numbers, which will of course also include an immensely large
number of nonsense descriptions. This countably infinite collection of
number descriptions is thus in one sense larger than the real numbers
(because all the real numbers that we could ever possibly express are
expressed somewhere in this collection and additionally many diag-
onalised and nonsensical descriptions), but in another sense smaller,
because the number descriptions are obviously countable, whereas
the real numbers are not. Or in other words: By adding the irrational
numbers to the rational numbers, the resulting real numbers seem to
grow so ‘large’ that they cannot be counted by the natural numbers.
But by then adding the paradoxical diagonalised numbers to the real
numbers (together with many other gibberish descriptions, of course),
we get an even larger set of ‘numbers’, which is now countable again,
however.57

There is nothing surprising about this, at least not if we under-
stand Cantor’s diagonal argument in a philosophically ‘homespun’
way. The image of a countably infinite book with all possible combi-
nations of letters and digits can help us understand that Cantor has
not discovered a new and unimaginably large collection of ‘things’,
but rather invented a new concept, which we can then contrast with
other concepts to dissolve our astonishment in the face of this seem-
ingly larger-than-infinite collection of numbers. Instead of saying that
the set of all real numbers is too large to be counted by the natural
numbers, we could just as well say that it is too small, because it could
possibly be counted if it only included the diagonalised number. The
price, of course, would be that this diagonalised number became para-
doxical, because it will be contradictory at the decimal place where it
‘meets itself’. A better, more ‘homespun’ way to phrase the situation
would be to leave aside all talk of different infinities and instead say
that the real numbers give us an “endless permission” to produce
new numbers and that we will not call anything an “ordering of all
real numbers”.

56 This version of Berry’s paradox is due to Bennett (Bennett, 1979, p. 3), see Ap-
pendix A for a more detailed discussion of Berry’s paradox.

57 Such an observation by no means originates in Wittgenstein’s remarks, but was al-
ready noted in 1908 by Russell as the fifth contradiction in his list that motivates
his theory of types and originates in even earlier publications from 1905 and 1906
(Russell, 1908, p. 153):

Among transfinite ordinals some can be defined, while others cannot; for the total number
of possible definitions is @0, while the number of transfinite ordinals exceeds @0. Hence
there must be indefinable ordinals, and among these there must be a least. But this is defined
as “the least indefinable ordinal”, which is a contradiction.
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It is fitting that Wittgenstein ends his reflections on countability
and Cantor in Ms-162b with remarks on surveyability, which then
gradually develop into more general thoughts on Gestalt psychology:

“{Sei // Aber sei} nicht lächerlich! Freilich bedienen wir uns zum Erkennen
der Anzahl gewisser Mittel, die Anzahl übersichtlich zu machen; z.B. des
Dezimalsystems.” – Aber was ist hier Zweck, & was Mittel?

Wir würden also nicht erkennen, daß 10.000 Variable in dieser Klammer
stehen. Ist das nicht, als sagte man: “wir würden nicht erkennen, wieviel
Jahre der Elefant lebt, wenn die Erde nicht um die Sonne ginge”? [Ms-162b,
7v.1–7v.2]

“But don’t be ridiculous! Admittedly, in order to recognise the number, we
use certain means to make the number surveyable; e.g. by using the decimal
system.” - But what is the end here, & what the means?

So, we would not recognise that there are 10,000 variables in this bracket.
Isn’t that like saying, “we wouldn’t recognise how many years the elephant
lives if the earth didn’t go around the sun”?

Surveyable descriptions are not just “means” to an end, as mere nota-
tions that help us discover eternal mathematical truths. Such a view is
the misleading side effect of mathematical generality and the search
for foundational systems. A philosophical investigation can show us
that only the variety of particular mathematical systems, each with
their own associated techniques, gives meaning to the more general
formalisations, not the other way around.
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Man {könnte // kann} mit Recht fragen, welche Wichtigkeit Gödel’s Beweis
für unsre Arbeit habe. Denn ein Stück Mathematik {kann nicht Probleme
von der Art der unsern // kann Probleme von der Art, die uns beunruhigen,
nicht lösen. // kann kein Problem von der Art, die uns beunruhigt lösen. //
kann nicht Probleme von der Art, die uns beunruhigt, lösen.} – Die Antwort
ist: daß die Situation uns interessiert, in die ein solcher Beweis

:::
uns bringt.

‘Was sollen {wir // sie} nun sagen?’ – das ist unser Thema. [Ms-124, 94.2 /
BGM VII §22]

It might justly be asked what importance Gödel’s proof has for our work.
For a piece of mathematics cannot solve problems of the sort that trouble
us. – The answer is that the situation, into which such a proof brings us, is
of interest to us. ‘What are we to say now?’ – That is our theme. [RFM VII
§22]

Wittgenstein’s remarks on Kurt Gödel’s First Incompleteness Theorem,
written in 1937 and posthumously published as appendix III of part I
of the Remarks on the Foundations of Mathematics, form without doubt
the most infamous of all of the remarks in the RFM and were upon
their first publication heavily criticised for misunderstanding the
mathematical content of Gödel’s seminal result.1 Instead of diving
directly into Wittgenstein’s thoughts on the matter, it is therefore use-
ful to face this criticism head-on, by properly setting the mathematical
stage for Gödel’s result. This will require a certain degree of mathe-
matical detail, as the technicalities of Gödel’s result are far from triv-
ial. It is nevertheless important not to lose sight of why Wittgenstein
devoted his time to write about such a highly technical result, which
is why the first step towards a closer examination of Wittgenstein’s
remarks should start with a broad (and necessarily simplified) exposi-
tion of Wittgenstein’s interest in the matter and the philological status
of the remarks in comparison to other parts of the Nachlass.

In contrast to the impression one might get from the rather dis-
paraging initial reviews of the remarks on Gödel, Wittgenstein’s in-
terest in this particular theorem is not limited to a single passage of
remarks in the Nachlass, but rather forms a thread that runs through
several years and documents. The remarks of RFM I; App. III origi-
nate in Ms-118105–116 and were written in 1937, that they were then
included in not just one but several typescripts (Ts-221a/b246–255, Ts-
223246–255) shows that Wittgenstein considered them, at least during

1 See Kreisel, 1958, Dummett, 1959 and Bernays, 1959. However, beginning in the 80s,
these early and dismissive reviews were increasingly challenged, for example in
Shanker, 1987, p. viii: “But what were presented as corrections were, in fact, covert
philosophical objections which, because of the prior assumption, were developed with-
out any effort to clarify, let alone challenge, the philosophical background on which
Wittgenstein had based his approach to the foundations dispute.”
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that time period, to be of sufficient quality to survive the draft stage
and merit inclusion in typescripts, sometimes with minor revisions.
There are also (unpublished) mentions of Gödel in Ms-12172–85, writ-
ten in December of 1938 and January 1939, as well as a longer passage
of remarks on Gödel in Ms-124, 87–95, published as part of RFM VII
and written between 2.7.1941 and 4.7.1941. Wittgenstein’s interest in
Gödel’s incompleteness theorem is not limited to the Nachlass, con-
sidering that he gave his “Lectures on Gödel” during the Easter Term
of 1938 as part of the “Whewell’s Court Lectures”.

But why was Wittgenstein interested enough in such a highly tech-
nical result that he revisited it over the span of five years? Gödel’s
incompleteness theorem is of course first and foremost a strictly math-
ematical result, with direct applications to formal logic and its meta-
theory, but with little practical consequences for how we calculate and
use mathematics in practice. As Wittgenstein hints at in the remark
quoted above, Gödel’s proof cannot solve any philosophical problem
(at least in the eyes of Wittgenstein, Gödel’s view on this issue might
be another matter) and it would go against Wittgenstein’s philosoph-
ical convictions to interfere in mathematical instead of philosophi-
cal matters. The topic in question is not the mathematical validity of
Gödel’s result itself, but rather the “situation, into which such a proof
brings us”. Wittgenstein is interested in what happens after we accept
the proof as valid, in how we act or are unable to act based upon this
proof, how we are puzzled by its conclusion. This is why Wittgen-
stein’s remarks are focused on the frontier between purely mathemat-
ical results and their philosophical interpretations. The exact nature
of this “situation” will be investigated in more detail below, what is
most relevant for now is that even Wittgenstein’s more mathematical
remarks should not be too quickly interpreted as comments on the
mathematical details. They often only set the stage for an investiga-
tion that revolves around the interpretation of these formal results in
informal “prose”, which leads otherwise careful mathematicians to
sometimes venture into philosophical dogmatism. This is what Witt-
genstein wants to attack, not the mathematical result itself.

Before looking at Gödel’s proof in more detail, two connections to
other topics in Wittgenstein’s Nachlass should briefly be pointed out
to further help explain Wittgenstein’s interest in the proof. The first
is that Gödel’s theorem sent a shock wave through the field loosely
known as the “foundations of mathematics”, with a particularly se-
rious impact on Hilbert’s attempt to give a definitive formalisation
of arithmetic.2 Wittgenstein was of course heavily influenced by the

2 As has been pointed out in Shanker, 1988, p. 177, it can appear peculiar in the
context of Hilbert’s program that Wittgenstein criticised Gödel’s theorem so vehe-
mently: “After all, [Gödel’s proof] is an esoteric work which if anything should have
contributed to the enhancement of Wittgenstein’s own stated ambitions. Or at least
so it has been argued, on the grounds that given the purpose of Godel’s theorem – to
establish the impossibility of constructing a finitary consistency proof for arithmetic
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foundational endeavours of Frege and Russell and highly suspicious
of metamathematical constructs such as Russell’s theory of types.3

It is no accident that the phrase “Foundations of Mathematics” ap-
pears in the (posthumously chosen) titles of both the “Remarks on
the Foundations of Mathematics” as well as his 1939 “Lectures on
the Foundations of Mathematics”: Foundational issues remained Witt-
genstein’s main interest in his philosophy of mathematics right up un-
til his death, which explains why he was interested in Gödel’s seminal
proof.4

Secondly, Gödel’s proof is at its heart a diagonal argument, with sim-
ilarities to Cantor’s original use of the diagonal method in his proof
of the uncountability of real numbers. Wittgenstein wrote on multi-
ple occasions on Cantor’s proof and it is no accident that Gödel is
mentioned in Ms-121, a document that is otherwise focused on Can-
tor, as both arguments can lead to similarly misleading philosophical
conclusions. This is not to suggest that Wittgenstein sees these dif-
ferent diagonal arguments only as superficial symptoms of the same

– it is far from clear why Wittgenstein should have sacrificed such an important
potential ally. For the one thing that is manifest in Wittgenstein’s writings on the
philosophy of mathematics is his desire to challenge the two central themes that to-
gether constitute Hilbert’s Programme: the formalization of mathematical thought,
in order to produce a finitary proof of the reliability of mathematical reasoning.”
However, as both Shanker’s interpretation and the present chapter will show, the
reasons for rejecting Hilbert’s attempt to fully formalise mathematics differ consid-
erably in the case of Gödel and Wittgenstein. In fact, Wittgenstein reads Gödel’s
interpretation as giving the appearance of an answer to what is actually a philosophi-
cal problem, which can only be clarified through a philosophical investigation, not
on the basis of a mathematical proof. (Shanker, 1988, p. 183: “The heart of Wittgen-
stein’s critique of the platonist interpretation of Godel’s theorem lies in the principle
that it is only possible to resolve a philosophical problem philosophically;”) Further-
more, in an important sense Gödel’s result also has a positive impact on Hilbert’s
program by legitimising its meta-mathematical approach, as Shanker, 1988, p. 225
emphasises: “Gödel was aware of the negative impact of his theorem on Hilbert’s
Programme, but even more important to him was the positive role which he hoped
his proof would perform: if genuinely successful it would utilize ’Hilbert’s meta-
mathematical progeny’ to revitalize platonism in the midst of the positivist mood
dominating analytic philosophy in the 1930s.” It is this tendency that Wittgenstein
is criticising in his remarks above all else. See also Floyd, 2001, p. 287: “Gödel’s
theorems are not a threat to Wittgenstein, and he has no special animus toward or
against them, except in their philosophical misuses.”

3 As Shanker, 1988, p. 192 correctly points out, Wittgenstein’s distrust of the need
for higher-order meta-theories precedes Gödel’s proof (Shanker cites Ts-209, 74.10 /
PR 153: “On the other hand there can’t in any fundamental sense be such a thing
as meta-mathematics. Everything must be of one type (or, what comes to the same
thing, not of a type).”). This philosophical context is certainly one of the primary
reasons why Wittgenstein chose to investigate this particular mathematical result.

4 Additionally, Gödel’s proof shows how seemingly rather specialised issues can
have far reaching consequences, with the effect that a philosophical investigation
of Gödel’s proof does more than just investigate a single and isolated piece of math-
ematics. As Ramharter, 2008, p. 8 notes: “Gerade in der Auseinandersetzung mit
Gödel zeigt sich, wie weit die Überlegungen ausstrahlen, die sich Wittgenstein zu
sehr speziell anmutenden Fragen macht, und welche allgemeinen Konsequenzen
diese Überlegungen haben.”



110 gödel , theorems and provability

‘essential’ illness, as such an interpretation would misattribute a gen-
eralising tendency to Wittgenstein’s investigations, which stay in fact
always close to their particular subject matter. But as this discussion
of Wittgenstein’s remarks on Gödel attempts to show, there is a strong
family resemblance between the philosophical abuses of the different
diagonal arguments and it is Wittgenstein’s goal to draw our atten-
tion to these abuses, by demonstrating how they are favoured by the
prosaic interpretation of perfectly valid mathematical proofs.

So did Wittgenstein actually disagree with Gödel? Of course any
claim will have to be substantiated in the following discussion, but a
preliminary answer might nevertheless help in navigating the more
technical parts of the discussion. In this text, the following stance will
be defended: While Wittgenstein’s remarks need not be read as dis-
agreeing with the mathematician Gödel, they are certainly in disagree-
ment with the philosopher Gödel and his mathematical platonism.5

Gödel’s philosophical interpretation of his own proof is the sort of
“one-sided diet” (Ms-116, 255.3; Ms-120, 135v.2; Ts-227a/b, 291.2; Ts-
228, 53.3; Ts-230a/b/c, 11.5 / PI §593) that Wittgenstein attempts to
dissolve through a surveyable presentation, with the more mathemat-
ical remarks as means to an end, not as a critique of the mathematical
result itself.6

The structure of this chapter roughly follows the segmentation of
Wittgenstein’s remarks on Gödel into three main passages in different
documents (Ts-221a/b, Ms-121 and Ms-124/Ms-163). However, the
considerable mathematical ingenuity of Gödel’s proof makes it nec-
essary to briefly describe what exactly Gödel’s (first) incompleteness
theorem proves and how Gödel’s own informal introduction relates
to his precise mathematical result (Section 2.1). Given that the pri-
mary focus of this chapter is Wittgenstein’s philosophical investiga-
tion on Gödel, not the finer mathematical points of Gödel’s results,
the presentation of Gödel’s theorem will necessarily lack in math-
ematical detail but should nevertheless provide a sufficient under-
standing of the context of Wittgenstein’s remarks. The first two of
the main sections on Wittgenstein discuss his remarks in Ts-221a/b
/ RFM I; App. III, which are the most heavily criticised writings on
Gödel in the Nachlass, by first examining the role of truth and prov-

5 This is not to suggest that Wittgenstein’s intent would be to replace Gödel’s platon-
ism with an equally dogmatic outlook, such as for example finitism. While it cannot
be denied that Wittgenstein’s writings in the early 1930s sometimes exhibit finitist
tendencies, these more dogmatic remarks do not play a major role in his discussion
of Gödel and will not be discussed in the following text. As Shanker, 1988, p. 215
notes, Wittgenstein’s “objection to Hilbert’s Programme stemmed from his remarks
on the logical nature of mathematical propositions, and not from any ’finitistic’ mis-
givings.”

6 As Floyd, 2001, pp. 288–289 puts it: “But does this mathematical work resolve or
uniquely interpret the general philosophical questions that have traditionally been
asked about (our notions of) truth, proof, and mathematics? [...] Gödel’s answer was,
Yes. Wittgenstein’s was, No.”
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ability in Wittgenstein’s investigation (Section 2.2) and then his pecu-
liar attitude towards inconsistency (Section 2.3). The next two sections
deal with the entirely unpublished remarks in Ms-121 (Section 2.4
and Section 2.5), which are not always as ‘mature’ as some of the
published remarks, but nevertheless introduce new aspects in Witt-
genstein’s thoughts on Gödel and provide evidence that Wittgenstein
did understand many of the mathematical details of Gödel’s proof.
The last sections are focused on the remarks in Ms-124 / RFM VII,
which constitute Wittgenstein’s ‘last word’ on Gödel and are some
of the most undogmatic and mature remarks on this topic. The cen-
tral aspect in this passage is the concept of surveyability (Section 2.6),
which will be shown to be essential for an understanding of why
Wittgenstein chose to attack Gödel’s interpretation of the theorem.
The remarks in Ms-124 are continued in the pocket notebook Ms-163,
which shows interesting connections to the notion of “ultraphysical”
impossibility. The remarks are briefly examined in the last section
(Section 2.7).

2.1 gödel’s diagonal argument

In 1931, Gödel published his seminal paper “Über formal unentschei-
dbare Sätze der Principia Mathematica und verwandter Systeme I”,
with its two famous incompleteness theorems (the theorems VI and
XI).7 As we will see, Wittgenstein’s remarks are focused on the first of
these two theorems and so “Gödel’s incompleteness theorem” will in
the following discussion usually refer to theorem VI of Gödel’s paper,
or, if the context renders the usage unambiguous, to the conjunction
of the two theorems.

Gödel begins his paper with an informal introduction to his for-
mal mathematical result and it can be useful to briefly walk through
this introduction to ‘get a feeling’ for what Gödel’s incompleteness
theorem is about. It should be clear, however, that ‘what counts in
the end’ is Gödel’s formal result and that his informal introduction
must sometimes trade in exactness and correctness to achieve a more
easily understandable exposition. Gödel himself is very clear about
this: “Before going into details, we shall first sketch the main idea of
the proof, of course without any claim to complete precision” (Gödel,
1986, p. 147). Similarly, after finishing the sketch of the proof, Gödel
notes: ”We now proceed to carry out with full precision the proof
sketched above” (Gödel, 1986, p. 151). Not too much weight should
thus be placed on the merely informal comments by Gödel, they are
meant as a guide to the larger proof, not as an independent reformu-

7 Its importance in the field of logic can hardly be overstated (Berto, 2009, p. xii), see
e.g. Gödel, 1986, p. 126: “Gödel’s 1931 was undoubtedly the most exciting and the
most cited article in mathematical logic and foundations to appear in the first eighty
years of this century.”
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lation of it. Wittgenstein has been criticised as misunderstanding this
crucial point: According to such a reading, all that Wittgenstein’s re-
marks do is attack perceived flaws in the informal introduction, while
completely missing the formal point of Gödel’s paper.8 Leaving aside
for now whether this charge is warranted, Gödel’s informal remarks
are certainly important for a proper understanding of Wittgenstein’s
line of investigation, as they represent at least in parts Gödel’s own
prosaic interpretation of his formal result. Let us thus look at the in-
formal proof sketch, before supplementing it with selected passages
from Gödel’s more precise proof.

As Gödel explains in the introduction, the incompleteness theorem
demonstrates a limitation of those formal systems that fulfil certain
technical requirements (most importantly !-consistency, a stronger
form of logical consistency) and are strong enough to formalise arith-
metic. The classic example is Whitehead and Russell’s Principia Math-
ematica (“PM”), a logical system that is general enough that we might
expect it to decide any mathematical question (that is, derive from
its axioms either the proposition in question or its negation).9 This
assumption seems natural, but as Gödel will show in his paper, is
mistaken:

Es liegt daher die Vermutung nahe, daß diese Axiome und Schlußregeln
dazu ausreichen, alle mathematischen Fragen, die sich in den betreffenden
Systemen überhaupt formal ausdrücken lassen, auch zu entscheiden. Im
folgenden wird gezeigt, daß dies nicht der Fall ist, sondern daß es in den
beiden angeführten Systemen sogar relativ einfache Probleme aus der The-
orie der gewöhnlichen ganzen Zahlen gibt, die sich aus den Axiomen nicht
entscheiden lassen. [Gödel, 1986, p. 144]

One might therefore conjecture that these axioms and rules of inference are
sufficient to decide any mathematical question that can at all be formally
expressed in these systems. It will be shown below that this is not the case,
that on the contrary there are in the two systems mentioned relatively sim-
ple problems in the theory of integers that cannot be decided on the basis
of the axioms. [Gödel, 1986, p. 145]

These systems are thus (syntactically) incomplete, as there exist “sim-
ple problems” of arithmetic that cannot be decided in these systems.10

8 Such a reading usually interprets Wittgenstein’s remarks as follows: Wittgenstein’s
main mistake is to misunderstand Gödel’s informal mention of a “proposition that
says about itself that it is not provable” (Gödel, 1986, pp. 149–151) as an exact de-
scription of the mathematical machinery and Gödel’s full result as a logical paradox,
when there is actually no direct reference of a proposition to “itself” and no paradox
in the formal proof. Wittgenstein certainly takes up Gödel’s phrasing of the “propo-
sition that says about itself that it is not provable”, but this is on its own insufficient
to disqualify Wittgenstein’s remarks (see Ramharter, 2008, pp. 14–15).

9 While Gödel’s proof is focused only on Principia Mathematica, the results obtained by
Gödel are generalisable to a large range of formal systems that are strong enough to
formalise certain basic propositions of arithmetic, as Gödel himself was well aware.

10 Whether these problems can be decided outside these systems and what decidability-
outside-the-system might mean are some of the philosophical questions that Wittgen-
stein was interested in. These issues will be ignored during the more mathematical
discussion of Gödel’s result, but will re-emerge as central later on.
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The proof of the undecidability of certain propositions in these sys-
tems, as sketched out by Gödel in the introduction, proceeds as fol-
lows: Formulas in a system such as PM are “finite sequences of prim-
itive signs (variables, logical constants, and parentheses or punctua-
tion dots)”, while “proofs, from a formal point of view, are nothing
but finite sequences of formulas” (Gödel, 1986, p. 147). By a proce-
dure that has since become known as “Gödelization”, these sequences
of (sequences of) primitive signs are encoded as numbers so that arith-
metical formulas in the system can be interpreted as metamathemati-
cal propositions: “The metamathematical notions (propositions) thus
become notions (propositions) about natural numbers or sequences of
them; therefore they can (at least in part) be expressed by the symbols
of the system PM itself” (Gödel, 1986, p. 147). For example, instead of
talking meta-theoretically about how a chain of formulas is a proof of
a particular theorem, this encoding allows Gödel to specify a function
that does the same job, by taking as inputs two numbers, namely the
number encoding of a chain of formulas (corresponding to the proof
that is to be checked) and the number encoding of a single formula
(corresponding to the theorem), and returning 1 if and only if the
chain of formulas is a proof of the theorem and 0 otherwise.

Gödel then goes on to construct an undecidable proposition, that
is, a proposition for which neither it nor its negation can be derived
in the system. Why and how is this proposition undecidable? It is
constructed in such a way that it corresponds (via the encoding of
metamathematical propositions as propositions about natural num-
bers) to a metamathematical proposition about the unprovability of
the proposition with the encoding as number q. In other words, it
is an arithmetical proposition that, when interpreted according to its
Gödelization as a metamathematical proposition, states the unprov-
ability of a particular proposition in the system, with this particular
proposition having the encoding q. This in itself would not be re-
markable and does not yet lead to undecidability: The metamathe-
matical proposition stating the unprovability could either be false (if
the proposition corresponding to q is after all provable in the system)
or it could be true but the negation of the proposition corresponding
to q could be provable in the system. In both cases it would be pos-
sible to either prove the proposition in question or its negation and
therefore no undecidability results. But the way Gödel constructs the
metamathematical proposition, it turns out that the proposition cor-
responding to q is this metamathematical proposition itself, so that
the metamathematical proposition states the unprovability of itself.
This is then how a proposition can talk “about itself” in Gödel’s pa-
per: Not directly, but only as an arithmetical proposition about num-
bers, which (if interpreted through the lens of the gödelised corre-
spondence of numbers as propositions and proofs) corresponds to a
metamathematical proposition q about the proposition q.
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This is then how undecidability results: Let us assume that the
proposition corresponding to q is provable in the system (and here “is
provable” is still understood as corresponding to an arithmetic func-
tion). The metamathematical proposition corresponding to q states
that the proposition corresponding to q is unprovable. A proof of
it would thus be a proof that it is not provable and thus lead to
a contradiction, from which we conclude that the assumption that
the proposition corresponding to q is provable must be wrong. Let
us assume that the negation of the proposition corresponding to q

is provable in the system. This negation states that q is provable in
the system (again understood as corresponding to an arithmetic func-
tion). But this would mean that both the negation of the proposition
corresponding to q and the proposition corresponding to q itself are
true, which is also a contradiction. As both assumptions lead to a con-
tradiction, neither the proposition corresponding to q nor its negation
can be proved in the system (without producing a contradiction), the
proposition corresponding to q is thus undecidable.

The phrasing of ‘the proposition corresponding to a number x’ (or
even more precisely ‘the proposition corresponding to the formula
with the encoding as number x’) might seem overly verbose, but it
allows Gödel to avoid a direct self-reference and distinguishes his
proof from a paradox. Provability is in the context of Gödel’s paper
always understood in terms of recursive functions, meaning functions
whose operation can be carried out mechanically step by step, based
on unambiguous and finite rules.11 By using only a syntactic and
mechanisable notion of provability, Gödel can avoid any circularity,
as he explains in a footnote:

Ein solcher Satz hat entgegen dem Anschein nichts Zirkelhaftes an sich,
denn er behauptet zunachst die Unbeweisbarkeit einer ganz bestimmten
Formel (namlich der q-ten in der lexikographischen Anordnung bei einer
bestimmten Einsetzung), und erst nachtraglich (gewissermaßen zufällig)
stellt sich heraus, daß diese Formel gerade die ist, in der er selbst ausge-
drückt wurde. [Gödel, 1986, p. 150]

Contrary to appearances, such a proposition involves no faulty circularity,
for initially it [only] asserts that a certain well-defined formula (namely, the
one obtained from the qth formula in the lexicographic order by a certain
substitution) is unprovable. Only subsequently (and so to speak by chance)
does it turn out that this formula is precisely the one by which the proposi-
tion itself was expressed. [Gödel, 1986, p. 151]

11 Even in the introduction, Gödel explicitly mentions that the metamathematical
propositions are to be understood in this way, as corresponding via Gödelization
to propositions of arithmetic:

In other words, the procedure described above yields an isomorphic image of the system
PM in the domain of arithmetic, and all metamathematical arguments can just as well be
carried out in this isomorphic image. This is what we do below when we sketch the proof;
that is, by “formula”, “proposition”, “variable”, and so on, we must always understand the
corresponding objects of the isomorphic image. [Gödel, 1986, p. 147]
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It is of course quite hard to grasp the nature of the proof from the con-
densed and informal description that Gödel gives in the beginning of
his paper. But as the footnote above makes clear, the “proposition
that says about itself that it is not provable” is not a directly self-
referential proposition in the sense of the Liar (even though Gödel
is the first to point out the similarities with the Liar and other anti-
nomies, see Gödel, 1986, p. 149). There is no circularity, but the propo-
sition can nevertheless be interpreted as a metamathematical propo-
sition about itself thanks to a diagonalisation very similar to Cantor’s
original argument: All formulas in the system are uniquely encoded
as a number (in an enumerable arrangement of numbers) and just
like in the case of the uncountability of the real numbers it is possi-
ble to construct through diagonalisation a special object that conflicts
with its number in the enumeration. In Gödel’s case this conflicts is
resolved by the undecidability of the formula, because the assump-
tion of decidability (of either the formula or its negation) leads to a
contradiction.

So far, most of the remarks in Gödel’s introduction that have been
discussed are only a slightly imprecise sketch of his larger proof and
there is little to criticise from the perspective of Wittgenstein, as long
as one keeps in mind that metamathematical notions such as prov-
ability are used in a very particular sense by Gödel and might not
always directly correspond to our understanding of these terms in
more informal language. There is however one passage in Gödel’s
introductory remarks which is worth highlighting, as it introduces
an aspect that goes beyond the formal proof and ventures into philo-
sophical waters ([R(q);q] is the “proposition that says about itself that
it is not provable”):

Aus der Bemerkung, daß [R(q);q] seine eigene Unbeweisbarkeit behauptet,
folgt sofort, daB [R(q);q] richtig ist, denn [R(q);q] ist ja unbeweisbar (weil
unentscheidbar). Der im System PM unentscheidbare Satz wurde also durch
metamathematische Uberlegungen doch entschieden. [Gödel, 1986, p. 150,
Gödel’s emphasis]

From the remark that [R(q);q] says about itself that it is not provable, it
follows at once that [R(q);q] is true, for [R(q);q] is indeed unprovable (being
undecidable). Thus, the proposition that is undecidable in the system PM
still was decided by metamathematical considerations. [Gödel, 1986, p. 151]

The phrase “it follows at once that [R(q);q] is true” introduces a no-
tion of truth that was not present until now: It is not a notion that has
been defined recursively as an arithmetic function inside the system,
but rather marks the transition into meta-theoretical considerations
without any correspondence in the system. From the (intra-systemic) re-
sult that the proposition is undecidable (and thus unprovable intra-
systemically) Gödel concludes (extra-systemically) that it must be true
(extra-systemically), because it (intra-systemically) asserts its own un-
provability. The (intra-systemically) undecidable proposition has thus
been (extra-systemically) decided.
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Gödel’s introductory remarks, at least in this very specific passage,
thus go beyond what his formal proof can do, since the reasoning em-
ployed by Gödel steps “outside” the formal system to conclude the
truth of the proposition based on the inability of the formal system
to decide it. At least in this passage, Gödel’s introduction is ‘prosaic’
and does more than simply sketch out in a slightly imprecise way
something that will follow more precisely later on.12 There is no for-
malised or refined notion of truth that would lend meaning to Gödel’s
assertion that “[R(q);q] is true”, this notion of truth has meaning only
in terms of considerations that must step outside the formal system
and rely solely on “prose”.13

One important aspect of Gödel’s result that has been glanced over
in the discussion so far (but which becomes crucial for the detailed
proof) is the requirement of !-consistency. In contrast to ‘simple’ in-
consistency, which results if for some formula p both p and ¬p can be
derived in the system, !-inconsistency results if for a formula a(x)
with a single free variable x all the formulas a(0), a(1), ..., a(n) and
the formula ¬8x a(x) can be derived in the system. A system can
thus be !-inconsistent without being inconsistent and !-consistency
entails consistency.

12 Shanker, 1988, p. 220: “It is all too easy to overlook the radical philosophical claim
here presented. Contained in these brief words is not simply an obituary of Hilbert’s
Programme (and with it a covert plea for platonism); at stake is our understanding
of the logical character of mathematical propositions: of the nature of the relation
between a mathematical proposition and its proof.”

13 It should be noted that Wittgenstein’s conception of “prose” is independent from
the question of whether a mathematical result is expressed in ordinary informal lan-
guage or formal logic, in other words it is possible to express Gödel’s incompleteness
theorem in ordinary language without producing philosophically-problematic prose
and it is also possible to give prose a formal clothing (although it is certainly true that
philosophical abuses are more likely to arise in contexts where ordinary language
is used to talk about formal results). Berto, 2009 gives an example of a description
of Gödel’s (first) incompleteness theorem in ordinary language that Wittgenstein
would have most likely considered to be unproblematic. The description uses some-
what different terms, with “G1” corresponding to Gödel’s theorem VI, “TNT” corre-
sponding to Principia Mathematica and � corresponding to Gödel’s “proposition that
says about itself that it is not provable” with the encoding as number q:

Specifically, G1 attests only to the syntactic incompleteness of TNT, which means (putting
things down as formalistically as possible): assuming the (omega-) consistency of TNT, there
exists a string of symbols, which we have dubbed �, not producible as a theorem of TNT,
and such that the same string with a “¬” put in front of it is also not producible as a theorem.
Or, given the axioms of TNT, which are finite strings of symbols, and the rules of inference,
which are instructions for the manipulation of symbols, if TNT is (omega-) consistent, then
neither the string called � nor the string called ¬� will ever show up in the last line of
a proof of TNT, that is, in the last line of a sequence of strings obtained starting with the
axioms, and by means of manipulations allowed by the rules.

Here, there is no talk of a proposition saying something “about itself”, no mention
of truth or semantic completeness. Instead, this description reflects precisely what
happens on a syntactic level for “manipulations allowed by the rules”, with Gödel’s
theorem showing that there are theorems that are “not producible” in the system,
because they will not “show up in the last line of a proof”. The description presents a
precise picture of Gödel’s theorem, without venturing into unfounded philosophical
interpretations.
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The difference between !-consistency and simple consistency will
not play a big role for the following discussion and it is in fact pos-
sible to prove the undecidability of certain propositions in systems
with very similar requirements as in Gödel’s proof, but for simple
consistency instead of the stronger requirement of !-consistency.14

The proof for simple consistency constructs a different and somewhat
more intricate (and for simple consistency undecidable) proposition
than the (for !-consistency undecidable) “proposition that says about
itself that it is not provable”. A discussion of this more intricate un-
decidable proposition would go beyond the scope of this text, but it
should be noted that while Gödel’s result is often treated as being
easily adaptable to simple instead of !-consistency, this seemingly
innocuous change goes beyond Gödel’s own proof and requires a dif-
ferent undecidable proposition.15

More importantly, Gödel’s first incompleteness theorem is a condi-
tional result: The undecidable “proposition that says about itself that
it is not provable” is only undecidable if the system in question is !-
consistent. On the one hand, it seems obvious that Gödel has to make
some assumptions about the consistency of the formal system, since
in classical logic everything follows from a contradiction and thus
of course even the undecidable proposition (and its negation) could
be derived in such a (simply) inconsistent formal system. In other
words, undecidability depends on some form of consistency. On the
other hand, Gödel’s assumption of !-consistency is rather strong and
leaves open the question of whether this consistency (or even sim-
ple consistency) can be assumed to hold in informal mathematics,
including the “metamathematical considerations” that lead Gödel to
proclaim that “the proposition that is undecidable in the system PM
still was decided” (Gödel, 1986, p. 151). Such questions would go be-
yond the (mathematical) scope and goal of Gödel’s paper, but will

14 This was proved in 1936 by Rosser, a few years after Gödel’s result, see Berto, 2009,
pp. 100–101.

15 This distinction lies at the heart of Floyd and Putnam’s “note” on Wittgenstein’s “no-
torious paragraph” on Gödel (Floyd and Putnam, 2000), which attributes to Wittgen-
stein an advanced understanding of model theory. According to their interpretation,
Wittgenstein’s insight depends on the fact that Gödel’s result requires !-consisten-
cy and not simple consistency and the remarks on Gödel only appear as a misun-
derstanding if one ignores the difference between Gödel’s and Rosser’s undecidable
propositions. Floyd and Putnam’s interpretation certainly offers a very insightful and
charitable reading of Wittgenstein’s remarks, but has the disadvantage of reducing
Wittgenstein’s philosophical critique to a very specific observation that only applies
to Gödel, but not to Rosser or diagonal arguments as a whole. The “Floyd-Putnam
Thesis” has led to a lively debate, with objections coming from Rodych, 2003 and
Bays, 2004 (building on Steiner, 2001), followed by Floyd and Putnam, 2006, which
was later revised and published in Floyd and Putnam, 2008 to include a rebuttal of
Bays, 2006. While the Floyd-Putnam Thesis is certainly interesting, this chapter will
instead propose a different interpretation that is closer in spirit to a paraconsistent
reading along the lines of Priest, 2004 and Berto, 2009, pp. 189–213. Accordingly, the
debate that grew from the original Floyd-Putnam paper will not be examined here
(although it is not over, see e.g. the recent Lajevardi, 2021).
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become relevant in the context of Wittgenstein’s (philosophical) re-
marks. While it is understandable that as a mathematician Gödel is
interested primarily in (!-)consistent formal systems, it is important
to keep in mind that this assumption of (!-)consistency is not philo-
sophically ‘privileged’ and should be critically examined whenever
philosophical interpretations are drawn from Gödel’s result: Consis-
tency might be a mathematical ideal, but whether this ideal is justified
or even an apt description of our mathematical practice is a question
that cannot be answered on the basis of Gödel’s mathematical proof
alone.

Lastly, it can be useful to very briefly discuss Gödel’s second incom-
pleteness theorem (theorem XI in the paper). It is a corollary of the
first incompleteness theorem and overall less relevant in the context
of Wittgenstein’s remarks than the first, but nevertheless important to
understand the relevance of Gödel’s result for mathematics and espe-
cially the foundations of mathematics. Gödel himself only sketched
out some of the parts leading up to theorem XI and no detailed discus-
sion of the theorem will be attempted here either. But slightly simpli-
fied, the theorem states that no formal system of the aforementioned
nature (being !-consistent, axiomatised so that its set of axioms is
decidable, and strong enough to formalise arithmetic and primitive
recursive functions) can prove its own !-consistency. If such a proof
could be carried out inside the formal system, the antecedent of the
first incompleteness theorem (which states that if the formal system
is !-consistent, there is a proposition that is not decidable in the sys-
tem) would be derivable and thus via modus ponens the undecidable
proposition itself, which would make it decidable after all and thus
lead to a contradiction.16

Before finally focusing on Wittgenstein, let us recapitulate the most
salient points for a philosophical discussion of Gödel’s result, keeping
in mind that any brief and informal exposition will necessarily have
to ignore some of the finer mathematical details. What has actually
been proved by Gödel?

The first incompleteness theorem states that, for systems that sat-
isfy specific requirements (being !-consistent, axiomatised so that
its set of axioms is decidable, and strong enough to formalise arith-
metic and primitive recursive functions), it is possible to construct a
proposition that is not derivable from the rules of the system and nei-
ther is its negation. The formal proof of the theorem carefully avoids

16 Gödel’s second incompleteness theorem is not as simple as this informal treatment
suggests, see Berto, 2009, pp. 102–107. The difficulty of proving it arises partly from
the fact that Gödel’s first incompleteness theorem needs to be translated from its
metamathematical expression into the arithmetical language of the formal system
itself before it is possible to apply modus ponens and arrive at the undecidable propo-
sition. The amount of arithmetic machinery that is necessary for this does not cor-
respond exactly to what is used in the first incompleteness theorem Berto, 2009,
p. 102, further complicating the matter. These technical details are not relevant for
the following discussion of Wittgenstein’s remarks, however.
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any notion of truth and is concerned only with the syntactic prop-
erty of provability (in terms of derivability from the axioms). Gödel’s
assertion that “the proposition that is undecidable in the system PM
still was decided by metamathematical considerations” (Gödel, 1986,
p. 151) thus presupposes a notion of truth that is only present outside
the system. It is therefore no accident that the assertion only occurs
in the informal introduction of the paper.

The second incompleteness theorem states that a system of the
above nature cannot prove its own !-consistency (in other words no
such proof can be derived as a theorem in the system), as such a proof
would immediately imply the undecidable proposition, in contradic-
tion to it being undecidable.

Statements such as “in a formal system there are true but unde-
cidable propositions” or “a formal system cannot prove its own con-
sistency” are not necessarily incorrect, but definitely imprecise char-
acterisations of Gödel’s results. Gödel’s proof is only applicable to
a particular notion of “formal system”, the question of whether it is
applicable to our ordinary notion of mathematical reasoning and of
whether certain philosophical interpretations are justified go beyond
its mathematical scope. This is where Wittgenstein finally comes in.

2.2 truth and provability

After a few introductory remarks, the main discussion of Gödel’s
“proposition that says about itself that it is not provable” in appendix
III of the RFM starts with Ts-221a, 248.1 / §517, where Wittgenstein
asks what we call a true proposition in Russell’s system:

Gibt es wahre Sätze in Russell’s System, die nicht in seinem System zu be-
weisen sind? – Was nennt man denn einen wahren Satz in Russell’s System?
[Ts-221a, 248.1 / BGM I; Appendix III §5]

17 The introductory remarks are by no means clearly separated from the more explicit
discussion of Gödel’s result starting in §5 and have often been discussed along with
it (e.g. in Floyd, 1995). Some even go so far as to ascribe to them a crucial importance
for a proper understanding of Wittgenstein’s approach, e.g. Kienzler and Grève,
2016, p. 86: “At a first glance, sections 1–4 and 20 can easily appear to be some-
what disconnected from the bulk of Appendix III. They are, however, of special
importance for any adequate understanding of the text because they characterise
the perspective from which Wittgenstein approaches the issues.” In fact, it is hard
to draw a sharp line between Appendix III and the rest of the RFM, because “the
text of Appendix II can be interpreted as already dealing with Gödel in some sense”
(Kienzler and Grève, 2016, p. 86), given that it deals with the issue of surprise in
mathematics and that Gödel characterises his proof as demonstrating “surprising
results” (Gödel, 1986, p. 151). As the following text intends to show, Wittgenstein’s
investigation of Gödel is only understandable if it is viewed not as an isolated exam-
ination of a particular mathematical theorem (as the early dismissive reviews had
the tendency to interpret it), but rather as a reflection of more general philosophical
values drawn from the RFM and the PI as a whole. For the interpretation in this
chapter however, §§1–4 are of minor importance and will therefore not be discussed.
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Are there true propositions in Russell’s system, which cannot be proved in
his system? – What is called a true proposition in Russell’s system, then?
[RFM I; App. III §5]

As mentioned, the truth of propositions is irrelevant for the purely
syntactic approach of Gödel’s first incompleteness theorem, it is thus
not the mathematical result that Wittgenstein is interested in, but
rather Gödel’s informal remark that “it follows at once that [R(q);q] is
true” because it “was decided by metamathematical considerations”
(Gödel, 1986, p. 151).

In Ts-221a, 248.2 / §6, Wittgenstein gives a deflationary answer to
his own question (“For what does a proposition’s ‘being true’ mean?
‘p’ is true = p. (That is the answer.)”) and draws our attention to the fact
that “in Russell’s game” a proposition is true if it occurs as an axiom
or “at the end of one of his proofs”. This should not be read as an en-
dorsement of a particular theory of truth, but only as the rather trivial
observation that, seen purely from ‘within’ a formal system such as
Principia Mathematica, truth is defined in terms of provability.18

It is clear that Gödel’s undecidable proposition is not true in this
sense, as it will never appear at the end of a proof in PM. But it could
certainly be true in a different system (where it would appear at the
end of a proof), as Wittgenstein notes in Ts-221a, 248.3 / §7. Of course
this observation is quite trivial and does not conflict with Gödel’s re-
sult at all, so why does Wittgenstein mention it? There seem to be
two reasons: First of all, Wittgenstein emphasises the role of truth in
the context of different language games, instead of thinking of it as a
global notion with the same meaning in every formal system.19 This
is how something can be true or false “in a different sense” depend-
ing on the language game in question. In the context of Wittgenstein’s
philosophy, this is not surprising, but it nevertheless marks a depar-
ture from Gödel’s 1931 paper, where different notions of truth play
no role for the mathematical result. Secondly and more importantly,
the trivial observation that false propositions in one system may be
true propositions in another (Wittgenstein mentions non-Euclidean

18 In other words, Wittenstein merely adopts the perspective of a Russellian logician for
this argument, but does not himself endorse it. As Floyd, 1995, p. 377 notes, this re-
jection of the “logistic reduction” of mathematical truth goes back to Wittgenstein’s
Notebooks 1914–16 as well as the Tractatus. See also Floyd, 1995, p. 401: “Read in con-
text, this remark need not be read as an analysis of the truth of sentences generally,
i.e., the so-called redundancy theory of truth, but rather perhaps only of those of
logic, or, even more, specifically, of the sentences of Principia”. See also Kienzler and
Grève, 2016, p. 95, stressing a similar point.

19 As Floyd, 1995, p. 403 notes, “all the notions in which philosophers have been most
interested - “truth”, “provability”, even “derivability” - find a home only within a
specific, ongoing technique of use, and never within a formalism itself.” Of course,
the hard part is showing why and how an overly general conception of these concepts
produces misleading interpretations, which is what Wittgenstein sets out to do in
the context of his remarks on Gödel.
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geometries as examples20) draws our attention to the fact that Gödel’s
undecidable proposition is ‘non-trivially’ true-but-unprovable, which
in Gödel’s own words leads to “surprising results concerning con-
sistency proofs for formal systems” (Gödel, 1986, p. 151). Gödel’s
undecidable proposition is remarkable precisely because the truth
of it is not established in an unrelated system, but rather seems to
follow directly from the formal system in question itself, just on a
meta-systemic level, which nevertheless fully depends on the formal
system. As Gödel notes, the undecidable proposition is true, but as
Wittgenstein asks, in what sense?

After the preparatory work in the aforementioned remarks, the real
investigation of Gödel’s incompleteness theorem begins in the “noto-
rious paragraph”21 Ts-221a, 249.2 / §8. It is thus worth quoting in full,
while splitting into two parts:

Ich stelle mir vor, es fragte mich Einer um Rat; er sagt: “Ich habe einen
Satz (ich will ihn mit “P” bezeichnen) in Russell’s Symbolen konstruiert,
und den kann man {durch gewisse Definitionen und Transformationen so
deuten, daß er sagt: ‘P ist nicht in Russell’s System beweisbar’. // auch in
der Form aussprechen: ‘P ist (in Russell’s System) nicht beweisbar’.} Muß
ich nun von diesem Satz nicht sagen: einerseits er sei wahr, anderseits er
sei unbeweisbar? Denn angenommen, er wäre falsch, so ist es also wahr,
daß er beweisbar ist! Und das kann doch nicht sein. Und ist er bewiesen,
so ist bewiesen, daß er nicht beweisbar ist! So kann er also nur wahr, aber
unbeweisbar sein.” [Ts-221a, 249.2 / §8]

I imagine someone asking my advice; he says “I have constructed a proposi-
tion (I will use ‘P’ to designate it) in Russell’s symbolism, and by means of
certain definitions and transformations it can be so interpreted that it says:
‘P is not provable in Russell’s system’. Must I not say that this proposition
on the one hand is true, and on the other hand is unprovable? For suppose
it were false; then it is true that it is provable. And that surely cannot be!
And if it is proved, then it is proved that it is not provable. Thus it can only
be true, but unprovable.” [RFM I; App. III §8]

This may be a very brief summary of Gödel’s informal assertion that
the undecidable proposition is true, but it nevertheless adequately
captures why someone might (based on Gödel’s result) conclude that
the “proposition that says about itself that it is not provable” is true
but not provable in Principia Mathematica. Perhaps the only departure
from most interpretations of Gödel’s theorem is how Wittgenstein ex-
plicitly notes that Gödel’s arithmetisation of metamathematical con-
cepts requires an interpretation, so that “by means of certain defini-
tions and transformations it can be so interpreted”, leaving open the
question of whether we must interpret a formula in this way.22

20 This should not be read as endorsing some kind of relativism where the axioms
of geometry were arbitrary, however. As WCL, p. 56 makes clear, Wittgenstein is
aware of the fact that Euclidean “Euclidean geometry has a great advantage over
non-Euclidean geometry when it is a matter of measuring boards”, that is to say,
when it comes to the variety of everyday uses.

21 See Floyd and Putnam, 2000.
22 Not all interpretations agree that Wittgenstein’s target here is the informal and prosaic

interpretation of Gödel’s theorem. For example, Steiner, 2001, p. 272 denies “that Witt-
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Leaving aside this question for now, the the second part of the
remark is more problematic and has often been interpreted as an
attempted refutation of Gödel’s theorem:

So wie wir fragen: “in welchem System ‘beweisbar’?”, so müssen wir auch
fragen: “in welchem System ‘wahr’?”. ‘In Russell’s System wahr’ heißt, wie
gesagt: in Russell’s System bewiesen; und ‘in Russell’s System falsch’ heißt:
das Gegenteil sei in Russell’s System bewiesen. – Was heißt nun Dein: “an-
genommen, er sei falsch”? In Russell’s Sinne heißt es: “angenommen das
Gegenteil sei in Russell’s System bewiesen”; ist das Deine Annahme, so wirst
Du jetzt die Deutung, er sei unbeweisbar, wohl aufgeben. Und unter dieser
Deutung verstehe ich die Übersetzung in diesem deutschen Satz. – Nimmst
Du an, der Satz sei in Russell’s System beweisbar, so ist er damit in Russell’s
Sinne wahr und die Deutung “P ist nicht beweisbar” ist wieder aufzugeben.
Nimmst Du an, der Satz sei in Russell’s Sinne wahr, so folgt das Gleiche.
Ferner: soll der Satz in einem andern als Russell’s Sinne falsch sein: so
widerspricht dem nicht, daß er in Russell’s System bewiesen ist. (Was im
Schach “verlieren” heißt, {kann doch in einem andern Spiel das Gewin-
nen ausmachen.) // darin kann doch in einem andern Spiel das Gewinnen
bestehen.)} [Ts-221a, 249.2 / §8]

Just as we ask: “‘provable’ in what system?”, so we must also ask: “ ‘true’
in what system?” ‘True in Russell’s system’ means, as was said: proved in
Russell’s system; and ‘false in Russell’s system’ means: the opposite has
been proved in Russell’s system. – Now what does your “suppose it is
false” mean? In the Russell sense it means ‘suppose the opposite is proved
in Russell’s system’; if that is your assumption, you will now presumably
give up the interpretation that is unprovable. And by ‘this interpretation’
I understand the translation into this English sentence. – If you assume
that the proposition is provable in Russell’s system, that means it is true in
the Russell sense, and the interpretation “P is not provable” again has to be

genstein saw the introductory remarks as Gödel’s own attempt to give a philosophi-
cal interpretation of his theorem, and his criticism was of the interpretation.” Instead,
Steiner reads §8 as an attempted refutation of “a sketch of a perfectly valid, seman-
tic version of Gödel’s theorem” (Steiner, 2001, p. 267), and interprets Wittgenstein as
mistakenly violating his principle of not interfering in mathematics. Even if it is true
that Wittgenstein’s description in §8 could be read as a semantic version of Gödel’s
theorem, such a reading not only needs to assume that Wittgenstein carelessly vio-
lated his principle of non-interference, but also deal with the fact that especially the
later remarks in Ms-121 and Ms-124 heavily favour the view that Wittgenstein is at-
tacking the interpretation of the theorem, not any version of the mathematical theorem
itself. Furthermore, Steiner’s argument makes heavy use of Tarski’s theory of truth,
when it is quite doubtful that Wittgenstein would have accorded one particular the-
ory such a position, given that his remarks on Gödel all lead to the consequence that
a mathematical theory cannot justify its own use, nor its applicability as a picture of
our informal concepts. This is convincingly shown in Floyd, 2001, p. 304:

Wittgenstein’s dialectical treatment of Gödel’s theorem allows us to raise the philosophical
question of whether Tarski’s model-theoretic account of truth definitions for formalized lan-
guages exhibits the core of our notion of mathematical truth. Wittgenstein would deny that
this account resolves the philosophical questions at stake in arguments about the nature and
scope of mathematics – even if he accepted, as I suppose he would, Tarski’s mathematical
theorems, and a Tarskian semantical proof of Gödel’s theorem.

Further arguments against Steiner’s interpretation are given in Rodych, 2006, where
Wittgenstein is however interpreted as a “finitist, formalist, and radical construc-
tivist” (Rodych, 2006, p. 56), endorsing a particular theory of truth (merely one dif-
ferent from Steiner’s interpretation). But as this chapter attempts to show, a finitistic
reading would swap one dogmatic interpretation for another.
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given up. If you assume that the proposition is true in the Russell sense,
the same thing follows. Further: if the proposition is supposed to be false
in some other than the Russell sense, then it does not contradict this for
it to be proved in Russell’s system. (What I called “losing” in chess may
constitute winning in another game.) [RFM I; App. III §8]

What does it mean to “give up the interpretation that it is unprov-
able”? If we interpret Gödel’s arithmetisation as a faithful translation
of the concept of provability, the assumption that the undecidable
proposition is false in the sense of Russell (and thus provable in PM)
leads to the contradictory conclusion that it is unprovable in PM (and
thus true in the sense of Russell), and vice versa, since from the per-
spective of Wittgenstein truth in the sense of Russell is equivalent to
provability in Principia Mathematica. If truth and provability coincide,
it is clear that the only way ‘out’ is to give up the interpretation that
Gödel’s translation is “the translation into this English sentence”.23

This certainly marks a departure from Gödel’s own interpretation
of his result in the informal introduction, but is it actually a refutation
of Gödel’s incompleteness theorem? For Gödel, truth and provability
are distinct notions, which is a reasonable interpretation if one as-
sumes that Gödel’s arithmetisation adequately captures the meaning
of the English translation. For Wittgenstein, the situation is reversed,
because the equivalence of truth and provability is assumed and the
translation can consequently not be said to adequately capture the
English meaning. While these two views certainly offer very different
perspectives on Gödel’s incompleteness theorem, we should be care-
ful not to ascribe a particular theory of truth to Wittgenstein or, even
worse, read the above passage as a refutation of Gödel’s mathemati-
cal result. If there is a disagreement between Gödel and Wittgenstein
here at all, it is a disagreement concerning the interpretation of the

23 Rodych, who otherwise proposes a very charitable interpretation of Wittgenstein’s
remarks on Gödel, considers §8 (and also §10) to contain Wittgenstein’s main “mis-
take” (Rodych, 1999, pp. 181–82): “Gödel’s proof of [the first incompleteness theo-
rem] does not require that ’P’ "be so interpreted that it says: ’P is not provable in Rus-
sell’s system’". We do not need to assume a natural language meaning for ’P’ (e.g.,
an English meaning) to obtain the threatened contradiction, for it is just a number-
theoretic ’fact’ that an actual proof of ’P’ would enable us to calculate the relevant
Gödel numbers and thereby arrive at ’¬ P’ by existential generalization.” Rodych
is certainly correct in pointing out that Wittgenstein’s peculiar and rather informal
description of Gödel’s theorem operates on the level of informal natural language in-
terpretations and reductios unlike Gödel’s mathematical result, but there is no reason
to assume that this would be Wittgenstein’s intention. Rodych himself points out
that §8 is applicable to Gödel’s informal introduction: “Wittgenstein again seems
to think that a natural language interpretation of ’P’, such as Gödel’s original ‘the
undecidable proposition [R(q);q] states ... that [R(q);q] is not provable’, is essential
to the proof” (Rodych, 1999, p. 183). As later remarks will show, Wittgenstein was
aware of the number-theoretic details and the indirect-reference-via-substitution of
Gödel’s proof, it is therefore likely that Wittgenstein deliberately chose to present an
interpretation of Gödel’s result in terms of a prosaic description, because this kind of
interpretation is what he wants to attack, not the mathematical result itself. Conse-
quently, a more adequate interpretation of §8 would be Priest, 2004, pp. 211–13 or
Floyd, 1995, pp. 404–406.
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proof, not an attempt on the part of Wittgenstein to contest the va-
lidity of Gödel’s mathematical result. Wittgenstein merely adopts the
perspective of truth as seen from within Principia Mathematica, but
he should not be read as endorsing it, because the investigation was
launched in §5 not by dogmatically asserting that truth is provability,
but rather by asking “What is called a true proposition in Russell’s
system, then?”. The answer to this is indeed a deflationary account
of truth as provability, but only as seen from within Russell’s system, in
other words in a very restricted language game, which by no means
precludes the possibility of other sensible notions of truth such as
Gödel’s. Wittgenstein very deliberately adopts a different perspective
than Gödel, but this does not immediately make Wittgenstein a dog-
matic proponent of such a perspective.

We might still object, however, that Wittgenstein’s perspective is
entirely nonsensical. If truth and provability coincide as Wittgenstein
assumes (even if only for the sake of the argument), to “suppose it is
false” means to “suppose the opposite is proved in Russell’s system”
or to “assume that the proposition is provable in Russell’s system”.
But in Gödel’s proof, provability is understood precisely in terms of
its arithmetical translation, in such a way that we can follow the same
rules as we usually would while deriving a theorem, only now while
transforming numbers instead of mathematical symbols. This is why
‘supposing it is false’ seems nonsensical: We would have to suppose
that, by following only well-defined rules in a mechanical manner, we
reach a point which we, by following only these same well-defined
rules, cannot reach, if the rules are guaranteed never to lead to an !-
inconsistent state. Wittgenstein’s remark appears to misunderstand
Gödel by assuming that there is a gap between the arithmetisation of
provability and ‘regular’ provability, so that we could suppose some-
thing to be proved ‘the regular way’ (by following the rules of Prin-
cipia Mathematica) but unprovable when interpreted via its arithmeti-
cal translation. The beauty of Gödel’s result, however, is that it does
not leave such a gap, since it presents an ‘implementation’ of exactly
the rules of a system such as PM developed rigorously as recursive
functions. How could we then suppose the undecidable proposition
P to be false in Russell’s system?

A tentative answer is given in Ts-221a, 250.3 / §10 after Wittgen-
stein lays some groundwork in Ts-221a, 250.2 / §9, where he notes
that the arithmetic translation of Gödel’s undecidable proposition can
be interpreted in two ways:

Was heißt es denn: “P” und “P ist unbeweisbar” seien der gleiche Satz?
Es heißt, daß diese zwei deutschen Sätze in der und der Notation einen
Ausdruck haben. [Ts-221a, 250.2 / §9]

For what does it mean to say that P and “P is unprovable” are the same
proposition? It means that these two English sentences have a single expres-
sion in such-and-such a notation. [RFM I; App. III §9]
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Strictly speaking, the undecidable proposition should be translated as
saying something along the lines of “the proposition with the number
r (obtained via substitution) is unprovable”, where r is precisely the
number that corresponds to this proposition (the proposition “P”) via
its arithmetical translation, but crucially not by naming the number r

directly, but rather by substituting a variable in a formula q in such
a way that the variable is replaced with the number corresponding
to the formula q. Gödel thus constructs a fixed point and it is in this
very restricted sense that we might be willing to say that “P” and “P
is unprovable” are both valid translations for the same mathematical
proposition, because once we ask what “P” stands for in “P is unprov-
able” the answer will (after translating the result of the substitution
into English) again be “P is unprovable”.24

Directly naming the proposition P (with number r) to construct a
new proposition r 0 that says “the proposition with the number r

(named directly without substitution)” is of course also possible, the
corresponding number would then be larger than the number for r

(because the number for r occurs in r 0), but the translation could
still be said to be “P is unprovable” and in this sense “P” and “P
is unprovable” correspond to different expressions in the notation.
The method of quoting P therefore matters (and Gödel’s construction
only works if an indirect quoting-by-substituting is used) and Witt-
genstein’s quite informal discussion of it is certainly problematic, but
not without merit.

Returning to the question of how the seemingly nonsensical prov-
ability of P could be assumed, Wittgenstein notes that a human error
could lead to the proposition P occurring at the end of a proof:

“Aber P kann doch nicht beweisbar sein, denn, angenommen es wäre be-
wiesen, so wäre der Satz bewiesen, er sei nicht beweisbar.” Aber wenn dies
nun bewiesen wäre, oder wenn ich glaubte – vielleicht durch Irrtum – ich
hätte es bewiesen, warum sollte ich den Beweis nicht gelten lassen und
sagen, ich müsse meine Deutung “unbeweisbar” zurückziehen? [Ts-221a,
250.3 / §10]

24 Kienzler and Grève, 2016, p. 99 interpret this remark as stressing an important dif-
ference between a formal representation of P and its informal expression in English:

“It becomes apparent, however, that what is expressed here for consideration is the unortho-
dox view according to which first there are two distinct sentences of English, namely on the
one hand ‘P’ and on the other ‘P is unprovable’, and then a notation (or formal system) is
constructed in which, for some reason, both these sentences share just one formalised coun-
terpart expression (rather than two, e.g. P and Q, as – all things being equal – would seem
to be the normal thing to do).”

However, this way of emphasising the difference between the formal notation and
its informal counterpart is misleading, because strictly speaking in Gödel’s proof
‘P’ and ‘P is unprovable’ operate on different levels (and thus have different formal
expression), because in ‘P is unprovable’ the proposition ‘P’ is never named directly,
but is referred to only via its Gödel-number and with the help of substitution. This
corresponds to the English expression ‘The sentence with the number X is unprov-
able’ where this very sentence occurs as number X in a list of sentences.
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“But surely P cannot be provable, for, supposing it were proved, then the
proposition that it is not provable would be proved.” But if this were now
proved, or if I believed – perhaps through an error – that I had proved it,
why should I not let the proof stand and say I must withdraw my interpre-
tation “unprovable”? [RFM I; App. III §10]

It is easy to imagine that we could end up with a ‘proof’ of P if we
forget a negation symbol or add one along the way, we are then faced
with a derivation of P, a proposition which, translated into English,
says that P is unprovable. What are we to do then? One option would
be to take it as a sign of an error and double-check the proof. But
what if can find no fault in it and all other proofs lead to the ex-
pected results, in other words if we can use the formal system in a
useful way? Why should we then not “let the proof stand” and in-
stead “withdraw” our interpretation of it being “unprovable”? After
all, we have proved the proposition, so it cannot be unprovable in this
sense.25

2.3 harmless inconsistency

But there is another interesting possibility left open by the use of
the word “perhaps” in remark §10: What if the ‘proof’ of P really
is a proper proof and there is no error? A proof of P would then
entail an inconsistency, as P would be provable, but would also (by
being true) unprovable. That Wittgenstein indeed leaves behind any
assumption of !-consistency and instead considers a contradictory
notion of truth is made clear in the next remark:

Nehmen wir an, ich beweise die Unbeweisbarkeit (in Russell’s System) von
P; so habe ich mit diesem Beweis P bewiesen. Wenn nun dieser Beweis
einer in Russell’s System wäre, – dann hätte ich also zu gleicher Zeit seine
Zugehörigkeit und Unzugehörigkeit zum Russell’schen System bewiesen. –
Das kommt davon, wenn man solche Sätze bildet. – Aber hier {ist // wäre}
ja ein Widerspruch! – Nun so ist hier ein Widerspruch. Schadet er hier
etwas? [Ts-221a, 251.2 / §11]

Let us suppose I prove the unprovability (in Russell’s system) of P; then by
this proof I have proved P. Now if this proof were one in Russell’s system – I

25 It is interesting that Priest, 2004, p. 225 (note 6) finds “the expression of the last sen-
tence of 10 [to be] a bit odd” and suggests to read it as “But if this were now proved,
or if I believed – perhaps through an error – that I had proved it, why should I not
let the proof stand and [why] say I must withdraw my interpretation ‘unprovable’?”.
Priest thus interprets the last part of the sentence in the opposite way than most Ger-
man readers would, as not withdrawing the interpretation “unprovable”, but rather
as ‘letting it stand’ together with the proof. Such a reading seems highly unlikely in
the context of the German sentence and is completely unnecessary for Priest’s inter-
pretation: The point of Wittgenstein’s remark is precisely that if we let P stand, any
interpretation of it is contradictory and so the interpretation “unprovable” can be
both withdrawn (because we have just proved the supposedly unprovable proposi-
tion) and asserted (because the proved proposition says that it is unprovable). What
we have to withdraw in both cases is the expectation of consistency that we had
assumed as part of our notion of provability.
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should in that case have proved at once that it belonged and did not belong
to Russell’s system. – That is what comes of making up such sentences. –
But there is a contradiction here! – Well, then there is a contradiction here.
Does it do any harm here? [RFM I; App. III §11]

This remark, together with Ts-221a, 251.3 / §12 and Ts-221a, 252.1 /
§13, exhibits a striking openness towards inconsistency.26 In itself, this
does not conflict with Gödel’s result, which is after all conditional: If
the formal system in question is !-consistent, the proposition P is
undecidable, but if the system is inconsistent, all bets are off and
both P and its negation could be provable.27

Inconsistency provides a new perspective in the matter of what it
might mean to “give up” or “withdraw” the interpretation that P is
unprovable: Giving up this interpretation could either mean that one
rejects Gödel’s translation of formal concepts such as provability into
arithmetic operations (which would amount to a misguided attempt
to refute the mathematical validity of Gödel’s proof) or it could mean
that an !-consistent concept of provability is simply not powerful
enough to fully capture what we mean by provability in the case of
propositions such as P. The latter perspective does in no way contra-
dict Gödel’s result, it simply departs from Gödel’s own interpretation
of P as “undecidable in the system PM [but metamathematically] still

26 This also seems to provide one of the strongest arguments against the model-
theoretic interpretation of Floyd and Putnam, 2000: Even if Wittgenstein had a knowl-
edge of model theory on the level suggested by Floyd and Putnam, the remarks that
follow the “notorious paragraph” in Ts-221a, 249.2 / §8 show a strong paraconsistent
tendency and do not exhibit much of the model-theoretic subtlety that is supposedly
at work in the “notorious paragraph”. Of course this does not preclude the possibil-
ity that Wittgenstein went on a brief detour in Ts-221a, 249.2/ §8, but it seems more
likely that even this earlier paragraph should be read from a paraconsistent perspec-
tive, even if such an interpretation might be at odds with the philosophical Weltan-
schauung of most working mathematicians. (Another argument against ascribing the
Floyd-Putnam Thesis to Wittgenstein is given in Lajevardi, 2021: If Wittgenstein had
indeed intended §8 in such a model-theoretic sense, it is unclear why he did not ex-
tend his insight to the second incompleteness theorem, where the observation would
have been of greater importance.)

27 It is unfortunate that the earliest charitable interpretations of Wittgenstein’s remarks
on Gödel, Shanker, 1988 and Floyd, 1995, both largely ignore the remarks §§10–13,
which represent of course some of the most troubling remarks from the perspective
of classical logicians or anyone unable to entertain the idea that inconsistency might
be acceptable within a formal system. It is here that paraconsistent interpretations
such as Priest, 2004 and Berto, 2009 can shed new light on the remarks, although
these interpretations end up going too far, by ascribing a particular position of logic
to Wittgenstein (e.g. Priest, 2004, p. 214: “In fact, if one identifies truth with prov-
ability, as does Wittgenstein, Gödel’s paradox and the liar collapse into each other”,
and Berto, 2009, p. 213: “As I have claimed before, by subscribing to such a way of
making sense of Wittgenstein’s remarks on Gödel’s Theorem we will not be allowed
to claim – as many commentators did – that such a philosophy does not require
any logical-mathematical revisionism, being directed only against the foundational
demands of philosophers.”). As this chapter attempts to show, Wittgenstein’s em-
brace of inconsistency should be taken seriously, but it must not be understood as a
dogmatic position, only as an antidote against a philosophically one-sided diet.
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[...] decided” in favour of an inconsistent and deflationary notion of
truth as provability.28

Giving up the interpretation that P is unprovable means just that:
Clearly P is not unprovable if we can prove it. So where does that
leave the truth of P, a proposition which says about itself that it is
not provable? The informal translation of P into English might seem
dubious at this point, but it is important to remember that in the case
of P there is no pre-existing ‘standard of measurement’ that would
apply here: In the case of ‘regular’ mathematical propositions incon-
sistency is a sign of an error, because we do not accept ‘2+ 2 = 4‘ and
‘2+ 2 = 5‘ to be true at the same time, a formal system that would
prove both an arithmetic proposition and its negation would thus be
useless for practical purposes. But as Wittgenstein reminds us in Ts-
221a, 251.3 / §12, in the case of P “the proposition itself is unusable,
and these inferences equally”.29 Wittgenstein’s embrace of inconsis-
tency is not an invitation for trivialism, because a formal system that
could prove anything would be useless in practice. It is instead the ba-
sis for the very insightful observation that in the case of propositions

28 Kienzler and Grève, 2016, p. 101 consider a paraconsistent interpretation of §11 to
“misconstrue Wittgenstein’s investigations of Gödel in Appendix III” and instead
hold the view that “Wittgenstein’s point is that, if there is no proof of P in PM,
then it is first and foremost questionable whether P should be regarded as a (well-
formed) part of PM or not.” It is certainly correct that paraconsistent interpretations
of Wittgenstein have usually coopted him in the service of a (from Wittgenstein’s per-
spective) dogmatic logical position, but Wittgenstein’s discussion of contradictions
in Appendix III and other parts of the Nachlass should not be too quickly interpreted
as excluding such a contradictory proposition from the formal system, no matter
how useless the proposition might be. One might follow the interpretation in Kien-
zler and Grève, 2016 to assert that, while P is indeed unprovable in the sense of
Gödel’s arithmetised concept of provability, the formalisation of P is not understand-
able in terms of our English-language concept of provability, but this again raises the
question of whether the formalisation of P would be understandable if one leaves
behind the formal ideal of consistency (and thus entertains a paraconsistent reading,
but only in this particular instance). The important point is that Gödel’s proof does
not and cannot answer this question, because the usefulness of a proposition such
as P is determined by factors outside the mathematical proof itself. It is thus a mis-
interpretation to say that “Wittgenstein shows in detail that there is no way that the
Gödelian construct of a string of signs could be assigned a useful function within (or-
dinary) mathematics” (Kienzler and Grève, 2016, p. 76). Wittgenstein certainly gives
us good reasons to say that P is useless, but this does not mean that it could not
be assigned a useful function (possibly through the help of a paraconsistent formal
system).

29 The remark bears a striking resemblance to Wittgenstein’s remarks on Cantor’s diag-
onal argument, most importantly Ms-121, 41v.2 / §35 (see Section 1.3), where Witt-
genstein emphasises that the diagonalised number constructed in Cantor’s proof is
not used for the same practical purposes as other real numbers. This resemblance is
no coincidence, as Gödel’s proof is at its heart a diagonal argument and the con-
struction of Gödel’s undecidable proposition shows many analogies to Cantor’s
diagonalised number. In both cases, the practical purposes of such a construction
matter little to mathematicians, whereas this aspect is of paramount importance for
Wittgenstein, because the question of whether the resulting contradiction could be
accepted instead of excluded depends on how we use the language game in practice.
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such as P, which are fixed points constructed through diagonalisation,
there is no practical use and therefore no pre-existing standard for the
importance of consistency. Of course we might be tempted to apply
the same standard of consistency and the same concept of provability
that governs the ‘regular’ cases, for formal reasons or otherwise, but
are we sure that we are not extending the concept beyond its reach?
Coincidentally, this is exactly the phrasing that Wittgenstein uses in
an earlier variant of Ts-221a, 250.3 / §10 in Ms-118:

“Aber P kann doch nicht beweisbar sein, denn angenommen es wäre be-
wiesen so wäre der Satz bewiesen, er sei nicht beweisbar.” Aber wenn
dies nun bewiesen wäre, oder wenn ich glaubte – vielleicht {durch einen
Irrtum – // irrtümlich –} ich hätte es bewiesen, warum sollte ich den Be-
weis nicht {{als solchen anerkennen & sagen, // gelten lassen & sagen,}
ich habe meine Deutung: “unbeweisbar” zu {weit // sehr} ausgedehnt? //
sagen, ich müsse meine Deutung . . . zurückziehen? } [Ms-118, 111r.4]

“But P cannot be provable, for if it were proved, the proposition that it
would not be provable would be proved.” But if this were now proved, or
if I believed – {perhaps by an error // erroneously} – I had proved it, why
should I not {{acknowledge the proof as such & say, // allow it to stand &
say,} I have extended my interpretation: "unprovable" too {far // much}? //
say I have to withdraw my interpretation ...? }

Of course one should not interpret Wittgenstein as necessarily en-
dorsing an inconsistent concept of provability here. What Wittgen-
stein’s investigation appears to aim at is an openness for alternative
philosophical interpretations of Gödel’s result, in other words for a
different and less one-sided diet. As Ts-221a, 251.3 / §12 and Ts-221a,
252.1 / §13 make clear, consistency is not an ideal in itself for Witt-
genstein and we therefore cannot simply assume a formal system to
be consistent or !-consistent if the system is supposed to reflect our
understanding of provability, because the ‘motivating examples’ of
provable or unprovable useful propositions simply do not apply in
the case of the undecidable proposition P, as we have not given it any
use.

The next remark goes further into this direction, by considering
how a proof of the unprovability (and undecidability) of a particular
proposition can be used as a prediction. The remark is a central point
in the investigation of Gödel’s theorem in RFM I; App. III and thus
worth quoting in full, as it introduces a reflection on the “physical
element” of a proof:

Ein Beweis der Unbeweisbarkeit ist quasi ein geometrischer Beweis; ein Be-
weis, die Geometrie der Beweise betreffend. Ganz analog einem Beweise
etwa, daß die und die Konstruktion nicht mit Zirkel und Lineal ausführbar
ist. Nun enthält so ein Beweis ein Element der Vorhersage, ein physikalis-
ches Element. Denn als Folge dieses Beweises sagen wir ja einem Men-
schen: “Bemüh’ Dich nicht, eine Konstruktion (der Dreiteilung des Winkels,
etwa) zu finden, – man kann beweisen, daß es nicht geht.” Das heißt: es ist
wesentlich, daß sich der Beweis der Unbeweisbarkeit in dieser Weise soll
anwenden lassen. Er muß – könnte man sagen – für uns ein triftiger Grund
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sein, die Suche nach einem Beweis (also einer Konstruktion der und der
Art) aufzugeben.
Ein Widerspruch ist als eine solche Vorhersage unbrauchbar. [Ts-221a, 252.2
/ §14]

A proof of unprovability is as it were a geometrical proof; a proof con-
cerning the geometry of proofs. Quite analogous e.g. to a proof that such-
and-such a construction is impossible with ruler and compass. Now such
a proof contains an element of prediction, a physical element. For in con-
sequence of such a proof we say to a man: “Don’t exert yourself to find a
construction (of the trisection of an angle, say) – it can be proved that it
can’t be done”. That is to say: it is essential that the proof of unprovability
should be capable of being applied in this way. It must – we might say – be
a forcible reason for giving up the search for a proof (i.e. for a construction
of such-and-such a kind).
A contradiction is unusable as such a prediction. [RFM I; App. III §14]

Apart from being a succinct explanation of what Wittgenstein has in
mind when he speaks of a “geometrical proof”, the remark is inter-
esting due to how it draws a line between a Euclidean proof that
can be used to practically predict what can and cannot be done on
the one hand and an impossibility proof proceeding via reduction ad
absurdum on the other. But can Gödel’s proof not also be used as a
prediction that the undecidable proposition P cannot be proved in a
!-consistent formal system? Is that not a very practical result that
holds for all systems that meet certain requirements?

Of course Gödel’s proof shows that under the assumption of !-con-
sistency we cannot prove proposition P or its negation and there is
no reason to read Wittgenstein as objecting to this. But crucially and
in contrast to a Euclidean proof with compass and straightedge, !-
consistency leads us to reject any candidate for a proof of P (or its
negation), because accepting such a candidate would also entail ac-
cepting a proof of its negation. In other words, it is not that we lack
the methods to construct a proof of P simply by following the rules
of the system, as would be the case in a Euclidean proof, but rather
that what we construct by following the rules is explicitly excluded
by another rule (the assumption of !-consistency).30

30 This is also emphasised by Rodych, who reminds us that Gödel’s result cannot be
used as a prediction because the mathematical proof is conditional: “What must be
borne in mind (again and again) is that Gödel proves the conditional proposition ‘If
this system is consistent, then ’P’ is not derivable’ - he does not prove that the system
is consistent” (Rodych, 1999, p. 190). This is an important disagreement with Floyd,
1995 and Floyd, 2001, where no interpretation of the last sentence of §14 is provided
(Floyd, 2001, pp. 292–293 considers the last sentence to be “enigmatic” and an “af-
terghought”, sidestepping its interpretation by focusing on the “more telling remark”
in Ms-118, 113r.2 instead). Although Rodych’s discussion of Floyd’s interpretation is
otherwise not particularly charitable (Rodych, 1999, pp. 191–193), he correctly points
out that the last sentence of §14 leads to “a rock-solid disagreement” between the
two interpretations. The interpretation presented in this chapter follows Rodych in
this instance, by distinguishing between Euclidean proofs (with predictive power)
and Gödel’s conditional proof (which gains its predictive power only in combination
with a philosophical interpretation that presupposes !-consistency).
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We could object here that the assumption of !-consistency is just as
much a rule in the formal system as the laws of Euclidean geometry.
But what Wittgenstein seems to be driving at is that any requirement
of consistency is not a “forcible reason” to give up our search for a
proof of P inside the formal system, because the aversion to contra-
dictions is, at least in the specific case of P, only a formal requirement,
without sufficient grounding in our practice. A contradiction simply
shows that we can prove ‘too much’, not just the proposition itself,
but also its negation, but why not “let the proof stand”, as Wittgen-
stein suggested before?

The above remark (with its emphasis on the “physical element” of
a proof, the “element of prediction” and the uselessness of a contra-
diction as a prediction) introduces in a very condensed form some of
the most central aspects of Wittgenstein’s reflections on Gödel, many
of which are expanded upon in Wittgenstein’s Whewell’s Court Lec-
tures from 1938. The discussion of Gödel’s proof in the lectures is by
no means very detailed (and spans less than 10 pages of the published
lecture notes), but is worth including here:

We call a thing a proof of improvability if we can say: ‘Don’t try.’ If people
seemed to find it, who is to say they only seemed 〈to find it〉 or 〈to〉 say
they found it? We would have to make a decision.
Suppose we say (1) ‘Assume P is provable.’ We have done this by fixing
a proof of provability. We assume, by (1), a provability proof. We assume
we have a provability proof, and thereby we assume P ^ ¬P. This doesn’t
contradict common sense; this is not a kind of proposition used in common
life.
The assumption of Gödel that ⇧(P)31 is not provable without a provability
proof is useless. [WCL, p. 53]32

As Wittgenstein notes, the (metamathematical) proof of the unprov-
ability of P is useless as a prediction, because we might decide to let
the proof of P stand and accept the contradiction. But this “decision”
is only open to us because a proposition such as P is not used in the
same way as ‘regular’ propositions: A ‘regular’ proposition such as
“it is raining” would be useless if both it and its negation could be
proved at the same time, because we draw practical conclusions from
it. But we do not draw any (practical) conclusions from (diagonalised)
propositions such as P, so a contradiction could potentially be harm-
less in this situation. The decision is up to us, but only in this very
special case. A proposition such as P is in other words an exception
and we could treat it as such:

You could say: ‘You contradict the law of contradiction – ¬(p^¬p).’ – ‘All
right, then do what you like, e.g. make an exception, etc.’ Or else, Mr Rus-
sell can say: ‘I won’t call ⇧(P) a provability proof.’ [WCL, p. 53]

31 This is the notation used by Wittgenstein in his lectures to signify the arithmetical
translation of ‘P is not provable’.

32 The Russellian notation of logical symbols here and in all other quotations has been
replaced with the symbols commonly used today, “⇧” has additionally been replaced
by “⇧(P)”, as suggested by a footnote from the editors of the WCL.
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This is a central point of disagreement between the philosophical in-
terpretations of the incompleteness theorem by Gödel and Wittgen-
stein. Gödel wants us to see that the undecidable proposition P ist a
proposition of arithmetic just like any other regular proposition that
we might usually want to prove or disprove, because all of the propo-
sitions in the formal systems discussed by Gödel share a uniform
way of constructing them, including proposition P. But Wittgenstein
wants to emphasise that despite the uniform construction, which he cer-
tainly does not want to deny, the propositions are used in entirely
different ways and we might therefore distinguish between them on
the basis of their application. Proposition P is a “queer” proposition:
“We could say it was not an improvability proof in some sense, or
say it led to a contradiction: a queer proposition has led to a queer
proposition – well, what about it?” (WCL, p. 54)

At the end of the lectures on Gödel, Wittgenstein gives one of
the clearest explanations of what he perceives as misleading about
Gödel’s argument (or rather, about Gödel’s prosaic exposition of his
mathematical result), which is worth quoting in full, split into two
parts:

Gödel draws a line between logic and mathematics. We all have an idea
what mathematics or geometry is. This doesn’t contain the idea that all
mathematics can be derived from a few primitive propositions.
Gödel says, whatever primitive propositions we start with, we can always
construct a mathematical proposition which cannot be derived from these
primitive propositions. [WCL, p. 55]

It is important to remember that Wittgenstein himself does not see
mathematics as simply reducible to logic, but for entirely different
reasons than Gödel:

For Wittgenstein, a proof or calculation has to be surveyable, which
is often not the case when mathematical proofs are translated into
the uniform language of logic. We might mistakenly believe that the
logical translation could exist independently from its ‘informal’ math-
ematical counterpart, whereas from Wittgenstein’s perspective an un-
surveyable translation into logic is useless in a way that it ceases to
be a proof or a calculation, because it loses its ability to act as a rule
or standard of measurement in our language games.

For Gödel, there ‘are’ propositions of arithmetic which ‘escape’ (!-
consistent) logic by being undecidable within the formal system, but
can be proved to be true metamathematically. This, however, is mis-
leading, according to Wittgenstein:

If you say: ‘There are mathematical propositions which are neither prov-
able nor disprovable’, this is extremely misleading. It suggests, ‘Only God
knows.’ We can always say there will be propositions which in one system
are provable, in others are not. There are no propositions true outside a
system – in regions we cannot comprehend, etc.
We confuse mathematical propositions with some kind of propositions of
physics. ‘If we only could see, we would then see the truth about it’, ‘There
are always higher and higher truths to which we cannot come’, which
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means nothing whatsoever. Whatever propositions are true will in another
system be false. [WCL, p. 55]

The misleading aspect of Gödel’s interpretation is that it suggests the
existence of true propositions outside of any formal system. The truth
of these propositions appears to hold outside of any logic, with the
propositions ceasing to be propositions of logic. Instead, they seem
to be propositions of physics (or rather ‘ultraphysics’) in the platonic
realm of metamathematics. This is of course entirely nonsensical from
the perspective of Wittgenstein, who rejects the idea of dogmatic pla-
tonism and of truth independent from any particular formal system
or language game.33

Again, this should not be read as a refutation of Gödel’s proof,
merely as Wittgenstein’s reminder that Gödel’s own interpretation
of P as metamathematically true goes beyond his own proof (where
incompleteness is a conditional result that depends on !-consisten-
cy).34 There may be many good reasons to indeed presuppose !-con-
sistency in our mathematical reasoning, in fact even as a purely for-
mal requirement it might be sufficient to convince people to give up
any search for a proof of P within a formal system, but Wittgenstein
correctly points out that a contradiction is a weaker reason to give
up such a search than in many other situations and that some people
might not be convinced by the philosophical conclusions about truth
and provability drawn from Gödel’s proof.35

Returning to RFM I; App. III, Wittgenstein slightly broadens his
focus after §14 and considers criteria for unprovability, echoing his re-
mark from the early 1930s (“Sieh auf die Beweise und entscheide
dann, was sie beweisen.” in Ms-154, 49v.2; Ms-113, 108r.4; Ts-211,
682.3; Ts-212, 1579.2; Ts-213, 632r.3) that only the proof of a propo-
sition shows its sense:

Ob etwas mit Recht der Satz genannt wird “X ist unbeweisbar”, hängt
davon ab, wie wir diesen Satz beweisen. Nur der Beweis zeigt, was als
das Kriterium der Unbeweisbarkeit gilt. Der Beweis ist ein Teil des Systems
von Operationen, des Spiels, worin der Satz gebraucht wird, und zeigt uns
seinen ‘Sinn’.

33 For an exploration of how this relates to the idea that “only God knows”, see item A,
item A and item A.

34 This is also Shanker’s interpretation (albeit without emphasising Wittgenstein’s
openness towards inconsistency), see Shanker, 1988, p. 234: “Here is a case in point
of the subtlety with which Wittgenstein felt philosophy must draw its conclusions.
Often all that is called for is a modest change in point of view; alter the focus slightly
and Godel’s proof will not have lost any of its significance: only the platonism will
have been abandoned.”

35 These people would for example include proponents of paraconsistent logic, who do
not accept ¬(p^ ¬p) as unconditionally true, but do not advocate trivialism either.
Wittgenstein should not be read as dogmatically endorsing the view that ‘there are’
true contradictions, merely as reminding us that there might be languages games
where the law of non-contradiction is not part of the rules of the game.
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Es ist also die Frage ob der “Beweis der Unbeweisbarkeit’ von p hier ein
triftiger Grund ist zur Annahme daß ein Beweis von p nicht gefunden wer-
den wird. [Ts-223, 252.3 / §15]

Whether something is rightly called the proposition “X is unprovable” de-
pends on how we prove this proposition. The proof alone shews what
counts as the criterion of unprovability. The proof is part of the system
of operations, of the game, in which the proposition is used, and shews us
its ‘sense’.
Thus the question is whether the ‘proof of the unprovability of P’ is here a
forcible reason for the assumption that a proof of P will not be found. [RFM
I; App. III §15]

Obviously the “proof of the unprovability of P” is not a “forcible rea-
son” if we give up the assumption of !-consistency, because then
the “proof of the unprovability of P” would be what P says, but the
derivability of P would also be a proof of the provability of P. The
proposition is thus provable and unprovable in a different sense, be-
cause its unprovability is proved by what the proposition ‘says’, by
its truth, whereas the provability of P is proved by P being the “ter-
minal pattern in the proof of unprovability” that we have derived, as
Wittgenstein further explains in the next remark:

Der Satz “p ist unbeweisbar” hat einen andern Sinn, nach dem – als ehe er
bewiesen ist.
Ist er bewiesen, so ist er die Schlußfigur des Unbeweisbarkeitsbeweises. –
Ist er unbewiesen, so ist ja noch nicht klar, was als Kriterium seiner Wahrheit
zu gelten hat, und sein Sinn ist – kann man sagen – noch verschleiert. [Ts-
223, 253.1 / §16]

The proposition “P is unprovable” has a different sense afterwards – from
before it was proved.
If it is proved, then it is the terminal pattern in the proof of unprovability.
– If it is unproved, then what is to count as a criterion of its truth is not yet
clear, and – we can say – its sense is still veiled. [RFM I; App. III §16]

When we prove P by letting the contradictory proof stand, we see that
it is not provable or unprovable in the sense that we had in mind be-
fore we proved it, but rather in a different sense: Before the proof, we
assumed that a proposition would be either provable or unprovable,
but not both, in analogy to how we use the concept of provability
for ‘regular’ (that is to say non-diagonalised) propositions. When we
see the proof, we realise that accepting a proof of P would also entail
accepting an interpretation of it as unprovable (the paraconsistent
option) or alternatively reject both its provability and unprovability,
which excludes the proposition from the game of provability and con-
siders it to be undecidable (the Gödelian option).

On the other hand, Gödel’s “metamathematical considerations” are
of course also a proof of the unprovability of P, now carried out in a
‘higher-level’ system than the formal system in question itself, which
leads Gödel to conclude in his introduction that P is unprovable, but
true. This seems to be the sort of proof of unprovability that Wittgen-
stein has in mind in the first paragraph of remark §17, contrasting it
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to the direct proof that is only available in an !-inconsistent formal
system:

Wie, soll ich nun annehmen, ist P bewiesen? Durch einen Unbeweisbarkeits-
beweis? oder auf eine andere Weise? Nimm an, durch einen Unbeweis-
barkeitsbeweis. Nun, um zu sehen, was bewiesen ist, schau auf den Beweis!
Vielleicht ist hier bewiesen, daß die und die Form des Beweises nicht zu
P führt. – Oder, es sei P auf eine direkte Art bewiesen – wie ich einmal
sagen will –, dann folgt also der Satz “P ist unbeweisbar”, und es muß sich
nun zeigen, wie diese Deutung der Symbole von P mit der Tatsache des
Beweises kollidiert und warum sie hier aufzugeben sei. [Ts-221a, 253.2 /
§17]

Now how am I to take P as having been proved? By a proof of unprov-
ability? Or in some other way? Suppose it is by a proof of unprovability.
Now, in order to see what has been proved, look at the proof. Perhaps it has
here been proved that such-and-such forms of proofs do not lead to P. – Or,
suppose P has been proved in a direct way – as I should like to put it – and
so in that case there follows the proposition “P is unprovable”, and it must
now come out how this interpretation of the symbols of P collides with the
fact of the proof, and why it has to be given up here. [RFM I; App. III §17]

Wittgenstein spells out these different senses of provability in the next
paragraph of the remark. Most of it is only a succinct summary and
culmination of the previous remarks, but Wittgenstein also clearly
mentions that we end up in a situation where we have to decide
between two options: We can either accept the proof of P (derived
within the formal system) and revise our concept of the unprovabil-
ity claimed by P to include inconsistency, or we can reject the proof
of P and “still call [the proposition P] the statement of unprovability”,
thereby continuing to use the concept of provability that we had in
mind before the ‘proof’:

Angenommen aber, ¬P sei bewiesen. – Wie bewiesen? Etwa dadurch, daß
P direkt bewiesen ist – denn daraus folgt, daß es beweisbar ist, also ¬P.
Was soll ich nun aussagen: “P”, oder “¬P”? Warum nicht beides? Wenn
mich jemand fragt: “Was ist der Fall: P, oder {nicht-P // ¬P}?” so antworte
ich: “` P”” steht am Ende eines Russellschen Beweises, Du schreibst also
im Russellschen System: “` P”; anderseits ist es aber eben beweisbar &
dies drückt man durch ` ¬P aus. Dieser Satz aber steht nicht am Ende
eines Russellschen Beweises gehört also nicht zum Russellschen System.
– Als die Deutung “P ist unbeweisbar” für P gegeben wurde, da kannte
man ja {den // einen} Beweis für P nicht & man {kann // muß} also nicht
sagen “P” sage: dieser Beweis existierte nicht. – Ist der Beweis {konstruiert
// hergestellt}, so ist damit eine neue Lage geschaffen: Und wir haben uns
nun zu entscheiden, ob wir dies einen Beweis (noch einen Beweis) oder ob
wir dies noch die Aussage der Unbeweisbarkeit nennen wollen.
Angenommen ¬P sei direkt bewiesen; es ist also bewiesen, daß sich P direkt
beweisen läßt! Das ist also wieder eine Frage der Deutung – es sei denn, daß
wir nun auch einen direkten Beweis von P haben. Wäre es nun so, nun, so
wäre es so. –
(Sehr komisch ist die abergläubische Angst & Verehrung der Mathematiker
vor dem Widerspruch.) [Ms-118, 114v.2–115v.2 / §17]36

36 The typescript versions of this remark in Ts-221a, 253.2 and Ts-223, 253.2 omit all
logical symbols, which is why the version from Ms-118 is quoted here instead.
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Suppose however that not-P is proved. – Proved how? Say by P’s being
proved directly – for from that follows that it is provable, and hence not-
P. What am I to say now, “P” or “not-P” then I reply: P stands at the
end of a Russellian proof, so you write P in the Russellian system; on the
other hand, however, it is then provable and this is expressed by not-P, but
this proposition does not stand at the end of a Russellian proof, and so
does not belong to the Russellian system. – When the interpretation “P is
unprovable” was given to P, this proof of P was not known, and so one
cannot say that P says: this proof did not exist. – Once the proof has been
constructed, this has created a new situation: and now we have to decide
whether we will still call this a proof (a further proof), or whether we will
still call this the statement of unprovability.
Suppose not-P is directly proved; it is therefore proved that P can be directly
proved! So this is once more a question of interpretation – unless we now
also have a direct proof of P. If it were like that, well, that is how it would
be.
(The superstitious dread and veneration by mathematicians in face of con-
tradiction.) [RFM I; App. III §1737]

If Wittgenstein’s remarks are intended as a criticism of Gödel’s incom-
pleteness theorem, then only in the sense that Gödel’s own informal
interpretation has the tendency to obscure that there is a decision to
be made and that we cannot point to the mathematical proof in de-
fense of the option that we ultimately choose, because both options
are equally compatible with Gödel’s mathematical result.

This is also why Gödel’s prosaic interpretation can lead us to be-
lieve that there is a “physical element” in the proof and that it can be
used to predict that there are undecidable propositions. This imme-
diately suggests a platonic picture of propositions as independent
entities whose truth can sometimes only be grasped outside their
own formal system, through metamathematical considerations. But
as Wittgenstein points out, it is ultimately our decision to call these
propositions ‘undecidable’ and to reject any proof of them from the
language game of provability (within the formal system).

As Wittgenstein points out in Ts-221a, 254.2 / §18, we often play
language games where rules as fundamental as the law of non-
contradiction do not hold, for example when we answer a question
with “yes and no”. It is doubtful that Gödel would disagree with
this rather obvious fact, but it nevertheless shows once again that
Wittgenstein is investigating Gödel’s incompleteness theorem from a
very unorthodox perspective that is interested primarily in how we
use concepts such as provability in a variety of language games.

The following remark is one the most provocative in the RFM, as it
might appear to equate Gödel’s fundamental result with an entirely
useless châlet in the Baroque style on Mount Everest, with the im-
mediate association with a ‘Luftschloss’ / ‘castle in the air’ certainly
intended:

37 See Kienzler and Grève, 2016, pp. 107–109 for a discussion of several problematic
decisions in Anscombe’s translation. For the sake of consistency, Anscombe’s trans-
lation has not been altered here.
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Du sagst: “.....” also ist P wahr und unbeweisbar.” Das heißt wohl: “Also
` P.” Von mir aus – aber zu welchem Zweck schreibst Du diese ‘Behaup-
tung’ hin? (Das ist, als hätte jemand aus gewissen Prinzipien über Naturfor-
men und Baustil abgeleitet, auf den Mount Everest, wo niemand wohnen
kann, gehöre ein Schlößchen im Barockstile.) Und wie könntest Du mir die
Wahrheit der Behauptung plausibel machen, da Du sie ja zu nichts weiter
brauchen kannst als zu jenen Kunststückchen? [Ts-221a, 255.1 / §19]

You say: “. . . , so P is true and unprovable”. That presumably means: “There-
fore P”. That is all right with me – but for what purpose do you write down
this ‘assertion’? (It is as if someone had extracted from certain principles
about natural forms and architectural style the idea that on Mount Everest,
where no one can live, there belonged a châlet in the Baroque style. And
how could you make the truth of the assertion plausible to me, since you
can make no use of it except to do these of legerdemain? [RFM I; App. III
§19]

On closer inspection, however, it becomes clear that the useless ar-
chitectural châlet is not Gödel’s result at all, but only the undecidable
proposition P. Wittgenstein explicitly speaks of the “purpose” of “this
‘assertion’” and of the inability to “make the truth of the assertion
plausible”, which is not in any way an indictment of Gödel’s incom-
pleteness theorem, but rather a very insightful observation about the
undecidable proposition constructed by Gödel. In contrast to other
propositions, which may be used to refer to an external state of af-
fairs (such as when we infer q from p ! q and p by modus ponens
and let p correspond to “It is raining” and q to “I will get wet”), the
undecidable proposition P refers (through an indirect substitution)
only to itself and to nothing outside the formal system. It cannot be
used in the same way as other propositions and is in this sense merely
the product of “certain principles”. If it has any use at all, it is only
as an instrument in Gödel’s proof, because it almost parasitically de-
pends on the precise specification of the formal system and cannot
be separated from it, as every slight change in the specification of the
rules would lead to an entirely different undecidable proposition P.38

This is why the undecidable proposition does not convey any “in-
formation”, it cannot be used as a picture of the world (to bor-
row a Tractarian terminology). This distinguishes such an undecid-
able proposition from propositions of logic, because the undecidable
proposition is nonsensical (at least from an !-consistent perspective),
whereas tautologies and contradictions are senseless, “for the one al-
lows every possible state of affairs, the other none” (TLP 4.462). An
undecidable proposition such as P is thus a “proposition-like struc-
ture of another kind”,39 as Wittgenstein notes in the next remark:

38 This demonstrates another resemblance to Cantor’s diagonal argument, since Can-
tor’s diagonalised number is similarly useless outside the diagonal proof. We cannot
use it to calculate anything practical, because its only purpose is to act as an instru-
ment in the proof.

39 Anscombe translates it as “sentence-like structure of another kind”, which is a dubi-
ous choice in a context where the aim is to emphasise the similarity to propositions
of logic.
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Man muß sich hier daran erinnern, daß die Sätze der Logik so konstru-
iert sind, daß sie als Information keine Anwendung in der Praxis haben. Man
könnte also sehr wohl sagen, sie seien garnicht Sätze; und daß man sie über-
haupt hinschreibt, bedarf einer Rechtfertigung. Fügt man diesen ‘Sätzen’
nun ein weiteres satzartiges Gebilde andrer Art hinzu, so sind wir hier
schon erst recht im Dunkeln darüber, was dieses System von Zeichenkom-
binationen nun für eine Anwendung, für einen Sinn haben soll, denn der
bloße Satzklang dieser Zeichenverbindungen gibt ihnen ja eine Bedeutung
noch nicht. [Ts-221a, 255.2 / §20]

Here one needs to remember that the propositions of logic are so con-
structed as to have no application as information in practice. So it could
very well be said that they were not propositions at all; and one’s writing
them down at all stands in need of justification. Now if we append to these
‘propositions’ a further sentence-like structure of another kind, then we are
all the more in the dark about what kind of application this system of
sign-combinations is supposed to have; for the mere ring of a sentence is not
enough to give these connexions of signs any meaning. [RFM I; App. III
§20]

It is unlikely that Wittgenstein’s wants to deny that the undecidable
proposition P has a use inside Gödel’s proof, instead the remark
clarifies that there is no extra-mathematical application that would
correspond to its intra-mathematical and purely formal use. Witt-
genstein thus emphasises the differences between propositions and
proposition-like structures, whereas most mathematicians, including
Gödel, prefer to emphasise their uniform constructibility as formulas
of the system, similar to how Cantor’s diagonal argument leads to a
uniform extensionalist treatment of all real numbers in terms of their
decimal expansions.

Before focusing on Wittgenstein’s later remarks on Gödel, the end
of the remarks in RFM I; App. III offer an opportunity to briefly review
the most relevant aspects of Wittgenstein’s critique of Gödel’s (first)
incompleteness theorem: Most importantly, Wittgenstein’s remarks
are targeted less at the mathematical result itself and more at Gödel’s
own prosaic interpretation of the undecidable proposition P as ‘true
but unprovable’. In contrast to Gödel, for whom (!-)consistency is an
implicit assumption in his own philosophical interpretation, Wittgen-
stein investigates an (!-)inconsistent interpretation for which prov-
ability (in the formal system) and truth (in the formal system) co-
incide. This should not be read as an endorsement of inconsistent
logic, but only as a reminder that Gödel’s mathematical result of-
fers us a conceptual decision. The mathematical result cannot in itself
provide justifications for one option over another, because both inter-
pretations are compatible with Gödel’s incompleteness theorem. Any
decision can only be justified by the application of the formal system,
which is why Wittgenstein is interested in how we use undecidable
propositions such as P. Being a result of diagonalisation, these propo-
sitions depend on the exact specification of the formal systems, they
are thus of a different kind than the propositions we normally en-
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counter in our use of formal systems, a difference that is emphasised
by Wittgenstein.

2.4 inconsistency and use

Wittgenstein returns to Gödel’s incompleteness theorem at the end of
December 1938, in a passage from Ms-121, 72r.3–85r.2 that is clearly
delineated from (but also strongly influenced by) the reflections on
Cantor’s diagonal argument in the rest of the document. The remarks
on Gödel were almost entirely excluded from RFM,40 which is un-
derstandable given their sometimes unfinished appearance and their
role as a ‘detour’ from the rest of RFM II. Wittgenstein did not in-
clude any of these remarks in later manuscripts or typescripts, they
should therefore be considered merely as first drafts, with no plans
to eventually publish them (and all the caveats for interpretation that
this entails). They are nevertheless an interesting reflection of Wittgen-
stein’s thought process regarding Gödel’s theorem and should thus
be included in an interpretation of Wittgenstein’s views on the in-
completeness theorem, although it should be pointed out that only a
selection of remarks from the passage will be discussed here.

Wittgenstein begins his reflections on Gödel in Ms-121 by consid-
ering the status of the law of non-contradiction in logic. As a funda-
mental principle of logic, the law seems to hold unconditionally:

Aber gilt also der Satz {vom Widerspruch // des Widerspruches} nicht?
[Ms-121, 72r.3]

But does the law of non-contradiction not hold then?

However, there are many occasions where a contradiction is not im-
mediately rejected, as Wittgenstein points out shortly after. More im-
portantly, when a contradiction is rejected, it is not rejected as false,
but as a nonsensical pseudo-proposition, because it has no use in our
language games:

Aber überall weist man ja den Widerspruch nicht zurück. Es gibt (ja) Gele-
genheiten, wo wir den Satz gelten lassen & wo wir für den Satz Verwen-
dung haben: es verhalte sich so, & doch nicht so.

Auch wird der Widerspruch nicht zurückgewiesen als eine falsche Mit-
teilung, sondern als Unsinn, als Scheinsatz, als etwas wofür in unsern
Sprachspielen kein Gebrauch ist. [Ms-121, 72v.2–73r.2]

But one does not reject the contradiction everywhere. There are (after all)
occasions when we allow the sentence to stand & where we have use for
the sentence: it behaves like this, & yet not like this.

Nor is the contradiction rejected as a false statement, but as nonsense, as a
sham, as something for which there is no use in our language games.

40 Only Ms-121, 74v.2 was published as RFM IV §60.
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But if a contradiction is rejected because it has no use, could we not
give it a use in a language game, perhaps as a “rare” or “exotic”
curiosity of a formal system? The obvious objection (which is a valid
objection in the case of classical logic) would be that anything can be
inferred from a contradiction, in other words trivialism would result
and the formal system would immediately become useless. This is not
the case in a paraconsistent logic, however, where a contradiction is
not immediately ‘explosive’ and not everything can be inferred from
it. Even though Wittgenstein does not explicitly propose such a logic,
he certainly recognises that inferring nothing (contra classical logic)
could be an option:

Warum sollte die {Russellsche // symbolische} Logik nicht zu einem Wider-
spruch führen dürfen? {Warum // Ja, warum} {sollte man dieses nicht als
die seltenste Blume dieses Systems empfinden. // sollte man in diesem
nicht die seltenste Blume dieses Systems sehen? // sollte man in diesem
nicht eine exotische Blume dieses Systems sehen?}

“Aber aus einem Widerspruch folgt ja jeder Satz! Was würde dann aus der
Logik?”
Nun so folgere nichts aus einem Widerspruch!

Wenn Mathematiker sich abergläubisch vor dem Widerspruch wie vor dem
leibhaftigen Teufel

::::::::
gebärden, warum sollten nicht andere eine Art schwarze

Messe feiern (
::
&) sich in Widersprüchen

:::::::
ergehen? [Ms-121, 74r.2–74r.4]

Why should the {Russellian // symbolic} logic not be allowed to lead to
a contradiction? {Why // Yes, why} {should one not see this as the rarest
flower of this system. // shouldn’t one see in this the rarest flower of this
system? // shouldn’t one see in this an exotic flower of this system?}

“But from a contradiction follows any proposition! What would then be-
come of logic?”
Well so infer nothing from a contradiction!

If mathematicians
:::::
behave superstitiously before contradiction as before the

devil incarnate, why should not others celebrate a kind of black mass (
::
&)

::::::
indulge in contradictions?

As these remarks make clear, Wittgenstein does not want to prescribe
a particular logic. Instead, he wants to clarify that we can imagine
language games that go beyond the restrictive picture painted only
by classical logic (which should not be read as a value judgement
about the usefulness or uselessness of classical logic).

According to Wittgenstein, a contradiction in logic is not danger-
ous in and of itself. Instead, a contradiction becomes dangerous only
when it can occur in regions where we did not expect it, such as
when we proceed by natural deduction from consistent assumptions
and suddenly arrive at a contradiction such as “it is raining and it is
not raining”. Here, a contradiction is a sign of an error and throws
into question our whole logical argument, with the result that we
cannot trust any of the results that we draw from the argument.

But if the contradiction does not result from faulty reasoning and is
instead only the expression of an inherently inconsistent and useless
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part of our language game (such as in the case of self-referential state-
ments along the lines of “This sentence is false.”), the contradiction
need not lead to any harm, as long as we do not use to infer arbitrary
propositions as in classical logic:

Nicht das // dies ist
::
ein

::::::::
Unglück // perniziös: einen Widerspruch zu

erzeugen {in der Region, in der // dort, wo} weder der widerspruchsfreie
noch der widerspruchsvolle Satz {eine // irgend welche} Arbeit zu leisten
hat; wohl aber das: nicht zu wissen, {wo man in diese Region eingetreten ist
// wie man dorthin gekommen ist // wo man in diese Region gekommen
ist wo der Widerspruch nicht mehr schadet}.

Frag nicht: “Ist p wahr, oder falsch?, sondern: “Soll ich schreiben ‘` p’, oder
‘` ¬p’?” – Und darauf wird {oft // manchmal} die Antwort sein: “Das
kommt darauf an, was Du mit dem Satz machen willst”. [Ms-121, 74v.2–
75r.2 / RFM IV §60 (first remark only)]

The pernicious thing is not: to produce a contradiction in the region which
neither the consistent nor the contradictory proposition has any kind of
work to accomplish; no, what is pernicious is: not to know how one reached
the place where contradiction no longer does any harm.

Ask not, "Is p true, or false?" but, "Should I write ’` p’, or ’` ¬p’?" - And to
that {often // sometimes} the answer will be: "That depends on what you
want to do with the proposition". [RFM IV §60 (first remark only)]

In these special cases, where a contradictory proposition does not
conflict with the normal use of propositions, we are free to decide
what we do with the contradiction. We could exclude it from the
language game, or we could give it a use:

Erinnere Dich hier Deiner Freiheit, möchte ich sagen, zu gehen, wie Du
willst.

Und heißt das nicht: Verstehe, was Dich sonst gebunden hat & daß Du also
hier frei bist? [Ms-121, 75r.3–75r.4]

Remember here your freedom, I want to say, to go as you will.

And doesn’t that mean: Understand what has otherwise bound you & that
you are therefore free here?

It is no accident that the next remark explicitly mentions Gödel, be-
cause Gödel’s undecidable proposition P, the “proposition that says
about itself that it is not provable”, grants us this freedom. It does
not have a mathematical use comparable to other propositions, so
why does Gödel feel the need to exclude the resulting contradiction
from the formal system and considers it to be metamathematically true?

“Ja, soll ich diesen Satz (Gödels z.B.) anerkennen, oder nicht? –”
{Worin besteht // Was heißt} es denn: einen Satz {anzuerkennen // an-
erkennen}?
“Es ist eine besondere geistige Handlung.” Nun, dann interessiert es mich
{hier // jetzt} nicht. Erkenne ihn nur immer an, wenn Du dazu Zeit & Lust
hast! – Aber redet man nicht davon, daß man einen Satz mit der Tat – oder

:::
nur mit dem Mund, anerkennt? Nun das bringt uns schon näher, {daran, zu
sehen // läßt uns sehen // es läßt uns sehen // zu sehen // zu erkennen }
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was es mit dem Anerkennen {eines Satzes // der Wahrheit des Satzes} für
eine Bewandtnis hat.

[Setze statt der Gefühle (Gebärden) der Anerkennung: was Du mit dem
Satz tust.][Ms-121, 75v.2–76r.2]

“Well, shall I recognise this proposition (Gödel’s, for example) [as true], or
not? -”
{What does it consist of // What does it mean}: to recognise a proposition
[as true]?
“It is a special mental act.” Well, then I don’t care about it {here // now}.
Just recognise it [as true] whenever you have time & feel like it! - But doesn’t
one talk about recognising a proposition [as true] by deed - or

:::
only by

mouth? Well, {this already brings us closer to seeing // it makes us see //
it makes us see // to see // to recognise } what recognising {a proposition
[as true] // the truth of the proposition} is about.

[Replace the feelings (gestures) of recognition with: what you do with the
sentence].

In the case of ‘regular’ propositions, we can easily name the reasons
that led us to recognise a proposition as true: We might point to the
axioms of a formal system, explain that we recognise them as ob-
viously true, and demonstrate that the rules of inference are truth-
preserving, by checking that what we derive corresponds to our ex-
pectations. If we then recognise a propositions such as “it is raining”
as true, we will choose to act differently based on it than if we had
recognised “it is not raining” as true. In the case of the undecidable
proposition P, we can also point to the axioms and the rules of in-
ference, but we cannot check that the truth of P corresponds to our
expectations and it is unclear how we might act differently on P. In-
stead of asking whether we should recognise proposition P as true
(which we might do simply in analogy with ‘regular’ propositions),
which does not give us any insight into the “freedom” involved in
the decision of how to treat P, it is thus better to investigate the use
of the proposition.

However, the question of how we use a proposition cannot be an-
swered by mathematics alone, at least not by a mathematical argu-
ment such as Gödel’s proof. It has to be answered through an investi-
gation of a variety of language games, because the use of propositions
is not uniform. The situation is comparable to the variety of numbers
and the different systems that they form, each with different proper-
ties. If we restrict out attention to the natural numbers or the rationals,
we can describe them as a single system where all numbers share es-
sential properties (for example by defining the natural numbers as
repeated applications of a successor operation or the rational num-
bers as signed fractions of natural numbers), but if we extend our
scope to include all real numbers, we quickly see that they are charac-
terised by a variety of heterogeneous uses with no essential property
that would describe numbers as different as for example ⇡ and diag-
onalised numbers. It is of course possible to treat them uniformly as
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decimal expansions, but such a view is only possible ‘after the fact’,
it cannot tell us why we would want to use a numbers such as ⇡ or
how to arrive at this particular number.

In this way, Gödel’s undecidable proposition P demonstrates that
a conception of mathematics as a single system is unclear, similar to
what Cantor’s diagonal argument shows for the real numbers:

Gödel zeigt uns eine Unklarheit im Begriff (der) ‘Mathematik’, die darin
zum Ausdruck kam, daß man die Mathematik für ein System gehalten hat.

Die ‘Eigenschaft einer Zahl’ – wie schaut das aus? Ich vermute– – –.

Wenn wir ein System mathematischer Sätze haben, so hat dies {selbst eine
// seine eigene} Geometrie. [Ms-121, 76r.3–76r.5]

Gödel shows us an ambiguity in the concept (of) ‘mathematics’, which was
expressed in the fact that mathematics was thought to be a system.

The ‘property of a number’ - what does that look like? I presume- - -.

If we have a system of mathematical propositions, then this {itself has a
geometry // has its own geometry}.

The above remarks can be read as preliminary summary of Wittgen-
stein’s remarks on Gödel. Some of the details in Ms-121 differ from
Wittgenstein’s earlier remarks in Ts-221a/b / RFM I; App. III, but the
overall direction has so far been similar. However, the next remarks
in Ms-121 introduce a new element that was not present in Wittgen-
stein’s earlier reflections, namely a closer examination of how Gödel’s
undecidable proposition P manages to (indirectly) speak of itself and
what this means for its interpretation and use.

2.5 self-evident contradictions

The remarks in Ms-121 make clear that Wittgenstein was at least
somewhat familiar with the mathematical details behind Gödel’s
proof, because in the following remarks he does not write about di-
rectly self-referential propositions, but rather about formulas (“Satz-
zeichen”) that cannot be derived inside the system via substitution
by following rules of inference (“kann nicht durch die Operationen
... erhalten werden”), where the formula is referred to only indirectly
with the help of its (translation into a) number:41

“Dieses Satzzeichen ist 25 cm lang.” “Dieses Satzzeichen kann nicht durch
die Operationen . . . erhalten werden.”

“Das Satzzeichen № 512 kann nicht durch die Operationen . . . erhalten wer-
den.”
Die Frage ist: wie rechne ich aus, daß dieses Satzzeichen das 512te ist. [Ms-
121, 76v.1–76v.2]

41 This view is shared by Rodych, 2002, p. 380, who interprets the remark as show-
ing “Wittgenstein’s genuine understanding of the mathematical nature of Gödel’s
proposition”.



144 gödel , theorems and provability

“This propositional sign is 25 cm long.” “This propositional sign cannot be
obtained by the operations ...”

“The propositional sign № 512 cannot be obtained by the operations ...”
The question is: how do I calculate that this propositional sign is the 512th.

These details correspond quite closely to Gödel’s mathematical proof.
In other remarks, it might seem as if Wittgenstein brushed aside the
details of translating formulas into numbers and interpreting num-
bers as propositions, but the above remark is a first hint that Wittgen-
stein is quite interested in exactly these details, even if he investigates
them from a philosophical and not a mathematical perspective. In
fact, Wittgenstein flips around the criticism and accuses mathemati-
cians of carelessly glancing over these seemingly incidental questions
of interpretation and application:

Eine der {verderblichsten // peinlichsten} Unklarheiten ist die der Mathe-
matiker über das, was sie – jetzt halb verächtlich –

::
die ‘Interpretation’ {der

// ihrer} Zeichen nennen. Unter ‘Interpretation’ oder ‘Auffassung’ stellt
man sich irgendwelche uns nicht interessierende psychologische Vorgänge
vor, die die {Worte // Zeichen} begleiten, während die Interpretation eines
Zeichens in seiner Anwendung liegt.

Die Bedeutung eines Zeichens liegt von seltenen Fällen abgesehen nicht in
seelischen Vorgängen, die sein Aussprechen, Schreiben, etc. begleiten son-
dern in der komplizierten, uns aber geläufigen, Praxis seiner Verwendung.
[Ms-121, 77v.3–78r.2]

One of the most {pernicious // embarrassing} obscurities is that of math-
ematicians about what they - now half-scornfully - call

:::
the ‘interpretation’

{of // of their} signs. By ‘interpretation’ or ‘conception’ one imagines any
psychological processes of no interest to us that accompany the {words //
signs}, whereas the interpretation of a sign lies in its application.

The meaning of a sign lies, except in rare cases, not in psychological pro-
cesses that accompany its utterance, writing, etc., but in the complicated,
but familiar, practice of its use.

From the perspective of a mathematician, there are two kinds of in-
terpretations involved in Gödel’s incompleteness theorem:

Gödel’s method of translation from formulas to numbers allows
us to interpret numbers as mathematical and even metamathematical
propositions, which is of course central to Gödel’s proof and of great
importance to mathematicians. Gödel’s particular proof is just one
among many possible ‘encodings’, but it is beyond dispute that his
translation captures the axioms and rules of inference of the formal
systems in question, because Gödel’s translation ‘merely’ shows us
how we can manipulate numbers in place of logical symbols while
adhering to the formal rules of the system in question.

There is also the question of how the purely mathematical con-
cepts are to be interpreted and used in our practice, which is often
an afterthought for mathematicians or at least considered to be of
lesser importance, since such questions seem to be matters of psy-
chological processes: For example, what is the psychological process
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associated with recognising something as true? Or the psychological
process involved in asserting a proposition? These questions appear
to be questions that should be answered by psychologists, but not
mathematicians.

Wittgenstein’s sometimes rather critical remarks on the unclear in-
terpretation of Gödel’s result must then appear to be either mathemat-
ically wrong (if he is read as attacking Gödel’s translation of formu-
las into numbers) or missing the point (if he is read as attacking the
purely psychological matters involved in any extra-mathematical in-
terpretation). But Wittgenstein wants to emphasise that what misses
the point is actually the simplistic mathematical picture of these two
distinct kinds of interpretations, because even Gödel’s own informal
interpretation goes far beyond what his mathematical proof can pro-
vide (by presupposing a particular concept of truth that excludes in-
consistency). Gödel ignores that the concept of provability used in a
formal system such as Principia Mathematica is in practice not applied
to propositions such as the undecidable proposition P and that is is
therefore not clear whether in this particular instance it makes sense to
regard his formalisation as an adequate translation of what we mean
when we say that something is provable or unprovable. This is not a
question of psychological processes, however, but of the use of certain
concepts in a variety of mathematical language games.

In the following remarks, Wittgenstein experiments with informal
propositions that show a resemblance to Gödel’s proposition P, but
where the concepts provability and truth are replaced by other con-
cepts. These remarks are some of the least developed remarks in all of
Ms-121 and often read like preliminary notes instead of fully formed
philosophical thoughts, but they nevertheless contain interesting re-
flections concerning the negation of undecidable propositions such as
P, which is why a selection will be discussed here.

Wittgenstein starts by discussing the proposition “This proposition
is not a tautology”, with ‘is a tautology’ acting as a semantic coun-
terpart to Gödel’s purely syntactic ‘is provable’. More interesting is
the aspect that Wittgenstein introduces in the last part of the remark,
of a proposition being immediately recognisable as tautologic (“man
sieht es ihm ja gleich an. // es ist ihm ja gleich anzusehen”):

“Dieser Satz ist keine Tautologie.” ‘Dieser Satz kann keine Tautologie sein
& er kann nicht falsch sein, denn . . . ‘ (Siehe Gödel)
Argumentieren wir so: nehmen wir an dies wäre eine Tautologie, so gäbe
es also eine Tautologie, die von sich selbst aussagte, sie sei keine. Und dann
sagt sie doch nicht die Wahrheit.
{“Aber das könnte doch ohnehin niemand glauben, daß der Satz eine Tau-
tologie ist” // “Aber Dein Satz kann doch ohnehin keine Tautologie sein,
{man sieht es ihm ja gleich an. // es ist ihm ja gleich anzusehen.}”} – Ich
nehme an, jemand hatte // habe einen Rechenfehler gemacht, & ich kann
ja einen beliebig dummen Rechenfehler annehmen. Es ist unbegreiflich –,
aber er hat herausgebracht, daß der Satz eine Tautologie ist. [Ms-121, 78v.3]
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“This proposition is not a tautology.” ‘This proposition cannot be a tautol-
ogy & it cannot be false, because ...’ (See Gödel).
Let’s argue like this: suppose this were a tautology, then there would be a
tautology that said of itself that it was none. And then it doesn’t state the
truth after all.
{“But nobody could believe that the proposition is a tautology anyway.” //
“But your proposition can’t be a tautology anyway, it’s obvious from the
look of it”} - I assume that somebody had made an arithmetical error, & I
can assume an arbitrarily stupid arithmetical error. It is inexplicable - but
he has brought out that the proposition is a tautology.

Wittgenstein continues this line of thought a few remarks later, when
he introduces the notion of propositions being “immediately obvious”
and “self-evident” (“unmittelbar einleuchtend” and “selbstverständ-
lich”):

“Dieser Satz ist nicht unmittelbar einleuchtend.”

Wie wenn ein Mensch wenn auch fälschlich vom Satz T sagen würde: “Nun,
das ist eine offenbare Tautologie!” – Was machst Du? – “Nun, das ist doch
selbstverständlich, daß das keine Tautologie ist!”

“Dieser Satz ist nicht selbstverständlich.” – Wie sollen wir uns zu diesem
Satz stellen? Sollen wir sagen, er sei wahr? falsch? selbstverständlich? –
‘Du mußt sagen: er sei wahr, aber nicht {selbstverständlich // , er sei
selbstverständlich-wahr}. Denn . . . ’ [Ms-121, 79v.4–80r.2]

“This proposition is not immediately obvious.”

As if a person were to say, albeit falsely, of the proposition T, “Well, that’s
an obvious tautology!” - What do you do? - “Well, it is self-evident that that
is not a tautology!”

“That proposition is not self-evident.” - How are we to take a stand on this
proposition? Shall we say it is true? false? self-evident? - ‘You must say: it
is true, but not {self-evident // self-evidently-true}. Because ...’

Wittgenstein thus distinguishes between a proposition being “true”
(or tautological) and a proposition being “self-evident” in a way that
is apparently meant to correspond to Gödel’s distinction (in his infor-
mal introduction) between a proposition being (metamathematically)
true and a proposition being (within the system) unprovable.42

The beauty of Wittgenstein’s reformulation lies in the fact that at
least for propositions of logic (which as tautologies can be immedi-
ately recognised as true independently from any verification in the
external world) truth and self-evidence normally coincide, exactly in
the same way as truth and provability might have been assumed to co-
incide prior to Gödel’s incompleteness theorem. Similar to how Gödel

42 Wittgenstein’s remarks do not appear to be directly targeted at Gödel’s undecidable
proposition here, instead they seem to be intended as a detour that demonstrates a
certain resemblance to Gödel’s proposition but acts only as an intermediate link in
a surveyable representation. Rodych, 2002, p. 382, in contrast, reads Wittgenstein’s
mention of self-evidence as referring to Gödel’s undecidable proposition (“Surely
we will not say that the Gödelian proposition, complex as it is, is ‘self-evident!’”),
but comes to a conclusion that appears nevertheless to be compatible with the inter-
pretation of the remark offered here.
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constructs an undecidable proposition for which these two notions
no longer coincide (if we adopt Gödel’s own informal interpretation),
Wittgenstein constructs a semantic counterpart where truth and self-
evidence become distinct.

Faced with an analogous contradiction as in the case of Gödel,
we might be lead to declare the proposition (following Gödel) to be
“true – not self-evident”. But what does that mean? From Wittgen-
stein’s perspective, it can seems as if mathematicians view undecid-
able propositions of this sort as true “for its own sake”, because the
truth of the proposition does not correspond to any use in practice.
As Wittgenstein wrote before, we are therefore free to decide differ-
ently and accept the contradiction inside the system:

Angenommen nun, Du gibst {
::
es

::
zu: // mir nach:} er sei wahr – nicht selbst-

verständlich – – – was hast Du da zugegeben?
Du hast

:::
den Satz zugegeben. (Aber wie macht man das?) {Du sprichst ihn

nun mit dem Ton der Überzeugung aus, lehrst Andere, es tun, nickst mit
dem Kopf & sagst: “das stimmt” // Du sprichst ihn also mit dem Ton der
Überzeugung aus; sagst: “das stimmt” & nickst mit dem Kopf; (&) lehrst
Andere {dies // dasselbe} tun.} {Oder {sollten wir sagen: // will der Ma-
thematiker sagen:} wir lieben die Wahrheit um ihrer selbst willen? // Oder
entgegnet der Mathematiker: er liebe . . . // Oder sagt der Mathematiker,
es handelt sich nicht um Vorteil & Nachteil:}

Aber welchen Nachteil hätte es hier gehabt, zu sagen: der Satz sei selbstver-
ständlich, das käme aber hier auf das gleiche hinaus, als ihn, der scheinbar
das Gegenteil sagt, behauptend auszusprechen. Wir hätten also hier einen
äußerlichen Widerspruch; {aber es sei alles in Ordnung. // aber {unter den
besonderen Umständen // durch die besonderen Umstände} sei alles in
Ordnung. // aber, durch die Besonderheit der Aussage, sei . . . } [Ms-121,
80v.2–81r.2]

Now suppose you {admit
:
it: // give in:} it is true - not self-evident - - what

have you admitted?
You admitted the proposition. (But how does one do that?) {You now say it
with a tone of conviction, teach others to do it, nod your head & say: “that is
true” // So you say it with a tone of conviction; say: “that is true”, nod your
head; (&) teach others to do {this // the same thing}}. {Or {should we say:
// does the mathematician want to say:} we love truth for its own sake? //
Or does the mathematician reply: he loves ... // Or does the mathematician
say, it is not a matter of advantage & disadvantage:}

But what disadvantage would it have had here to say: the proposition is
self-evident, but that would amount to the same thing here as to say it
assertively, which apparently says the opposite. So here we would have
an outward contradiction; {but everything is all right. // but {under the
particular circumstances // by the particular circumstances} everything is
all right. // but, by the particularity of the statement, ...}

Once again, Wittgenstein emphasises that we are faced with special cir-
cumstances when deciding whether to accept the contradictory propo-
sition within a formal system or instead exclude it as undecidable. It
is here that his disagreement with the philosophical interpretation
of Gödel is most clearly expressed, because Gödel does not view
the undecidable proposition as being fundamentally different from
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other propositions in the system. On the contrary, Gödel treats all
propositions uniformly: According to him, undecidable propositions
such as P are “relatively simple problems in the theory of integers”
(Gödel, 1986, p. 145), suggesting that propositions such as P are not
fundamentally different from the ‘regular’ mathematical proposition
involving integers that we might want to solve for practical purposes.

In Gödel’s defence, he cannot distinguish these different kinds of
propositions purely on the basis of his mathematical result (or at least
he cannot justify leaving behind the mathematical ideal of consis-
tency), because Wittgenstein’s distinction between propositions such
as P and ‘regular’ propositions hinges on the fact that we do not use
a proposition such as P for anything useful. Only then are we free
to decide whether or not to let the contradiction stand, because the
‘freedom of movement’ of P is not restricted by any existing language
games.

Gödel’s decision (of choosing consistency and thereby excluding
the proposition P from the system) stems from the formal ideal of
consistency, not from any regard for how we use concepts such as
provability in practice. From the perspective of Wittgenstein, this is a
“stupid reason”43, which comes down to “keeping up appearances”44,
as Wittgenstein writes in one of the most succinct and clear remarks
on Gödel’s incompleteness theorem in the whole Nachlass, summaris-
ing all of the central aspects of Wittgenstein’s investigation up until
this point:

“Aber zum Teufel, er ist selbstverständlich, oder nicht selbstverständlich!” –
Die Wahrheit ist, daß Du zu so etwas normalerweise nicht “selbstverständ-
lich!” sagst, noch es behauptest, noch sein Gegenteil. Du hast vor allem gar
nicht den geringsten Gebrauch für so einen Satz. Und dränge ich Dich nun
doch, Dich zu entscheiden, ob Du ihn anerkennen {

::::
wirst //

::::
willst}, etc.,

{so sollst Du sehen, daß es hier ganz gleichgültig ist wie Du Dich entschei-
dest, daß also hier die gewöhnliche {

:::::::::::
Entscheidung //

::::
Wahl} nicht vorliegt

// so sollst Du sehen, daß es hier die gewöhnlichen Entscheidungsgründe
nicht gibt // so sollst Du sehen, daß hier die gewöhnliche Situation der
Entscheidung nicht vorliegt.} Ich möchte beinahe sagen: wofür immer Du
Dich entscheidest, entscheide Dich nicht aus dem Gödelschen Grund, denn
das ist ein dummer Grund. Ich wollte (

::::
lieber), Du hättest den Mut hier {et-

was offenbar Unsinniges // einen offenbaren Unsinn} zu sagen, {statt daß
Du vor dieser Konsequenz zurückscheust. // statt daß Du hier noch die
Formen wahrst.} [Ms-121, 81r.3]

“But hell, it is self-evident, or not self-evident!” - The truth is that you do
not normally say “of course!” to such a thing, nor do you assert it, nor its
opposite. Above all, you have not the slightest use for such a proposition.
And if I now urge you to decide whether you {

:::
will // want to} recognise

it, etc., {you shall see that here it is quite indifferent how you decide, that
here the ordinary {decision // choice} is not present. // you shall see that

43 See Rodych, 2002, p. 384: “Wittgenstein’s point here is that a mere belief in the con-
sistency of PA is an exceedingly weak - indeed, stupid - reason for accepting the
proposition in question as true and unprovable in PA.”

44 Rodych, 2002, p. 385 notes the similarity of this charge to Wittgenstein’s earlier re-
mark about Cantor’s diagonal argument in Ms-117, 109.3 / RFM II §21.
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here the ordinary situation of the decision is not present.} I almost want
to say: whatever you decide, do not decide on the basis of Gödel’s reason,
because that is a stupid reason. I wish you (

:::::
rather) had the courage to say

something obviously nonsensical here, {instead of shying away from this
consequence. // instead of still keeping up appearances here.}

After this summarising remark, Wittgenstein moves on to consider a
new aspect of Gödel’s proof that was not previously mentioned in
any of the remarks in Ts-221a/b / RFM I; App. III or Ms-121: Which
metamathematical translation corresponds to the negation of Gödel’s
undecidable proposition P? In the case of P itself, the metamathemati-
cal translation is “Proposition P is not provable” with P being the this
very proposition (while keeping in mind, as usual, that the proposition
does not directly refer to P but only indirectly via substitution). This
is why Gödel himself called it the “proposition that says about itself
that it is not provable” (Gödel, 1986, pp. 149–151) and why we might
be tempted to translate P using a reflexive pronoun as “This proposi-
tion is not provable”. At first glance, we might then naively expect the
negation of P to translate to “This proposition is provable”, but this is
not the case, because the negation corresponds to the metamathemat-
ical proposition “Proposition P is provable”, with P still referring to
the proposition “Proposition P is not provable”. In other words, the
negation of P is not reflexive in the same way as P itself is, which is
why we cannot simply negate the reflexive translation itself, but have
to resort to the translation “The proposition ‘This proposition is not
provable’ is not true”. We have thus encountered a situation where a
naive attempt to negate the informal interpretation of Gödel’s propo-
sition P might fail to match the mathematically precise and formal
version of the negation of P, a situation where prose can quickly be-
come misleading and we have to look at the proof to understand what
we mean by ‘negation’. Wittgenstein is well aware of this:

Wie lautet denn das Gegenteil des Satzes “Dieser Satz ist nicht selbstver-
ständlich”? So: “{Dieser // Der} Satz ist selbstverständlich”? Aber wenn
hier “dieser” wieder reflexiv ist, dann ist es ja nicht das Negativ des oberen.

Wenn ich dies ausspreche & Du willst es leugnen mußt Du bereit sein zu
sagen: “Was {Du sagst // er sagt} ist falsch; {es // er} ist selbstverständlich.”
–

Soll ich sagen, das Gegenteil lautet: “Der Satz: ‘{Dieser // Der} Satz ist nicht
selbstverständlich.’ ist selbstverständlich”; oder etwa: “Der Satz: ‘{Dieser //
Der} Satz ist selbstverständlich’ ist nicht wahr.”.

“Gödels Satz sagt in indirekter Weise aus, daß er nicht beweisbar ist.” – Was
sagt also der verneinte Gödelsche Satz aus? [Ms-121, 82r.1–82v.1]

What is the opposite of the proposition “This proposition is not self-
evident”? Is it: “{This // The} proposition is self-evident”? But if “this”
is reflexive here again, then it is not the negative of the upper one.

If I say this & you want to deny it you must be prepared to say, “What {you
say // it says} is false; {this // it} is self-evident.” -
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Shall I say the opposite is: “The proposition: ‘{This // The} proposition is
not self-evident.’ is self-evident”; or rather, “The proposition: ‘{This // The}
proposition is self-evident’ is not true.”

“Gödel’s proposition states in an indirect way that it is not provable.” - So
what does the negated Gödelian proposition say?

We can write the different ways of (properly or naively) negating the
undecidable proposition P as follows, while keeping in mind that the
reference to ‘itself’ only happens indirectly via substitution:

1. ¬Provable(p)| {z }
p

“This prop. is not provable.”
(Gödel’s undecidable proposition P)

2. ¬¬Provable(p)| {z }
p

“The prop. ‘This prop. is not provable.‘ is not true.”
(“Der Satz: ‘Dieser Satz ist selbstverständlich’ ist nicht wahr.”)

3. Provable(¬Provable(p)| {z }
p

)

“The prop. ‘This prop. is not provable.‘ is provable.”
(“Der Satz: ‘Dieser Satz ist nicht selbstverst.’ ist selbstverst.”)

4. ¬¬Provable(p 0)| {z }
p 0

⌘ Provable(p 0)| {z }
p 0

“This prop. is provable.”
(“Dieser Satz ist selbstverständlich”)

5. ¬¬¬Provable(p 0)| {z }
p 0

⌘ ¬Provable(p 0)| {z }
p 0

“The prop. ‘This prop. is provable’ is not true.”
(Negation of 4, analogous to 2)

6. ¬Provable(¬¬Provable(p 0)| {z }
p 0

) ⌘ ¬Provable(Provable(p 0)| {z }
p 0

)

“The prop. ‘This prop. is provable’ is not provable.”
(Negation in terms of provability of 4, analogous to 3)

The correspondence to Gödel’s or Wittgenstein’s own wordings is
given in parentheses.45 Proposition 1 corresponds to Gödel’s undecid-
able proposition P, proposition 2 is its (proper and equally undecid-
able) negation (corresponding to Wittgenstein’s “Der Satz: ‘{Dieser

45 Wittgenstein himself seems to have experimented with a very similar style of di-
agrams in the loose-page fragment Ms-178c, most likely written in 1939, which
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// Der} Satz ist selbstverständlich’ ist nicht wahr.”), proposition 3
corresponds to Wittgenstein’s “Der Satz: ‘{Dieser // Der} Satz ist
nicht selbstverständlich.’ ist selbstverständlich”. The propositions 4–
6 correspond to the naive negation of P (proposition 4), its negation
(proposition 5) and a negation in terms of provability (proposition 6,
analogous to proposition 3).

Apart from drawing our attention to the fact that a prosaic inter-
pretation of negation requires more care in the case of diagonalised
propositions such as P, Wittgenstein’s remarks lead to two interesting
observations about Gödel’s proof:

First of all, as Wittgenstein himself mentions, the proper negation
of P is proposition 2, not proposition 3. But what is the difference in
meaning between proposition 2 and 3? The beauty of Gödel’s purely
syntactic approach is that he sidesteps any discussion of the mean-
ing of truth, with P itself saying only that it is not provable. But the
negation of P, proposition 2, cannot be interpreted purely in terms
of provability (this would be proposition 3), it has to be interpreted
as saying that P is “not true”. But as Wittgenstein alludes to in the
remark quoted above, do we know what we mean by this without
introducing a notion of truth that is carefully avoided in Gödel’s own
proof?

Secondly, why not focus briefly on the ‘naive’ negation of P, propo-
sition 4, which corresponds to the interpretation “This proposition is
provable”? Gödel himself does not consider such a proposition in his
proof, but we might be tempted to ask whether it should be provable
(or perhaps its negation). Gödel’s undecidable proposition is undecid-
able because either it or its negation would lead to (!-)inconsistency
if provable, but for its naively-negated counterpart the opposite is the
case: Either proposition 4 or its negation, proposition 5, could be prov-
able and neither of them would lead to inconsistency (as long as only
one of them is provable, of course). In other words, if we are asked to
choose proposition 4 or 5 as a provable theorem in our system, either
choice would be justified by and in accordance with the very proposi-
tion itself, whereas in the case of Gödel’s undecidable proposition P
or its negation (propositions 1 and 2 above) neither choice would be
justified by and in accordance with the chosen proposition.

In contrast to a ‘regular’ proposition, for which we can give reasons
why it (or its negation) is provable, the diagonalised propositions 1
and 4 are special: For Gödel’s undecidable proposition P, no choice will
be acceptable unless we accept inconsistency, whereas for its naively-
negated counterpart any choice will be acceptable and the reason for
it purely tautological.46

revolves around Cantor’s diagonal argument and contains several drawings of di-
agonalisations. On page Ms-178c, 4, Wittgenstein writes “Ristunbew. = f(R)” and
draws an arrow from this expression back to R, indicating its self-reference.

46 Priest calls these situations “overdetermined” and “underdetermined”, see Priest,
2006b, p. 15. Wittgenstein himself discusses an underdetermined variant of Cantor’s
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The subtlety involved in the different ways of negating P or proposi-
tions similar to it shows once more that propositions such as P, which
refer indirectly to their own number-translation through diagonalisa-
tion, “confront us with a new situation”:

Gödel konfrontiert uns mit einer neuen Situation: “was sollen wir nun dazu
sagen?”

Aber in der Entscheidung, was man sagen solle, darf man nun nicht
vorschnell sein. (Besonders darf man nicht gleich das sagen wollen, was
am Aufsehenerregendsten klingt.) Die Situation ist schwerer zu übersehen,
als es scheint. [Ms-121, 84r.2–84r.3]

Gödel confronts us with a new situation: “what shall we now say about
this?”

But in deciding what to say, one must not be hasty. (Especially one must
not want to say immediately what sounds most sensational.) The situation
is more difficult to survey than it seems.

Gödel implicitly assumes that even diagonalised propositions are to
be treated analogously to ‘regular’ propositions and is of course math-
ematically justified in presenting a formalisation that does just that.
When the purely mathematical result is interpreted metamathemati-
cally, it leads to the “sensational” result that there ‘are’ propositions
that are true, but not provable. But are we sure that this treatment of
diagonalised propositions is philosophically justified? Does it corre-
spond to what we mean when we say that a proposition is true? Or
do we lack an understanding of what truth means in the case of di-
agonalised propositions and are mislead into thinking that we have a
clear picture due to the superficial analogy with regular propositions?

It should be pointed out that Wittgenstein ends his remarks on
Gödel in Ms-121 by mentioning that the situation created by Gödel’s
result is “harder to survey than it appears”. The concept of surveya-
bility has so far played only a minor role in Wittgenstein’s remarks
on Gödel, but it will come to the forefront in the remarks in Ms-124 /
RFM VII, which will be discussed next.

2.6 surveyability and diagonalisation

The remarks on Gödel in Ms-124 stem from 1941 and form Wittgen-
stein’s last extensive discussion of Gödel’s proof. The first explicit
mention of Gödel occurs on page 84, but the relevant remarks begin
at least two pages before, with Wittgenstein reflecting on his philo-
sophical method in a way that also applies to Gödel’s result:

Fordere nicht zuviel, & fürchte nicht, daß Deine gerechte Forderung in’s
Nichts zerrinnen wird.

Meine Aufgabe ist es nicht, Russells Logik von innen anzugreifen, sondern
von außen.

diagonal argument in the context of Turing’s own use of the diagonal method, see
Section 1.1 for a detailed discussion.
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D.h.: nicht, sie mathematisch anzugreifen – sonst triebe ich Mathematik –
sondern ihre Stellung, ihr Amt. [Ms-124, 82.1–82.3 / BGM VII §19]

Don’t demand too much, and don’t be afraid that your just demand will
dwindle into nothing.

It is my task, not to attack Russell’s logic from within, but from without.

That is to say: not to attack it mathematically – otherwise I should be doing
mathematics – but its position, its office. [RFM VII §19]

Based on the latter two remarks, Wittgenstein’s guideline of “not de-
manding too much” might be read as follows: Any mathematical cri-
tique of Gödel’s proof by a philosopher such as Wittgenstein would
be an ‘unjust’ demand and Wittgenstein would be “afraid” that his cri-
tique would later turn out to miss the mathematical point of Gödel’s
proof. But a philosophical investigation in the sense of Wittgenstein,
which leaves the mathematical proof itself as it is and is occupied only
with the philosophical interpretation of the proof, is not impacted by any
mathematical discovery, therefore there is no need to be “afraid” that
a new mathematical discovery could invalidate the philosophical in-
vestigation.47

The point is made more explicit if we remember that Gödel’s result
is usually understood as a limitative result: For certain (!-consistent)
systems, it is impossible to decide all formulas in the system (the first
incompleteness theorem) and consequently impossible to prove the
consistency of the system inside the system (the second incomplete-
ness theorem). If Wittgenstein’s critique were mathematical, it would
focus on whether Gödel’s proof is in fact a limitative result, similar to
what would have happened if Gödel’s proof had contained a mathe-
matical error and another mathematician had later proved that it is in
fact possible to decide all propositions in an !-consistent system of
the form Gödel has in mind. Whether or not the “demand” is just
would then depend on something mathematical. But Wittgenstein
does not intend to refute the limitative result itself, his aim is only
to investigate what kind of limitation is being proved here: Gödel’s
proof is often interpreted (even by Gödel himself in the introduction)

47 Wittgenstein’s remark on being “afraid” shows similarities to remarks in Ms-117 on
the fear of contradictions. In the first of these (Ms-117, 246.2 / RFM III §85), Witt-
genstein asks why we are not afraid of the possibility of an impossible Euclidean
construction (such as a regular heptagon), whereas we are afraid of the possibility of
constructing a contradiction. Shortly after (in Ms-117, 253.4 / RFM III §87), Wittgen-
stein notes that the fear of contradictions in formal systems and of certain Euclidean
construction need not be dissimilar after all, because a fear of contradictions is an
indeterminate fear and can disappear entirely if “it is enough for me to get a proof that
a contradiction or a trisection of an angle cannot be constructed in this way.” This is
directly related to the importance of surveyability, because no consistency proof can
calm our fear if the system is not surveyable and we have no understanding of how
a contradiction would affect the system. A contradiction can be entirely harmless
and a consistency proof might be unnecessary if we have a clear picture of how the
contradiction is to be used, we can then decide whether we need to exclude it or let
the contradiction stand.
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as having an almost physical element (or rather “ultraphysical”, in
Wittgenstein’s words), whereas from the perspective of Wittgenstein
the proof (like all mathematical proofs) can only show a logical impos-
sibility.

Consequently, Wittgenstein’s critique is not focused on the mathe-
matical system itself, he wants to attack the system not “from within,
but from without”. His remarks are focused on an aspect that is only
of secondary importance to mathematicians such as Gödel, namely
the variety of language games that give meaning to concepts such as
provability, truth and proposition.

What Wittgenstein wants to attack is the undue adoration that so
often comes to the fore in discussions of Gödel’s theorem and which
is similar to the adoration for the uniform treatment of all of math-
ematics in Russellian logic. In other words, not the mathematical or
logical system itself is the issue, but its “position”, our tendency to
believe that the uniform and foundational treatment of these issues
is primary and could exist independently of the secondary variety of
mathematics in its actual use.

The end result of such a philosophical investigation is that we see a
mathematical result differently, not that we abandon it as invalid. This
change of perspective comes from seeing a particular aspect of mathe-
matics more clearly, as Wittgenstein notes in an unpublished remark
between two remarks of §19:

Ich will einen bestimmten Aspekt der Mathematik herausarbeiten; & zwar
den, der – meiner Meinung nach – {offenbar gemacht // klar geschildert}
die Art & Weise beeinflußt, wie Mathematiker & Philosophen (heute) die
Mathematik betrachten. [Ms-124, 83.2]

I want to work out a certain aspect of mathematics; & namely the one that
- in my opinion - {made obvious // clearly described}, influences the way
mathematicians & philosophers (today) look at mathematics.

Closely connected with this change of perspective (by bringing an
aspect into focus) is Wittgenstein’s concept of surveyability, which
has not played a major role in any of the preceding remarks on Gödel.
Wittgenstein explicitly mentions Gödel48 in Ms-124, 84.3 / RFM VII
§19 and then immediately describes the surveyable example of joins
in a wall:

Meine Aufgabe ist es nicht über den Gödelschen Beweis (z.B.) zu reden;
sondern an ihm vorbei zu reden.

48 Wittgenstein’s intent to “by-pass” Gödel’s proof will not be explicitly discussed here,
it should be clear from the preceding discussion that this expression does not indi-
cate Wittgenstein’s mathematical dismissal of Gödel’s result but only Wittgenstein’s
belief that his task regarding Gödel’s theorem is entirely philosophical and therefore
operates on a different level than Gödel’s mathematical work. This is also empha-
sised in Shanker, 1988, p. 235: “There is an understandable tendency to suppose that
by announcing his desire to by-pass Gödel’s proof Wittgenstein was indicating the
low esteem in which he held Gödel’s work. Yet had that been the case Wittgenstein
would quite literally have by-passed Gödel’s theorem: viz. by ignoring it.”
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Die Aufgabe, die Zahl der Wege zu finden, auf denen man den Fugen dieser
Mauer ohne abzusetzen & ohne Wiederholung entlangfahren kann, erkennt
jeder als mathematische Aufgabe. –

Wäre die {Zeichnung // Mauer} viel komplizierter & größer, nicht zu
überblicken, so könnte man annehmen sie ändere sich, ohne das wir’s
merken, & dann wäre die Aufgabe, jene Zahl (die sich vielleicht geset-
zmäßig ändert) zu finden, keine mathematische mehr. Aber auch wenn
sie gleichbleibt, ist die Aufgabe dann nicht mathematisch. – Aber auch
wenn {die Mauer // das Netz der Fugen} zu überblicken ist, {

::
so

:::::
heißt

:::
das

::::
nicht, die Aufgabe ist eine mathematische – als sagte man: diese Aufgabe ist
nun eine der Embryologie. // so kann man nicht sagen: die Aufgabe wird
dadurch zu einer mathematischen – wie man sagt: diese Aufgabe ist nun
eine der Embryologie. // tritt die Aufgabe dadurch nun nicht in’s Gebiet
der Mathematik über – wie man sagt: diese Aufgabe ist nun eine der Embry-
ologie.} Vielmehr: hier brauchen wir eine mathematische Lösung. (Wie: hier
ist, was wir bedürfen, eine Vorlage.) [Ms-124, 84.3–84.5 / BGM VII §§19–20]

My task is, not to talk about (e.g.) Gödel’s proof, but to by-pass it.

The problem: find the number of ways in which we can trace the joins in this
wall continuously and without repetition, will be recognized by everyone
as a mathematical problem. –

If the drawing were much bigger and more complicated, and could not be
taken in at a glance, it could be supposed to change without our noticing;
and then the problem of finding that number (which perhaps changes ac-
cording to some law) would no longer be a mathematical one. But even if
it does not change, the problem is, in this case, still not mathematical. – But
even when the wall can be taken in at a glance, that cannot be said to make
the question mathematical, as when we say: this question is now a question
in embryology. Rather: here we need a mathematical solution. (Like: here
what we need is a model). [RFM VII §19–20]

The problem described here is mathematical only because the picture
of the wall is surveyable: We are able to treat it as a paradigmatic
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case, because the picture is simple enough that we will not overlook
any joins, nor will any joins suddenly change without us noticing.
Anscombe’s translation of “zu überblicken” as “taken in at a glance”
is unfortunate, because the notion at stake here is explicitly not pri-
marily visual in the sense of being compact enough for us to glance
at it and take it in, it is rather about surveyability in the sense of
‘mechanical reproducibility’,49 our ability to treat it as an unchang-
ing and ideal paradigm (even if this may require several steps and
glances).

By considering the task of finding the different ways of following
the joins in the wall as a mathematical problem, we treat it as an
exercise in a realm of ideal lines and their connections, with no re-
gard to any psychological processes (which might explain why one
person is able to arrive at the correct number, while another is not)
or physical properties of the joins and wall in question. It can then
easily seem as if the mathematical problem were an experiment in this
platonic realm of ideal objects, which is a conception of mathematics
that Wittgenstein wants to dispel:

‘Erkannten’ wir das Problem als mathematisches, weil, die Mathematik
vom Nachfahren von Zeichnungen handelt?

Warum sind wir also geneigt, dieses Problem schlechtweg ein ‘mathema-
tisches’ zu nennen? Weil wir es ihm gleich ansehen, daß hier die Beant-
wortung einer mathematischen Frage so gut wie alles ist, was wir brauchen.
Obschon man das Problem, z.B., leicht als ein psychologisches sehen kön-
nte.
Ähnliches von der Aufgabe, aus einem Blatt Papier das & das zu falten.

Es kann so ausschauen, als ob die Mathematik hier eine Wissenschaft ist,
die mit Einheiten Experimente macht, Experimente, bei {denen // welchen}
es nämlich nicht auf die Arten der Einheiten ankommt, also nicht darauf,
ob sie Erbsen, Glaskugeln, Striche, usw. sind. – Nur was von allen diesen
gilt, findet sie heraus. {Also nichts // Z.B. nichts} über ihren Schmelzpunkt,
aber, daß 2 und 2 von ihnen 4 sind. Und das Problem der Mauer [№ 1]
ist eben ein mathematisches, d.h.: kann durch diese Art von Experiment
gelöst werden. – Und worin das math. Experiment besteht? Nun, im Hin-
legen & Verschieben von Dingen, Ziehen von Strichen, Anschreiben von
Ausdrücken, Sätzen, etc. Und man muß sich dadurch nicht stören lassen,
daß die äußere Erscheinung dieser Experimente nicht die physikalischer
& chemischer, etc. hat, es sind eben andersartige. Nur eine Schwierigkeit
ist da: {der Vorgang // das, was vorgeht} ist leicht genug zu sehen, zu
beschreiben – aber wie ist es als Experiment anzuschauen? Welches ist
hier der Kopf, welches der Fuß des Experiments? Welches sind die Be-
dingungen des Experiments, welches sein Resultat? Ist das Resultat das
Rechnungsergebnis, oder das Rechnungsbild, oder die Zustimmung (worin
immer diese besteht) des Rechnenden?

Werden aber, etwa, die Prinzipien der Dynamik zu Sätzen der reinen Ma-
thematik dadurch, daß man ihre Interpretation offen läßt & sie nur zum
Erzeugen eines Maßsystems verwendet? [Ms-124, 85.2–87.2 / BGM VII §20]

49 See Mühlhölzer, 2010.
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Did we ‘recognize’ the problem as a mathematical one because mathematics
treats of making tracings from drawings?

Why, then, are we inclined to call this problem straight away a ‘mathemat-
ical’ one? Because we see at once that here the answer to a mathematical
question is practically all we need. Although the problem could easily be
seen as, for example, a psychological one.
Similarly with the task of folding a piece of paper in such-and-such a way.

It may look as if mathematics were here a science that makes experiments
with units; experiments, that is, in which it does not matter what kind of
units they are, whether for instance they are peas, glass marbles, strokes
and so on. – Mathematics discovers only what holds for all these things.
And so it does not discover anything about e.g. their melting point, but
that 2 and 2 of them are 4. And the first problem of the wall is a mathe-
matical one, i.e. can be solved by means of this kind of experiment. – And
what does the mathematical experiment consist in? Well, in setting things
out and moving them about, in drawing lines, writing down expressions,
propositions, etc. And we must not be disturbed by the fact that the out-
ward appearance of these experiments is not that of physical or chemical
experiments, etc.; they just are of a different kind. Only there is a difficulty
here: the procedure is easy enough to see, to describe, – but how is it to be
looked at as an experiment? What is the head and what the tails of the ex-
periment here? What are the conditions of the experiment, what its result?
Is the result what is yielded by the calculation; or the pattern of calculation;
or the assent (whatever that consists in) of the person doing the calculation?

But does it make the principles of dynamics, say, into propositions of pure
mathematics if we leave their interpretation open, and then use them to
produce a system of measurement? [RFM VII §20]

This conception of mathematics as the science of the “ultraphysical”,
a science in the platonic realm of ideal entities such as lines or num-
bers, contrasts with Wittgenstein’s own conception of mathematics,
where the paradigmatic nature of a problem depends entirely on the
surveyability of the task. Wittgenstein reaffirms one of his central
reflections in Ms-122 & Ms-117 / RFM III, that a proof must be sur-
veyable (or else it would not be usable as a proof):

“Der math. Beweis muß übersichtlich sein” – das hängt mit der Über-
sichtlichkeit jener Figur zusammen. [Ms-124, 87.3 / BGM VII §20]

‘A mathematical proof must be perspicuous’ – this is connected with the
perspicuousness of that figure. [RFM VII §20]

In the context of Gödel’s proof, the different conceptions of mathe-
matics discussed here by Wittgenstein lead to entirely different inter-
pretations:

A picture of mathematics as a science in the ultraphysical and pla-
tonic realm of ideal entities has the tendency to let Gödel’s proof
appear as a fundamental and foundational limitative result, which
demonstrates clear boundaries to what we are able to do in a formal
system. According to such a view, the limits proved by Gödel hold in
the ideal realm of mathematics and thus all the more in practice.50

50 The most extreme form of this conception then leads almost directly to many of
the abuses of Gödel’s theorem in the context of the philosophy of mind, where
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In contrast, Wittgenstein’s conception of mathematics emphasises
the surveyability of proofs, which can be understood in two ways in
the context of Gödel’s first incompleteness theorem: First of all, there
is Gödel’s proof itself and the rather obvious observation that accord-
ing to Wittgenstein’s view this proof is only a proof if it is surveyable.
It is unlikely that Wittgenstein wants to deny the surveyability of
Gödel’s proof, as this would come close to disagreeing with the va-
lidity of the proof and thus commit Wittgenstein to a mathematical
critique, which is explicitly not the aim here. Secondly, there is the
question of whether the proof chains inside the formal system consid-
ered by Gödel are surveyable, in other words the question of whether
the arithmetical translation of a metamathematical proposition such
as ‘X is provable’ is surveyable. This second form of proof seems to be
the proof (with its corresponding notion of surveyability) that Witt-
genstein is interested in, as becomes clear in the remark immediately
following the remark on surveyability:

Vergiß nicht: der Satz, der von sich selbst aussagt, er sei unbeweisbar, ist als
mathematische Aussage aufzufassen, – – – denn das ist nicht selbstverständ-
lich.
Es ist nicht selbstverständlich, daß der Satz, die & die Struktur sei: so & so
nicht konstruierbar, als mathematischer Satz aufzufassen {sei // ist}.

D.h.: wenn man sagt: “er sagt von sich selbst aus” – so ist das auf eine
spezielle Weise zu verstehen. Hier nämlich entsteht leicht Verwirrung durch
den bunten Gebrauch des Ausdrucks “dieser Satz sagt etwas von . . . aus“.

In diesem Sinne sagt der Satz 625 = 25 × 25 auch etwas über sich selbst aus:
daß nämlich die linke Ziffer erhalten wird, wenn man die rechts stehenden
multipliziert.

Der Gödelsche Satz, der etwas über sich selbst aussagt, erwähnt sich selbst
nicht. [Ms-124, 87.4–88.4 / RFM VII §21]

Do not forget that the proposition asserting of itself that it is unprovable is
to be conceived as a mathematical assertion – for that is not a matter of course.
It is not a matter of course that the proposition that such-and-such a struc-
ture cannot be constructed is to be conceived as a mathematical proposition.

That is to say: when we said: “it asserts of itself” – this has to be under-
stood in a special way. For here it is easy for confusion to occur through
the variegated use of the expression “this proposition asserts of something
of. . . ”.

the mathematical theorem is interpreted as demonstrating a limit to what machines
could ever hope to achieve, in contrast to humans (see Lucas, 1961 for one of the
most egregious examples of such an interpretation and Franzén, 2005, pp. 115–126
for a discussion of Lucas’ interpretation and other abuses). It should be noted that
Gödel himself was more careful in this regard, which is why Wittgenstein’s remarks
should be read as targeting not only Gödel’s own informal interpretation, but also
(and perhaps more importantly) the wealth of philosophical abuses that Gödel’s
informal introduction gave rise to. Wittgenstein certainly saw that Gödel’s way of
presenting his purely mathematical result had the tendency to generate these abuses,
even though Gödel himself may be only partially to blame for this.
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In this sense the proposition ‘625 = 25 × 25’ also asserts something about
itself: namely that the left-hand number is got by the multiplication of the
numbers on the right.

Gödel’s proposition, which asserts something about itself, does not mention
itself. [RFM VII §21]

Apart from demonstrating that Wittgenstein was, at least at the time
of writing Ms-124 in 1941, aware of the indirect form of reference
that Gödel’s proof uses, the above remarks can help clarify why the
notion of surveyability plays a central role in the context of Gödel.
Wittgenstein understands how Gödel’s proof shows that a particular
proof chain is not constructible (“such-and-such a structure cannot
be constructed”) under the assumption of !-consistency and he is
certainly not disputing the mathematical validity of this aspect of the
proof. What he wants to investigate instead is our willingness to con-
ceive this proof of non-constructibility as a mathematical proposition,
which says something metamathematical “about itself”. Gödel is un-
doubtedly well aware that the undecidable proposition P does not
say something “about itself” in the same way as semantic paradoxes
such as the Liar do, after all Gödel himself points out in the intro-
duction that any such translation is only an informal and imprecise
reformulation and that the undecidable proposition P is in fact not a
paradox.

Wittgenstein’s point is more nuanced here, because he is not crit-
icising Gödel on the basis of a rather trivial observation, but rather
investigating the ‘uniformity’ of Gödel’s approach. The approach cho-
sen by Gödel shows similarities to Russell’s conception of mathemat-
ics as logic in one crucial aspect: Exactly how Russell views math-
ematics as reducible to logic, ignoring the fact that his translation
into logic is only understandable against the backdrop of our ‘in-
formal’ understanding of mathematics with its variety of language
games, Gödel views all metamathematical propositions as equally re-
ducible to arithmetic, ignoring the fact that this translation is only
understandable against the backdrop of our ‘extra-systemic’ under-
standing of metamathematical concepts. For a mathematician, who is
usually not interested in the surveyability of their approach as long
as it can be shown that a translation exists and can in theory be carried
out, the variety of language games that give rise to our informal con-
cepts simply do not matter and the recursive method of translation is
self-sufficient. But for Wittgenstein, the variety of informal language
games and the “variegated use” of our metamathematical expressions
is not reducible to a uniform logical treatment.

Gödel’s metamathematical translation into arithmetic has sense
only because the informal metamathematical concept of provabil-
ity has sense for us, but the uniform treatment of all propositions
through this arithmetical lens does not guarantee that the translation
will have sense when it is stretched beyond our informal concepts, as
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is the case for Gödel’s undecidable proposition P. Here we are easily
misled to believe that we know what we must say, in analogy to our
informal concept of provability, when we actually have not given the
expression any meaning in this particular context and thus have the
freedom to either exclude it from the system (as Gödel does) or let
the contradictory interpretation stand.

Wittgenstein is not advocating for one option over the other, but
rather for an understanding that sees these different options not as
ultraphysical laws and instead as logical rules that govern our lan-
guage game. Once we adopt this view of Gödel’s proof, it appears
less as a reflection of a fundamental limitation that we have discov-
ered in the realm of logic and mathematics and more as a reflection
of rules that have been fixed by a variety of different mathematical
language games. If we are able to choose between different options,
then only because some expressions do not yet have a fixed meaning
in our existing form of life.51

Only in this way can there be doubt about the translation of an
arithmetical proposition into English: Wittgenstein is not doubting
the mathematical validity of Gödel’s translation procedure, only its
applicability in situations where we are lacking a clear picture in our
informal language. In such a situation, the result of translating an
arithmetical proposition (such as the undecidable P) into its meta-
mathematical English translation is comparable to a useless but aes-
thetically pleasing ornament, as Wittgenstein notes in an unpublished
remark between remarks of §21:

‘Der Satz sagt, daß diese Zahl aus diesen Zahlen auf diese Weise nicht
erhältlich ist.’ – Aber bist Du auch sicher, daß Du ihn recht ins Deutsche
übersetzt hast? Ja gewiß, es scheint so. – Aber kann man da nicht fehlgehen?

| Ein Stil, Maschinen zu bauen, in welchem man die wirksamen Räder,
Hebel, etc. mit einer Zahl unwirksamer umgibt, die, z.B., nur eines ästhetis-
chen Eindrucks wegen angebracht sind. (Ähnlich wie Scheinfester in einer
Fassade.) | [Ms-124, 89.2–89.3 / BGM VII §21 (only the first remark)]

‘The proposition says that this number cannot be got from these numbers
in this way.’ – But are you also certain that you have translated it correctly
into English? Certainly it looks as if you had. – But isn’t it possible to go
wrong here?
| A style of building machines in which the effective wheels, levers, etc. are
surrounded by a number of ineffective ones, which, for example, are only
attached for the sake of an aesthetic impression. (Similar to false windows
in a façade.) | [RFM VII §21 (only the first remark)]

In other words, we might decide to accept the ornament as part of a
larger structure, but we cannot point to the usual reasons for justifica-

51 Of course a choice based on the analogy with existing language games and fields
of mathematics might very well be a reasonable and perfectly adequate choice, con-
trary to Wittgenstein’s rather dismissive rejection of it as a “stupid reason”. Witt-
genstein’s perspective on Gödel’s theorem is certainly tinted by his approach as
a non-mathematician, who considers Gödel’s proof only on the basis of the proof
alone, not in the context of specialised fields of mathematics.
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tion, because they stem from a variety of situations that do not apply
here.

But what are we to make of this observation? Assuming that we
leave open the possibility of ‘letting the contradiction stand’, can we
really use the resulting formal system, given that we cannot trust the
English translation of the undecidable proposition P (which is prov-
able despite stating that it is not provable)? Wittgenstein considers
this question in the next remark:

Könnte man sagen: Gödel sagt, daß man einem math. Beweis auch {muß
trauen können // trauen muß}, wenn man ihn, praktisch, als den Beweis
der Konstruierbarkeit der Satzfigur nach den Beweisregeln auffassen will?
Oder: Ein math. Satz muß als Satz einer auf {sich selbst // sein eigenes
Zeichen} wirklich anwendbaren Geometrie aufgefaßt werden können. Und
tut man das so zeigt es sich, daß man sich auf einen Beweis

::
in

::::::::
gewissen

:::::
Fällen nicht verlassen kann. [Ms-124, 89.4 / BGM VII §21]

Could it be said: Gödel says that one must also be able to trust a mathemat-
ical proof when one wants to conceive it practically, as the proof that the
propositional pattern can be constructed according to the rules of proof?
Or: a mathematical proposition must be capable of being conceived as a
proposition of a geometry which is actually applicable to itself. And if one
does this it comes out that in certain cases it is not possible to rely on a
proof. [RFM VII §21]

It is not entirely surprising that Wittgenstein marked the expression
“in certain cases” in the above remark with a wavy underline, indicat-
ing his discontent with this particular phrasing, because these three
words strike at the heart of the matter, but without the philosophical
clarity of many of his earlier remarks. A philosophical investigation
will need to investigate precisely in which cases we cannot trust a proof
inside the formal system, and more importantly why we cannot trust
it. Gödel’s own interpretation of the proposition P as metamathemati-
cally true but unprovable within the system can lead us to believe that
unprovability “in certain cases” is a sign of the deficiency of the for-
mal system, which (as Gödel’s proof shows) we are unable to resolve
inside the formal system itself. But are these cases really deficient, if
the proposition in question is inherently useless and (indirectly, when
translated into its metamathematical counterpart) reflexive?

In the following remarks, Wittgenstein makes another attempt at
succinctly describing the Gödelian situation and offering a philosoph-
ically undogmatic clarification. It is worth quoting them in full, be-
cause these remarks do better justice to Gödel’s mathematical proof
(by explicitly describing the construction of the undecidable proposi-
tion as an arithmetical proposition together with a metamathematical
translation) and also manage to clarify its philosophical implications
in a very undogmatic and unspectacular fashion:

‘Nehmen wir an, wir haben einen arithmetischen Satz, der sagt, eine bes-
timmte Zahl . . . könne nicht aus den Zahlen . . . , . . . , . . . , durch die &
die Operationen gewonnen werden. Und nehmen wir an, es ließe sich eine
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Übersetzungsregel geben, nach welcher dieser arithmetische Satz in die Zif-
fer jener ersten Zahl – die Axiome {, aus denen wir versuchen ihn zu be-
weisen, // unseres Beweissystems } in die Ziffern jener andern Zahlen – &
unsere Schlußregeln in die im Satz erwähnten Operationen sich übersetzen
ließen. – Hätten wir dann den arithmetischen Satz aus den Axiomen nach
unsern Schlußregeln abgeleitet, so hätten wir dadurch seine Ableitbarkeit
demonstriert, aber auch einen Satz bewiesen, den man nach jener Überset-
zungsregel dahin aussprechen {kann // muß}: dieser arithmetische Satz
(nämlich unserer) sei unableitbar.
Was wäre nun da zu tun? Ich denke mir, wir schenken unserer Konstruktion
des Satzzeichens glauben, also dem geometrischen Beweis. Wir sagen also,
diese ‘Satzfigur’ ist aus jenen so & so gewinnbar. Und übertragen, nur, in
eine andre Notation heißt das: diese Ziffer ist mittels dieser Operationen
aus jenen zu gewinnen. Soweit hat der Satz & sein Beweis nichts mit einer
besonderen Logik zu tun. Hier war jener konstruierte Satz einfach eine an-
dere Schreibweise der konstruierten Ziffer; sie hatte die Form eines Satzes
aber wir verglichen sie nicht mit andern Sätzen

::
als Zeichen, welches dies

oder jenes sagt, einen Sinn hat.

Aber freilich ist zu sagen daß jenes Zeichen weder als Satzzeichen noch
als Zahlzeichen angesehen werden braucht. – Frage Dich: was macht es zu
dem einen, was zu dem anderen? [Ms-124, 90.4–92.2 / BGM VII §22]

‘Let us assume that we have an arithmetical proposition saying that a partic-
ular number . . . cannot be obtained from the numbers. . . , . . . , . . . , by means
of such and such operations. And let us assume that a rule of translation
can be given according to which this arithmetical proposition is translatable
into the figures of the first number – the axioms from which we are trying
to prove it, into the figures of the other numbers – and our rules of inference
into the operations mentioned in the proposition. – If we had then derived
the arithmetical propositions from the axioms according to our rules of infer-
ence, then by this means should have demonstrated its derivability, but we
should also have proved a proposition which, by that translation rule, can
be expressed: this arithmetical proposition (namely ours) is not derivable.’
What would have to be done here? I am supposing that we trust our con-
struction of the propositional sign; i.e. we trust the geometrical proof. So we
say that this ‘propositional pattern’ can be obtained from those in such
and such ways. And, merely translated into another notation, this means:
this number can be got from those by means of these operations. So far the
proposition and its proof have nothing to do with any special logic. Here the
constructed proposition was simply another way of writing the constructed
number; it had the form of a proposition but we don’t compare it with other
propositions as a sign saying this or that, making sense.

But it must of course be said that that sign need to be regarded either as a
propositional sign or as a number sign. – Ask yourself: what makes it into
the one, and what into the other? [RFM VII §22]

The first half of the first remark is entirely unproblematic and sim-
ply describes the result of Gödel’s construction of P, namely !-
inconsistency, assuming that we do not exclude P as undecidable.

The second half, however, reiterates Wittgenstein’s idea that we
might accept the construction (and therefore the provability) of P in-
stead of excluding it, in other words “we trust the geometrical proof.”
As Wittgenstein correctly points out, the correspondence between the
arithmetical operations and the metamathematical interpretation as a
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proved proposition is one of “merely” translating it, indicating that
the mathematical validity of Gödel’s translation is not at stake here.

But why do we treat the number as a proposition? Only because
(thanks to the translation procedure) the propositional sign has the
“form of a proposition”, in other words due to the uniform treatment
that we apply to all those propositional signs that fulfil certain formal
criteria, irrespective of their particular content, irrespective of what
they say.

The problem ‘only’ arises if we then try to translate the constructed
number “by means of these operations” back to its metamathematical
counterpart, which “says the opposite of what we regard as proved”:

Lesen wir nun den konstruierten Satz (oder die Ziffer) als Satz der mathe-
matischen Sprache (etwa auf Deutsch), so spricht er das Gegenteil von dem,
was wir eben als bewiesen betrachtet. Wir haben also den wörtlichen Sinn
des Satzes als falsch demonstriert & ihn zu gleicher Zeit bewiesen – wenn
wir nämlich seine Konstruktion aus den zugelassenen Axiomen mittels der
zugelassenen Schlußregeln als Beweis betrachten.

Wenn jemand uns einwürfe, wir könnten solche Annahmen nicht machen,
da es logische oder mathematische Annahmen wären, so antworten wir, daß
nur nötig ist anzunehmen jemand habe einen Rechenfehler gemacht & sei
dadurch zu dem Resultat gelangt, das wir ‘annehmen’, & er könne diesen
Rechenfehler vorderhand nicht finden. [Ms-124, 92.3–93.2 / BGM VII §22]

If we now read the constructed proposition (or the figures) as a proposition
of mathematical language (in English, say) then it says the opposite of what
we regard as proved. Thus we have demonstrated the falsity of the real
sense of the proposition and at the same time proved it – if, that is, we look
on its construction from the admitted axioms by means of the admitted
rules of inference as a proof.

If someone objects to us that we couldn’t make such assumptions, for they
would be logical or mathematical assumptions, then we reply that we need
only assume that someone has made a mistake in calculating and so has
reached the result we ‘assume’, and that for the time being he cannot find
the mistake. [RFM VII §22]

Gödel’s own informal introduction has the tendency to present the
mathematical result as a surprising discovery about the limits of for-
mal systems, because it is impossible to decide all propositions with-
out running head on into !-inconsistency, contrary to what we had
expected. This is why Gödel’s result can appear troubling: We expect
to be able to trust proofs, in other words we expect that a proved
proposition does not say something false, which is exactly what hap-
pens in the case sketched out by Wittgenstein.

Gödel has no other option but to exclude the proposition from the
formal system, to avoid inconsistency by accepting incompleteness,
because the uniform treatment of propositions and the explosive ef-
fect of contradictions in classical logic would render a formal system
unusable if we tried to use it ‘mechanically’ in the presence of a con-
tradictory proposition such as P.



164 gödel , theorems and provability

But as Wittgenstein’s concept of surveyability makes clear, this ap-
proach merely appears to be the only viable option because we lack
surveyability of the formal system and as a consequence cannot dis-
tinguish between contradictions that threaten the usability of the for-
mal system for practical purposes and potentially harmless contradic-
tions that resemble pointless but ultimately benign language games
such as somebody repeatedly drawing conclusions of the form ‘I lie,
therefore I do not lie, therefore I lie, ...’ from a sentence such as the
Liar.

Once a formal system is surveyable, which can only happen as a
consequence of investigating the use of the system, not as a result of
merely considering the formal rules of the system, we might possess
criteria which allow us to decide whether to include a diagonalised
proposition such as P inside the system. In contrast to Gödel’s way
of introducing the proof, which presents the result as a fundamental
and unexpected limitation of formal systems of a particular form, a
surveyable representation can show that a diagonalised construction
does not unexpectedly lead to a contradiction, but rather obviously
as a result of how the rules of the game are laid out. From such a
surveyable perspective, the ‘limitation’ of the formal system is not a
law of nature, but only the expected consequence of the rules that we
chose to include and therefore entirely unsurprising, similar to how
nobody would be surprised that all games which include a rule that
allows one player to win immediately in fact do allow one player to
win immediately and are thereby limited in a particular sense.

Of course Gödel’s proof is far from trivial and the mathematical
result much deeper than a mere tautology, but from the perspective
of Wittgenstein its value does not lie in showing us a deep discovery
about the mathematical world, but rather in the observation that if we
follow our usual rules of logic in a certain way, we can diagonalise
our way to a contradiction. By bringing this situation to our attention,
Gödel makes a particular (intra-systemic) aspect of formal systems
surveyable, while simultaneously failing to see that any interpretation
of this aspect will depend on its (extra-systemic) use.

Wittgenstein wants to emphasise that this use is not a matter of psy-
chology and therefore irrelevant to a mathematician. Instead, whether
or not the geometrical proof by construction of the ‘undecidable’
proposition P convinces us as a proof depends on “its ratification
in the use of what is proved”:

Hier kommen wir wieder auf den Ausdruck “der Beweis überzeugt uns”
zurück. Und was uns hier an der Überzeugung interessiert, ist weder ihr
Ausdruck durch Stimme und Gebärde, noch das Gefühl, der Befriedigung
oder ähnliches; sondern ihre Betätigung in der Verwendung des Bewiese-
nen. [Ms-124, 94.1 / BGM VII §22]

Here once more we come back to the expression “the proof convinces us”.
And what interests us about conviction here is neither its expression by
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voice or gesture, nor yet the feeling of satisfaction or anything of that kind;
but its ratification in the use of what is proved. [RFM VII §22]

With the above remark acting as a preliminary conclusion of Wittgen-
stein’s thoughts on Gödel’s theorem, the closing remarks in Wittgen-
stein’s discussion of Gödel in Ms-124 take a more general perspective
and reflect on the role of philosophy in regards to such a proof. It is
clear that Gödel’s proof, although it is itself surveyable (by being a
proof) and helps to make a particular aspect of formal systems sur-
veyable (by demonstrating how certain rules can be used to construct
an undecidable or contradictory proposition), does not lead to a sur-
veyable presentation of the form that Wittgenstein is interested in,
because Gödel’s proof ignores the variety of uses that different propo-
sitions exhibit. This is not a deficiency of Gödel’s particular proof, but
simply the result of a difference in method between mathematics and
philosophy, as Wittgenstein understands the two fields. Gödel’s proof
can therefore not solve a philosophical problem, but it can pinpoint a
situation that would benefit from greater surveyability (in the philo-
sophical sense):

Man {könnte // kann} mit Recht fragen, welche Wichtigkeit Gödel’s Beweis
für unsre Arbeit habe. Denn ein Stück Mathematik {kann nicht Probleme
von der Art der unsern // kann Probleme von der Art, die uns beunruhigen,
nicht lösen. // kann kein Problem von der Art, die uns beunruhigt lösen. //
kann nicht Probleme von der Art, die uns beunruhigt, lösen.} – Die Antwort
ist: daß die Situation uns interessiert, in die ein solcher Beweis

:::
uns bringt.

‘Was sollen {wir // sie} nun sagen?’ – das ist unser Thema. [Ms-124, 94.2 /
BGM VII §22]

It might justly be asked what importance Gödel’s proof has for our work.
For a piece of mathematics cannot solve problems of the sort that trouble
us. – The answer is that the situation, into which such a proof brings us, is
of interest to us. ‘What are we to say now?’ – That is our theme. [RFM VII
§22]

Consequently, a philosopher must focus on details that appear to be
completely irrelevant to a mathematician and must ask seemingly
trivial questions. Reducing concepts such as the natural numbers or
provability to a simple axiomatic system with a small number of rules
of inference (such as the Peano arithmetic considered by Gödel in his
proof) might be a viable solution for a mathematician, but does noth-
ing to bring us closer to the kind of surveyable representation that
describes (without explaining) the variety of uses in our language.
Instead, a philosopher must ask what it means to say “Suppose this
could be proved”, because the answer could be entirely different in
the case of Gödel’s proposition P than in the case of a ‘regular’ propo-
sition that we use to infer that it is raining outside:

Es kommt uns viel zu selbstverständlich vor, daß wir “wieviele?” fragen &
darauf zählen & rechnen!

So seltsam es klingt, so scheint meine Aufgabe das Gödelsche Theorem
betreffend (

::::
bloß) darin zu bestehen, klar zu stellen, was in der Mathematik
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so ein Satz bedeutet, wie: “angenommen, man könnte dies beweisen”. [Ms-
124, 95.1–95.2 / BGM VII §23 & §22]

We take it much too much for granted that we ask “How many?” and
thereupon count and calculate.
However queer it sounds, my task as far as concerns Gödel’s proof seems
merely to consist in making clear what such a proposition as: “Suppose this
could be proved” means in mathematics. [RFM VII §23 & §22]

Philosophy in the sense of Wittgenstein must therefore refrain from
interfering in mathematical matters and avoid criticising a proof on
the mathematical level. A philosophical investigation can surely take
a mathematical proof such as Gödel’s theorem as a starting point and
focus on the way that it might give rise to a particular and potentially
misleading interpretation, but the object of any philosophical inves-
tigation can only be the prosaic interpretation of the proof, acting as
a connection point to our extra-mathematical use of certain concepts,
never the mathematical formalism itself.

2.7 physics and mathematical objects

While the remarks on Gödel in Ms-124 / RFM VII end at this point,
they continue in the pocket notebook Ms-163, which is the source for
the later selection in Ms-124. Given that Wittgenstein himself chose
not to transfer the following remarks from Ms-163 into Ms-124 and
that Ms-163 (being a pocket notebook) contains coded personal en-
tries and drafts of unfinished remarks, not too much weight should
be placed on any interpretation of Ms-163. Accordingly, only a selec-
tion of remarks from that notebook will be discussed here.

Wittgenstein continues his remarks on Gödel in Ms-163 by consid-
ering the role of a reflexive pronoun, similar to his remarks in Ms-
121, while emphasising that such a self-referential word would only
find use outside the realm of logical or mathematical propositions.
As soon as self-reference is involved, there are different senses of
negating such a sentence, because it is not immediately clear how to
interpret the ‘scope’ of the reflexive pronoun (see the list of 6 propo-
sitions outlined in Section 2.5) and because there are different ways
of deriving a proposition, either directly as the constructed end re-
sult of a proof figure or indirectly as the result of a non-constructive
provability proof (see Section 2.2). We could thus speak of a different
“sense” of negating the same sentence:

Das auf den Satz selbst bezügliche Fürwort des Satzes, der etwas von sich
selbst aussagt. Ein solches gibt es in unsrer Sprache nicht, sein Gebrauch,
das Sprachspiel, aber kann leicht beschrieben werden, wenn man nur erst
sieht daß die Sätze, in denen es vorkommt nicht, vor allem, logische oder
math. sein

:::::
dürfen.

Sagt nun so ein Satz: “ich bin nicht wahr” so habe ich gar keinen Gebrauch
für ihn. Es sei denn daß ich das Spiel mit ihm spiele zu sagen: Also ist das
Gegenteil dieses Satzes wahr welches lautet: “ich bin wahr.”
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Und dies ist in einem Sinne das Gegenteil & in einem andern Sinne nicht.
[Ms-163, 31r.2–31r.3]

The pronoun of the sentence referring to the sentence itself, which says
something about itself. Such a pronoun does not exist in our language, but
its use, the language game, can be easily described, if one only sees that the
propositions in which it occurs are not

::::::
allowed to be, above all, be logical

or mathematical.

If now such a proposition says, “I am not true,” I have no use for it at all.
Unless I play the game with it of saying: So the opposite of this proposition
is true, which is: “I am true.”
And this, in one sense, is the opposite, and in another sense it is not.

A few remarks later, Wittgenstein mentions “K provable” or “ prov-
able” (Ms-163, 32r.1–32r.2, the handwriting is not completely clear),
apparently an explicit reference to Gödel’s use of the term in his
proof. Wittgenstein then introduces the main theme of the following
remarks, namely the relation between contradictions in mathematics
and physics (although the theme is only alluded to at this point):

Aber macht nicht dies den Gebrauch solcher Sätze unmöglich daß hier ein
Satz & sein Gegenteil wahr sein können?
Z.B.: “ich bin ein Zoll lang” & “ich bin nicht ein Zoll lang”.
Man könnte hier sagen es müsse eine äußere & eine innere Negation geben.
Das gleiche gilt natürlich von “ich bin ableitbar” & “ich bin nicht ableitbar”,
sie können beide wahr & beide falsch sein: Und dennoch nicht sinnlos. [Ms-
163, 32r.3]

But doesn’t this make the use of such sentences impossible, that here a
sentence & its opposite can be true?
E.g.: “I am an inch long” & “I am not an inch long”.
One could say here that there must be an external & an internal negation.
The same is of course true of “I am derivable” & “I am not derivable”, they
can both be true & both be false: And yet not meaningless.

At first glance, it can appear as if a mathematical contradiction imme-
diately disqualified any contradictory proposition as useless, since
this is the case for empirical propositions such as “I am an inch long”
and “I am not an inch long”. Here, the “use of such sentences [is]
impossible”, because they cannot both refer to the same physical ob-
ject and be true at the same time. If both of these propositions were
derived somehow, the result would be useless.

The first instinct is to assume that this analogy also holds in math-
ematics, which would compel us to exclude Gödel’s proposition P as
undecidable from the formal system instead of accepting its contra-
dictory nature within the system. But in the case of such an unde-
cidable proposition (and in contrast to empirical propositions), P and
its negation are derived differently from one another and thus each
have a different “sense”, which we could distinguish by speaking of
“an external & and internal negation”. In mathematics, the contradic-
tory propositions can then “both be true & both be false: And yet not
meaningless.”
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As a result, the derivation of such a contradiction loses its predic-
tive power, because if we derive P (saying that P is not derivable), its
prediction is restricted to a single sense of derivability, but it does
not preclude that we derive the proposition or its negation in the
other sense. Under ‘normal’ circumstances, a proof that a particular
proposition cannot be derived can be used to demonstrate that look-
ing for a derivation is “hopeless”, but a proposition such as P with
its ‘double-sense’ of negation does not have this use:

Hättest Du {etwas // einen mathematischen Satz} aus logischen & arith-
metischen Grundprinzipien abgeleitet, dessen natürlichste Anwendung zu
sein schiene das Ableiten des abgeleiteten Satzes als hoffnungslos darzu-
stellen, dann heißt das, daß der so abgeleitete Satz diese Anwendung eben
nicht hat, daß die Prinzipien, aus welchen er abgeleitet ist, nicht im Stande
sind eine {auf diese Weise // so} anwendbare Geometrie zu erzeugen. [Ms-
163, 32v.2]

If you had derived {something // a mathematical proposition} from logical
& arithmetical basic principles, the most natural application of which would
seem to be the derivation of the derived proposition as hopeless, then this
means that the proposition thus derived has simply not this application,
that the principles from which it is derived are not capable of producing a
geometry {applicable in this way // thus applicable}.

Wittgenstein then connects this idea to the concept of surveyability,
by comparing the contradiction produced by a proposition such as P
with a contradiction that results from a mistake made due to calculat-
ing with impractically large numbers (such as when calculations are
carried out in unary Russellian notation, Wittgenstein’s prime exam-
ple for unsurveyability in mathematics):

Ist das nun viel anders als gäbe ein allgemeiner arithmetischer Beweis, auf
außerordentlich sehr große Zahlen angewandt etwas, was im Widerspruch
steht mit dem Resultat der speziellen & ungeheuer langen Berechnung?
So könnte ich mir denken, daß Paare ungeheuer langer Multiplikationen
n⇥m, m⇥n zu immer verschiedenen Resultaten führten.

Die Jagd nach den Grundlagen der Mathematik {scheint mir
::
auf ein falsches

Ideal
:::::
basiert. // scheint mir erregt durch ein trügliches Ideal. // scheint

mir (ganz) getragen von einem trüglichen Ideal.} (Wie eine bestimmte Poli-
tik von einer bestimmten Lebensweise.) [Ms-163, 33r.2–33v.2]
[...]
Wenn ich ein Beispiel einer möglichen Verwirrung in der Arithmetik finden
will, brauche ich mir nur ein Rechnen mit riesigen Zahlen vorstellen wel-
ches unübersehbar & dadurch unzuverlässig wird. [Ms-163, 34v.2]

Now, is this much different than if a general arithmetic proof, applied to
extraordinarily very large numbers, gave something that contradicted the
result of the particular & tremendously long calculation? I could think of
pairs of tremendously long multiplications n⇥m, m⇥n leading to always
different results.

The hunt for the foundations of mathematics {seems to me to be
:::::
based

::
on a false ideal //seems to me excited by a fallacious ideal //seems to
me (entirely) sustained by a fallacious ideal}. (Like a certain policy from a
certain way of life.)
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[...]
If I want to find an example of a possible confusion in arithmetic, I only
need to imagine a calculation with huge numbers which becomes unsur-
veyable & thereby unreliable.

At first this comparison might strike us as odd, because from the per-
spective of most mathematicians these cases are of a fundamentally
different nature: A proposition such as P is inherently contradictory
and a sign of inconsistency in the formal system itself, whereas an un-
surveyable large calculation is only contradictory in practice, while the
underlying system might be perfectly consistent. But it is exactly this
preconception that Wittgenstein wants to attack, because it gives rise
to the misleading picture of inconsistency as a deficiency in and of
itself. As Wittgenstein has emphasised repeatedly, the inconsistency
introduced by a proposition such as Gödel’s P occurs only in ‘small
doses’ and could conceivably be contained without leading to logical
trivialism. Whether or not the resulting system is useful then depends
on how it is used in practice, in our form of life, which is a question
that cannot be answered on the basis of purely mathematical reflec-
tions.

Contradictions as the result of diagonalisation and contradictions
as the result of unsurveyably large numbers are similar in so far as
both precisely locate the ‘area of unsurveyability’ in a way that this
area can be ‘fenced off’ without impacting other areas of the for-
malism. Although Russellian notation is unsuitable for calculating
by hand with large numbers, it could still be used for calculating
‘in the small’. Similarly, we might use a formal system containing a
proposition such as P for practical purposes as long as we restrict its
application to non-diagonalised propositions or employ a paraconsis-
tent logic as our framework. In contrast, a formal system that derives
non-diagonalised contradictions is not suitable for such a use until
we have found out where and why these contradictions originate, in
other words until the formal system becomes surveyable.

The importance of surveyability continues to play a role in the re-
marks immediately following the one quoted above, with Wittgen-
stein reiterating the difficulty of finding the right perspective for his
philosophical investigation (Ms-163, 35r.2–35r.4). He then talks explic-
itly about how Gödel’s proof fits into such a philosophical investiga-
tion and why the issue at stake is not the mathematical proof itself,
but rather its prosaic interpretation:

Nicht der Gödelsche Beweis interessiert mich, sondern die Möglichkeiten
auf die Gödel durch seine Diskussion uns aufmerksam macht.

Die math. Tatsache daß hier ein arithmetischer Satz ist, der sich in P nicht
beweisen noch als

::::
falsch

::::::::
erweisen läßt, interessiert mich nicht. – – – [Ms-163,

37v.3–37v.4]

It is not Gödel’s proof that interests me, but the possibilities to which Gödel
draws our attention through his discussion.
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The math. fact that here is an arithmetical proposition which cannot be
proved in P nor

:::::::::::
demonstrated

::
to

:::
be

::::
false does not interest me. - - -

A few remarks later, Wittgenstein continues this general reflection
and emphasises that the focus of his philosophical investigation is the
“kind of proof” that Gödel introduced, namely the diagonal method
applied to metamathematical concepts such a provability:

Der Gödelsche Beweis {bringt eine Schwierigkeit auf // entwickelt eine
Schwierigkeit}, {die sich auch in viel elementarerer Weise zeigen muß //
die auch in viel elementarerer Weise erscheinen muß}. (Und hierin liegt,
scheint es mir, zugleich Gödels großes Verdienst um die Philosophie der
Math., & zugleich der Grund, warum sein besonderer Beweis nicht das ist
was uns interessiert.)

Ich könnte sagen: Der Gödelsche Beweis gibt uns die
::::::::
Anregung dazu die

Perspektive zu ändern aus der wir die Mathematik sahen. Was er beweist,
geht uns nichts an, aber wir müssen uns mit dieser mathematischen Beweis-
art auseinandersetzen. [Ms-163, 39v.3–40r.2]

Gödel’s proof {raises a difficulty // develops a difficulty}, {which must also
show itself in a much more elementary way // which must also appear in
a much more elementary way}. (And here lies, it seems to me, at the same
time Gödel’s great merit for the philosophy of mathematics, & at the same
time the reason why his particular proof is not what interests us).

I could say: Gödel’s proof gives us the stimulus to change the perspective
from which we saw mathematics. What he proves is none of our business,
but we have to deal with this mathematical kind of proof.

This is why Wittgenstein’s remarks on Gödel should be read in the
larger context of ‘higher-order systems’, which appear to resolve
philosophical issues, but in fact merely shift the issue to a higher
layer. As Wittgenstein has noted repeatedly, this is comparable to
‘second-order orthography’ (PI §121), which is also the example used
in Ms-163:

Es gilt die Gedanken so zu ordnen, daß man die Untersuchung an einem
beliebigen Punkt abbrechen kann ohne daß, was nach diesem Punkt kommt,
wieder das in Frage stellen kann, was {bis dorthin // bis dahin} gesagt
wurde.

Hier kommen wir wieder zu dem Gedanken, daß, das Wort “buchstabieren”
buchstabieren, nicht ein {Buchstabieren des zweiten // Buchstabieren-hö-
hern} Grades ist. [Ms-163, 40v.4–41r.2]

It is necessary to arrange the thoughts in such a way that one can stop the
investigation at any point without what comes after this point being able
to call into question again what has been said {until there // until then}.

Here we come again to the thought that to spell the word "spell" is not a
spelling of {the second // a higher} order.

The remarks immediately following continue the general reflections
on the role of the specific mathematical proof for Wittgenstein’s in-
vestigation and nicely illustrate that even in the case of Gödel, Witt-
genstein’s intent is not to interfere with or attack the proof, which he
calls “impeccable”, while at the same time drawing our attention to
the “exceptional position” of Gödel’s proposition P in the system:
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Wenn die beiden !-widersprechenden Beweise wirklich vorliegen, dann
wird es problematisch, was wir mit dem so bewiesenen & entkräfteten Satze
anfangen können.

Gödel zeigt einwandfrei, daß der von ihm konstruierte Satz eine Ausnahms-
stellung im System der Sätze {

:::
hat // einnimmt}. (D.h.,) wie immer man

diese Ausnahmsstellung beschreibt, so bleibt es eine solche. [Ms-163, 41r.3–
41v.2]

If the two !-contradictory proofs are really at hand, then it becomes prob-
lematic as to what we can do with the thus proven & invalidated proposi-
tion.

Gödel shows impeccably that the proposition constructed by him occupies
an exceptional position in the system of propositions. (I.e.,) however one de-
scribes this exceptional position, it remains one.

Gödel’s result can rightfully be called a “mathematical discovery”,
as long as we interpret it not as the discovery of a fact in the ideal
world of mathematical objects, but rather as an “extension of grammar”
(which comes close to blurring the line between mathematical discov-
ery and invention), in other words as a new rule that governs certain
language games by excluding propositional forms such as P from the
game of useful propositions. But why do we adopt this extension
of grammar? What is the extra-mathematical use for such an exclu-
sion of P from certain language games? By raising these questions,
Wittgenstein draws our attention to the fact that the use of Gödel’s
theorem is similarly unclear as the use of a proposition such as P
itself, as we have not given either any use:

Gödels Entdeckung ist eine mathematische Entdeckung. Wenn nun eine
solche sich als Ausbau der Grammatik auffassen läßt, {was // welches} ist
die grammatische Bedeutung der Konstruktion.

Könnte man das auch so ausdrücken: {
::::::
Welches ist die außermathematis-

che Verwendung des Gödelschen Theorems. // Welche, außermathematische
Verwendung können wir dem Theorem Gödels geben?}

Welche Verwendung haben wir für einen Satz, der seine eigene Unbeweis-
barkeit mathematisch behauptet? [Ms-163, 41v.3–42v.2]

Gödel’s discovery is a mathematical discovery. If such a discovery can be
understood as an extension of grammar, {what // which} is the grammati-
cal meaning of the construction.

Could it also be expressed like this: {
:::::
which is the extra-mathematical use of

Gödel’s theorem. // Which, extra-mathematical use can we give to Gödel’s
theorem?}

What use do we have for a proposition that mathematically asserts its own
unprovability?

As Wittgenstein has made clear in several remarks before, this lack of
use is what distinguishes both a proposition such as P and Gödel’s
theorem from other (non-diagonalised) propositions and proofs: The
similarity between these cases misleads us into thinking that a con-
tradiction must be avoided by excluding P from our language game,
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because a contradiction in the non-diagonalised case spells trouble.
By extending this analogy to the diagonalised case, we fail to see that
Gödel’s result demonstrates a logical impossibility, in other words a
rule of grammar.

From the perspective of Wittgenstein, this conceptual confusion is
a direct consequence of the careless use of the notion “interpreted ac-
cording to the meaning of the terms of PM” / “inhaltlich gedeutet”52,
as this idea “is based on the conception of mathematics as {a // the}
physics of ‘mathematical objects’”, in other words the idea of mathe-
matics as ultraphysics:

‘Inhaltlich deuten’ müßte heißen: anwenden; & zwar, etwa, auf die, durch
diese Worte angedeutete, Weise anwenden.

‘Inhaltlich gedeutet besagt diese Formel . . . ’ heißt also: “diese Formel kann
man in die Worte kleiden: . . . ”

Die ganze Idee des inhaltlichen Deutens beruht auf der Auffassung der
Mathematik als {einer // der} Physik der ‘mathematischen Gegenstände’.

Ich will doch immer sagen: {Mathematische Wahrheit & Falschheit ent-
spricht in ihrer Anwendung nicht (der) Wahrheit & Falschheit nicht-ma-
them. Sätze // Wahr & falsch in der Mathematik entspricht in der Anwen-
dung auf Erfahrungssätze nicht dem Gegensatz wahr-falsch}, sondern der
Unterscheidung von Sinn & Unsinn.
Einer math. Unmöglichkeit entspricht die Ausschaltung einer Satzform aus
der Klasse der Erfahrungssätze. [Ms-163, 46r.2–46v.2]

‘To interpret according to its meaning in the system’ should read: to apply;
& more precisely, to apply in the way implied by these words.

‘Interpreted according to its meaning in the system, this formula says ...’
thus means: “this formula can be clothed in the words: ...”

The whole idea of interpreting according to the meaning in the system is
based on the conception of mathematics as {a // the} physics of ‘mathemat-
ical objects’.

I always want to say: {Mathematical truth & falsity does not correspond
in its application to (the) truth & falsity of non-mathematical propositions
// True & false in mathematics does not correspond in its application to
empirical propositions to the opposition true-false}, but to the distinction
of sense & nonsense.
A math. impossibility corresponds to the elimination of a propositional
form from the class of empirical propositions.

The above remarks thus constitute a summary of Wittgenstein’s views
on Gödel’s theorem, clarifying the extension of grammar in terms of
an “elimination of a propositional form from the class of empirical
propositions” and emphasising the danger of interpreting it as an
ultraphysical discovery. Although the remarks that follow in Ms-163

52 Gödel uses the terms “inhaltlich interpretiert” and “inhaltlich gedeutet” on 5 pages
(Gödel, 1986, pp. 146, 148, 150, 170, 172), which are not consistently translated using
the same expression into English.
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continue to investigate the role of “interpreted according to...” in dif-
ferent contexts, they gradually depart from Gödel’s theorem and will
not be discussed here.

The last remarks from Ms-163 that should be highlighted in this
chapter occur 10 pages later and concern diagonal proofs in general.
The two remarks show that Wittgenstein’s investigation of Gödel’s
proof is primarily driven by his interest in the kind of the proof, namely
the diagonal method, and its tendency to “change our concept of the
system”, notably our extra-mathematical concept, while making it ap-
pear as if the proof demonstrated an intra-mathematical (ultraphysical)
discovery:

Wenn der Diagonalbeweis etwas tut, {so ist es, daß er unsern Begriff vom
System ändert. // so ändert er unsern Begriff vom System.}

Hier muß man aber unterscheiden zwischen dem Begriff in der Math. &
außerhalb der Math. Nur von diesem müssen wir sagen er habe sich geän-
dert.
Hier darf man nicht dogmatisch sein wollen: Von manchem neuen Beweis
wird man zu sagen geneigt sein, er ändere unsern Begriff, von manchem –
sozusagen trivialen – nicht. Aber für uns ist gerade der Übergang zwischen
der Geneigtheit, das eine, & der, das andere zu sagen, {das Wichtige //
wichtig}. [Ms-163, 55r.2–55r.3]

If the diagonal proof does anything, {it is that it changes our concept of the
system. // it changes our concept of the system.}

But here one has to distinguish between the concept in math. & outside of
math. Only of the latter must we say that it has changed.
Here one must not want to be dogmatic: Of some new proofs one will be
inclined to say that they change our concept, of some - so to speak trivial
ones - not. But for us it is precisely the transition between the inclination to
say one thing and the other that is important.

When Wittgenstein writes about our freedom to decide what to do
with the contradiction arising from Gödel’s construction, he is not
advocating for any single logical position, because this would come
down to making the same error as Gödel in his informal introduc-
tion, by prematurely deciding the use of a concept solely on the basis
of a mathematical proof, in the absence of a form of life that pro-
vides the concept with context. Wittgenstein’s suggestion of ‘letting
the contradiction stand’ is not an invitation for trivialism and even
less a misunderstanding of Gödel’s proof, but only a warning against
a one-sided diet in the philosophy of mathematics.

Wittgenstein shows that Gödel’s proof is not a fundamental discov-
ery in an ‘ultraphysical’ sense (that is to say, comparable to a ‘natural’
law in the platonic realm of logic) and that many of the later interpre-
tations of the proof are philosophical abuses that venture far beyond
what the mathematical proof itself (excluding its prosaic and infor-
mal introduction) attempts to show. A philosophically clear picture
will only emerge if we understand the proof as a valuable observa-
tion about a logical impossibility and therefore as a reflection of our
rules of language.
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Turings ‘Maschinen’. Diese Maschinen sind ja die Menschen, welche kalku-
lieren. Und man könnte, was er sagt, auch in Form von Spielen ausdrücken.
Und zwar wären die interessanten Spiele solche, bei denen man gewissen
Regeln gemäß zu unsinnigen Anweisungen gelangt. Ich denke an Spiele
ähnlich dem “Wettrennspiel”. Man erhielte etwa den Befehl “Setze auf die
gleiche Art fort”; wenn dies keinen Sinn ergibt, etwa weil man in einen
Zirkel gerät; denn jener Befehl hat eben nur an gewissen Stellen Sinn. (Wat-
son.1) [Ms-135, 59v.2 / BPP I §1096]

Turing’s ‘Machines’. These machines are humans who calculate. And one
might express what he says also in the form of games. And the interesting
games would be such as brought one via certain rules to nonsensical instruc-
tions. I am thinking of games like the "racing game". One has received the
order “Go on in the same way” when this makes no sense, say because one
has got into a circle. For any order makes sense only in certain positions.
(Watson.) [RPP I §1096]

Wittgenstein’s above remark is one of only three in the Nachlass di-
rectly referring to Alan Turing. The other two remarks (Ms-161, 11v.1
and Ms-161, 11v.2, both in English) only appear in a pocket notebook
from 1939 and revolve around issues not directly related to Turing
machines.2 Even though Wittgenstein’s discussion of Turing’s sem-
inal paper “On Computable Numbers, with an Application to the
Entscheidungsproblem” (Turing, 1936) is limited to the above remark,
it is important in so far as it ‘survived’ the draft stage and does not
only appear in one of Wittgenstein’s notebooks (Ms-135, 59v.2, where
it appears shortly after remarks explicitly dated as “30.7.[1947]”), but
was also carried over into two typescripts (Ts-229, 448.1 and Ts-245,
319.3), suggesting that Wittgenstein was at least somewhat satisfied
with the quality of the remark.

Given that the above remark is the only remark on Turing that
moved beyond the draft stage, it might seem questionable to draw a
close connection between the two authors, let alone use it as a start-
ing point to investigate Turing’s writings from the perspective of Witt-
genstein. However, even though direct references to Turing are scarce
in Wittgenstein’s Nachlass (and vice versa), there are nevertheless a
number of similarities and implicit connections between Turing and
Wittgenstein that justify a closer examination of Turing’s notion of
“computing machines” and his diagonal argument from the perspec-
tive of Wittgenstein.

1 Refers to Alister Watson, who “discussed the Cantor diagonal argument with Turing
in 1935 and introduced Wittgenstein to Turing” (Floyd, 2012, p. 26, see also Watson,
1938).

2 They were most likely written in the context of Wittgenstein’s “Lectures on the Foun-
dations of Mathematics” from the same year, where Turing was an active participant.
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The first and most obvious connection is Turing’s participation in
Wittgenstein’s “Lectures on the Foundations of Mathematics” from
1939, which are better described as discussions between Wittgenstein
and his students than traditional lectures, and where Turing played
the role of Wittgenstein’s most prolific interlocutor. Their most well-
known exchange, on the importance of consistency in formal sys-
tems for practical applications such as the construction of bridges,
is intimately connected with the issues that will be examined in the
present chapter (their exchange will be discussed in more detail be-
low). Briefly, Turing’s preoccupation with issues of consistency is
closely connected to the aforementioned 1936 paper on computing
machines, where the assumption of a general procedure for deciding
whether or not a particular machine comes to a halt leads to a con-
tradiction and thus sets the stage for the theoretic limitations of these
machines. Similar to Gödel’s result that consistent systems of a par-
ticular structure must be incomplete, in other words unable to prove
all true propositions of the system within the system, Turing’s sem-
inal paper demonstrates the fundamental limitations of computing
machines if the computations made by these machines are assumed
to be consistent.

Questions of consistency and contradiction are an important and
recurring theme in Wittgenstein’s mathematical writings, a theme
which forms the second connection between Wittgenstein and Turing.
Given that that Wittgenstein never wrote a sustained investigation fo-
cused solely on these questions and that remarks on contradictions
in mathematics instead appear in a number of different contexts in
the Nachlass, it might perhaps be objected that consistency is of lesser
importance to Wittgenstein than to Turing. But an investigation fo-
cused solely or primarily on these issues would have hardly made
sense for Wittgenstein in light of his conception of philosophy: As
this chapter attempts to show, consistency should not be understood
as an abstract requirement that must hold for all of mathematics or
for everything that we might call “computable” (contra Turing), but
is instead a concept whose importance can, following Wittgenstein,
only be judged in the context of the use of a particular formal system.
These claims will of course have to be substantiated in the following
sections. For now, it is mainly relevant to emphasise that the frag-
mented nature of Wittgenstein’s writings ‘on’ consistency is not by
itself an argument against drawing from a range of different docu-
ments while discussing Turing, as this fragmentation is a direct re-
sult of Wittgenstein’s philosophical method, not a value judgment on
Wittgenstein’s part.

Third and most importantly, Turing’s paper employs at its heart a
diagonal argument, as Turing himself points out. Wittgenstein may
not have written much about Turing’s 1936 paper itself and it is un-
clear whether he was aware of the finer mathematical details, but
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he wrote extensively about Cantor’s diagonal argument (Chapter 1)
and Gödel’s application of the diagonal method (Chapter 2). These re-
marks are for the most part applicable in the context of Turing and in
fact become much more illuminating when applied to Turing’s com-
puting machines, because Turing’s machines provide a more ‘prac-
tical’ backdrop for Wittgenstein’s thought than set theory or logic.3

Applied to Turing’s diagonal argument, it is easier to see why Wittgen-
stein raises certain objections or challenges, whereas these remarks of-
ten seem to amount merely to misunderstandings of standard math-
ematical practice in the more intra-mathematical contexts of Cantor
and Gödel.4

In a nutshell, part of the allure of Turing’s computing machines is
that Turing draws from well-known concepts by picturing computa-
tion as the (idealised) execution of calculating clerks, as Wittgenstein
correctly points out in the remark quoted above (“humans who calcu-
late”). The impossibility results derived in Turing’s formalism (for ex-
ample, that no general procedures exist to decide certain well-defined
questions such as whether a machine ever comes to a halt) thus seem
to hold not only in this idealised formal system, but rather as “ultra-
physical” limitations (Ts-213, IIr.5; Ts-222, 11.3 / RFM I §8, see Sec-
tion 0.1) that hold all the more in any practical realisation of computing
machines, no matter whether they are implemented by rule-following
humans or built on top of the fastest digital computer imaginable.
The theoretical results proved by Turing thus seem to carry over into
our physical world and put a limit on what we can ever hope to do,
similar to how the speed of light presents a hard limit to how fast
we can ever hope to travel. A philosophical investigation along the
lines of Wittgenstein cannot and does not question the theoretical re-
sult itself, neither its consequences inside the idealised formal system,
but rather the tendency of the ‘prose’ of the mathematical result to
present a logical impossibility as an (ultra-)physical impossibility. As
this tendency originates in the use and abuse of well-known concepts

3 Floyd, 2019, p. 271 traces this “homespun” aspect, which differentiates Turing from
Gödel and other equivalent logical formalisms, back to Wittgenstein’s influence. This
chapter will not delve into questions of whether and to which degree Turing was in-
fluenced by Wittgenstein, but the practicality of Turing’s idealised machines cannot
be denied and is one of the reasons why Turing’s diagonal argument is worth dis-
cussing from the perspective of Wittgenstein.

4 Wittgenstein’s background might have played a role here: Following the wishes of
his father, he originally studied to be an engineer and his education in mathematics
was at first driven by practical considerations. Only during his time in Manchester
did he turn to pure mathematics and the foundational issues raised by Frege and
Russell (Monk, 1991, pp. 3–36). Not too much weight will be placed on these bio-
graphical aspects, but his frequent use of mechanical machines as examples even in
his later years shows to which degree his thinking remained influenced by such a
practical perspective. As this chapter attempts to show, Wittgenstein’s ‘engineering
mindset’ is an important factor in understanding his philosophical critique and of-
fers a view of computation that is quite different from Turing’s more mathematical
perspective.
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in new mathematical contexts (which appear to be innocuous appli-
cations and generalisations of the more concrete cases), the antidote
is a surveyable representation of these concepts and their uses, so that
it becomes clear where the analogies with the idealised mathematical
context hold and where they end.

As the theoretical model of computation with the most obvious con-
nections to practical computations, Turing’s computing machines are
not just ‘a’ mathematical calculus, but rather ‘the’ way to formalise
mechanical rule following. Being universal and in terms of theoretical
computational capabilities equivalent to any other universal model of
computation (via the Church-Turing thesis), Turing’s computing ma-
chines are a mathematically precise framework for anything that can
be done without any kind of mathematical or psychological insight,
purely by training a machine or a human to follow a set of rules. The
programs executed by a computing machine in Turing’s model thus
correspond rather directly to those mathematical language games
that we can fully codify as precise and unambiguous rules, with ob-
vious connections to Wittgenstein’s remarks on the view of mathe-
matics as a formal game and his frequent example of students being
trained to do arithmetic.

For all these reasons, the remark on Turing quoted above is a
promising starting point for an investigation of Turing’s paper from a
Wittgensteinian perspective. It should be pointed out that the remark
will hereafter be read primarily in the context of the mathematical
results of Turing’s 1936 paper, not as a more general remark on the
similarities between Turing machines and human thought processes
that aims to investigate what it would mean to speak of ‘thinking’
machines, let alone as a comment on Turing’s position in the philos-
ophy of mind.5 An interpretation in the context of the philosophy
of mind, which would focus on how well Turing’s concept captures
the thought processes or actions of human calculators, seems natu-
ral in so far as Turing’s paper appears most open to philosophical
attacks in section §9, where he offers three kinds of arguments that
attempt to show how his definition of “computable“ corresponds to
what “would naturally be regarded as computable” (Turing, 1936,
p. 74). All three kinds of arguments include appeals to intuition in
some form or other and thus require Turing to leave the more math-
ematical ground of the rest of his paper at least temporarily. While
certainly worthy of attention, the focus hereafter will be primarily
on the philosophy of mathematics and deal mostly with Turing’s use
of the diagonal argument, at least while discussing Turing’s 1936 pa-
per. In later sections, the more mathematical reflections will then shed

5 An example of an extensive investigation of these matters is Shanker, 1998, which
claims that Wittgenstein’s remark should be read as a critique of the philosophical
misunderstanding inherent in the Church-Turing thesis and more specifically the
confusion between ‘Mechanical rule-following’ and ‘Following a “mechanical rule’”
(Shanker, 1998, p. 27).
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new light on the similarities between machines and calculating clerks,
but a full discussion of the issues raised in the philosophy of mind
would go beyond the scope of this chapter.

The outline of this chapter is as follows: The first two sections will
introduce the main topic by giving an overview of a crucial part of
Turing’s seminal paper, his diagonal argument (Section 3.1), and then
discuss remarks by Wittgenstein on mechanical rule following that
are relevant in the context of Turing’s argument (Section 3.2). The
next two sections form the core of this chapter and will present a
philosophical critique of the concepts leading to the contradiction
in the application of the diagonal argument: First by ‘sidestepping’
the consequences and exploring philosophical reasons why such a
contradiction might be harmless (Section 3.3), then ‘head-on’ by in-
vestigating the philosophical consequences of accepting such a con-
tradiction inside the system instead of excluding it (Section 3.4). The
next two sections return to Turing’s writings and discuss the previous
arguments in light of Turing’s view on the differences between ma-
chines and mathematicians (Section 3.5) and the role of using “new
techniques” in mathematics (Section 3.6). The chapter concludes with
an attempt to clearly articulate the importance of Turing’s notion of
computability without falling prey to some common conceptual con-
fusions (Section 3.7).

3.1 turing’s diagonal argument

To give a rigorous definition of “computable numbers”, Turing de-
fines “computing machines” operating on an infinite tape of squares
of symbols (e.g. the blank symbol, ‘0’, ‘1’, ‘x’, ‘y’, ‘z’) and producing
sequences of ‘0’s and ‘1’s on the tape, which are interpreted as the ex-
pressions of real numbers in binary notation. A computing machine
has access only to the single symbol in the “scanned square” and can
read the symbol, erase it, print a different symbol in the square or
move left or right to an adjacent square. At any point in time, a com-
puting machine is only in a single state – or “m-configuration” in Tur-
ing’s terminology – and can switch to another m-configuration as the
result of the instruction determined by the current m-configuration
and the scanned symbol (Turing, 1936, p. 59). The complete table of
instructions fully specifies the machine and ensures that the execu-
tion of a machine proceeds in a systematic and mechanised fashion
(at least in the case of “automatic machines” or “a-machines”, which
is the only type of machine used by Turing in his paper, cf. Turing,
1936, p. 60). Each machine always starts in a specified m-configuration
and then proceeds according to its instructions. An example of a sim-
ple table with instructions for 4 m-configurations is as follows (from
Turing, 1936, p. 61, with gothic letters replaced by roman letters):
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Configuration Behaviour

m-config. symbol operations final m-config.

b None P0,R c
c None R e
e None P1,R k
k None R b

Table 4: Example Turing Machine Instruction Table

Started in the m-configuration ‘b’ and with a blank tape, the ma-
chine specified by this table will read the scanned symbol (which is
‘None’, since the tape is blank) look up the instruction with the config-
uration corresponding to the pair of m-configuration ‘b’ and symbol
‘None’ (which will be the instruction in the first row of the table),
execute the operations ‘P0,R’ (thus printing the symbol ‘0’ and then
moving to the right) and finally switch to the m-configuration ‘c’, ex-
ecuting the instruction for that m-configuration in the next step and
so forth. The result of the execution will thus be an endless sequence
of ‘0’, ‘1’, ‘0’, ‘1’, . . . , interspersed by blank squares, which follows
Turing’s convention of printing the result of a computation “only on
alternate squares”, called “F-squares”, leaving each “E-square” imme-
diately to the right of each “F-square” reserved for temporary com-
puting purposes (Turing, 1936, p. 63). If an E-square contains a non-
blank symbol, its corresponding F-square is said to be “marked” by
the symbol in the E-square.

Crucial to the following arguments are the concepts of “comput-
ing machines”, “circular and circle-free machines” as well as “com-
putable sequences and numbers”. Turing defines them as follows:

If an a-machine prints two kinds of symbols, of which the first kind (called
figures) consists entirely of 0 and 1 (the others being called symbols of the
second kind), then the machine will be called a computing machine. If the
machine is supplied with a blank tape and set in motion, starting from
the correct initial m-configuration, the subsequence of the symbols printed
by it which are of the first kind will be called the sequence computed by the
machine. The real number whose expression as a binary decimal is obtained
by prefacing this sequence by a decimal point is called the number computed
by the machine.
[. . . ]
If a computing machine never writes down more than a finite number of
symbols of the first kind, it will be called circular. Otherwise it is said to be
circle-free.
[. . . ]
A sequence is said to be computable if it can be computed by a circle-free
machine. A number is computable if it differs by an integer from the num-
ber computed by a circle-free machine. [emphasis by Turing, 1936, pp. 60–
61]
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The significance of these definitions becomes clear once the “univer-
sal computing machine” is defined and the diagonal argument is then
applied based on these definitions. For now, it will suffice to point
out that Turing uses the terms “circular” and “circle-free” somewhat
counter-intuitively, since in his terminology a computing machine
that never stops and prints ‘0’ or ‘1’ endlessly (such as the simple
example considered above) is “circle-free”, whereas a machine that
comes to an end is “circular”, because there is no instruction that
could enter a different m-configuration or change the scanned sym-
bol. The reason for this lies in Turing’s use of computing machines for
the purpose of constructing computable sequences, infinite sequences
of ‘0’ and ‘1’ as figures in the F-squares: only a computing machine
that will forever go on printing these figures can be said to construct a
computable number with an infinite number of binary decimal places,
whereas a “circular” number gets ‘stuck in a loop’ at some point and
will never print more than a finite number of binary decimal places.
This is true even for numbers which we would usually consider to
have only finitely many binary decimal places, such as 0.1, which is
computed as .1000... by a circle-free machine that prints ‘1’, ‘0’, ‘0’, ‘0’,
. . . endlessly on its tape. In this way Turing’s definitions differ from
modern usage, where computing machines are considered to “halt”
when they enter an end state and to be circular when they enter a
loop that can never lead to such an end state.6

For Turing’s main argument to work, it is necessary for computing
machines to be able to operate on computing machines by accepting
their definitions as input on the tape. To achieve this, Turing defines
an encoding of instruction tables as sequences of symbols and later
on as numbers. The details are not essential for the philosophical dis-
cussion of his results and other encoding schemes would have lead to
analogous results. At a high level, the encoding proceeds by encoding
each row in the instruction table as a tuple of 5 components (matched
m-configuration, matched symbol, replacement symbol, movement
operation and next m-configuration), and then encodes the whole ta-
ble as a sequence of these component tuples separated by the special
separator symbol ‘;’. Such an encoding presupposes that all instruc-
tions of a table follow the same 5-component tuple structure, which is
not true for the simple example table above (where two rows include
only a movement operation, the other two rows a movement + print
operation). Turing defines a “standard form” for this purpose and
consequently calls the encoding of a computing machine in standard
form a “standard description” or “S.D”, while the straightforward
decimal encoding of this standard description is called the “descrip-
tion number” or “D.N” (Turing, 1936, p. 67). This implies that com-
puting machines with their standard descriptions and the computable
sequences determined by them are both enumerable. The description

6 Cf. Hopcroft, Motwani, and Ullman, 2001, p. 327, Sipser, 2012, p. 170



182 turing , machines and decidability

number of a circle-free machine is called “satisfactory” in Turing’s
terminology (Turing, 1936, p. 68).7

Turing then goes on to list several subsidiary definitions as ab-
breviated tables (with variables than can be substituted by concrete
m-configurations and symbols to obtain full instruction tables), but
these are of little interest for a philosophical discussion of his argu-
ment and serve mainly to define the universal computing machine
U , which, when supplied with the standard description of a machine
M as input on the tape, computes exactly the same sequence as M

would if M had been started on a blank tape.
Now that the stage is set, Turing applies what he calls the “diago-

nal process”, which is also where Wittgenstein’s introductory remark
will finally come into play. After first demonstrating an incorrect ap-
plication of a diagonal argument, which purportedly shows that com-
putable sequences cannot be enumerable, Turing shows that there
cannot be any “general process” for “finding out whether a given
number is the [description number] of a circle-free machine [. . . ] in
a finite number of steps” (Turing, 1936, p. 72). Suppose that there is
such a machine, called D , which tests whether or not the machine
described by a given standard description is circular. It is then pos-
sible to enumerate all circle-free standard descriptions (and thus all
computable sequences), by simply iterating through all standard de-
scriptions one by one and checking each one for circularity by testing
it with D . By incorporating the universal machine U , a combined
computing machine H can be constructed which, for the N-th circle-
free computing machine tested by D , employs U to calculate the first
N figures of the sequence computed by the N-th circle-free computing
machine (Turing, 1936, p. 73).

The combined computing machine H must be circle-free: D is
circle-free by assumption and U only calculates a finite number of
figures for each machine (namely N for the N-th circle-free machine),
which will finish in a finite number of steps, since the calculation is
only performed for those machines that are circle-free and thus guar-
anteed to always produce figures in a finite number of steps.

But if the combined computing machine H is circle-free, it will be
one of the circle-free standard descriptions iterated by H at some
point N. The universal machine U will then be employed to calculate
the first N figures in the sequence computed by H , which is unprob-
lematic for the figures up to and including figures N- 1, for which

7 In the following text, the precise distinction between ‘circle-free machines’ and ‘satis-
factory standard descriptions’ (of those machines) will, for the sake of brevity, often
be ignored in cases where the usage is unambiguous or not relevant to the philo-
sophical argument, because it is usually clear that whenever a computing machine
is operated on, it is actually this machine’s standard description that is operated on
by another machine. For example, “the N-th circle-free computing machine tested”
should be read as “the N-th satisfactory standard description tested, describing the
N-th circle free computing machine”.
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H will iterate through the N- 1 first standard descriptions and cal-
culate their figures as far as necessary using U . But to calculate the
N-th figure, H would need to calculate the first N figures of the N-th
circle-free computing machine, which is H itself, which again would
include the calculation of H up until the N-th figure, and so forth,
which means that H cannot be circle-free. As a consequence, there
can be no circle-free machine D (Turing, 1936, p. 73).

This application of H to itself is the “Zirkel” that Wittgenstein’s in-
troductory remark is referring to. Hence why “Setze auf die gleiche
Art fort” does not make any sense for the N-th figure of H , even
though it was perfectly clear what to do in the N- 1 cases before it.
This makes the diagonal case akin to a game such as the “Wettrenn-
spiel”, which is most likely referring to a board game depicting a
circular horse track.8

That Wittgenstein refers to this particular part in Turing’s argument
becomes more clear if the following remark is considered (which fol-
lows the Turing remark in all documents, namely in Ms-135, 60r.2
and, in a slightly changed version, in Ts-229, 448.2 and Ts-245, 319.4,
a version which Wittgenstein also included in his “Zettel” collection
of explicitly selected snippets, as Ts-233b, 61.2 / Z §694):

Eine Variante des Cantor’schen Diagonalbeweises:
N = F(k,n) sei die Form der Gesetze für die Entwicklung von Dezimal-
brüchen. N ist die n-te Dezimalstelle der k-ten Entwicklung. Das Gesetz
der Diagonale ist dann: N = F(n,n)Def.

= F 0(n).
Zu beweisen ist, daß F 0n nicht eine der Regeln F(k,n) sein kann. Angenom-
men, es sei die 100ste. Dann lautet die Regel

zur Bildung von F 0(1) F(1, 1)

von F 0(2) F(2, 2) etc.

aber die Regel zur Bildung der 100sten Stelle von F 0(n) {wird // lautet}
F(100, 100); D.h., sie sagt uns nur, daß die 100ste Stelle sich selber gleich
sein soll, ist also für n = 100 keine Regel.
Die Spielregel lautet “Tu das Gleiche, wie . . . !” – und im besondern Fall
wird sie nun “Tu das Gleiche, wie das, was Du tust!” [Ts-233b, 61.2 / BPP I
§1097 / Z §694]

A variant of Cantor’s diagonal proof:
Let N = F(k,n) be the form of a law for the development of decimal frac-
tions. N is the nth decimal position of the kth development. The law of the
diagonal is then: N = F(n,n)Def.

= F 0(n).
To prove: that F 0(n) cannot be one of the rules F 0(k,n). Assume it is the
100th. Then the rule for the construction

of F 0(1) runs F(1, 1)

of F 0(2) F(2, 2) etc.

but the rule for the construction of the 100th position of F 0(n) becomes
F(100, 100) i.e. it shews only that the 100th place is supposed to be the same
as itself, and so for n = 100 it is not a rule.

8 Floyd, 2012, p. 25: “I presume that Wittgenstein is thinking of a board game in which
cards are drawn, or knobs turned so as to move pieces in a simulated horse race.”
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The rule of the game runs “Do the same as . . . ” – and in the special case it
becomes “Do the same as what you do”. [RPP I §1097 / Z §694]

At the crucial point on the diagonal, where k = n, we have to apply
the same rule as we did in all previous cases, but as Wittgenstein
points out, the ‘rule’ for this case merely says to follow this very rule
itself and nothing else, which means that it is no rule. The 100th decimal
place of F is underdetermined: While in all other cases there is some
rule that determines the decimal place (namely the rule describing
the k-th sequence), there is no such determining rule in the case of
F(n,n), which leaves open how to proceed, since the rule takes the
tautological form “Tu das Gleiche, wie das, was Du tust!” / “Do What
You Do”.9

f1 f2 f3 f4 . . . fN . . .

k1 0 1 0 0 . . . 1 . . .
k2 1 1 1 0 . . . 1 . . .
k3 0 1 0 0 . . . 0 . . .
k4 0 0 0 1 . . . 1 . . .
. . . . . . . . . . . . . . . . . . . . . . . .

kN 0 1 0 1 . . . ? . . .

. . . . . . . . . . . . . . . . . . . . . . . .

Table 5: Application of the Diagonal Argument

In contrast to Wittgenstein’s variant, diagonal arguments such as
Cantor’s original version usually construct a diagonal which leads
not to a tautological, but rather to a contradictory rule, where the dec-
imal place at the crucial point of the diagonal must be 1 when as-
sumed to be 0, but 0 when assumed to be 1. Such a rule could be said
to be overdetermined like a game rule of the form “Do What You Do
Not Do”.10 Importantly, this would correspond to the “halting prob-
lem” for Turing machines, which was not explicitly stated by Turing

9 The wording “Do What You Do” is borrowed from Floyd, 2012, who notes that nei-
ther Turing’s diagonal argument nor Wittgenstein’s variant employ a paradoxical rule,
in contrast to what is nowadays known as the “Halting Problem”. While this observa-
tion is certainly correct, it should be pointed out that Turing’s argument nevertheless
works by reductio ad absurdum and thus hinges on producing a contradiction: “It [the
decision procedure D] must test whether K is satisfactory, giving a verdict “s” or
“u”. [. . . ] Thus both verdicts are impossible and we conclude that there can be no
machine D .” (Turing, 1936, p. 73) For Turing’s argument to work, it is unimportant
whether the ‘rule’ used is tautological or contradictory, the result is in both cases
paradoxical. In the following text, terms such as “paradoxical” will thus sometimes
be used to refer to machines or rules that are, strictly speaking, not paradoxes, but
that nevertheless lead to those paradoxical results.

10 Priest, 2006b, p. 15, uses the terms “underdetermine” and “overdetermine” in a very
similar way in the context of sentences of the form “This sentence is True” and “This
sentence is False”.
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himself, but only by later commentators11, and follows rather directly
from Turing’s diagonal argument. Very briefly, the halting problem re-
sults if, starting again from the assumption that a decision procedure
machine D exists for deciding whether or not an arbitrary comput-
ing machines halts, a machine H is constructed that simply halts if
D applied to H predicts that H will not halt, but enters an infinite
loop if D applied to H predicts that H will in fact halt. The result
of the decision procedure D will therefore always be incorrect in the
case of the machine H , which proves that there cannot exist a general
decision procedure to solve the halting problem.12

Apart from a minor change of the function name13, the version
in the notebook differs from the typescript version quoted above
by including an additional paragraph before “Die Spielregel lautet”,
marked with the curved ’S’, frequently used by Wittgenstein to indi-
cate his dissatisfaction with the quality of a remark:

Ich habe nämlich immer das Gefühl gehabt, der Cantorsche Beweis tue zwei
Dinge, scheine aber bloß eines zu tun.

I have always had the feeling that Cantor’s proof does two things, but ap-
pears to do only one.

In light of the section mark, not too much interpretative weight
should be placed on this phrase, but it might shed a light on Wittgen-
stein’s interest in the matter: The above diagonal argument appears
to apply the word ‘rule’ uniformly, because at all points in the proof
we seemingly proceed by merely applying the rules of the game. But
in the case of k = n, the ‘rule’ of F(n,n) is not a rule in the same
way as all the other rules before it, since it does not give us a concrete
rule that we could follow. Seen from this angle, it would be natural
to say that the diagonal argument actually uses two different concepts
of rules, non-tautological ‘regular’ rules as well as the tautological ‘ex-
ceptional’ rule F(n,n). But of course all the rules were assumed to
be concrete, non-tautological, or else they would not determine se-
quences of decimal places, which leads to the contradiction that the
‘rule’ F(n,n) cannot be the same kind of rule that was assumed in
the beginning. In other words, the proof seems to use the word ‘rule’
uniformly throughout the proof, but in reality a different use of the
word ‘rule’ sneaks in and by ‘applying a rule’ the proof does two
different things. F is both applied as a concept and also used as an
object, but the proof slightly obscures these different uses.14 If this
interpretation of Wittgenstein’s “tue zwei Dinge, scheine aber bloß

11 See Turing and Copeland, 2004, p. 40.
12 For a more detailed and rigorous description of the problem, see Davis, 1985, p. 70.
13 Wittgenstein uses ‘�’ in Ms-135, but ‘F’ in the typescripts.
14 While discussing Wittgenstein’s remark on Turing’s diagonal argument, Floyd, 2019,

p. 286 points this out in the context of the “positive Russell set” S = {x|x 2 x}, which
works analogously to Wittgenstein’s variant of the diagonal argument: “In the above
argument an apparently unproblematic way of thinking is applied, but two different
ways of thinking about S are involved. For there is the thinking of S as an object or
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eines zu tun” is correct15, it is not surprising that Wittgenstein dis-
carded it: The way it is phrased, it might be read as suggesting that
only the non-uniform-use perspective, the “zwei Dinge” view, is the
right one and that Wittgenstein was trying to criticise the diagonal
proof, which cannot be the intention if his claim of non-interference
in purely mathematical matters is to be taken seriously.16

In the end, it comes down to either emphasising the similarities
or the differences between the different uses: Compared to Turing’s
application of the diagonal argument, Wittgenstein’s variant places
a stronger emphasis on the differences and points out that a ‘rule’
with no steps to follow can hardly be called a rule. Turing, on the
other hand, certainly still considers the hypothetical machine H to
be a computing machine (with its characteristic operating mode of
mechanically following steps and thus rules), simply one for which
the circular/circle-free question cannot be decided. We are here in
a ‘border region’ between rules and non-rules, which is one of the
reasons why it is easy to be lead astray by conceptual confusions.

3.2 calculating clerks

In addition to reframing Turing’s proof in terms of a language game
with an underdetermined rule, Wittgenstein’s variant of the diagonal
argument also offers an interesting perspective on the “humans who
calculate”, as it might call into question whether the reaction of hu-
man calculators to the “Do What You Do” instruction would be as
clear cut as it is in Turing’s argument. Let us imagine several differ-
ent scenarios for these “humans who calculate”, with only the first
corresponding to the behaviour exhibited by Turing machines:

element that is a member of other sets, and the thinking of S in terms of a concept,
or defining condition. Similarly, in Turing’s [Turing, 1936] proof, there is the unprob-
lematic characterisation of a particular machine, and then there is the difficulty that
it must, at one precise point or another, get stuck in a loop, confronted with the
command to do what it does.”

15 There are other possible interpretations. Mühlhölzer, 2020, pp. 144–45, interprets the
“two things” to be first the construction of the unaltered diagonal itself and second the
alteration of the decimal expansion by changing the decimal places. Wittgenstein’s
variant could then be seen as a ‘cleaner’ version of Cantor’s argument that only
does the first thing and thus shows that two different actions are involved. This
reading has its merits and would perhaps be unproblematic in the context of one of
Wittgenstein’s more ‘thorough’ discussions of the diagonal argument. In the remark
at hand, however, the alteration of the decimal expansion is not explicitly mentioned,
it thus seems more plausible that the “two things” refer to the dual use of the rule:
“die Regel [...] ist also für n = 100 keine Regel” and “Die Spielregel lautet [...], im
besondern Fall wird sie nun [...]”, suggesting that in the special case of the diagonal
the rule does something else than in the general case.

16 See LFM I, p. 13: “[I]t will be most important not to interfere with the mathemati-
cians. I must not make a calculation and say, ‘That’s the result; not what Turing says
it is.’”, but also Ts-227a, 89.2 / PI §124 and Ms-124, 82.2–82.3 / RFM VII §19.
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1. The human calculator might not notice the tautological nature
of the rule and simply carry on in a loop, exactly like Turing’s
computing machines would. This is perhaps hard to imagine
in the case of a rule as simple as “Do What You Do”, but we
could certainly picture an analogous scenario with a longer and
less ‘surveyable’ chain of rules leading to the same tautological
situation, such as: “Rule A: Do what rule B says. Rule B: Do
what rule C says. Rule C: Do what rule D says. . . . Rule Z: Do
what rule A says”.

2. The human calculator might notice the senseless instruction and
terminate the whole operating procedure, alert a supervisor, or
in some other way refuse to continue with the current calcula-
tion.

3. The human calculator might notice the senseless instruction, but
just shrug and say: “Either way of proceeding from here seems
to be fine, since there is nothing that determines the next num-
ber, so I will just write 0 and be done with this step.”

Before discussing these alternatives in detail, it should be pointed
out that the aim here is not to cast doubt on the validity of Turing’s
argument, which of course follows logically from his definition of
computing machines and circularity. The purpose of the alternatives
listed here is to show that while Turing’s definition of computing
machines originally draws its motivation from the stepwise applica-
tion of simple rules by “humans who calculate”, it is not immediately
obvious whether this analogy still applies at the crucial point of the
diagonal argument, or at the very least whether it might not deserve
a closer investigation of the similarities and differences with the prac-
tical example that lent it a large part of its persuasiveness. The con-
vincing aspect of Turing’s machines, their practical angle (or perhaps,
to borrow Wittgenstein’s words, their “homespun” / “hausbacken”
use17) is, after all, one of the most important differentiating factors
in comparison to other formalisms used in earlier negative resolu-
tions of the Entscheidungsproblem that were later shown to be logically
equivalent, such as Church’s �-calculus or “general recursiveness in
the sense of Herbrand-Gödel-Kleene”18, and partly explains why Tur-
ing machines have enjoyed such an enthusiastic reception, reaching
far beyond the narrow confines of mathematical logic.

The issue with Turing’s proof, if there is any, is certainly not math-
ematical, but only philosophical: Instead of criticising the proof on
mathematical grounds, we might ask whether his use of ordinary

17 Floyd, 2019, p. 271: “Our argument is that it is Turing who showed that analysis in
the sense of formal logic, the very idea of “simplicity” of formal steps, their trans-
parency and gap-free character, must have a “homespun” use.”

18 See Turing and Copeland, 2004, p. 45.
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terms in the technical context of the proof corresponds to the ordi-
nary uses that motivated the proof. If not, we need to be mindful
of the danger of interpreting the results of the proof outside of its
mathematical setting, in a way that leads us to mistake a logical im-
possibility inside the proof for a physical impossibility that applies
outside the proof as well.

If we only consider scenario 1, where the hypothetical machine
H would be thrown into a loop and a human calculator would
equally fail to see the futility of the tautological rule, the logical con-
tradiction arises from the assumption that the rule F is a productive,
non-tautological rule which always tells us what to do in a stepwise
fashion and the fact that F(n,n) is actually tautological and does not
provide concrete steps to follow. This logical contradiction thus fore-
closes the possibility of ever finding a general decision procedure
which tells us whether or not a rule can be followed stepwise with-
out ending up in a loop.

As a result, Turing’s diagonal argument seems to have practical
implications in the context of human calculators that could reach far
beyond the immediate proof with its mathematical interest. For ex-
ample, if some people had been in the process of setting up a (pre-
computer era) company offering calculation services by employing a
myriad of clerks that exactly follow precise computing machine rules
without any other external oversight, the owners of such a company
might be worried that the productivity of the company would over
time grind to a halt, as more and more clerks ‘get stuck’ in a loop.
They might have noticed that some calculations never finish and thus
decided to search for a rule to distinguish between ‘productive’ and
‘futile’ calculations. In the face of Turing’s proof, their search appears
altogether hopeless, as the diagonal argument seems to put a limit
on possibilities in the physical world, the consequences of which would
then doom such a calculation-as-a-service company.

But what the proof actually does is showing the inconsistency be-
tween the concept of a rule as used in the proof and the assumption
that there is a general decision procedure (for deciding whether a rule
can be applied stepwise without ending in a loop) that is rule-based ac-
cording to the assumed concept of a rule. The alternative to giving up the
search for such a procedure, then, is to revise the concept of a rule.
Such a concept change would of course require a completely new
proof and leave the old proof perfectly unimpaired, which is why
such a philosophical investigation will always remain conceptual and
can never interfere with the work of mathematicians.

But does this not miss the point of Turing’s argument? Turing’s
definition of computing machines ensures that calculations can be
performed mechanically, without the kind of oversight or insight nec-
essary in the other scenarios described above. Only then does the con-
tradiction produced by machine H become disastrous, as it seems to
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put a limit on what can be done by machines or human calculators
without oversight. Wittgenstein investigates the role of such a contra-
diction in Ms-124:

‘Wir machen lauter legitime – d.h. in den Regeln erlaubte – Schritte, & auf
einmal kommt ein Widerspruch heraus. Also ist das Regelverzeichnis, wie
es ist, nichts nutz, denn der Widerspruch wirft das ganze Spiel um.’ Warum
läßt Du ihn es umwerfen?
Aber ich will, daß man nach der Regel soll mechanisch weiter schließen
können, ohne je zu widersprechenden Resultaten zu gelangen. Nun, welche
Art der Voraussicht willst Du? Eine, die Dein gegenwärtiger Kalkül nicht
zuläßt? Nun, dadurch ist er nicht ein schlechtes Stück Mathematik – oder:
nicht im vollsten Sinne Mathematik. Der

:::
Sinn

::::
des

::::::
Wortes “mechanisch”

verführt Dich. [Ms-124, 56.3 / BGM VII §11]

‘We take a number of steps, all legitimate – i.e. allowed by the rules – and
suddenly a contradiction results. So the list of rules, as it is, is of no use, for
the contradiction wrecks the whole game! ’Why do you have it wreck the
game?
But what I want is that one should be able to go on inferring mechanically ac-
cording to the rule without reaching any contradictory results. Now, what
kind of provision do you want? One that your present calculus does not al-
low? Well, that does not make that calculus a bad piece of mathematics, – or
not mathematics in the fullest sense. The meaning of the word “mechanical”
misleads you. [RFM VII §11]

Evidently, Wittgenstein is aware of the main reason why a contradic-
tion in a given logical system could be seen as a problem: the require-
ment of mechanical calculability. This requirement can lead us to give
up on a game once we see that some of its rules can lead to a con-
tradiction, because it is incompatible with the kind of “provision” /
“Voraussicht” we expected. But as Wittgenstein points out, this does
not mean that the contradictory calculus necessarily is a bad piece
of mathematics. A possible alternative to giving up the game is to
accept the contradiction and instead give up the expectation of a par-
ticular kind of certainty while playing the game. Leaving aside for
now how this would look like for Turing’s computing machines, it
is important to note that the requirement of total mechanical calcula-
bility alone does not compel us to abandon a contradictory calculus.
Later in Ms-124, Wittgenstein briefly returns to the issue of mechani-
cal calculations:

Man folgt der Regel ‘mechanisch’. Man vergleicht sich also mit einem Mech-
anismus.

“Mechanisch”, das heißt: ohne zu denken. Aber ganz ohne zu denken? Ohne
nachzudenken. [Ms-124, 164.4–5 / BGM VII §60]

One follows the rule mechanically. Hence one compares it with a mecha-
nism.

“Mechanical” – that means: without thinking. But entirely without thinking?
Without reflecting. [RFM VII §60]
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If we, as humans, follow the same rules as a computing machine
in the same way that a computing machine would, then by follow-
ing Turing’s diagonal argument or Wittgenstein’s variant we will of
course end up in the same predicament. The general decision proce-
dure assumed by Turing as part of his diagonal reductio ad absurdum
is then just as unattainable for us humans as it is in the case of Turing
machines operated by computers.

3.3 falling bridges

Can a contradictory calculus ever be useful? We might grant Wittgen-
stein the objection that a contradictory calculus could still be consid-
ered a mathematical calculus, but is such an objection more than a
philosophical quibble that completely overlooks the use we make of
logical calculi for practical calculations? This is the point raised by
Turing in Wittgenstein’s Lectures on the Foundations of Mathematics:

The sort of case which I had in mind was the case where you have a logical
system, a system of calculations, which you use in order to build bridges.
You give this system to your clerks and they build a bridge with it and
the bridge falls down. You then find a contradiction in the system. – Or
suppose that one had two systems, one of which has always in the past
been used satisfactorily for building bridges. Then the other system is used
and the bridge falls down. When the two systems are then compared, it is
found that the results which they give do not agree. [LFM XXII, p. 212]

According to Turing, the motivation for consistent logical calculi is
not just an intra-mathematical desire, but rather of a very practical
nature. Put crudely, contradictions can make bridges fall down. Sure,
we can allow contradictions in a logical system, but then the system
cannot be applied to practical tasks, since according to Turing: “You
cannot be confident about applying your calculus until you know
that there is no hidden contradiction in it” (LFM XXII, p. 217). With
stakes this high, what are we to make of Wittgenstein’s nonchalance
regarding contradictions? Does the observation that we humans are
usually not petrified by a contradiction not simply boil down to an
appeal to “common sense”?

Turing: You seem to be saying that if one uses a little common sense, one
will not get into trouble.
Wittgenstein: No, that is NOT what I mean at all. – The trouble described is
something you get into if you apply the calculation in a way that leads to
something breaking. This you can do with any calculation, contradiction or
no contradiction. [LFM XXII, p. 219]

This exchange between Turing and Wittgenstein is important, because
Wittgenstein’s attitude towards contradictions in the Nachlass can of-
ten appear as appealing to common sense as a way of resolving con-
tradictions. But here, Wittgenstein explicitly emphasises that this is
not the case. An appeal to common sense would of course fall flat in
the face of Turing’s (‘mechanically’ calculating) computing machines,
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where the notion of common sense is not applicable in the same way
as it is for human clerks. Rather, Wittgenstein questions the privileged
position that contradictions seem to enjoy when it comes to questions
of ‘getting into trouble’. Turing treats the application of a calculus as
an all-or-nothing situation: Either the calculus is consistent and can
be applied or it is inconsistent and thus worthless for practical ap-
plications. However, whether or not a bridge falls down in practice
depends on many different factors and will involve engineering as-
sumptions that might turn out to be insufficient in extreme events
such as a particularly strong earthquake. Viewed from this perspec-
tive, a logical contradiction is just one of these different factors and
can perhaps even be ignored if the resulting calculation errors are rare
enough in practice, just like how small calculation errors in consistent
calculi can sometimes be ignored or mitigated. And even if a bridge
might fall down due to a contradiction, this does not necessarily need
to call the whole application of the calculus into question:

– Hier ist ein Widerspruch: Aber wir sehen ihn nicht & ziehen Schlüsse
aus ihm. Etwa auf mathematische Sätze; & auf falsche. Aber wir erkennen
diese Schlüsse an. – Und bricht nun eine von uns berechnete Brücke zusam-
men, so finden wir dafür eine andere Ursache, oder sagen, Gott habe es so
gewollt. War nun unsre Rechnung falsch; oder war es keine Rechnung?
Gewiß, wenn wir als Forschungsreisende nun die Leute {betrachten //
beobachten}, die es so machen, werden wir vielleicht sagen: diese Leute
rechnen überhaupt nicht. Oder: in ihren Rechnungen sei ein Element der
Willkür, welches das Wesen ihrer Mathematik von dem der unsern unter-
scheidet. Und doch würden wir nicht leugnen können daß die Leute eine
Mathematik haben. [Ms-124, 117.4 / BGM VII §34]

– There is a contradiction here. But we don’t see it and we draw conclusions
from it. E.g. we infer mathematical propositions; and wrong ones. But we
accept these inferences. – And now if a bridge collapses, which we built on
the basis of these calculations, we find some other cause for it, or we call it
an Act of God. Now was our calculation wrong; or was it not a calculation?
Certainly, if we are explorers observing the people who do this we shall
perhaps say: these people don’t calculate at all. Or: there is an element of
arbitrariness in their calculations, which distinguishes the nature of their
mathematics from ours. And yet we should not be able to deny that these
people have a mathematics. [RFM VII §34]

Wittgenstein then gives an example of a king’s contradictory order, a
situation originally described in Ms-130:19

Wer durch seine Regeln zum Widerspruch geleitet wurde, kann sagen: “Ich
habe falsche Regeln gegeben”. [Aber was sind falsche Regeln?] Es sind
Regeln, deren Konsequenzen ich desavouiere.

Der König sagt zum Henker: “Hänge den nicht, der richtig errät, was wir
mit unsern Gefangenen tun.” Der Gefangene sagt nun zum Henker: “Ich

19 This does not refer, as the footnote of the editors in RFM VII §34 suggests, to “the
king who made the law that all who came to his city must state their business and
be hanged if they lied”, although such situation could also be made compatible with
the remark.
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werde gehenkt werden.” Etc. Er hat den Henker mit dieser Antwort über-
rascht & verwirrt (confounded). Der Henker weiß nicht, wie er den Königs
Befehl ausführen soll. [Ms-130, 81.2–81.3]

He who has been led to contradiction by his rules can say: “I have given
wrong rules”. [But what are wrong rules?] They are rules whose conse-
quences I disavow.

The king says to the executioner, “Do not hang him who guesses correctly
what we are to do with our prisoners.” The prisoner now says to the execu-
tioner, “I will be hanged.” Etc. He has surprised the executioner with this
answer & confounded him. The executioner does not know how to carry
out the king’s order.

...and in Ms-124:

Was für Regeln muß der König geben, damit er der unangenehmen Situa-
tion von nun an entgeht, in die ihn sein Gefangener gebracht hat? – Was
für eine Art Problem ist das? – Es ist doch ähnlich diesem: Wie muß ich die
Regeln dieses Spiels abändern, daß die & die Situation nicht eintreten kann.
Und das ist eine mathematische Aufgabe.

Aber kann es denn eine mathematische Aufgabe sein, die Mathematik zur
Mathematik zu machen?

Kann man sagen: “Nachdem dies mathematische Problem gelöst war, be-
gannen die Menschen eigentlich zu rechnen”? [Ms-124, 118.2–119.3 / RFM
VII §34]

What kind of rules must the king give so as to escape henceforward from
the awkward position, which his prisoner has put him in? – What sort of
problem is this? – It is surely like the following one: how must I change
the rules of this game, so that such-and-such a situation cannot occur? And
that is a mathematical problem.

But can it be a mathematical problem to make mathematics into mathemat-
ics?

Can one say: “After this mathematical problem was solved, human beings
began really to calculate”? [RFM VII §34 (only for the remarks from Ms-
124)]

The prisoner’s answer that he will be executed is clearly contradic-
tory: If it is true that he will be executed, he will have guessed cor-
rectly what happens to him, but then by the order of the king he
cannot be executed. If it is false that he will be executed, his predic-
tion is false, but then he will meet the same fate as all prisoners who
guessed incorrectly and will be executed.

These royal orders could be followed flawlessly for a long time if,
for whatever reasons, no prisoner ever answers in such a contradic-
tory way. But if the goal is to prevent this situation from ever happening,
the rules of the game need to be changed, which is then the task
of a mathematician and not of a philosopher. However, mathematics
cannot justify the need for this change, because the usefulness of the
contradictory language game has to be judged on the basis of its role
in the form of life of the king and his executioner. The contradiction
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might then turn out to be utterly disastrous, completely benign, or
somewhere in between.

Wittgenstein thus reframes the situation by moving away from
the dichotomy of ‘mechanical calculation’ and ‘common sense’ and
instead emphasising different degrees of reliability. Turing’s argument
gives rise to the belief that a mechanical calculation can only be reli-
able if it is consistent and that inconsistency immediately renders it
completely unreliable. For Wittgenstein, however, a calculation can be
reliable, unreliable or somewhere in between, irregardless of whether
it is consistent or inconsistent, both in the case of mechanical calcula-
tion and also when applying common sense:

‘Solange die Widerspruchsfreiheit nicht bewiesen ist, kann ich nie ganz
sicher sein, daß mir jemand, der gedankenlos, aber gemäß den Regeln, rech-
net, nicht irgend etwas Falsches {herausrechnet. // herausrechnen wird.}’
So lange also jene Voraussicht nicht gewonnen ist, ist der Kalkül unzuverläs-
sig. – Aber denke, ich fragte: {“Wie unzuverlässig?”– // ‘Wie unzuverlässig
ist er?’ –} Wenn wir von Graden der Unzuverlässigkeit redeten, könnten
wir ihr dadurch nicht den metaphysischen Stachel nehmen?
Waren die ersten Regeln des Kalküls nicht gut? Nun, wir gaben sie nur,
weil sie gut waren. – Wenn sich später ein Widerspruch ergibt, – haben sie
nicht ihre Pflicht getan? Nicht doch, sie waren für diese Anwendung nicht
gegeben worden.

Ich kann meinem Kalkül eine bestimmte Art der Voraussicht geben wollen.
Sie macht ihn nicht zu einem eigentlicheren Stück Mathematik, aber, etwa{,
// –} zu gewissem Zweck {brauchbarer. // brauchbarern.}

Die Idee des Mechanisierens der Mathematik. Die Mode des axiomatischen
Systems. [Ms-124, 58.2–59.3 / BGM VII §12]

‘So long as freedom from contradiction has not been proved I can never be
quite certain that someone who calculates without thinking, but according
to the rules, won’t work out something wrong.’ Thus so long as this pro-
vision has not been obtained the calculus is untrustworthy. – But suppose
that I were to ask: “‘How untrustworthy?” – If we spoke of degrees of un-
trustworthiness mightn’t this help us to take the metaphysical sting out of
it?
Were the first rules of the calculus not good? Well, we gave them only
‘because they were good. – If a contradiction results later, – have they ‘failed
in their office? No, they were not given for this application.

I may want to supply my calculus with a particular kind of provision. This
does not make it into a ‘proper piece of mathematics, but e.g. into one that
is more useful for a certain purpose.

The idea of the mechanization of mathematics. The fashion of the axiomatic
system. [RFM VII §12]

What is philosophically problematic is thus not mechanisation in and
of itself, but rather the misleading idea that mechanical calculations
commit us to a situation where a calculus is either completely reliable
or completely unreliable. In the case of computing machines, it can
be tempting to think that the mechanical nature of these machines
demands ‘stronger’ standards of reliability than our ordinary non-
mechanical language games, in which we can apply “common sense”
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when we encounter contradictions. But such a view overlooks that ‘or-
dinary’ language games also follow rules that can be described and
taught, possibly even to machines, although the effort required to de-
scribe certain games rigorously enough for a completely mechanical
application is certainly not trivial and sometimes entirely impractical.
What separates computing machines from humans, at least concern-
ing the issue at stake here, is not “common sense”, but rather the
acceptance of degrees of unreliability in the case of humans.

This might even hold in the presence of a hidden contradiction. As
Wittgenstein provocatively asks, if our method of calculating has held
up in practice until now, why would the discovery of a previously
hidden contradiction sink the whole endeavour and make the entire
system worthless? As long as a contradiction is hidden well enough
not to matter in practice, the usefulness of a system will not necessar-
ily be impacted by such a discovery. In practice, we might add, the
dose makes the poison:

Wenn der Widerspruch wirklich so gut versteckt ist, {daß wir ihn nicht
merken // daß ihn niemand merkt}, warum sollen wir nicht das, was wir
jetzt tun, das eigentliche Rechnen nennen?

Wir sagen, der Widerspruch würde den Kalkül vernichten. Aber wenn er
nun sozusagen in winzigen Dosen aufträte, gleichsam blitzweise, nicht als
ein ständiges Rechenmittel, würde er da {das Spiel // den Kalkül} auch
vernichten? [Ms-124, 65.4–65.5 / BGM VII §15]

If the contradiction is so well hidden that no one notices it, why shouldn’t
we call what we do now proper calculation?

We say that the contradiction would ‘destroy the calculus. But suppose it
only occurred in tiny doses in lightning flashes as it were, not as a constant
instrument of calculation, would it nullify the calculus? [RFM VII §15]

Even principles as fundamental as reductio ad absurdum or the law
of non-contradiction are then up for debate. In his language game,
Turing presupposes these rules, which is not surprising in the context
of a logical system used to resolve the Entscheidungsproblem. But if
the goal is to present a formalisation of the notion of mechanical
calculation that actually corresponds to “humans who calculate”, the
‘normal’ rules involved in dealing with contradictions cannot simply
be taken for granted. As Wittgenstein notes, the “ideal certainty” (Ms-
124, 119.4–120.3 / RFM VII §35) of a non-contradictory logical system
is not an end in itself, but instead dependent on the use of the system.
If the system proves useful even in the face of a contradiction, what
is the justification for a principle like the law of non-contradiction in
such a case?

3.4 useful inconsistency

Given how Turing has set up the definitions of the concepts used
in his argument, a contradiction follows from the assumption of the
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general decision procedure D . But while a contradiction is usually a
sign of an ‘error’ and thus leads us to reject the ‘faulty’ assumption,
we need to realise that this attitude towards contradictions stems from
the simple, familiar case, where a ‘feedback loop’ (of computing ma-
chines operating on themselves) is simply not part of the game that
is being played. In the more complex case of machines that can oper-
ate on their own descriptions and simulate their own behaviour, the
contradictions that follow from underdetermined or overdetermined
situations are inherent to this more complex case. Why then would it
follow without any further argument that the only option is to reject
the assumption, instead of properly exploring the implications of the
contradiction?20

Of course it does follow in classical or intuitionistic logic, because re-
ductio ad absurdum is a valid and even necessary proof technique in
a logical system where a contradiction is explosive and any proposi-
tion could be inferred from a contradiction, ex contradictione quodlibet.
The question, then, is not whether Turing’s proof is valid in classical
or intuitionistic logic (of course it is), but whether such an explosive
logic is the right framework to describe the language game that is
being played, or rather, whether the language game played by Tur-
ing according to the principle of explosion is the only or even the
most obvious one that Turing could be playing if the technical terms
employed in the proof are to correspond to their ordinary meaning.
It is crucial to remember that this correspondence to concepts that
have a use in our non-mathematical activities lends Turing’s proof its
importance and standing. We could of course imagine many other
logical games that would lead to situations with underdetermined
rules such as “Do What You Do”, Wittgenstein’s variant of the diag-
onal argument being just one example, so if Turing’s proof is to be
more than an amusing recreational activity, it must convince us of its
applicability to our use of words such as ‘decision’, ‘calculation’ and
‘computation’ outside of the proof. Are these concepts consistent? Or
can a philosophical investigation show that some of the language
games played with these concepts are inherently inconsistent?

A starting point for such an investigation is the observation that
Turing’s machine H has no use outside the language game played

20 Even though much of the following argument is influenced by Priest, 2006b and
Priest, 2006a, it should not be read as an endorsement of “dialetheism”, the notion
“that there are true contradictions” (Priest, 2006b, p. 4). The use of contradictions
and the application of paraconsistent logics that these situations necessitate are tools
that might prove ‘useful’ to clarify our understanding of terms that lie at the heart of
computation, but this chapter will deliberately not attempt to extend these observa-
tions to theses about the nature of logic or mathematics as a whole. The question will
thus not be whether there “are” true contradictions, but merely whether the appli-
cation of contradictions inside (non-explosive) inconsistent systems can adequately
describe and illuminate a certain kind of important language game played at the
foundation of the theory of computation, which consistent logical systems would
struggle to describe.
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by Turing with his application of the diagonal argument. Preventing
contradictions is useful if the propositions in question stand for con-
tradictory premises that cannot both be true at the same time. But as
Wittgenstein notes in Ms-178d, a short fragment most likely dating
from before Ms-121 (see Section 1.4), it is hard to see the usefulness
of preventing a contradiction at all costs even in the case of proposi-
tions such as “436. Der {Satz // Abschnitt} 436 dieses Buches ist nicht
beweisbar.” (Ms-178d, 2.3), because the use of these propositions is
undetermined:

‘Aus seinem Gegenteil läßt sich ein Widerspruch ableiten.’ – Nun, vielleicht
macht er hier nichts.

Den Widerspruch zu vermeiden
::
ist

::::
eine

:::::::::::::
mathematische

:::::::
Methode. Sie führt

zu brauchbaren {Gebilden // Sätzen} & brauchbar ist hier ähnlich unbes-
timmt wie eine Pointe haben.
Ist aber die Funktion eines {Satzes // irgendwie satzähnlichen Gebildes}
gänzlich unbestimmt, warum soll er nicht ein Widerspruch sein? Warum
sollte sich ein Mathematiker prinzipiell vor {jedem // dem} Widerspruch
bekreuzigen. (Man {könnte // möchte} sagen: hab keine Angst er beißt
nicht!) [Ms-178d, 1.2–1.3]

‘A contradiction can be derived from its opposite.’ - Well, maybe it doesn’t
cause any trouble here.

Avoiding the contradiction
:
is

::
a
:::::::::::
mathematical

:::::::
method. It leads to usable

{constructions // propositions} & usable here is similarly undetermined as
having a punch line.
But if the function of a {proposition // proposition-like construction} is
completely undetermined, why should it not be a contradiction? Why
should a mathematician in principle cross himself before {every // the}
contradiction. (One {could // might be inclined to} say: don’t be afraid,
it doesn’t bite!)

To give contradictory decision procedures such as D a different use
than in Turing’s argument does not imply that the status of all con-
tradictions suddenly needs to change. To prevent contradictions in
mathematics is a technique, its general usefulness does not stand or
fall with a specific case such as D , as Wittgenstein notes in Ms-127,
written in March of 1944:

“Warum soll es in der Mathematik keinen Widerspruch geben dürfen?” –
Nun, warum darf es in unsern einfachen Sprachspielen keinen geben? (Da
besteht doch gewiß ein Zusammenhang.) Ist das also ein Grundgesetz, das
alle denkbaren Sprachspiele beherrscht?

Angenommen ein Widerspruch in einem Befehl z.B. bewirkt Staunen & Un-
entschlossenheit – & nun sagen wir: das eben ist der Zweck des Wider-
spruchs in diesem Sprachspiel.

Es ist eines eine mathem. Technik zu gebrauchen, die darin besteht, {den
Widerspruch zu vermeiden // dem Widerspruch zu entgehen}, & ein an-
deres gegen den Widerspruch in der Mathematik überhaupt zu philoso-
phieren. [Ms-127, 80.3–81.3]
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“Why should no contradiction be allowed in mathematics?” - Well, why
should none be allowed in our simple language games? (Surely there is a
connection.) Is this, then, a basic law that governs all conceivable language
games?

Suppose a contradiction in a command, for example, causes astonishment &
indecision - & now we say: that is precisely the purpose of the contradiction
in this language game.

It is one thing to use a mathematical technique that consists in avoiding
the contradiction, & another to philosophise against the contradiction in
mathematics in general.

If we were to suspend this technique in the case of the computing
machine D and its application as part of H , what use could the
contradictory verdict of the machine possibly have? As we have seen,
Wittgenstein’s variant of the diagonal argument reframes the crucial
point of the diagonal as an underdetermined rule, a “Do What You
Do” instruction. But why should such a rule not be interpreted as
an instruction that leaves the next step up to the person or machine
following the rule? A rule that can be followed, by doing whatever
we wish to do? The rule would then mean “Do as you like” and could
be seen as a “hint from the gods”:

Der Widerspruch. Warum grad dieses eine Gespenst? Das ist doch sehr
verdächtig.

Warum sollte eine Rechnung zu einem praktischen Zweck ausgestellt die
einen Widerspruch ergibt mir nicht sagen: “Tu wie Dir beliebt, ich die Rech-
nung entscheide darüber nicht.”?

Der Widerspruch könnte als Wink der Götter aufgefaßt werden, daß ich
handeln soll & nicht überlegen. [Ms-127, 83.2–83.4]

The contradiction. Why this particular spectre? That is very suspicious.

Why shouldn’t a calculation issued for a practical purpose that results in a
contradiction be telling me: “Do as you like, I the calculation don’t decide
about it.”?

The contradiction could be taken as a hint from the gods that I should act
& not deliberate.

Turing’s unwillingness to open the floodgates to inconsistency is un-
derstandable, given that foundational issues in (consistent) logic and
more specifically the Entscheidungsproblem were the impetus for his
reflections on computability. But especially in the wake of his neg-
ative resolution of said problem, the question might be raised why
the systematic procedures executed by computing machines should
be held to the same standard of consistency as (classical) logic. If we
understand machines from a Wittgensteinian angle, as uneducated,
sometimes even ‘idiotic’ clerks who are taught the rules of particu-
lar language games through a form of “training” / “Abrichtung”, it
becomes hard to see why these machines should not be inconsistent
at times and consequently could be reasoned about using inconsis-
tent formal systems. After all, many of the games that could possibly
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be played might involve inconsistent premises or lead to inconsistent
rules, if only out of amusement over the nonsensical rules.

To give up the law of non-contradiction would be to give up a
principle that we take for granted, and which has been enshrined as
a standard of measurement. Turing needs to presuppose this whole
system of measurements as a foundation for his mathematical proof,
which then leads us to accept a new proposition as a standard of mea-
surement, namely that there cannot be something that we would call
the “general decision procedure” D . However, this is not the only pos-
sible modification of our system of measurements in the face of the
diagonal argument. We could imagine that people had constructed
a general decision procedure which returned a contradictory result
for machines such as the paradoxical H . We would reject such a con-
struction, because it clashes with our standard of measurement, but
if these people had no standard to compare this result to, they might
accept the contradictory result of the machine as the ‘correct’ result,
because they would define the correct result as the result of the machine.
These people first use the decision procedure as an experiment, since
they have no other standard that would define the result, but could
then adopt the decision procedure as a new standard if the results
hold up in practice. When used as an experiment, the practical im-
plementation of their machine would have an influence on what they
consider correct: If, for example, a cog jams, the result still is ‘correct’,
because the empirical result is the only criterion for correctness. As
soon as they abstract from these empirical factors and use a rule as
their criterion for correctness, they stop treating the machine as an
experiment and adopt a standard of measurement instead. As Witt-
genstein emphasises, the standard of measurement is not the result of
experimental measurements, but it could follow from such measure-
ments:

Man kann auf Grund eines Experiments – oder wie man es sonst nennen
will – manchmal die Maßzahl des Gemessenen, manchmal aber auch das
geeignete Maß bestimmen.

So ist also die Maßeinheit das Resultat von Messungen? Ja & nein. Nicht
das Messungsresultat, aber vielleicht die Folge von Messungen. [Ms-124,
95.5–96.1 / BGM VII §23]

An experiment – or whatever one likes to call it – can be what we go on,
sometimes in determining the measurement of the thing measured, and
sometimes even in determining the appropriate measure.

Then is the unit of measurement in this way the result of measurements?
Yes and no. Not the result reached in measuring but perhaps the ‘conse-
quence of measurements. [RFM VII §23]

That the distinction between experiment and calculation is not always
clear cut is made evident a few pages later, in a remark that was
written about three years after the remarks above. However, it should
be considered closely related to the remarks from 1941, as it is nearly
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identical to the pocket notebook remark Ms-163, 27v.3, dating from
the same day in 1941 as the remarks quoted above and following
them immediately in Ms-163:

Man könnte sagen: Experiment – Rechnung sind Pole, zwischen welchen
sich menschliche Handlungen bewegen. [Ms-124, 114.2 / BGM VII §30]

It might be said: experiment – calculation are poles between which human
activities move. [RFM VII §30]

After including the remark three years later in Ms-124, Wittgenstein
then adds another remark about a month later on the shift from em-
pirical proposition to rule, also included in Ms-127 around the same
date:

Jeder Erfahrungssatz kann als Regel dienen wenn man ihn – wie einen
Maschinenteil – feststellt, unbeweglich macht, so daß sich nun alle Darstel-
lung um ihn dreht & er zu einem Teil des Koordinatensystems wird &
unabhängig von den Tatsachen. [Ms-124, 199.5 / BGM VII §74]
Jeder Erfahrungssatz kann als Regel dienen wenn man ihn feststellt, ich
meine unbeweglich macht, so daß sich nun alle Darstellung um ihn dreht
& er ganz zur Methode der Darstellung gehört & unabhängig von den
Tatsachen {wird // ist}. [Ms-127, 224.1]

Every empirical proposition may serve as a rule if it is fixed, like a machine
part, made immovable, so that now the whole representation turns around
it and it becomes part of the coordinate system, independent of facts. [RFM
VII §74]
Every empirical proposition may serve as a rule if it is fixed, made immov-
able, so that now the whole representation turns around it and it belongs
entirely to the method of representation, independent of facts.

The above remark shows a remarkable similarity to Wittgenstein’s
remarks on ‘hinge propositions’, written much later in 1951 (notably
Ms-175, 48r.2, Ms-175, 48v.2 and Ms-177, 5v.2, corresponding to OC
§341, §343 and §655, respectively). Not only does it shed light on
the origin of some of the ideas that were only later fully developed
by Wittgenstein, it also underlines what is at stake here: If we give
up the assumption that the whole logical system must be consistent,
we use certain propositions ‘flexibly’ that were previously assumed
to be ‘fixed hinges’. Turing’s diagonal argument can then potentially
be seen as showing where and why consistency is insufficient and in
which area the demand for absolute consistency has to make room for
a small dose of inconsistency. Philosophy cannot offer a justification
for such a flexible use, as the justification has to come from the use
in our form of life, but it can help to show that these hinges are not
fixed as the result of discoveries in the world of mathematics that
leave no other way out, but rather as the consequence of a conceptual
impossibility that could conceivably be cast aside by people with a
different form of life.

But even if we were prepared to consider a different language game
without reductio ad absurdum at the crucial point of the diagonal argu-
ment, a question remains: What would the concrete ramifications be
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in the context of Turing’s computing machines, which seem to be a
very apt model of computation and certainly comparable to the ‘or-
dinary’ computers used by us every day? Let us assume, only for the
sake of argument, that we do not immediately reject the assumption
based on the contradiction of the diagonal argument, then what?

Well, why not relax the requirement of the decision procedure D

and allow an answer of ‘circular and circle-free’ for a case such as H ?
This does not need to have an impact on any of the ‘ordinary’ com-
puting machines, in fact the verdict of ‘circular and circle-free’ will be
reserved exclusively for cases such as H , where we can show by the
same analysis as in the diagonal argument that the two cases ‘circular’
and ‘circle-free’ alone would invariably lead to a contradiction.

But what does it mean for a computing machine to be both circular
and circle-free? In contrast to (paraconsistent) logic, where we might
be willing to call a paradoxical proposition both true and false, Tur-
ing’s proof is framed in terms of numbers, more specifically binary
expansions. A computable number either corresponds to a particu-
lar binary expansion or it does not, but there seems to be little room
for something that both is and is not circular at the same time. There
are many ways to extend Turing’s own model to allow for such a sce-
nario, for example by considering concurrent ‘threads’ of execution,21

but in fact Turing’s own description of computing machines already
allows for such a possibility:

Turing’s machines are able to revisit ‘old’ squares to the left of the
currently scanned symbol and might erase or overwrite them with
other symbols. Turing makes ample use of this capability to imple-
ment the universal computing machine U , but restricts such a use to
the ‘temporary’ symbols of E-squares. The computable sequences that
he has in mind thus seem to be restricted to computing machines for
which it is not possible to ‘rewrite’ already written figures after they
have been written down. This corresponds to a view of computable
sequences and computable numbers as infinite developments of num-
bers where each execution step increases the ‘precision’ of the result
in the same way a manual calculation of 1/3 in decimal could be said
to increase the precision by going from 0.3 to 0.33 to 0.333 etc. ad
infinitum or when we calculate increasingly more digits of ⇡.

If we allow a machine to revisit and change previously written
figures, however, this view breaks down once we consider a comput-
ing machine that alternates between printing ‘0’ and ‘1’ (and which
would thus correspond to the number 0.010101..., 1/3 as a fraction)
but which then always flips all previously written ‘0’ and ‘1’ after
printing another decimal place, so that the tape would go from ‘0’ to
‘10’ to ‘010’ to ‘1010’ to ‘01010’ and so forth. (We could alternatively

21 It should be pointed out that these ‘extended’ models can usually be simulated by
Turing’s own model, thanks to the computational universality of Turing’s computing
machines.
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implement this behaviour by ‘shifting’ the tape to the right, copying
each symbol one square to the right until there is an empty square
at the beginning of the tape, then print a new symbol in the empty
square.) What kind of number would this machine compute? It will
‘oscillate’ between the number ‘0.01010101...’, 1/3 expressed as a frac-
tion, and ‘0.10101010...’, 2/3 in other words. But can the sequence
generated by such a machine even be considered a computable num-
ber? Turing’s definitions at least do not seem to explicitly preclude
this possibility:

A sequence is said to be computable if it can be computed by a circle-
free machine. A number is computable if it differs by an integer from the
number computed by a circle-free machine. [Turing, 1936, p. 61]

The computing machine is circle-free, since it certainly “writes down
more than a finite number of symbols of the first kind” (the figures
‘0’ and ‘1’). It can therefore be said to describe a computable number,
although it should be pointed out that Turing’s own implementation
of the universal computing machine U enforces stricter requirements,
including the convention never to erase or change a previously writ-
ten figure to the left of the scanned symbol. However, since according
to Turing’s own definitions such a behaviour can only be considered a
‘convention’, we might ask whether a general decision procedure D

is feasible for ‘unconventional’ computing machines and if so, why
Turing’s conventional versions are given preference without further
argument.22

Analogously to the special case of 0.010101..., we can construct such
an oscillating variant for any ‘normal’ computable sequence by flip-
ping all the figures between each step of printing 0 or 1. We could
then imagine different uses for these oscillating numbers: Perhaps
they are used in situations where people do not care what they end
up with or want to indicate politeness by being flexible, they might

22 This discrepancy between Turing’s definition of computable numbers and his ‘imple-
mentation’ as part of the universal computing machine was noted by Emil Post in
Post, 1947, p. 98, (emphasis added): “Primarily as a matter of practice, Turing makes
his machines satisfy the following convention. Starting with the first square, alternate
squares are called F-squares, the rest, E-squares. In its action the machine then never
directs motion left when it is scanning the initial square, never orders the erasure, or
change, of a symbol on an F-square, never orders the printing of a symbol on a blank
F-square if the previous F-square is blank, and, in the case of a computing machine,
never orders the printing of 0 or 1 on an E-square. This convention is very useful in
practice. However the actual performance, described below, of the universal comput-
ing machine, coupled with Turing’s proof of the second of the two theorems referred
to above, strongly suggests that Turing makes this convention part of the definition of
an arbitrary machine. We shall distinguish between a Turing machine and a Turing
convention-machine.” It is understandable that neither Turing nor Post considered
this critique to be more than a minor correction aimed at including the implicit con-
vention used by Turing in a more rigorous definition. Philosophically, though, the
passage is very interesting, as it possibly opens the door to language games closely
related to Turing’s own, but with different conventions, in other words correspond-
ing to Turing machines, but not Turing convention-machines.
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for example say: “Give me either a third or two thirds”, similar to
Wittgenstein’s example of the tribe not bothering with coins that fell
to the ground (Ms-124, 52.2–53.3 / RFM VII §11), or perhaps merely
to teach students ways to imagine how something could be said to be
in two states at the same time. We might then think of these oscillating
numbers as being ‘in motion’ and distinguish them from ‘static’, ‘mo-
tionless’ numbers that we usually calculate with. Wittgenstein uses a
similar example:

Aber Du kannst doch einen Widerspruch nicht gelten lassen! – Warum
nicht? Wir gebrauchen {ihn // diese Form} ja manchmal in unsrer Rede,
freilich selten – aber man könnte sich eine Sprachtechnik denken, in der er
ein ständiges Implement {ist // wäre}.
Man könnte z.B. von einem Objekt in Bewegung sagen, es existiere & es
existiere nicht an diesem Ort; Veränderung könnte durch den Widerspruch
ausgedrückt werden. [Ms-124, 54.4 / BGM VII §11]

But you can’t allow a contradiction to stand! – Why not? We do sometimes
use this form in our talk, of course not often – but one could imagine a
technique of language in which it was a regular instrument.
It might for example be said of an object in motion that it existed and did
not exist in this place; change might be expressed by means of contradiction.
[RFM VII §11]

He considers further examples of useful applications that involve con-
tradictions on the following pages of Ms-124 and also returns to the
idea more than 60 pages later:

Ein
::::::::
reflexives Fürwort, das sich auf den Satz in dem es steht bezieht. Ge-

brauchen wir das Wort “ich” – so daß “Ich bin 5 cm lang” dadurch zu
prüfen ist, daß man diesen Satz mißt. Eine solche Form wird meines Wis-
sens nie gebraucht; könnte {aber unter Umständen eine // aber auch eine}
wichtige {Rolle spielen. // {Satzform // Form von Sätzen} sein.} Oder: “Ich
bestehe aus 5 Wörtern.” [Ms-124, 60.2]
[...]
Man könnte sich fragen: Welche Rolle kann ein Satz, wie “Ich lüge immer”,
im menschlichen Leben spielen? Und da kann man sich Verschiedenes
vorstellen. [Ms-124, 126.3 / BGM VII §37]

A
:::::::
reflexive pronoun that refers to the sentence in which it is placed. Let us

use the word “I” - so that “I am 5 cm long” is to be verified by measuring
this sentence. Such a form is never used, as far as I know; it could, however,
{play an important role // be a sentence form } in some circumstances. Or:
"I consist of 5 words."
[...]
We might ask: What role can a sentence like “I always lie” have in human
life? And here we can imagine a variety of things. [RFM VII §37]

The same example is used as late as 1947, where a remark on such
a usage of the word “ich” appears in Ts-229, 205.6 and Ts-245, 143.7,
first written down in this form in Ms-130, 125.5 and clearly influenced
by the remark in Ms-124. These examples go further than simply in-
vestigating the mathematical “fear” of contradictions, they imagine
(more or less) practical uses for contradictions that could then con-
vince us to give up our absolute rejection of contradictions in favour
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of a more nuanced view that looks at individual language games.
This approach is summed up in a later remark in Ms-124, from 1944:

Das Überraschende, Paradoxe ist paradox nur in einer gewissen, gleichsam
mangelhaften, Umgebung. Man muß diese Umgebung so ergänzen, daß,
was paradox schien nicht länger so erscheint. [Ms-124, 141.3 / BGM VII
§43]

Something surprising, a paradox, is a paradox only in a particular, as it
were defective, surrounding. One needs to complete this surrounding in
such a way that what looked like a paradox no longer seems one. [RFM VII
§43]

In the case of Turing, it is clear that his convention of never chang-
ing a previously written figure is not merely a practical afterthought,
but crucial for his reflections on the enumerability of computable se-
quences and the ability to apply the diagonal argument. After all, the
sequence computed by the diagonal can only be said to differ from
every sequence in the enumeration if these sequences are ‘stable’ and
do not retroactively change the very figure that was their contribution
to the diagonal. However, if the requirement not to change previously
written figures does not arise from Turing’s definitions but only from
his implementation, then perhaps we could imagine an ‘unconven-
tional’ language game that respected Turing’s definitions but also in-
cluded a decision procedure D for deciding circularity that we would
be willing to call “general”?

For example, in the case of the paradoxical machine H the decision
of D could be ‘oscillating’ between the symbols for ‘circular’ and
‘circle-free’. This corresponds quite well to how H itself ‘oscillates’
between being one or the other depending on the verdict of D . This
shows that there is a decision procedure that we conceivably could call
a “general decision procedure” for deciding circularity, but which is
of course not the “general decision procedure D” that Turing’s proof
works with.

We would then have changed the technique of our use of truth func-
tions, which, however, does not mean that the use were somehow ar-
bitrary. Rather, we are bound by the logical “must”, not because these
rules were eternal laws of thought, similar to laws of physics but in
the ideal realm of mathematics, but because these are the techniques
that we use and their use is embedded in our way of life:

Das Nicht-Geltenlassen des Widerspruchs charakterisiert die Technik {der
// unserer} Verwendung {der // unserer} Wahrheitsfunktionen. {Lassen
wir den Widerspruch gelten, so {heißt // bedeutet} das {daß wir die Ver-
wendung der Wahrheitsfunktionen ändern // eine Änderung der Auffas-
sung der Wahrheitsfunktionen}; als faßten wir z.B. eine doppelte Vernein-
ung nicht mehr als Bejahung auf. // Lassen wir den Widerspruch in unsern
Sprachspielen gelten, so {bedeutet // ist} das eine Änderung jener Technik.
// Lassen wir den Widerspruch in unsern Sprachspielen gelten, so ändern
wir jene Technik – so, als gingen wir davon ab, eine doppelte Verneinung
als Bejahung anzusehen.} Und diese Änderung wäre von Bedeutung, da die
Technik unserer Logik ihrem Charakter nach zusammenhängt mit – – –
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“Die Regeln zwingen mich zu etwas”, nun das kann man schon sagen,
weil, was mir mit der Regel übereinzustimmen scheint ja nicht von meiner
Willkür abhängt. Daher kann es ja geschehen daß ich die Regeln eines
Brettspiels ersinne & nachträglich herausfinde daß in diesem Spiel wer
anfängt gewinnen muß. Und so ähnlich ist es ja, wenn ich finde, daß die
Regeln zu einem Widerspruch führen [Ms-124, 104.3–105.2 / BGM VII §27]

Not letting a contradiction stand is something that characterises the tech-
nique of our employment of our truth-functions. It we do let the contra-
diction stand in our language-games, we alter that technique – as, if we
departed from regarding a double negative as an affirmative. And this alter-
ation would be significant, because the technique of our logic is connected
in its character with the conception of the truth-functions.

“The rules compel me to. . . ” – this can be said if only for the reason that
it is not all a matter of my own will what seems to me to agree with the
rule. And that is why it can even happen that I memorize the rules of a
board-game and subsequently find out that in this game whoever starts
‘must win. And it is something like this, when I discover that the rules lead
to a contradiction. [RFM VII §27]

We are then forced to admit that such a game with contradictory
rules is not a game (“Ich bin nun gezwungen anzuerkennen, daß das
eigentlich kein Spiel ist.”, Ms-124, 105.3 / RFM VII §27) if our notion
of game excludes games that do not give each player the same fair
chance of winning the game. But not due to a “spell”, in fact such an
idea would be exactly the kind of conceptual confusion, the “plain
nonsense, and bumps...” that philosophy must try to dispel (PI §119):

Was zwingt mich denn? – Der Ausdruck der Regel? – Ja; wenn ich einmal so
erzogen bin. Aber kann ich sagen, er zwingt mich, ihm zu folgen? Ja; wenn
man sich hier die Regel nicht als Linie denkt, der ich nachfahre, sondern
als Zauberspruch der uns im Bann hält.
[“schlichter Unsinn, & Beulen . . . ”] [Ms-124, 107.3 / BGM VII §27]

What is it that compels me? – the expression of the rule? – Yes, once I have
been educated in this way. But can I say it compels me to follow it? Yes: if
here one thinks of the rule, not as a line that I trace, but rather as a spell
that holds us in thrall.
((“plain nonsense, and bumps. . . ”)) [RFM VII §27]

In the case of Turing’s paradoxical machine H , such a “spell” leads
us to believe that our usual standard of measurement, the demand
that there be no contradictions in our logical system, must apply even
to machines such as H and as a result we give up the concept of
a “general decision procedure” for circularity. But Turing’s argument
obscures that his formalism goes far beyond ‘logical’ computing ma-
chines and allows for the construction of paradoxical machines like
H . Why then should the standard of measurement that originated in
our use of logically consistent and non-paradoxical calculations apply to
machines such as H ? Why not revise the standard of measurement
to accommodate machines that can operate on their own encoded
representation, which can of course lead to paradoxical results?
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Turing shows that computation encompasses more than what is
usually considered ‘logical’ or even ‘mathematical’ and his diagonal
argument proves that we will run into a contradiction if we assume
that computation could be reduced to these more restrictive language
games. But Turing then excludes this contradiction from his concep-
tual language game, instead of revising the language game to find a
role for contradictory decision procedures. What is missing is a “seri-
ous investiture” / “ernsthafte Einkleidung” 23 of the logical paradox:

Ich bestimme ein Spiel & sage: “Machst Du diese Art Zug, so ziehe ich so,
machst Du jene, so ziehe ich so. – Jetzt spiele!” Und nun macht er einen
Zug, oder etwas, was ich auch als Zug anerkennen muß, & wenn ich nach
meinen Regeln {weiterspielen // daraufhin ziehen} will, so erweist sich,
was immer ich tue, {als unrichtig // als {den // meinen} Regeln nicht
gemäß}. Wie konnte das geschehen? Als ich Regeln aufstellte, da sagte ich et-
was. Ich folgte einem gewissen Brauch. Ich sah nicht voraus, was wir weiter
tun würden, oder sah nur eine bestimmte Möglichkeit. Es war nicht anders
als hätte ich Einem gesagt: Gib das Spiel auf; mit diesen Figuren kannst
Du nicht mattsetzen” & hätte eine bestehende Möglichkeit des Mattsetzens
übersehen.

Die verschiedenen, halb scherzhaften, Einkleidungen des logischen Parado-
xes sind nur in sofern interessant als sie einen daran erinnern, daß eine
ernsthafte Einkleidung des Paradoxes von Nöten ist, um seine Funktion
eigentlich zu verstehen. Es fragt sich: Welche Rolle kann ein solcher ‘lo-
gischer Irrtum’ in {einem Sprachspiel // einer Sprachanwendung} spielen?
[Ms-124, 109.4–110.2 / BGM VII §29]

I am defining a game and I say: “If you move like this, then I move like ‘this,
and if you do that, then I do ‘this. – Now play.” And now he makes a move,
or something that I have to accept as a move and when I want to reply
according to my rules, whatever I do proves to conflict with the rules. How
can this have come about? When I set the rules up, I ‘said something: I was
following a certain use. I did not foresee what we should go on to do, or
I saw only a particular possibility. It was just as if I had said to somebody:
“Give up the game; you can’t mate with these pieces” and had overlooked
an existing possibility of mating.

The various half joking guises of logical paradox are only of interest in so
far as they remind anyone of the fact that a serious form of the paradox is
indispensable if we are to understand its function properly. The question is:
what part can such a logical mistake play in a language-game? [RFM VII
§29]

The reason Turing can simply exclude the contradiction is that ma-
chines such as H operate in a ‘vacuum’, they (or rather the con-
tradictory general decision procedure machine D that they depend
on) can be excluded because there is no use for them. But exactly
because there is no use for them (yet), we could revise the language
game so that the contradiction produced by these machines need not
bother us and thus give them a use. This is what distinguishes the con-
tradiction in Turing’s diagonal argument from a contradiction such
as “2 + 2 = 4 and ¬(2 + 2 = 4)”, which would immediately clash

23 Translated by Anscombe simply as “serious form”.
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with a multitude of our techniques of calculation. We are led to be-
lieve that opening the door to the contradictory decision procedure
D would open the floodgates to all sorts of contradictions and to the
end of logic and mathematics. But machine H is uncharted territory,
its use is restricted to Turing’s diagonal argument, which is exactly
what gives us the conceptual freedom to investigate other uses philo-
sophically, with the aim of pointing out the difference in use between
machines such as H and ‘ordinary’ computing machines.

3.5 machines as mathematicians

Let us come back to the ‘limits’ established by Turing’s argument and
their consequences for what we, as human calculators, can and can-
not do once we commit ourselves to a stepwise execution of instruc-
tions corresponding to the capabilities of Turing’s universal comput-
ing machine.24 To avoid the possibility of getting trapped too early in
questions relating to the philosophy of mind, we will only indirectly
consider computing machines and instead distinguish between two
human professions: ‘clerks’, who are exactly what Wittgenstein calls a
“human calculating machine” and who we can picture as being “com-
pletely idiotic” (Ms-126, 33.4)25, and ‘mathematicians’, who may use
insight to go beyond a purely mechanistic and ‘idiotic’ sequence of
instructions. The question to be investigated will then be this: Could
we possibly teach clerks how to act like mathematicians, through the
sheer use of instructions that are to be followed in an ‘idiotic’ way?
Or is there an unsurmountable boundary between clerks and mathe-
maticians that can only be crossed by employing ‘non-idiotic’ insight
which cannot be codified as stepwise instructions?

There are certainly many ordinary mathematical tasks carried out
by mathematicians which can be delegated to clerks and Turing says
as much in his lecture on the “Automatic Computing Engine”, de-
scribing one of the first attempts to build a working computing ma-
chine as a practical embodiment of the principles underlying Turing’s
theoretical universal computing machine:

24 In the following quotations, Turing usually refers to the negative resolution of the
Entscheidungsproblem when talking about the limits of machines. This is not equiv-
alent to his diagonal argument, but heavily depends on it. A description of how
Turing’s diagonal argument leads to the negative resolution of the Entscheidungsprob-
lem would go beyond the scope of this text, but it should be mentioned that the
limits demonstrated by Turing are very similar to Gödel’s incompleteness results,
which are discussed in more detail in Section 2.1. Turing’s negative resolution of the
Entscheidungsproblem manages to adapt Gödel’s results to the conceptual framework
of computing machines.

25 The connection between the remark in Ms-126 and the discussion of Turing’s diag-
onal argument is underscored by the fact that the only other mention of such an
‘idiotic’ calculation process occurs in the context of Wittgenstein’s main treatment of
a diagonal argument, his discussion of Cantor’s proof in Ms-117, 104.3.
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As regards mathematical philosophy, since the machines will be doing more
and more mathematics themselves, the centre of gravity of the human inter-
est will be driven further and further into philosophical questions of what
can in principle be done etc. [Turing, 1947, p. 392]

What is it that cannot “in principle be done” by clerks operating like
machines? The most important difference between clerks and mathe-
maticians in that regard seems to be their handling of decision proce-
dures in logical systems:

It might be argued that there is a fundamental contradiction in the idea
of a machine with intelligence. [. . . ] It has for instance been shown that
with certain logical systems there can be no machine which will distinguish
provable formulae of the system from unprovable, i.e. that there is no test
that the machine can apply which will divide propositions with certainty
into these two classes. Thus if a machine is made for this purpose it must
in some cases fail to give an answer. On the other hand if a mathematician
is confronted with such a problem he would search around a[nd] find new
methods of proof, so that he ought eventually to be able to reach a decision
about any given formula. This would be the argument. [Turing, 1947, pp. 393–
94, emphasis added]

The same sentiment is echoed in Turing’s article “Intelligent Machin-
ery”:

Recently the theorem of Gödel and related results [...] have shown that
if one tries to use machines for such purposes as determining the truth
or falsity of mathematical theorems and one is not willing to tolerate an
occasional wrong result, then any given machine will in some cases be unable
to give an answer at all. On the other hand the human intelligence seems
to be able to find methods of ever increasing power for dealing with such
problems ‘transcending’ the methods available to machines. [Turing, 1948,
pp. 410–11, emphasis added]

The most detailed description, however, is found in Turing’s “Com-
puting Machinery and Intelligence”:

There are a number of results of mathematical logic which can be used
to show that there are limitations to the powers of discrete-state machines.
[. . . ] The result in question [of Turing, 1936] refers to a type of machine
which is essentially a digital computer with an infinite capacity. It states
that there are certain things that such a machine cannot do. If it is rigged
up to give answers to questions as in the imitation game, there will be some
questions to which it will either give a wrong answer, or fail to give an an-
swer at all however much time is allowed for a reply. There may, of course,
be many such questions, and questions which cannot be answered by one
machine may be satisfactorily answered by another. [. . . ] The questions that
we know the machines must fail on are of this type, “Consider the machine
specified as follows . . . Will this machine ever answer ‘Yes’ to any ques-
tion?” The dots are to be replaced by a description of some machine in a
standard form, which could be something like that used in §5. When the
machine described bears a certain comparatively simple relation to the ma-
chine which is under interrogation, it can be shown that the answer is either
wrong or not forthcoming. This is the mathematical result: it is argued that it
proves a disability of machines to which the human intellect is not subject.
[Turing, 1950, pp. 450–51, emphasis added]

According to this argument, negative resolutions of the Entschei-
dungsproblem, such as Turing’s proof on the basis of the application of
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the diagonal argument, show that a calculation by machines or clerks
acting like them must “fail to give an answer” at the crucial point of
the diagonal. What is meant by the word “fail” is left open, presum-
ably this is exactly the ‘getting stuck in a loop’ situation that Turing’s
diagonal argument inevitably leads to. The important point is that it
appears that mathematicians will be able to give a meaningful answer,
not just for specific formulae, but for “any” formula: They reach a “de-
cision” (a yes/no answer for provable/unprovable or circular/circle-
free, since the latter forms the basis for Turing’s negative resolution
of the Entscheidungsproblem), and they reach it “eventually”, meaning
in a finite number of steps.

This is a tall order! If mathematicians are, as Turing says, able
to solve these questions under the same conditions available to ma-
chines (clearly defined decision procedure, general for any formula,
finite number of steps) and we accept Turing’s argument in “On Com-
putable Numbers”, then surely we must admit that mathematicians
can complete practical tasks that clerks simply cannot hope to ever
complete? And would this then not be a physical impossibility, a
discovery about our empirical world and the limits of mechanical
rule-following, an argument in favour of our eternal superiority over
machines, at least in the area of mathematics?26

Such a conclusion would be premature, because, as Turing remarks
himself, we have overlooked an important difference in the rules of
the game between clerks and mathematicians. We first need to level
the playing field:

Against it I would say that fair play must be given to the machine. Instead
of it sometimes giving no answer we could arrange that it gives occasional
wrong answers. But the human mathematician would likewise make blunders
when trying out new techniques. It is easy for us to regard these blunders as
not counting and give him another chance, but the machine would probably
be allowed no mercy. In other words then, if a machine is expected to be
infallible, it cannot also be intelligent. [Turing, 1947, p. 394, emphasis added]

Similarly, in “Intelligent Machinery” Turing writes:
"The argument from Gödel’s and other theorems [. . . ] rests essentially on
the condition that the machine must not make mistakes. But this is not a
requirement for intelligence. [Turing, 1948, p. 411, emphasis added]

26 See e.g. Lucas, 1961, p. 116: “The Gödelian formula is the Achilles’ heel of the cy-
bernetical machine. And therefore we cannot hope ever to produce a machine that
will be able to do all that a mind can do: we can never, not even in principle, have a
mechanical model of the mind.” The paper also contains argumentative gems such
as the following (p. 120): “If a machine were wired to correspond to an inconsistent
system, then there would be no well-formed formula which it could not produce as
true; and so in no way could it be proved to be inferior to a human being. Nor could
we make its inconsistency a reproach to it – are not men inconsistent too? Certainly
women are, and politicians; and even male non-politicians contradict themselves
sometimes, and a single inconsistency is enough to make a system inconsistent.”
Leaving aside the very questionable second part of the argument here, Lucas tacitly
equates inconsistency with logical trivialism, as pointed out in Priest, 2006b, p. 42
(footnote). Other arguments similar to the one by Lucas can be found in Penrose,
1991, pp. 416–18 and Penrose, 1994.
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And in ‘Computing Machinery and Intelligence’, Turing reframes the
situation in terms of multiple machines:

The short answer to this argument is that although it is established that
there are limitations to the powers of any particular machine, it has only
been stated, without any sort of proof, that no such limitations apply to
the human intellect. But I do not think this view can be dismissed quite
so lightly. Whenever one of these machines is asked the appropriate critical
question, and gives a definite answer, we know that this answer must be wrong,
and this gives us a certain feeling of superiority. Is this feeling illusory? It
is no doubt quite genuine, but I do not think too much importance should
be attached to it. We too often give wrong answers to questions ourselves
to be justified in being very pleased at such evidence of fallibility on the
part of the machines. Further, our superiority can only be felt on such an
occasion in relation to the one machine over which we have scored our
petty triumph. There would be no question of triumphing simultaneously over all
machines. In short, then, there might be men cleverer than any given machine, but
then again there might be other machines cleverer again, and so on." [Turing, 1950,
pp. 450–51, emphasis added]

That mathematicians sometimes make mistakes is undeniably a fact
of life in their profession, but it does not lead us to immediately dis-
card their results or question mathematics as a whole. We thus need
to extend the same courtesy to our mechanical clerks if we want to
treat both sides equally. This reminder by Turing seems innocuous
enough, but it obscures an implicit assumption, because the mistakes
that clerks might make appear to be of a different sort than the mis-
takes made by mathematicians: Clerks have to give “wrong answers”
when calculating answers to a decision procedure, because the alter-
native would be to “fail to give an answer”, but importantly there is a
correct answer, and mathematicians will usually be able to find it, un-
less they make “blunders”. This wording, “wrong answers” in com-
parison to “blunders”, makes it seem as if the mistakes committed
by the clerks were more serious than the blunders of the mathemati-
cians, since the former are the results of theoretical limits that hold
even for idealised machines under perfect conditions, whereas the lat-
ter are the results of practical realities, an unfortunate side effect of a
mathematician’s biological hardware (or rather ‘wetware’), similar to
a grain of sand causing a disturbance in a complex system of cogs, or
an ink blot accidentally changing a digit written down on paper. Tur-
ing seems to rely on this asymmetry between “wrong answers” and
(harmless) “blunders” to establish who has the last word: Otherwise,
how do we know that the (supposedly wrong) answer given by the
machine is inferior to the proof by the mathematician using a new
technique, if the two methods are in disagreement?27

27 Note that the same distinction between serious and minor mistakes is equally cru-
cial for Lucas’ argument that the mind cannot be modelled by machines operating
mechanically, Lucas, 1961, p. 120: “The fact that we are all sometimes inconsistent
cannot be gainsaid, but from this it does not follow that we are tantamount to in-
consistent systems. Our inconsistencies are mistakes rather than set policies. They
correspond to the occasional malfunctioning of a machine, not its normal scheme of
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It is important to note here that blunders occur only rarely and that
mathematicians often trust new techniques, though in some cases per-
haps only after some cross-checks were made by the wider mathemat-
ical community, and that even if blunders do happen, these incidents
are not disastrous, but can be remedied.28 A fitting example is Tur-
ing, 1936, which contains a number of such blunders, subsequently
corrected by Turing and others.29

But while these blunders by mathematicians are treated very non-
chalantly, the discovery of an inconsistency in a formal system is
treated as a much more serious matter, even if it had not led to prob-
lems before. The reason for this is of course the missing oversight
in the case of mechanical clerks, who would happily deduce any-
thing from an inconsistent system according to their calculation rules,
whereas mathematicians have the ability to distinguish between seri-
ous and incidental mistakes and may even gloss over the latter kind.
But what leads us to assume that this distinction could not be for-
malised and taught to the mechanical clerks? It is of course not obvi-
ous how this would be done and could turn out to be entirely imprac-
tical, but for the current discussion of “what can be done in principle”
it is only fair to set these purely practical matters aside, in the same
way that Turing’s computing machines is allowed to assume an infi-
nite tape.

At this point, it becomes clear that Turing’s mention of “wrong an-
swers” applies a double standard. At first glance, it might appear as
if mathematicians were not bound by the limitations that apply to
mechanical clerks and computing machines. But mathematicians are
unimpeded by these limitations only in so far as they are allowed to
play a different language game than the mechanical clerks. In a way, this
is a trivial observation, since we are merely pointing out that math-
ematicians, if they follow the same calculation rules as mechanical
clerks and act as a computing machine, will also run into the same
troubling situations as a computing machine following these same
rules. The only way to decide that mechanical clerks have made a

operations. Witness to this that we eschew inconsistencies when we recognize them
for what they are. If we really were inconsistent machines, we should remain content
with our inconsistencies, and would happily affirm both halves of a contradiction.
Moreover, we would be prepared to say absolutely anything – which we are not. It
is easily shown that in an inconsistent formal system everything is provable, and the
requirement of consistency turns out to be just that not everything can be proved
in it – it is not the case that “anything goes”.” Lucas conflates inconsistency with
logical trivialism. If his notion of consistency requires only that “not everything can
be proved”, many paraconsistent systems of logic would fit the bill.

28 Priest, 2006b, p. 40 (footnote), notes how rarely there is a dispute among mathe-
maticians about what constitutes a valid proof and that “[a]s Wittgenstein stressed,
without consensus the whole “language game” of proof would break down.” To this
we might add that without this consensus the distinction between serious mistake
and rectifiable blunder would break down as well.

29 See Turing and Copeland, 2004, pp. 91–93 for a discussion of different corrections,
both by Turing himself and others.
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“mistake”, given a “wrong answer”, is in another language game that
is external to the process of calculating the particular answer we are
interested in at that particular moment.30

This double standard is made evident once we ask what the correct
answer would be. To speak of a “mistake” usually implies that there is
a correct alternative, otherwise the usage of the word “mistake” must
be considered quite unorthodox and should be explicitly called out.
What, then, would the correct answer be in the case of the calculation
performed by a mechanical clerk tasked with providing a general
decision procedure for the halting problem? The clerk is faced with a
binary choice and can either answer with ‘yes’ or ‘no’, ‘0’ or ‘1’, but
we know from the start that we will accept none of these options as
the correct answer. However, we also do not give the clerk the chance
to answer in any other way. Seen from this perspective, the verdict
(“wrong answer”) is already reached before the trial even begins.

To call such an answer a “mistake” makes sense only in a different
language game, where we can give a correct answer. The answer in this
different language game is not ‘yes’ or ‘no’, ‘0’ or ‘1’, however, but
rather the realisation that no answer can be given in the more restricted
language game played by the mechanical clerks.

This distinction between different ways of answering what might
at first appear to be the same question in the same language game
is important. The problem with Turing’s proof and its subsequent
interpretations is not that the proof in any way contradicts this way
of stating the situation, in fact, the proof is perfectly fine as long as
we restrict our interpretation to the purely mathematical results of
it. Rather, the proof together with its ordinary language interpretations
has the tendency to obscure the differences of these two language
games, since we are led to use the concepts of a decision procedure,
of questions and answers in multiple conflicting ways, but fail to see
the differences in their usages, simply because the same word is used
in every case.

Seen in this light, Turing’s reflections on the superiority of humans
over machines (or vice versa) need to be reexamined carefully. The
passage on the fallibility of machines from ‘Computing Machinery
and Intelligence’, quoted in full above, posits this superiority in terms
of being “cleverer” than a given human or machine:

We too often give wrong answers to questions ourselves to be justified in
being very pleased at such evidence of fallibility on the part of the machines.
Further, our superiority can only be felt on such an occasion in relation to
the one machine over which we have scored our petty triumph. There would
be no question of triumphing simultaneously over all machines. In short, then,
there might be men cleverer than any given machine, but then again there might be

30 Lucas, 1961, pp. 113, 117, 120, repeatedly states that “we [humans], standing out-
side the system, can see it [the undecidable proposition] to be true”, but rejects the
possibility of a mechanical and inconsistent system playing the same game as an
adequate model for the human mind.
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other machines cleverer again, and so on." [Turing, 1950, pp. 450–51, emphasis
added]

This word choice appears rather peculiar if we keep in mind that
different language games are being played in these situations. Being
“cleverer” than a machine means only that the direct ‘yes’/‘no’ an-
swer expected from the machine is sidestepped in favour of an answer
in a different and indirect language game. But such an avenue is in
principle open to “cleverer” machines as well, if we consider the be-
haviour of entering an indirect language game to be characteristic of
this cleverness described by Turing. Of course human mathematicians
will sometimes make mistakes, but unless there are convincing rea-
sons to believe that these mistakes are somehow necessary for play-
ing the more indirect language game, these mistakes can be ignored
in the same way that the errors inherent in any practical implemen-
tation of computers are ignored in theoretical arguments. In contrast
to these issues of practical machines, the fundamental undecidability
results in the wake of Gödel and Turing seem to be concerned with
more fundamental mistakes: They give rise to the idea that machines
are inherently limited compared to humans because these limitations
concern fundamental mistakes that must occur in every machine, no
matter how much we try to reduce any accidental hardware glitches.
This is why such a result appears to be an important discovery in
the ideal realm of mathematics, as it shows us the limitations of a
machine even in a perfect operating environment without friction or
other physical factors.31

That machines make logical mistakes as shown by Turing in “On
Computable Numbers”, even in an idealised operating environment
without friction, grains of sand or other such disturbances, does not
somehow ‘balance out’ a mathematician’s human inability to stay per-
fectly focused all the time and avoid blunders in calculations that they
‘actually’ know the answer to. These two cases are fundamentally dif-
ferent in so far as only the latter case is a “calculation” in Wittgen-
stein’s sense, where the correct result of the calculation is defined
by some “timeless” measure independent of the particular result of
calculation at the given point in time. This means most notably that
in the case of “blunders”, when the mathematician is distracted or a

31 In reply to Turing’s remark on the “petty triumph”, Lucas, 1961, p. 118 contests
that “this is irrelevant. What is at issue is not the unequal contest between one mind
and all machines, but whether there could be any, single, machine that could do all a
mind can do. For the mechanist thesis to hold water, it must be possible, in principle,
to produce a model, a single model, which can do everything the mind can do. [...]
To succeed, [the mechanist] must be able to produce some finite mechanical model
of the mind – any one he likes, but one he can specify, and will stick to. But since he
cannot, in principle cannot, produce any mechanical model that is adequate, even
though the point of failure is a minor one, he is bound to fail, and mechanism
must be false.” As an objection to Turing, this falls flat, because Lucas fails to argue
convincingly why an inconsistent (but not logically trivial) system must in principle
be unable to circumvent these limits.
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grain of sand jams the cogs of their mechanical counterpart, the re-
sult, changed by this blunder, does not become the timeless result of the
calculation, but is instead declared “wrong”, an exception to the rule.
In the case of the machine calculating an answer and then making a
“mistake”, however, the machine’s calculation should more appropri-
ately be called an “experiment”, since no correct answer is defined by
some measure inside the system of the machine that could be considered
the “timeless” result of the calculation. The measure of what consti-
tutes a correct or incorrect answer is only supplied by the indirect
and external language game observing the calculation and only then
can the experimental calculation be called a mistake.

3.6 blunders and new techniques

Let us revisit the point that a “human mathematician would likewise
make blunders when trying out new techniques”, a sentiment echoed
in “Intelligent Machinery, A Heretical Theory”:

By Gödel’s famous theorem, or some similar argument, one can show that
however the machine is constructed there are bound to be cases where the
machine fails to give an answer, but a mathematician would be able to. On
the other hand, the machine has certain advantages over the mathematician.
Whatever it does can be relied upon, assuming no mechanical ‘breakdown’,
whereas the mathematician makes a certain proportion of mistakes. I believe
that this danger of the mathematician making mistakes is an unavoidable corollary
of his power of sometimes hitting upon an entirely new method. This seems to
be confirmed by the well known fact that the most reliable people will
not usually hit upon really new methods." [Turing, 1951, p. 472, emphasis
added]

It is notable that Turing mentions these blunders mainly in the con-
text of “trying out new techniques”. In his view, the work of math-
ematicians can be separated into two different activities: On the one
hand they work with established techniques, where they presumably
do not make any mistakes after having learned these techniques thor-
oughly. But on the other hand they will sometimes leave the confines
of established techniques to try out new techniques. It is safe to as-
sume that the reason for this is not just boredom on the part of the
mathematical practitioner, but the need to use previously unknown
or unexplored techniques to answer questions which could not be an-
swered through the use of established techniques alone. The work of the
mathematician thus includes an element of creative exploration and
the set of techniques is not set in stone, but rather constantly evolving.
To imitate such a behaviour would then require some form of train-
ing, as Turing points out in his lecture on the Automatic Computing
Engine, again in the context of the theoretical limits of machines as
implied by his negative resolution of the Entscheidungsproblem:

There are several mathematical theorems which say almost exactly that. But
these theorems say nothing about how much intelligence may be displayed
if a machine makes no pretence at infallibility. To continue my plea for ‘fair
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play for the machines’ when testing their I.Q. A human mathematician has
always undergone an extensive training. This training may be regarded as
not unlike putting instruction tables into a machine. One must therefore not
expect a machine to do a very great deal of building up of instruction tables on
its own. No man adds very much to the body of knowledge, why should we
expect more of a machine? Putting the same point differently, the machine
must be allowed to have contact with human beings in order that it may adapt
itself to their standards. The game of chess may perhaps be rather suitable for
this purpose, as the moves of the machine’s opponent will automatically
provide this contact. [Turing, 1947, p. 394, emphasis added]

Why would it be necessary for machines to build up instruction tables
on their own? If this is not done simply for reasons of efficiency or
‘programmer convenience’, where a machine ‘bootstraps’ itself and
generates a more complex instruction table on the basis of a sim-
pler ‘meta-table’ (similar to Turing’s own use of subsidiary “skeleton
tables” in his definition of the universal computing machine), then
the reason for such a learning process, at least when considered on
a purely theoretical level with no regard for practical efficiency, can
only be that the training of the machine introduces an element that
could not have been known and formalised at the time of the initial creation
of the program, because the requirements are evolving. If this is what
is meant, and it is hard to see what other explanation could apply
here in the context of discussing the theoretical limits of a machine
implied by “mathematical theorems”, the choice of chess as an exam-
ple is rather strange, exactly because the positions in chess could in
theory be completely enumerated and the ‘only’ reason why learning
is required at all is the impracticality of enumerating these positions.
Turing’s example makes more sense if the goal is to imitate human
styles of play, but there is no theoretical reason to include this human
and evolving component if the ultimate goal is to create a theoreti-
cally optimal chess playing machine.32

If training is necessary even in the idealised and theoretical case,
then the elements that could not be formalised during the creation
of the machine’s instruction table must be instructions that could not
have been derived by the machine on its own. For example, if the
machine’s task is to prove mathematical propositions, these new ele-
ments could be new axioms or new inference rules, but it would be
superfluous to train the machine with propositions that can already
be inferred from the axioms and inference rules in its ‘untrained’ state.
This implies that there can be no justification for the inclusion of such
a new axiom or inference rule based on the logical system of the machine,
the machine must simply accept this new way of acting as a result

32 Turing himself mentions this rather obvious fact, Turing, 1953, p. 570: “If the ma-
chine could calculate at an infinite speed, and also had unlimited storage capacity,
a comparatively simple rule would suffice, and would give a result that in a sense
could not be improved on. [...] Such a rule is practically applicable in the game of
noughts and crosses, but in chess is of merely academic interest.”
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of its training, it will thus be a form of “training” / “Abrichtung”, to
borrow Wittgenstein’s wording.33

This is further elucidated in Turing’s PhD dissertation, “Systems of
Logic Based on Ordinals”, and is closely related to Turing’s distinc-
tion between “intuition” and “ingenuity” in mathematics:

Mathematical reasoning may be regarded rather schematically as the ex-
ercise of a combination of two faculties, which we may call intuition and
ingenuity. The activity of the intuition consists in making spontaneous judg-
ments which are not the result of conscious trains of reasoning. These judg-
ments are often but by no means invariably correct (leaving aside the ques-
tion what is meant by “correct”). Often it is possible to find some other way
of verifying the correctness of an intuitive judgment. We may, for instance,
judge that all positive integers are uniquely factorizable into primes; a de-
tailed mathematical argument leads to the same result. This argument will
also involve intuitive judgments, but they will be less open to criticism than
the original judgment about factorization. I shall not attempt to explain this
idea of “intuition” any more explicitly.
The exercise of ingenuity in mathematics consists in aiding the intuition
through suitable arrangements of propositions, and perhaps geometrical
figures or drawings. It is intended that when these are really well arranged
the validity of the intuitive steps which are required cannot seriously be
doubted. [Turing, 1938, p. 192, emphasis by Turing]

The hope of Hilbert’s program was to replace informal intuitive judge-
ments through the use of formal and unambiguous logical systems,
to such a degree that “in pre-Gödel times it was thought by some that
it would probably be possible to carry this programme to such a point
that all the intuitive judgments of mathematics could be replaced by a
finite number of these rules” (Turing, 1938, pp. 192–93), but of course
Gödel and Turing himself demonstrated the limitations of such an
approach. No matter how a (consistent) formal system (that is suf-
ficiently expressive to formalise basic arithmetic) is defined, it will
always be necessary to add ‘external’ intuitive judgements if the goal
is to prove all results that can be proved by mathematicians, which
in the case of both mathematicians and machines will require the
“extensive training” to learn new techniques.

But “ingenuity”, the “suitable arrangements of propositions” nec-
essary to properly move from (intuitive) step to (intuitive) step on

33 However, it is relevant in this context that the trained axioms or inference rules are
not arbitrary and that there usually exists a consensus in the mathematical com-
munity about what constitutes an intuitively correct assertion. Priest, 2006b, p. 40
(footnote, already partly quoted above), points out the importance of this consensus
for the “notion of mathematical proof” and emphasises the Wittgensteinian aspect
of this observation:

There may, from time, to time, be disputes over whether a mathematical assertion is a basic
statement, and, more, generally, over canons of proof. Still, perhaps the amazing thing about
mathematics (in virtue of its non-empirical nature) is the unanimity of the mathematical
community at any one time about what constitutes a legitimate proof. (Witness the fact
that with very few exceptions intuitionism has made hardly any inroads into mathematics
departments of universities.) [. . . ] One might even say that this consensus is necessary for
there to be a notion of mathematical proof at all. As Wittgenstein stressed, without consensus
the whole “language game“ of proof would break down.
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the way to the mathematical result, can in theory be completely elim-
inated through the use of a mechanical process, in the way already
outlined above in the context of chess:

We are always able to obtain from the rules of a formal logic a method of
enumerating the propositions proved by its means. We then imagine that all
proofs take the form of a search through this enumeration for the theorem
for which a proof is desired. In this way ingenuity is replaced by patience.
[Turing, 1938, p. 192]

The need for these intuitively correct extensions on the way to more
logical completeness is Turing’s motivation for his logical systems
based on ordinals, an infinite hierarchy of increasingly more complete
logical systems, where each step in the hierarchy is a new logical sys-
tem including a new intuitive judgement that allows the system to
prove a result unprovable by the weaker systems. The logical details
are outside the scope of the current discussion, the relevant point is
that each such logical system corresponds directly to a computing
machine, so that “by choosing a suitable machine one can approxi-
mate ‘truth’ by ‘provability’ better than with a less suitable machine,
and can in a sense approximate it as well as you please.” (Turing, 1940,
p. 215) This further explains Turing’s view, already quoted above, that
“there might be men cleverer than any given machine, but then again
there might be other machines cleverer again, and so on.”

At this point, the situation as portrayed by Turing might seem to
be agreeably compatible with many views held by Wittgenstein. Post-
Gödel, and especially post-Turing, the concept of mathematics as a
single formal system, amenable to calculation by a single powerful
and universal computing machine, appears to give way to a heteroge-
neous activity carried out in a multitude of logical systems, where no
single logical system could possibly subsume all the others. In the vo-
cabulary of Wittgenstein, mathematics turns out to be a multitude of
language games, often overlapping and sharing certain family resem-
blances, but without an essential defining characteristic that could be
stated as a formalised logical system, however complex this formali-
sation may be.

Such an emphasis of the commonalities between Turing and Witt-
genstein is certainly appealing, but it runs the risk of obscuring con-
ceptual differences not just between these two authors, but more
importantly between related notions in Turing’s own comparison of
computing machines with mathematicians:

[I]t has been shown that there are machines theoretically possible which
will do something very close to thinking. They will, for instance, test the valid-
ity of a formal proof in the system of Principia Mathematica, or even tell of
a formula of that system whether it is provable or disprovable. In the case
that the formula is neither provable nor disprovable such a machine certainly
does not behave in a very satisfactory manner, for it continues to work in-
definitely without producing any result at all, but this cannot be regarded as
very different from the reaction of the mathematicians, who have for instance



3.6 blunders and new techniques 217

worked for hundreds of years on the question as to whether Fermat’s last
theorem is true or not. [Turing, 1951, p. 472, emphasis added]

It is interesting that in Turing’s view, these two situations “cannot
be regarded as very different”, as there is a rather obvious and quite
fundamental difference: In the case of Fermat’s last theorem, mathe-
maticians did not know whether the theorem was true or not, it still needed
to be proved and it was not clear how to arrive at a proof, whereas
in the case of the impossibilities shown by Turing for computing ma-
chines, we already know that no answer given by the particular machine
will be considered correct, ever. If the search of a proof of Fermat’s theo-
rem is to be compared to the mechanistic calculation of a clerk, then
the better picture would be a very complicated and long-running cal-
culation, for which it was for a long time unknown what result the
calculation would arrive at or if the calculation could even arrive at
a result of “true” or “false” at all without adding new instruction ta-
bles and thus teaching the clerk how to apply new techniques. Such
a situation is different from the one presented by Turing’s diagonal
argument, however, because Turing has given us a schema that can
be applied to any universal computing machine and which always
ensures that the machine will fail to give an answer. The fact that a
computing machine “continues to work indefinitely without produc-
ing any result at all” is thus different from not knowing what the
result will be in so far as we know that there will never be a result. In
other words, the difference is one between not knowing what to expect
(in the case of unsolved mathematical problems) and knowing not to
expect anything (in the case of unsolvable mathematical problems). In
contrast to Fermat’s last theorem, where the result was unknown for
a long time, the fallibility of computing machines stems from results
that are tautological and underdetermined (or in ‘inverse’ cases such as
the halting problem, contradictory and overdetermined). Furthermore, it
is easy to imagine that new techniques might be required to solve Fer-
mat’s last theorem, but it is not obvious why new techniques would
necessarily be involved in the case of underdetermined or overde-
termined calculations or could help in such a case at all. In so far
as these cases follow a schema and can be applied to any particular
computing machine through the application of a diagonal argument,
the technique is exactly what Turing’s proof already provides and is
itself applicable to any computing machine, which will then lead to
the definite result that the machine must fail to give a correct answer,
no matter which new technique it employs.34

34 That Turing is far from the only one to equate the undecidability of paradoxical
machines with undecided mathematical problems can be seen in Hopcroft, Motwani,
and Ullman, 2001, pp. 308–313, where Fermat’s last theorem is presented as the
intuitive introductory example that then motivates an undecidability proof using
the halting problem as a more rigorous treatment of the intuitive notion. (See also
the connection with Chaitin’s ⌦ explored in Appendix A.)
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It might appear to be of little importance whether or not the logical
limitations of computing machines can be compared to the mathemat-
ical community’s difficulty of finding a proof of Fermat’s last theorem.
However, a crucial differentiating factor not mentioned by Turing is
the mathematical interest in these matters: While Fermat’s last the-
orem presumably drew its mathematical interest from its status in
number theory and the connections to multiple concepts investigated
in this mathematical field, the interest of computing machines such
as H (the combination of the universal computing machine U and
the decision procedure machine D that is assumed to exist in Turing’s
diagonal argument) lies solely in the application of the diagonal argument.
Put more concretely, the interest in the decision procedure machine
D was motivated by the usefulness that such a decision procedure
would have by checking whether a given machine is indeed circle-
free, but the decision procedure D was shown to be impossible to
implement not for any constructible computing machine, but for the
non-constructible and paradoxical machine H . However, H was not
one of the machines that motivated the search for a general decision
procedure to check a machine’s circularity to begin with, it could not
even have been known to us prior to Turing’s proof, as it is a machine
that is only constructible once D is assumed to exist. Of course H can-
not be constructible even after we haves seen and understood Turing’s
proof, since the assumption of D turns out to lead to a contradiction.
If Turing had constructed a concrete computing machine that had
been overlooked in our search for D and showed us that no comput-
ing machine D could ever decide the question for this concrete case,
we might have given up our search and concluded that the concrete
obstacle was unsurmountable. But Turing’s proof is non-constructive
in this sense, he convinces us to give up our search for D even though
none of the concrete computing machines that motivated the search
for the decision procedure were negatively impacted by the proof,
based solely on an entirely artificial computing machine that could
not even exist outside the sterile environment of Turing’s diagonal
argument, because its construction depends on the assumption of the
general decision procedure D that is then led ad absurdum. Similarly,
the unprovable but intuitively correct statements shown by Gödel are
never concrete mathematical statements that interest mathematicians
in their day to day work, but always artificial sentences that only draw
their interest from their application in Gödel’s proof, similar to how the
liar’s paradox only troubles us if we consider it from a logical stand-
point, without negatively impacting our everyday language.

This is why, even though Turing’s view of mathematics is certainly
closer to Wittgenstein than a Hilbertian belief in a promised land
where mathematics is replaced by a single formalism, his reason-
ing masks a philosophical confusion that runs afoul of Wittgenstein’s
views of mathematics and logic. Mathematics can never be reduced
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to a single language game that would capture its essence, but not
because of theoretical results by Gödel or Turing. The impossibili-
ties demonstrated in those arguments are situations that arise when
mathematicians restrict the language game of their logical calculus to
a consistent set of rules that excludes questions for which ‘yes’/‘no’
answer would lead to a contradictory answer. But then the mathemati-
cians afford themselves the possibility to step outside of this calculus
and into another consistent calculus which is able to give a consistent
‘yes’/‘no’ answer to the same question that the other calculus was un-
able to answer. The sleight of hand occurs when the question is called
the ‘same’, even though it has a completely different role and stand-
ing in both calculi. The option of stepping out of the calculus and
answering the ‘same’ question in a different calculus is not afforded
to the machine, even though it is far from clear why this ‘meta-game’
could not be ‘mechanically’ formalised at the cost of accepting incon-
sistency.

Gödel and Turing provide us with a schema that can be followed to
‘outsmart’ machines: Given a clearly specified and consistent logical
system or a machine that implements it, we can always construct a
contradiction. But this means that Gödel and Turing have shown us
a game that can be taught and followed. The rules of this game are
not arbitrary, in fact the rules are convincing enough that we can
point someone to these proofs if asked for a justification of our belief
that we will always be able to construct such a contradiction. Why
not teach this game to a machine? Would we then still want to say
that we are smarter than this machine? How so, if the machine can
point out its own ‘mistakes’ in exactly the same way that we could?
And can we even call these contradictions ‘mistakes’, if the machine’s
incompleteness is already exposed by the machine itself? What is it
that we would consider ‘correct’ but the machine cannot do?

In contrast to the impossibility results of Gödel and Turing, the
search for a proof of Fermat’s last theorem or unsolved problems in
mathematics is marked by the absence of a result. Either such a proof
can be found on the basis of a fixed set of “intuitive judgements” and
the proof search is simply incredibly long-running and complex, or
the search for a proof requires new ”intuition”, “new techniques”. In
the former case, a machine could be able to tackle the task just as
well as a mathematician and the difference in efficacy comes down
to questions of practicability and implementation. In the latter case, a
machine can solve these problems only if it is allowed to learn these
new intuitive judgements from the outside world, but then no logical
justification can be given, it will be a form of “training” / “Abrich-
tung”. The end result is then again a multitude of mathematical lan-
guage games that can find their justification only in our form of life,
but not in any theoretical result by Gödel or Turing.
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3.7 steering clear of undecidability

What is philosophically problematic about Turing’s proof is not the
proof itself and not even the application of the proof inside of mathe-
matics. It is rather the feeling that Turing’s proof leaves no alternative,
that Turing’s notion of “computation”, “computable machines” and
“decision procedure” is the only possible way to use these words if
they are to apply to our empirical reality and not just in the context
of a formal game devoid of any purpose. The danger lies in mistak-
ing the logical impossibility shown by Turing, which we accept as
the basis of our actions if we accept his language game as a fitting
description of our ‘ordinary’ understanding of computation based on
‘idiotic’ clerks, with a physical impossibility, because we cannot see
how there could possibly by any other way to understand compu-
tation and its related concepts. This, then, is where the work of the
philosopher begins, by ‘imagining tribes’ of people who use these con-
cepts in a different way, similar enough to our own use to be able to
see similarities, but different enough to contrast with our form of life.
In most, perhaps all cases we will declare these other people “mad”
(LFM XXI, pp. 201–203), because their use of these concepts diverges
too much from our understanding to be able to still call it “computa-
tion” in our words. The philosophical aim is not to change our usage
of such concepts, but merely to point out that we could conceivably
adopt different concepts if our form life changed. As a result, we will
often see just where the impossibility lies: It is not an impossibility
comparable to laws of physics, but a conceptual impossibility tied to
our use of these words and their associated language games.

The practical consequences of Turing’s proof can vary wildly, de-
pending on whether we see it as a physical or logical impossibility.
In the former case, we are being convinced by the proof to give up
certain attempts, exactly as we would if someone pointed out that a
machine proposed by us would require one of its components to op-
erate at a speed faster than light. In such a case, Turing’s proof is the
end of our endeavour. However, in the case of a logical impossibility,
the proof demonstrates why and how some of our concepts contra-
dict each other and lead to a nonsensical situation. It is then up to us
to decide whether this nonsense is and must be useless in the form
of life that motivated these concepts and their surrounding language
games (as in the case of nonsensical games played for the purpose of
amusement) or whether we want to revise our concept in light of the
proof so that we might give a use to these nonsensical results. In such
a case, the proof is not the end, but rather the beginning of a conceptual
investigation that will include detailed descriptions of how we use or
could use these concepts in our life. The proof itself will always be
left untouched by these philosophical investigations, it can thus never
lose its validity as long as it is mathematically correct, but it might
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very well lose its status and its usefulness if the use of concepts that
motivated the proof change based on their role in our form of life.

As a result, we might start to see contradictions in a logical sys-
tem not as a “catastrophe”, but only as a step on our way to clarify
concepts, a process which might lead to language games that give
contradictions a useful role instead of banning them. Philosophy can-
not say which language games are the ‘right’ ones, but only strive for
a ‘surveyable representation’ of the role and standing of a particular
contradiction, as Wittgenstein notes in a series of remarks Ms-130, a
continuation of his remarks in Ms-124 and Ms-127 and which were
also included in several typescripts:35

Der Widerspruch ist nicht als Katastrophe aufzufassen, sondern als eine
Mauer, die uns anzeigt, daß wir hier nicht weiter können.

Die bürgerliche Stellung des Widerspruchs, oder seine Stellung in der bürg-
erlichen Welt: das ist das philosophische Problem.

Ich möchte nicht
:
so

:::::
sehr fragen “was müssen wir tun, um einen Wider-

spruch zu vermeiden”, als “was sollen wir tun, wenn wir zu einem Wider-
spruch gelangt sind.”

Warum ist ein Widerspruch mehr zu fürchten, als eine Tautologie?

Unser Motto könnte sein: “Lassen wir uns nicht behexen!”

Zu meiner Bemerkung: die Philosophie lasse alles, wie es ist, sie lasse auch
die Mathematik, wie sie ist: Es ist nicht Sache der Philosophie, den Wider-
spruch durch eine mathematische, logisch-mathematische, Entdeckung zu
lösen. Sondern den Zustand der Mathematik; der uns beunruhigt, den Zus-
tand vor der Lösung des Widerspruchs, übersehbar zu machen. (Und damit
geht man nicht etwa einer Schwierigkeit aus dem Wege.) [Ms-130, 13.4–
14.5]

The contradiction is not to be understood as a catastrophe, but as a wall
that indicates to us that we cannot go any further here.

The civic status of the contradiction, or its status in the civic world: that is
the philosophical problem.

I don’t want to ask
::
so

:::::
much “what must we do to avoid a contradiction”

rather than “what shall we do when we have arrived at a contradiction?”

Why is a contradiction to be feared more than a tautology?

Our motto could be, “Let us not be bewitched!”

As to my remark: philosophy leaves everything as it is, it also leaves math-
ematics as it is: it is not the task of philosophy to solve the contradiction
by a mathematical, logico-mathematical, discovery. But to make the state of
mathematics which worries us, the state before the solution of the contradic-
tion, comprehensible. (And in doing so, one does not sidestep a difficulty).

35 See Ts-228, 159.6–160.4, Ts-230a/b/c, 35.6–36.4, Ts-233b, 60.3–60.6 (Z §§687–690,
which does not include the second and last remark of the remarks in Ms-130) and
also Ts-227a, 88a.1 (PI §125, which includes only the second and last remark of the
remarks in Ms-130).
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The aim of ‘imagined tribes’ and examples of a different use of contra-
dictions is not to solve the ‘problem’ caused by a contradiction, as this
would be a task for mathematicians. Instead, these examples can help
to show how a contradiction can fit into the fabric of interrelated lan-
guage games that are part of our form of life. To find a new place for
a contradiction in this fabric, even if we never go on to use it in such
a way in practice, can help to give it a place in our “filing-system”
or “filing cabinet”, a picture that Wittgenstein uses first in 1941 in
Ms-124 and then in 1944 also in Ms-130, where it occurs shortly af-
ter Wittgenstein’s remark on the contradictory royal orders already
quoted earlier:

Es ist unglaublich, wie eine neue Lade, an geeignetem Ort in unserem
::::
filing

::::::
cabinet, hilft. [Ms-124, 25.2]
Das Ergebnis einer philosophischen Untersuchung ist manchmal ein neues
‘filing-system’. [Ms-130, 82.3]

It is incredible how a new drawer, in a suitable place in our
::::
filing

:::::::
cabinet,

helps.
The result of a philosophical investigation is sometimes a new ‘filing-
system’.

The most detailed use of this picture can be found in Ms-132 and
explains how such a new place in our filing cabinet can lead us
to change our attitude towards things that we previously only saw
as “filth” or “vermin”, such as contradictions in mathematics, as we
might add in view of Ms-124 and Ms-130:

Wenn Du Dir die Welt schön geordnet denkst, für alles ist eine Lade vorhan-
den, alles ist schön & reinlich, – nur eine Sache paßt in keine der Laden
hinein – {man // Man} hat nur ein Gefühl: “Oh, wäre doch das nicht da!
Es verunziert die schöne Ordnung der Dinge.” Man verhält sich {bloß //
einfach} ablehnend zu {diesem // dem} Ding. Man sagt nicht “Es hat auch
{einen // seinen} Platz in der Welt”, sondern “Es ist Schmutz, Ungeziefer,
Unkraut”.
Wenn wir unser schönes, reinliches filing-cabinet haben, & nur ein Ding
paßt nicht hinein, & bleibt draußen liegen so möchten wir es am liebsten
einfach los werden. Gibt uns Einer aber ein anderes System von Laden &
das Ding, das früher heimatlos war, findet nun seinen Platz, so verändert
sich unsere Stellung zu ihm {gänzlich // ganz}. [Ms-132, 57.2]

If you picture the world beautifully ordered, with a drawer for everything,
everything is neat & clean, - only one thing doesn’t fit into any of the draw-
ers - you have only one feeling: “Oh, if only that weren’t there! It spoils the
beautiful order of things.” One behaves {only // simply} disapprovingly
of {this // the} thing. One does not say “It also has {a // its} place in the
world,” but rather “It is filth, vermin, weeds”.
If we have our neat, clean filing-cabinet, & only one thing does not fit in, &
remains outside, we would like to get rid of it. But if one gives us another
system of drawers & the thing that was homeless before now finds its place,
our position towards it changes {completely // entirely}.

This chapter is an attempt to give a seemingly contradictory machine
such as D a place in our filing cabinet. The critique here is not that
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Turing’s concept of computability and the supposed capabilities of
his machines would go too far. On the contrary, the critique of this
chapter is that Turing does not go far enough and that he restricts his
concept of computation to a limited area that does not include many
activities of mathematicians that could conceivably be carried out me-
chanically by machines and thus called computable, which would
require inconsistency to accommodate contradictory decision proce-
dures and paradoxical machines.36 This creates a situation where we
think that Turing’s usage of terms such as “calculate”, “verdict”, “de-
cision”, etc. corresponds well enough to our ordinary usage to be
able to draw conclusions from Turing’s argument about the limits of
practical machines. After all, if these limits apply to idealised theoret-
ical machines, then we would expect them to apply all the more so
to practical machines.37 In the same way that the proof of the impos-
sibility of trisecting an angle using compass and straightedge might
convince us to give up our search for a practical method of trisecting
an angle with these tools at hand, Turing’s proof has the ability to con-
vince us to give up the search for certain general decision procedures.
But if there is a mismatch between Turing’s usage of certain terms
and our ordinary understanding of them, then there is the danger of
giving up the search for such a decision procedure prematurely, even
though we might be able to find one that corresponds to our expecta-
tions of generality. Of course in case we ever do find such a ‘general’
decision procedure, it would have no direct relation with Turing’s
proof, because we would use terms such as “calculate”, “verdict” and
“decision” differently from Turing. Such a philosophical investigation
can therefore never impact the validity of the proof, but it might shift
the focus in such a way that the proof becomes less important to us
if we start to question its applicability to our usage of the terms that
initially lent the proof its motivation.

Seen in this light, Turing’s proof could then lead to an investigation
of exactly the area of reasoning that his diagonal argument seemed
to exclude, which encompasses contradictory decisions and logical in-
consistency in small doses. This will require us to revise our concepts,
but it need not lead to the collapse of bridges.

36 Of course there is no guarantee that there will not be other reasons for believing
that these activities cannot be carried out mechanically, but in this text we are only
concerned with the limits demonstrated by Turing’s line of argument.

37 See Hopcroft, Motwani, and Ullman, 2001, p. 307: “[T]he Turing machine long has
been recognised as an accurate model for what any physical computing device is
capable of doing.”





C O N C L U S I O N

Das Überraschende, Paradoxe ist paradox nur in einer gewissen, gleichsam
mangelhaften, Umgebung. Man muß diese Umgebung so ergänzen, daß,
was paradox schien nicht länger so erscheint. [Ms-124, 141.3 / BGM VII
§43]

Something surprising, a paradox, is a paradox only in a particular, as it
were defective, surrounding. One needs to complete this surrounding in
such a way that what looked like a paradox no longer seems one. [RFM VII
§43]

Before attempting to draw general conclusions from the preceding
investigations of Wittgenstein’s remarks on three different diagonal
arguments, it must be pointed out that any attempt to do so is bound
to violate precisely those philosophical convictions that led Wittgen-
stein to embark on the different investigations discussed here. Witt-
genstein’s philosophy is, at least in the later years of his life, decidedly
undogmatic and focused on concrete uses of language, requiring a va-
riety of investigations for a variety of concepts. A general discussion
(or even worse, an explanation) of concepts such as enumerability,
provability and decidability will thus only fall prey to the dangers
that Wittgenstein warned about and produce at best agreeable trivial-
ities and at worst philosophical nonsense.

One reason for this, which has been discussed at different points
in the three preceding chapters, is a mistaken desire for uniformity,
arising as a byproduct from an overly formal and mathematical treat-
ment of our informal concepts. Inspired by a translation of our in-
formal concepts of numbers, theorems and machines into rigourous
mathematical systems, we are led to believe that these formal trans-
lations could supplant the seemingly primitive variety of informal
language games. From such a perspective, the informal descriptions
of these concepts will appear deficient and in need of a formal ex-
planation. The three diagonal arguments discussed in this text all
demonstrate limitations of formal concepts (namely the impossibility
of enumerating all real numbers, of deciding all propositions, of de-
ciding in general whether a machine will come to a halt), but their
diagonalised constructions are then interpreted as transcending the
formal systems, which enshrines the diagonal arguments as funda-
mental results that demonstrate limits in our mathematical founda-
tions. These results can easily appear to us as limits that must hold,
as if they were laws of nature that govern the ideal world of pla-
tonic numbers and logic, giving them an “ultraphysical” appearance
of rigidity and hardness.

This explains Wittgenstein’s interest in these seemingly overly spe-
cialised pieces of mathematics: All three diagonal arguments can be
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seen as advocating for a treatment of mathematical concepts as re-
quiring higher-order systems, since a single system (an enumeration
of the real numbers, a formal system for theorems, a formal system
for computing machines) is seemingly insufficient to accommodate
all objects in question, so that a higher-order system becomes neces-
sary (and then again systems of increasingly higher orders, to hold
the diagonalised objects that escape each higher-order system). Witt-
genstein is suspicious of those meta-systems (a tendency which goes
back as far as the Tractatus with its distaste for Russell’s theory of
types), because they only seemingly explain a concept, while cling-
ing to the idea that a uniform and formal treatment has explanatory
power, whereas from Wittgenstein’s perspective the only way to clar-
ify concepts is to describe them in light of their different uses, without
reducing them to a single ‘foundational’ formal system.

What Wittgenstein shows in his investigations is that no formal
system can decide for us how to proceed at the crucial point of the
contradiction that results from diagonalisation in each of the three dif-
ferent arguments (by constructing a real number that would not occur
in the enumeration of all real numbers, by constructing a proposition
that would, if it were provable, also say that it is not provable, by
constructing a computing machine that would not be a computable
number if it occurred in the enumeration of all computable numbers).
At this crucial point, when faced with a contradiction, all three diag-
onal proofs proceed by excluding the contradictory construction and
thereby manage to preserve consistency, at the cost of moving the
contradictory construction to a higher level: The results are transfinite
numbers (which can enumerate even the real numbers that ‘escaped’
through diagonalisation), hierarchies of proof systems (which capture
all theorems that ‘escaped’ through diagonalisation on a lower level),
and uncomputability (which is the name for decision procedures that
‘escaped’ through diagonalisation).

In all three cases, Wittgenstein critically examines the formal ideal
of consistency and points out that the conclusions of the diagonal ar-
guments only seem inevitable if we are not prepared to accept the
contradictory result of the diagonalisation as an object in the formal
system. In the case of Cantor and the enumeration of the real num-
bers, the result would be a real number that is contradictory in its
diagonalised digit (which through diagonalisation is defined to be dif-
ferent from itself). In the case of Gödel, the result is a proposition that
is provable and yet says that it is not provable, if it is translated from
its arithmetic representation into a meta-mathematical statement. In
the case of Turing, the result is a computing machine that both halts
and does not halt.

As the different chapters have demonstrated, Wittgenstein’s intent
is not to advocate for a trivialist or paraconsistent treatment of in-
consistency, since such an interpretation of the mathematical results
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would be just as dogmatic and philosophically one-sided as the in-
terpretations that Wittgenstein is critically examining. Instead, his re-
marks need to be read as emphasising that there is a decision to be
made when we arrive at the diagonalised construction and that we
are, at least on the basis of the mathematical proof, free to choose ei-
ther consistency (and therefore exclude the diagonalised construction
from the system) or inconsistency (and accept the paradoxical nature
of the diagonalised construction).

From the perspective of Wittgenstein, the mistake of most interpre-
tations of the three diagonal arguments is to suggest that the math-
ematical argument could on its own provide the justifications for a
decision in favour of consistency, when this actually goes far beyond
what any purely mathematical argument can accomplish. As Witt-
genstein points out, consistency is not an ideal in and of itself, but
merely a principle that has proven itself so useful in a large variety
of language games that we accept it as an unquestioned rule even in
cases where the situation is radically different.

The situations introduced by the three diagonal arguments are all
characterised by the uselessness of their diagonalised constructions:
We do not use Cantor’s diagonalised number for anything practical,
nor Gödel’s undecidable proposition, nor Turing’s paradoxical com-
puting machine. All of these constructions have sense only within
their formal systems and are almost parasitically dependent on them.
As Wittgenstein notes, our usual reasons for requiring consistency do
not apply here, as it is not clear why inconsistency would lead to trou-
ble, apart from perhaps violating purely formal demands. In regular
situations (that is to say in situations where the objects of the formal
systems are not diagonalised constructions that depend on the pre-
cise formulation of the system in question) we can easily explain why
inconsistency would make the formal system useless. But in the case
of diagonalised constructions, this analogy breaks down and the pri-
mary reason for excluding inconsistency is our desire for a uniform
treatment of all objects in the system.

Distinguishing between (extra-systemically) useful and useless con-
structions is beyond the capabilities of the mathematical proofs. For
Wittgenstein, this is not due to a deficiency of these proofs, but rather
a direct consequence of what mathematics can and cannot do, which
constitutes the border between mathematics and philosophy. The task
of describing how a mathematical concept is used (which can include
both intra-mathematical and extra-mathematical applications) falls to
philosophy, precisely because mathematics is concerned with surveya-
bility in a different sense than philosophy: As Wittgenstein empha-
sises frequently, a mathematical proof must be surveyable to be con-
sidered a proof, and mathematics is concerned with surveyability in
this sense. But from the perspective of a mathematician, it is perfectly
acceptable to consider arithmetical concepts purely in terms of a re-
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cursive definition such as Peano arithmetic, which (with its definition
of numbers as 0 and the repeated application of a successor function)
is completely impractical for arithmetic calculations of any substan-
tial size and unsurveyable in this philosophical sense.

In Wittgenstein’s philosophy of mathematics, the actual language
games that might appear to act only as examples or as motivation
for their later formalisation are not merely primitive secondary stim-
uli for the primary formal system, they are instead essential for an
understanding of the formal system to begin with, because the actual
language games in all their variety lead to a surveyable representation
of our concepts in a way that is not possible by merely considering
the uniform treatment in the formal system.

As Wittgenstein shows, Cantor’s proof can stipulate what we call
a real number and that we exclude the diagonalised number instead
of extending our concept of numbers to include such a construction.
We are certainly free to adopt this conceptual stipulation, but Can-
tor’s proof cannot on its own justify why we adopt it. The same holds
for Gödel’s first incompleteness theorem, which can lead us to ex-
clude Gödel’s proposition P as undecidable, but cannot justify this
exclusion (instead of choosing inconsistency) on purely mathemati-
cal grounds, that is to say not on the basis of the mathematical proof
alone. In Turing’s case, the diagonal argument can show how the
assumption of a general decision procedure for deciding whether a
machine halts will lead to a contradiction, but it cannot justify the
exclusion of the resulting paradoxical machines from our concept of
such a decision procedure. The limits demonstrated by the different
proofs are ‘merely’ logical impossibilities, which does not imply that
they would be of a different ‘hardness’ than physical impossibilities,
but only that they play a different role in our language, because they
reflect our rules of language and are not directly dependent on em-
pirical discoveries.

This then leads from the distinction between physical and logical
impossibilities to an outlook on the hinge propositions of the later
Wittgenstein. Incorporating texts such as On Certainty would have
been outside the scope of this thesis, but the connection with Witt-
genstein’s late writings should nevertheless be noted here and could
be expanded upon in future publications. In the context of On Cer-
tainty, a philosophical investigation in the sense of Wittgenstein can
show us not only that the impossibilities demonstrated by diagonal
proofs are logical impossibilities, but more importantly that these im-
possibilities could play a less important role if considered in the con-
text of a different form of life. In contrast to propositions such as
‘2 + 2 = 4’, which are fixed as hinges by a multitude of activities, the
hinge propositions at play in the diagonal proofs are much less firmly
fixed by non-mathematical use than basic arithmetic (if they are hinge
propositions at all), which makes it much easier to picture alternative
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forms of life and, in the case of diagonal proofs, to possibly accept
inconsistency “in small doses”.

While the three diagonal arguments discussed here could at first
glance appear to be of interest only to mathematicians, Wittgenstein’s
remarks demonstrate why that is not the case. All three arguments
are either considered to be foundational results in their respective
fields or deal with fundamental concepts that we frequently use in-
formally in our lives: The interpretation of Cantor’s proof deals with
the concept of (real) numbers and of (different notions of) infinity;
Gödel’s proof is one of the most important results in mathematical
logic and has led (whether intended by its author or not) to uses and
abuses of the mathematical result in the philosophy of mind; Turing’s
proof still forms one of the fundamental formalisations of the concept
of computation and shapes our view of what computers can do in
theory. A misleading interpretation of these results as demonstrating
“ultraphysical” impossibilities can therefore have serious implications
and influence our understanding of much more than just a specific
mathematical proof.

Wittgenstein’s investigation of the three diagonal arguments thus
shows what is at stake in these particular proofs and why Wittgen-
stein is interested in them: Although the mathematical proofs them-
selves are perfectly valid, we have the tendency to interpret them not
as merely demonstrating logical impossibilities, which are reflections
of our rules of language, but as “ultraphysical” impossibilities, com-
parable to laws of nature, governing the ideal realm of mathematics.
Such a misleading picture is the result of a “one-sided diet”, because
we lack surveyability: We fail to grasp the concepts in all their various
uses and in the context of how they fit into our form of life. The an-
tidote is to describe them in a surveyable representation, sometimes
by imagining different forms of life.





A
B E Y O N D W I T T G E N S T E I N : K O L M O G O R O V
C O M P L E X I T Y

Wenn man einen Taschenspielertrick {
::::::::
entlarven // aufdecken} will, muß

man alles mißtrauisch prüfen, was der Mensch für gewöhnlich ohne Prü-
fung hinnimmt. Will man dies hinnehmen, so ist es unmöglich auf den Trick
zu kommen. [Ms-159, 23r.1]

If one wants to {expose // uncover} a sleight of hand, one has to examine
all that suspiciously which a person usually accepts without examination.
If one wants to accept this, it is impossible to find the trick.

In the decades after the original diagonal argument by Cantor, the
diagonal method was employed in a number of different mathemat-
ical arguments, with the proofs by Gödel and Turing being the most
famous examples. Wittgenstein’s level of engagement with these dif-
ferent diagonal arguments varied wildly, however: He devoted more
than a whole notebook to Cantor’s original diagonal argument, only a
short typescript and scattered remarks to Gödel’s proof and merely a
single specific remark to Turing’s application of the diagonal method.
At first glance, it could seem as if Wittgenstein’s interest in the diago-
nal method had waned over time and that in his view there remained
little to say about the specific uses by Gödel and Turing. It must then
appear questionable to write about Wittgenstein in the context of an
application of the diagonal argument that first appeared in the 1970s,
decades after Wittgenstein’s death in 1951, and which can be seen
as a continuation of the diagonal arguments by Gödel and Turing.1

The incompleteness results discussed here, due to Gregory Chaitin,
form the backbone of the field known as Algorithmic Information The-
ory, which combines aspects of Information Theory as inaugurated by
Claude Shannon with the computational foundations pioneered by
Turing. Contrary to its appearance as a purely theoretical and rather
specialised field, algorithmic information theory offers some of the
most practical and easily comprehensible applications of all diagonal
arguments, with its central notion of transmitting a minimal amount
of information from a source to a receiver. While some of the results in
algorithmic information theory are highly technical and beyond the
scope of the current discussion, there is also a wealth of elegantly sim-
ple proofs with accompanying metamathematical and philosophical

1 In fact, most of the incompleteness results considered in the following text are not
usually described as diagonal arguments, because they build upon the results of Tur-
ing but do not directly apply the diagonal method. As will become clear, however,
these incompleteness results show enough similarities to the more traditional diag-
onal arguments by Cantor, Gödel and Turing to be discussed along with them and
can be reformulated in a way that more directly emphasises their diagonal nature.
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issues, which are of more immediate interest to non-mathematicians
than for example Cantor’s application of the diagonal method with
its backdrop of the real numbers and set theory.

Chaitin’s incompleteness results form an interesting object of study
for a philosophical investigation in the spirit of Wittgenstein, not only
due to their comparatively practical embedding in information theory,
but also because they stand at the end of a series of diagonal argu-
ments that were all of interest to Wittgenstein and which, each in their
own way, raise important philosophical questions. That Wittgenstein
himself did not write about the incompleteness results discussed here
is not so much a hindrance as an opportunity to apply his philosophy
in a way that goes beyond an exegetical interpretation, while at the
same time staying faithful to Wittgenstein’s remarks. If we take Witt-
genstein’s aim of not advocating theses seriously, we cannot expect
his remarks to provide eternally valid insights, only clarifications of
concepts that are tied to their particular time and culture. New devel-
opments thus require new philosophical investigations, in areas that
only recently became an important part of our way of life. The follow-
ing investigation is one such attempt, focused on some of the most
relevant concepts in our digital age: information and complexity.

chaitin’s diagonal argument

Before considering the incompleteness results arising in algorithmic
information theory, it can be helpful to lay some of the groundwork
by introducing the concept of information, which stands at the root of
information theory and was first given its current mathematical defi-
nition by Claude Shannon in 1948 in his seminal paper “A Mathemat-
ical Theory of Communication” (Shannon, 1948). In it Shannon con-
siders how the communication of messages can be described math-
ematically and proposes a definition for the amount of information
contained in a particular message. Let us assume that two people
want to communicate over a long distance at night with the help of
torches or flashlights that can be switched on or off. If they wish to
transmit a yes or no message, they can agree to simply turn on the
flashlight for one second to mean yes and turn it off for one second
to mean no, but if they plan to transmit one of 10 possible messages
(a single digit from 0 to 9, for example) then they need to agree on
a more complex code that is formed by a sequence of on/off signals
over the course of multiple seconds (for example 4 seconds off = 0;
3 seconds off and 1 second on = 1; 2 seconds off then 1 second on
and then 1 second off = 2, etc.). It is not hard to see that a sequence
of on/off signals can be understood as a sequence of bits (a term
coined by Shannon as a short form for “binary digit”, Shannon, 1948,
p. 380) and that a sequence of N bits can represent one of 2N distinct
messages. log2N is then the number of bits necessary to describe a
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particular message from a set of N messages and is defined as the
“measure of the information produced when one message is chosen
from the set, all choices being equally likely” (Shannon, 1948, p. 379).
This definition of the information of a message, I = log2N, captures
our intuitive understanding of what is less and what is more infor-
mative: If there is only a single possible message, the information of
the message is 0, because there is no need to wait for the message to
know what it will be, but if there are 4 equally likely messages, ev-
ery message contains 2 bits of information (since the 4 messages can
be encoded in 2 bits as ‘00’, ‘01’, ‘10’ and ‘11’) and to communicate
such a message and distinguish it from the other possible messages
at least 2 bits need to be transmitted. The number of bits necessary
to represent the information in a book of 200 pages is thus usually
roughly twice the number of bits necessary to represent the informa-
tion in a book of 100 pages, which corresponds to our intuitive notion
of information content.

While the examples so far assumed that all messages are equally
likely, this is rarely the case in practice. If we consider the letters of
the alphabet as individual messages, for example, and intend to trans-
mit a sequence of them to communicate an English text, then the fre-
quency of the different letters will vary quite substantially, with the
vowels occurring much more frequently than ‘q’, ‘x’ and ‘z’. A prob-
abilistic definition of information, which does not treat each message
as equally likely but incorporates the probability of the occurrence
of a particular message, can adequately model this situation and con-
siders rare messages such as ‘q’, ‘x’ and ‘z’ as more informative than
more common messages such as ‘a’ and ‘e’ (Shannon, 1948, pp. 384–
89). This is a straightforward extension that is equivalent to the non-
probabilistic definition in cases where all messages are equally likely,
but allows a compression of information in cases where some mes-
sages are more likely than others. It is no accident that the term ‘bit’
has proliferated thanks to the ubiquity of digital computers, because
such a probabilistic concept of information lies at the root of many
practical applications and is involved whenever digital data is com-
pressed and transmitted.

The next important concept, complexity, marks the transition from
classical to algorithmic information theory. Equivalent definitions of
information-theoretic complexity were published independently in
the 1960s by Ray Solomonoff (Solomonoff, 1964b, Solomonoff, 1964a),
Andrey Kolmogorov (Kolmogorov, 1968a, Kolmogorov, 1968b) and
Gregory Chaitin (Chaitin, 1966), with the concept known as “Solomo-
noff-Kolmogorov-Chaitin complexity” or more simply “Kolmogorov
complexity”. The basic idea is quite elegant and simple: Instead of
considering information from the perspective of an ensemble of mes-
sages (and the information of a single message against the backdrop
of the probability of all other possible messages), Kolmogorov com-
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plexity focuses on the information content of “individual objects”
(Chaitin, 1982b, p. 118, Chaitin, 1982a, p. 75) and defines the com-
plexity of an individual object as the minimal length of a program
that produces this object (Kolmogorov, 1968a, p. 662), which is why
Kolmogorov complexity is sometimes called program-size complex-
ity. A program of the form ‘print the first 1000 decimal places of ⇡

in binary’ will produce a binary sequence of length 1000, while itself
having a particular program size, which is the length of the sequence
that acts as the binary representation of the program in the chosen
computing model, for example in 500 bits. The sequence of the first
1000 bits of ⇡ thus has a Kolmogorov complexity of at most 500 bits,
because the program with a length of 500 bits acts as a compressed
description of the full sequence of 1000 bits and could be transmit-
ted whenever we would normally transmit the full 1000 bits with no
loss of information. In algorithmic information theory, programs rep-
resent sequences of bits, because programs produce sequences of bits
as their output (for example as a series of ‘0’ and ‘1’ on the tape of
a Turing machine or via a statement such as ‘print "01011100101"’ in
a programming language) and are themselves encoded as a sequence
of bits (as a series of ‘0’ and ‘1’ on a tape to be executed by a uni-
versal Turing machine or as the compiled binary representation of
a programming written in a particular programming language). As a
consequence, the size of programs and the length of binary sequences
can be used interchangeably, and algorithmic information theory is
concerned with minimal programs that fully describe larger binary
sequences.

This definition of complexity with its focus on computable pro-
grams might seem overly theoretical, but should be understood in
the more general context of minimal descriptions for data of any kind,
for example scientific observations, the context in which Solomonoff
first proposed such a definition. Let us assume that a scientist has ob-
served a sequence of 100 data points that are all of the form on/off or
0/1 and wants to describe these findings by formulating a scientific
theory. If the sequence is a random series such as ‘0111001001010011...’
without any discernible pattern, all the scientist can do to describe it
is to publish it in full, which will require at least the 100 data points in
the sequence. But if the sequence is of the form ‘01010101...‘, it is pos-
sible to describe it as ‘01 repeating’, which will be a much shorter de-
scription with a suitable encoding than the full list of 100 bits. This dif-
ference in description size becomes even more pronounced for large
finite or infinite sequences, with ‘⇡’ as a very succinct description for
the infinite sequence ‘3.14159...’. Kolmogorov complexity is nothing
else than the formalisation of this idea using unambiguous programs
such as Turing machines instead of English language descriptions
and thus presents a further generalisation of the concepts of informa-
tion theory. It builds on the idea that data can be compressed if the
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data contains less information than its size theoretically allows, so
that 100 bits of data that contain only 20 bits of information can the-
oretically be compressed down to 20% of its original size. But in con-
trast to classical information theory with its probabilistic approach,
the algorithmic approach can theoretically exploit any pattern using
a suitable description, even in cases which look probabilistically ran-
dom (such as the digits of ⇡, where each of 0 to 9 are equally likely).

Complexity in algorithmic information theory is thus closely con-
nected to randomness, in fact complexity can be understood as a math-
ematical measure of the randomness of a (possibly infinite) sequence
of data points. A sequence like ⇡ might look random but actually
contains only a small and easily formalisable amount of information,
so that the Kolmogorov complexity (measured as the program size)
of the first billion decimal places of ⇡ is only insignificantly larger
than the complexity of the first 1000 decimal places, because the pro-
grams ‘compute ⇡ up to its billionth decimal place’ is only slightly
longer than the program ‘compute ⇡ up to its 1000th decimal place’.
From the perspective of algorithmic information theory, ⇡ is not very
complex, because it can be described and calculated by very short pro-
grams. But for most binary sequences produced by repeatedly tossing
a coin it will not be possible to describe them in any way shorter than
simply listing the whole sequence. These incompressible sequences
are called random in algorithmic information theory (Chaitin, 1975,
p. 14), though it has to be pointed out that this definition is only
concerned with the resulting object, independent of whether or not
it was produced by a random process. Randomly flipping a coin a
thousand times can certainly result in a sequence of 1000 consecutive
zeros, but this sequence would not be random from the perspective of
algorithmic information theory, because it can easily be described by
the much shorter program ‘0 repeated 1000 times’ (cf. Chaitin, 1975,
p. 12). Algorithmic information theory can at first glance seem like an
overly specialised subfield of information theory, but in fact the focus
on programs as descriptions is explained by the fact that programs
can be seen as “the most general decoder for compressed messages”:

In summary, information theory teaches us that messages from an infor-
mation source that is not completely random (that is, which does not have
maximum entropy) can be compressed. The definition of randomness is
merely the converse of this fundamental theorem of information theory; if
lack of randomness in a message allows it to be coded into a shorter se-
quence, then the random messages must be those that cannot be coded into
shorter messages. A computing machine is clearly the most general possi-
ble decoder for compressed messages. We thus consider that this definition
of randomness is in perfect agreement and indeed strongly suggested by
the coding theorem for a noiseless channel of information theory. [Chaitin,
1970, p. 48]

Here we come to the question of how these programs are specified.
It is clear that all the examples so far have only been ‘pseudo-code’,
while a ‘real’ program in a practical programming language would
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usually be larger and a program in form of a Turing machine would
be larger still, by a considerable factor. Even a comparatively simple
program for the calculation of ⇡ can grow quite large on something as
impractical as a Turing machine, so much so that such a program de-
scription can quickly dwarf the supposedly more complex approach
of simply listing all the decimal places in the program one by one in-
stead of calculating them, even for large sequences. On more practical
computers, a program for the calculation of ⇡ might be considerably
shorter. Which of these computing models are we then to choose as
the underlying measure of program-size complexity? More impor-
tantly, how valuable are the results of algorithmic information theory
if they depend in large parts on something as specific as the choice of
the computer used to hypothetically run these programs?

This apparent dependency on the particular computing platform is
why algorithmic information theory is only concerned with asymp-
totic results, which hold for infinitely long sequence independently of
which theoretical computing model is used. If we consider arbitrarily
long sequences, the differences between different theoretical comput-
ing models cease to matter for very long sequence, simply because
each computing model can simulate any other model (at the cost of
speed, which is of no importance in the current theoretical discus-
sion, cf. Chaitin, 1975, p. 16). We can simply prefix the program on
the more cumbersome Turing machine with a program that simulates
the more ergonomic programming language and then run the more
ergonomic program that uses the constant ⇡ on the more cumber-
some Turing machine. The first part of this program, the simulation
of the ergonomic computer, stays of constant length no matter how
large the sequence in question grows and will therefore be insignifi-
cant for extremely large sequences. That computers can simulate each
other is a direct consequence of Turing’s proof of the universality
of a Turing machine and the possibility to express such a universal
Turing machine as a program on a Turing machine (see Section 3.1),
but can also be intuitively explained by our ability to implement any
programming language in any other (Turing-complete) programming
language.2

2 To be more precise, this is true only if all imaginable models of computation are
equivalent to Turing machines, in other words if the Church-Turing thesis holds.
This ‘thesis’, which lacks the mathematical rigour necessary to definitely prove or
disprove it, can certainly be attacked philosophically, see for example Shanker, 1998
for a philosophical critique from the perspective of Wittgenstein. At least for now,
this will not be the aim of the current text, not only since it would go beyond the
scope of this discussion (Chapter 3 touches on the issue in passing), but also because
in the context of algorithmic information theory the status of the Church-Turing
thesis is of secondary importance. In the context of the current discussion, the Kol-
mogorov complexity for a given sequence will asymptotically be the same on all
the computing models known to us, disregarding the constant factor necessary to
simulate a particular model.
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With the choice of the computing model out of the way, we can
return to information-theoretic randomness. What are examples of
truly random sequences, we might ask, in other words examples of
sequences that cannot be compressed? This is where it gets interest-
ing and where we finally enter the realm of the incompleteness re-
sults in algorithmic information theory. To show that a sequence is
random, we have to show that its Kolmogorov complexity is approx-
imately equal to the length of the sequence itself, which is the case if
there is no shorter program that would produce the same sequence.
Let us assume that we have a very short program with a size of 100
bits. Its Kolmogorov complexity can be at most 100 bits, since the pro-
gram itself is a description of itself in 100 bits, but the Kolmogorov
complexity could be less than 100 bits if there is a shorter program
that produces the same output as our example program. To calculate
the Kolmogorov complexity of this program, we could systematically
check all programs with a size of less than 100 bits, going from small-
est to largest program and stopping if we find a program with the
same output as our example program. In case we find such a shorter
program, it will be the minimal program and the size of this program
is the Kolmogorov complexity of our example program. Otherwise
our example program is already minimal. Since a minimal program
cannot be compressed any further or it would not be minimal, the
sequence of bits of a minimal program is random in the sense of al-
gorithmic information theory.

But how do we check the Kolmogorov complexity systematically
for all shorter programs? To know whether a particular program pro-
duces the same binary sequence as our example program, we need to
wait for the particular program to produce an output, which might
never happen if the program enters an infinite loop. We thus need to
first check whether the particular program being considered at each
step in the search will halt, which is undecidable in general as a con-
sequence of Turing’s halting problem (see Chapter 3) and as a result
Kolmogorov complexity must be undecidable as well.3 Such a proof
is somewhat unsatisfying, however, as it depends entirely on Turing’s
diagonal argument and presupposes all of its philosophical assump-
tions (see Section 3.4), which makes it difficult to properly examine
the philosophical underpinnings that are unique to Kolmogorov com-
plexity and algorithmic information theory. A more self-contained
proof can show paradoxical aspects of Kolmogorov complexity with-
out depending on Turing’s diagonal argument, by demonstrating that
we cannot calculate the Kolmogorov complexity for sequences whose
length exceeds a particular threshold, as follows: Let us assume that
there exists a systematic way to calculate the Kolmogorov complexity

3 An indirect proof via halting undecidability, as sketched, is indeed the proof chosen
in many text books focused on computer science, since they need to introduce the
halting problem anyway. See for example Cover and Thomas, 2006, p. 483.
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of sequences of any length and that we have a program K for com-
puting it, with a size of k bits. Then we can construct a program D

which does the following, with the constant x chosen so that k+ x is
greater than the size of the whole program D :

1. It systematically runs through all possible sequences, going
from smallest to largest (‘0‘, ‘1‘, ‘00‘, ‘01‘, ‘10‘, ‘11‘, ‘000‘, etc.)
and for each one does the following:

2. It calculates the Kolmogorov complexity of the sequence in
question using the program K and based on the result does
the following:

3. If the complexity of the sequence in question is greater than
k+ x, the program stops and produces the sequence in question
as its output. Otherwise it continues with the next sequence in
step 1.

Choosing x so that k+ x is greater than the size of the whole pro-
gram D is easy enough in practice, because the bulk of the program
size of D will come from K (whose size is already covered by k) in
step 2, so that x only needs to cover the additional program size re-
quired for the steps 1 and 3, which are quite simple. Let us assume
that these steps will add less than a million bits to the total program
size and set k+ x to k+ 1 000 000, which is then greater than the pro-
gram size of D .

What happens if the program D tries to find a program with Kol-
mogorov complexity greater than k+ 1 000 000? There must be a pro-
gram with at least such a complexity, because there are infinitely
many possible binary sequences but only finitely many programs
with a size less than or equal to k+ 1 000 000 and each of these finitely
many programs can only be the minimal program of one of the in-
finitely many possible binary sequences. Eventually, the program D

will have run through all of the binary sequences that are represented
by one of the finitely many programs with a size less than or equal to
k+ 1 000 000, it will then test a binary sequence with a Kolmogorov
complexity greater than k+ 1 000 000 and produce this sequence as
its output. But this would mean that the program D , with a program
size of less than or equal to k+ 1 000 000, acts as a minimal or at least
shorter program for a binary sequence which, according to the result
of K , has a minimal program-size of more than k+ 1 000 000. Our as-
sumption of a program K for deciding the Kolmogorov complexity
for arbitrary sequences thus leads to a contradiction, because once
we cross a certain threshold we could simply enumerate all programs
and search for one with a complexity greater than the complexity of
the searching program and return it as the result of the search. As a
consequence, we know that there must be infinitely many incompress-
ible and thus random binary sequences after a threshold of k+ x, but
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we cannot find a single example of such a large and random binary
sequence, because if we were to find it we would have immediately
given it a description of the form ‘the first large random binary se-
quence found by the program ...’, which would make the sequence
compressible:

This is the surprising result that we wished to obtain. Most strings of length
n are of complexity approximately n, and a string generated by tossing
a coin will almost certainly have this property. Nevertheless, one cannot
exhibit individual examples of arbitrarily complex strings using methods
of reasoning accepted by Hilbert. The lower bounds on the complexity of
specific strings that can be established are limited, and we will never be
mathematically certain that a particular string is very complex, even though
most strings are random. [Chaitin, 1974, p. 63]

Large and random binary sequences seem to escape our reach as soon
as we try to name them: We know they must be there, but we cannot
“exhibit a specimen of a long series of random digits” (Chaitin, 1975,
p. 19), which appears to be a deep discovery about the randomness
of numbers and holds (for large enough bit strings) independently
of the particular computing model being used. As Chaitin notes, this
“enigma” limits what is “possible in mathematics”:

Although randomness can be precisely defined and can even be measured,
a given number cannot be proved to be random. This enigma establishes a
limit to what is possible in mathematics. [...] This limitation is not a flaw in
the definition; it is a consequence of a subtle but fundamental anomaly in
the foundations of mathematics. [Chaitin, 1975, pp. 11–12]

Before examining the philosophical issues of such an apparently as-
tounding discovery, it makes sense to discuss the analogies of the
above proof with diagonal arguments in general and certain other
paradoxes in particular. The proof as described here does not use di-
agonalisation in the same way as Cantor’s original argument or even
Turing’s application of the diagonal method, but it does show impor-
tant parallels to these more obviously diagonal proofs: It proceeds by
considering an enumerably infinite sequence of objects (namely pro-
grams for which the program K computes their Kolmogorov com-
plexity, ordered by their size in bits) and then constructs an object of
the same form (because the object is a program and so K should be
able to compute its Kolmogorov complexity) which however can be
shown not to belong to the infinite sequence, contrary to the assump-
tion (or K would not be general). In the same way that Cantor’s di-
agonalised number is able to ‘escape’ the real numbers by depending
on the (enumerable) totality of the real numbers or that Turing’s di-
agonalised machine H ‘escapes’ the halting machines (or rather the
“circle-free” machines in Turing’s original argument) by depending
on the (recursively enumerable) totality of the halting machines, the
program D ‘escapes’ the programs for which the Kolmogorov com-
plexity is decidable by depending on the (recursively enumerable) to-
tality of these programs. In all of these cases the contradiction at the
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end of the argument leads to a rejection of the assumption and thus to
a rejection of the possibility of a mechanical way to enumerate exactly
those objects that are the real numbers, the halting machines and the
programs with a computable Kolmogorov complexity, respectively.

It should be pointed out that the most obvious proofs of the unde-
cidability of Turing’s halting problem, which proceed almost exactly
like the proof of the undecidability of Kolmogorov complexity de-
scribed here and construct a Turing machine for which any halting
decision leads to a contradiction, are not immediately recognisable as
diagonal either and are in fact not due to Turing, whereas Turing’s
own diagonal argument proceeds somewhat differently and is overtly
diagonal. The halting problem is seen to be close enough to Turing’s
own diagonal proof to follow immediately from it, which is why the
analogous proof of the undecidability of the Kolmogorov complexity
merits a discussion in the context of these other diagonal arguments,
even if it is not itself overtly diagonal.4

The resemblance to these other foundational proofs is further em-
phasised by the similarity of the above proof with the Berry para-
dox, which exists in many versions, for example as “The first posi-
tive integer not definable in under 11 words”, which is an English
definition of 10 words that, by being a definition of a number, de-
fines the number in under 11 words, in contradiction to its own
definition.5 The analogy between Berry’s paradox and incomplete-
ness proof for Kolmogorov complexity has been repeatedly noted by
Chaitin (Chaitin, 1974, p. 61, Chaitin, 1995), in fact the above sketch
of the incompleteness proof is due to Chaitin (Chaitin, 1974, pp. 62–
63) and can be understood as a more rigorous version of the Berry

4 The discussion of Chaitin’s incompleteness results in the context of diagonal argu-
ments is further justified by the universal scheme described in Yanofsky, 2003, which
“encompasses the semantic paradoxes, and how they arise as diagonal arguments
and fixed point theorems in logic”. The scheme is discussed, among other exam-
ples, for Cantor’s theorem (with its diagonal set), Russell’s paradox, Gödel’s first
incompleteness theorem and Turing’s Halting problem. The connection to Chaitin’s
incompleteness results is explicitly called out: “Many of Chaitin’s algorithmic infor-
mation theory arguments seem to fit our scheme” (Yanofsky, 2003, p. 385).

5 Russell, who attributed it to the Bodleian librarian G. G. Berry and was the first to
publish it, gave the following more precise version (Russell, 1908, p. 153):

The number of syllables in the English names of finite integers tends to increase as the
integers grow larger and must gradually increase indefinitely, since only a finite number
of names can be made with a given finite number of syllables. Hence the names of some
integers must consist of at least nineteen syllables, and among these there must be a least.
Hence “the least integer not nameable in fewer than nineteen syllables” must denote a
definite integer; in fact, it denotes 111,777. But “the least integer not nameable in fewer than
nineteen syllables” is itself a name consisting of eighteen syllables; hence the least integer
not nameable in fewer than nineteen syllables can be named in eighteen syllables, which is
a contradiction.

The context of the first appearance of this paradox, which is followed in Russell’s
text by clearly diagonal paradoxes such as Richard’s paradox and which motivates
Russell’s theory of types, emphasises the close connection between Berry’s paradox
(and subsequently Kolmogorov complexity) and issues that lie at the heart of Witt-
genstein’s interest in Cantor’s, Gödel’s and Turing’s diagonal arguments.
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paradox, which turns the paradox into an incompleteness result, sim-
ilar to how Gödel’s and Turing’s fundamental results show analogies
with paradoxes such as the liar’s paradox (Chaitin, 1975, pp. 22–27,
Chaitin, 2002).6 As Chaitin explains:

What can the meaning of this paradox be? In the case of Berry’s original
paradox, one cannot arrive at a meaningful conclusion, inasmuch as one is
dealing with vague concepts such as an English phrase’s defining a positive
integer. However our version of the paradox deals with exact concepts that
have been defined mathematically. Therefore, it cannot really be a contra-
diction. It would be absurd for a string not to have a program of length less
than or equal to n for calculating it, and at the same time to have such a
program. Thus we arrive at the interesting conclusion that such a string can-
not exist. For all sufficiently great values of n, one cannot talk about “the
first string that can be proven to be of complexity greater than n,” because
this string cannot exist. [Chaitin, 1974, p. 63]

While Chaitin’s diagonal argument might not be strictly diagonal in
the same sense as Cantor’s, Gödel’s or Turing’s argument, it certainly
shares a family resemblance with these more obviously diagonal proofs
that justifies its discussion in light of and in connection with the other
arguments. Even in the case of the other three more clearly diagonal
arguments it is doubtful as to what could even be called their shared
‘essence’ if this essence is to be more than the trivial observation that
they all apply a diagonal method. A philosophical investigation that
restricted itself to the essential characteristics of these different proofs
would be unable to examine the use of these arguments in their very
heterogeneous contexts and thus fail to describe the philosophical
grammar of diagonal proofs with all of their unique facets. Further-
more, the non-diagonal aspects of Chaitin’s argument can help to
clarify not only its own standing in comparison to Cantor, Gödel and
Turing, but also illuminate the aspects that bind these proofs together
or set them apart.7

6 The similarity of the different logical and semantic paradoxes thus helps to link to-
gether their incompleteness-proof-counterparts, but also highlights the dividing line
between paradoxes and incompleteness proofs. On the contradictions of the parado-
xes, Priest, 1995, p. 4 writes: “In each of the cases, there is a totality (of all things
expressible, describable, etc.) and an appropriate operation that generates an object
that is both within and without the totality. I will call these situations Closure and
Transcendence, respectively.” While such a general characterisation of the variety of
paradoxes is certainly questionable from the perspective of Wittgenstein, as it risks
overlooking the specific uses in favour of an overly broad generalisation, it neverthe-
less serves as an interesting distinction between Berry’s paradox and Chaitin’s more
rigorous information-theoretic incompleteness result: While in the case of Berry’s pa-
radox it is not immediately clear how the transcendence is to be resolved and thus
leads to the paradox, the incompleteness result can simply reject the assumption
of the decidability of Kolmogorov complexity to exclude the transcendent opera-
tion from the system of programs. This is similar to what happens in Gödel’s and
Turing’s proofs, where the contradiction is resolved by excluding some true propo-
sitions from the system of provable propositions and by excluding a program from
the system of halting-decidable programs, respectively.

7 As Floyd, 2012, p. 36 points out, Wittgenstein’s interest in the diagonal argument
is not restricted to the special case of the uncountability of the real numbers or
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mathematics as physics

What are we to make of such an incompleteness proof from the per-
spective of Wittgenstein’s philosophy? In contrast to Berry’s paradox,
which we could easily brush aside as a paradoxical source of amuse-
ment that is ultimately without any practical use, the undecidability
of Kolmogorov complexity seems to demonstrate an inherent limit of
many rather ordinary concepts. The proof is relevant even in the con-
text of natural languages if we replace the notion of programs with
unambiguous English descriptions and search through all of these En-
glish descriptions lexicographically, going from the smallest descrip-
tion to the largest. The result then seems to preclude the possibility
of ever being certain that a particular description (whose size exceeds
a particular threshold) truly is the most compact description that we
could give.

Such an undecidability proof can appear to demonstrate an almost
physical impossibility, because it seems that if there were a general
decision procedure for Kolmogorov complexity, it would lead to a
situation where a less complex program could produce a more com-
plex program, in other words less information would generate more
information. This production of information ex nihilo would amount
to a reduction of entropy, as “program-size complexity is like the idea
of entropy in thermodynamics” (Chaitin, 2000, p. 148), with entropy
already appearing as a central concept in classical information the-
ory, “as defined in certain formulations of statistical mechanics” and
with a direct reference to Boltzmann (Shannon, 1948, p. 393). As the
second law of thermodynamics tells us, entropy in a closed system
can only ever increase, a decrease is thus a physical impossibility. Have
we perhaps made an analogous discovery in algorithmic information
theory, so that the impossibility of calculating the Kolmogorov com-
plexity for any possible program corresponds to the physical possi-
bility in thermodynamics? Algorithmic information theory seems to
suggest as much:

Ideas from theoretical physics and theoretical computer science are defi-
nitely leaking across the traditional boundaries between these two fields.
And this holds for AIT too, because its two central concepts are versions of
randomness and of entropy, which are ideas that I took with me from physics
and into mathematical logic. [Chaitin, 2004, p. 235]

a particular (diagonal) notation or arrangement. Wittgenstein’s own variant of the
diagonal argument (see Chapter 3) allows us to “imagine an enumeration in any
way we like, and Wittgenstein does not restrict its presentation. He is articulating,
in other words, a generalized form of diagonal argumentation. The argument is thus
generally applicable, not only to decimal expansions, but to any purported listing
or rule-governed expression of them; it does not rely on any particular notational
device or preferred spatial arrangements of signs.” While it shall not be suggested
that Wittgenstein had arguments such as Chaitin’s in mind when formulating his
own variant of the diagonal argument, Wittgenstein’s broad interest in the family of
diagonal arguments can help to justify the application of his remarks in the context
of algorithmic information theory.
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What Chaitin’s incompleteness result seems to prove is that, as far as
entropy is concerned, “you can only get out as much as you put in”
(Chaitin, 1993, p. 89), in algorithmic information theory as well as in
physics. What you cannot do, neither in theory nor in practice, is to
create something out of ‘thin air’. Chaitin further elaborates this point
in the slightly different context of an information-theoretic proof of
Gödel’s theorem, which is information-theoretically similar enough
to apply to the current discussion. As Chaitin notes, the “viewpoint
of thermodynamics and statistical mechanics” applies to information
theory, it is thus impossible to derive more information than you put
in as axioms, with the result that you can never derive a “twenty-
pound theorem” from only “ten pounds of axioms”:

Gödel’s original proof constructed a paradoxical assertion that is true but
not provable within the usual formalizations of number theory. In contrast I
would like to measure the power of a set of axioms and rules of inference. I
would like to able to say that if one has ten pounds of axioms and a twenty-
pound theorem, then that theorem cannot be derived from those axioms.
And I will argue that this approach to Gödel’s theorem does suggest a
change in the daily habits of mathematicians, and that Gödel’s theorem
cannot be shrugged away.
To be more specific, I will apply the viewpoint of thermodynamics and sta-
tistical mechanics to Gödel’s theorem, and will use such concepts as prob-
ability, randomness, entropy, and information to study the incompleteness
phenomenon and to attempt to evaluate how widespread it is. [Chaitin,
1982b, p. 113]

A view that interprets a mathematical proof as something akin to a
physical discovery is of course what Wittgenstein would warn against,
since we are misled by identical terms (such as “entropy” and “infor-
mation”) in completely different contexts, with the differences in use
being obscured by this superficial similarity. It is crucial to remember
that we call a program minimal or of a particular complexity as the
result of a particular definition and that as a result any impossibilities
arising in the system are logical impossibilities, rooted in the gram-
mar of our concepts, not in a pseudo-empirical and “ultra-physical”
(Ts-221a/b, 143.3, Ts-222, 11.3 / RFM I §8, see Section 0.1) world of
mathematics. At the contradictory point in the incompleteness proof,
where the program D seemingly would have produced a more com-
plex program (in other words a program with more information) than
itself, there is no magical surplus of information popping into exis-
tence, there are only two programs (the search program D and the
program resulting from its search) for which the mechanical applica-
tion of the rules of the system leads to Kolmogorov complexities that
contradict our concept of what the relationship between these two
programs must be (based on the size of these two programs in bits).
The conclusion of Chaitin’s incompleteness theorem, which rejects
the assumption of a general decision procedure for Kolmogorov com-
plexity, is of course a valid and even natural choice, but it is not the
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result of some ultra-physical mathematical reality that we are forced
to accept.

In the case of physics and thermodynamics, the entropy in a system
can be measured (at least approximately) and then, based on this mea-
surement, we are able to make predictions about how much energy
for useful work remains available in the system. These predictions
have proven so accurate and useful that we are certain that a system
with maximum entropy has no more energy available for useful work,
but we would certainly revise our theory of thermodynamics if it ever
turned out that in some peculiar situation entropy in a closed system
could be observed to decrease, contrary to the second law of ther-
modynamics. In contrast, the concepts of entropy and information in
(algorithmic) information theory are defined in terms of program-size
complexity, not as the result of mathematical observations or experi-
ments.

To say that we cannot calculate program-size complexity beyond a
particular threshold, because otherwise a sequence of bits with less
information would generate a sequence of bits with more informa-
tion, suggests that generating more information from less informa-
tion would violate the laws of algorithmic information theory in a
similar way as an observation of a decrease of entropy in a closed
system would violate the laws of physics. But we need to keep in
mind that the minimal program size to generate a particular bit se-
quence is what we call the information contained in this bit sequence.
A program that generates a sequence with more information than
itself is impossible only because there is nothing that we would be
willing to call a program with less information than what it gener-
ates, precisely because as soon as a program is shown to generate a
sequence with ‘more’ information we immediately say that this larger
sequence has only as much information as the smaller program that
acts as a description of it. Sequences are measured purely by their
smallest program, without any recourse to any external standard of
measurement. To say that we have found a program that generates a
bit sequence with more information than the program itself would be
like saying that we have found a 1 metre stick that is longer than 1
metre. It is logically impossible, because the stick itself is the standard
of measurement. In the case of physics the observation of a decrease
of entropy in a closed system would be an astounding discovery, but
in the case of algorithmic information theory all that a logical impos-
sibility shows is what we call a correct measurement.

It is not surprising that if the rules of the game allow the construc-
tion of a program that generates a sequence which it, by definition,
cannot generate, the resulting program will be paradoxical. The rules
of the game lead to a program of the form ‘Do What You Do Not
Do’ (cf. Section 3.1) and we can either exclude such a program from
our game (by rejecting the assumption that a decidable algorithm
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for Kolmogorov complexity exists and thereby ensure that no pro-
gram of the form ‘Do What You Do Not Do’ can be constructed) or
accept that the resulting program must be paradoxical. It is the old
choice between incompleteness and inconsistency already offered by
Gödel’s theorem and it is understandable that mathematics, with its
ideal of consistency, chooses incompleteness over inconsistency. But
the incompleteness result should not blind us to the fact that it is a
choice, that the incompleteness proof leads us to make a conceptual
decision at the crucial point of the argument, but that it is not an in-
evitable discovery, because we could also have chosen to play another
(inconsistent) game instead.

The fact that incompleteness in the form of the undecidability of
Kolmogorov complexity is ordinarily accepted as the inevitable con-
clusion of such an argument points to another interesting issue at
play here. Why were we interested in a decision procedure for Kol-
mogorov complexity in the first place? What practical use did we orig-
inally have in mind when we set out to find such an algorithm? The
ease with which we give up the notion of such a decision procedure
suggests that we had no clear concept in the first place and that the
incompleteness result offers us absolution from any attempt to clarify
this concept. It would be easy to object that the practical use would
have come in the form of a universal compression scheme that guar-
anteed for every sequence of data (no matter of what origin) a trans-
mission of the information content in a minimal amount of bits. After
all, nobody could conceivably dispute the usefulness of finding the
most general description of any data.

But here we risk being blinded by a utopian vision that had no
chance of being realisable, for practical reasons, not for theoretical
reasons as the incompleteness result suggests. Surely if our aim was
to transmit descriptions as efficiently as possible, the inconsistency
in the case of paradoxical descriptions would have been a low price
to pay in practice. After all, how often do we transmit paradoxical
descriptions of the form “the number not nameable in under ten
words”? Any practical machine has certain defects, which we mitigate
through redundancy and safety measures, and we could conceivably
have done something similar in the case of the decision procedure for
Kolmogorov complexity.

Instead, the real reason why the universal compressor would have
been doomed in any practical setting is much simpler and has practi-
cal reasons, which we can see if we consider the following program:
“If the unsolved mathematical problem X can be proved and is true, print
0 as the output, otherwise print 1.” In the past, the canonical example
for such a problem would have been Fermat’s last theorem, which by
now has been proved, but it does not matter which problem is chosen
as long as it is extraordinarily hard to solve. It is clear that the min-
imal description of the program will be either “print 0” or “print 1”,
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if the provability of the problem X can be decided at all, and for the
sake of the argument we assume that the problem indeed turns out to
be provable. Our universal compressor would then have to solve an
extraordinarily difficult mathematical problem and it is obvious that
by feeding the compressor only programs of this sort we effectively
turn it into a theorem prover of arbitrarily difficult theorems. At this
point Gödel’s theorem looms again, but we will sidestep it here and
instead focus on decidable mathematical problems that simply take a
very long time to solve, long past the eventual heat death of the uni-
verse, for example the calculation of arbitrarily large prime numbers
or of incredibly long running computations like the Ackermann func-
tion. Would we really call the universal compressor a practical com-
pressor if it routinely failed to calculate the minimal program size
in our own lifetime or even the lifetime of any imaginable civilisa-
tion? In the end, there is no practical difference between an algorithm
that theoretically will eventually come to a halt but practically runs
forever and one which in many cases does not even theoretically halt.

The incompleteness result is thus not an end to any practical search
for a compression scheme, because a search that relies on a general
compressor in the sense of algorithmic information theory would
have been impractical even in the absence of any incompleteness re-
sult. That a decision procedure for Kolmogorov complexity is nothing
else than a universal theorem prover in different clothing (and that
consequently Gödel’s and Turing’s results lurk behind every corner)
demonstrates that the concept of a universal compression scheme is
as vague in its applications as Hilbert’s program and the search for a
formalisation of all of mathematics were for mathematics. The idea
that such an incompleteness result could have blocked any avenue
for mathematical or logical progress suggests that mathematicians
surprised by these results expected certain theoretical endeavours to
do much more than they possibly could have achieved, namely to
clarify a concept (with practical uses) where there actually was none.

It must be pointed out that Chaitin himself has a remarkably dif-
ferent view of the implications of these incompleteness results than
many other mathematicians and clearly articulates an interpretation
that shows parallels with many ideas held by Wittgenstein, even
though the wording is often quite different. The most obvious paral-
lel is that, in the eyes of Chaitin at least, incompleteness results such
as Gödel’s do not give cause for concern or even depression, because
they are not a hindrance to any practical mathematical work, even
though they certainly came as a shock to the foundational efforts in
mathematics:

In 1946 Hermann Weyl said that the doubt induced by such discoveries as
Gödel’s theorem had been “a constant drain on the enthusiasm and deter-
mination with which I pursued my research work.” From the point of view
of information theory, however, Gödel’s theorem does not appear to give
cause for depression. Instead it seems simply to suggest that in order to
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progress, mathematicians, like investigators in other sciences, must search
for new axioms. [Chaitin, 1975, p. 24]

Of course such an extreme view as exemplified by Weyl is not com-
mon among mathematicians anymore and Chaitin says as much him-
self, while going one step further by advocating for a more relaxed
attitude towards the inclusion of new axioms into mathematics:

How have the incompleteness theorem of Gödel, the halting problem of
Turing and my own work affected mathematics? The fact is that most math-
ematicians have shrugged off the results. Of course, they agree in principle
that any finite set of axioms is incomplete, but in practice they dismiss the
fact as not applying directly to their work. Unfortunately, however, it may
sometimes apply. Although Gödel’s original theorem seemed to apply only
to unusual mathematical propositions that were not likely to be of interest
in practice, algorithmic information theory has shown that incompleteness
and randomness are natural and pervasive. This suggests to me that the
possibility of searching for new axioms applying to the whole numbers
should perhaps be taken more seriously.
Indeed, the fact that many mathematical problems have remained unsolved
for hundreds and even thousands of years tends to support my contention.
Mathematicians steadfastly assume that the failure to solve these problems
lies strictly within themselves, but could the fault not lie in the incomplete-
ness of their axioms? For example, the question of whether there are any
perfect odd numbers has defied an answer since the time of the ancient
Greeks. [...] Could it be that the statement “There are no odd perfect num-
bers” is unprovable? If it is, perhaps mathematicians had better accept it as
an axiom. [Chaitin, 1988, p. 37]

But when could mathematicians feel justified in accepting axioms?
Are they to accept them simply because these axioms have proven
to be useful, have stood the test of time and turned out to be too
difficult to prove? Such a rather practical view is bound to clash with
the platonistic conception held by most mathematicians and notably
differs from Gödel’s own interpretation of the incompleteness result,
who viewed mathematics as a priori and remained a staunch platonist
all his life. It is important to note that Gödel nevertheless came to
accept axioms based on “their fruitfulness in mathematics and, one
may add, possibly also in physics” (Chaitin, 2003, pp. 193–94, quoting
Gödel). Chaitin goes even further than Gödel in this regard and is
ready to accept a more nuanced view that is not strictly platonistic:

I think that the work I’ve described, and in particular my own work on
randomness, has not spared the whole numbers. I always believed, I think
most mathematicians probably do, in a kind of Platonic universe. “Does a
diophantine equation have an infinite number of solutions or a finite num-
ber?” This question has very little concrete computational meaning, but I
certainly used to believe in my heart, that even if we will never find out,
God knew, and either there were a finite number of solutions or an infi-
nite number of solutions. It was black or white in the Platonic universe of
mathematical reality. It was one way or the other.
I think that my work makes things look gray, and that mathematicians
are joining the company of their theoretical physics colleagues. I don’t
think that this is necessarily bad. We’ve seen that in classical and quan-
tum physics randomness and unpredictability are fundamental. I believe
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that these concepts are also found at the very heart of pure mathematics.
[Chaitin, 1989, p. 514]

In Chaitin’s view, algorithmic information theory gives rise to a con-
ception of mathematics that Gödel only alluded to, a “pseudo-em-
pirical, or quasi-empirical position” (Chaitin, 2003, p. 195). This is a
direct consequence of the result that a ‘twenty-pound theorem’ needs
at least ‘twenty pounds of axioms’, which implies that not all theo-
rems can be derived from a fixed set of immediately intuitive and
simple laws of thought. Chaitin thus takes another step towards a
position that accepts axioms as at least partially invented and judges
them based on their usefulness to derive theorems with manifold ap-
plications in mathematics, a view which seems to echo Wittgenstein’s
own notion of mathematics as being primarily invented and not dis-
covered.

Of course the similarities between the views of Chaitin and Witt-
genstein should not be overstated. Chaitin distinguishes himself from
many other mathematicians by an openness for a less dogmatic and
non-platonistic view of mathematics, an openness with which Witt-
genstein would have certainly agreed, but the idea that as a conse-
quence of information-theoretic incompleteness results the axioms of
mathematics should be treated ‘quasi-empirically’ like hypotheses in
physics is at odds with Wittgenstein’s strict separation between exper-
iment and calculation and thus between empirical propositions and
grammatical propositions. To say that axioms are grounded empiri-
cally, even quasi-empirically, would risk misunderstanding their role
as rules in a language game that lie beyond doubt and uncertainty.
Chaitin’s approach seems to provide a new source of certainty and es-
cape from the doubt raised by Gödel’s results, whereas Wittgenstein
wants to emphasise that mathematical propositions operate outside
of the game of verification which empirical propositions are subjected
to. Quite ironically, Chaitin less dogmatic view opens the door to an-
other form of dogmatism, which understands mathematical theorems
less as discoveries in the platonic world of mathematics and more as
discoveries similar to physics. In so far as ‘quasi-empiricism’ forms
a distinct philosophical position and understands at least parts of
mathematics as a posteriori science, Wittgenstein would have found
it problematic for the same reasons that theses and dogmatism in
general are to be examined with suspicion in philosophy.

Chaitin tends to combine a conception of mathematics grounded
purely by a priori deductive reasoning with a conception grounded by
a posteriori inductive science (cf. Chaitin, 2003, p. 196), but this merely
extends the assumption that mathematics is directly and explicitly
grounded in abstract principles that we can articulate, whereas Witt-
genstein sees mathematics as being implicitly grounded in our acts
(“So handle ich eben.”, Ts-227a, 153.2 /PI §217). Chaitin blurs the di-
viding line between mathematics and natural sciences, while Wittgen-
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stein wants to do just the opposite and emphasises that mathematics
has no need for the empirical certainty provided by physical laws,
because mathematical certainty shows itself in our grammar. Despite
these differences, Chaitin’s work provides interesting philosophical
‘raw material’ for a Wittgensteinian investigation of a variety of inter-
esting concepts.

inconsistent complexity

Philosophically, the proof of the undecidability of Kolmogorov com-
plexity outlined above raises questions similar to those investigated
by Wittgenstein in the context of Cantor’s diagonal argument. The
computationalist view at the heart of the incompleteness results in
algorithmic information theory, which treats every possible descrip-
tion uniformly as a program with a single particular output (or no
output in the case of programs that do not halt), proceeds analo-
gously to the extensionalist view at the heart of Cantor’s diagonal
argument, which treats every number purely extensionally as an in-
finite decimal expansion. Wittgenstein’s critique in RFM II (“what is
the method of calculating, and what the result, here? You will say
that they are one”, Ms-117, 99 / RFM II §3, see Section 1.2) applies
just as much in the context of algorithmic information theory: Why
are we willing to say that a formalised version of Berry’s paradox
as a program is a valid description? In contrast to other programs,
for which we can distinguish between the result (the program output
in form of a binary sequence) and the method (the particular algo-
rithm that computes the binary sequence), the paradoxical program
constructed based on the assumption of a decision procedure for Kol-
mogorov complexity depends almost ‘parasitically’ on the particular
computing model, in the same way that the diagonalised number in
Cantor’s diagonal argument depends on the base of the numbering
system. In the same way that the extensionalist view of mathematics
presents a uniform picture of numbers and risks obscuring the va-
riety of numerical methods exhibited by a more intensionalist view,
the computationalist view presents an equally uniform picture of de-
scriptions in terms of programs.

The formalised version of the Berry paradox is a program that
‘escapes’ any attempt to assign it a fixed and correct Kolmogorov
complexity via the assumed decision procedure. It is tempting to say
that this construction produces a program that is different from all of
the programs for which the Kolmogorov complexity is decidable, as
Chaitin does, but such a conclusion conceals the conceptual decision
at the heart of the proof, as Wittgenstein points out in the context of
his remarks on Cantor:

‘Ich will Dich eine Methode lehren wie Du in einer Entwicklung allen
diesen Entwicklungen nach der Reihe ausweichen kannst.’ So eine Meth-
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ode ist das Diagonalverfahren. – “Also erzeugt sie eine Reihe, die von allen
diesen verschieden ist.” Ist das richtig? – Ja; wenn Du nämlich diese Worte
auf diesen, oben beschriebenen Fall anwenden willst. [Ms-117, 101.2 / BGM
II §8]

“I want to shew you a method by which you can serially avoid all these
developments.” The diagonal procedure is such a method. – “So it produces
a series that is different from all of these.” Is that right? – Yes; if, that is, you
want to apply these words to the described case. [RFM II §8]

By choosing to apply these words in this case, we not only choose to
call the formalised Berry paradox a program, but also choose to draw
a line between the undecidability and decidability of Kolmogorov
complexity based on whether or not the result of the algorithm can
be consistent. The first decision, to call the paradoxical program a pro-
gram, will not be discussed here, since any possible objection would
at most lead to a different sort of incompleteness result, by excluding
paradoxical descriptions from all those descriptions that are consid-
ered to be programs.8 The more interesting decision is the one which
draws the dividing line between the decidable and the undecidable:
Why not conclude from the proof that the notion of Kolmogorov
complexity is inconsistent and that, if we allow the construction of
arbitrary programs, formalised versions of the Berry paradox can be
shown to have a contradictory Kolmogorov complexity that can only
be expressed as a pair of program lengths, namely the length of the
formalised Berry paradox in combination with the length of the first
program found as a result of the systematic search through the pro-
grams?

The issue at stake is the “therefore”, exactly as in the case of Can-
tor’s diagonal argument (Ms-117, 102.2 / §10). Chaitin’s incomplete-
ness result appears to demonstrate that the formalised Berry paradox
will lead to a contradictory answer and that therefore there cannot
be a decision procedure for Kolmogorov complexity. The “therefore”
seems to force us along a chain of steps in the proof and gives the
proof the appearance of a discovery of a mathematical fact without
any alternative. But even purely invented rules can force us to do or
say something, as Wittgenstein points out in Ms-124:

“Die Regeln zwingen mich zu etwas”, nun das kann man schon sagen,
weil, was mir mit der Regel übereinzustimmen scheint ja nicht von meiner
Willkür abhängt. [...]

Was zwingt mich denn? – Der Ausdruck der Regel? – Ja; wenn ich einmal so
erzogen bin. Aber kann ich sagen, er zwingt mich, ihm zu folgen? Ja; wenn
man sich hier die Regel nicht als Linie denkt, der ich nachfahre, sondern
als Zauberspruch der uns im Bann hält.

8 Furthermore, the importance of Chaitin’s results lies precisely in the fact that the
‘homespun’ nature of Turing’s computing model (or any other equivalent formalism)
seems to make it impossible not to consider even a paradoxical program to be a
proper program, contrary to the case of the informal Berry paradox, which we can
more easily exclude from our legitimate language and call it “an illegitimate notion”
(Russell, 1908, p. 155).
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[“schlichter Unsinn, & Beulen . . . ”] [Ms-124, 105.2, 107.3 / BGM VII §27]

“The rules compel me to. . . ” – this can be said if only for the reason that it
is not all a matter of my own will what seems to me to agree with the rule.
[...]

What is it that compels me? – the expression of the rule? – Yes, once I have
been educated in this way. But can I say it compels me to follow it? Yes: if
here one thinks of the rule, not as a line that I trace, but rather as a spell
that holds us in thrall.
((“plain nonsense, and bumps. . . ”)) [RFM VII §27]

The alternative to an interpretation of the incompleteness result as
a discovery forced upon us is not a naive form of ‘anything goes’,
but rather the notion that even though we are forced by a particular
form of life, the conceptual decision could end up being different in
the context of a different form of life. The misleading aspect of the
“therefore” is thus not the emphasis on the ‘force’ of the argument,
but the inability to see why we are forced to follow the proof the
way we do: not because some “ultra-physical” reality would dictate
it, but rather because this way of following the proof the way we do
is embedded in a whole form of life. This contrast between “it must
follow” and “it follows” was already pointed out by Wittgenstein in a
different context in Ms-117:

“Aus ‘alle’, wenn es so gemeint ist, muß doch das folgen.” – Wenn es wie
gemeint ist? Überlege es Dir, wie meinst Du es? Da schwebt Dir etwa noch
ein Bild vor – und mehr hast Du nicht. – Nein, es muß nicht – aber es folgt:
Wir vollziehen diesen Übergang.
Und wir sagen: Wenn das nicht folgt, dann waren es eben nicht alle! – – und
das zeigt nur, wie wir mit Worten in so einer Situation reagieren. – [Ms-117,
1.1 (p. 13–14), Ts-221a/b, 147.2, Ts-222, 15.1 / BGM I §12]

“From ‘all’, if it is meant like this’, this must surely follow!” – If it is meant
like what? Consider how you mean it. Here perhaps a further picture comes
to your mind – and that is all you have got. – No, it is not true that it must
– but it does follow: we perform this transition.
And we say: If this does not follow, then it simply wouldn’t be all – and
that only shews how we react with words in such a situation. [RFM I §12]

Here we see one of the reasons why Wittgenstein’s philosophy of
mathematics has so often been dismissed: It is all too easy to mis-
interpret Wittgenstein’s remarks as a rather trivial form of construc-
tivistic ‘anything goes’ that completely misunderstands why and how
proofs force us to say that something follows. But Wittgenstein does
not want to deny that we are forced to say that 2+ 2 = 4 in a way that
does not apply to 2+ 2 = 5, he merely wants to emphasise that it fol-
lows, not that “therefore, it follows”. The proof was already perfectly
fine without the additional “therefore” and the extra word merely
feigns additional certainty when in fact the question of certainty does
not even enter into the language game, because the certainty shows
itself in our acts. Wittgenstein thus walks a very fine line, which at
times narrows down to a seemingly innocuous word like “therefore”.
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The remarks on Cantor that could be applied in the present context
extend well into Ms-121 and are too numerous to be discussed at
length (see Section 1.3 for more context). It shall only be pointed out
that in both contexts the comparability of rules that ‘stand on their
own‘ with rules that depend on the entire ‘system of systems’ is called
into question by Wittgenstein:

Warum sollten wir nicht sagen: die Regel, die Diagonale zu verändern, sei
mit den Regeln des Systems unvergleichbar?
“tamper with the extension” [Ms-121, 41r.3]

Why should we not say: the rule of changing the diagonal is incomparable
with the rules of the system?
“tamper with the extension”

The formalised Berry paradox might be considered a program, but it
is distinguished from other programs by its lack of practical use. Its
sole purpose is ‘parasitic’ and depends so much on the context of the
incompleteness proof that the program is unthinkable outside of it,
because it cannot ‘survive’ without the assumption of a decision pro-
cedure for Kolmogorov complexity that is discarded at the end of the
proof. It is not “anchored” in any practice, but only “a piece of math-
ematical architecture which hangs in the air, [...] but not supported
by anything and supporting nothing” (Ms-121, 41v.2 / §35).

But if there is no practice to anchor the contradictory program, that
is to say no extra-mathematical use for it, the rejection of the initial
assumption due to the resulting contradiction becomes philosophi-
cally questionable or at the very least open to a further investigation.
A deductive principle such as reductio ad absurdum is used in prac-
tice because we have no use for contradictory premises in our ordi-
nary language games, where the premises are ordinary observations
about the world such as “It is raining”. But an inherently paradoxical
description such as Berry’s paradox is obviously of a very different
kind and can even be distinguished clearly from ordinary programs
by virtue of being ‘higher order’ and depending on the whole sys-
tem of programs. It is thus not immediately obvious why we have to
reject the resulting contradiction in this particular case. This is not an
invitation for trivialism, nor the advocacy for a wholesale dismissal
of the law of non-contradiction, only an emphasis on the possibility
of accepting the contradiction “in tiny doses”:

Wir sagen, der Widerspruch würde den Kalkül vernichten. Aber wenn er
nun sozusagen in winzigen Dosen aufträte, gleichsam blitzweise, nicht als
ein ständiges Rechenmittel, würde er da {das Spiel // den Kalkül} auch
vernichten? [Ms-124, 65.5 / BGM VII §15]

We say that the contradiction would ‘destroy the calculus. But suppose it
only occurred in tiny doses in lightning flashes as it were, not as a constant
instrument of calculation, would it nullify the calculus? [RFM VII §15]
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In Ms-178d, a short fragment of only a few loose pages9, Wittgenstein
goes even further and questions the rejection of contradictions if the
function of the contradictory propositions is not yet determined:

‘Aus seinem Gegenteil läßt sich ein Widerspruch ableiten.’ – Nun, vielleicht
macht er hier nichts.

Den Widerspruch zu vermeiden
::
ist

::::
eine

:::::::::::::
mathematische

:::::::
Methode. Sie führt

zu brauchbaren {Gebilden // Sätzen} & brauchbar ist hier ähnlich unbes-
timmt wie eine Pointe haben.
Ist aber die Funktion eines {Satzes // irgendwie satzähnlichen Gebildes}
gänzlich unbestimmt, warum soll er nicht ein Widerspruch sein? Warum
sollte sich ein Mathematiker prinzipiell vor {jedem // dem} Widerspruch
bekreuzigen. (Man {könnte // möchte} sagen: hab keine Angst er beißt
nicht!) [Ms-178d, 1.2–1.3]

‘A contradiction can be derived from its opposite.’ - Well, maybe it doesn’t
cause any trouble here.

Avoiding the contradiction
:
is

::
a
:::::::::::
mathematical

:::::::
method. It leads to usable

{constructions // propositions} & usable here is similarly undetermined as
having a punch line.
But if the function of a {proposition // proposition-like construction} is
completely undetermined, why should it not be a contradiction? Why
should a mathematician in principle cross himself before {every // the} con-
tradiction. (One could say: don’t be afraid, it doesn’t bite!)

This freedom to accept the contradiction instead of excluding it is a
consequence of the lack of a role that the contradictory proposition
plays in our ordinary language. Its use is undetermined, as it is not
yet used in our practice and “supports nothing” that could be top-
pled by our decision to accept or exclude the contradiction. The same
cannot be said for a contradiction such as “It is raining and it is not
raining”, an acceptance of which would require us to question and
adjust a whole form of life with all of its associated practices.10 This
is not to say that to conclude the undecidability from the incomplete-
ness proof sketched above would be somehow wrong, only to suggest
that it is easier than in most other situations to imagine a form of life
that calls into question the application of the reduction ad absurdum
and as a result considers such an incompleteness proof as a concep-
tual invention rather than as a discovery.

the halting probability ⌦

Up until now, Kolmogorov complexity has been examined in the
present discussion as a concept independent of Turing’s halting prob-
lem. The approach of introducing Kolmogorov complexity on its own

9 See Section 1.4 and Section 3.4 for a discussion of the context of the remark in Ms-
178d as well as an attempt to properly date the fragment in relation to Ms-121.

10 Ms-121, 70r.2 is relevant in this context and shows further parallels with Wittgen-
stein’s remarks on Cantor: “Ich möchte das rechtfertigen indem ich sage: Es ist eben
hier alles anders, ich bin nicht mehr [...] gezwungen dies so zu nennen.” See Section 1.5
for a detailed discussion.
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has certain benefits, as it allows for an investigation that targets as-
pects unique to algorithmic information theory without bringing in
all the heavy machinery of Turing’s own reflections on questions of al-
gorithmic decidability (see Chapter 3). To quietly pass over the close
connection between the halting problem and information-theoretic
complexity would however paint a distorted picture of this field and
ignore some of the most interesting philosophical interpretations of
algorithmic information theory, which is why the following sections
will examine this connection in more detail, starting with “Chaitin’s
mystical, magical number, ⌦” (Cover and Thomas, 2006, p. 484).

Before looking at the number ⌦ itself, it helps to reframe the proof
of the undecidability of Kolmogorov complexity in terms of the un-
decidability of the halting problem. The decidability of Kolmogorov
complexity is a sufficient and necessary condition for the decidabil-
ity of the halting problem, in other words either one can be reduced
to the other, since an algorithm for one can be used to construct an
algorithm for the other. This can be demonstrated by showing that a
decision procedure for the halting problem implies a decision proce-
dure for Kolmogorov complexity and vice versa:

1. Halting decidability implies Kolmogorov decidability: Let us as-
sume that there is an algorithm for deciding the halting prob-
lem. Then the Kolmogorov complexity of a particular program
P with length n can be decided by checking all programs with
length up to and including length n, executing only those pro-
grams that halt. The length of the shortest program that pro-
duces the same output as P must be the Kolmogorov complexity
of P.

2. Kolmogorov decidability implies halting decidability: Let us as-
sume that there is an algorithm for deciding the Kolmogorov
complexity of any particular program. Then we can decide
whether a particular program P halts by constructing a program
P 0 that first runs P and then runs another program X for which
the Kolmogorov complexity is known to be different from that
of a non-halting program and returns the result of the program
X as the output of P 0. By deciding the Kolmogorov complexity
of P 0 we can then decide whether P halts, because if P does not
halt then X will never run and thus the Kolmogorov complex-
ity of P 0 will be equal to the Kolmogorov complexity of P, but
if P halts then the output (and thus the Kolmogorov complex-
ity) of P 0 will be equal to the output (and thus the Kolmogorov
complexity) of X.11

11 The choice of X is static but depends on how we define the Kolmogorov complexity
of a non-halting program: If it is defined as the length of the smallest program that
does not halt, X is chosen to be the first halting program larger than the smallest non-
halting program. If it is defined as the length of the particular non-halting program
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There are many other ways to prove the second part of this equiv-
alence (see Chaitin, Arslanov, and Calude, 1995).12 Information-theo-
retic complexity and the halting problem are thus intimately linked,
which is further emphasised by Chaitin’s most famous concept, the
number ⌦. This number can be understood as a generalisation of the
halting decision, which instead of considering whether a particular
program halts considers the probability that an arbitrary program,
chosen at random, will halt (in the context of a chosen computing
model, for example a universal Turing machine or a particular Turing-
complete programming language). As Chaitin explains:

What exactly is the halting probability? I’ve written down an expression for
it:

⌦ =
X

p halts

2-|p|

Instead of looking at individual programs and asking whether they halt,
you put all computer programs together in a bag. If you generate a com-
puter program at random by tossing a coin for each bit of the program,
what is the chance that the program will halt? You’re thinking of programs
as bit strings, and you generate each bit by an independent toss of a fair
coin, so if a program is N bits long, then the probability that you get that
particular program is 2-N. Any program p that halts contributes 2-|p|, two
to the minus its size in bits, the number of bits in it, to this halting proba-
bility. [Chaitin, 1993, p. 85]

A crucial property that must hold for the computing model is that all
programs are “self-delimiting”, which means that if a particular bit
sequence (such as for example ‘011’) is a valid program then no ex-
tension of this bit sequence can be a valid program (so that for the ex-
ample of the valid program ‘011’ neither ‘0111’, ‘0110’ nor ‘01101’ can
be valid programs). This is necessary to ensure that ⌦ never grows
larger than 1, because if for example ‘00’, ‘01‘, ‘10’ and ‘11’ are all
valid programs then each of them already contributes 0.25 to the halt-
ing probability (for a maximum total of 4⇥ 0.25 = 1 if all 4 programs

itself so that different non-halting programs have different complexities, X is chosen
to be the first program with a complexity smaller than its own length. If it is defined
to be 0, X is chosen to be the first program with length greater than 0, etc.
What matters is that for any imaginable definition of the Kolmogorov complexity
we can always pick at least one program X which will be distinguishable by its Kol-
mogorov complexity from all non-halting programs and the Kolmogorov complexity
decision procedure can then be used to distinguish the result of P 0 based on whether
or not the program proceeds past P to X.

12 The above sketch of the second part is an application of Rice’s theorem that “all
non-trivial properties of the recursively enumerable languages are undecidable”
(Hopcroft, Motwani, and Ullman, 2001, pp. 387–90). The program P 0 is only a spe-
cific instance (for Kolmogorov complexity) of Rice’s more general theorem, because
for every algorithm that decides a non-trivial property it is possible to construct a
program similar to P 0 which first runs a (possibly non-halting) program P and then
a fixed program X for which the non-trivial property is known to be different from
all non-halting programs. Any non-trivial decision procedure could thus be used to
decide the halting problem for arbitrary P.
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halt) and longer programs could push the number ⌦ beyond 1 if pro-
grams were allowed to be non-self-delimiting (so that extensions of
valid programs could potentially also be valid programs).13

Not all models of computation are naturally self-delimiting, for ex-
ample Turing machines that interpret two adjacent empty squares
on the tape as an end marker would not satisfy the condition. But
since all Turing-complete models of computation are equivalent via
the Church-Turing thesis, a computing model with self-delimiting
programs can be assumed as a precondition for ⌦ with no loss of
generality. The exact numerical value of ⌦ will of course vary based
on the particular computing model being used (it is thus more pre-
cise to write ⌦ with a subscript as ⌦C for the halting probability in
the computing model C), similar to how the Kolmogorov complex-
ity will vary based on the particular computing model that is being
considered, but is a constant in the context of a particular comput-
ing model (and often written without subscript simply as ⌦ since all
Turing-complete computing models are theoretically equivalent).

One of the most interesting properties of ⌦ is that it acts as a
“philosopher’s stone” and that a knowledge of its first n bits would
enable a computer to find all possible proofs for theorems that can be
expressed in less than n bits:

⌦ is a “philosopher’s stone”. Knowing ⌦ to an accuracy of n bits will en-
able us to decide the truth of any provable or finitely refutable mathematical
theorem that can be written in less than n bits. Actually, all that this means
is that given n bits of ⌦, there is an effective procedure to decide the truth
of n-bit theorems; the procedure may take an arbitrarily long (but finite)
time. Of course, without knowing ⌦, it is not possible to check the truth or
falsity of every theorem by an effective procedure (Gödel’s incompleteness
theorem). [Cover and Thomas, 2006, pp. 484–85]

Given a knowledge of the first n bits of ⌦, we can start to run all
programs with a length of less than n bits in an interleaved fashion,
executing each program for a single step before switching to the next
program, so that more and more programs come to a halt the longer
this interleaved execution is allowed to run. The contributions to the
halting probability of each halting program are summed (so that a
halting 1-bit program contributes 2-1, a halting 2-bit program 2-2,
etc.) until the resulting sum equals ⌦ with its first n bits. All pro-
grams that have not halted at this point will never halt, because the
contribution to the halting probability after the first n bits of ⌦ can
only have come from programs with a program size equal to or larger
than n:

13 As a result of the condition that all programs must be self-delimiting, the halting
probability can be understood as the result of repeatedly tossing a coin until a valid
program is generated, so that if both ‘0’ and ‘1’ were valid programs only a single toin
coss would ever be made to generate one of two valid programs, each contributing
0.5 to the halting probability. A thorough explanation of the need for self-delimiting
programs can be found in Chaitin, 2008, p. 271.
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Thus, we will ultimately know whether or not any program of less than n

bits will halt. This enables the computer to find any proof of the theorem or
a counterexample to the theorem if the theorem can be stated in less than n

bits. Knowledge of ⌦ turns previously unprovable theorems into provable
theorems. Here ⌦ acts as an oracle. [Cover and Thomas, 2006, p. 485]

This “oracle” allows us to solve any mathematical question that we
can state in less than n bits. To prove whether a particular property
about numbers holds for all natural numbers, for example, it suffices
to formalise this property in x bits and then write a program that
checks all numbers one by one in a loop and halts if any number
does not have this property, which adds an additional y bits for the
loop-and-check routine. To know whether the property holds for all
numbers is then equivalent to the knowledge of whether the pro-
gram ever halts with a counterexample or runs forever, which can
be answered if we know at least the x+ y+ 1 first bits of ⌦. Many
extremely difficult or still unsolved mathematical problems can be
specified in this way, such as Fermat’s last theorem or the Goldbach
conjecture (cf. Cover and Thomas, 2006, p. 486).

This interpretation of ⌦ as the ultimate source of mathematical
truth can be found in a variety of texts by different authors. It has
been called “God’s number” (Chown, 2007, p. 321), “a mysterious
number ⌦ (‘the secret number’, ‘the magic number’, ‘the number of
wisdom’, ‘the number that can be known of but not known’), [...]
that encodes very compactly any ‘cornerstones’ of undecidability”
(Rozenberg and Salomaa, 2007, p. 178), a number with “magic bits”
(Rozenberg and Salomaa, 2007, p. 208), “Chaitin’s mystery number
⌦” (Li and Vitányi, 2019, p. 16), “truly the number of Wisdom” (Li
and Vitányi, 2019, p. 229), a number whose digits encode “the secret
of the universe” (Chown, 2007, p. 330) and it has even been suggested
“that knowledge of Omega could be used to characterise the level of
development of human civilisation” (Chown, 2007, p. 331). The list of
authors includes Chaitin himself, who, borrowing from Bennett, calls
the number “a suitable subject for worship by mystical cultists”:

⌦ is a suitable subject for worship by mystical cultists, for as Charles Ben-
nett (Gardner, 1979) has argued persuasively, in a sense ⌦ contains all con-
structive mathematical truth, and expresses it as concisely and compactly
as possible. Knowing the numerical value of ⌦ with N bits of precision,
that is to say, knowing the first N bits of ⌦’s base-two expansion, is another
N-bit axiom that permits one to deduce precisely which programs of size
less than N halt and which ones do not. [Chaitin, 1982b, p. 122]

It is worth quoting the passage from Bennett in full, as it is by far the
most exuberant and poetic description of ⌦:

Throughout history mystics and philosophers have sought a compact key
to universal wisdom, a finite formula or text that would provide the an-
swer to every question. The use of the Bible, the Koran and the I Ching
for divination and the tradition of the secret books of Hermes Trismegis-
tus and the medieval Jewish Cabala exemplify this belief or hope. Such
sources of universal wisdom are traditionally protected from casual use by
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being difficult to find as well as difficult to understand and dangerous to
use, tending to answer more questions and deeper ones than the searcher
wishes to ask. The esoteric book is, like God, simple but undescribable. It
is omniscient, and it transforms all who know it. The use of classical texts
to foretell mundane events is considered superstition nowadays, yet in an-
other sense science is in quest of its own Cabala, a concise set of natural
laws that would explain all phenomena. In mathematics, where no set of
axioms can hope to prove all true statements, the goal might be a concise
axiomatization of all ’interesting’ true statements.
⌦ is in many senses a Cabalistic number. It can be known of through hu-
man reason, but not known. To know it in detail one must accept its uncom-
putable sequence of digits on faith, like words of a sacred text. The number
embodies an enormous amount of wisdom in a very small space inasmuch
as its first few thousand digits, which could be written on a small piece of
paper, contain the answers to more mathematical questions than could be
written down in the entire universe – among them all interesting finitely
refutable conjectures. [Gardner, 1979, pp. 33–34; a very similar version can
be found in Bennett, 1979, pp. 9–10]

Of course this prosaic description of a mathematical concept should
be taken with a grain of salt and not necessarily read as an endorse-
ment of any mystical cultism on the part of Bennett himself, never-
theless it is certainly reflective of a more widespread fascination with
⌦ as the ultimate yet ungraspable source of mathematical knowl-
edge and truth. Bennett readily admits that it can only be “known
of through human reason, but now known”, yet exactly this explicit
mention of “human reason” appears to open the backdoor to a less
rational and more mystical understanding of ⌦, since it immediately
raises a follow-up question: If it cannot be known through human rea-
son, can it be known through other means? Does God know ⌦, we
might ask? Bennett does not explicitly raise this question, let alone
answer it, but his phrasing certainly suggests that there is mathemat-
ical knowledge or truth that transcends human reason and that it
makes sense to speak of it, even if it is not possible to ever articu-
late such a knowledge. This knowledge would allow us to answer
all “‘interesting’ true statements”, meaning all statements which can
be formalised using a certain ‘complexity budget’, in other words in
less than a particular number of bits (Bennett, 1979, p. 7). Bennett
continues:

The wisdom of ⌦ is useless precisely because it is universal: the only known
way of extracting the solution to one halting problem, say the Fermat con-
jecture, from ⌦ is by embarking on a vast computation that would at the
same time yield solutions to all other simply stated halting problems, a
computation far too large to be actually carried out. Ironically, however,
although ⌦ cannot be computed, it might be generated accidentally by a
random process, such as a series of coin tosses or an avalanche that left its
digits spelled out in the pattern of boulders on a mountainside. The first
few digits of ⌦ are probably already recorded somewhere in the universe.
No mortal discoverer of this treasure, however, could verify its authenticity
or make practical use of it. [Gardner, 1979, p. 34]

Bennett thus reaffirms a view of ⌦ as existing independently of our
ability to practically use or even theoretically compute it as a number.
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Despite this limitation, it is ‘out there’, either already “recorded” or
yet to be “generated accidentally by a random process” somewhere
in the universe. But of course this knowledge will not help us find
⌦ and all except its first few digits must remain unknown and inac-
cessible to mathematics. The number ⌦ with all its wisdom is thus
written somewhere in the book of nature, but we do not know where
to look, not unlike the situation described in Jorge Luis Borges’ Li-
brary of Babel:

These examples made it possible for a librarian of genius to discover the
fundamental law of the Library. This thinker observed that all the books,
no matter how diverse they might be, are made up of the same elements:
the space, the period, the comma, the twenty-two letters of the alphabet.
He also alleged a fact which travelers have confirmed: In the vast Library
there are no two identical books. From these two incontrovertible premises he
deduced that the Library is total and that its shelves register all the possible
combinations of the twenty-odd orthographical symbols (a number which,
though extremely vast, is not infinite): in other words, all that it is given
to express, in all languages. Everything: the minutely detailed history of
the future, the archangels’ autobiographies, the faithful catalogue of the
Library, thousands and thousands of false catalogues, the demonstration of
the fallacy of those catalogues, the demonstration of the fallacy of the true
catalogue, the Gnostic gospel of Basilides, the commentary on that gospel,
the commentary on the commentary on that gospel, the true story of your
death, the translation of every book in all languages, the interpolations of
every book in all books.
When it was proclaimed that the Library contained all books, the first im-
pression was one of extravagant happiness. All men felt themselves to be
the masters of an intact and secret treasure. There was no personal or world
problem whose eloquent solution did not exist in some hexagon. [...] At that
time it was also hoped that a clarification of humanity’s basic mysteries –
the origin of the Library and of time – might be found. [Borges, 1964, pp. 64–
65]

The solution to any problem, as long as it is expressible, exists some-
where in this vast library of books, exactly like how the solution to
any “finitely refutable mathematical conjecture” (Bennett, 1979, p. 6)
exists (as the binary digits of the real number ⌦) somewhere among all
imaginable decimal expansions of the real numbers. But what good is
this book of nature, if there is no way to find the right page? Why not
simply ‘roll the dice’ instead? In the Library of Babel, this is considered
blasphemy:

As was natural, this inordinate hope was followed by an excessive depres-
sion. The certitude that some shelf in some hexagon held precious books
and that these precious books were inaccessible, seemed almost intolerable.
A blasphemous sect suggested that the searches should cease and that all
should juggle letters and symbols until they constructed, by an improbable
gift of chance, these canonical books. The authorities were obliged to issue
severe orders. The sect disappeared, but in my childhood I have seen old
men who, for long periods of time, would hide in the latrines with some
metal disks in a forbidden dice cup and feebly mimic the divine disorder.
[Borges, 1964, p. 66]

Borges’ short story illustrates the absurdity of treating such a be-
haviour as “blasphemy”: A library contains useful information only
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because an ordinary library is a selection of books from the set of all
possible books, a set which would of course consist mostly of what we
would describe as indecipherable nonsense. If the ‘library’ contained
all possible books, it would cease to be a selection and consequently
cease to be useful as a library. To find a legible English book in such
a library is not any easier than simply generating a book by repeated
dice roll, in fact these two approaches are completely indistinguish-
able if only the resulting book and the likelihood of legibility are
considered.

This is of course easily confirmed by the basic notions of infor-
mation theory: A selection of a few books, no matter whether they
are randomly generated nonsense or legible English text, usually con-
tain an amount of information roughly proportional to the number
of books. If Borges’ short stories were to be stored in a compressed
form as bits, it would certainly be possible to compress them rather
well thanks to the fact that any natural language contains a lot of
regularity and thus redundancy, but each added story would never-
theless increase the amount of information so that 20 stories contain
roughly twice the amount of information as 10 stories. But if all pos-
sible combinations of letters are to be stored, this ‘collection’ of books
can, in the spirit of algorithmic information theory, be described by a
very short program that merely generates all possible combinations
one by one.14 The information contained in the whole Library of Ba-
bel is less than that of the single short story that describes it, even
though this short story itself would certainly be found (more than
once) somewhere on the shelves in the library.

The number ⌦ is, according to algorithmic information theory, as
informative as any number can ever possibly be, because ⌦ is com-
pletely random and incompressible. “In fact, ⌦ is a totally informa-
tive message, a message which appears random because all redun-
dancy has been squeezed out of it, a message which tells us only
things we don’t already know” (Bennett, 1979, p. 9). But how infor-
mative is it really, if we have no way to search for it, or rather more
importantly, no way to know when we have found it? It might seem
to exist independently of us and only wait for someone to discover it,
with the unfortunate limitation that we will never be able to discover
it, because it transcends the power of human reason. But exactly like
a book in the Library of Babel, which contains a significant amount of
information when considered on its own as a selection from the vast
library but ceases to be informative against the backdrop of the li-
brary as a whole, the number ⌦ ceases to be informative against the
backdrop of all the other real numbers, because we have no way to
compute it and thus no way to know when we have found it. This

14 Of course all these information-theoretic results already follow from classical in-
formation theory, in fact this whole discussion is information-theoretically a trivial
consequence of Shannon’s definitions of information and entropy, see Shannon, 1948,
pp. 392–396.
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is the flip side of ⌦: It is pure information, but only if it is sepa-
rated from the noise of all the other real numbers, which we cannot
do. Against the backdrop of all numbers, it ceases to be informative,
because the information of ‘all’ real numbers taken together is 0.

searching for the philosopher’s stone

If the number ⌦ is examined against in the context of all real numbers,
information theory turns out to be an unlikely ally of Wittgenstein’s
critique of an overly extensionalist view in mathematics. Any uniform
treatment of the real numbers purely in terms of their resulting dec-
imal expansions, with little to no intensional regard for the methods
that produced them, will see the world of numbers as a vast Borge-
sian library that already contains any number that could possibly be
written. We might not ‘know’ most of these numbers (in Bennett’s
sense, of “knowing” in contrast to “knowing of”) and will in fact be
unable to ever know some of them, such as ⌦, but they seem to exist
in a way that could lead us to say that even if we will never know ⌦,
God certainly does, because ⌦ exists. But as information theory and
the example of Borges’ Library of Babel make clear, a library that con-
tains anything at all is not a library filled to the brim with astounding
insights just waiting for us to discover them, but rather a trivial col-
lection that could with no loss of insight be replaced by a “dice cup”
to “mimic the divine disorder”.

The idea of ⌦ as a “philosopher’s stone” is nonsensical from the
perspective of the Wittgenstein of the early 1930s, because it appeals
to notions such as searching for and finding real numbers even though
these notions are not applicable in the case of ⌦. For Wittgenstein,
the possibility to search for an answer is a fundamental prerequisite
for asking a mathematical question. If there is no way to search for
an answer, the question is nonsense, at least mathematically:

Wo man fragen kann, kann man auch suchen und wo man nicht suchen
kann, kann man auch nicht fragen. Und natürlich auch nicht antworten.

Meine Erklärung darf nicht das mathematische Problem aus der Welt schaf-
fen. D.h. es ist nicht so, daß ein mathematischer Satz erst dann gewiß einen
Sinn hat, wenn er (oder sein Gegenteil) bewiesen worden ist. (In diesem
Falle hätte nämlich sein Gegenteil nie Sinn (Weyl)) andererseits könnte es
sein, daß gewisse scheinbare Probleme den Charakter des Problems – der
Frage nach Ja und Nein – verlieren. [Ts-209, 69.5–69.6 / PB §148]

Where you can ask, you can also search, and where you can’t search, you
can’t ask. And of course you can’t answer either.

My explanation mustn’t wipe out the existence of mathematical problems.
That is to say, it isn’t as if it were only certain that a mathematical propo-
sition made sense when it (or its opposite) had been proved. (This would
mean that its opposite would never have a sense (Weyl).) On the other hand,
it could be that certain apparent problems lose their character as problems
– the question as to Yes or No. [PR §148 (only second remark, first remark
my translation)]
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It has to be kept in mind that the above quote, written in the context of
Wittgenstein’s rather blunt dismissal of undecidability in mathemat-
ics, originates in a series of documents that are at times considerably
more dogmatic than the nuanced positions in the RFM from 1937 and
later.15 Nevertheless, Wittgenstein’s remarks in the 1930s are relevant
in the present context of algorithmic information theory and the num-
ber ⌦, as they arise in the context of (at the time) undecided questions
of mathematics that would be answered by ⌦, such as Fermat’s last
theorem:

Was uns, abgesehen vom angeblichen Beweis Fermat’s, dazu treibt, uns mit
der Formel xn + yn = zn . . . (F) zu beschäftigen, ist die Tatsache, daß man
nie auf Kardinalzahlen gestoßen ist, die der Gleichung genügen; aber das
gibt dem allgemeinen Satz keinerlei Stütze (Wahrscheinlichkeit) und ist also
kein guter Grund zur Beschäftigung mit dieser Formel. Wohl aber kann
man sie einfach als Schreibweise einer bestimmten allgemeinen Form anse-
hen und sich fragen, ob sich die Syntax in irgend einer Weise mit dieser
Form beschäftigt. [Ts-209, 70.4 / PB §149]

What, apart from Fermat’s alleged proof, drives us to concern ourselves
with the formula xn + yn = zn . . . (F), is the fact that we never happen
upon cardinal numbers that satisfy the equation; but that doesn’t give the
slightest support (probability) to the general theorem and so doesn’t give
us any good reason for concerning ourselves with the formula. Rather, we
may look on it simply as a notation for a particular general form and ask
ourselves whether syntax is in any way at all concerned with this form. [PR
§149]

As the above remark shows, the Wittgenstein of the early 1930s dis-
agrees with Chaitin’s “pseudo-empirical” approach that would ac-
cept propositions as axioms if they are only probably true, in other
words if no counterexample has been found even after an extensive
search. For Wittgenstein, probability cannot justify a mathematical
proposition as a general proposition. Even though such an objection
might at first appear at odds with Wittgenstein’s later views, espe-
cially his remark that an empirical proposition can indeed be fixed
in a way that lets it act as a grammatical proposition (Ms-127, 224.1;
Ms-124, 199.5 / RFM VII §74, see also Section 3.4) and his remarks
on the changing river bed in On Certainty, these later views only em-
phasise that propositions can change their status, so that an empirical

15 Wittgenstein’s views on undecidability at mathematics in the early 1930s cannot be
discussed here at length. It should only be pointed out that even his rather dogmatic
dismissal during that time period, written before the fundamental undecidability
results of the 1930s, does not necessarily need to be read as an objection to undecid-
ability results of the sort by Gödel and Turing or the undecidability of Kolmogorov
complexity illustrated above. In these cases, the search for an answer is well defined
and the undecidability stems from the fact that none of the possible answers will ever
be considered correct (because either answer leads to a contradiction). In contrast,
the undecidable mathematical problems that Wittgenstein seems to have in mind in
the 1930s are mathematical questions that only appear undecidable because we lack
a clear concept of how to search for an answer. Consequently, Wittgenstein’s objec-
tion applies only to these latter mathematical questions, which are not undecidable
but simply nonsense in need of philosophical clarification and surveyability.
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propositions is turned into a grammatical proposition or vice versa.
This view is not in conflict with Wittgenstein’s remark from 1930, be-
cause what this earlier remark denies is the view that there is no cat-
egorical difference between empirical and grammatical propositions
and that grammatical propositions are merely generalised empirical
propositions that are justified by probability or certainty. Grammati-
cal propositions are grammatical not because they are close to 100%
certain, but rather because as hinges they are exempt from the lan-
guage game of certainty and the need to justify these propositions
empirically. This underlines the fundamental disagreement between
Wittgenstein and Chaitin: Both want to argue against a rigid and dog-
matic form of platonism in mathematics, but in the process Chaitin
treats even mathematical axioms as empirically and probabilistically
justified and thereby considers empirical and grammatical proposi-
tions to be only gradually different, whereas Wittgenstein emphasises
their categorical difference, even if some propositions might change
their status as a result of a change in our form of life.

Wittgenstein follows the above quote with a further remark on the
search for mathematical answers:

Ich sagte: Wo man nicht suchen kann, da kann man auch nicht fragen, und
d.h.: Wo es keine logische Methode des Findens gibt, da kann auch die
Frage keinen Sinn haben.

Nur wo eine Methode der Lösung ist, ist ein Problem (d.h. natürlich nicht
“nur wo die Lösung gefunden ist, ist ein Problem”).

D.h. dort wo die Lösung nur von einer Art Offenbarung erwartet werden
kann, ist auch kein Problem. Einer Offenbarung entspricht keine Frage.

Das {ist // wäre} so, wie wenn man nach den Erfahrungen eines Sinnes
fragen wollte, den man noch nicht hat. Uns einen neuen Sinn geben, das
würde ich Offenbarung nennen. [Ts-209, 70.5–70.8 / PB §149]

I said: Where you can’t look for an answer, you can’t ask either, and that
means: Where there’s no logical method for finding a solution, the question
doesn’t make sense either.

Only where there’s a method of solution is there a problem (of course that
doesn’t mean ‘Only when the solution has been found is there a problem’).

That is, where we can only expect the solution from some sort of revelation,
there isn’t even a problem. A revelation doesn’t correspond to any question.

It would be like wanting to ask about experiences belonging to a sense
organ we don’t yet possess. Our being given a new sense, I would call
revelation. [PR §149]

The number ⌦ is a revelation in the purest sense: We might be led
to believe that we can search for the number because the extension-
alist view of the real numbers conjures up the image of a systematic
search space in terms of decimal expansions, better yet, we can even
approximate ⌦ by executing all possible programs concurrently and
adding up the contributions of those that halt. But what we lack is
a method to find ⌦, because we would have no way to know that a



264 beyond wittgenstein : kolmogorov complexity

particular number really is ⌦ even if we stumbled upon it by chance.
We might think that we know the sense of ⌦ (because we “know of”
⌦, in Bennett’s words), but ⌦ without its value (in terms of a decimal
expansion) has no use and ‘finding’ (or rather inventing) its value
would give it a new sense. We can neither search for it nor find it,
because we lack a systematic way to search for it:

Der Fermat’sche Satz hat also keinen Sinn, solange ich nach der Auflösung
der Gleichung durch Kardinalzahlen nicht suchen kann.
Und “suchen” muß immer heißen: Systematisch suchen. Es ist kein suchen,
wenn ich im unendlichen Raum nach einem Goldring umherirre. [Ts-209,
71.11 / PB §150]

Thus Fermat’s proposition makes no sense until I can search for a solution
to the equation in cardinal numbers.
And ‘search’ must always mean: search systematically. Meandering about
in infinite space on the look-out for a gold ring is no kind of search. [PR
§150]

It is no accident that Wittgenstein’s remarks on Fermat’s last theorem
are applicable in the case of ⌦, because ⌦ merely shifts around the
problem of nonsensical concepts and hides any undefined notions un-
der the cloak of a seemingly well-defined mathematical description.
⌦ suggests that undecided problems (in Wittgenstein’s lifetime) such
as Fermat’s last theorem already have a sense and could be decided
if only we could discover which machines would halt, whereas Witt-
genstein held the view that any solution to such a conjecture would
require the invention of new mathematical methods and calculi. ⌦
blinds us with its use of the notion of halting programs: We know
what we mean when we say that a program halts, even if we have
no idea how to decide whether a program halts in complicated cases.
But this is exactly what Wittgenstein warns against. The application
of concepts that are familiar and well understood in simple cases
cannot simply be extrapolated to the ‘more complicated’ cases, as if
the more complicated cases were like the simpler cases, just gradu-
ally more intricate. Instead, programs for which we cannot decide
whether they halt are systems of a different kind, for which we need
to invent new methods because we do not yet fully understand them.

To put it slightly more dogmatically, whether or not a program
halts is in many cases not discovered, it is invented. We are only led to
believe that we could discover in all cases whether a program halts
by analogy with the simple cases that actually do halt on a computer
and which are simple enough that we can exclude errors in the com-
puter as possible explanations for the behaviour of these programs. In
these simple cases, we can use a practical computer as our standard
of measurement and will see that this standard agrees with our own
conceptual standard in all useful theoretical models of computation.
But in the more complicated cases, where we have no idea how to
prove theoretically whether a program halts, the computer cannot act
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as our practical standard of measurement, since for highly compli-
cated computations which could potentially take years or longer to
run we can never be sure that even if the program were to halt it was
not caused by a fault in the practical implementation of the computer.
In these cases, where the possibility of an empirical measurement on
a practical computer falls away, the decision whether a program halts
can only be decided through theoretical means, which might require
the invention of new methods.

In contrast, ⌦ suggests that the sense of all mathematical propo-
sitions is already fixed and that God could decide Fermat’s last the-
orem by knowing whether a particular program halts. The number
appears to give most mathematical conjectures an unambiguous sense,
even if this sense is inaccessible to our human reason. Wittgenstein
discusses such a picture in Ms-116, in a remark which later found its
way into the PI:

Ein Bild wird heraufbeschworen, das eindeutig den Sinn zu bestimmen
scheint. Die wirkliche Verwendung scheint etwas Verunreinigtes der ge-
genüber, die das Bild uns vorzeichnet. Es geht hier wieder, wie in der Men-
genlehre: Die Ausdrucksweise scheint für einen Gott zugeschnitten zu sein,
der weiß, was wir nicht wissen können; er sieht die ganzen unendlichen
Reihen und sieht in das Bewußtsein des Menschen hinein. Für uns freilich
sind diese Ausdrucksformen quasi ein Ornat, das wir wohl anlegen, mit
dem wir aber nicht viel anfangen können, da uns die reale Macht fehlt, die
dieser Kleidung Sinn und Zweck geben würde.
In der wirklichen Verwendung der Ausdrücke machen wir gleichsam Um-
wege, gehen durch Nebengassen; während wir wohl die gerade breite
Straße vor uns sehen, sie aber freilich nicht benützen können, weil sie per-
manent gesperrt ist. [Ms-116, 162.3; Ms-120, 15r.3–16r.1; Ts-227a, 238.2 / PU
§426]

A picture is conjured up which seems to fix the sense unambiguously. The
actual use, compared with that traced out by the picture, seems like some-
thing muddied. Here again, what is going on is the same as in set theory:
the form of expression seems to have been tailored for a god, who knows
what we cannot know; he sees all of those infinite series, and he sees into
the consciousness of human beings. For us, however, these forms of expres-
sion are like vestments, which we may put on, but cannot do much with,
since we lack the effective power that would give them point and purpose.
In the actual use of these expressions we, as it were, make detours, go by
side roads. We see the straight highway before us, but of course cannot use
it, because it is permanently closed. [PI §426]

For Wittgenstein, these side alleys are just as important as the main
roads, as only the variety of side alleys shows how a concept is being
used in our life. Set theory and especially Cantor’s uniform treatment
of the real numbers from an extensionalist viewpoint create the illu-
sion that such a general view would have sense even in the absence
of any specialised methods and uses, since an omniscient being could
understand these expressions purely extensionally. But the variety of
intensional methods is not secondary to any uniform treatment, they
are not merely “detours”. This critique of extensionalism as a view-
point of God is developed further in Ms-124 and Ms-127:



266 beyond wittgenstein : kolmogorov complexity

Ein Beweis der zeigt, daß die Figur “777” in der {Extension // Entwick-
lung} von ⇡ vorkommt aber nicht zeigt wo. Nun, so bewiesen wäre dieser
‘Existenzsatz’ für gewisse Zwecke keine Regel. Aber könnte er nicht z.B. als
Mittel der Einteilung von Entwicklungsregeln dienen. Es wäre etwa auf
analoge Art bewiesen daß “777” in ⇡2 nicht vorkomme, wohl aber in ⇡⇥ e

etc. Die Frage wäre nun: Ist es vernünftig von dem betreffenden Beweis zu
sagen: er beweise die Existenz von “777” in dieser Entwicklung. Dies kann
einfach irreführend sein. Das ist eben der Fluch der Prosa, & besonders der
Russellschen Prosa, in der Mathematik.

Was schadet es, z.B., zu sagen, Gott kenne alle irrationalen Zahlen? Oder:
sie seien schon alle da, wenn wir auch nur gewisse kennen? Warum sind
diese Bilder nicht harmlos?
Einmal verstecken sie gewisse Probleme. – [Ms-124, 138.3–139.2 / BGM VII
§41, with the second remark also in Ms-127, 57.2–57.3]

A proof that shews that the pattern ‘777’ occurs in the expansion of ⇡, but
does not shew where. Well, proved in this way this ‘existential proposition’
would, for certain purposes, not be a rule. But might it not serve e.g. as a
means of classifying expansion rules? It would perhaps be proved in an
analogous way that ‘777’ does not occur in ⇡2 but it does occur in ⇡⇥ e etc.
The question would simply be: is it reasonable to say of the proof concerned:
it proves the existence of ‘777’ in this expansion? This can be simply mis-
leading. It is in fact the curse of prose, and particularly of Russell’s prose,
in mathematics.

What harm is done e.g. by saying that God knows all irrational numbers?
Or: that they are already all there, even though we only know certain of
them? Why are these pictures not harmless?
For one thing, they hide certain problems. – [RFM VII §41]

In Ms-124, Wittgenstein does not immediately explain what these
problems might be, but he returns to the idea nearly a hundred pages
later in two remarks that were published directly following the above
remarks in RFM VII:

Angenommen die Menschen berechnen die Entwicklung von ⇡ immer
weiter & weiter. Der allwissende Gott weiß also, ob sie bis zur Zeit des
Weltuntergangs zu einer Figur 777 gekommen sein werden. Aber kann
seine Allwissenheit entscheiden, ob die Menschen nach dem Weltuntergang
zu jener Figur gekommen wären? Sie kann es nicht. Ich will sagen: Auch
Gott {kann // könnte} Mathematisches nur durch Mathematik entscheiden.
Auch für ihn kann die bloße Regel des Entwickelns nichts entscheiden, was
sie für uns nicht entscheidet.

Man könnte das so sagen: Ist uns die Regel der Entwicklung gegeben, so
kann uns nun eine Rechnung lehren, daß an der fünften Stelle die Ziffer
“2” steht. Hätte Gott dies, ohne diese Rechnung, bloß aus der Entwick-
lungsregel wissen können? Ich will sagen: Nein. [Ms-124, 175.2–175.3 /
BGM VII §41]

Suppose that people go on and on calculating the expansion of ⇡. So God,
who knows everything, knows whether they will have reached ‘777’ by the
end of the world. But can this omniscience decide whether they would have
reached it after the end of the world? It cannot. I want to say: Even God can
determine something mathematical only by mathematics. Even for him the
mere rule of expansion cannot decide anything that it does not decide for
us. [RFM VII §41]
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It is clear that the example given by Wittgenstein is one of the con-
jectures that would be decidable with the knowledge of ⌦, in fact
Wittgenstein’s example of the figure ‘777’ in ⇡ can be understood
as a paradigmatic case for any mathematical proposition decidable
by knowing whether the calculation ever comes to an end, in other
words by a solution to the halting problem as provided by ⌦. From
the standpoint of algorithmic information theory, the question raised
by Wittgenstein about the existence of the figure ‘777’ in ⇡ is well
defined, even if we might not be able to answer it for practical rea-
sons.16 An omniscient being would certainly be able to answer the
question, since omniscience would include knowledge of ⌦ and thus
knowledge of whether the search routine for the figure in ⇡ would
ever come to a halt, even after the end of the world.

But such a view is exactly what Wittgenstein wants to deny: No
omniscient God can decide such a question, because no answer could
be considered an answer to our mathematical question employing our
mathematical concepts. After all, what would it mean to say that a
program does not halt before the end of the world but would halt
some time after? There is no way for us to verify this statement, let
alone use it in a more meaningful way than the opposite statement.
To say that a program halts only after the end of the world is just as
nonsensical as to say that we will not be able to prove that a program
will halt until the end of the world and that it will in fact never halt.

This situation is not comparable to a case of a trivially looping pro-
gram for which we can prove that it will never halt: To say that such
a trivial loop will never halt is not a prediction about the program
running on an actual computer, as we would not call our prediction
incorrect if after a billion years the program did turn out to halt due
to a malfunction of the computer. It is instead a rule of grammar,
which leads us to exclude from our language game the possibility of
calling anything the end of the program. If the program did turn out
to halt after a billion years we would chalk it up to programming or
hardware errors, because our theoretical model of computing is how
we measure the practical execution on a computer in this case, not
the other way around.

We might be tempted to think that a divine revelation could give
us the certainty that if we run a particular program it will not sud-
denly halt after a few billion years, but this is a practical certainty that
extends at most until the end of the world and thus depends only on

16 Wittgenstein’s example assumes that a figure such as ‘777’ will not be found until
the end of the world. Of course computers of today and all the more so improved
computers in the future will be able to find simple figures such as ‘777’ in ⇡ by cal-
culating it. This should not detract from Wittgenstein’s point, as he clearly assumes
that the figure has not been found until the end of the world and that any figure that
has not appeared in ⇡ up until that moment would do the job. The specific figure
‘777’ should thus be understood as a placeholder for an arbitrarily long figure that
cannot or has not been successfully calculated by even the fastest computers.
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the knowledge of whether the program will come to a halt before the
end of the world. Any answer that transcends these boundaries by
answering the halting question after the end of the world must be un-
intelligible for us, because it employs concepts that have no analogue
in our life.

This is why not even God can decide a mathematical conjecture
with the knowledge of ⌦: If the halting decision needed to decide
the conjecture lies beyond the end of the world, it transcends our
limits of the world and our concepts. An answer would then not be
an answer to our question, but to an entirely different question only
meaningful to omniscient beings, while our question remains merely
nonsense. If the halting question for the particular program is decided
within a practical timeframe and thus does not transcend the limits
of our world (for example if the program turns out to halt after a few
minutes), then no knowledge of ⌦ is necessary to decide the mathe-
matical conjecture, at least not knowledge of more than finitely many
bits of ⌦, which can always (if only rather impractically) be approx-
imated. But then ⌦ loses its role as a mathematical oracle or “God’s
number” and is instead seen in a more ‘homespun’ way, as a com-
pact but entirely impractical representation of the halting probability
for programs up to a certain length. From the perspective of Wittgen-
stein, ⌦ is thus philosophically irrelevant: It never had any practical
relevance to begin with and any theoretical aspirations to transcend
the limits of mathematics turn out to be philosophical nonsense.

The philosophical confusion at play here is a result of a misunder-
standing of surveyability. Extensionalism in mathematics in general
and applications of Cantor’s diagonal method in particular suggest
that whatever is surveyable in the finite case remains surveyable in
the infinite case, thanks to the “u.s.w. ad inf.” and the application of
mathematical induction. This leads to the picture of a God that can
survey the vast landscape of the real numbers, all of them already ex-
isting, waiting for us to discover those that can be discovered. But in
the case of ⌦ as well as in many other cases, there is no transcendental
vantage point that could survey the system of all systems from above,
because any generalised explanation would have to invent new con-
cepts and fail to describe the existing concepts. If the aim is to clarify
the existing concepts, all that can be done is to describe what is already
there, by calling to mind the variety of uses with its interconnections
in a surveyable representation.
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The “works” of Wittgenstein that were published after his death by
the three literary executors G.E.M. Anscombe, Rush Rhees and Georg
Henrik von Wright have often been the target of criticism, giving rise
to the question of what can even be considered a “work” by Witt-
genstein. The Remarks on the Foundations of Mathematics (“RFM”), first
published in 1956 and then heavily revised and expanded in 1974, are
certainly one of the most problematic publications in this regard, as
the literary executors themselves pointed out:

The Remarks on the Foundations of Mathematics occupy a nearly unique, and
not altogether happy, position among the posthumous publications. In ad-
dition to the relatively finished Part I, corresponding to typescripts 222,
223, and 224 of the catalogue and constituting the second half of the pre-
war version of the Investigations, the Remarks contain selections from several
manuscripts (117, 121, 122, 124, 125, 126, and 127). In the revised edition of
1974 (English translation 1978) the selections from those manuscripts were
somewhat enlarged and a further manuscript (164) which was not known
to the editors at the time of the first edition was added, practically without
omissions. A publication of the manuscripts in toto, however, seemed to us
excluded even at the time of preparing the new edition. [Von Wright, 1993,
p. 502]

The following pages will present visualisations of the similarities and
differences between the parts II–VII of the RFM (which never ad-
vanced to the typescript phase) and their underlying Nachlass doc-
uments. It is explicitly not the aim to answer whether the editorial
decisions by the literary executors were justified or which alternative
ways of publication might have been feasible in the historical con-
text shortly after Wittgenstein’s death. Instead, the following pages
attempt to introduce and describe a “surveyable representation” of
these editorial decisions, which allows the reader to make up their
own mind about the editorial interventions and, more importantly,
gain a synoptic understanding of the differences between the pub-
lished work and the corresponding documents in the Nachlass. The
term “surveyable representation”, borrowed from PI §122, is to be in-
terpreted here only as a motivating idea, ignoring the considerable
philosophical context that is attached to it in Wittgenstein’s philos-
ophy. The following visualisations are meant only as a philological
tool, it should be clear that they can only illuminate the broad strokes
of the editorial work in the RFM, even when they are paired with a
short commentary. They are thus not intended as a replacement for
existing philological commentaries and critiques, but rather as a vi-
sual supplement and jumping-off point for deeper philological work.

269
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a classification of editorial interventions

Broadly speaking, the editorial interventions that are surveyed in the
following visualisations can be classified into four groups: reordered
remarks, excluded remarks, inserted remarks and edits related to
missing contextual indications (e.g. a separating line or substantial
chronological break that is not reflected in the published work).

R/R+/R++ Reorderings of 1, up to 5, or more than 5 remarks
E/E+/E++ Exclusions of 1, up to 5, or more than 5 remarks
I/I+/I++ Insertions of 1, up to 5, or more than 5 remarks
C Loss of context due to a chronological jump

Table 6: Classification of Editorial Interventions

Reorderings are usually rather benign and are often hinted at in
the source document by Wittgenstein himself, either as a continuation
or reformulation of a previous remark (with the characteristic three
dashes “– – –”) or through the explicit use of arrows.

Remarks present in the source document but excluded form the
published version in RFM are by far the most frequent case of edi-
torial interventions in RFM. Sometimes these exclusions are substan-
tiated by indications in the source, but more often such editorial de-
cisions were made either because the remark was already published
in another work or because the remark was deemed irrelevant or
inessential for publication.

Insertions of remarks happen much more rarely in the published
works than the exclusion of remarks. Sometimes remarks need to
be inserted because Wittgenstein continued writing in another doc-
ument, at other times remarks are inserted because they are deemed
relevant by the literary executors.

For reordered, excluded or inserted remarks, it is helpful to distin-
guish between edits involving single remarks, less than 5 remarks or
many 5 or more remarks. An edit involving more than a single re-
mark will be indicated by a ‘+’ (e.g. ‘E+’), one involving 5 or more by
‘++’ (e.g. ‘I++’)

Wittgenstein’s writing process was not always as straightforward
or linear as the published works suggest. He often started working
on another topic in the same document, separating groups of remarks
with a horizontal line, or continued writing in the same document
months, sometimes years later. This segmentation of documents is
usually not indicated in the published version, which can lead to a
loss of context compared to the source document, though the editors
can hardly be faulted for not including every indication. A loss of
context caused by a chronological jump in the source document that is
not reflected in the published work will be marked by the indication
‘C’ in the following visualisations.
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a synopsis of the rfm

Based on the visualisations on the following pages, the editorial deci-
sions in the RFM can be briefly summarised as follows:

1. Part I is based on a typescript and exhibits only minor editorial
interventions, it will therefore not be discussed here.

2. Part II may be the smallest of the published parts, but is com-
piled quite heterogeneously from two larger documents; a clear-
ly delineated part of Ms-117 and the whole of Ms-121, with the
frequent omission of sometimes large passages in the latter case.

3. Part III is heavily edited from start to finish and contains only
around half of the remarks of its source documents Ms-117
and Ms-122, but these edits are rather uniform throughout the
whole part and usually restricted to the exclusion of at most a
handful of remarks.

4. Part IV is sourced primarily from Ms-125 and can be described
as editorially inconspicuous for most of its first 50 sections, with
the last 10 sections being the result of reorderings and a number
of insertions from Ms-126, Ms-127 and Ms-121.

5. Part V is taken from Ms-126 (first two thirds) and Ms-127 (last
third), with several reorderings and frequent omissions in the
case of both documents and a jump of about 100 pages between
remarks in Ms-127.

6. Part VI is editorially unproblematic and corresponds in toto and
with only minor corrections to Ms-164, while omitting the last
part of that document on private language.

7. Part VII is selected (with numerous remarks being excluded)
exclusively from Ms-124, which shares similar or identical re-
marks with earlier draft stages (Ms-161 and Ms-163), contempo-
raneous documents (Ms-127) and later documents (Ms-129) as
well as typescripts (Ts-227a/b and thus the Philosophical Investi-
gations).

how to read the visualisations

The visualisations on the following pages present the editorial de-
cisions described above for the parts II–VII of the RFM, with one
visualisation per part. Each image shows three columns of remarks,
ordered from top to bottom as they appear in the published work
of the source documents. The remarks in the different columns are
connected if they correspond to each other, either because a remark
in the published work is identical (with minimal textual changes) to
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a remark in the source document or because a remark in a source
document also appears in other related documents. The column on
the left displays the remarks that are included in the published work,
with diamond markers indicating the section boundaries in the work
(and section numbers to the left). The column in the middle shows the
remarks of one or several source documents (with page numbers to
the right) that form the basis of the published work. The column on
the right displays the remarks of secondary documents (with page
numbers to the right) with textually similar remarks in the source
document of the published work.

By displaying the connections from the published work (on the
left) to the source documents (in the middle), the visualisation shows
where the published work originates and which parts of the source
document were reordered / excluded / inserted. By displaying the
connection from the source document (in the middle) to the related
documents (on the right), the visualisation can often hint at why a
particular segment was or was not published (which will be elabo-
rated in the commentary).

To the left of the vertical document lines (in the middle and right
columns) appears a kind of bar code pattern of short horizontal lines
with small or larger circle markers directly to the left. These lines
and markers indicate that the remark is published in the work cur-
rently being visualised (indicated by a slightly larger circle marker)
or is published in other works (either other parts of the RFM or other
works, both indicated by a small circle marker).

Longer horizontal lines, both solid and densely dotted, which cross
the document lines (in the middle and right columns) indicate a break
between adjacent remarks in the document. Solid lines indicate a sep-
arating line by Wittgenstein himself, densely dotted lines indicate a
chronological break of more than 30 days between remarks.

metadata sources

The following visualisations were all generated based on the meta-
data contained in the XML transcriptions of the Wittgenstein Archives
Bergen. Metadata concerning published works is quite complete, but
probably not entirely free of errors. The existing Source Catalogue of the
Published Texts (Biggs and Pichler, 1993) shows that such a mapping
between published works and Nachlass documents is far from trivial.
In fact, back in 1993, many of the sections of the RFM (especially in
the parts III, IV and V) could not be easily associated with their doc-
ument sources, as evidenced by a number of “?” entries in the source
catalogue. Nowadays, all of these sections are included in the XML
metadata, but it is not always obvious where to look for them. This
is one of the areas where visualisations can offer a starting point for
researchers not intimately familiar with all the Nachlass documents.
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The connections between primary (in the middle column) and sec-
ondary documents (in the right column) were automatically calcu-
lated based on the textual overlap between remarks in terms of shared
word bi-grams and tri-grams. Here the caveat applies even more:
These similarity connections have been checked by hand in many
cases, but are only approximate and thus not free of errors. It should
be pointed out that the similarity between remarks is not binary, but
rather specified as a confidence value between 0 and 1 (which is re-
flected in the opacity of the visualised connections). It is not guaran-
teed that every single connection is correct, but taken as a whole, the
method of visualisation should result in a “surveyable representation”
that correctly displays the editorial decision in a synoptic fashion.
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part ii

RFM II, which deals mainly with Cantor’s diagonal argument, is by far the
shortest of all the parts. The underlying documents, Ms-117 and Ms-121,
are much longer, however, and contain a wealth of remarks not published
in any part of the RFM.

In the case of Ms-117, the reason is straightforward: There are 5 breaks§§1–22: Ms-117
in Ms-117, corresponding (with the exception of the last break at the end
of Ms-117) to the different parts described in The Wittgenstein Papers (Von
Wright, 1993, p. 495). The first 22 sections of RFM II correspond directly
to the clearly separated first part in Ms-117. Many of the remarks in the
fifth part of Ms-117 were published in another work (RFM III) and will be
discussed on the next pages.

Ms-121 is heavily edited, however. The unpublished remarks up to 23v.2§§22-62: Ms-121
mostly revolve around non-mathematical topics and are separated by a line
from what follows. The rest deserves a closer look:

23v.3–25r.2 cover topics such as the inner and the outer, expressions of pain andE++
other non-mathematical issues.
26r.3–27r.3 can be read as preliminary mathematical remarks leading up to the in-E+
vestigation of Cantor’s argument, with one remark in between (26v.3) published in
Culture and Value.
27v.3–28r.2 are unpublished remarks between §23 and §24 clearly belonging to theE+
remarks on Cantor.
29v.1–35v.2 begin as a continuation of the remarks on Cantor after §27 and thenE++
gradually evolve into remarks on provability and Russell’s logic.
37r.3–38r.2 fill the gap between §32 and §33 with additional examples.E+
39r.2–41r.4 are 11 unpublished remarks clearly belonging to Wittgenstein’s remarksE++
on Cantor.
45r.1–60r.1 have all been excluded from the published version. The first two of theseE+, E++
remarks clearly continue the remarks on Cantor, most of the others revolve around
other topics, however, with the last remark of the stretch being clearly separated
from the next published remark by a break of more than three months.
60v.3–61v.1 are remarks on Cantor between §41 and §42 that were dropped from theE+
published work.
64r.4 is a single remark on Cantor that was dropped (it is rather short and formsE
only a supplementary example, however).
65v.2–67v.2 (10 remarks) are remarks on Cantor and fill the gap between §50 and §51,E++
but were not published.
69v.3–72r.1 are all related to the remarks on Cantor, but all 7 remarks were dropped.E++
After the last remark, Wittgenstein draws a separating line and then begins writing
about contradictions in logic.
72r.3–85r.2 revolve around issues of contradictions and provability and were notE++
published. There is no clear separation between 85r.2, the last remark on provability,
and 86r.1, the first remark explicitly referencing Cantor again, however.
86r.1–87v.3 (7 remarks) clearly belong to the remarks on Cantor and lead up to theE++
published §58, but were left out in RFM II.
89v.2–93v.2 (8 remarks) after the last remark published in RFM II, §62, were all notE+
published. The first half is still about Cantor, the second half revolves around Rus-
sell’s logic, but the transition is relatively seamless.
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part iii

RFM III is the lengthiest part of the RFM and sourced exclusively from two
documents, Ms-122 and Ms-117. As the visualisation on the following page
shows, the number of excluded remarks is considerable, only about half
of the remarks in the relevant parts of Ms-122 and Ms-117 made it into
the published work. It would be infeasible to discuss all of these exclusions
here, the following description will thus be limited to the most salient points
and only highlight exclusions of 5 or more related remarks (with the count
always excluding remarks in Culture and Value). A very thorough discussion
of the unpublished passages can be found in the commentary of part III in
Mühlhölzer, 2010.

Ms-122 is characterised by exclusions of thematically connected remarks,§§1–58: Ms-122
in addition to the exclusion a passage of vaguely related remarks in the
beginning (1r.1–4v.4) and remarks at the end of the document that were
published in Culture and Value.

1r.1–4v.4 On contradictions in logic and the use of the word “heterologic”.E++
15r.2–16r.3 (5 unpublished remarks.)E++
17r.2–21v.2 (13 unpublished remarks.)E++
22r.2–26v.1 (14 unpublished remarks.)E++
45v.2–46v.1 (10 unpublished remarks.)E++
49r.2–49v.5 (7 unpublished remarks.)E++
51v.2–52r.3 (6 unpublished remarks.)E++
58v.2–59r.4 (7 unpublished remarks.)E++
59v.2–61r.2 (12 unpublished remarks.)E++
62r.2–64v.1 (17 unpublished remarks.)E++
66r.3–68r.3 (12 unpublished remarks.)E++
70v.3–72r.2 (11 unpublished remarks.)E++
74r.3–75r.2 (7 unpublished remarks.)E++
77r.3–79r.4 (15 unpublished remarks.)E++
80r.5–82v.2 (12 unpublished remarks.)E++
102v.1–104r.4 (11 unpublished remarks.)E++
107r.2–109r.2 (7 unpublished remarks.)E++
112v.4–118r.3 (20 unpublished remarks.)E++

Ms-117, 148.2 is explicitly marked by Wittgenstein as a continuation of Ms-§§59–90: Ms-117
122, so the following notes apply only the remarks after 148.2.

Ms-117, 148.3–153.5 (17 unpublished remarks.)E++
Ms-117, 156.4–158.2 (7 unpublished remarks.)E++
Ms-117, 159.2–160.6 (9 unpublished remarks.)E++
Ms-117, 161.5–164.2 (12 unpublished remarks.)E++
Ms-117, 165.1–171.4 (23 unpublished remarks.)E++
Ms-117, 178.5–180.2 (6 unpublished remarks.)E++
Ms-117, 182.5–184a.1 (7 unpublished remarks.)E++
Ms-117, 197.2–203.4 (19 unpublished remarks.)E++
Ms-117, 209.2–221.2 (7 unpublished remarks.)E++
Ms-117, 223.3–227.1 (7 unpublished remarks.)E++
Ms-117, 260a.3–266.2 (21 unpublished remarks.)E++
Ms-117, 267.4–271.2 (6 unpublished remarks.)E++
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part iv

RFM IV is a rather peculiar part, as the extent of the editorial interventions§§1–49: Ms-125,
(Ms-127) changes quite substantially over the course of the work. Most of the first

49 sections are taken relatively straightforwardly from Ms-125, although
some remarks are excluded and one remark (in §43) is inserted from Ms-127.
Most exclusions before §50, however, are explained by the large number of
personal diary entries in Ms-125, which were understandably omitted.

The last 11 sections, however, show more idiosyncratic editorial decisions§§50–60: Ms-126,
Ms-125,
Ms-127,

(Ms-121)

and originate not only in Ms-125, but also Ms-127, Ms-126 and (in the case
of the last remark) Ms-121. The insertions in §50 from Ms-126 concern the
idea of a “word in reverse”, but related remarks that follow in Ms-125 have
not been published. The insertions in §§55–60 are concerned with the topic
of contradictions in logic. Only the two remarks of §59 originate in Ms-125.

Ms-125, 1r.1–5v.3 were deemed unrelated to the discussion in part IV, 4 of these re-E+
marks were published in Culture and Value instead. Apart from the first two remarks
(personal diary entries written in code), there is no indication for a separation from
the following remarks in the document.
Ms-125, 13v is a coded personal diary entry.E
Ms-125, 20r.3–28r.3 are all dropped from part IV, two remarks are published in Cul-E++
ture and Value, however. Ms-125, 26r.3 is a coded personal diary entry (“1.4.42”). The
last dated remark before it is Ms-125, 3r.2 (“4.1”). Most of the remarks are related to
the topic of RFM IV.
Ms-125, 31v.3 is another coded personal diary entry.E
Ms-125, 34v.1–39v.2 are, with the exception of 4 remarks, all excluded from RFM IV,E++
but topically connected to the rest of Ms-125.
Ms-125, 39v.3–58r.3 contain only a few unpublished remarks: Ms-125, 44v.3, Ms-125,E
46r.2, Ms-125, 50v.2 (a coded diary entry), Ms-125, 51r.2 (a personal entry, not coded,
but in brackets), Ms-125, 53v.4 (coded diary entry), Ms-125, 54r.2, Ms-125, 55r.2, Ms-
125, 56v.2 (coded diary entry), Ms-125, 57v.1 (coded diary entry), Ms12558v.2–59r.2
(coded diary entries). The dates can be puzzling: Ms-125, 26r.3: “1.4.42”, Ms-125,
36v.2 / Ms-125, 36v.3: “9.2”, Ms-125, 57v.1: “26.4”, the next remark “18.5”.
There is a chronological jump of more than three months between the publishedC
remarks Ms-125, 59v.2 (27.5.42) and Ms-125, 60v.2 (15.9.42).
§43 (third remark) is taken from Ms-127, 13.2 (written about half a year later), whichI
explicitly mentions the distribution of prime numbers as “synthetic a priori”. There
is nothing in Ms-125 indicating such an insertion, the remark in Ms-127 is separated
from the surrounding remarks by a long vertical line, however.
Ms-125, 63v.2 is a short remark on hidden contradictions.E
Ms-125, 64r.1–64v.2 introduce the picture of natural calculating machines, furtherE+
developed in Ms-125, 65v.3–66v.2, but all of these remarks are dropped in RFM IV.
Ms-125, 67r.2–68r.1 are two remarks on Russell’s contradiction that were moved toR+
the end of RFM IV (as §59).
Ms-125, 68r.2–68v.2, Ms-125, 70r.2 are unpublished but related to RFM IV.E+
Ms-126, 12.2–17.2 are inserted as §50 (with the first remark Ms-125, 73v.2).I++
The insertion of remarks from Ms-126 is all the more puzzling given that the directlyE+
related remarks Ms-125, 73v.3–75r.1 are excluded in RFM IV.
Ms-125, 75v.1 is another coded diary entry.E
Ms-125, 79r.2 (the last remark in Ms-125) is not published.E
§§55–58 are taken from Ms-12780.3–83.4 and discuss contradictions in logic. InsertedI++
before RFM IV §59 from Ms-125.
§60, also on contradictions in logic, is taken from Ms-121, 74v.2.I
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part v

RFM V is compiled from two documents, Ms-126 and Ms-127, with the first§§1–34: Ms-126,
(Ms-127) part (§§1–34) being a relatively straightforward selection of remarks from

Ms-126 on extensional view of mathematics, albeit with several reorderings,
an insertion from Ms-127 (§27) and the omission of a few passages. (The
following lists highlight only exclusions of 5 or more remarks.)

1.1–28.2 are remarks on mathematics that were only partly published (in RFM IV).E++
21.2–22.2, 86.2, 105.4, 132.4 are coded personal diary entries.E+
43.1–45.2 are unpublished remarks about reflexive equality.E++
110.3 is a remark about Dedekind that was moved from between §24/§25 to §30.R
113.2–116.1 fit into the reflections of §25, but were not published.E++
116.2 discusses “abzählbar” versus “numerierbar” and was moved from §25 to §15.R
126.2–131.2 discuss the variety of proofs in Hardy, with the last remark on Gödel.E++
133.3 on the “expansion of an irrational number” is moved from §29/§31 to §9.R
138.3–147.2 discuss the continuity of curves, but were not published.E++

In Ms-127, Wittgenstein continues his discussion of extensions and the§§35–53: Ms-127
Dedekind cut, before embarking on a more general investigation of con-
cept formation through proofs. A large part of the latter discussion is not
published in part V, but appears in a similar form in Ms-124. Neither the
chronological break (of nearly a year) nor the exclusion of a large portion of
Ms-127 are evident in RFM V.

1.1–9.2 discuss the Dedekind cut, but were not published.E++
13.3 appears between remarks of §36, but was moved to §38.R
17.3–20.2 continue with the discussion of the Dedekind cut, but were not published.E++
28.2–31.3 discuss Russellian contradictions.E++
33.2–36.1 consider a definition as a “determination of a concept”.E++
43.3–57 are all unpublished, with the exception of 47.4 (§27). The last 7 remarksE++
revisit Cantor’s diagonal argument.
47.4 was inserted between remarks from Ms-126 and published as §27.R
61.2–64.3 discuss concept determination / formation.E++
65.2–70.2 are unpublished remarks on the continuum of the real numbers.E++
70.2–73.2 were all published in Culture and Value, the last of these remarks is writtenE++, C
nearly a year after the others.
82.4–90.2 discuss contradictions in logic and were partly published in RFM IV.E++
90.3–159.2 discuss rule following and related issues (with a lot of overlap in Ms-124),E++
then gradually evolve into remarks on conceptual paths.
117.4 and 120.1 are coded personal remarks.E
167.2–172.2 continue the remarks on “conceptual paths”, many are marked with theE++
curved “S” section marked, indicating Wittgenstein’s dissatisfaction.
176.4–184.2 continue the remarks on concept formation through proofs.E++
181.2 is the draft of a letter to Yorick Smithies.E
189.2–193.2 discuss the cogency of axioms.E++
195.2–198.2 continue the discussion of the cogency of proofs.E++
198.3–200.2 appear before the remark published as §50, but were published as §52.R++
200.3–202.4 discuss the relation of concept and proof.E++
207.2–237.2 are practically all unpublished, except for a few remarks in Culture andE++
Value and three remarks in RFM V.
229.4–230.2 appear after the remark published as §53, but were published as §51.R+
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282 surveyably representing the ”rfm”

part vi

According to the editors, RFM VI is the only part that corresponds to a§§1-49: Ms-164
Nachlass document in toto, namely Ms-164. The visualisation confirms this
statement, as there are only a few very slight differences between the pub-
lished work and Ms-164, which can be listed in detail:

19.1 are reordered in §7. The latter remark is a restatement and continuation (markedR
with Wittgenstein’s three dashes “– – –”) of Ms-164, 17.4 and it makes sense that the
editors merged these remarks by moving Ms-164, 19.1 slightly.
52.3–53.2 (§17) are another case of such a reordering, where additionally one re-R, E
mark was left out in the published version. Ms-164, 52.3 and Ms-164, 53.2 are a
continuation (again marked using “– – –”) of Ms-164, 50.4 and are thus reordered
appropriately in the published work. Ms-164, 51.3, however, is simply left out. It is
not immediately clear why: The remark is crossed out, but so are the remarks before
and after it (which are published) and there is no section mark.
55.3 is reordered slightly, following Wittgenstein’s own indications (with arrows).R
59.3 is an unfinished remark that Wittgenstein crossed out with multiple strokes,E
which is why the remark was understandably dropped from the published work.
144.2 is not published, but is marked as separate by Wittgenstein through the use ofE
vertical bars at the beginning and end of the remark and put inside quotation marks:
|“Ich habe jetzt eingesehen: schlechte Augen sind ebenso gut als gute Augen.”|
152.1–171.3 (24 remarks in total) are concerned with the notion of a private languageE++
(Page 153 ends with an explicit “Private Sprache” at the bottom of the page.) and
were thus not published in RFM VI. The different parts are not clearly separated,
however, in fact Wittgenstein moves rather seamlessly from “Übereinstimmung der
Meinungen” (in logic, Ms-164, 151.2, published) over “Kriterien dafür [...] daß Einer
eine Meinung hat” (Ms-164, 152.1, not published) to “ist eine Meinung haben ein
Bewußtseinszustand” (Ms-164, 154.1, directly after the “Private Sprache” remark, not
published). This makes sense, given the intimate connection between his remarks on
rule following all throughout the published part of Ms-164, and the private language
argument presented in the unpublished passage.
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284 surveyably representing the ”rfm”

part vii

RFM VII contains remarks selected entirely from Ms-124 and shares iden-§§1–74: Ms-124
tical or similar remarks with more documents than any other manuscript
in RFM. Ms-124 was not written continuously, but with a break of almost
three years occurring on page 96. The first part, written in 1941, contains
a large portion of remarks that originate in the pocket notebooks Ms-161
and Ms-163, while the later parts, written in 1944, overlap not only with
Ms-127 (published primarily as RFM V) and Ms-129, but also represent the
origin of a number of remarks that later found their way into the Philosoph-
ical Investigations (Ts-227a). Due to the large number of excluded remarks,
the following list will mention only exclusions of 5 or more remarks.

1.1–7.2 discuss the difference between “Geneigt sein zu sagen” and “vouloir dire”,E++
expressions of pain, the inner and outer.
19.2–23.2 are remarks about expressions of pain and behaviourism.E++
31.2–32.5 discuss intuition and axioms.E++
41.2–44.2 continue the preceding remarks and introduce the idea of following a ruleE++
“only once in life”.
81.3, 82.4, 84.2 were all reordered and moved to the end of §18 before remark 81.2.R, R, R
120.4–121.5 discuss the role of empirical and mathematical propositions.E++
133.3–134.6 are remarks on definitions as concept determinations.E++
169.5–170.6 discuss rule following and the description of language games.E++
175.2–175.3 are reordered to appear after 139.2 (§41). There is an explicit arrow byR+
Wittgenstein connecting the following remark, 176.1, with 175.1.
184.1–188.6, 189.3–191.2 are remarks on infinite series, “u.s.w.” and rule following.E++

The rest of Ms-124 is clearly separated from the preceding remarks and
focuses mostly on non-mathematical topics, although the remarks on rule
following can certainly be read as a continuation of some earlier lines of
thought in Ms-124. The remarks on private language are also not without
precedence in the mathematical part of Ms-124, which contains several re-
marks that appear in the PI.

200.3–202.3 are separated from the preceding and following remarks by a horizontalE++
line and discuss rule following.
205.1–292.2 are written nearly three months later than the preceding remarks andE++
continue the discussion of rule following, private language and other topics, with
numerous remarks corresponding to remarks in the PI between Ts-227a, 143.2 (§198)
and Ts-227a, 236.4 (§421).



W-RFM Part VII1

10

20

30

40

50
60

74

Ms-124

18

39

64

82

102

122

141

159

175

190

212

239

270

Section of W-RFM Part VII
Remark published in W-RFM Part VII
Remark published in other work
Same or similar remarks
Separating line between remarks
More than 30 days between remarks

11v

29r

44v

66r

Ms-161

17v

34r

51v

67r

Ms-163

31

57

84

109

132

152

172

199

223

Ms-127

24

54

89

115

141

166

189

Ms-129

36

76

92

126

155

176

195

217

237

252

266

283

301

317

Ts-227a

1





W R I T I N G S A N D L E C T U R E S B Y W I T T G E N S T E I N

BGM Bemerkungen über die Grundlagen der Mathematik. Werkausgabe Band 6.
Ed. by G. E. M. Anscombe, Rush Rhees, G. H. von Wright. Frankfurt
a. M.: Suhrkamp, 2013.

BPP “Bemerkungen über die Philosophie der Psychologie” In: Bemerkun-
gen über die Philosophie der Psychologie. Werkausgabe Band 7. Bemerkun-
gen über die Philosophie der Psychologie. Letzte Schriften über die Philo-
sophie der Psychologie. Ed. by G. E. M. Anscombe, G. H. von Wright.
Frankfurt a. M.: Suhrkamp, 2014.

GB “Bemerkungen über Frazers ‘Golden Bough’” / “Remarks on
Frazer’s ‘Golden Bough’”. In: Philosophical Occasions. 1912–1951. Ed.
by James C. Klagge, Alfred Nordmann, pp. 115–155. Indianapolis &
Cambridge: Hackett Publishing Company, 1993.

LFM Wittgenstein’s Lectures on the Foundations of Mathematics. Cambridge,
1939. From the Notes of R. G. Bosanquet, Norman Malcolm, Rush Rhees,
and Yorick Smythies. Ed. by Cora Diamond. Chicago & London: Uni-
versity of Chicago Press, 1976.

OC On Certainty. Ed. by G. E. M. Anscombe, G. H. von Wright. Oxford:
Basil Blackwell, 1969.

PB Philosophische Bemerkungen. Werkausgabe Band 2. Ed. by Rush Rhees.
Frankfurt a. M.: Suhrkamp, 2015.

PI “Philosophical Investigations”. In: Philosophische Untersuchungen.
Philosophical Investigations. Ed. by P. M. S. Hacker, Joachim Schulte,
pp. 1–181. Chichester, West Sussex: Wiley-Blackwell, 2009.

PPF “Philosophie der Psychologie. Ein Fragment” / “Philosophy of Psy-
chology. A Fragment”. In: Philosophical Investigations. Ed. by P. M.
S. Hacker, Joachim Schulte, pp. 182–243. Chichester, West Sussex:
Wiley-Blackwell, 2009.

PR Philosophical Remarks. Ed. by Rush Rhees. Oxford: Basil Blackwell,
1975.

PU “Philosophische Untersuchungen”. In: Philosophische Untersuchun-
gen. Philosophical Investigations. Ed. by P. M. S. Hacker, Joachim
Schulte, pp. 1–181. Chichester, West Sussex: Wiley-Blackwell, 2009.

RFM Remarks on the Foundation of Mathematics. Ed. by G. H. von Wright,
R. Rhees, G. E. M. Anscombe. Oxford: Basil Blackwell, 1978.

RPP Remarks on the Philosophy of Psychology. Ed. by G. E. M. Anscombe,
G. H. von Wright. Oxford: Basil Blackwell, 1980.

TLP Tractatus Logico-Philosophicus. Ed. by C. K. Ogden, translated by C.
K. Ogden und F. P. Ramsey. International Library of Psychology,
Philosophy and Scientific Method. London: Routledge and Kegan
Paul, 1955.

WCL Wittgenstein’s Whewell’s Court Lectures. Cambridge, 1938–1941. From
the Notes by Yorick Smythies. Ed. by Volker A. Munz, Bernhard Ritter.
Chichester, West Sussex: Wiley-Blackwell, 2017.

Z “Zettel”. In: Über Gewißheit. Werkausgabe Band 8. Bemerkungen über
die Farben. Über Gewißheit. Zettel. Vermischte Bemerkungen. Ed. by G. E.
M. Anscombe, G. H. von Wright. Frankfurt a. M.: Suhrkamp, 2015.

287





B I B L I O G R A P H Y

Baker, G. P. and P. M. S. Hacker (2005a). Wittgenstein: Understanding
and Meaning. Volume 1 of An Analytical Commentary on the Philo-
sophical Investigations. Part II: Exegesis §§1–184. Wiley-Blackwell.

— (2005b). Wittgenstein: Understanding and Meaning. Volume 1 of An
Analytical Commentary on the Philosophical Investigations. Part I: Es-
says. Wiley-Blackwell.

Bays, Timothy (2004). “On Floyd and Putnam on Wittgenstein on
Gödel.” In: The Journal of philosophy 101.4, pp. 197–210.

— (2006). “Floyd, Putnam, Bays, Steiner, Wittgenstein, Gödel, Etc.”
In: The Journal of Philosophy 103, pp. 101–110.

Bennett, Charles H. (1979). “On Random and Hard-to-Describe Num-
bers.” In: Randomness and Complexity: From Leibniz to Chaitin. Ed.
by Cristian S. Calude. World Scientific, pp. 3–12.

Bernays, Paul (1959). “Comments on Ludwig Wittgenstein’s Remarks
on the Foundations of Mathematics.” In: Ratio 2.1, pp. 1–22.

Berto, Francesco (2009). There’s Something About Gödel: The Complete
Guide to the Incompleteness Theorem. John Wiley and Sons.

Biggs, Michael and Alois Pichler (1993). “Wittgenstein: Two Source
Catalogues and a Bibliography. Catalogues of the Published Texts
and of the Published Diagrams, each Related to its Sources.” In:
Working Papers from the Wittgenstein Archives at the University of
Bergen 7, p. 66.

Borges, Jorge Luis (1964). Labyrinths: Selected Stories & Other Writings.
Ed. by Donald A. Yates and James E. Irby. New Directions paper-
book. New Directions.

Brusotti, Marco (2014). Wittgenstein, Frazer und die “ethnologische Betra-
chtungsweise”. Vol. 2. Über Wittgenstein. De Gruyter.

Calude, Cristian S., ed. (2007). Randomness and Complexity: From Leib-
niz to Chaitin. World Scientific.

Chaitin, Gregory J. (1966). “On the Length of Programs for Comput-
ing Finite Binary Sequences.” In: Journal of the ACM (JACM) 13.4,
pp. 547–569.

— (1970). “On the Difficulty of Computations.” In: Information, Ran-
domness & Incompleteness. Papers on Algorithmic Information Theory.
2nd ed. Vol. 8. World Scientific, pp. 41–56.

— (1974). “Information Theoretic Computational Complexity.” In:
Information, Randomness & Incompleteness. Papers on Algorithmic In-
formation Theory. 2nd ed. Vol. 8. World Scientific, pp. 57–73.

— (1975). “Randomness and Mathematical Proof.” In: Information,
Randomness & Incompleteness. Papers on Algorithmic Information The-
ory. 2nd ed. Vol. 8. World Scientific, pp. 11–28.

289



290 bibliography

Chaitin, Gregory J. (1982a). “Algorithmic Information Theory.” In: In-
formation, Randomness & Incompleteness. Papers on Algorithmic In-
formation Theory. 2nd ed. Vol. 8. World Scientific, pp. 75–82.

— (1982b). “Gödel’s Theorem and Information.” In: Information, Ran-
domness & Incompleteness. Papers on Algorithmic Information Theory.
2nd ed. Vol. 8. World Scientific, pp. 111–130.

— (1988). “Randomness in Arithmetic.” In: Information, Randomness
& Incompleteness. Papers on Algorithmic Information Theory. 2nd ed.
Vol. 8. World Scientific, pp. 29–39.

— (1989). “Undecidability and Randomness in Pure Mathematics.”
In: Information, Randomness & Incompleteness. Papers on Algorithmic
Information Theory. 2nd ed. Vol. 8. World Scientific, pp. 503–515.

— (1990). Information, Randomness & Incompleteness. Papers on Algo-
rithmic Information Theory. 2nd ed. Vol. 8. World Scientific.

— (1993). “Randomness in arithmetic and the decline & fall of reduc-
tionism in pure mathematics.” In: Thinking about Gödel and Turing:
Essays on Complexity, 1970-2007. World Scientific Publishing Com-
pany, pp. 75–98.

— (1995). “The Berry paradox.” In: Complexity 1 (1), pp. 26–30.
— (2000). “A century of controversy over the foundations of mathe-

matics.” In: Thinking about Gödel and Turing: Essays on Complexity,
1970-2007. World Scientific Publishing Company, pp. 129–151.

— (2002). “Paradoxes of randomness.” In: Thinking about Gödel and
Turing: Essays on Complexity, 1970-2007. World Scientific Publish-
ing Company, pp. 169–188.

— (2003). “Two philosophical applications of algorithmic informa-
tion theory.” In: Thinking about Gödel and Turing: Essays on Com-
plexity, 1970-2007. World Scientific Publishing Company, pp. 189–
200.

— (2004). “Leibniz, information, math & physics.” In: Thinking about
Gödel and Turing: Essays on Complexity, 1970-2007. World Scientific
Publishing Company, pp. 227–239.

— (2007). Thinking about Gödel and Turing: Essays on Complexity, 1970-
2007. World Scientific Publishing Company.

— (2008). “Irreducible Complexity in Pure Mathematics.” In: Witt-
genstein and the Philosophy of Information. Proceedings of the 30th
International Ludwig Wittgenstein-Symposium. Ed. by Alois Pichler
and Herbert Hrachovec. De Gruyter.

Chaitin, Gregory J., Asat Arslanov, and Cristian Calude (1995). Pro-
gram-size complexity computes the halting problem. Tech. rep. De-
partment of Computer Science, The University of Auckland, New
Zealand.

Chown, Marcus (2007). “God’s Number: Where Can We Find the
Secret of the Universe? In a Single Number!” In: Randomness
and Complexity: From Leibniz to Chaitin. Ed. by Cristian S. Calude.
World Scientific, pp. 321–342.



bibliography 291

Cover, Thomas M. and Joy A. Thomas (2006). Elements of Information
Theory. 2nd ed. Wiley Series in Telecommunications and Signal
Processing. Wiley-Interscience.

Davis, Martin (1985). Computability and Unsolvability. New edition.
Mcgraw-Hill Series in Information Processing and Computers.
Dover Publications.

Dummett, Michael (1959). “Wittgenstein’s Philosophy of Mathemat-
ics.” In: The Philosophical Review 68.3, pp. 324–348.

— (1970). “Wang’s Paradox.” In: Truth and Other Enigmas. Harvard
University Press, pp. 248–268.

Floyd, Juliet (1995). “On saying what you really want to say: Wittgen-
stein, Gödel, and the trisection of the angle.” In: From Dedekind to
Gödel. Springer, pp. 373–425.

— (2001). “Prose versus Proof: Wittgenstein on Gödel, Tarski and
Truth.” In: Philosophia Mathematica 9.3, pp. 280–307.

— (2012). “Wittgenstein’s Diagonal Argument: A Variation on Can-
tor and Turing.” In: Epistemology versus Ontology. Ed. by P. Dyb-
jer, Sten Lindström, Erik Palmgren, and G. Sundholm. Dordrecht:
Springer Netherlands, pp. 25–44.

— (2016). “Chains of life: Turing, Lebensform, and the Emergence
of Wittgenstein’s Later Style.” In: Nordic Wittgenstein Review 5.2,
pp. 7–89.

— (2017). “Turing on “Common Sense”: Cambridge Resonances.”
In: Philosophical Explorations of the Legacy of Alan Turing. Springer,
pp. 103–149.

— (2018). “Lebensformen: Living Logic.” In: Language, Form(s) of Life,
and Logic: Investigations After Wittgenstein. Ed. by Christian Martin.
Berlin: De Gruyter, pp. 59–92.

— (2019). “Wittgenstein and Turing.” In: Philosophy of Logic and Math-
ematics. Proceedings of the 41st International Ludwig Wittgenstein-
Symposium. Ed. by Gabriele M. Mras, Paul Weingartner, and Bern-
hard Ritter. De Gruyter, pp. 263–296.

— (2020). “The Generality of Cantor’s Diagonal Procedure.” In: Witt-
genstein’s Annotations to Hardy’s Course of Pure Mathematics: An
Investigation of Wittgenstein’s Non-Extensionalist Understanding of
the Real Numbers. Vol. 7. Nordic Wittgenstein Studies. Cham:
Springer International Publishing, pp. 192–258.

Floyd, Juliet and Felix Mühlhölzer (2020). Wittgenstein’s Annotations
to Hardy’s Course of Pure Mathematics: An Investigation of Wittgen-
stein’s Non-Extensionalist Understanding of the Real Numbers. Vol. 7.
Nordic Wittgenstein Studies. Cham: Springer International Pub-
lishing.

Floyd, Juliet and Hilary Putnam (2000). “A Note on Wittgenstein’s
"Notorious Paragraph" about the Gödel Theorem.” In: The Journal
of Philosophy 97.11, pp. 624–632.



292 bibliography

Floyd, Juliet and Hilary Putnam (2006). “Bays, Steiner, and Wittgen-
stein’s" Notorious" Paragraph about the Gödel Theorem.” In: The
Journal of philosophy, pp. 101–110.

— (2008). “Wittgensteins ‚berüchtigter’ Paragraph über das Gödel-
Theorem: Neuere Diskussionen.” In: Prosa oder Beweis? Wittgen-
stein’s ‘berüchtigte’ Bemerkungen zu Gödel. Texte und Dokumente. Ed.
by Esther Ramharter. Berlin: Parerga, pp. 75–97.

Franzén, Torkel (2005). Gödel’s Theorem: An Incomplete Guide to Its Use
and Abuse. Wellesley, Massachusetts: A K Peters.

Frascolla, Pasquale (2006). Wittgenstein’s Philosophy of Mathematics.
Routledge.

Gardner, Martin (1979). “MATHEMATICAL GAMES. The random
number omega bids fair to hold the mysteries of the universe.”
In: Scientific American 241.5, pp. 20–35.

Gefwert, Christoffer (1998). Wittgenstein on Mathematics, Minds and
Mental Machines. Burlington: Ashgate Publishing.

Gödel, Kurt (1986). Collected Works. Ed. by Solomon Feferman, John
W. Dawson, Jr., Stephen C. Kleene, Gregory H. Moore, Robert M.
Solovay, and Jean van Heijenoort. Oxford : New York: Clarendon
Press ; Oxford University Press.

Hopcroft, John E., Rajeev Motwani, and Jeffrey D. Ullman (2001). In-
troduction to automata theory, languages, and computation. 2nd ed.
Addison-Wesley.

Kienzler, Wolfgang and Sebastian Sunday Grève (2016). “Wittgenstein
on Gödelian ‘Incompleteness’, Proofs and Mathematical Practice:
Reading Remarks on the Foundations of Mathematics, Part I, Ap-
pendix III, Carefully.” In: Wittgenstein and the Creativity of Lan-
guage. Ed. by Sebastian Sunday Grève and Jakub Mácha. Springer,
pp. 76–116.

Knuth, Donald E (1976). “Mathematics and Computer Science: Cop-
ing with Finiteness: Advances in our ability to compute are bring-
ing us substantially closer to ultimate limitations.” In: Science
194.4271, pp. 1235–1242.

Kolmogorov, Andrei N. (1968a). “Logical Basis for Information The-
ory and Probability Theory.” In: IEEE Transactions on Information
Theory 14.5, pp. 662–664.

— (1968b). “Three Approaches to the Quantitative Definition of In-
formation.” In: International Journal of Computer Mathematics 2.1-4,
pp. 157–168.

Kreisel, Georg (1958). Wittgenstein’s Remarks on the Foundations of Math-
ematics. In: The British Journal for the Philosophy of Science vol. 9.34,
pp. 135–158.

Lajevardi, Kaave (2021). “What he could have said (but did not say)
about Gödel’s second theorem: A note on Floyd-Putnam’s Witt-
genstein.” In: Wittgenstein-Studien 12.1, pp. 121–129.



bibliography 293

Li, Ming and Paul Vitányi (2019). An introduction to Kolmogorov Com-
plexity and its Applications. 4th ed. Springer.

Lucas, J. R. (1961). “Minds, Machines and Gödel.” In: Philosophy
36.137, pp. 112–127.

Majetschak, Stefan (2010). “Lebensformen und Lebensmuster. Zur
Deutung eines sogenannten Grundbegriffs der Spätphilosophie
Ludwig Wittgensteins.” In: Language and World. Part One: Essays
on the Philosophy of Wittgenstein, Publications of the Austrian Lud-
wig Wittgenstein Society. New Series. Ed. by Volker Munz, Klaus
Puhl, and Joseph Wang. Vol. 14. Paris; Lancaster; New Brunswick:
Heusenstamm: ontos verlag, pp. 265–290.

— (2012). “Die anthropologische Betrachtungsweise. Zum Einfluss
von James George Frazers The Golden Bough auf die Entwicklung
der Spätphilosophie Ludwig Wittgensteins.” In: Wittgenstein-Stu-
dien 3, pp. 217–232.

— (2016). “Survey and Surveyability. Remarks on two central no-
tions in Wittgenstein’s later philosophy.” In: Wittgenstein-Studien
7, pp. 65–80.

— (2020). “‘Eine irreführende Parallele’. Wittgenstein über Begriffs-
verwirrung in der Psychologie und die Semantik psychologischer
Begriffe.” In: Wittgenstein-Studien 11, pp. 169–182.

Marion, Mathieu (1998). Wittgenstein, Finitism, and the Foundations of
Mathematics. Oxford: Oxford University Press.

Matthíasson, Ásgeir Berg (2021). “Contradictions and falling bridges:
what was Wittgenstein’s reply to Turing?” In: British Journal for
the History of Philosophy 29.3, pp. 537–559.

Monk, Ray (1991). Ludwig Wittgenstein: The Duty of Genius. New York:
Penguin Books.

Moyal-Sharrock, Danièle (2015). “Wittgenstein on Forms of Life, Pat-
terns of Life, and Ways of Living.” In: Nordic Wittgenstein Review
Special Issue 2015, Wittgenstein and Forms of Life, pp. 21–42.

Mühlhölzer, Felix (2010). Braucht die Mathematik eine Grundlegung?
Ein Kommentar des Teils III von Wittgenstein’s Bemerkungen über
die Grundlagen der Mathematik. Frankfurt/Main: Vittorio Kloster-
mann.

— (2020). “Wittgenstein on Cantor’s Diagonal Method.” In: Wittgen-
stein’s Annotations to Hardy’s Course of Pure Mathematics: An Investi-
gation of Wittgenstein’s Non-Extensionalist Understanding of the Real
Numbers. Vol. 7. Nordic Wittgenstein Studies. Cham: Springer In-
ternational Publishing, pp. 125–191.

Penrose, Roger (1991). The Emperor’s New Mind: Concerning Computers,
Minds, and the Laws of Physics. Penguin Books.

— (1994). Shadows of the Mind: A Search for the Missing Science of Con-
sciousness. Oxford; New York: Oxford University Press.

Persichetti, Alessio (2021). “The later Wittgenstein’s guide to contra-
dictions.” In: Synthese 198.4, pp. 3783–3799.



294 bibliography

Post, Emil (1947). “On Computable Numbers, with an Application to
the Entscheidungsproblem. A Critique.” In: The Essential Turing:
Seminal Writings in Computing, Logic, Philosophy, Artificial Intelli-
gence, and Artificial Life, plus The Secrets of Enigma. Oxford; New
York: Clarendon Press; Oxford University Press, pp. 97–101.

Priest, Graham (1995). Beyond the Limits of Thought. Cambridge; New
York: Cambridge University Press.

— (2004). “Wittgenstein’s Remarks on Gödel’s Theorem.” In: Witt-
genstein’s Lasting Significance. Ed. by Max Kölbel and Bernhard
Weiss. London; New York: Routledge, pp. 207–227.

— (2006a). Doubt Truth to be a Liar. Oxford: Oxford University Press.
— (2006b). In Contradiction: a Study of the Transconsistent. Oxford;

New York: Clarendon Press; Oxford University Press.
Putnam, Hilary (2007). “Wittgenstein and the Real Numbers.” In:

Wittgenstein and the Moral Life: Essays in Honor of Cora Diamond.
Ed. by Alice Crary, pp. 235–250.

Ramharter, Esther (2008). “Gödel und Wittgenstein — ein gleiches
Paar?” In: Prosa oder Beweis? Wittgenstein’s ‘berüchtigte’ Bemerkun-
gen zu Gödel. Texte und Dokumente. Ed. by Esther Ramharter. Berlin:
Parerga, pp. 7–19.

— (2010). “Are all contradictions equal? Wittgenstein on confusion
in mathematics.” In: Philosophy of Mathematics: Sociological Aspects
and Mathematical Practice. Ed. by Th. Müller B. Löwe. London: Col-
lege Publications, pp. 293–306.

— (2014). “Wittgenstein über vollständige Induktion.” In: Wittgen-
stein-Studien 5, pp. 179–203.

— (2018). “In der Luft verankert? – Wittgenstein und Cantor zur
Kardinalzahlarithmetik.” In: Wittgenstein und die Philosophie der
Mathematik. Ed. by Joachim Bromand and Bastian Reichardt. Pa-
derborn: mentis, pp. 129–142.

— (2019). “Der Status mathematischer und religiöser Sätze bei Witt-
genstein.” In: Philosophy of Logic and Mathematics. Proceedings of the
41st International Ludwig Wittgenstein-Symposium. Ed. by Gabriele
M. Mras, Paul Weingartner, and Bernhard Ritter. De Gruyter,
pp. 485–493.

Redecker, Christine (2006). Wittgensteins Philosophie der Mathematik:
Eine Neubewertung im Ausgang von der Kritik an Cantors Beweis der
Überabzählbarkeit der reellen Zahlen. Vol. 9. De Gruyter.

Rodych, Victor (1999). “Wittgenstein’s inversion of Gödel’s Theorem.”
In: Erkenntnis (1975-) 51.2/3, pp. 173–206.

— (2000). “Wittgenstein’s Critique of Set Theory.” In: The Southern
Journal of Philosophy 38.2, pp. 281–319.

— (2002). “Wittgenstein on Gödel: the newly published remarks.”
In: Erkenntnis (1975-) 56.3, pp. 379–397.



bibliography 295

— (2003). “Misunderstanding Gödel: New Arguments about Witt-
genstein and New Remarks by Wittgenstein.” In: Dialectica 57.3,
pp. 279–313.

— (2006). “Who is Wittgenstein’s Worst Enemy? Steiner on Wittgen-
stein on Gödel.” In: Logique et Analyse 49.193, pp. 55–84.

Rozenberg, Grzegorz and Arto Salomaa (2007). “The Secret Number.
An Exposition of Chaitin’s Theory.” In: Randomness and Complex-
ity: From Leibniz to Chaitin. Ed. by Cristian S. Calude. World Sci-
entific, pp. 175–215.

Russell, Bertrand (1908). “Mathematical logic as based on the theory
of types.” In: From Frege to Gödel: A Source Book in Mathematical
Logic, 1879-1931. Source Books in History of Sciences. Harvard
University Press.

Schulte, Joachim (1990). “Chor und Gesetz. Zur ‚morphologischen
Methode’ bei Goethe und Wittgenstein.” In: Wittgenstein im Kon-
text. Frankfurt/Main: Suhrkamp, pp. 11–42.

— (2021). “Philosophische Superlative und die Maschine als Sym-
bol.” In: Wittgenstein-Studien 12.1, pp. 1–36.

Shanker, Stuart (1987). Wittgenstein and the Turning-Point in the Philos-
ophy of Mathematics. Albany, New York: State University of New
York Press.

— (1988). “Wittgenstein’s Remarks on the Significance of Gödel’s
Theorem.” In: Gödel’s Theorem in Focus. Routledge, pp. 155–256.

— (1998). Wittgenstein’s Remarks on the Foundations of AI. London;
New York: Routledge.

Shannon, Claude E. (1948). “A Mathematical Theory of Communica-
tion.” In: The Bell System Technical Journal 27.3, pp. 379–423.

Sipser, Michael (2012). Introduction to the Theory of Computation. 3rd ed.
Thomson South-Western.

Solomonoff, Ray J. (1964a). “A Formal Theory of Inductive Inference.
Part II.” In: Information and Control 7.2, pp. 224–254.

— (1964b). “A formal theory of inductive inference. Part I.” In: Infor-
mation and control 7.1, pp. 1–22.

Steiner, Mark (2001). “Wittgenstein as his Own Worst Enemy: The
Case of Gödel’s Theorem.” In: Philosophia Mathematica 9.3, pp. 257–
279.

Stern, David G (2004). Wittgenstein’s Philosophical Investigations: An In-
troduction. Cambridge University Press.

Trächtler, Jasmin (2020). “Wittgenstein on ‘Imaginability’ as a Crite-
rion for Logical Possiblity in ‘The Big Typescript’.” In:

— (2021). Wittgensteins Grammatik des Fremdseelischen. Bergen: Skip-
nes Kommunikasjon / University of Bergen.

Turing, Alan (1936). “On Computable Numbers, with an Application
to the Entscheidungsproblem.” In: The Essential Turing: Seminal
Writings in Computing, Logic, Philosophy, Artificial Intelligence, and



296 bibliography

Artificial Life, plus The Secrets of Enigma. Oxford; New York: Claren-
don Press; Oxford University Press, pp. 58–90.

Turing, Alan (1938). “Systems of Logic Based on Ordinals.” In: The
Essential Turing: Seminal Writings in Computing, Logic, Philosophy,
Artificial Intelligence, and Artificial Life, plus The Secrets of Enigma.
Oxford; New York: Clarendon Press; Oxford University Press,
pp. 146–204.

— (1940). “Letters on Logic to Max Newman.” In: The Essential Tur-
ing: Seminal Writings in Computing, Logic, Philosophy, Artificial Intel-
ligence, and Artificial Life, plus The Secrets of Enigma. Oxford; New
York: Clarendon Press; Oxford University Press, pp. 211–216.

— (1947). “Lecture on the Automatic Computing Engine.” In: The
Essential Turing: Seminal Writings in Computing, Logic, Philosophy,
Artificial Intelligence, and Artificial Life, plus The Secrets of Enigma.
Oxford; New York: Clarendon Press; Oxford University Press,
pp. 378–394.

— (1948). “Intelligent Machinery.” In: The Essential Turing: Seminal
Writings in Computing, Logic, Philosophy, Artificial Intelligence, and
Artificial Life, plus The Secrets of Enigma. Oxford; New York: Claren-
don Press; Oxford University Press, pp. 410–432.

— (1950). “Computing Machinery and Intelligence.” In: The Essential
Turing: Seminal Writings in Computing, Logic, Philosophy, Artificial
Intelligence, and Artificial Life, plus The Secrets of Enigma. Oxford;
New York: Clarendon Press; Oxford University Press, pp. 441–
464.

— (1951). “Intelligent Machinery, A Heretical Theory.” In: The Essen-
tial Turing: Seminal Writings in Computing, Logic, Philosophy, Ar-
tificial Intelligence, and Artificial Life, plus The Secrets of Enigma.
Oxford; New York: Clarendon Press; Oxford University Press,
pp. 472–475.

— (1953). “Chess.” In: The Essential Turing: Seminal Writings in Com-
puting, Logic, Philosophy, Artificial Intelligence, and Artificial Life,
plus The Secrets of Enigma. Oxford; New York: Clarendon Press;
Oxford University Press, pp. 569–575.

Turing, Alan and B. Jack Copeland (2004). The Essential Turing: Sem-
inal Writings in Computing, Logic, Philosophy, Artificial Intelligence,
and Artificial Life, plus The Secrets of Enigma. Oxford; New York:
Clarendon Press; Oxford University Press.

Von Wright, Georg Henrik (1993). “The Wittgenstein Papers.” In:
Philosophical Occasions: 1912-1951. Ed. by James Klagge and Al-
fred Nordmann, pp. 480–506.

Watson, Alister (1938). “Mathematics and its Foundations.” In: Mind
XLVII.188, pp. 440–451.

Wheeler, Samuel J. (2021). “Defending Wittgenstein’s Remarks on
Cantor from Putnam.” In: Philosophical Investigations, Online Ver-



bibliography 297

sion of Record before inclusion in an issue, First published 12
November 2021.

Wrigley, Michael (1980). “Wittgenstein on Inconsistency.” In: Philoso-
phy 55.214, pp. 471–484.

Yanofsky, Noson S. (2003). “A Universal Approach to Self-Referential
Paradoxes, Incompleteness and Fixed Points.” In: Bulletin of Sym-
bolic Logic 9.3, pp. 362–386.





D E C L A R AT I O N

I herewith give assurance that I completed this dissertation independently
without prohibited assistance of third parties or aids other than those iden-
tified in this dissertation. All passages that are drawn from published or
unpublished writings, either word-for-word or in paraphrase, have been
clearly identified as such. Third parties were not involved in the drafting
of the content of this dissertation; most specifically I did not employ the
assistance of a dissertation advisor. No part of this thesis has been used in
another doctoral or tenure process.

Berlin, Februar 2022

Frederic Kettelhoit


	Abstract
	Zusammenfassung
	Acknowledgements
	Contents
	Introduction
	0.1 Logical and Ultraphysical Impossibility
	0.2 Surveyability, Philosophy and Mathematics
	0.3 Methodology and Scope
	0.4 Related Work

	1 Cantor, Numbers and Enumerability
	1.1 Cantor's Diagonal Argument
	1.2 A System of Systems
	1.3 What Counts as a Number?
	1.4 Surveyability, Russell and Numbers
	1.5 A General Form of Comparison
	1.6 Beyond a System of Operations
	1.7 Enumerating Rules

	2 Gödel, Theorems and Provability
	2.1 Gödel's Diagonal Argument
	2.2 Truth and Provability
	2.3 Harmless Inconsistency
	2.4 Inconsistency and Use
	2.5 Self-Evident Contradictions
	2.6 Surveyability and Diagonalisation
	2.7 Physics and Mathematical Objects

	3 Turing, Machines and Decidability
	3.1 Turing’s Diagonal Argument
	3.2 Calculating Clerks
	3.3 Falling Bridges
	3.4 Useful Inconsistency
	3.5 Machines as Mathematicians
	3.6 Blunders and New Techniques
	3.7 Steering Clear of Undecidability

	Conclusion
	A Beyond Wittgenstein: Kolmogorov Complexity
	B Surveyably Representing the ”RFM”
	Writings and Lectures by Wittgenstein
	Bibliography
	Declaration
	Declaration

