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Introduction

The current demands regarding the numerical simulation of fluid flow often require highly
accurate computations to obtain a detailed resolution of the occurring physical phenomena.
The basic concept for the construction of a fluid solver is to transfer the physical model into a
numerical scheme which complies with the underlying physical principles such as conservation
and balances of certain quantities. In addition, the numerical methods are required to be sta-
ble and efficient. Again, stability is often determined by physically motivated quantities such
as energy or entropy and it is generally easier to be achieved for low order schemes. Further-
more, the need for efficiency and possible implementation in parallel hardware environment
has led to the development of sophisticated schemes in space with compact stencils such as
discontinuous Galerkin (DG) methods and flux reconstruction schemes which extend classical
space discretization methods.

The summation-by-parts (SBP) property is a mimetic property transferring the continuous
integration-by-parts rule to the discrete setting. Furthermore, it is a highly desired prop-
erty in high order space discretization schemes which facilitates proofs of energy stability
with respect to the interior of the computational domain and may be combined with the
simultaneous-approximation-term (SAT) approach for a stable treatment of boundary condi-
tions. In this work, both local and global SBP properties will be detected in specific classes
of DG schemes and flux reconstruction methods. The potential lack of an SBP property may
also be used to discard specific seemingly efficient and formally high order schemes such as
early spectral difference methods in favor of provably stable methods such as energy stable
flux reconstruction schemes. However, the greatest benefit to date of high order SBP schemes
is their ability to discretize skew-symmetric forms of conservation laws in a manner which
both satisfies the primary conservation principles and specific secondary balances comprised
in the derivation of the skew-symmetric form. Originally, only classical SBP schemes have
been used in this context which requires including the cell boundaries in the nodal set and
excludes classical Legendre-Gauss collocation DG schemes from the realm of possible space
discretizations. This is in contrast to DG schemes on Legendre-Gauss-Lobatto nodes which
include a sufficient amount of integration points on cell boundaries and may be understood
as classical SBP schemes on the level of elements.

In this work, the newly found generalized SBP properties of DG schemes on Legendre-Gauss
nodes pave the way to their application to skew-symmetric forms. Since their quadrature rule
possesses a higher degree of exactness, DG schemes on Legendre-Gauss nodes are usually more
accurate than those on Legendre-Gauss-Lobatto nodes and might be preferable for long-time
simulations, which is precisely the situation in which the preservation of secondary quantities
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vi INTRODUCTION

should be most beneficial. In this context, Chapter 1 reviews the SBP properties of various
classes of methods and presents the construction of kinetic energy preserving Legendre-Gauss
DG schemes for the Euler- and Navier-Stokes equations. The potential of these schemes
regarding higher efficiency is indicated for a prototype long-time viscous flow simulation in
one space dimension. Furthermore, their viability is demonstrated for simulations of decay-
ing two-dimensional homogeneous isotropic turbulence and regarding their utilization as fluid
solvers within a coupled scheme applied to a classical one-dimensional test case of mechanical
fluid-structure interaction. Considering a second field of application, we construct energy con-
servative Legendre-Gauss DG schemes for shallow water flow over non-flat bottom topography
and investigate the related discrete preservation of equilibrium states of the original balance
law.

Discontinuous Galerkin and flux reconstruction schemes commonly produce piecewise poly-
nomial approximations with discontinuities across cell interfaces which are ideally adapted to
the numerical simulation of hyperbolic conservation laws. These partial differential equations
admit discontinuities which may develop in finite time even though the initial conditions are
smooth. In fact, the original introduction of DG schemes to these problems was viewed and
promoted as a natural extension and alternative to the widely used finite volume approaches
by incorporating the methodology of numerical fluxes into a higher order approximation.
However, the inherent discontinuity of the DG approximate solution does not offer any intrin-
sic way to discretize diffusion operators. These circumstances have led to the development
of a multitude of DG diffusion discretizations. Generally, these methods either use specially
designed penalty terms within a finite element approach or rewrite the underlying partial
differential equations of convection-diffusion type into a system of first order equations us-
ing auxiliary variables for the solution derivatives. The latter approach yields contemporary
discretizations of viscous terms in DG framework such as the local discontinuous Galerkin
(LDG) and Bassi-Rebay (BR) schemes. Related to the early penalty methods, namely the
interior penalty and the Baumann-Oden scheme, the so-called (σ, µ)-family of DG diffusion
discretizations has been revisited more recently in the context of recovery-based approaches
aimed at recovering a smooth approximation to increase the accuracy of the DG scheme for
diffusion problems.

In this thesis, specific aspects regarding the discretization of diffusion terms in the DG frame-
work are dealt with in Chapter 2. First, for the one-dimensional linear diffusion equation, the
generalized upwind SBP properties of the LDG and BR schemes are investigated. Further-
more, we prove certain properties of the (σ, µ)-family regarding symmetry and dissipativity
under conditions on the two parameters and show that the BR schemes incorporated into a
DG discretization on Legendre-Gauss-Lobatto nodes are members within this family. The sec-
ond BR scheme termed BR2 includes a penalty parameter determining stability and accuracy
of the scheme and is based on the construction of a lifting operator applied to jumps at cell
interfaces. For the DG scheme on Legendre-Gauss-Lobatto nodes, the BR2 lifting operator
may be calculated either by exact projection or using inexact numerical integration on the
given nodes. For both versions, we determine the stability properties with respect to the
penalty parameter by extending recent results on the equivalence of the BR2 scheme and the
classical interior penalty formulation in one space dimension.

Regarding the use of high order schemes in space, the investigation of their wave propagation
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properties in terms of dispersion and diffusion errors depending on the wave number is of
utmost importance for the accuracy and stability analysis of fluid flow simulations. For
these schemes and this type of application, a desired small numerical dissipation generally
competes with robustness and thus has to be carefully analyzed. In the literature, dispersion
and diffusion properties have thus been investigated for major classes of high order schemes
applied to advection problems, usually by means of Fourier analysis. Studies of the dissipation
and dispersion properties of DG schemes applied to advection-diffusion problems are more
recent and also a topic of this work. Specifically, in the last section of Chapter 2, we study the
influence on dissipation and dispersion properties of the two most frequently used alternating
versions of the LDG scheme as well as the BR schemes. The analysis highlights a significant
difference between the two possible ways to choose the alternating LDG fluxes. Furthermore,
we compute a combined error measure quantifying the accuracy with respect to the wave
number for a larger range of polynomial degrees to detect odd-even phenomena particularly
in relation to the BR schemes and to investigate differences with respect to the specific choice
of DG nodal set.

Naturally, current research regarding accurate, stable and efficient numerical schemes for
fluid flow simulations also includes the aspect of time integration. Discretization in space
by discontinuous Galerkin or flux reconstruction schemes results in a system of ordinary
differential equations (ODEs). In principle, this allows for the straightforward application of
standard ODE solvers such as Runge-Kutta (RK) or linear multistep methods to this semi-
discrete system. However, advanced time integration schemes often consist in combinations
of known methods or modify existing schemes, for instance to increase efficiency or stability
or to transfer additional properties of the analytical solution to its discrete approximation.

A particular case of combination is merging implicit and explicit time integration into so-called
IMEX schemes. While explicit schemes are comparatively easy to implement, also in parallel
hardware environment, have a low computational cost per time step, and may be constructed
with high order of accuracy, their range of stability is limited. However, implicit schemes
applied to DG discretized fluid equations usually involve the solution of large nonlinear equa-
tions for each time step. Thus, the computational effort is larger and parallel computing is
more difficult to realize. Nonetheless, the additional effort of implicit schemes can pay off
if the problem is stiff, i.e. if the time step constraints ensuring stability are much more re-
strictive than those achieving the desired accuracy of the numerical solution. Ideally, IMEX
schemes suitably adjust the favorable properties of both classes of methods to the given prob-
lem by implicitly discretizing the parts causing stiffness and treating the other parts explicitly.
Considering the numerical simulation of fluid flow based on the compressible Navier-Stokes
equations or related problems of advection-diffusion type, numerical stiffness may be caused
for example by boundary layers and the resulting locally refined grids, by acoustic waves,
or due to the presence of viscous terms. A natural choice based on stiffness due to viscous
terms is advection-diffusion splitting, whereby the advective terms are discretized explicitly
while the diffusive terms are treated implicitly. While advection-diffusion IMEX splitting
alleviates the severe time step scaling for the diffusion terms, a stability based time step
restriction of Courant-Friedrichs-Lewy (CFL) type may still have to be fulfilled due to the
explicit discretization of advection terms demanding a step size reduction on locally refined
grids. However, for specific combinations of space and time discretization, the IMEX stability
properties are even more favorable and allow for a grid-independent time step choice. This
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means that the combined IMEX scheme has better stability properties for advection-diffusion
in comparison to its explicit part applied to the pure advection problem. The first part of
Chapter 3 covers specifically designed IMEX-DG schemes which profit from this stabilizing
effect and allow for higher efficiency due to larger time steps. While previous investigations
considered IMEX advection-diffusion splitting for finite difference or Fourier-type spatial dis-
cretizations as well as for the DG scheme with LDG diffusion fluxes, the question arises if this
prominent feature is also inherent to more general DG diffusion schemes. In this work, we
therefore analyze the corresponding stability properties of the DG scheme using the (σ, µ)-
family for diffusion discretizations. This family naturally includes the original DG diffusion
discretizations as well as the BR schemes and a symmetrized form of the LDG scheme, and is
thus quite versatile. From a theoretical analysis, conditions on the given parameters σ and µ
are derived which guarantee L2-stability for time steps ∆t = O(d/a2), where a and d denote
the advection and diffusion coefficient, respectively. This signifies that the allowable time step
size does not decrease under grid refinement.

A further aspect of time integration is positivity preservation. In fact, enforcing positivity
of specific quantities involved in the description of time-dependent physical processes often
requires a careful choice of the time integration scheme or the design of suitable modifications.
For instance, the density and pressure in the description of compressible fluid flow should both
be positive quantities. Regarding the flow of water in rivers, lakes or oceans, the water column
height should be non-negative. This is a constraint which also holds for the concentrations
of substances in chemical processes. In general, the approximations given by a numerical
method do not necessarily satisfy these bounds. However, a violation may cause a blow-
up of the numerical algorithm as the involved mathematical operations may not be well-
defined anymore if the relevant quantities are located outside of the physically meaningful
range. In this regard, the second part of Chapter 3 deals with positivity preserving schemes
for semi-discretizations of partial differential equations in production-destruction form. In
particular, we focus on the Patankar approach modifying Runge-Kutta schemes to achieve
both unconditional positivity and conservation for these equations.

The last part of this thesis focuses on the application of positivity preserving DG schemes
to shallow water flows including wetting and drying processes and thus links the Patankar
schemes discussed in the previous chapter to a practically relevant situation. The consid-
eration of alternating wetting and drying shallow water flows pertains in particular to the
simulation of flows in rivers, lakes or coastal regions where the water depth may drastically
change. Capturing the fluid dynamics for instance in coastal areas is significant both for
coastal engineering and with respect to marine ecosystems. The importance of an accurate
simulation of wetting and drying for diverse examples of shallow water flows is accompanied
by challenges with respect to the construction of accurate, robust and efficient numerical
methods.

In this context, Chapter 4 reviews a multitude of numerical methods for wetting and drying
shallow water flows in two space dimensions using fixed grids and applying finite volume or
discontinuous Galerkin space discretizations. Hereby, the major challenges faced by numerical
schemes tackling the simulation of wetting and drying processes are discussed in more detail.
One of these challenges is the preservation of a non-negative water column height requiring the
use of positivity preserving time integrators. Positivity preserving explicit time integration
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may be built upon particular Runge-Kutta schemes which can be written as convex combina-
tions of explicit forward Euler steps. In view of their monotonicity properties with respect to
convex functions, these time integration methods are called strong-stability preserving (SSP)
schemes. Combined with positivity preserving numerical fluxes, explicit SSP-RK schemes
play a leading role in the construction of positivity preserving finite volume and DG schemes.
Regarding the literature on numerical methods for wetting and drying shallow water flows,
explicit time stepping is indeed implemented in the majority of suggested algorithms. Positiv-
ity preserving explicit schemes generally provide physically sound results for this application
as they can accurately represent the dynamics of the flooding and receding front due to the
necessarily small time step sizes. Unfortunately, there are limits to the efficiency of explicit
time integration schemes, especially if the mesh is refined in the shallow regions of the flow.
For instance, large local variations of the bottom topography may lead to this kind of grid
induced stiffness. In this case, implicit schemes can yield significant speed-up and permit
simulations that would be impossible to carry out with explicit methods. However, positivity
preservation by implicit SSP-RK schemes enforces non-negative cell means of water height
under rather restrictive time step constraints that depend on the cell sizes and the order of
the DG discretization. Since these positivity enforced time step restrictions interfere with the
efficiency of the implicit time integrator, unconditionally positive implicit schemes are desired.
However, it is known that any general linear method that is unconditionally positivity pre-
serving can only be first order accurate at best. The Patankar schemes considered in this work
avoid this order restriction since they do not belong to the class of general linear methods. In
order to employ them for DG discretized shallow water equations, a production-destruction
formulation is first extracted from the semi-discrete continuity equation which describes the
time evolution of the water height averages within a DG scheme on triangular grids. The
strategy of positivity preservation by explicit SSP-RK schemes is then extended to implicit
time integration by the Patankar approach. The weights on the destruction terms which are
introduced by the Patankar scheme are thereby designed to reduce the outgoing water fluxes
while applying corresponding weights to the production terms guarantees mass conservation.
Due to the use of an implicit Runge-Kutta scheme as base method for the Patankar approach,
the resulting scheme can now take full advantage of larger time steps and is therefore able to
beat explicit time stepping in terms of the required computational time.
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Chapter 1

High Order Schemes for
Conservation Laws in Fluid
Dynamics

Benefit of SBP Properties in Modern Space Discretization
Schemes

The time dependent partial differential equations (PDEs) describing fluid flow are commonly
discretized using the so-called method of lines. This approach first discretizes the spatial
derivatives and thus yields a system of ordinary differential equations (ODEs) of a size and
structure depending on the specifically chosen space discretization scheme.

Modern space discretization schemes for fluid flow are still closely related to the classical dis-
cretization techniques of finite difference (FD), finite volume (FV) and finite element (FE)
methods depicted and characterized in Table 1.1. These general approaches can be distin-
guished by the specific form of the continuous fluid equations they discretize. These fluid
equations are obtained from the physical principles of mass, momentum and energy conser-
vation which leads to the integral form

d

dt

∫
V

u dx +

∫
∂V

F(u,∇u) · n dσ =

∫
V

s(u,x, t) dx,

where u : (x, t) → Rm contains the conserved variables, F is a flux tensor, s is a source
term, V is a control volume which is fixed in space and n is the outward pointing normal
vector at ∂V . This integral form, which is directly based on the conservation properties, is the
starting point for the finite volume scheme using the cell means ūV = 1

|V |
∫
V u dx as degrees of

freedom. From the integral form we may obtain a corresponding partial differential equation
of the form

∂u

∂t
+∇ · F = s

by using the Gauss divergence theorem. This is the differential form of the given conservation
laws. This formulation is generally used by finite difference schemes which use pointwise

1



2 CHAPTER 1. HIGH ORDER SCHEMES FOR CONSERVATION LAWS

(nodal) values as degrees of freedom and approximate the spatial derivatives by differences of
these nodal values. From the differential form of conservation laws, a so-called weak form may
be constructed by multiplying the differential form with test functions and integrating over the
whole domain. This weak form is then used by finite element methods which specify a finite
number of test functions and represent the approximate solution as an expansion in a finite
set of space-dependent basis functions, also called ansatz functions. The resulting equations
are also referred to as the weighted residual formulation. As listed in Table 1.1, although
the advantage of finite difference approximations is the simple method structure and high
efficiency on structured grids, they are much more difficult to generalize to unstructured grids
in two and three space dimensions.

Finite volume approximations possess one degree of freedom per conserved variable and com-
putational grid cell, i.e. the cell mean, and the time evolution of these cell means is given
by fluxes through cell boundaries. Hence this procedure easily generalizes to arbitrary de-
compositions of the spatial domain into a computational grid. While finite difference schemes
need a specific structure to comply with conservation properties, finite volume schemes are
conservative by construction. However, unlike finite difference and finite element methods, a
space discretization of higher order is more difficult to obtain with finite volume schemes as
such high order extensions are based on a suitable interpolation of adjacent cell means.

Finite element methods share the advantage of flexibility in terms of the computational grid
with finite volume schemes. Higher order in space is more easily obtained by a larger set
of basis functions on a given grid cell, which may also be regarded as using more interior
nodes within each cell. More modern space discretizations share approaches of more than
one of these classes. For example, the discontinuous Galerkin (DG) scheme may be derived
by a finite element approach using discontinuous basis and test functions. Therefore, finite
element techniques play a substantial role in the analysis of DG schemes. Furthermore, by
construction, the DG approximate solution is generally discontinuous over element boundaries.
In order to deal with these discontinuities, the concept of numerical flux functions inherent
to finite volume methods is incorporated into the DG scheme. Finally, nodal DG schemes
using Lagrange polynomials to a certain set of nodes as basis and test functions may be
rewritten both as SBP schemes with similarities to finite difference methods and as subcell
finite volume schemes. For brevity, the major difference between the finite volume and the
discontinuous Galerkin approaches consists in the construction of the desired higher order
discretizations. While finite volume methods rely on reconstruction of pointwise data using
stencils of adjacent cells to achieve higher order in space, for the discontinuous Galerkin
approximation, the polynomial degree of the test and basis functions is simply increased.

After space-discretization, one of the first steps within the theoretical analysis of a proposed
method then consists in the assessment of the stability and accuracy of this system of ODEs
called the semi-discrete scheme under spatial refinement. At best, the semi-discrete scheme
is constructed to fulfill certain properties which ensure that the solutions to the semi-discrete
equations mimic the behavior of the solution to the underlying PDE. The so-called summation-
by-parts property falls into this construction category as it mimics the integration-by-parts
formula in a discrete sense. With this property, energy stability may be ensured for a variety
of PDEs. In particular, SBP schemes guarantee stability for the linear advection equation,
they are thus linearly stable. It is worth to mention that some early spectral difference
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Finite differences (FD): based on the differential form

• approximation of nodal values and nodal

derivatives

• easy to derive, efficient

• essentially limited to structured meshes

xi,j+1

xi−1,j xi,j xi+1,j

xi,j−1

Finite volumes (FV): based on the integral form

• approximation of cell means and integrals

• conservative by construction

• suitable for arbitrary meshes

• difficult to extend to higher order

Finite elements (FE): based on the weak form

• weighted residual formulation

• quite flexible and general

• suitable for arbitrary meshes

Table 1.1: General space discretization schemes.
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methods which are members of the class of flux reconstruction schemes did not posses an
SBP property and hence suffered from instability for the linear advection equation. This lack
of structural property has been remedied by the class of energy stable flux reconstruction
(ESFR) schemes [202, 36] discussed in Section 1.3.

Organization of this chapter

In this chapter, we will first review the general framework of SBP operators also providing
the historical background regarding the SBP property of finite difference schemes. For this
purpose, the following Section 1.1 takes into account both classical and generalized SBP
operators for the discretization of derivatives of first and second order and also discusses the
new class of upwind SBP schemes. In this regard, we highlight the favorable properties of
SBP schemes, in particular their fulfillment of discrete energy estimates, their connections to
mimetic schemes via a discrete counterpart to the integration-by-parts rule, and the facilitation
of conservative discretizations of conservation laws in skew-symmetric form.

Subsequently, the focus of Section 1.2 is on the detection of SBP properties within nodal
discontinuous Galerkin schemes, also including the case that their nodal set in one space di-
mension does not include the cell boundary points. For instance, the DG scheme on Legendre-
Gauss nodes falls into this category. On the one hand, the SBP properties of the DG scheme in
one-space dimension, on tensor-product grids and on unstructured triangular grids are derived
locally on the level of elements where cell interfaces are dealt with the boundary operators
B of generalized SBP schemes. In this context, the familiar subcell finite volume property
of the DG scheme on Legendre-Gauss-Lobatto nodes is extended to the DG scheme using
the more accurate Legendre-Gauss nodes. On the other hand, on a global level, specific DG
schemes may be considered as generalized upwind SBP schemes where the cell interface terms,
together with interior contributions, are globally assembled into a discrete derivative operator
of upwind SBP type.

The class of flux reconstruction schemes generalizes various high order space discretization
methods for computational fluid dynamics via their differential formulation. Acting on the
observation that some early schemes in this class suffer from a weak instability for linear prob-
lems, the subclass of ESFR schemes has been identified in the literature as mentioned above.
Section 1.3 investigates the close link between SBP properties and ESFR schemes and shows
that all known ESFR schemes, either in one space dimension or on unstructured triangular
grids are in fact generalized SBP schemes in the local sense considering the formulation on
each element.

The last two sections of this chapter are dedicated to the derivation of space discretization
methods additionally enforcing the discrete balance of specific secondary quantities which may
become relevant in fluid flow simulations. The basic idea enabling these additional properties
is to utilize skew-symmetric formulations of the underlying conservation laws. In Sections 1.4
and 1.5, we thereby transfer results from the key papers [61, 68] exploiting the more classical
SBP properties of DG schemes on Legendre-Gauss-Lobatto nodes to DG schemes on Legendre-
Gauss nodes obeying a generalized SBP property. Section 1.4 thus constructs a kinetic energy
preserving DG scheme on Legendre-Gauss nodes for the Euler- and Navier-Stokes equations.
Numerically, the expected higher accuracy resulting from the higher degree of exactness of



1.1. THE SBP PROPERTY 5

the Legendre-Gauss quadrature rule is then demonstrated for a prototype long-time viscous
flow simulation in one space dimension. Further simulations are carried out for decaying
two-dimensional homogeneous isotropic turbulence and for a classical one-dimensional test
case of mechanical fluid-structure interaction. Finally, in Section 1.5, the Legendre-Gauss
DG scheme is applied to a skew-symmetric formulation of the shallow water equations with
non-flat bottom topography leading to the preservation of total energy which represents an
entropy function of this system of conservation laws. Focus of that section is on the relation of
this property to the preservation of moving water equilibria which generalize the lake at rest
steady state solution. In this regard, we compare the skew-symmetric energy conservative DG
schemes to a staggered scheme conserving mass, momentum and energy developed in [79].

1.1 The SBP property: Historical background and generaliza-
tions

The summation-by-parts (SBP) property is a mimetic property – mimicking the analytical
concept of integration-by-parts. Originally, discrete derivative operators with an SBP prop-
erty have been introduced to finite difference schemes in combination with suitable boundary
closures by Kreiss and Scherer [104]. The SBP concept for finite difference schemes has been
revisited and further developed by Strand [182], Carpenter et al. [32] and Olsson [146, 147] in
order to construct high order accurate, conservative and stable numerical methods. More pre-
cisely, via L2 energy estimates, the spatial SBP operators automatically yield stable schemes
for periodic solutions to the linear advection-diffusion equation in one space dimension. In
addition, they have substantially profited from a combination with weakly enforced bound-
ary conditions, most prominently by using simultaneous approximation terms (SATs) which
were first developed in [32] and later extended to an interface treatment in case of multiple
domains in [33]. This combination allowed for stability proofs for more complicated problems
and systems of PDEs including the linearized compressible Navier-Stokes equations dealt with
in [144]. Reviews on SBP operators and SAT terms are given by Svärd and Nordström [187]
and Del Rey Fernández et al. [48] showing that the methodology enables the construction of
stable schemes for quite general cases also including variable coefficient equations and nonlin-
ear conservation laws like Burgers’ equation.

At present, the theory and application of summation-by-parts (SBP) operators is still an ac-
tive field of research for the numerical solution of time-dependent partial differential equations.
Moreover, not only the original background of finite difference schemes is considered as recent
results also focus on SBP operators within various popular classes of numerical schemes, e.g.
finite volume schemes on unstructured dual grids [143], discontinuous Galerkin(DG) schemes
with Legendre-Gauss-Lobatto nodes [62], the correction-via-reconstruction scheme which in-
cludes so-called spectral-difference methods, see [166], as well as the direct construction of gen-
eralized nodal SBP operators in one space dimension [47] and even on simplex elements [77].
Based on the generalized SBP property in [47], DG schemes on Legendre-Gauss nodes both
in one space dimension and on tensor-product grids have been identified as generalized SBP
schemes in [150]. In fact, the definition in [47] allows to derive generalized SBP properties for
1D nodal DG schemes on arbitrary nodal sets, as long as their corresponding quadrature rule
is sufficiently exact in order to mimic integration-by-parts at the discrete level.
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The properties of classical SBP schemes can best be illustrated regarding their original back-
ground of linear or linearized PDEs based on first derivative operators, e.g. considering the
1D linear advection equation

∂

∂t
u(x, t) + a

∂

∂x
u(x, t) = 0, α ≤ x ≤ β, t > 0. (1.1)

The constant advection velocity a is assumed to be positive, a > 0, and for simplicity of
the subsequent analysis, a homogeneous boundary condition u(α, t) = 0 are posed. Exact
solutions to this problem admit an estimate for the behavior in time of the L2 energy defined
by

‖u(x, t)‖2L2(α,β) =

∫ β

α
u2(x, t) dx .

This estimate is derived from (1.1) using the energy method, i.e. (1.1) is multiplied by u(x, t)
and integrated in space,∫ β

α
u(x, t)

∂

∂t
u(x, t)dx+ a

∫ β

α
u(x, t)

∂

∂x
u(x, t)dx = 0 .

Using u ∂
∂xu = 1

2
∂
∂xu

2 and the boundary condition u(α, t) = 0, we then have

d

dt
‖u(x, t)‖2L2(α,β) + au2(β, t) = 0 . (1.2)

SBP schemes desire to transfer this estimate obtained for the continuous problem to the
discrete or semi-discrete case.

Classical SBP finite difference operators approximating the first derivative ∂
∂x are given on a

subdivision of the domain [α, β] by equidistant grid points which include the domain bound-
aries. Denoting these grid points by xj = α+j∆x, j = 0, . . . , N , with mesh width ∆x = β−α

N ,
we define an approximate solution to (1.1) by the time-dependent solution vector u(t) given
as

u(t) = (u0(t), . . . , uN (t))T ≈ (u(x0, t), . . . , u(xN , t))
T .

A classical SBP finite difference scheme to solve (1.1) is of the form

du

dt
+ aD u = σM−1e0 u0 , e0 = (1, 0, . . . , 0)T , (1.3)

where the matrix D is a first-derivative SBP operator with the following properties and σ ∈ R
is a parameter which has yet to be specified.

Definition 1.1. The finite difference scheme (1.3) is an SBP scheme with first-derivative
SBP operator D of order and degree q if

1. The matrix D is an accurate approximation to ∂
∂x with

D xk = kxk−1, 0 ≤ k ≤ q,

where xk = (xk0, . . . , x
k
N )T is the representation of the monomials xk on the grid points.
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2. The matrix M is symmetric and positive definite.

3. Setting S = M D, integration by parts is mimicked by the property

S + ST = M D + DTM = B , (1.4)

with B = diag(−1, 0, . . . , 0, 1).

The matrix M is also referred to as the norm of the SBP operator D since due to its symmetry
and positive definiteness, an inner product and a norm may be defined by (u,v)M = uTM v
and ‖u‖M =

√
uTM u . Furthermore, the right-hand side term of the equation (1.3) containing

the parameter σ is an example of an SAT term which weakly enforces the homogeneous
boundary condition.

At this point, we remark that the order of a derivative operator refers to the leading truncation
error term, i.e. the first-derivative operator D is of order q if and only if

(D v)j =
dv

dx
(xj) +O((∆x)q) , j = 0, . . . , N , (1.5)

for a sufficiently smooth function v : [α, β]→ R and its grid representation

v = (v(x0), . . . , v(xN ))T .

On the other hand, the degree of a derivative operator is the highest degree of a monomial,
represented by xk, for which the operator is exact. For an operator approximating the mth
derivative, we have the relation

order = degree−m+ 1 . (1.6)

One may derive the relation (1.6) for difference operators using finite stencils by Taylor ex-
pansion of the smooth function v, which yields

v(x) = Tk(x) +
v(k+1)(ξ)

k!
(x− xj)k+1,

where Tk(x) is the kth degree Taylor polynomial of v at the point xj , given by

Tk(x) = v(xj) + v′(xj)(x− xj) + . . .+
v(k)(xj)

k!
(x− xj)k ,

and ξ is some real number between x and xj . Hereby, the index j corresponds to j in (1.5).
For an operator Dm of degree q approximating the mth derivative, with m ≤ q, we have

(Dm v)j = (Dm T q)j +
v(q+1)(ξ)

q!
(∆x)1−q(Dm rq+1)j = v(m)(xj) +O((∆x)q+1−m)

where the vectors T q and r are defined by T q = (Tq(x0), . . . , Tq(xN ))T and r = (r0, . . . , rn)
with components rk = (k − j), respectively, and we used the fact that the entries of an mth
derivative operator are of order O((∆x)m).

Hence, for the first-derivative, the order of the discrete derivative operator is equal to its
degree.
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A discrete energy estimate

For the analysis of the SBP scheme (1.3), the behavior of the discrete quantity ‖u‖2M, which
may be seen as an approximation of the L2 energy ‖u‖2L2 , is investigated by the energy method
similar to the continuous case. Multiplying (1.3) from the left by uTM yields

uTM
du

dt
+ auTM D u = σu2

0 . (1.7)

Similarly, multiplying the transpose of (1.3) from the right by M u while considering the
symmetry of M, results in

uTM
du

dt
+ auTDTM u = σu2

0 . (1.8)

Adding (1.7) and (1.8) now yields

2uTM
du

dt
+ auT

(
M D + DTM

)
u = 2σu2

0 . (1.9)

Using d
dt‖u‖

2
M = 2uTMdu

dt and the SBP property (1.4), we arrive at

d

dt
‖u‖2M + a(u2

N − u2
0) = 2σu2

0

For σ ≤ −a
2 , the time evolution of the discrete energy may therefore be estimated by

d

dt
‖u‖2M + au2

N ≤ 0 , (1.10)

resulting in a stable numerical scheme. For σ = −a
2 , we have equality in (1.10) and the bound

on the discrete energy in fact directly corresponds to the continuous case (1.2).

Connection to mimetic schemes

SBP schemes fall into the category of mimetic schemes which have lately been reviewed
in [115]. In fact, mimetic schemes have a long history of more than 50 yeas of development.
The idea of mimetic discretizations is to derive discrete analogs of the differential operators
occurring in PDEs – such as gradient, divergence and curl – which exactly mimic the mathe-
matical properties of the corresponding continuous versions. Hereby, the underlying PDEs are
usually reformulated by using first-order operators and properties of higher order operators
follow from discrete duality relations. Based on a set of primary operators, a discrete vector
and tensor calculus is then developed using mimetic design principles.

Discretization of the integration-by-parts rule

The gist of the SBP property (1.4) is that it provides a discrete counterpart of the continuous
rule of integration by parts. More precisely, for two functions u, v : [α, β] → R with grid
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representations u and v, respectively, we have∫ β

α
u
∂

∂x
v dx ≈ uTM D v

(1.4)
= −uTDTM v + uNvN − u0v0

M symmetric
= −vTM D u + uNvN − u0v0

≈ −
∫ β

α
v
∂

∂x
u dx+ [uv]xNx0

Therefore, by (1.4), we obtain a discrete representation of the chain rule and subsequent

integration, i.e. of
∫ β
α u

∂
∂xu dx = 1

2

∫ β
α

∂
∂xu

2 dx = 1
2

(
u2(β, t)− u2(α, t)

)
which is used to derive

the continuous bound (1.2) on the L2 energy.

The SBP property and high order quadrature

Less often it is emphasized that for a diagonal norm SBP operator of degree q, the approxi-
mation ∫ β

α
u
∂

∂x
v dx ≈ uTM D v,

where M is a diagonal matrix, is actually exact if u and v are polynomials of degree smaller
or equal to q, see e.g. [77]. In fact, M defines an accurate quadrature rule of degree 2q− 1, as
proven in [47], and ‖u‖2M truly is a suitable discrete counterpart of ‖u‖2L2 . At first sight, the
accuracy of M as a quadrature rule is quite surprising since only the accuracy of D as a discrete
derivative operator is part of the Definition 1.1 of an SBP scheme. However, the accuracy of
D is transferred to M through the SBP property (1.4). Since the above approximation to the

integral
∫ β
α u

∂
∂xv dx is only as accurate as the accuracy of M as a quadrature rule, this does

not directly transfer to dense-norm SBP operators D = M−1S , where M is not diagonal.
The reason is that due to the larger number of degrees of freedom in the construction of
dense-norm SBP operators, the degree q of the derivative operator D may be higher than for
diagonal-norm SBP operators constructed from the same quadrature rule incorporated in M,
see [47].

Multidomain SBP operators

The enforcement of weak boundary conditions via the SAT method has also been transferred to
an interface treatment for multidomain discretizations. The complete computational domain is
hereby subdivided into a finite number of subdomains where possibly different SBP operators
are applied. Consequently, suitable SAT terms at the subdomain interfaces have to be chosen
which guarantee stability of the resulting scheme as well as discrete conservation.

As an example, we consider the linear advection equation (1.1), where the domain [α, β] is
subdivided into two subdomains [α, γ] and [γ, β], with α < γ < β. On the left subdomain
[α, γ], the approximate solution on equidistant grid nodes is denoted by uL while on the right
subdomain, the approximate solution is denoted by uR. For the purpose of analyzing only the
interface treatment, the left boundary condition in the left subdomain and the right boundary
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condition in the right subdomain are ignored in the subsequent elaboration. The resulting
SBP scheme with interface SATs is then given by the two equations

duL
dt

+ aDL uL = σL M−1
L eN (uL,N − uR,0) ,

duR
dt

+ aDR uR = σR M−1
R e0 (uR,0 − uL,N ) ,

(1.11)

with e0 = (1, 0, . . . , 0)T and eN = (0, . . . , 0, 1)T .

For the analysis of the conservation property of the resulting scheme, the equations (1.11)
are left-multiplied by 1TL ML and 1TR MR, respectively, where 1L, 1R are vectors of the form
1 = (1, . . . , 1)T , with length corresponding to the number of grid points on the respective
subdomain. Summing up, we obtain

d

dt

∫ β

α
u dx =

d

dt

∫ γ

α
u dx+

d

dt

∫ β

γ
u dx

≈ 1TL ML
duL
dt

+ 1TR MR
duR
dt

= −a
(
1TL ML DL uL + 1TR MR DR uR

)
+ σL (uL,N − uR,0) + σR (uR,0 − uL,N )

(1.4)
= a

(
(DL 1L)T ML uL + (DR 1R)T MR uR + uL,0 − uL,N + uR,0 − uR,N

)
+σL (uL,N − uR,0) + σR (uR,0 − uL,N )

= a (uL,0 − uL,N + uR,0 − uR,N ) + σL (uL,N − uR,0) + σR (uR,0 − uL,N ) ,

since D 1 = 0 = (0, . . . , 0)T due to the accuracy requirement for the derivative operator D in
Definition 1.1. Ignoring the terms containing uL,0 and uR,N introduced by the left boundary
of the left domain and the right boundary of the right domain, discrete conservation requires

(uR,0 − uL,N ) (a− σL + σR) = 0

and therefore the condition

σR = σL − a (1.12)

on the SAT penalty parameters. Stability of the scheme (1.11) with penalty parameters
satisfying (1.12) is determined by considering

d

dt
‖u‖2L2(α,β) ≈ 2 uTL ML

duL
dt

+ 2 uTR MR
duR
dt

(1.11)
= −auTL

(
DL ML + ML DT

L

)
uL − auTR

(
DR MR + MR DT

R

)
uR

+2σL uL,N (uL,N − uR,0) + 2(σL − a)uR,0 (uR,0 − uL,N )

(1.4)
= a

(
u2
L,0 − u2

L,N + u2
R,0 − u2

R,N

)
+2σL uL,N (uL,N − uR,0) + 2(σL − a)uR,0 (uR,0 − uL,N ) .

Again, the influence of the outer boundaries is ignored and only the contributions of the
interface x = γ are taken into account to bound the L2 energy. Hence, we ignore uL,0 and
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uR,N and assume the corresponding terms to be bounded by SAT terms either for a domain
boundary or for an additional interface. Therefore, stability requires

0 ≥ a
(
u2
R,0 − u2

L,N

)
+ 2σL uL,N (uL,N − uR,0) + 2(σL − a)uR,0 (uR,0 − uL,N )

= (2σL − a)(uL,N − uR,0)2 ,

which holds under the condition

σL ≤
a

2
. (1.13)

The above interface treatment via the SAT method bears close resemblance to the incorpora-
tion of numerical fluxes which are inherent to finite volume methods. In fact, if the penalty
parameters σL, σR satisfy the condition (1.12) enforcing a conservative scheme, then the SBP
scheme (1.11) rewrites as

duL
dt

+ aDL uL = M−1
L eN (a uL,N − (au)∗) ,

duR
dt

+ aDR uR = −M−1
R e0 (a uR,0 − (au)∗) ,

(1.14)

with the parameterized numerical flux given by

(au)∗ =
a

2
(uL,N + uR,0) + aθ(uL,N − uR,0) ,

for θ = (a − 2σL)/(2a). For the parameter θ of the numerical flux function, we therefore
obtain θ ≥ 0 from the stability condition (1.13). This obviously includes the central flux for
θ = 0 and the upwind flux for θ = 1

2 which both produce energy stable semi-discrete schemes.

Second-derivative SBP operators

The goal in deriving second-derivative SBP operators is to obtain discrete energy estimates
which are again mimetic of the continuous case. Taking for example the linear heat equation

∂

∂t
u(x, t) =

∂2

∂x2
u(x, t), α ≤ x ≤ β, t > 0, (1.15)

the energy method leads to

d

dt
‖u(x, t)‖2L2(α,β) = −2

∫ β

α

(
∂

∂x
u(x, t)

)2

dx+ 2

(
u(β, t)

∂

∂x
u(β, t)− u(α, t)

∂

∂x
u(α, t)

)
.

(1.16)

On the other hand, applying a first-derivative SBP operator twice yields a second-derivative
SBP operator D2 which can be reformulated using the SBP property (1.4) as

D2 := D D = M−1
(
−DTM D + B D

)
, (1.17)
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with B = diag(−1, 0, . . . , 0, 1) . Neglecting boundary conditions, the corresponding semi-
discretization is given by

du

dt
= D2 u = M−1

(
−DTM D + B D

)
u . (1.18)

For the energy method applied to (1.18), we therefore obtain

d

dt
‖u‖2M = 2uTM

du

dt
= −2uTDTM D u + 2uTB D u , (1.19)

which is mimetic of (1.16).

In order to obtain a semi-discrete energy estimate, it is still sufficient to replace DTM D by
a symmetric, positive semi-definite matrix A. Therefore, the definition of a classical finite
difference second-derivative SBP operator is the following, where we recall the relation (1.6)
between order and degree of the derivative operator.

Definition 1.2. A second-derivative SBP operator D2 has the form

D2 = M−1 (−A + B D) , (1.20)

where A is a symmetric, positive semi-definite matrix, B = diag(−1, 0, . . . , 0, 1), and D is a
first-derivative SBP operator with norm M.

Furthermore, the SBP operator D2 is of order q and degree q + 1 if it satisfies the degree
conditions

D2 xk = k(k − 1)xk−2, 0 ≤ k ≤ q + 1 , (1.21)

where xk = (xk0, . . . , x
k
N )T .

If the first-derivative operator is applied twice, i.e. D2 = D D for an SBP operator D of order
and degree q, then the conditions (1.21) are only fulfilled for k ≤ q and the order of the second-
derivative operator is lower by one compared to the first-derivative operator. In addition,
for classical finite difference SBP operators with repeated interior stencils the bandwidth is
nearly doubled and Fourier analysis shows a lack of damping for the highest frequency mode as
shown in [127]. Due to these drawbacks, narrow stencil and order-matched second-derivative
operators have been constructed in [128], which satisfy the SBP property (1.20).

Discretization of skew-symmetric formulations

In order to obtain energy stable numerical schemes for non-linear problems or for linear prob-
lems with variable coefficients, a well-known approach is to rewrite the underlying equations
into a split formulation which deviates from the classical divergence form. By applying an
SBP scheme to this modified equation, it is possible to construct a simultaneously energy sta-
ble and conservative scheme. In particular, this idea has been applied to the inviscid Burgers’
equation of which the divergence form is given by

∂

∂t
u(x, t) +

∂

∂x
f (u(x, t)) = 0, α ≤ x ≤ β, t > 0 , (1.22)



1.1. THE SBP PROPERTY 13

with non-linear flux function f(u) = 1
2u

2. The so-called skew-symmetric inviscid Burgers’
equation, which is analytically equivalent to (1.22), is a specific split formulation given by

∂

∂t
u(x, t) +

2

3

∂

∂x
f (u(x, t)) +

1

3
u(x, t)

∂

∂x
u(x, t) = 0, α ≤ x ≤ β, t > 0 . (1.23)

This reformulation allows for an easy proof of a continuous energy estimate, since multipli-
cation of (1.23) by u(x, t) and subsequent integration over the computational domain [α, β]
yields

d

dt

(
1

2
‖u(x, t)‖2L2(α,β)

)
= −1

3

(∫ β

α
u(x, t)

∂

∂x
u2(x, t) dx+

∫ β

α
u2(x, t)

∂

∂x
u(x, t) dx

)
= −1

3

∫ β

α

∂

∂x
u3(x, t) dx

=
1

3

(
u3(α, t)− u3(β, t)

)
.

(1.24)

In particular, equation (1.24) shows that the energy η(u) = 1
2u

2 is a conserved quantity of
the inviscid Burgers’ equation (in fact η is also an entropy function of (1.22)).

In the second step of the derivation (1.24), integration by parts was employed, suggesting that
the above energy estimate carries over to the semi-discrete case if an SBP operator is applied.
The discretization of (1.23) by an SBP scheme with diagonal norm M yields

du

dt
+

1

3
D u2 +

1

3
u D u = 0 , (1.25)

where a short notation for pointwise operations is employed, i.e. denoting u2 =
(
u2

0, . . . , u
2
N

)T
and the diagonally inserted nodal values by u = diag(u). Boundary conditions and corre-
sponding SAT terms are neglected in this example.

The SBP property compensates for the lack of a discrete product rule, since in general,

D u v 6= u D v + v D u

for arbitrary values of nodal values u,v. Instead we make use of the discrete integration-by-
parts rule fulfilled by the SBP scheme and multiply equation (1.25) from the left by uTM to
obtain

1

2

d

dt
‖u‖2M +

1

3
uTM D u2 +

1

3
uTu M D u = 0 , (1.26)

since the diagonal matrices M and u commute. Using the SBP property (1.4) as well as the

identity uTu = (u2)T , we have

1

2

d

dt
‖u‖2M +

1

3
uT
(
B−DTM

)
u2 +

1

3
(u2)TM D u = 0 , (1.27)

Since the scalar quantity uTDTM u2 equals its transpose
(
uTDTM u2

)T
= (u2)TM D u,

which cancels out the third term on the right-hand side of (1.27), this further simplifies to

1

2

d

dt
‖u‖2M = −1

3
uTB u2 =

1

3

(
u3

0 − u3
N

)
, (1.28)
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The resulting equation (1.28) signifies that a change of discrete energy, particularly its growth,
can only occur due to boundary conditions controlling the values at the boundary nodes
x0 = α and xN = β. This semi-discrete energy estimate for a diagonal-norm SBP scheme
exactly mimics the continuous energy behavior given in (1.24).

A distinct advantage of discretizing the skew-symmetric inviscid Burgers’ equation by an
SBP scheme is that this approach still yields a conservative numerical method even though
the underlying PDE is not written in divergence form. In order to prove this for the present
example, we multiply equation (1.25) by 1TM to obtain

d

dt

(
1TM u

)
= −1

3

(
1TM D u2 + uTM D u

)
(1.4)
= −1

3

(
1T
(
B−DTM

)
u2 +

1

2
uT
(
B−DTM + M D

)
u

)
.

Hereby, except for the boundary contributions, all the terms on the right-hand side vanish.
More precisely, we have 1TDTM = (D 1)TM = 0 = (0, . . . , 0)T if the SBP operator D is
consistent, meaning that in Definition 1.1, the degree condition for q = 0 is fulfilled, and

the last two terms are equal by transposition of scalars, i.e. uTDTM u =
(
uTDTM u

)T
=

uTM D u. Therefore, we obtain

d

dt

(
1TM u

)
= −1

3

(
1TB u2 +

1

2
uTB u

)
=

1

2

(
u2

0 − u2
N

)
. (1.29)

Since 1TM u ≈
∫ β
α u(x, t) dx accurately approximates the integrated quantity u(x, t), equa-

tion (1.29) signifies that a change in time of the discrete mass given by 1TM u only occurs
via fluxes through the boundaries of the domain at x0 = α and xN = β. This again mimics
the conservation property which is inherent to the inviscid Burgers’ equation.

Naturally, an SBP scheme applied to the divergence form of Burgers’ equation (1.22) also yields
discrete conservation. In fact, any discrete divergence operator having the SBP property yields
discrete conservation of the primary conserved quantities if the given conservation law is in
divergence form. In case of the Euler equations of gas dynamics or the compressible Navier-
Stokes equations as particular examples, these primary quantities are mass, momentum and
total energy. The decided advantage of combining SBP schemes with certain split forms, e.g.
skew-symmetric formulations, is that even if applied to these specific fluid equations which
are not in divergence form, conservation of the primary quantities is achieved. Moreover, the
additional conservation of specific secondary quantities such as kinetic energy or entropy for
the Euler equations may be obtained when choosing a suitable split formulation.

Based on a specific skew-symmetric formulation of the Euler equations, a kinetic energy
preserving DG scheme on Legendre-Gauss nodes is constructed in Section 1.4, profiting from
the generalized SBP property of the corresponding first derivative operator.

Connection to finite volume schemes

While SBP properties have been recognized in certain types of finite volume schemes, see
e.g. [143], vice versa, finite difference SBP schemes have been rewritten as finite volume
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schemes by Fisher et al. in [56]. More precisely, Fisher et al. rewrite finite difference SBP
operators in telescoping sum formulation and the resulting schemes can be recognized as finite
volume schemes on suitably defined subcells. This property is advantageous in case of shocks
occurring in the exact solution. In fact, for a finite difference scheme in conservative form
which is applied to a conservation law in divergence form, the well-known Theorem of Lax
and Wendroff may be applied. This theorem guarantees that if the scheme is convergent,
then it converges to a weak solution and hence yields correct shock speeds. However, it is not
necessary to derive the discrete operator from the divergence form of the continuous equations.
On the contrary, carefully designed discrete operators applied to linearly split forms of the
conservation law are equivalent to telescoping operators fulfilling the assumptions of the Lax-
Wendroff theorem, as proven in [56]. Hereby, the subcell finite volume property plays an
important role in this context.

Generalized SBP schemes

In [47], Del Rey Fernández et al. provided a generalized framework for SBP operators in one
space dimension which extends the classical finite difference background. Thereby, a wide
range of operators may be considered to be SBP operators, e.g. nodal pseudo-spectral op-
erators on Legendre-Gauss, Legendre-Gauss-Lobatto or Legendre-Gauss-Radau points. The
main extensions compared to classical finite difference SBP operators are non-repeating inte-
rior point operators, non-uniform nodal distributions within the computational domain and
nodal distributions which do not include one or both boundary points. The concept has later
been transferred to multidimensional domains including simplex elements in [77]. The basic
insight for the construction of generalized SBP operators is that the existence of a quadrature
rule is necessary and sufficient for the existence of an SBP operator, whereby its degree is
intimately linked to the degree of the underlying quadrature rule. Therefore, it is possible
to derive new SBP operators by first constructing suitably accurate quadrature rules and
subsequently solving the degree conditions for the derivative operator D. The generalization
in [47] furthermore allows for the construction of SBP operators in a finite element setting
where a refinement consists in increasing the number of elements which carry a fixed nodal
distribution in contrast to increasing the number of equidistant nodes as in finite difference
schemes. Hence, quite general types of discontinuous Galerkin schemes may also be seen as
SBP schemes.

A generalized SBP finite difference operator approximating the first derivative ∂
∂x can be de-

fined on arbitrary non-uniform nodal distributions on the domain [α, β] which may or may not
include the domain boundaries. Denoting these grid points by xj , j = 0, . . . , N , analogously
to the equidistant case, an approximate solution to the 1D linear advection equation (1.1) is
then defined by the corresponding time-dependent solution vector

u(t) = (u0(t), . . . , uN (t))T ≈ (u(x0, t), . . . , u(xN , t))
T

on the specific nodal distribution. Furthermore, the Definition 1.1 of a classical SBP scheme
is extended as follows, see [47], Definition 2.

Definition 1.3. A generalized SBP (GSBP) finite difference scheme to solve (1.1) is of the
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form

du

dt
+ aD u = σM−1tα tTα u , (1.30)

where tα is a projection to the left boundary defined below and the SAT parameter σ ∈ R has
to be specified to obtain energy stability – analogously to the classical finite difference SBP
scheme given in (1.3).

The scheme (1.30) is a generalized SBP scheme with first-derivative SBP operator D of degree
q if the subsequent conditions are fulfilled.

1. The matrix D is an accurate approximation to ∂
∂x with

D xk = kxk−1, 0 ≤ k ≤ q,

where xk = (xk0, . . . , x
k
N )T is the representation of the monomials xk on the grid points.

2. The matrix M is symmetric and positive definite.

3. Setting S = M D, integration by parts is mimicked by the property

S + ST = M D + DTM = B = BT = tβ tTβ − tα tTα , (1.31)

where B is an interface and boundary operator with the property (xl)TB xm = [xl+m]βα
for all 0 ≤ l,m ≤ r, where r ≥ q denotes the degree of the SAT terms used for imposition
of boundary and interface conditions. Furthermore, B decomposes into the left and right
boundary contributions tα tTα and tβ tTβ , i.e.

B = tβ tTβ − tα tTα , (1.32)

where tTα xl = αl and tTβ xl = βl for 0 ≤ l ≤ r.

The concept of generalized SBP operators has also been extended to the second derivative
in order to solve viscous flow equations. The corresponding definition in [49] extends Defi-
nition 1.2 in a straightforward manner, where the generalized discrete second-derivative op-
erator D2 is defined as in (1.20) but operates on potentially non-equidistant grid points not
including the domain boundaries and the boundary operator B is taken from Definition 1.3.
Analogously to classical SBP operators, second-derivative GSBP operators may be extended
to second derivatives with variable coefficients and it is possible to construct order-matched
operators where first-derivative and second-derivative operators are of the same order.

Upwind SBP schemes

Recently, Mattsson [126] has derived a class of finite difference methods called upwind SBP
schemes. These schemes consist of dual-pair SBP operators with non-central difference stencils
which lead to a built-in artificial dissipation when combined with flux splitting. This approach
serves to stabilize non-linear problems while retaining the linear stability properties associated
with SBP schemes.
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Definition 1.4. A pair of difference operators denoted by D+ and D−, both approximating
the first derivative ∂

∂x , are called diagonal-norm upwind SBP operators if

1. For a positive definite diagonal matrix M, the derivative operators are given by

D− = M−1

(
Q− +

1

2
B

)
and D+ = M−1

(
Q+ +

1

2
B

)
, (1.33)

with B = diag(−1, 0, . . . , 0, 1).

2. Integration by parts is mimicked by the property

Q+ +
(
Q−
)T

= 0 . (1.34)

3. As an additional stability constraint, the symmetric matrix

C :=
1

2

(
Q+ −Q−

)
=

1

2

(
Q+ +

(
Q+
)T)

= −1

2

(
Q− +

(
Q−
)T)

(1.35)

is negative semi-definite.

The motivation for using upwind SBP operators is the additional artificial damping introduced
by enforcing negative semi-definiteness of the matrix C in (1.35). We will illustrate this
property of an upwind SBP scheme in comparison to classical SBP schemes in the following
example.

Reconsidering the discretization of the linear advection equation (1.1) via an SBP scheme, we
replace the SBP operator D in (1.3) by the upwind SBP operator D− (for a < 0, the operator
D+ would be applied). Keeping the SAT term, we obtain the discretization

du

dt
+ aD− u = σM−1e0 u0 , e0 = (1, 0, . . . , 0)T . (1.36)

Multiplying (1.36) from the left by uTM and adding the transpose now yields

2uTM
du

dt
+ auT

(
M D− +

(
D−
)T

M
)

u = 2σu2
0 . (1.37)

Using the upwind SBP properties (1.34) and (1.35), we have

M D− +
(
D−
)T

M = Q− +
(
Q−
)T

+ B = −2C + B, ,

and therefore
d

dt
‖u‖2M + a(u2

N − u2
0) = 2σu2

0 + 2uTC u .

For σ ≤ −a
2 , the time evolution of the discrete energy may now be estimated by

d

dt
‖u‖2M + au2

N ≤ 2uTC u , (1.38)
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where the last term containing the negative semi-definite matrix C introduces additional
artificial damping.

Upwind SBP operators also enable the construction of diagonal-norm second-derivative oper-
ators of the form

D−2 = D+D− = M−1(−
(
D−
)T

MD− + BD−) ,

D+
2 = D−D+ = M−1(−

(
D+
)T

MD+ + BD+) ,
(1.39)

similar to Definition 1.2. We will derive second-derivative operators of this form for specific
DG diffusion discretizations in Section 2.1.

1.2 The DG scheme in SBP framework

Discontinuous Galerkin schemes, first mainly advanced by Cockburn and Shu in [43] and refer-
ences therein, are based on a variational formulation similar to classical Galerkin finite element
schemes with coincident ansatz and test spaces. In contrast to the continuity assumptions of
classical FE methods, DG schemes allow for piece-wise smooth approximate solutions with
potential discontinuities across element interfaces. Due to its flexibility and generality, the DG
scheme is a popular numerical method in a variety of applications ranging from compressible
fluid flow and aeroacoustics [180, 50, 35] to electromagnetics [103, 45], meteorology [71, 167]
and geophysics [55]. The main advantages of the DG approach are its local conservation prop-
erty, an arbitrarily high order of accuracy and superconvergence capabilities. Dispensing with
global continuity of the approximate solution, the DG approach results in relatively compact
stencils which greatly facilitates both hp-adaptivity of the method and its implementation in
parallel hardware environment.

In recent investigations, connections between modern nodal DG schemes and classical SBP
finite difference methods have been established with the objective to take advantage of this
connection to discretize conservation laws in skew-symmetric form and to obtain certain en-
ergy estimates. This section deals with the SBP properties of nodal DG schemes in one space
dimension in Sections 1.2.1 and 1.2.3, on tensor-product grids in Section 1.2.4 and on unstruc-
tured triangular grids in Section 1.2.5 providing the link to the definition of generalized and
upwind SBP operators introduced in Section 1.1. Furthermore, in Section 1.2.2, we introduce
the closely related subcell finite volume property of DG schemes on interior nodal distribu-
tions, rewriting the DG scheme as a finite volume formulation on a division of each DG cell
into a certain number of subcells.

1.2.1 The one-dimensional case

In order to verify the SBP property of classical 1D-DG schemes, we consider a scalar hyperbolic
conservation law in one space dimension given by

∂

∂t
u(x, t) +

∂

∂x
f(u(x, t)) = 0, t > 0, x ∈ Ω = [a, b] ⊂ R. (1.40)
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After a subdivision of the spatial domain Ω into sub-intervals, Ω =
⋃K
i=1 Ii =

⋃K
i=1[xi, xi+1],

the DG scheme constructs an approximation uh of u which is piece-wise continuous which
means that on each sub-interval Ii we have

uh(x, t)|Ii = uih(x, t) =
N+1∑
j=1

uij(t)Φ
i
j(x) (1.41)

using basis functions Φi
j , usually given by polynomial functions Φi

j ∈ PN ([xi, xi+1]). Hereby,
we will generally consider the simplified case that the polynomial degree N is fixed throughout
the computational domain, although the flexibility of the DG scheme allows to chose different
polynomial degrees on different DG cells.

The DG scheme in weak form on a certain sub-interval Ii is obtained as usual by first mul-
tiplying the conservation law (1.40) with global test functions Φ̃i

j constructed from the local
ones by

Φ̃i
j(x) =

{
Φi
j(x) if x ∈ Ii,
0 otherwise.

Second, partial integration of the term containing the flux f is carried out and a numerical
flux function is introduced to ensure coupling between the sub-intervals. This procedure yields
the DG scheme in weak form

d

dt

∫
Ii

uhΦi
kdx+ f∗i Φi

k(xi)− f∗i+1Φi
k(xi+1)−

∫
Ii

f(uh)
dΦi

k

dx
dx = 0, (1.42)

with f∗i = f∗
(
ui−1
h (xi), u

i
h(xi)

)
denoting the values of a consistent numerical flux function f∗.

The numerical flux hereby requires the left and right-hand side limits as input arguments which
are given by the values ui−1

h (xi), u
i
h(xi) as defined in (1.41) while neglecting the dependence on

the time variable t. The last integral term on the left hand side of equation (1.42) is generally
not solved analytically but by numerical quadrature rules. Thus, for numerical integration we
consider a set of quadrature nodes

ξν ∈ [−1, 1], ν = 1, . . . , N + 1,

transformed to the specific sub-interval under consideration. The corresponding weights will
be denoted by

ων , ν = 1, . . . , N + 1.

Hereby, we restrict the presentation to nodal sets containing exactly dimPN = N + 1 points.
In this case, we may as well use these nodes to construct an interpolation fh ∈ PN of the

nonlinear function f(uh). Exact integration of
∫
Ii
fh

dΦik
dx dx is then equivalent to numerical

integration of the last integral in (1.42) for an arbitrary function f if and only if the quadrature
rule is exact for polynomials of degree 2N − 1.

To construct the DG scheme and highlight its SBP property, the test and basis functions for
the expansion of uh and within the variational formulation (1.42) are chosen as the corre-
sponding nodal Lagrange polynomials Φi

k = Lik with Lik(Λi(ξν)) = δνk, where Λi denotes the
transformation of the reference cell [−1, 1] to the specific sub-interval Ii, i.e.

Λi(ξ) = ξ
xi+1 − xi

2
+
xi + xi+1

2
. (1.43)
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Hence, considering the Lagrange polynomials Lk : [−1, 1] → R corresponding to the quadra-
ture nodes on the reference interval [−1, 1], the basis functions with respect to a specific cell
are given by Lik = Lk ◦ Λ−1

i . For a specific cell Ii, the weak form of the DG scheme using
quadrature rules and Lagrange basis functions is then given by

d

dt

∫
Ii

uhL
i
kdx+ f∗i L

i
k(xi)− f∗i+1L

i
k(xi+1)−

∫
Ii

fh
dLik
dx

dx = 0, (1.44)

where fh is defined by the expansion

fh(x, t)|Ii =

N+1∑
j=1

f(uij)L
i
j(x), (1.45)

with point-wise values uij = uh (Λi(ξj), t). Transforming to the reference cell [−1, 1], we obtain
the corresponding weak form

∆xi
2

d

dt

∫ 1

−1
uh (Λi(ξ), t)Lk(ξ) dξ + f∗i Lk(−1)− f∗i+1Lk(1)

−
∫ 1

−1
fh (Λi(ξ), t)L

′
k(ξ) dξ = 0,

(1.46)

where ∆xi = xi+1 − xi.
So far, the integrals appearing in (1.46) are solved exactly since the required numerical inte-

gration of the nonlinear term
∫
Ii
f(uh)

dΦik
dx dx in (1.42) has been reinterpreted via interpolation

and the subsequent use of a numerical quadrature which exactly integrates polynomials of de-
gree 2N − 1.

Equation (1.46) rewrites in a simpler form using matrix-vector notation. For this purpose, we
define the matrices M and S by their entries

Mjk =

∫ 1

−1
LjLkdξ = Mkj , (1.47)

Sjk =

∫ 1

−1
LjL

′
kdξ, (1.48)

as well as the solution vector ui and vector of flux values f i given by

ui = (ui1, . . . , u
i
N+1)T with uij = uh (Λi(ξj), t) ,

f i = (f i1, . . . , f
i
N+1)T with f ij = f(uij).

Furthermore, we use the abbreviations f∗,i(1) = f∗i+1 and f∗,i(−1) = f∗i and collect the basis
functions in the vector valued function

L(ξ) = (L1(ξ), . . . , LN+1(ξ))T . (1.49)
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Using the expansions of uh and fh into the Lagrange basis functions as in (1.41) and (1.45),
the above variational form (1.46) is then equivalent to the matrix-vector form

∆xi
2

M
dui

dt
− ST f i = −[f∗,iL]1−1.

The DG scheme in strong from is obtained by a second partial integration of (1.44) resulting
in the variational formulation∫

Ii

∂uh
∂t

Likdx+

∫
Ii

∂fh
∂x

Likdx = [f∗i − f ih(xi)]L
i
k(xi)− [f∗i+1 − f ih(xi+1)]Lik(xi+1). (1.50)

The above equation is the equivalent to the matrix-vector formulation

∆xi
2

M
dui

dt
+ S f i = [(f ih − f∗,i)L]1−1,

where f ih(ξ, t) =
∑N+1

j=1 f(uij)Lj(ξ) is the transformation of fh(x, t)|Ii to the reference cell,

i.e. f ih(ξ, t) = fh(Λi(ξ), t). For pairwise distinct nodes, the Lagrange polynomials represent
a set of linearly independent functions. Hence, the matrix M, given by the entries (1.47) is
symmetric and positive definite and thus invertible. The relation to SBP schemes can now be
observed by multiplying with the inverse of M to obtain

∆xi
2

dui

dt
+ D f i = M−1[(f ih − f∗,i)L]1−1. (1.51)

where the entries of D = M−1S are given by

Djk = L′k(ξj), (1.52)

due to the interpolation property of the Lagrange polynomials. In fact, defining the matrix
D by the entries (1.52) leads to

(M D)ij =
∑
k

MikDkj =

∫ 1

−1
Li(ξ)

∑
k

Lk(ξ)L
′
j(ξk)dξ =

∫ 1

−1
Li(ξ)L

′
j(ξ)dξ = Sij .

The above form (1.51) of the DG scheme is also obtained when the same numerical quadrature
rule is also used for the computation of the integrals in (1.47) defining the entries of M. This
results in a slightly modified mass matrix M in (1.51) which is diagonal and often called a
lumped mass matrix. More precisely, we then have∫ 1

−1
LjLkdξ ≈Mjk =

∑
l

ωlLj(ξl)Lk(ξl) = ωjδjk .

The entries of D remain unmodified since the entries of S are exactly integrated in (1.48),
and we have

(M D)ij = ωiL
′
j(ξi) =

∑
k

ωkLi(ξk)L
′
j(ξk) =

∫ 1

−1
Li(ξ)L

′
j(ξ)dξ = Sij .
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When we consider the DG scheme in cell-wise fashion, it may become convenient to drop the
cell index i in equation (1.51) by writing

∆x

2

du

dt
+ D f = M−1[(fh − f∗)L]1−1. (1.53)

However, when referring to contributions of interface fluxes, the corresponding interface indices
i and i+ 1 referring to the grid nodes xi and xi+1 will still be used as in (1.46) and (1.50).

For the DG scheme (1.53) written in terms of the spatial variable ξ on the reference cell [−1, 1]
an SBP property of the generalized form given in Definition 1.3 is proven in the following
Theorem.

Theorem 1.5. The DG scheme (1.53) is an SBP scheme with the SBP operator D = M−1S
given in (1.52). Hereby, D approximates ∂

∂ξ to degree q = N and the degree of B is r = q =
N as well. Furthermore, given a function g(ξ) with point-wise values g, the interface and
boundary operator B acts on g as

B g = [ghL]1−1,

where gh =
∑N+1

j=1 gjLj(ξ) denotes the polynomial interpolation of the point-wise values g.

Therefore, the operator B is given by B = [L LT ]1−1.

Proof. The first task is to prove that D ξj = jξj−1 holds for all 0 ≤ j ≤ N . On this,
we consider a polynomial function ξj , j ≤ N , expanded in Lagrange polynomials in the
form ξj =

∑N+1
k=1 ξjkLk(ξ). Since the derivative of ξj is given by the function jξj−1, we have

jξj−1 =
∑

k ξ
j
kL
′
k(ξ), or else

jξj−1 =
N+1∑
k=1

ξjkL
′
k(ξ), (1.54)

in vector notation, collecting the point-wise values of ξj−1. Now, an application of the matrix
D to a vector results in a suitable linear combination of the columns of D, i.e.

D ξj =

N+1∑
k=1

ξjkL
′
k(ξ) = jξj−1,

where the last equality is due to (1.54). Secondly, the matrix M obviously is symmetric and
positive definite by construction, as stated before. Lastly, we consider the boundary operator
B. The entries of M D + DTM are given by

(M D + DTM)jk = Sjk + Skj =

∫ 1

−1
(LjL

′
k + L′jLk)dξ = [LjLk]

1
−1 = Bjk.

Therefore, we obtain the generalized SBP property given in (1.31) as well as the assertion

(ξl)TB ξm =

N+1∑
j=1

N+1∑
k=1

ξljBjkξ
m
k =

N+1∑
j=1

ξljLj(ξ) ·
N+1∑
k=1

ξmk Lk(ξ)

1

−1

= [ξlξm]1−1,
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for all 0 ≤ l,m ≤ N . Furthermore, (1.32) is fulfilled since B decomposes into the left and right
boundary contributions tα tTα = L(−1)LT (−1) and tβ tTβ = L(1)LT (1). Finally, denoting the
columns of B by bk, we have the action of B represented by

B g =
N+1∑
k=1

bkgk =

[
L(ξ)

N+1∑
k=1

gkLk(ξ)

]1

−1

= [ghL]1−1,

as stated.

If the numerical quadrature rule integrating the nonlinear term in (1.42) exactly integrates
polynomials of degree 2N , no difference is obtained for the two variants of defining the mass
matrix M, either if it is obtained via exact integration or if (1.47) is replaced by the chosen
quadrature rule. As discussed before, M is then diagonal since we have Mjk = δjkωj . In this
case, the discrete derivative operator D is called a diagonal-norm SBP operator.

However, we note that so far only a quadrature rule of degree 2N−1 has been assumed. Thus
M is either obtained by exact integration, potentially yielding a non-diagonal mass matrix,
or via the chosen quadrature rule, resulting in mass lumping.

Non-diagonal matrices M yield so-called non-diagonal norm SBP operators while mass lump-
ing again results in a diagonal mass matrix with Mjk = δjkωj and a diagonal norm SBP
operator. For the case of Legendre-Gauss-Lobatto nodes, Gassner has shown this property of
the DG scheme with mass lumping in [61].

Choosing the classical Legendre-Gauss nodes which do not contain the interval end points ξ =
−1 and ξ = 1 yields exact integration of polynomials up to degree 2N+1. Due to the improved
accuracy of the resulting DG scheme, these points might be preferred to the Legendre-Gauss-
Lobatto variant with mass lumping. Higher efficiency of Legendre-Gauss nodes especially for a
non-linear example based on the two-dimensional Euler equations is numerically demonstrated
in [101]. However, as also stated in [101], in addition to the lower cost based on the fact that
boundary interpolation is not required, the DG scheme on Legendre-Gauss-Lobatto nodes also
allows larger time steps in case of explicit time integration. Time steps may be taken roughly
twice as large in comparison to Legendre-Gauss nodes as shown in [65]. Further subtleties
arise as Legendre-Gauss integration may increase robustness for non-linear problems and
underresolved simulations, see e.g. [65, 12]. Hence, the question of efficiency will depend
on the specific application including accuracy requirements. In addition, the situation of
reduced exactness for Legendre-Gauss-Lobatto nodes may be different if the full mass matrix
M defined by exact integration in (1.47) is used. In this case, a technique in [192] lowers
the cost of applying the inverse of M to an arbitrary vector. Matrix-vector multiplication
then results in an O(N) operation, i.e. it becomes as expensive as mass lumping. However,
enforcing a balance of certain secondary quantities such as kinetic energy as discussed in
Section 1.4.1 might again necessitate a diagonal mass matrix.

Differences with respect to the nodal sets used within the DG scheme also arise in terms of
the boundary operator B. If both endpoints of the reference cell are included in the DG nodal
set, we have a diagonal interface and boundary operator B = diag{−1, 0, . . . , 0, 1}. In general,
B is non-diagonal. For example, in case of Legendre-Gauss (LG) nodes, the specific forms of
the interface and boundary operator B for N = 1, 2 are given by
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BLG,N=1 = diag{−
√

3,
√

3}, BLG,N=2 =


− 1
ξ3

1−ξ2

ξ3 0
1−ξ2

ξ3 0 ξ2−1
ξ3

0 ξ2−1
ξ3

1
ξ3

 , with ξ =

√
3

5
.

1.2.2 The subcell finite volume property

In particular for the DG scheme on Legendre-Gauss-Lobatto nodes with mass lumping, ref-
erence is often made to its so-called subcell finite volume property, see e.g. [69].

However, such a property holds for any nodal DG scheme (1.53) with diagonal mass matrix
M. More precisely, we may rewrite such a DG scheme in the following form

∆x

2

d

dt
uj + ω−1

j

(
f̄j+1 − f̄j

)
= 0, (1.55)

where the flux values f̄j , j = 1, . . . , N + 2, need to be suitably defined depending on the DG
nodal set.

Equation (1.55) resembles a finite volume scheme on the subcells given by the subcell bound-
aries x̄j = xi + ∆x

2

∑j−1
ν=1 ων ∈ [xi, xi+1], where [xi, xi+1] denotes the ith DG cell. An example

of such a division in subcells is depicted in Figure 1.1.

In the general case of a nodal DG scheme with diagonal mass matrix, we have the following
result which includes the DG scheme on Legendre-Gauss nodes as a special case.

Lemma 1.6. For a general nodal DG scheme of the form (1.53) with diagonal mass matrix
M, it is possible to rewrite the scheme in the subcell finite volume formulation (1.55) with
flux values given by

f̄1 = f∗i , (1.56)

f̄j+1 = f̄j + ωj

N+1∑
ν=1

L′ν(ξj)fν + [(f∗ − fh)Lj ]
1
−1 , j = 1, . . . , N, (1.57)

f̄N+2 = f∗i+1. (1.58)

Proof. Using the definition of the operators D and M given in Section 1.2.1, we rewrite the
DG scheme (1.53) in terms of each nodal value in the form

∆x

2

d

dt
uj +

N+1∑
ν=1

L′ν(ξj)fν = ω−1
j [(fh − f∗)Lj ]1−1 . (1.59)

Figure 1.1: Finite volume subcells [x̄j , x̄j+1] of length ωj∆x and DG nodes xν .
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For the first nodal value, by setting

f̄1 = f∗i , f̄2 = ω1

N+1∑
ν=1

L′ν(ξ1)fν + [(f∗ − fh)L1]1−1 + f∗i ,

we directly obtain

∆x

2

d

dt
u1 + ω−1

1

(
f̄2 − f̄1

)
=

∆x

2

d

dt
u1 + ω−1

1

(
ω1

N+1∑
ν=1

L′ν(ξ1)fν + [(f∗ − fh)L1]1−1

)
= 0

from the nodal formulation (1.59). In the same fashion, we have

∆x

2

d

dt
uj + ω−1

j

(
f̄j+1 − f̄j

)
= 0, j = 2, . . . , N + 1,

if the subsequent subcell finite volume flux values are defined by

f̄j+1 = ωj

N+1∑
ν=1

L′ν(ξj)fν + [(f∗ − fh)Lj ]
1
−1 + f̄j , j = 2, . . . , N + 1.

It remains to prove that by this construction, the equality f̄N+2 = f∗i+1 holds for the last flux
value. In fact, inductively, we have

f̄N+2 = ωN+1

N+1∑
ν=1

L′ν(ξN+1)fν + [(f∗ − fh)LN+1]1−1 + f̄N+1

=
N+1∑
j=1

(
ωj

N+1∑
ν=1

L′ν(ξj)fν + [(f∗ − fh)Lj ]
1
−1

)
+ f∗i

=

N+1∑
ν=1

fν

∫ 1

−1
L′ν(ξ)dξ +

(f∗ − fh)

N+1∑
j=1

Lj

1

−1

+ f∗i

=
N+1∑
ν=1

fν [Lν ]1−1 + [f∗ − fh]1−1 + f∗i

= [fh]1−1 + [f∗ − fh]1−1 + f∗i = f∗i+1,

thus, the assertion is proven.

According to Lemma 1.6, in general, the flux values f̄j , j = 1, . . . , N + 2, may depend on
the values f(uν), ν = 1, . . . , N + 1, of the flux function evaluated on the DG nodal set and
on the values f∗i , f

∗
i+1 of the numerical flux function at the interfaces. In case of the DG

scheme on Legendre-Gauss-Lobatto nodes, the situation is simplified since the interior flux
values f̄j , j = 2, . . . , N + 1, do not depend on the values of the numerical flux function
while the left and right cell boundary flux values correspond precisely to these values f∗i and
f∗i+1. In fact, we have the following Corollary to Lemma 1.6 regarding the DG scheme on
Legendre-Gauss-Lobatto nodes.
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Corollary 1.7. If the DG scheme (1.53) is defined on Legendre-Gauss-Lobatto nodes and
uses Legendre-Gauss-Lobatto quadrature to define the mass matrix M via mass lumping, the
flux values in (1.55) are given by

f̄1 = f∗i ,

f̄2 = f1 + ωj

N+1∑
ν=1

L′ν(ξ1)fν ,

f̄j+1 = f̄j + ωj

N+1∑
ν=1

L′ν(ξj)fν , j = 2, . . . , N,

f̄N+2 = f∗i+1,

where fν = f(uν), ν = 1, . . . , N + 1.

Proof. First we note that for the boundary flux values f̄1 and f̄N+2, the expressions are the
same as in (1.56) and (1.58), respectively, hence there is nothing to prove. Considering the
value of f̄2, equation (1.57) given in Lemma 1.6 may be rewritten in the following way.

f̄2 = f̄1 + ωj

N+1∑
ν=1

L′ν(ξj)fν + [(f∗ − fh)L1]1−1

= ωj

N+1∑
ν=1

L′ν(ξj)fν + (f∗i+1 − fh(1))L1(1) + fh(−1)L1(−1).

In the case of a nodal DG scheme on Legendre-Gauss-Lobatto nodes, this expression simplifies
since we have L1(−1) = 1, L1(1) = 0 and fh(−1) = f1 for this set of nodes. Hence, we obtain

f̄2 = ωj

N+1∑
ν=1

L′ν(ξj)fν + f1

as stated in Corollary 1.7.

Concerning the values of f̄j+1 for j = 2, . . . , N , the expression (1.57) simplifies due to the
fact that the choice of Legendre-Gauss-Lobatto nodes yields vanishing boundary values of the
corresponding interior Lagrange polynomials, i.e. Lj(±1) = 0, j = 2, . . . , N . This leads to
vanishing boundary terms in (1.57), i.e.

f̄j+1 = f̄j + ωj

N+1∑
ν=1

L′ν(ξj)fν + 0

which proves the assertion of Corollary 1.7 for j = 2, . . . , N .

The following statement indicates how the subcell finite volume flux values f̄j are related
to the DG discretized flux function fh evaluated at the boundaries x̄j of the finite volume
subcells.
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Lemma 1.8. If for a general nodal DG scheme of the form (1.53) with diagonal mass matrix
M, the following additional assumptions concerning the values of the numerical flux function,

f∗i = fh(xi) +O((∆x)2),

f∗i+1 = fh(xi+1) +O((∆x)2),
(1.60)

are fulfilled, then we have estimates

f̄j = fh(x̄j) +O(∆x2), j = 2, . . . , N + 1 . (1.61)

for the subcell finite volume flux values in the interior of the DG cell.

Furthermore, in case of the DG scheme with mass lumping on Legendre-Gauss-Lobatto nodes,
the estimate (1.61) holds without the additional assumptions concerning the values of the
numerical flux function.

Remark 1.9. The above assumptions (1.60) on the accuracy of the values of the numerical
flux function are reasonable for a high order DG scheme due to the interpolation accuracy.

In fact, using DG nodes to carry out a piecewise interpolation of a smooth function u on
the domain [xi−1, xi+2] composed of three adjacent cells provides the estimates ulh(xi) =
u(xi) +O((∆x)N+1) with l = i− 1, i and ulh(xi+1) = u(xi+1) +O((∆x)N+1) with l = i, i+ 1.
Furthermore, assuming Lipschitz continuity of the numerical flux function yields both f∗i =
f(u(xi)) +O((∆x)N+1) and f∗i+1 = f(u(xi+1)) +O((∆x)N+1). Using the interpolation prop-
erty of the polynomial function fh, we obtain fh(xl) = f(u(xl)) + O((∆x)N+1), l = i, i + 1,
which can be reduced to the estimates (1.60). Although the DG solution itself will naturally
be less accurate than an interpolation function on the DG nodes, the estimates (1.60) for
smooth functions are rather pessimistic for DG schemes with N ≥ 2. Therefore, the assump-
tions (1.60) are still reasonable considering the DG solution.

Proof of Lemma 1.8. In order to obtain the estimate (1.61), Taylor expansion is used. We
have

fh(x̄j+1) = fh(x̄j) + (x̄j+1 − x̄j)
dfh
dx

(x(ξj)) +O(∆x2) ,

with x̃ ∈ [x̄j , x̄j+1]. This yields

fh(x̄j+1) = fh(x̄j) +
∆x

2
ωj
dfh
dx

(x(ξj)) +O(∆x2) = fh(x̄j) + ωj
dfh
dξ

(ξj) +O(∆x2)

= fh(x̄j) + ωj

N+1∑
ν=1

L′ν(ξj)fν +O(∆x2).

(1.62)

First, starting with the assumptions concerning the values of the numerical flux function, we
have

fh(x̄1) = f∗i +O(∆x2) = f̄1 +O(∆x2)

for the leftmost flux value.
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The flux values interior to the DG cell may then be dealt with by induction, since the inductive
definition of the flux value f̄j+1 in (1.57) and the assumption f̄j = fh(x̄j) +O(∆x2) inserted
into (1.62) yield

fh(x̄j+1) = f̄j +O(∆x2) + ωj

N+1∑
ν=1

L′ν(ξj)fν +O(∆x2) = f̄j+1 − [(f∗ − fh)Lj ]
1
−1 +O(∆x2)

= f̄j+1 +O(∆x2), j = 1, . . . , N .

(1.63)

Hereby, the last equality is again obtained by using the assumptions concerning the values of
the numerical flux function.

For the DG scheme with mass lumping on Legendre-Gauss-Lobatto nodes, the situation sim-
plifies and we do not need the additional assumptions. In fact, for this set of nodes we have
fh(x̄1) = fh(x1) = f1 and we may insert the flux value f̄2 given in Corollary 1.7 into (1.62) in
order to obtain

fh(x̄2) = f1 + ω1

N+1∑
ν=1

L′ν(ξ1)fν +O(∆x2) = f̄2 +O(∆x2) .

Furthermore, for the flux values interior to the DG cell, the boundary terms [(f∗ − fh)Lj ]
1
−1

in (1.63) vanish for Legendre-Gauss-Lobatto nodes and we have

fh(x̄j+1) = f̄j +O(∆x2) + ωj

N+1∑
ν=1

L′ν(ξj)fν +O(∆x2) = f̄j+1 +O(∆x2),

for j = 2, . . . , N , without the additional assumptions on the values of the numerical flux
function.

The reformulation of a DG scheme as a subcell finite volume scheme illuminates the structure
of the scheme in the interior of a DG cell. This provides a microscopic view of the DG
scheme and allows for direct modifications of the finite volume fluxes f̄j . For instance, such
modifications are useful for shock capturing as in [179] or in order to recover or create specific
split formulations of conservation laws as in [70]. Conversely, the following section offers a
macroscopic view on the one-dimensional DG scheme for the linear advection equation using
numerical fluxes in the range from upwind to central fluxes. For this purpose, the unknowns on
all DG cells are collected into a single global vector and an upwind SBP property is derived
for the global DG scheme. This accounts for the fact that the numerical fluxes generally
introduce additional numerical dissipation to the DG scheme and thus to the SBP property
whereas the cell-wise SBP formulation treats these interface terms separately.

1.2.3 The DG scheme with numerical fluxes in upwind SBP framework

According to equation (1.51), the cell-wise DG scheme in matrix-vector formulation applied
to the linear advection equation (1.1), with positive advection velocity a > 0, is given by

∆xi
2

dui

dt
+ aD ui = M−1[

(
auih − (au)∗,i

)
L]1−1 , (1.64)
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on interior cells Ii, i = 2, . . . ,K−1. Hereby, a suitable numerical flux function (au)∗,i is given
by (au)∗,i(−1) = (au)∗i and (au)∗,i(1) = (au)∗i+1 with

(au)∗i = a

(
1

2
+ θ

)
ui−1
h (1) + a

(
1

2
− θ
)
uih(−1) , θ ∈

[
0,

1

2

]
. (1.65)

Therefore, the choice of numerical flux functions includes the central flux for θ = 0 and the
upwind flux for for θ = 1

2 . Furthermore, similar to the boundary treatment of generalized
SBP schemes of the form (1.30), the scheme on boundary cells is given by

∆x1

2

du1

dt
+ aD u1 = M−1

(
au1

h(1)− (au)∗2
)
L(1) + σM−1L(−1)L(−1)Tu1 , (1.66)

on the leftmost DG cell Ω1, with SAT parameter σ, and

∆xK
2

duK

dt
+ aD uK = −M−1

(
auKh (−1)− (au)∗K

)
L(−1) , (1.67)

on the rightmost DG cell ΩK with outgoing information through its right boundary.

The goal of this section is to rewrite the above DG discretization on the complete computa-
tional domain as an upwind SBP scheme which includes the interactions of degrees of freedom
through adjacent cells. For simplification, periodic boundary conditions are assumed. Under
this assumption, we may rewrite Eq. (1.64) as

du

dt
+ aD−glob u = SAT , (1.68)

with the global nodal DG approximation given by u = (u1, . . . ,uK)T and the extended SAT

term SAT =
(
SATT

1 , 0, . . . , 0
)T

, where SAT1 = 2σ
∆x1

M−1L(−1)L(−1)Tu1.

Now, the global DG derivative operator D−glob is a block tridiagonal matrix with blocks cor-
responding to each DG element and its left and right adjacent cells. More precisely, we have

Lemma 1.10. The global DG derivative operator D−glob = D−glob(θ) in (1.68) is of the block
tridiagonal form

D−glob(θ) =


2

∆x1
2

∆x2

. . .
2

∆xK





A lb(θ) A 12(θ)

A 21(θ) A 11(θ) A 12(θ)

. . .
. . .

. . .

A 21(θ) A 11(θ) A 12(θ)

A 21(θ) A rb(θ)


,

where the repeating blocks corresponding to interior cells are given by

A 11(θ) = D−
(

1

2
− θ
)

M−1L(1)L(1)T +

(
1

2
+ θ

)
M−1L(−1)L(−1)T ,

A 12(θ) =

(
1

2
− θ
)

M−1L(1)L(−1)T ,

A 21(θ) = −
(

1

2
+ θ

)
M−1L(−1)L(1)T ,
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and the boundary treatment yields

A lb(θ) = D−
(

1

2
− θ
)

M−1L(1)L(1)T ,

A rb(θ) = D +

(
1

2
+ θ

)
M−1L(−1)L(−1)T .

Proof. The evaluation of the numerical flux function at an interface given in (1.65) may be
rewritten as

(au)∗i = a

(
1

2
+ θ

)
L(1)Tui−1 + a

(
1

2
− θ
)

L(−1)Tui

For the contribution at the left and right cell boundaries to the DG scheme (1.64), we therefore
have(

auih(−1)− (au)∗i
)
L(−1) = aL(−1)L(−1)Tui − L(−1)(au)∗i

= a

(
1

2
+ θ

)
L(−1)L(−1)Tui − a

(
1

2
+ θ

)
L(−1)L(1)Tui−1

= a
(
Ã θ

1 ui + Ã θ
2 ui−1

)
,

and

−
(
auih(1)− (au)∗i+1

)
L(1) = −aL(1)L(1)Tui + L(1)(au)∗i+1

= −a
(

1

2
− θ
)

L(1)L(1)Tui + a

(
1

2
− θ
)

L(1)L(−1)Tui+1

= a
(
Ã θ

3 ui + Ã θ
4 ui+1

)
.

From (1.64), we therefore derive

A 11(θ) = D + M−1Ã θ
3 + M−1Ã θ

1

= D−
(

1

2
− θ
)

M−1L(1)L(1)T +

(
1

2
+ θ

)
M−1L(−1)L(−1)T ,

while for the blocks corresponding to the left and right boundary cells, equations (1.66)
and (1.67) yield

A lb(θ) = D + M−1Ã θ
3 = D−

(
1

2
− θ
)

M−1L(1)L(1)T ,

A rb(θ) = D + M−1Ã θ
1 = D +

(
1

2
+ θ

)
M−1L(−1)L(−1)T ,

respectively.



1.2. THE DG SCHEME IN SBP FRAMEWORK 31

Similarly, the remaining blocks are given by

A 12(θ) = M−1Ã θ
4 =

(
1

2
− θ
)

M−1L(1)L(1)T ,

A 21(θ) = M−1Ã θ
2 = −

(
1

2
+ θ

)
M−1L(−1)L(−1)T .

The specific form of D−glob allows us to show that the dual pair {D−,D+} with D− = D−glob(θ)

and a suitably constructed dual operator D+ satisfies the upwind SBP properties specified in
Definition 1.4.

Theorem 1.11. The dual pair of discrete derivative operators

D− = D−glob(θ) , D+ = D−glob(−θ) , (1.69)

is a dual pair of diagonal-norm upwind SBP operators with respect to the global diagonal norm

Mglob = diag

(
∆x1

2
M , . . . ,

∆xK
2

M

)
,

and the generalized boundary operator

Bglob = diag (B l, 0, . . . , 0, B r) ,

with B l = −L(−1)L(−1)T and B r = L(1)L(1)T .

Proof. The first step is to define the matrices Q− and Q+ based on (1.33). Accordingly, we
have

Q− = Mglob D− − 1

2
Bglob = Mglob D−glob(θ)−

1

2
Bglob ,

Q+ = Mglob D+ − 1

2
Bglob = Mglob D−glob(−θ)−

1

2
Bglob .

Next, we show that Q− and Q+ satisfy the SBP property (1.34), i.e. that the dual operator
D+ is chosen properly. We have

Q+ +
(
Q−
)T

= Mglob D−glob(−θ) +
(
D−glob(θ)

)T
Mglob −Bglob

=



Q lb Q 12

Q 21 Q 11 Q 12

. . .
. . .

. . .

Q 21 Q 11 Q 12

Q 21 Q rb


,
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with

Q 11 = M A11(−θ) + AT
11(θ)M = M D + DTM− L(1)L(1)T + L(−1)L(−1)T

= M D + DTM−B = 0 ,

Q lb = M Alb(−θ) + AT
lb(θ)M−B l = M D + DTM− L(1)L(1)T + L(−1)L(−1)T = 0 ,

Q rb = M Arb(−θ) + AT
rb(θ)M−B r = M D + DTM + L(−1)L(−1)T − L(1)L(1)T = 0 ,

Q 12 = M A12(−θ) + AT
21(θ)M =

(
1

2
+ θ

)
L(1)L(−1)T −

(
1

2
+ θ

)
L(1)L(−1)T = 0 ,

Q 21 = M A21(−θ) + AT
12(θ)M = −

(
1

2
− θ
)

L(−1)L(1)T +

(
1

2
− θ
)

L(−1)L(1)T = 0 .

Therefore, we have the desired result Q+ + (Q−)
T

= 0.

It remains to show the stability constraint (1.35), i.e. to show that

C =
1

2

(
Q+ −Q−

)
=

1

2
Mglob

(
D−glob(−θ)−D−glob(θ)

)
(1.70)

is negative semi-definite. We have

C =



C lb C 12

C 21 C 11 C 12

. . .
. . .

. . .

C 21 C 11 C 12

C 21 C rb


,

with

C 11 =
1

2
(M A11(−θ)−M A11(θ)) = −θ

(
L(1)L(1)T + L(−1)L(−1)T

)
,

C lb =
1

2
(M Alb(−θ)−M Alb(θ)) = −θL(1)L(1)T ,

C rb =
1

2
(M Arb(−θ)−M Arb(θ)) = −θL(−1)L(−1)T ,

C 12 =
1

2
(M A12(−θ)−M A12(θ)) = θL(1)L(−1)T ,

C 21 =
1

2
(M A21(−θ)−M A21(θ)) = θL(−1)L(1)T = C T

12 .
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Hence, we have

uTC u = (u1)TC lb u1 +
K−1∑
i=2

(ui)TC 11 ui + (uK)TC rb uK + 2
K−1∑
i=1

(ui)TC 12 ui+1

= −θ

(
(u1
h(1))2 +

K−1∑
i=2

(
(uih(−1))2 + (uih(1))2

)
+ (uKh (−1))2 − 2

K−1∑
i=1

uih(1)ui+1
h (−1)

)

= −θ
K−1∑
i=1

(
ui+1
h (−1)− uih(1)

)2 ≤ 0 ,

i.e. C is negative semi-definite.

The following two remarks regarding the DG scheme viewed as generalized upwind SBP
scheme are in order.

Remark 1.12. Since D +
glob(θ) = D−glob(−θ), we note that

1. the dual operator D +
glob arises naturally from the DG scheme applied to the linear ad-

vection equation with negative advection velocity a < 0, and

2. for θ = 0, the global DG operator D glob = D−glob(0) = D +
glob(0) is a generalized diagonal-

norm SBP operator in the sense of Definition 1.3.

The above generalized upwind SBP operators resulting from the DG discretization in one
space dimension may also be used to construct second-derivative operators as discussed in
the framework of finite difference SBP schemes in Section 1.1. In particular, the application
of (1.39) to the operators D−glob(θ) and D +

glob(θ) will be related to classical DG diffusion fluxes
in Section 2.1.

1.2.4 Extension to 2D cartesian grids via tensor-product SBP operators

In this section as well as Section 1.2.5, we consider two-dimensional scalar hyperbolic conser-
vation laws of the form

∂

∂t
u(x, t) +∇ · f(u(x, t)) = 0, (x, t) ∈ Ω× R+, (1.71)

where Ω ⊂ R2 is an open polygonal domain in which initial conditions u(x, 0) = u0(x) are
given. In the following, the components of the flux vector f will be denoted by f = (fx, fy)T ,
consistent with the notation x = (x, y)T for a point in the two-dimensional computational
domain Ω. Furthermore, we assume appropriately posed boundary conditions.

The SBP properties of DG schemes in one space dimension easily extend to two-dimensional
cartesian grids if tensor-product basis functions Li(ξ)Lj(η) are used on the reference element
K = [−1, 1]2. In this case, the DG scheme in matrix-vector formulation can be constructed
based on the 1D formulation by using Kronecker products. This 2D extension of the SBP
properties of nodal DG schemes will be derived in this section. In Section 1.4.3, this SBP
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property on tensor-product grids will be related to the favorable quality of a kinetic energy
preserving DG scheme applied in the context of two-dimensional turbulent flow.

In the following, the presentation will be restricted to the nodal DG scheme on Legendre-Gauss
quadrature nodes. For given pointwise data values gi,j ≈ g(ξi, ηj) at the two-dimensional
Legendre-Gauss nodes ξi, ηj , i, j = 1, . . . , N + 1, the vector g collects these values in the form

gν(i,j) = g(i−1)(N+1)+j = g(i,j),

i.e. in lexicographical order. Denoting by M1D the mass matrix of the DG scheme in one
space dimension and by I1D the corresponding identity matrix whilst keeping the definition
of D and S as in Section 1.2.1 the DG scheme in two space dimensions then uses the mass,
stiffness and differentiation matrices

M = M1D ⊗M1D,

Sξ = S⊗M1D, Sη = M1D ⊗ Sη,

Dξ = D⊗ I1D = M−1Sξ, Dη = I1D ⊗D = M−1Sη,

as well as the boundary operators

Bξ = B⊗M1D, Bη = M1D ⊗B.

Furthermore, using the properties of the Kronecker product, we may easily derive the SBP
properties Sξ + STξ = Bξ and Sη + STη = Bη.

The action of the boundary operators on pointwise values is related to the discrete boundary
integral as follows. Let ωk denote the Legendre-Gauss weights as given in Section 1.2.1.
Furthermore, we will introduce the index e enumerating the edges of the reference square K in
counter-clockwise manner starting with e = 1 referring to the lower edge. The corresponding
normal vectors are denoted by ne = (neξ, n

e
η), i.e. n1

ξ = 0, n1
η = −1 and the nodes (ξek, η

e
k)

denote the Legendre-Gauss quadrature nodes on edge e. The following Lemma then transfers
the actions of Bξ and Bη to a numerical quadrature on ∂K.

Lemma 1.13. Let gξ,gη ∈ R(N+1)2
denote arbitrary sets of pointwise data values. For the

sum of boundary terms Bξg
ξ + Bηg

η we then have

Bξg
ξ + Bηg

η =

4∑
e=1

N+1∑
k=1

ωk

(
neξg

ξ
h(ξek, η

e
k) + neηg

η
h(ξek, η

e
k)
)

L(ξek, η
e
k),

where L(ξek, η
e
k) = L(ξek)⊗ L(ηek) and gξh and gηh denote the polynomial interpolations

gξh(ξ, η) =
N+1∑
i=1

N+1∑
j=1

gξν(i,j)Li(ξ)Lj(η), gηh(ξ, η) =
N+1∑
i=1

N+1∑
j=1

gην(i,j)Li(ξ)Lj(η).

Proof. The columns of the matrices Bξ = B ⊗M1D and Bη = M1D ⊗ B can be related to
the Lagrange polynomials as follows. Let ν(i, j) = (i − 1)(N + 1) + j. From Theorem 1.5
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in Section 1.2.1, we recall that B has the entries Bjk = [LjLk]
1
−1 and M1D is diagonal

with entries ωj . Therefore, the ν-th columns of the above matrices Bξ and Bη are given by
bξ ν(i,j) = [L(ξ)Li(ξ)]

1
−1 ⊗ ωjεj and bη ν(i,j) = ωiεi ⊗ [L(ξ)Lj(ξ)]

1
−1, respectively, where εj

denotes the j-th unit vector.

Therefore, we obtain

Bξg
ξ =

N+1∑
i=1

N+1∑
j=1

bξ ν(i,j) g
ξ
ν(i,j) =

N+1∑
i=1

N+1∑
j=1

(
[L(ξ)Li(ξ)]

1
−1 ⊗ ωjεj

)
gξν(i,j)

=

N+1∑
j=1

ωj

(
N+1∑
i=1

Li(ξ)g
ξ
ν(i,j)

)
L(ξ)⊗ εj

1

−1

=

N+1∑
j=1

ωjg
ξ
h(ξ, ηj)L(ξ)⊗ L(ηj)

1

−1

.

Since for the normal vectors and Legendre-Gauss nodes on edges e = 2 and e = 4 of the
reference square we have

n2
ξ = 1, n4

ξ = −1 and ξ2
j = 1, ξ4

j = −1, j = 1, . . . , N + 1 ,

it holds that

Bξg
ξ =

∑
e=2,4

N+1∑
j=1

neξωjg
ξ
h(ξej , η

e
j )L(ξej )⊗ L(ηej ) .

With analogous arguments we obtain

Bηg
η =

N+1∑
i=1

ωiεi ⊗ L(η)
N+1∑
j=1

Lj(η)gην(i,j)

1

−1

=
∑
e=1,3

N+1∑
i=1

neηωig
η
h(ξei , η

e
i )L(ξei )⊗ L(ηei ).

Summing up Bξg
ξ + Bηg

η and considering that n1
ξ = n2

η = n3
ξ = n4

η = 0 we obtain the
assertion.

Remark 1.14. To reduce formalism in the later definition (1.73) of the DG scheme in two
space dimensions on tensor-product grids, the short notation

〈Ψ〉∂K =

4∑
e=1

N+1∑
k=1

ωkΨ(ξek, η
e
k)

will be used to denote surface terms of the above form, i.e. we have

Bξg
ξ + Bηg

η =
〈(
nξg

ξ
h + nηg

η
h

)
L(ξ, η)

〉
∂K

.

With this notation, the extension of the standard DG scheme in weak form to the two-
dimensional conservation law (1.71) with flux vector f = (fx, fy)T on a cartesian grid is given
by the cell-wise formulation

∆x∆y

4
M

du

dt
− STξ f ξ − STη fη = −〈f∗L(ξ, η)〉∂K , (1.72)
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where f ξ and fη approximate the grid values of the fluxes fx and fy, respectively, on the
specific grid cell with length scales ∆x,∆y. Furthermore, the right-hand side of (1.72) contains
the numerical flux function f∗ and again employs the short notation of Remark 1.14 such that
f∗ is in fact evaluated at the Legendre-Gauss quadrature nodes on each edge. More precisely,
the numerical flux function depends on three arguments which are the corresponding one-
sided limits uL and uR of the DG solution from the interior and exterior sides of the interface,
respectively, and the normal vector ne of the respective edge. Therefore, we have

−〈f∗L(ξ, η))〉∂K = −
4∑
e=1

N+1∑
k=1

ωkf
∗ (uL (ξek, η

e
k) , uR (ξek, η

e
k) ,n

e) L(ξek, η
e
k) .

The strong form corresponding to (1.72) is obtained by multiplication with M−1 and appli-
cation of Lemma 1.13, i.e.

∆x∆y

4

du

dt
+ Dξf

ξ + Dηf
η = M−1

〈(
nξf

ξ
h + nηf

η
h − f

∗
)

L(ξ, η)
〉
∂K

. (1.73)

1.2.5 Extension to DG schemes on triangular grids

In this section, we consider the discretization of the two-dimensional scalar hyperbolic con-
servation law (1.71) on unstructured triangular grids.

Let T h be a conforming triangulation of the closure Ω of the computational domain and let V h

be the piecewise polynomial space defined by V h = {vh ∈ L∞(Ω) | vh|τi ∈ PN (τi) ∀ τi ∈ T h},
where PN (τi) denotes the space of all polynomials on τi of degree ≤ N . Multiplying equation
(1.71) by test functions in V h, integrating over Ω and using the divergence theorem leads to
the semi-discrete equation

d

dt

∫
Ω
u vh dx +

∑
τi∈T h

(∫
∂τi

f(u) · n vh dσ −
∫
τi

f(u) · ∇vh dx
)

= 0, ∀vh ∈ V h.(1.74)

As (1.74) is linear in vh, for each triangular subset τi ∈ T h it is sufficient to consider only
those test functions vh vanishing outside τi and we obtain the local semi-discrete equation

d

dt

∫
τi

uΦ dx +

∫
∂τi

f(u) · n Φ dσ −
∫
τi

f(u) · ∇Φ dx = 0, (1.75)

valid for any triangular subset τi ∈ T h and any polynomial Φ ∈ PN (τi).

Analogously to the one-dimensional case, the DG discretization in space then constructs an
approximation

uh : Ω× R+ → R

of u with uh(·, t) ∈ V h for t ∈ R0
+. The approximation uh is furthermore supposed to satisfy

an equation similar to (1.75). As, in general, uh ∈ V h is discontinuous at the cell interfaces,
we cannot simply substitute uh for u in (1.75). Indeed, if the term f(u) ·n is just replaced by
f(uh)·n the triangular elements are completely decoupled, leading to a physically unreasonable
scheme. To this end, we again employ a numerical flux function f∗ which depends on the
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physical quantities uL and uR as well as the normal vector n. The inclusion of the numerical
flux function f∗ leads to the following space discretization,

d

dt

∫
τi

uh Φ dx +

3∑
j=1

∫
Γij

f∗
(
uih, u

ij
h ,nij

)
Φ dσ −

∫
τi

f(uh) · ∇Φ dx = 0, (1.76)

where ∂τi is decomposed into straight edges Γij , i.e. ∂τi = ∪3
j=1Γij , with length |Γij | and

normal vector nij and where we incorporated the interface and boundary treatment using the
numerical flux function f∗ in the following way. To denote adjacent elements, if there is an
element τk ∈ T h with Γij = ∂τi ∩ ∂τk we denote the index k by n(i, j). For the boundary
treatment we decompose ∂Ω into an inflow and an outflow boundary part as ∂Ω = Γin ∪Γout.
Other types of boundary treatment, e.g. wall boundary conditions, are ignored at this point.
We then employ the short notation uih = uh|τi and incorporate the boundary conditions into

uijh by setting

uijh =


u
n(i,j)
h if Γij = ∂τi ∩ ∂τn(i,j),

u|Γij if Γij ⊂ Γin,

uih if Γij ⊂ Γout.

Specific choices of DG basis functions

The approximation uh(·, t) can be represented by time-dependent coefficients corresponding
to a suitable basis of PN (τi), thus comprising the spacial degrees of freedom of the method.
If the specified basis consists of hierarchical orthogonal functions, one may speak of a modal
DG method, whereas choosing a Lagrange basis for a certain set of interpolation nodes leads
to a nodal DG scheme. The modal DG scheme constructed and investigated in [134, 135], for
instance, is based on the so called PKD polynomials originally constructed by Dubiner [51]
for spectral methods on triangular grids. The PKD polynomials are orthogonal polynomials
on a reference triangle T constructed using one-dimensional Jacobi polynomials Pα,βn . These
two-dimensional polynomials as well as their properties and use for spectral methods are also
described in detail in [97].
On the reference element T = {(r, s) ∈ R2 | − 1 ≤ r, s; r + s ≤ 0} the PKD polynomials are
given by

Φlm(r, s) = P 0,0
l

(
2

1 + r

1− s
− 1
)(1− s

2

)l
P 2l+1,0
m (s), l,m ∈ N0 . (1.77)

The set {Φlm | 0 ≤ l + m ≤ N} collecting the PKD polynomials of maximum degree l + m
represents an orthogonal basis of PN (T) with γlm := ‖Φlm‖2L2(T) = 2

(2l+1)(l+m+1) . Due to their
construction, they are also called a warped tensor product basis.

Denoting by

ψi : τi → T, x 7→ Aix + bi , Ai ∈ R2×2 bi ∈ R2 , (1.78)

an orientation-preserving affine transformation which maps the specific triangle τi to the
reference element T, we obtain a basis of PN (τi) consisting of the polynomials Φlm ◦ ψi, 0 ≤
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l +m ≤ N . Thus, the approximate solution uh|τi on a specific triangle can be expanded as

uh(ψ−1
i (r, s), t) =

∑
l+m≤N

ûilm(t)Φlm(r, s),

where the time-dependent functions ûilm are called the PKD coefficients. Exploiting orthogo-
nality now yields

ûilm(t) =
1

γlm

∫
T
uh(ψ−1

i (r, s), t) Φlm(r, s) drds. (1.79)

Therefore, equation (1.75) written in the PKD coefficients gives

d

dt
ûilm = − 2

γlm|τi|

∫
∂τi

f(uh) · n (Φlm ◦ ψi) dσ +
1

γlm

∫
T

f(uh ◦ ψ−1
i ) ·AT

i ∇r,sΦlm drds,(1.80)

for 0 ≤ l,m ≤ N , where we employed the transformation of spatial derivatives to the reference
element ∇ = ∇x = AT

i ∇r,s as well as the fact that the determinant of the Jacobian A−1
i of

the map ψ−1
i is equal to |τi|/2, denoting by |τi| the area of the triangle τi.

Numerical quadrature for the DG scheme on triangular grids

We now approximate the integrals in (1.76) by quadrature formulae which shall be exact for
polynomials of degree 2N in the reference element and for polynomials of degree 2N + 1
on each part of the cell boundaries ∂τi respectively, in order to obtain a truncation error
of order N + 1 in (1.80), see [42]. To this end, we employ Legendre-Gauss quadrature at
the interelement and domain boundaries while a high order quadrature rule for the elements
is constructed similar to [97] by using a singular transformation of the reference triangle
to the square [−1, 1]2 and one-dimensional Legendre-Gauss quadrature rules. The resulting
quadrature points for the volume integral are completely located within the interior of T. Due
to the connection to classical tensor-product quadrature rules, this specific construction of a
high order quadrature rule on a triangle is sometimes referred to as warped tensor-product
quadrature rule.

In order to include the quadrature rules and the numerical flux function into the semi-discrete
system, we need to introduce the following notation. Let ξν ∈ [−1, 1], ν = 1, . . . , nedge denote
the Legendre-Gauss integration points with corresponding weights ων and let (rµ, sµ) ∈ T,
with µ = 1, . . . , ninner be the integration points on T with associated weights ω̃µ. Furthermore,
let xij : [−1, 1] → Γij be the affine transformation mapping the Legendre-Gauss points from
[−1, 1] to Γij . The semi-discrete system for the coefficients ûilm is then given by

d

dt
ûilm = − 1

γlm|τi|

3∑
j=1

|Γij |
nedge∑
ν=1

ωνf
∗
(
uih(xij(ξν), t), uijh (xij(ξν), t),nij

)
Φlm(ψi(xij(ξν))

+
1

γlm

ninner∑
µ=1

ω̃µf(uh ◦ ψ−1
i (rµ, sµ)) ·AT

i ∇r,sΦlm(rµ, sµ). (1.81)
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On the other hand, the variational formulation (1.76) supplemented by the above quadrature
formulae is modified to the semi-discretization

d

dt

∫
τi

uh Φ dx +

3∑
j=1

|Γij |
2

nedge∑
ν=1

ωνf
∗
(
uih(xij(ξν), t), uijh (xij(ξν), t),nij

)
Φ(ψi(xij(ξν))

− |τi|
2

ninner∑
µ=1

ω̃µf(uh ◦ ψ−1
i (rµ, sµ)) · ∇Φ(ψ−1

i (rµ, sµ)) dx = 0, (1.82)

to be satisfied for any Φ ∈ PN (τi).

An SBP scheme based on a nodal version of the DG method

We may rewrite the modal DG scheme (1.82) using warped tensor-product quadrature rules
in a nodal version as follows.

Let uj = uih(xj) denote pointwise values of the approximate solution at specified interpolation
points x1, . . . ,xNI in a given triangle τi. These points have to be chosen depending on the
order of the DG scheme, i.e. the number of interpolation points NI equals the number of modal
basis functions, which is precisely the number of degrees of freedom within each triangle.

A reasonable set of interpolation points for the definition of a nodal DG scheme on triangular
grids is the set of Blyth-Pozrikidis points specified in [20]. Using the Lagrange polynomials Lj
corresponding to the nodes xj , i.e. Lj(xk) = δjk, the approximate solution uih can then be ex-
panded as uih(x) =

∑
j ujLj(x) and we define the vector of basis functions L = (L1, . . . , LNI )

T .

Collecting the nodal values of uih with respect to the Lagrange basis L in u = (u1, . . . , uNI )
T ∈

RNI and the flux values at the quadrature nodes ψ−1
i (rµ, sµ), µ = 1, . . . , ninner in

f̃l =
(
fl(uh ◦ ψ−1

i (r1, s1)), . . . , fl(uh ◦ ψ−1
i (rninner , sninner))

)T
,

where l = 1, 2, the modal DG scheme (1.82) can be rewritten in a nodal version as

M
d

dt
u− D̃T

xWf̃1 − D̃T
y Wf̃2 = −

〈
f∗(u−h , u

+
h ,n)L

〉
∂τi
. (1.83)

Hereby, equation (1.83) deserves some explanation which is given in the following. Firstly,
the entries of the mass matrix M ∈ RNI×NI are given by

Mjk =

∫
τi

Lj(x)Lk(x) dx = Mkj , (1.84)

since inserting Φ = Lk into the first integral in (1.82) yields

d

dt

∫
τi

uh(x)Lk(x) dx =
d

dt

∫
τi

∑
j

ujLj(x)Lk(x) dx =
d

dt

∑
j

uj(t)

∫
τi

Lj(x)Lk(x) dx

=
∑
j

Mjk
d

dt
uj(t).



40 CHAPTER 1. HIGH ORDER SCHEMES FOR CONSERVATION LAWS

Secondly, the third term on the left-hand side of (1.82) is rewritten by inserting the quadrature

weights into the diagonal matrix W ∈ Rninner×ninner , i.e. W = |τi|
2 diag(ω̃1, . . . , ω̃ninner), and

defining the differentiation matrices D̃x, D̃y ∈ Rninner×NI with entries D̃x,µk = ∂
∂xLk(ψ

−1
i (rµ, sµ))

and D̃y,µk = ∂
∂yLk(ψ

−1
i (rµ, sµ)), respectively. Furthermore, analogously to Remark 1.14, the

interface quadrature terms in (1.82) are abbreviated as

〈
f∗(u−h , u

+
h ,n)L

〉
∂τi

=
3∑
j=1

|Γij |
2

nedge∑
ν=1

ωνf
∗
(
uih(xij(ξν), t), uijh (xij(ξν), t),nij

)
L(ψi(xij(ξν)) .

For the nodal version (1.83) of the DG scheme on triangular elements we then have the
following SBP property.

Theorem 1.15. For the DG scheme (1.83) we have the subsequent assertions which yield a
specific form of an SBP property on a triangular grid.

First, the mass matrix M is invertible. Let the matrix L̃ ∈ RNI×ninner be defined by encoding
the evaluation of the Lagrange basis functions at the quadrature nodes, i.e. L̃kµ = Lk ◦
ψ−1
i (rµ, sµ) and let P = M−1L̃W.

1. The matrix P̃ = L̃TP defines a projection in Rninner .

In addition, we have the identity matrix PL̃T = I ∈ RNI×NI .

2. The discrete derivative operators D̃x, D̃y with respect to the quadrature nodes may be
rewritten in terms of the DG nodal set as

D̃T
xW = DT

xMP and D̃T
y W = DT

y MP, (1.85)

where

Dx,jk =
∂

∂x
Lk(xj) andDy,jk =

∂

∂y
Lk(xj) . (1.86)

3. The operators Dx,Dy are first-derivative SBP operators of degree N fulfilling the accu-
racy conditions

Dxpα,β = αpα−1,β, Dypα,β = βpα,β−1, α+ β ≤ N, (1.87)

for polynomial functions pα,β(x, y) = xαyβ and their corresponding nodal values pα,β,
as well as the SBP properties

MDx + DT
xM = Bx, MDy + DT

y M = By, (1.88)

with Bx,km = 〈LkLmnx〉∂τi =
∫
∂τi
LkLmnxdσ and By,km = 〈LkLmny〉∂τi =

∫
∂τi
LkLmnydσ.

Proof. Due to the exactness of the quadrature rule encoded in W for polynomials in PN (τi),
we obviously have M = L̃WL̃T . In particular, M is symmetric, positive definite and thus
invertible. In addition, the itemized assertions are proven as follows.
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1. Defining P = M−1L̃W and P̃ = L̃TP, we have

P̃2 =
(
L̃TP

)2
= L̃TM−1 L̃WL̃T︸ ︷︷ ︸

=M

M−1L̃W = L̃TM−1L̃W = P̃.

Furthermore, we have PL̃T = M−1L̃WL̃T = M−1M = I.

2. Due to the expansion ∂
∂xLk(x) =

∑
j
∂
∂xLk(xj)Lj(x) we have

D̃x,µk =
∂

∂x
Lk(ψ

−1
i (rµ, sµ)) =

∑
j

∂

∂x
Lk(xj)Lj(ψ

−1
i (rµ, sµ)) =

∑
j

Dx,jkL̃jµ

and hence D̃x = L̃TDx. An analogous derivation for the variable y yields D̃y = L̃TDy.
Using the definition of the matrix P = M−1L̃W this yields

D̃T
xW = DT

x L̃W = DT
xMP and D̃T

y W = DT
y L̃W = DT

y MP.

3. Regarding the accuracy conditions (1.87), derivation of the multivariate polynomial
function pα,β(x, y) = xαyβ with respect to x yields ∂

∂xpα,β(x, y) = αpα−1,β(x, y). Fur-
thermore, since pα,β ∈ PN (τi), it may be exactly represented using Lagrange interpola-
tion based on the nodal set {xj}j=1,...,NI , i.e.

pα,β(x, y) =

NI∑
j=1

xαj y
β
j

∂

∂x
Lj(x, y) .

Derivation with respect to x and evaluation at a specific node xk then yields

αpα−1,β(xk, yk) =
∂

∂x
pα,β(xk, yk) =

NI∑
j=1

xαj y
β
j

∂

∂x
Lj(xk, yk) ,

thus by definition of Dx viaDx,kj = ∂
∂xLj(xk, yk), this is represented by the vector valued

equation αpα−1,β = Dxpα,β. An analogous derivation with respect to the variable y
yields the respective accuracy condition βpα,β−1 = Dypα,β.

In order to prove the SBP properties (1.88), we first show

MDx = Qx and MDy = Qy,

with Qx, Qy ∈ RNI×NI given by their respective entries Qx,km =
∫
τi
Lk(x) ∂

∂xLm(x)dx

and Qy,km =
∫
τi
Lk(x) ∂∂yLm(x)dx. This is proven by exactness of the quadrature rule

encoded in W for the polynomials Lk
∂
∂xLm where k,m = 1, . . . , NI , since we have

Qx = L̃WD̃x and hence Qx = L̃WL̃TDx = MDx. The same procedure for Qy yields
Qy = MDy.

Furthermore, partial integration yields Qx+QT
x = Bx, where Bx is given by the entries

Bx,km =

∫
τi

(
Lk(x)

∂

∂x
Lm(x)dx + Lm(x)

∂

∂x
Lk(x)

)
dx =

∫
∂τi

LkLmnxdσ.

In addition, the degree of exactness of the boundary quadrature rule yields Bx,km =
〈LkLmnx〉∂τi . An analogous derivation with respect to the variable y provides the cor-

responding assertion MDy + DT
y M = By.
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In summary, substituting (1.85) and (1.88) in (1.83), we obtain

M
d

dt
u + MDxPf̃1 + MDyPf̃2 = BxPf̃1 + ByPf̃2 −

〈
f∗(u−h , u

+
h ,n)L

〉
∂τi

In fact, in the above formulation, the matrix P defined in Theorem 1.15 is used to project the
flux values at the quadrature nodes to the DG nodal set to obtain the nodal values Pf̃j , for

j = 1, 2. Based on these nodal values, we may define the vector fh = (fh,1, fh,2)T ∈
(
PN (τi)

)2
,

where the polynomial functions fh,j , j = 1, 2, result from interpolation of the nodal values
Pf̃j , using the DG basis functions. Thus, by the definition of the matrices Bx,By, and using
short notation for numerical integration over the element boundary, we have

BxPf̃1 + ByPf̃2 = 〈(fh · n) L〉τi .

Therefore, the DG scheme on triangular grids in SBP form is given by

d

dt
u + DxPf̃1 + DyPf̃2 = M−1

〈(
fh · n− f∗(u−h , u

+
h ,n)

)
L
〉
∂τi

. (1.89)

Remark 1.16. Regarding the derivative operators Dx,Dy, the specific form of the SBP prop-
erty given in (1.88) directly corresponds to the definition of multidimensional SBP operators
on simplex elements given by Hicken et al. in [77]. However, for the DG scheme on triangular
grids using a warped tensor-product quadrature rule, the above form of the SBP scheme (1.89)
slightly differs from [77] as only one set of nodes is considered in that work. Here, the set of
quadrature nodes represents an additional nodal set and the matrix P is used to transfer the
corresponding function values to the nodal set used for the actions of Dx,Dy.

Remark 1.17. A pre-integrated nodal DG scheme on triangular grids is obtained by evaluating
the flux function at the interpolation nodes, i.e. replacing f̃l in (1.89) by

fl = (fl(uh(x1, t)), . . . , fl(uh(xNI , t)))
T , l = 1, 2,

considering fh as the flux polynomial obtained by interpolation, and setting the projection
matrix to the identity matrix, i.e. P = I ∈ RNI×NI . For the resulting scheme given by

d

dt
u + Dxf1 + Dyf2 = M−1

〈(
fh · n− f∗(u−h , u

+
h ,n)

)
L
〉
∂τi

, (1.90)

the third assertion of Theorem 1.15 regarding the SBP property of the nodal DG scheme
obviously still holds. The pre-integrated triangular grid nodal DG scheme (1.90) now directly
falls into the class of SBP schemes on triangular grids considered in [77].

1.3 Energy stability of flux reconstruction schemes

Closely linked to the theory of SBP schemes is the development of energy stable schemes of
flux reconstruction type. The flux reconstruction (FR) approach, later denoted as correction
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procedure via reconstruction (CPR) in [87] was initially introduced by Huynh in [85] to gen-
eralize various high order schemes used in computational fluid dynamics via their differential
formulation. The FR approach unifies the DG method and several other popular schemes as
shown in [85, 206], such as the original staggered-grid scheme by Kopriva and Kolias [102],
the spectral difference (SD) scheme by Liu et al., see e.g. [118] and the spectral volume (SV)
method [207].

Flux reconstruction (FR) schemes for conservation laws in 1D

Due to the similarity of the flux reconstruction approach to nodal DG schemes, some of the
notation introduced in Section 1.2.1 will be reused in the following. Again, the computational
domain is divided into non-overlapping cells which can be mapped to a reference element on
which a set of nodes is chosen. For the approximation of a one-dimensional conservation law

∂

∂t
u(x, t) +

∂

∂x
f(x, t) = 0

as in (1.40), the flux reconstruction approach constructs an approximate solution uh which is a
piecewise polynomial function. On each cell Ii, the polynomial function uih(ξ, t) = uh (Λi(ξ), t),
obtained by a transformation to the reference cell [−1, 1] using the map Λi is then required
to satisfy the equation

∂uih
∂t

(ξ, t) = − 2

∆x

∂f ih
∂ξ

(ξ, t) +
(
f∗i − f ih(−1, t)

)︸ ︷︷ ︸
fCL

g′L(ξ) +
(
f∗i+1 − f ih(1, t)

)︸ ︷︷ ︸
fCR

g′R(ξ)

 . (1.91)

Herein, the function f ih is a polynomial of degree N obtained via interpolation of the nodal
values fν = f

(
uih (ξν , t)

)
with ξν , ν = 1, . . . , N+1 and the quantities fCL and fCR denote the

flux jumps at the left and right interfaces containing the values of a numerical flux function
f∗. Furthermore, gL and gR are so-called left and right correction polynomials of degree N+1
which are required to fulfill the conditions

gL(−1) = gR(1) = 1 and gR(−1) = gL(1) = 0. (1.92)

Usually, symmetry of the correction polynomials is enforced by demanding gR(ξ) = gL(−ξ).
Regarding the specific choice of correction polynomials, it has been shown in [85] that the
classical 1D nodal DG scheme without mass lumping is recovered if gL and gR are the right
and left Radau polynomials, respectively. For the left correction polynomial, this means that
gL vanishes at the N + 1 Legendre-Gauss-Radau quadrature nodes including the right end
point. Together with the condition gL(−1) = 1 and the symmetry property gR(ξ) = gL(−ξ),
the left and right correction polynomials of degree N + 1 are thereby uniquely defined.

Furthermore, Huynh [85] showed that SD type schemes can be recovered for linear flux func-
tions if gL and gR have coincident zeros in the interior of the reference cell. