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Abstract
The objective of this paper was to evaluate the performance of Partial Least Square 
Regression (PLSR) model and to assess the statistical agreement between two differ-
ent measurement techniques, that is, Vis–NIR hyperspectral imaging (HSI) and stand-
ard laboratory methods for quality evaluation of dried carrots throughout the hot-air 
drying process. Carrots at commercial maturity of 3.5 months after planting were har-
vested in two seasons (2017 and 2018) and dried in a convective hot air dryer at 50°C, 
60°C, and 70°C. Quality measurements were examined at intervals of 30  minutes. 
PLSR was performed as a regression model to predict quality attributes in carrots, while 
Passing–Bablok and Deming regressions alongside Blant–Altman analysis were applied 
as method comparisons. Excellent prediction performance for moisture content was 
observed with high R2

T and R2
v at 0.92 and 0.90 with values of RMSET and RMSEv at 

8.15% and 8.16%. Satisfactory prediction accuracies were observed for total carotenoids 
(R2

v = 0.64 and RMSEv = 32.62) μg/g, L* (R2
v = 0.68 and RMSEv = 32.62), a* (R2

v = 0.69 
and RMSEv = 1.18), and b* (R2

v = 0.60 and RMSEv = 1.45). Selected wavelengths for 
total carotenoids, moisture content, L*, a*, and b* based on the highest score of VIP 
loadings were 531, 973, 531, 531, and 680 nm, respectively. An adequate agreement 
of Blant–Altman analysis between the two methods within the upper and lower limits 
of 95% confidence interval (CI) were obtained for total carotenoids from 95.68 μg/g to 
82.34 μg/g, moisture content (25.18% to 22.93%), L* (2.88 to −3.30), a* (4.15 to 3.43), 
and b* (4.53 to −3.11) with mean differences at 6.67, 1.12, −0.21, 0.36, and 0.71, respec-
tively. Good correlation coefficients (r) were also observed at 0.89, 0.91, 0.78, and 0.83 
for moisture content, L*, a*, and b* with a moderate correlation of total carotenoids at 
0.69. The results indicate the potential feasibility of using non-invasive measurement of 
quality attributes using hyperspectral imaging during the drying of carrots.
Novelty impact statement 

•	 non-invasive measurement using hyperspectral imaging for quality determina-
tion in carrots during convective drying demonstrated promising results.
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1  |  INTRODUC TION

Fruits and vegetables provide essential nutrients and minerals with 
significant health benefits to humans. Adequate intake of fruits and 
vegetables for daily consumption is recommended for health main-
tenance and disease prevention (Slavin & Llyod, 2012). One of the 
most popular and nutritious vegetable crops with an appreciable 
amount of phytochemical constituents is the carrot (Ahmad et al., 
2019). Carrots are considered as a primary vegetable in many coun-
tries and the crop is widely cultivated and consumed globally due 
to its nutraceutical properties and culinary attributes with pleas-
ant taste and flavors (Surbhi et al.,  2018; Liu et al.,  2016; Arscott 
& Tanumihardjo,  2010). The roots are rich in phytonutrients such 
as carotenoids (particularly ß-carotenes), phenolic compounds, di-
etary fibers, and minerals. All these bioactive components possess 
specific health-promoting properties with a great potential for pro-
viding a protection mechanism against coronary heart disease and 
certain cancers (Surbhi et al.,  2018; Da Silva Dias,  2014). Carrots 
can be eaten fresh and cooked into a variety of dishes or it can be 
processed into puree, juices, or dehydrated products (Nguyen & 
Nguyen, 2015; Arscott & Tanumihardjo, 2010). Fresh carrots can be 
converted into dehydrated form by drying and the dried carrots can 
be commercially used as a natural ingredient for the formulation and 
development of functional products such as dietary supplements, 
nutraceuticals, and cosmetics (Nguyen & Nguyen,  2015; Igielska-
Kalwat et al., 2012; Anunciato & da Rocha Filho, 2012). The demand 
for dried carrots also rises in the instant food industry since the 
dried roots can be mixed with other ingredients for the development 
of instant soups and meals (Koca et al., 2007).

To this end, food producers are competing to produce high-
quality of dried products with the need to have a reliable, accurate, 
and rapid assessment device for efficient quality assurance that 
could be advantageous for the food industry with an objective to 
minimize the overall operational time as well as to meet the consum-
er’s demand. Monitoring product quality along the production chain 
is very important in food processing in order to ensure the safety 
and quality of the end product (Pu et al., 2015).

In recent years, various non-destructive methods have been re-
searched extensively and tested to evaluate the quality of fruits and 
vegetables starting from farm to retail market and some of them have 
commercially been applied for food grading and sorting in the pack-
ing houses and food processing lines (Kamal et al.,  2019; Nicolaï 
et al., 2014). One of the most recent investigated non-destructive tech-
niques is a hyperspectral imaging (HSI) which is capable to generate 
both spectral information and a spatial map simultaneously at a certain 

range of wavelengths and the acquired spectra are qualitatively related 
to the physical and chemical properties of the product. The key principle 
of HSI is by integrating both imaging technology coupled with spectro-
photometry and this new hybrid technology has been comprehensively 
studied for evaluating the physical properties and internal qualities of 
fruits and vegetables during drying (Arefi et al.,  2021; von Gersdoff 
et al., 2021; Sturm et al., 2020; Yu et al., 2020: Amjad et al., 2019; Liu 
et al.,  2017). Recently, the potential usage of hyperspectral imaging 
was also documented for the identification of saccharin jujube (Zhang 
et al., 2020) and the retention of anthocyanin in purple-fleshed sweet 
potato during convective and microwave drying (Tian et al., 2021).

The applicability of this new generation of sensing technology 
for non-invasive measurement techniques has intensively been 
studied over the past 10 years in order to develop a quick, simple, 
chemical-free procedure and convenient application for quality eval-
uation of food materials during processing (Zhang et al., 2018). The 
use of existing standard laboratory analyses can be time-consuming, 
labor intensive, and require expert and skillful laboratory person-
nel with complex sample preparations and hazardous solvents. 
Moreover, the utilization of expensive instruments could contribute 
to the additional operating and maintenance cost. Therefore, it is 
necessary to explore and establish a new technology for rapid and 
effective quantification methods that could potentially be applied 
for online and real-time quality assessment during drying since this 
technique enables an automatic prediction of the quality attributes 
of fruits and vegetables in a non-destructive manner.

The most notable benefit of HSI is the ability to identify various 
components simultaneously and this method provides scientific tools 
for non-destructive quality inspection with minimal sample prepara-
tion and rapid acquisition times with simultaneous visualization of 
the spatial distribution of numerous chemical components (Elmasry 
& Sun,  2010; Wu & Sun,  2013). The spectral data include two-
dimensional spatial vector array reflecting the spectrum at each pixel 
of the 3D image with a three-dimensional data set which is known as 
the data cube or hypercube. The resulting spectra from HSI must be 
extracted, processed, and interpret by means of chemometric meth-
ods, so that the large data set can be transformed into useful infor-
mation, and finally a relationship between the target attributes and 
their corresponding hyperspectral data of the tested samples can be 
established (Bro et al., 2002). The most common chemometric algo-
rithms are regression algorithms which can be classified into linear and 
nonlinear analysis such as partial least square regression (PLSR) (Pan 
et al., 2016). PLSR technique is widely used in the modeling of hyper-
spectral data due to its versatility in multivariate approaches and this 
model was performed for data computation in this study.

•	 Multivariate analysis of Partial Least Square Regression showed a good mod-
eling performance for quality prediction in dried carrots.

•	 A good statistical agreements between non-invasive quality measurements using 
hyperspectral imaging and standard laboratory analysis were achieved by compar-
ative analysis using Blant–Altman plot, Deming, and Passing–Bablok regression.
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The ability of HSI to generate a large amount of spectral data 
over a wide range of wavelengths causes sizable amounts of re-
dundant information due to multicollinearity with high covariance 
which requires high storage capacity and lengthy processing time 
(Baek et al., 2019; He & Sun, 2015). Therefore, the optimal variable 
selection method based on the Variable Importance in Projection 
(VIP) scores needs to be carried out in order to extract the most in-
fluential wavelengths in the multivariate models for specific quality 
attributes. The main goal of selecting the feature wavelengths is to 
improve the validation performance while eliminating uninformative 
data and thus, reducing the computation time (Baek et al.,  2019; 
Chen et al., 2014). A higher VIP score indicates greater importance of 
the respond variable as a predictor (Rahman et al., 2018). Normally, 
a threshold value of VIP scores between 0.83 and 1.21 is highly sig-
nificant and recommended (Chong & Jun, 2005).

For many years, regression analysis which is in accordance with 
the correlation coefficient has been used to evaluate and describe 
the strength of a relationship between two variables without pro-
viding their agreement (Doğan, 2018; Bilic-Zulle, 2011). The range 
of the correlation coefficient (r) from −1.0 to +1.0 indicates the 
strength level of the linear relationship between variables. The 
higher the correlation coefficient, the greater the strength of the 
relationship. However, according to Doğan  (2018), a strong cor-
relation does not necessarily suggest that the two methods can be 
performed interchangeably with a good agreement. In addition, data 
that appear to be in a weak agreement may generate very strong 
correlations or vice versa (Doğan, 2018). The comparative methods 
are necessary to confirm the reliability, stability, and accuracy of the 
new method whether it can be used interchangeably and replacing 
the conventional laboratory method for estimating the quality pa-
rameters of carrots during drying. This statistical approach is very 
common in medical science and clinical research, but very limited 
studies have been published on its application in the food science. 
This approach is very useful if a new measurement technique which 
has some advantages needs to be introduced over an existing mea-
surement method (Gold standard). The new potential method must 
be validated in order to demonstrate its equal reliability, precision, 
and repeatability for the intended usage. The most common statisti-
cal analysis for method comparisons is Passing–Bablok and Deming 
regressions (Haeckel et al., 2013) as well as Blant–Altman analysis 
(Hanneman, 2008).

The Blant–Altman plot shows the mean difference between 
the measurements by two methods (vertical axis) and their mean 
(horizontal axis) with the addition of agreement limits (Hofman 
et al., 2015). Blant–Altman plots are commonly used to evaluate the 
agreement between two different instruments or two techniques of 
measurement such as comparing a new technique of non-destructive 
quality measurement using HSI with a gold standard of laboratory 
analysis in this study. Blant–Altman plots also allow any systematic 
discrepancy between measurements (i.e., fixed bias) or potential 
outliers to be possibly detected (Hannemen, 2008), while Passing–
Bablok assumes both methods are highly correlated having a linear 
relationship (Passing and Bablok,  1983). Deming regression can be 

helpful and favorable for comparing analytical methods due to its ro-
bustness against outliers. This method also considers measurement 
errors between the test and reference methods (Giavarina,  2015; 
Cornbleet & Gochman, 1979).

In light of this, a new approach of method comparison using both 
regression techniques of Passing–Bablok and Deming regressions 
combined with Blant–Altman analysis will be tested in this study for as-
sessing and comparing the performance of this new method of non-de-
structive measurement using HSI with a standard laboratory method.

The main objectives of the current study were as follows: (1) To 
evaluate the performance of PLSR modeling for predicting the qual-
ity attributes in carrots during drying, (2) To determine the important 
wavelengths which correspond to specific quality attributes based 
on the highest score of Variable Importance in Projection plots (VIP), 
and (3) To evaluate the statistical agreement between conventional 
laboratory methods with non-destructive measurements of HSI 
using Passing–Bablok and Deming regressions alongside with Blant–
Altman analysis for method comparisons.

2  |  MATERIAL AND METHODS

2.1  |  Raw materials

Organic carrots (var. Laguna) at an optimum maturity of 3.5 months 
after planting were harvested at different seasons during autumn 
(2017) and summer (2018) from the University of Kassel’s farm in 
Frankenhausen, Kassel, Germany. All carrots from both seasons 
were harvested in the morning prior to drying experiments. The 
average daily temperatures for both seasons were 16°C and 28°C, 
respectively. Therefore, the harvested roots were observed to have 
different characteristics with large variations of total carotenoids 
content and color intensity. The observations were confirmed by a 
study conducted by Brunsgaard et al. (1994). The authors reported 
significant variations of chemical compositions in different varie-
ties of carrots harvested from two consequent years of 1990 and 
1991. After that, the roots were washed with distilled water, peeled, 
and sliced by using a food slicer (Graef, E21EU, Germany) prior to all 
drying experiments. The exterior diameter for each slice was kept 
constant at 2.5 ± 0.1 cm by using a custom-made rounded stainless 
steel cutter. The diameter of carrots was measured manually using a 
Vernier caliper (Kinzo, 98,618, Netherlands).

2.2  |  Drying procedure

Drying experiments from both years were carried out using a small-
scale commercial dryer (Innotech Ingenieursgesellschaft, HT mini, 
Germany) at a constant air rate of 0.6 m/s. The dimensions of the 
dryer are 50 × 40 × 60 cm (L × W × H) as in Figure 1. The humidity 
in the dryer was in the range between 6% and 10%. The first drying 
experiment which was conducted in 2017 investigated the effect of 
different drying temperatures and thickness on quality changes in 
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carrots (Md Saleh et al., 2019). In this experiment, about 200 g of 
sliced carrots of different thicknesses of 3 and 6 mm were placed 
as a single layer in the dryer and dried at 50°C, 60°C, and 70°C. 
The second experiment on critical control point-based intermittent 
drying was carried out in 2018 (Md Saleh et al., 2020). During the 
trial, 50 g of sliced carrots of the thickness of 3.5 mm was used in 
the study. The sliced carrots were subjected to different combina-
tions of drying strategies based on intermittency at the critical point 
of quality degradations. The samples were dried at 60°C and 70°C, 
and tempering was conducted for 1 and 3 h at 30% and 40% mois-
ture levels. All experiments from both drying strategies were per-
formed in three replicates. Before each drying run, the dryer was 
started 1 h in advance to reach steady-state conditions. The initial 
moisture content of carrots was determined according to the AOAC 
method  (2012) by drying the sample in an oven at 105°C for 24 h 
(Mermert, ULM 400, Germany). The initial moisture content of the 
fresh carrots was recorded to be around 88% (7.54 gw/gdm ± 0.3). 
The drying process for both experiments takes place in a single layer. 
Samples withdrawal prior to hyperspectral imaging and laboratory 
analysis for moisture content, color, and total carotenoids through-
out the drying period were carried out every 30 minutes for both 
experiments. For every drying point, four slices from four roots for 
each replicate were evaluated and a total of 12 slices per drying 
point were used in this study. The same slices were used for both 
non-destructive analysis of hyperspectral imaging and laboratory 
analysis in order to ensure consistency. Moisture content was de-
termined by weighing the samples manually using an electronic bal-
ance (Sartorius, E2000D, Germany) until the samples reached a final 
moisture content of 10% (0.10 ± 0.02 gw/gdm) (Zhao et al., 2014).

2.3  |  Measurement of color

Color measurements were performed using a Minolta chroma meter 
(Minolta, CR-400, Japan). The chroma meter was calibrated against a 
standard white reference tile prior to sample measurements. The ob-
server used was 2° closely matches CIE 1931 Standard Observer with 
a silicon photocells detector and a setting illuminant at °C and D65 
(Anon, 2002). The color was determined on four slices from four roots 
at each measurement point for each replicate. For each slice, measure-
ments were taken at two points on the surface and the results were 

averaged over the slice. The color measurements were carried out 
based on the three-dimensional color space of CIE L*a*b* scale where 
L* represents the brightness of the color, a* shows the hue color from 
red (+) to green (−), and b* lies between yellow (+) and blue (−) (Joshi 
et al., 2009).

2.4  |  Determination of total carotenoids

Total carotenoids were determined by extracting 100 mg of car-
rot tissue in a mixture of 10 ml solvent of hexane, acetone, and 
ethanol at a ratio of 2:1:1 by adopting the method reported by 
Moscetti et al. (2017). The solution mixture was homogenized for 
2 minutes at 8000 rpm by using a laboratory homogenizer (IKA, 
T25, Germany), and incubated for 1 h at 4°C inside a refrigerator 
until the sample turned completely colorless in order to ensure 
all total carotenoids were fully extracted. Then, 5 ml of distilled 
water was added to the extracted sample to allow phase sepa-
ration. The upper layer was separated from the aqueous phase 
and the concentration of total carotenoids was measured at the 
wavelength of 450 nm by a UV–Vis spectrophotometer (Thermo 
Electron, Genesys™ 10, USA). The total carotenoids content was 
finally calculated using Equation (1).

where Abs is the absorbance reading of the sample, V1 is the dilution fac-
tor, A1% is the extinction coefficient of the 1% solution (i.e., 2500 AU) and 
C1% is the concentration of the 1% solution (10 mg/ml). The total carot-
enoids content was converted to mg/gdm based on dry matter content.

2.5  |  Hyperspectral imaging system

The image of the samples was captured by employing a hyperspec-
tral imaging system (model: V10E PFD, Specim Spectral Imaging Ltd., 
Finland) equipped with a 35  mm lens (Schneider Optische Werke 
GmbH, Xenoplan 1.9/35, Germany) and a linear translation stage 
(Specim Spectral Imaging Ltd., Finland). The illumination system con-
sisted of three 60 W halogen lamps positioned at an angle of 45°. A set 
of four slices of carrots along with a white tile were captured at each 
drying point in the spectral range of 400–1010 nm. A total of 1368 car-
rot slices from two growing seasons were used in this study. The aver-
age spectrum from three replicates for every drying point was used for 
further computations. It is noteworthy that dark images were taken by 
closing the shutter to take the sensor noise into consideration.

2.6  |  Image processing and visualization

All image processing was performed using an in-house software 
developed in Matlab (version R2020a, MathWorks, USA). First, the 

(1)Total carotenoids
(

ml
−1
)

=
Abs∗V1

A1%

× C1%

F I G U R E  1  Schematic diagram of the dryer
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hypercube channels were searched in a loop to find a channel gener-
ating the highest contrast between the objects and background. The 
channel was binarized using Otsu’s algorithm and all objects were 
labeled from top to bottom. Then, the captured images were cor-
rected according to Equation 2:

where R (λxy) is the adjusted relative reflectance image, I(λxy)is the orig-
inal image of the samples, W(λxy) is the image of white tile, and MDNλ is 
the dark image. Next, the average reflectance spectrum for each carrot 
slice was calculated. Since lower emissions of the halogen bulbs were 
observed at the range between 400 and 500 nm, the spectral range 
from 500.55 to 1010 was used in the PLSR development. Visualization 
of selected quality attributes was computed by inserting the corre-
sponding spectrum for each pixel into the developed model in order to 
generate a 2D visualized mapping according to the location of all the 
corresponding pixels of the carrot slice.

2.7  |  Multivariate analysis

Partial Least Square Regression (PLSR) was employed for the multi-
variate analysis by imported all the data sets into JMP software (SAS 
Institute Inc., Cary, NC, USA). PLSR was used in this study due to 
its ability to analyze data with numerous noises, collinear, and even 
incomplete variables in both sample spectrum and reference values 
(Wold et al., 2001). Carrots from the same variety of Laguna which 
had grown and harvested in two seasons (2017 & 2018) were com-
bined into one data set regardless of drying treatments, temperature, 
and thickness in order to develop a robust and independent model. 
Then, the spectral reflectance for each drying point was averaged 
from three replicates in order to improve the modeling performance 
with better accuracy. The methodological approach in this study is 
simplified as depicted in the flowchart in Figure 2. All variables were 
preprocessed using mean centering and autoscaling methods before 
further modeling. Mean centering is the first stage in preprocessing 
of multivariate methods especially for spectral data in food (Sena 
et al., 2017). This technique eliminates the mean spectra and shifts 
the natural data origin to the multivariate mean. Mean centering also 
ensures that the results are excellent in terms of variation around the 
mean (Nicolaï et al., 2007). Then, the average of each column is com-
puted and then subtracted from each variable (Li et al., 2018). Thus, 
each mean-centered column has an average of zero. Meanwhile, au-
toscaling is another primary preprocessing method which includes 
mean centering and each value is divided by its respective column 
standard deviation after the subtraction of the column average. Thus, 
the mean and unit variance in all columns is zero (Sena et al., 2017). 
Later on, a predictive PLSR model was computed and developed 
through the nonlinear iterative partial least squares (NIPALS) algo-
rithm with a testing number of factors equal to 15. The same spectral 
data set with all the quality attributes (total carotenoids, moisture 

