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Abstract: Buildings play an important role to meet Sustainable Development Goals, especially
regarding the use of resources and greenhouse gas emissions. They are increasingly designed with
energy-efficient solutions regarding their operations, while the related use of natural resources is still
insufficiently considered. In this article, a methodology in Building Information Modeling is proposed
to measure the resource and climate footprints of buildings’ heating systems. The methodology is
applied to a case study building in Germany. The studied heating systems include a gas condensing
boiler, ground-source heat pump, ground-source heat pump with a photo-voltaic system and air-
source heat pump backed up with a gas boiler. Next to the operational energy, the production and
transport of the heating systems were also studied. Results show that heating system operations have
the largest impact and that the variant of ground-source heat pump combined with photovoltaics
(GSHP + PV) has the lowest impact. In comparison with the gas boiler (GB), savings of 75%, 47%,
80%, and 84% are addressed to climate, material, energy, and land footprints, respectively, while the
water footprint of GSHP + PV is 73% higher than that of GB.

Keywords: life cycle assessment; building information modeling; design phase; resource efficiency;
energy efficiency

1. Introduction

Economic developments in the building sector have caused a significant increase in
environmental pressures. Those pressures include not only a boost in greenhouse gas
(GHG) emissions but also excessive use of resources [1–3]. These pressures caused by the
building sector led to significant environmental impacts in different categories such as
global warming, water scarcity, land use change, and biodiversity loss [4,5].

Globally, buildings represent 36% of the total energy consumption, and 53% of the
building energy consumption is driven by space and water heating [6]. In Germany in 2019,
more than 70% of the energy used for space heating in residential buildings was generated
from gas and oil [7]. To reduce environmental impacts, a shift towards renewable heating
systems is required. There are already various low-emission heating solutions available,
such as biomass boilers or heat pumps that run on renewable electricity. Even though these
alternatives allow for significant reductions in GHG emissions, their environmental impacts
in terms of material, water, and land use should not be disregarded. Methodologies are
required to enable building planners to facilitate the consideration of these aspects in the
early design phases of buildings.

Building Information Modelling (BIM) allows architects and engineers to design
detailed 3D models of buildings and to communicate efficiently via dedicated Computer-
Assisted Design (CAD) software. Combining BIM with both energy analysis and environ-
mental impact assessment could facilitate the choice of a low-impact heating system and
improve the building’s environmental performance [8].
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The environmental impacts of buildings can be evaluated using Life Cycle Assessment
(LCA) according to ISO 14040 [9] and ISO 14044 [10]. LCA enables the quantification of
environmental impacts from GHG emissions such as global warming, as well as from the
use of material resources, energy, water, and land of a product or service over the whole life
cycle [11]. EN 15804 describes the LCA boundaries for specific construction materials or a
product, whereas EN 15978 regulates the assessment of the environmental performance of
buildings [12,13].

Many studies have conducted LCA of buildings [14–18]. Famiglietti et al., (2022) [19]
developed a tool that enhances the LCA of the building during the operational phase.
The tool was tested with about 81,000 buildings in Milan city and 161,935 energy systems
were investigated. The results showed that space heating is the main contributor to global
warming at about 77%, followed by domestic hot water at 12%, and space cooling at 11%.
The tool permits the LCA of the building sector in large-scale cities considering different
environmental impact categories. Haddad et al. (2022) [20] proposed an environmental
management tool for the selection of hot water systems for buildings considering BIM and
LCA. The approach was tested by conducting a comparative analysis of solar-heating water
systems and natural gas-heating water systems for a residential building in Brazil. The
results showed that the climate footprint of the natural gas system is higher than that of
the solar heating system, whereas most of the freshwater consumption is accounted for
by the solar heating system. Tushar et al. (2021) [21] developed a BIM-based framework
to combine an energy-rating tool with LCA to enhance the decision-making regarding
the passive design of buildings. Consequently, the energy consumption and LCA results
were varied for different design factors, e.g., shading, insulation, orientation, and window
glazing. Najjar et al. (2019) [22] developed an LCA methodology integrated with BIM
that focuses on the decision-making process and sustainability perspectives. The study
results indicated that considering steel construction instead of concrete could have better
environmental performance and reduce energy consumption during the operation of the
building. Rezaei et al., (2019) [23] used Revit for BIM and the software openLCA with the
database ecoinvent to conduct an LCA of a residential building in Canada. The environ-
mental impacts were optimized according to different building designs in the early and
detailed planning phases. Panteli et al. (2018) [24] developed a model for the optimal com-
putational design of building overhangs in terms of LCA within BIM. Different alternatives
of shading, orientations, and climatic data had been studied to develop benchmark values
for constructing bioclimatic elements. Gamarra et al. (2020) [25] analyzed the direct input
of the energy, material, and water of two schools located in a hot climate area and assessed
the direct energy and water consumption and the GHG emissions per student. Different
improvement scenarios have been studied such as the use of renewable energies or the
use of different alternatives to increase energy efficiency. As a result, the demand for fossil
energy can be reduced regarding their operation phase by the consideration of renewable
heating solutions and lighting substitution measures. Emami et al. (2019) [26] estimated the
environmental impacts of two residential buildings using the LCA databases ecoinvent and
GaBi to recognize the uniformity and inconsistencies. Heating systems were assessed under
the systems category of the building elements and materials. Fifteen environmental impact
categories were considered in the assessment; however, the material footprint was not in
the scope of the study. Ingrao et al. (2018) [27] investigated LCA to enhance the design
of buildings in terms of energy efficiency and environmental performance. The article
highlighted the necessity of LCA applications in buildings to increase resource efficiency
and make improvements regarding energy consumption and environmental performance
of the whole building. Slorach et al. (2021) [28] assessed the environmental sustainability
of different heating technologies in the UK, which are natural gas boilers, air source heat
pumps, hydrogen boilers, and direct electric heaters. The environmental impact categories
from ReCiPe 2016 were considered [29]. One kWh of heat was deemed as the functional
unit. The results concluded that gas boilers have GHG emissions of 220 g CO2 eq./kWh,
which could be decreased to 64 g CO2 eq./kWh in the case of hydrogen boilers, as the fuels
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for the hydrogen boilers are natural gas incorporated with carbon capture. Gas boilers have
a better environmental performance regarding toxicities and eutrophication, however high
GHG emissions were addressed.

The literature review shows that the focus of previous studies was mostly on the
environmental impacts of the operational energy of the building, whereas the impacts
related to the production of the heating systems were less studied. Moreover, most of the
studies have not considered the use of material and water resources. The goal of this article
is to propose a methodology for building planners to calculate the resource and climate
footprints of different heating systems to facilitate the choice in an early design phase.
Resource footprints are assessing the environmental impacts related to material, water, and
land use, while climate footprint is assessing the contribution to global warming.

2. Materials and Methods

This section describes the main methods to conduct the LCA study. An overview of
the system boundaries is given. Environmental impact categories are described in addition
to the information related to the BIM model of the case study. Specifications of the energy
analysis and the scope of the LCA are also addressed.

2.1. System Description

The research methodology of the article is shown in Figure 1.
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Figure 1. Research methodology.

The workflow includes the planning concept of the building and defines the main
parameters that influence the energy analysis and selection of the heating systems of the
building such as the building envelope and its usage type. The calculation of the final
energy demand is done within the BIM modeling depending on many factors e. g. climate
zone, building insulation and orientation, and which type of heating system is needed. The
quantification of resource and climate footprints can be achieved according to the results of
the energy analysis and information available from the LCA databases ecoinvent and GaBi.
Final energy requirements are calculated using different heating systems.

Regarding the German context, the energy analysis is based on the norm DIN 18599-
10 [30]. The LCA of the heating systems is based on DIN EN 15804 [31] and the building
operational energy is quantified according to DIN EN15978 [32].
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2.2. Functional Unit

A functional unit (FU) enables the comparison of different products that are supposed
to provide the same functionality and service. In this article, the FU is the provision of the
final energy for the whole building in MWh per year with the following specifications:

“Providing the building with space heating, in a way that maintains the indoor
temperature of heated zones at 17 ◦C for circulation areas, storage areas, and
technical rooms, and at 21 ◦C for offices, meeting rooms, and sanitary rooms, as
required by the German building regulation and as specified in DIN 18599-10, for
a fixed insulation standard”.

2.3. Description of the Resource and Climate Footprint Indicators

Two indicators are used to determine the material footprint: The Raw Material Input
(RMI) and the Total Material Requirement (TMR) [33]. Both indicators are referring to the
environmental impacts of material resource use within the LCA boundaries. The RMI
measures the cumulative used raw materials. The extraction process of raw materials is
always associated with unused extraction. The unused extraction is the part of the primary
material that is moved and dumped but not further processed and has no economic value,
e.g., the overburden of a mine. The TMR measures the total extraction of primary materials
from and within nature, as the sum of used and unused extraction. The RMI and TMR can be
considered adequate indicators to assess the material footprint of building materials [34,35].
Only abiotic material resources are considered within the scope of this assessment.

The energy footprint is determined by the Cumulative Energy Demand (CED). The
CED accounts for the life cycle-wide direct and indirect primary energy consumption,
including energy consumption for the extraction, production, and disposal of raw materi-
als [36]. The CED considers renewable and non-renewable energy resources.

The principles for determining and reporting the water footprint are defined in ISO
14046 (2014) [37]. Within the conventional Life Cycle Impact Assessment (LCIA) methods,
there are several indicators with different calculation models, considering water use. The
AWARE (Available Water Remaining) method was developed to determine the amount of
the remaining water in a catchment area or a country, after the water demand of humans,
animals, and plants has been met [38,39]. Hence, AWARE addresses the potential vulnera-
bility of a catchment area to water stress. For the calculation of the characterization factors,
the AMD (Availability Minus Demand) is used, which is made up of the water availability
minus the human and environmental requirements in relation to the reference area.

The land footprint is assessed according to ReCiPe [29]. It is described as land trans-
formation, occupation, and relaxation. Transformation can degrade land quality, defined
as the capacity of the soil to provide life support functions. The land is used during the
occupation phase, and land quality usually stagnates or decreases. When the occupation is
over, the land relaxes and returns to a (semi-)natural state. In the ReCiPe framework, the
result is expressed in annual crop equivalent per year, which refers to the relative species
loss related to the one-year occupation of land. While the ReCiPe method has been used to
assess the land footprint, other methods may also be considered to operationalize the land
footprint within the BIM method developed.

The product climate footprint is calculated based on the Global Warming Impact (GWI)
per FU expressed in kg CO2 equivalents. The characterization model with a time horizon
of 100 years is used [40], based on the GWP100 values of the International Panel of Climate
Change (IPCC) [41].

3. Applying the Methodology
3.1. BIM Model of the Case Study

The proposed methodology was applied to the design of new buildings in the city of
Korbach, Germany (town hall office building). It includes a renovated historical building
with a 676 m2 building area, an adjacent newly built building, the main building with three
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floors and a 3727 m2 building area, and a secondary building with a 1711 m2 building area,
which has also three floors (Figure 2).
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The first floor of the main building has a 209 m2 parking lot. Technical areas and
ancillary spaces are located partly on the first floor and under the roof. The buildings were
modeled using the BIM software Autodesk Revit [43], based on the planning documents
provided by the architects. The thermal transmittance values (U-values) of the building
elements are described in Table 1.
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Table 1. U-values of the building elements.

Building Component Thermal Transmittance (U-Value)
[W/(m2·K)]

Foundation 0.154

Underground exterior walls 0.195

Exterior walls 0.167

Exterior walls historical 0.450

Upper ceilings 0.140

Roofs 0.086

Windows 1.200

Glass facade 1.100

Doors 1.300

3.2. Energy Modeling

The model of the three buildings was exported from the modeling software (Revit
Autodesk) to the energy analysis software, SOLAR-Computer [44] as a gbxml-file. The
gbxml-file describes the buildings’ geometry, geographical location, and thermal properties.
The calculation of the building’s energy requirements was done according to DIN EN
18599-10 [45]. Zoning of the conditioned spaces was done in Revit and then transferred
to the Solarcomputer software. It consisted of assigning to each space of the building
a conditioning profile (including a setpoint heating temperature). By means of these
conditioning profiles, several assumptions were made. It was assumed that the town hall
is occupied daily from 7 am to 6 pm, five days a week. The setpoint heating temperature
was set to 21 ◦C in the office, meeting, and sanitary rooms. Circulation areas, storage areas,
and ancillary spaces are heated at 17 ◦C. It was assumed that minimum summer heat
protection requirements are satisfied. A centralized ventilation system with heat recovery
provides fresh air in the building. Concerning space heating, four central heating systems
were compared:

• Gas boiler (GB)
• Ground-source heat pump (GSHP)
• Ground-source heat pump with a photovoltaic system (GSHP + PV)
• Air-source heat pump backed up with a gas boiler (ASHP + GB)

The gas boiler (GB) variant represents the conventional way to provide space heating
with natural gas and serves as a baseline for the comparison analysis. Current trends focus-
ing on reducing GHG emissions support the development of more efficient technologies
running on renewable energy sources. Several scenarios for sustainable developments
depict renewably powered heat pumps as one of the best ways to provide space heating and
warm water in buildings [46,47]. Heat sources can be ground (Ground-Source Heat Pump,
GSHP), air (Air-Source Heat Pump, ASHP), or water (Water-Source Heat Pump, WSHP).

As the environmental impacts of the heat pump variants are largely determined by
the electricity mix, it was chosen to compare the impact of a GSHP powered by the German
grid mix with a heat pump partially powered by a rooftop PV system (GSHP + PV). The
PV system produces about 168 MWh/a, but only 14 MWh/a are consumed directly by the
heat pump and therefore considered in the calculation. The ASHP is easier to implement
than a GSHP and has a significant market share. It was considered in the form of a hybrid
system with a gas boiler as backup (ASHP + GB). Figure 3 presents the buildings’ energy
concept for the four heating systems, with the system size and power.
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Domestic hot water (DHW) is provided by decentralized electrical water heaters,
which is a common solution for office buildings [48]. A standard DHW consumption of
30 Wh/(m2·d) was assumed, based on typical values for office buildings. Ventilation was
achieved through a centralized system with heat recovery. Plate heat exchangers with a heat
recovery rate of ηhr = 65% are used. The ventilation provides a standard fresh air input of
4 m3/(h·m2) in single and group offices, 6 m3/(h·m2) in open-plan offices, 15 m3/(h·m2) in
meeting rooms, 0.15 m3/(h·m2) in ancillary spaces and storage spaces. Sanitary rooms have
only air extraction and no air intake. For lighting, an intensity of 500 lx was considered for
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office rooms, 200 lx for WC and sanitary rooms, 100 lx for ancillary spaces [49], circulation
areas and storage rooms, and 75 lx for the parking lot. Table 2 shows the specifications of
the heating systems and energy load.

Table 2. Specifications of the heating systems and energy load.

GB GSHP GSHP + PV ASHP + GB

Heating load (kW) 126.2

Heat generation system Monovalent gas boiler Monoenergetic ground
source heat pump

Monoenergetic ground
source heat pump

Three air source heat
pumps in cascade and gas

boiler backup

Efficiency ηp = 105.5%
ηn = 96.5%

COPB-5W35 = 3.9
COPB0W35 = 4.6
COPB5W35 = 5.2

COPB-5W35 = 3.9
COPB0W35 = 4.6
COPB5W35 = 5.2

COPA-7W35 = 2.9
COPA2W35 = 3.6
COPA7W35 = 4

PV generation no no yes no

Hot water tank
capacity (L) 4000

Ventilation heat
recovery rate 65%

Average heating setpoint
temperature (◦C) 18 and 21

End energy requirements
(kWh/m2/year)

60.92 25.93 17.04 32.59

Primary energy demand
(kWh/m2/year)

74.61 46.66 30.91 56.47

Notes: GB: Gas boiler, GSHP: ground source heat pump, PV: photovoltaic, ASHP: Air source heat pump, COP:
coefficient of performance.

Heat transfer in the conditioned rooms was provided by radiant ceilings and by
radiators, depending on the zone type (Table 3). Radiant ceilings enable to minimization of
flow and return temperatures of the hydraulic system in the largest heated areas, which
leads to the more efficient operation of the heating system and higher thermal comfort [49].

Table 3. Heat distribution systems used for the energy analysis.

Zone Type Radiators
Tin = 55 ◦C/Tout = 40 ◦C

Radiant Ceilings
Tin = 35 ◦C/Tout = 25 ◦C

Single office x

Group office x

Open-plan office x

Meeting and seminar rooms x

Circulation area x

WC and sanitary rooms x

Storage, technical areas, archives x

Ancillary spaces x

3.3. Scope of the Life Cycle Assessment

The scope of the LCA includes the production phase (A1–A3) and transport (A4) of
the heating systems according to DIN EN 15804 [31]. In addition, the operational energy
of the building is considered (B6 phase according to DIN EN15978 [32]) for a life span of
50 years [50]. Other life cycle phases related to the heating systems such as the end of life
(phases C1–C4) are not part of this assessment.

openLCA software [51] is used with the GaBi database [52] for conducting the analysis.
The key properties of the heat pump system can be defined as mass, refrigerant use, and
coefficient of performance (COP) [53]. Most of the processes of the GSHP and ASHP were
available in the GaBi database. The database only provides processes for a 70 kW and
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a 14 kW heat pump, while the required power is 138 kW and 114 kW respectively. To
compensate for this, the LCA results were linearly interpolated in proportion to the power.
Moreover, the weights of the devices in kg were interpolated to calculate the impacts of the
transportation.

The processes available in the life cycle inventories for the operation of boilers and
heat pumps include assumptions on the corresponding efficiency or COP. The average
efficiency ratio considered in the database differs from the one required for the case study.
To compensate for this difference, a linear interpolation was conducted on the amount of
thermal energy required for space heating.

3.3.1. Gas Boiler

The process “Gas condensing boiler 120–400 kW (upright unit) (A1–A3); technology
mix; production mix, at the plant; 1 piece (en)” has been considered from the GaBi database.
As the gas condensing boiler has a power range from 120 kW to 400 kW no power adaptation
was necessary for the calculation. The average weight considered is 973 kg. The efficiency
of the boiler is 105% at a partial load of 30%, and the average efficiency of the boiler is 102%,
both calculated according to DIN V 4701-10 (2003) [54]. The main inputs are natural gas
mix and electricity grid mix. The auxiliary energy demand (electric power) is included in
the data set.

For natural gas, the process “Natural gas mix; technology mix; consumption mix,
to the consumer; medium pressure level (<1 bar) (en)” has been considered. The data
set covers the entire supply chain of natural gas. This includes well drilling, natural gas
production, and processing as well as transportation via pipeline. Main technologies
such as conventional (primary, secondary, tertiary) and unconventional production (shale
gas, tight gas, coal bed methane), both including parameters like energy consumption,
transport distances, and gas processing technologies are individually considered for each
production country. Natural gas-producing countries, including Germany, contribute by
their corresponding shares to the natural gas mix: Russia 39%, Netherlands 29%, Norway
22%, and Germany 10%.

3.3.2. Ground Source Heat Pump

The process “Electric heat pump (Brine-Water, geothermal probe) 70 kW (EN15804 A1-A3),
production mix, at the plant, technology mix, 1 piece” has been used, which consists of pipelines,
probe, ground collector or well and feed line, cooling medium circuit, heating circuit,
electronic and casing and expansion tank. For the operation of the GSHP, the process
“Electrical heat pump brine-Water (5/55) (EN15804 B6), production mix, at the plant, technology
mix” has been selected. This process accounts for the generation of thermal energy by a
GSHP and the provision of heat to a transmission medium to distribute the heat within the
building. With a brine temperature of 5 ◦C and a flow temperature of 55 ◦C, the COP is
2.4. Auxiliary electricity demand is included.

3.3.3. Electricity of the Photovoltaic System

The process of “Electricity from photovoltaic, production mix, at the plant, AC” is selected
from the database. The PV model is based on the global average market mix of photovoltaic
technologies installed in 2016. All technologies are modelled individually. The efficiency
of the panels is based on specific annual irradiation values averaged for Germany. The
manufacturing and operation of the system are considered. Concerning the operation
phase, only the PV electricity consumed on-site was considered for the LCA, not the PV
electricity fed into the grid system.

3.3.4. Air Source Heat Pump

The process “Electric heat pump (Air-Water) 14 kW, production mix, at the plant, technology
mix, 1 piece” is selected for the production of the ASHP. The dataset describes the production
of an ASHP for space heating with an external heat exchanger and an internal compressor
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(split device) for low-temperature applications (up to 60 ◦C). The reference year is 2018. The
rated heating power is 14 kW. The COP at 2 ◦C outside temperature and flow temperature
was estimated as 35 ◦C. Warm water storage tanks and fixing materials have not been
accounted for. Regarding the ASHP operation, the process of “Electrical heat pump brine-
Water (5/55) (EN15804 B6); technology mix; production mix, at the plant” is considered. The
same process as for scenario GSHP was used because no dedicated process for ASHP
operation was available in the GaBi database.

3.3.5. Transport

The process used for the transport of the heat generation system from the manufacturer
to the consumer’s location is “Truck (EN15804 A4), consumption mix, diesel driven, Euro
5, cargo, 20–26 t gross weight/17.3 t payload capacity”, with a transport distance of 200 km.
For variant GSHP + PV, the transport of the PV panel was already included in the process
used for characterizing electricity generation from PV. Therefore, only the weight of the
heat pump was considered. Table 4 shows the details of the input data for the transport.

Table 4. Input data for transport from manufacturer to consumer, GSHP: ground-source heat pump,
ASHP: air-source heat pump, PV: Photovoltaic.

Heating
Variant

Power in Database
[kW]

Required Power
[kW]

Total Device Weight in Database
[kg]

Total Interpolated Weight
[kg]

Gas condensing boiler (1) 120–400 130 973 973

Gas condensing boiler (2) 20–120 26 283 283

GSHP + PV 70 138 6698 13,395

ASHP 14 114 187 1532

4. Results and Discussion

First, the results of the energy analysis are presented, covering the annual final energy
demand for space heating considering the four alternatives of the heating systems. Second,
the results of the environmental impacts related to the resource and climate footprints are
addressed and discussed.

4.1. Energy Analysis

The annual final energy demand for space heating is shown in Figure 4 for the variants
with gas boiler (GB), ground source heat pump with and without photovoltaics (GSHP + PV
and GSHP), and air-source heat pump with backup gas boiler (ASHP + GB).

Heat pump-based variants (GSHP, GSHP + PV, and ASHP + GB) require less final
energy for their operation than the GB because they make large use of ambient heat from
the environment. With the GSHP and GSHP + PV the ambient heat accounts for 78%
of the final energy, whereas with the ASHP + GB, it accounts for about two-thirds. The
GSHP requires less electrical energy because it has a higher COP than the ASHP. The PV
system in variant GSHP + PV generates about 168 MWh/a of electricity, among them
about 14 MWh/a are used by the heat pump and 38 MWh/a are consumed for ventilation,
domestic hot water, and lighting. The total degree of self-sufficiency for all uses (including
electricity for ventilation and lighting) reaches 30.5%. The remaining 117 MWh/a generated
by the PV system is fed into the grid. The assumed electricity produced by the PV system
is relatively low, mainly for three reasons: First, the angle of the roof is 51◦, which is 21◦

more than the optimal angle of 30◦. Second, the roof is not completely oriented in the south
direction. Thirdly, the shadows projected by the other buildings were considered to obtain
more realistic results for the energy analysis.

4.2. Resource and Climate Footprint Analysis

Figure 5 shows the resource and climate footprints of the four heating systems per FU.
The footprints of manufacturing and transport are distributed over the whole lifetime of
the heating systems. The material footprint is represented by the TMR.
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The results show that the operation phase mostly contributes to the footprints of the
heat generation system. Transport of the system from the manufacturer to the end-user
location causes almost negligible footprints in comparison to the other life-cycle phases.

Variant GSHP + PV can be recommended for its relatively low footprints regarding
climate, material, and energy. However, the water footprint of GSHP + PV is relatively
high. Regionalized life cycle inventory data shows that most of the water footprint of PV
system manufacturing occurs in China, a country with a mainly coal-powered grid. As
shown by [55], the amount of water required to produce 1 MWh of electricity from coal is
significantly higher than that of other generation technologies. According to the AWARE
method, there is 42 times less available water remaining per area in China than the world
average [38], while Germany has 1.36 times less available water remaining. In order to
improve the performance of the water footprint, the PV panels could be sourced from a
country with lower water stress than China, such as Germany.

The relative environmental impacts are represented in Figure 6. The variant with
the highest footprint has been attributed with a value of 100% and serves as a reference.
For example, the heating system GSHP + PV has the highest water footprint and is then
considered as a baseline for this impact category.
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The heating system GB presents the highest impacts in terms of climate and energy
footprints and the lowest impacts in terms of water footprint and land use. GSHP has a
more balanced impact relative to the others. ASHP + GB has higher footprints than that
of the GSHP, due to its lower efficiency, higher electricity demand, and the additional use
of a gas boiler. A comparison of variants GSHP and GSHP + PV shows that the use of PV
allows a significant reduction in climate, energy, and land footprints, along with a slight
reduction of material footprint. This is because the German electricity mix still includes
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a considerable high percentage of fossil fuels, and the self-consumption of PV-generated
electricity reduces the need for grid electricity.

Most of the generated electricity by the PV system is fed into the grid, which can be
considered an additional ecological benefit of the use of the PV system. Moreover, heat
pumps can participate in grid flexibility, smoothing out peak demand through demand
response and facilitating the integration of renewables in the national grid. When choosing a
heating system, these additional advantages could be also considered by building planners.

In this assessment, no storage for PV electricity was assumed. If battery storage
is considered, the share of self-consumption of renewable electricity could be increased
significantly. However, the resource and climate footprints of battery usage should be
considered [56].

4.3. Discussion

The resource and climate footprints of heat-pump-based variants are to a large extent
dependent on the nature of the electricity consumed by the device. However, the electricity
mix in many countries is not static. For example, in Germany, the GHG emissions of
the electricity mix have decreased over the past few years, as a result of the increasing
development of renewable energies, aiming at reaching carbon neutrality by 2045. The
specific GHG emissions of the German electricity mix were evaluated at 401 gCO2 eq/kWh
for 2019 [57] and they should fall below 200 gCO2 eq/kWh by 2030 if the climate protection
targets will be achieved. The LCA results presented by this article are a static view of the
footprints, with only one fixed grid mix considered for the whole product life cycle. An
approach that is beyond the scope of this work is the dynamic LCA, which can consider
the evolution of background technologies and infrastructure and can accordingly account
for the changes in the associated environmental impacts.

The LCA highlights a significant difference in water footprint for electricity from
the German grid compared to electricity from PV systems. This is due to the weighting
done by the characterization factors of the AWARE impact assessment method. As it
is weighted by region, 1 m3 of water withdrawn has a different impact on global water
scarcity depending on the withdrawal location. In terms of absolute water consumption
from the LCI, 1 kWh produced from the PV system consumes 3.7 times more water than
1 kWh of electricity from the German grid. After applying the regionalized AWARE method
to these values, it was concluded that in the case of PV generation, the majority of the
water footprint is caused in China, where the raw material extraction and manufacturing
of PV panels takes place. These values were obtained after adding up the water scarcity
footprints by country. The high footprint allocated to China can be explained by the high
characterization factor attributed to this country of 42.43, which is about 31 times higher
than that of Germany (1.36).

5. Conclusions

The methodology proposed in this study shows that the combination of BIM with
energy analysis and LCA tools could help building planners assess the resource and climate
footprints related not only to the use phase of buildings but also to other phases such
as production and transport of the heating systems. The methodology was applied to a
case study building in Germany. Different heating systems were compared to calculate
the energy requirements and the associated material, energy, water, land, and climate
footprints. Using a plugin with BIM software for conducting the energy analysis could
provide a practical way to design energy systems together with building design modeling.
Resource footprints have not been integrated into BIM yet, therefore an additional LCA
tool was considered to allow a detailed description of the environmental impacts that are
associated with the heating systems.

The results of the case study show that the footprints are mainly caused by the use
phase of the building, manufacturing represents less than 12% of the total footprints with a
maximum reached for the material footprint of ASHP + GB. The GSHP + PV has the lowest
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resource and climate footprints with saving potential of 50%, 78%, and 74% in terms of
material, energy, and climate respectively in comparison with GB, while the water footprint
of GSHP + PV could be comparably high in relation to the water scarcity in the region of
the production of PV.

The workflow of the proposed methodology can be improved by developing a plugin
within BIM that can exchange data between the LCA and energy calculations such as
SURAP [58]. This would significantly simplify the data processing and make the whole
methodology accessible for non-LCA specialists at the early building design stage. It could
provide a holistic view of the analysis of the building, not only in terms of architectural
design and energy requirements but also regarding environmental impacts.

This study is limited to the studied heating systems. For other heating systems such
as biomass boilers, the combination of the ASHP with PV and solar thermal collector
coupled with GSHP can be considered in future research. A further study can also include
a sensitivity analysis of different aspects that improve the energy sufficiency and energy
efficiency measures, for instance, improved building insulation or higher technical efficiency
of the heating system, and the use of low-temperature heat distribution systems.
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