content, L*, a*, and b*) were applied to the protocols so that all quality 
parameters can be estimated in the future from the measured spec-
tra. The frequency distribution of variables was displayed in the his-
togram and the data were compressed over the intensities in the bin 
in order to define the adequate experimental space. The bins were 
selected based on a fixed width or with an increasing width with an 
almost equal distribution of data set. The binning process deviates 
the linear order between the original quantitative values and permits 
any form of correlation between responses (X) and Y that needs to 
be modeled (Smolinska et al., 2012). A binning with 10 data splits 
was optimized for each model and the regression models were com-
puted by applying the two-way cross-validation method in order to 
resolve the dependency between the predicted error for new indi-
viduals and the optimization of the model parameter. The data sets 
were chosen randomly and divided into two categories of which 60% 
were used for training and 40% for the validation test. Additional in-
dependent data were reserved for testing the model performance. 
Fully cross-validated PLSR with an optimum number of latent factors 
was applied to construct a robust model in order to obtain the best 
prediction results for each quality parameter that is, total carotenoids, 
moisture content (% wb), and color attributes of L*, a*, and b*. After 
that, single cross-validation was carried out on both validation and 
training sets. The optimal number of PLSR components and the mini-
mum predicted residual error sum of square (PRESS) of the validation 
set were selected for the optimal number of latent variables (LV) or 
factors for the PLSR model (Sawatsky et al., 2016). PRESS is calcu-
lated based on the sum of squares of deviation between predicted 
and reference values of quality parameters and was calculated using 
Equation (3) (Shrestha et al., 2019). This model contains the predicted 
formula which was performed on both training and validation data 
sets including the independent test set. The calibration model was 
applied to predict the independent test data sets. The performance 
of the model and its accuracy were selected based on the minimum 
coefficient of determination (R 2) and root mean square error (RMSE) 
for the training set (R 2 T and RMSET) and cross-validation set (R 2 v 
and RMSEv). The R 2 and RMSE were defined in Equations (4), (5), and 
(6), respectively (Chai & Draxler, 2014).

 

 

 

where n is the number of spectra (samples), y act is the actual value, y 

mean is mean value, y cal is the estimated value from calibration model, 
y pred is the predicted value of the quality attributes (total carotenoids, 

(2)R
(

�xy

)

=
I
(

�xy

)

−MDN
�

W
(

�xy

)

−MDN
�

(3)PRESS =
∑

(

ycal−yact
)2

(4)R2 = 1 −

∑
�

Ycal−Yact
�2

∑
�

Ycal−Ymean

�2

(5)
RMSECV =

√

∑

(

Ycal−Yact

)2

n

(6)
RMSET =

√

∑

(

Ypred−Yact

)2

n
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moisture content, L*, a*, and b*) in carrots evaluated by the validation 
method. The statistical parameters such as R 2 and RMSE which were 
obtained from the training, validation, and testing data sets were used 
to assess the quality of the model and to evaluate the influences of 

the predictors. The most accurate model was selected based on high 
R 2 and low RMSE values. The most important wavelengths from the 
spectral data corresponding to each quality parameter were selected 
manually based upon loading weights of the Variable Importance in 

F I G U R E  2  Similar methodology approach for each hyperspectral image and data processing adapted from Shrestha et al. (2019)
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Projection (VIP) plot from the PLSR models which calculated as the 
weighted sum of squares of PLS weights. Then, the most significant 
wavebands that are highly relevant to the quality attributes were iden-
tified based on the highest score of the VIP plot (Meacham-Hensold 
et al., 2020; Shrestha et al., 2019; Amjad et al., 2018; Pu & Sun, 2016). 
The VIP scores generated from the PLSR can be used to select the 
most significant variables or predictors. The VIP score for jth X-variable 
can be calculated from Equation (7)

where p is the total number of variables, A is the total number of com-
ponents, SSa is the sum of squares explained by the ath component, 
SST is the total variance explained by all the components, which is 
computed using loading weight vectors W aj for each component and 
(W aj/W a)

2 indicates the importance of the variable j for component 
a. The VIP score for the predictor variable which is greater than 0.8 is 
considered as an important variable in this study considering the aver-
age squared VIP score (Shrestha et al., 2019; Jun et al., 2009).

2.8  |  Methods comparison

The Bland–Altman (BA) analysis, Passing–Bablock (PBR), and 
Deming regression (DR) were used as a method comparison in this 
study for assessing the agreement between the destructive labora-
tory method and non-destructive HSI technique for all quality pa-
rameters. The BA method is expressed as 95% agreement limits, that 
is, determined by mean difference ± 1.96 standard deviations and 
these values describe the range within which most differences will 
exist between the two methods. Therefore, the smaller the range 
between these two limits the better is the agreement between the 
two methods (Carkeet & Goh, 2018). The aim of BA analysis was to 
identify and assess significant trends in the graph which can be ei-
ther a constant bias or a nonconstant bias as well as variance hetero-
geneities (Bland & Altman, 1999; Carkeet & Goh, 2018). A graphical 
plot with scattered data points around the regression line with an 
ideal value of slope equals 1 and an intercept equals to zero (0) will 
be displayed after computation in PBR. However, the experimental 
results can divert from the ideal values in various ways (Shrestha 
et al., 2019). So the test method’s bias can be measured by the dif-
ference between the regression line (fitting line) and the equality 
line (y = x). The linear regression analysis technique of PBR was also 
used to estimate the agreement of the analytical methods and to 
detect possible systematic bias between both measuring methods 
which is a statistical and nonparametric test procedure (Arendse 
et al., 2018). The basic principle of the DR (Orthagonal) technique is 
fitting a straight line to two-dimensional data where both variables, 
X and Y, are measured with error which are proportional to the over-
all average value of the test and comparative results for each sample 
(Sârbu et al., 2000).

3  |  RESULTS AND DISCUSSION

3.1  |  Multivariate analysis of partial Least Square 
regression (PLSR)

Figure 3 and Table 1 show statistical parameters with satisfactory 
prediction accuracy of R2 for both validation and training sets for 
all quality attributes. The results obtained indicate substantial vari-
ations for each individual slices leading to an acceptable measure-
ment accuracy. These divergences might be attributed to irregular 
shapes and size of each slice such as severe shrinkage, curvature, 
and folded surface at certain drying points resulting in varying de-
gree of physical disfiguration of carrot slices causing light dispersion 
and finally resulting in spectral deviations.

It was also reported that light scattering greatly depended on the 
physical properties of the produce’s tissue (Udomkun et al., 2014). 
Moreover, high variability of physical characteristics in food mate-
rials will reduce prediction accuracy because it will directly impact 
the optical properties, lightness distribution as well as interaction 
behaviors with incident light (Zhang et al., 2018). An acceptable sta-
tistical performance from the data sets was observed with satisfac-
tory values of R2

T for training set at 0.74, 0.92, 0.78 and 0.77, and 
R2

v for the validation set at 0.64, 0.90, 0.68, and 0.69 for total carot-
enoid, moisture content, L* and a*, respectively (Table 1). A strong 
correlation to predict moisture content between the two methods 
was observed in this study with a high coefficient of determination 
(R2) of more than 0.9 for both data sets (Table 1). Similar results were 
obtained by Elmasry et al. (2007). The authors reported identical val-
ues of R2 at 0.90 when evaluating moisture content in strawberries 
during ripening. An acceptable prediction accuracy of total carot-
enoids was also observed in this study with a value of R2

T at 0.74 and 
R2

v at 0.64 (Table 1) which is comparable to previous result reported 
by Rungpichayapichet et al. (2015) on the prediction of β-carotene 
content in mangoes during ripening. The authors reported an R2 at 
0.64 and 0.84 with standard errors of prediction at 20.81 and 14.61 
for both calibration and validation data sets when the samples were 
subjected to a long wave of NIR at 1000–2500 nm. Other nutrients 
such as vitamin C in different varieties of apples also showed a sim-
ilar trend with a value of R2 at 0.8 when using NIR spectroscopy in 
the region between 400 and 2500 nm (Pissard et al., 2013). In this 
present study, low R2 at 0.67 and 0.59 were observed for the color 
parameter b* for both training and validation data sets which indicate 
an error might occur from both measuring methods due to curvature 
or glossiness of the sample’s surface (van Roy et al., 2017). It was also 
mentioned that the curve surface of fruits and vegetables will cause 
uneven light distribution leading to variability in spectral absorbance 
and finally affecting the prediction accuracy of chemometrics mod-
els (Zhang et al., 2015). Nonuniform color distribution during dry-
ing also impacts visible differences in appearance and texture that 
could trigger the irregularity in spectrum pattern since color changes 
during drying were not homogeneous (Fernandez et al.,  2005). 
Similar results were also obtained by van Roy et al.  (2017) and 
Larraín et al. (2008) on the color parameter of b* for tomato and beef 
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by using hyperspectral imaging and digital imaging with low R2 at 
0.42 and 0.56, respectively. Furthermore, irregular sample surface, 
size, and geometry also influence the reflectance variability espe-
cially if the window or sensor of the instrument is not completely 
cover the product surface leading to inaccurate color measurements 
(van Roy et al., 2017). Minimal values of RMSET and RMSEv for both 
data sets were also observed for moisture content, L*, a*, and b* at 
8.15, 1.56, 1.06, and 1.40 for training set, and 8.16, 1.75, 1.18, and 
1.45 for validation set, respectively. It was noted that a large range 
of RMSET and RMSEv at 28.68 and 32.62 were observed for total ca-
rotenoids in both data sets as compared with other quality attributes 
(Table 1). The results suggest high variation of total carotenoids due 
to different levels of thermal degradation during drying and vast 
measurement errors leading to a wide range of total carotenoids 

concentration across the whole data sets. A similar trend was also 
reported by Ihsan et al. (2019) on high RMSE at 39.21 for carotenoids 
content in apple leaves using hyperspectral imaging with a range of 
wavelength from 400 to 1000 nm. Moreover, high variation in spec-
tral reflectance related to total carotenoids can be caused by scat-
tering effects of the tissue and consequently impacting the spectral 
intensities (Zude et al., 2007). Furthermore, the large variations of 
total carotenoids in this study might be due to the heterogeneity 
of total carotenoids for each slice because of different harvesting 
seasons and years since the nutritional compounds of carrot were 
reported to vary with season (Horvitz et al., 2004) and environmen-
tal conditions (Rosenfeld et al., 1998). In addition, different drying 
strategies from two different drying experiments in this study also 
caused varying degree of total carotenoids degradation since it was 

F I G U R E  3  Scatter plot of total carotenoids (a), moisture content (b), L* (c), a* (d), and b* (e) using training (red) and validation (blue) set of 
carrot samples as predicted by PLSR model and as measured in the laboratory
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mentioned that different drying techniques will strongly influence 
the decomposition of carotenoids (Cui et al., 2004),

Table 1 and Figure 4 present optimum latent variables of 14, 15, 
14, 13, and 15 with the least Root Mean PRESS at 0.61, 0.32, 0.63, 
0.57, and 0.77 for total carotenoids, moisture content, L*, a*, and b*, 
respectively. The number of latent factors with the least PRESS val-
ues was selected in this study according to Shrestha et al. (2019) and 
Khodabakhshian et al.  (2017). These factors were chosen in order 
to prevent overfitting of the data due to choosing too many latent 
variables or inadequate fraction of training and testing data sets 
and also underfitting caused by selecting a low number of variables 
(Shrestha et al., 2019). Thereby, these optimal factors were sufficient 
for capturing and modeling the data variability. The respective latent 
factors in PLSR were employed for simultaneous identification of 
the analytes using the validation method across all the spectral data. 
It is also possible to analyze the interrelation between quality attri-
butes in order to relate the interaction between quality parameters 
that could influence the spectral pattern as reported by Schmilovitch 
et al. (2014). The authors observed a satisfactory level of R2 at 0.70 
for the interaction between total soluble solids and total carotenoids 
which indicates the possibility to apply HSI with the consideration to 
oversee the correlation between relevant qualities attributes. In this 
study, the excellent prediction accuracy of R2 at 0.85 and low Root 
mean PRESS at 0.47 were obtained when two responses of total 
carotenoids and moisture content were analyzed together show-
ing a significant correlation between these two variables during the 
drying process. The results were confirmed by our previous work 
on the influence of moisture content on total carotenoids reten-
tion during drying (Md Saleh et al., 2019). There is also a possible 
interaction between color parameter a* with both moisture content 
and total carotenoids in carrots during drying which shows a good 
correlation of R2 at 0.76 with low Root mean PRESS value at 0.52 
(Table  2). However, a moderate correlation of R2 between a* and 
total carotenoids was observed at 0.69 with a slightly higher value 
of Root mean PRESS at 0.58. The above computed outputs from 
PLSR modeling provide encouraging results with useful information 
on the possibility to apply non-invasive quality measurements to fa-
cilitate the online monitoring of the drying process. However, con-
tinuous method improvements must be carried out before it can be 

implemented into practical applications since considerable variabil-
ity of resulting spectra for each individual slice was observed in this 
study, indicating a challenging task for upgrading and refining both 
procedures along the processing chain.

All aspects of quality management need to be optimized and 
standardized starting from the preparation of the raw material to 
the end products with a constant development of a new simplified 
algorithm for efficient and reliable data extraction, processing, and 
computation since all variations greatly depend on instrumental 
noise, complex chemical composition of products, environmental 
factors, and other sources of variations that can complicate the re-
sulting spectrum (Li et al., 2018; Liu et al., 2015).

3.2  |  Analysis of spectral reflectance and 
wavelength selection based on VIP plot

The average spectral reflectance of carrots over the range of wave-
length from 400 to 1010 nm at different time points of the drying 
process is shown in Figure  5. Similar trends of spectra were ob-
served for all measurement points indicating consistent changes 
of reflectance throughout the drying process. Lower reflectance 
intensities were observed in fresh samples in the regions between 
500 to 540 nm and 900 to 980 nm. However, the reflectance values 
increased with an increase in drying time due to degradation of total 
carotenoids and reduction of moisture content. This is due to the 
fact that both regions correspond to total carotenoids and moisture 
content absorption peaks (Chaudhry et al., 2018; Liu et al., 2016). 
Changes in spectral reflectance in both regions during drying are 
related to the decomposition of color and changes in chemical com-
positions due to thermal damage of total carotenoids and moisture 
losses during drying. Furthermore, changes in spectral reflectance 
are caused by changes in absorption and scattering properties of 
fruits and vegetables during drying. These changes are influenced 
by physico-chemical transformations of chemical components, 
hardness, microstructure, and texture of the products which are 
induced by process conditions during convective drying (Mozaffari 
et al., 2016). According to Mozaffari et al. (2016), changes in spectral 
profile of laser backscattering imaging during drying of apples were 

TA B L E  1  Statistical parameters of PLSR modelling and selected wavelengths for quality attributes in carrots

Quality parameters

Statistical parameters and selected wavelengths

Calibration Validation

Root MeanPRESS
Selected wavelengths based on VIP 
scoresR

2

T RMSET R
2

v RMSEv

L* 0.78 1.56 0.68 1.75 0.63 531, 592, 654, 685, 960, 980

a* 0.77 1.06 0.69 1.18 0.57 531, 600, 624, 660, 685, 975

b* 0.67 1.40 0.60 1.45 0.77 531, 592, 629, 650, 680, 960

Moisture content (% wb) 0.92 8.15 0.90 8.16 0.32 531, 585, 973

Total carotenoids (μg/g) 0.74 28.68 0.64 32.62 0.61 531, 598.97, 623, 654.03, 685, 970

Abbreviations: R2T, Coefficient of determination for training set; R2v, Coefficient of determination for validation set; RMSE T, Root Mean Square Error 
for training set; RMSEv, Root Mean Square Error for validation set; Root Mean PRESS, Root Mean of Predicted Residual Sum of Squares.



10 of 20  |    SALEH et al.

closely related to enzymatic oxidation, nonenzymatic browning as 
well as degradation of color and carotenoids. In the case of carrots, 
any noticeable changes in color can be correlated with degradation 
of total carotenoids and nonenzymatic browning (Koca et al., 2007). 
Therefore, changes in the spectral pattern can be a potential indi-
cator to predict both color and total carotenoids transformation 
and the application of non-invasive quality evaluation using HSI is 

helpful for evaluating the dynamic changes during drying without 
interrupting the process.

The VIP plots of total carotenoids, moisture content (%wb), L*, 
a*, and b* of carrots at 323 wavelengths from 500.55 to 1006.58 nm 
are displayed as in Figure 6. In this study, any wavelengths with a 
VIP score of more than 0.8 are considered as an important and sig-
nificant wavelength for quality prediction (Shrestha et al.,  2020). 

F I G U R E  4  Predicted residual errors 
sum of squares (PRESS) plot for (a) total 
carotenoids, (b) moisture content (% wb), 
(c) L*, (d) a*, and (e) b* as a function of a 
number of factors in dried carrot
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VIP plots also indicate which X variables (wavelengths) had the most 
influence on a model. The most influential wavelengths which cor-
respond to the quality attributes of carrots were selected based 
on the highest loading of VIP scores in this study. It was found that 
the highest peak of spectral reflectance was dominant at certain 
wavelengths displaying different spectral signatures for specific 
quality attributes. Figure  6 (a) and Table  1 show noticeable peaks 
at the wavelength between 520 to 545  nm and the highest peak 
in that region was observed at 531 nm which can be attributed to 
total carotenoids content (Haas et al., 2019). A spike of peaks in the 
wavelength regions between 500.55 and 685.71 nm is illustrated in 
Figure 6c–e which might be related to color of carrots as denoted 
by the color parameters of L*, a* and b*. The highest peak for L*, a*, 
and b* were observed at 531, 531, and 680 nm, respectively, which 
might be related to chlorophyll “a” in carrots (Zude et al., 2008). It 
was reported that wavelength peaks from the region of 430–670 nm 
correspond to Chlorophyll a, and from 460 to 640 nm to Chlorophyll 
b. The range of carotenoid peaks was observed from the region from 
470 to 530 nm (Chaudhry et al., 2018). So, the selected wavelengths 
obtained in this study for total carotenoids and color were close and 
within the particular regions as reported in the previous literatures.

An apparent peak in the region between 959.11 to 985.26 was 
observed in VIP plot for moisture content with the highest peak 
spikes at 973 nm (Figure 6b and Table 1). The corresponding wave-
length was related to moisture content due to the strong absorption 

of infrared radiation by water and the engagement of hydrogen 
bonds with one or two OH groups within a NIR spectrum between 
730 and 2300 nm which in turn will influence the NIR absorption (Yu 
et al., 2019; Amodio et al., 2017). This noticeable peak was also as-
sociated with the stretching of the H–O–H bonds within water mol-
ecules and the prominent absorption peak for water was reported to 
be around 970 nm (Sturm et al., 2020; Kandpal et al., 2013).

3.3  |  Predictive ability of PLSR model and method 
comparison based on Passing–Bablok and Deming 
regressions

The statistical comparison between two methods in analytical 
chemistry is the most crucial step in method validation and the 
task is usually completed by employing a regression technique for 
method comparisons (Mocák et al., 2003). In our study, the results 
obtained from laboratory methods are considered as a reference 
method or gold standard and it will be plotted horizontally on the 
X axis and the predicted results acquired from HSI are plotted on 
the Y axis (Figure 7). The data set is strictly paired. The equality line 
is displayed as a dotted gray line with a slope of 1 and an intercept 
of 0. Statistically, the two methods would have a 100% agreement 
if all observed points were set on this line with a R2 equal to 1 
which is unlikely to happen in a real situation since no measurement 

Quality parameters

Statistical parameters

R2 Root Mean PRESS

Interaction between moisture content (% wb) and total 
carotenoids

0.85 0.47

Interaction between a* and total carotenoids 0.69 0.58

Interaction between a*, moisture content and total 
carotenoids

0.76 0.52

Abbreviations: R2, Coefficient of determination; Root Mean PRESS, Root Mean of Predicted 
Residual Sum of Squares.

TA B L E  2  Statistical parameters of PLSR 
modelling for interaction between quality 
attributes

F I G U R E  5  Average spectral 
reflectance of carrots at different drying 
time
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methods are perfect (Ludbrook, 2010). The DR (red line) and the 
PBR (blue line) were evaluated simultaneously. A random scat-
tering patterns around the equality line were observed between 
measured and predicted values of total carotenoids, moisture con-
tent (% wb), L*, a*, and b* which indicates that there is a discrep-
ancy between the methods. However, the values of concordance 

correlation coefficient (r) from DR are 0.69. 0.89, 0.91, 0.78, and 
0.83 for total carotenoids, moisture content (% wb), L*, a*, and b*, 
respectively, which indicate satisfactory correlations between 
the two compared methods for moisture content and color but a 
moderate predictive performance for total carotenoids. This is in 
accordance with findings of other researchers since it is a great 

F I G U R E  6  Variable importance projection (VIP) plots for total carotenoids, moisture content (% wb), L*, a*, and b* at wavelengths 
between 500.55 and 1006.58 nm
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F I G U R E  7  Regression analysis of quality parameters of carrots (total carotenoids (a), moisture content (% wb) (b), L* (c), a*(d), and b*(e)) 
predicted by PLSR versus measured values of laboratory methods. The dashed gray line: A line of equality, solid red line: A result of the 
Deming regression with the obtained fit ratio, solid blue line: A line of Passing–Bablok regression
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challenge to accurately predict the internal quality of fruits and 
vegetables using hyperspectral imaging (Lu et al., 2017). However, 
a good agreement between these two methods was observed at 
medium concentrations of total carotenoids around 180  μg/g to 
260  μg/g with almost an equal scattered distribution from both 
sides of the equality line (Figure 7a). This is because, at that concen-
tration, most of the carrot slices still contained substantial amounts 
of moisture (MC >30%) and they were still in a good shape with 
low levels of shrinkage and minor physical deformation resulting 
in better light absorption into the materials. It was also testified 
that the reduction of moisture content in apples during hot air 
drying caused changes in absorption and scattering properties of 
the product due to structural modification of the tissue such as 
changes in size, density, and food matrix (Mozaffari et al.,  2016; 
Udomkun et al.,  2014). The results signify that, minimal physical 
deformation in carrots results in lower light scattering incidence 
which leads to a good prediction of total carotenoids by using HSI. 
The same pattern of observation based on DR was also reported by 
Chen et al.  (2013) on insulin detection by two different methods. 
The authors indicated a good agreement between the two methods 
was observed at lower concentrations of insulin which implied that 
the measurements from both methods from the previous study can 
be in a good agreements to some extend or as in our case of carrots 
drying, there is a limitation at which the new method of HSI can be 
reliable at a certain range of total carotenoids concentrations and 
moisture levels since a good agreement for both methods was ob-
served at higher moisture contents (>30%). Additionally, the simul-
taneous response and interference from other compounds which 
occur in parallel with dynamic changes from a combination of multi 
chemical components in food during drying will influence the re-
flectance performance resulting in spectral variation and overlap-
ping in the spectral regions, thus leading to complicated spectra 
(Li et al., 2013). Moreover, heterogeneity of physical and biological 
properties of agricultural products greatly influences their optical 
propagation properties and interaction behaviors with incident 
light, thus reducing the accuracy of quality measurements (Zhang 
et al., 2018). The same observations of low coefficient of determi-
nation at less than 0.20 were also reported on sucrose prediction 
by HSI in wheat kernels (Delwiche et al., 2013).

The computed results from both regression methods in this 
study show the slopes and intercepts of PBR and DR regressions as 
in Table 3 are not confidently different from 1 and 0 for all quality pa-
rameters with orthogonal fit ratios of 1.52, 0.99, 0.81, 0.54, and 0.52 
for total carotenoids, moisture content (% wb), L*, a*, and b*, respec-
tively. The observed orthogonal fit ratios which differ from an ideal 
value of 1 imply that both measuring techniques possess different 
measurement uncertainties due to analytical errors, seasonal varia-
tions, or environmental conditions that could possibly contribute to 
quality variations for each root and finally influence the measured 
values (Shrestha et al., 2020; Ludbrook, 2010). A proportional and 
systematic difference (or BIAS) between the laboratory analysis and 
the HSI method was not observed in this study since both intercepts 
and slopes are confidently different from 0 and 1. The above results 
from both regression techniques indicate an acceptable agreement 
between the pairs of measurement methods which suggest that in 
each case both techniques can be potentially applied interchange-
ably for rapid prediction of total carotenoids, moisture content (% 
wb), and color parameters of L*, a*, and b* in carrots during drying.

3.4  |  Bland–Altman plot analysis for verifying the 
limit of agreement between two methods

The Bland–Altman plot as in Figure 8 was analyzed based on the dif-
ferences and agreement between the predicted values (by PLSR) and 
measured values (laboratory method) for total carotenoids, moisture 
content (% wb), L*, a*, and b* against the mean of both methods. The 
outcomes from the plot show an acceptable agreement between 
the compared methods with a relatively small mean of difference of 
6.67 and a standard error of 2.94 with a satisfactory correlation of 
“r” equal to 0.69 for total carotenoids (Figure 8 and Table 4). A few 
outliers were detected in the plot which indicates samples hetero-
geneities due to biological, seasonal, and environmental variations 
that could influence the initial concentration of total carotenoids 
since it was observed that the amount of total carotenoids in this 
experiment varied for each individual root. The measurement errors 
and physical distortion of each individual slices could also contrib-
ute to spectral variation and finally lead to extreme measurement 

Variable
Variance fit 
ratio r

Slope Intercept

DR PBR DR PBR

Total carotenoids 1.52 0.69 1.23 1.22 -42.33 -35.06

Moisture content 
(%wb)

0.99 0.89 0.99 1.04 1.24 -0.57

L* 0.81 0.91 0.90 0.85 5.95 9.35

a* 0.54 0.78 0.73 0.73 6.63 6.63

b* 0.52 0.83 0.72 0.74 11.89 11.35

Abbreviations: DR, Deming regression; PBR, Passing-Bablok regression; r, coefficient of 
correlation.

TA B L E  3  Regression parameters 
from Passing Bablok (PBR) and Deming 
regressions (DR) for method comparisons 
for total carotenoids, moisture content 
(%wb), L*, a*and b* measured by 
hyperspectral imaging (X) and standard 
laboratory measurement as a reference 
method (Y)
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values and predictions. The BA plot for total carotenoids displays 
equally distributed points between the limits of agreements at 95% 
CI which is expanding from 95.68 μg/g to 82.34  μg/g demonstrating 

a satisfactory agreement within an acceptable level between non-
destructive technique and laboratory analysis (Sedgwick, 2013). In 
other words, we can say that 95% of the plotted data points would 

F I G U R E  8  Bland–Altman plots for quality parameters in carrots which show the differences between predicted and measured values vs 
the mean value of both measurements. Dashed gray lines indicate the limit of agreement (±1.96 S.D of difference), the solid black line is the 
line of equality, the solid red line shows the mean difference (bias), and the dashed red lines show the 95% CI around the mean difference
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have a measurement difference within the limits of agreement in 
the range between 95.68 and 82.34 interval. The wide interval in 
this study implies that large differences in measurements due to a 
wide range of total carotenoids retention were observed through-
out the drying period. The mean differences for moisture content, 
color parameters of L*, a*, and b* are 1.12, −0.21, 0.36, and 0.71, 
respectively, indicate that both applied methods are evidently com-
parable and acceptable as the mean difference is approaching to-
ward zero, and the standard deviation of the variations between 
measurements does not exhibit any systematic variance with the 
mean of the measurement pairs. Low values of standard deviations 
at 1.96, 1.41, and 1.85 were observed for the color parameters of L*, 
a*, and b* which demonstrate an appropriate agreement between 
both measurement methods. However, a higher standard deviation 
for total carotenoids at 45.41 µg/g was obtained in this study due to 
a broad range of total carotenoids concentration across the data sets 
implying varying degrees of total carotenoids decomposition when 
subjected to heat treatment. Previous research which was reported 
by Rungpichayapichet et al. (2015) also showed similar patterns with 
higher standard deviation at 36.71 of predicted β-carotene by PLSR 
model in mango during ripening by employing a non-invasive tech-
nique of near-infrared spectroscopy at 700–1100 nm. Nevertheless, 
an acceptable agreement was achieved for total carotenoids in this 
study with just 10 outliers from 239 data sets between non-invasive 
technique and Gold Standard method, implying that only 4.14% of 
the total carotenoid values surpassed 95% of the acceptability limits. 
The result obtained complies with the statistical agreement since it is 
recommended that 95% of the data points should lie within the limits 
of agreement at ±1.96 SD of the mean difference (Earthman, 2015; 
Sedgwick, 2013). The findings demonstrate the possibility of using 
non-destructive technique for total carotenoids measurement dur-
ing drying. For moisture content, a good level of agreement was 
also observed at a minimal value of standard deviation at 7.96 with 
only seven outlier points, indicating only 2.93% of the differences in 
measured values fell outside the 95% acceptability limits. Both find-
ings are within an agreeable statistical limit as described by Bland 
and Altman (1999). The results also show minor values of standard 
error at 1.92, 0.25, 0.36, and 0.30 for moisture content, L*, a*, and 
b* (Table 4). Therefore, the new HSI technique can be performed in-
terchangeably for non-destructive quality inspection in carrots with 
an acceptable accuracy as compared with a conventional laboratory 
method. In view of this, we can suggest that there is a great potential 

for adopting the application of HSI for non-invasive assessment of 
moisture content and color in carrots, despite the fact that both 
methods could possibly possess their own errors in various ways 
and the errors could be linked to sampling, sample preparation, and 
instrumental noise. The errors within laboratory methods can pos-
sibly occur at various stages of sample preparation prior to physical 
and chemical analysis. All these errors will contribute to a significant 
variation in the measurements (Amodio et al., 2017).

3.5  |  Visualization of moisture content at different 
drying periods

Figure 9 shows a mapping of moisture content in carrots at different 
stages of the drying process at 60°C. The images for samples dry-
ing at 60°C were selected due to the best quality retention which is 
based on our previous study (Md Saleh et al., 2019). The displayed 
images from Figure 9 demonstrate higher moisture distribution was 
observed at the center of the carrot slice at the early stage of drying 
between 90 and 150 min and lower moisture content at the edge of 
the slices at all stages of drying indicating a higher moisture removal 
rate at the edge of the surface area. The images also show a signifi-
cant size reduction as the drying proceed due to water removal dur-
ing drying and finally leading to physical deformation such as volume 
shrinkage (Pu & Sun, 2015). Therefore, a bias during measurements 
occurred due to physical disfiguration of the carrot slice leading to 
inaccurate mapping predictions. This error was unavoidable and for 
that reason, higher moisture regions were observed at some spots 
on the edge of the slice toward the final stage of the drying pro-
cess. Additionally, Zhang et al. (2018) reported that, the curved sur-
face, shape, size, and color of fruits and vegetables influenced the 
reflectance components. Furthermore, the authors also mentioned 
that the curved surface will cause nonuniform reflectance leading 
to uneven light distribution; especially the zone near to the border 
resulting in misinterpretation or it can be incorrectly identified as de-
fects. Consequently, the irregular surfaces would promote spectral 
variability and enhance the complexity of the calibration model and 
finally reduce the prediction accuracy and practicability of the model. 
In general, despite of inevitable challenges of variability in physical 
distortion of each individual slice of carrots, visualization of moisture 
distribution using HSI during drying is useful for evaluating the per-
formance of the drying process when subjected to different drying 

TA B L E  4  Statistical parameters of Blant Altman analysis for quality attributes in carrots

Variable Upper limit Lower limit Mean difference
Standard 
deviation Standard error r

Total carotenoids 95.68 -82.34 6.67 45.41 2.94 0.69

Moisture content (% wb) 25.18 22.93 1.12 7.96 1.92 0.89

L* 2.88 -3.30 -0.21 1.96 0.25 0.91

a* 4.15 -3.43 0.36 1.41 0.36 0.78

b* 4.53 -3.11 0.71 1.85 0.30 0.83

Abbreviation: r, coefficient of correlation.
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conditions. This advanced technique enables a good prediction of the 
moisture evolution throughout the whole process, which can be a re-
liable indicator for determining the optimum drying time on when to 
stop the drying process and it can be helpful for dynamic optimization 
of the drying process with regards to product quality and safety.

4  |  CONCLUSIONS

Hyperspectral imaging combined with chemometrics demonstrates 
to be a promising technological tool for non-destructive quality 
measurements during the drying of carrots. An excellent prediction 
of moisture content in this study indicates the potential usage of this 
technique for online and real-time quality assessment. This tech-
nique also provides the satisfactory prediction of total carotenoids 
and the color parameters of L* and a*. Satisfactory results for inter-
cepts and slopes in Passing–Bablok and Deming regressions were 
obtained with both values approaching 0 and 1 indicating a good sta-
tistical agreement between the compared method pairs. The results 
were confirmed by the Blant–Altman analysis with more than 95% of 
the measured values were within the 95% CI of the statistical limits 
for all quality attributes. The findings demonstrate a possibility to 
apply non-destructive quality measurement using hyperspectral im-
aging of carrots during drying. This new and innovative method has a 
great potential to substitute a standard laboratory method in the fu-
ture. However, it is still a challenging task to accurately quantify total 
carotenoids in carrots by means of hyperspectral imaging due to the 
inherent chemical and physical complexities of carrots as well as 
constant physical changes throughout the drying process that could 
influence the spectral reflectance and consequently lead to incon-
sistent predictive values of the actual retention of total carotenoids 
in carrots. The application of hyperspectral imaging for noncon-
tact and quantification of total carotenoids could provide us with 

meaningful information on nutrient degradation at any drying point 
and rough estimation of nutrient retention based on the changes in 
spectral reflectance throughout the drying process. Based on this 
information, adequate drying strategies based on product quality as-
pects, for example, the inflection point of nutrients degradation, can 
be performed for effective process control. This study also provides 
preliminary information toward designing and integrating a non-inva-
sive measurements technique into the drying systems for the devel-
opment of smart dryers so that, a continuous and online monitoring 
of quality attributes can be realized and implemented in the future.

5  |  FUTURE RECOMMENDATIONS

The above study demonstrates the importance of acquiring an in-
depth knowledge of optical properties of food crops and their inter-
action with light as well as the propagation mechanisms of light in the 
food tissue must be well understood because it can provide relevant 
information and significant inputs in designing an effective optical 
system for online and non-invasive quality measurement to control 
the drying process. Comprehensive studies on the influence of food 
microstructure on dynamic changes of quality attributes throughout 
the drying process must be carried out since all these factors contrib-
ute to the spectral pattern and prediction accuracy of the resulting 
outputs from the hyperspectral imaging systems. Multidisciplinary 
research areas must be scientifically integrated to overcome existing 
challenges in the understanding of physical, chemical, and biological 
variability of fruits and vegetables that could cause significant spec-
tral fluctuations and consequently affect the prediction accuracy 
especially when dealing with samples at different exposure times 
throughout the processing period such as drying operations. More 
robust, simple, and reliable algorithms with a universal and practica-
ble calibration models need to be developed which are independent 
of origins, cultivars, cultivation practices, seasons, and maturity to 
improve the predictability of future samples.
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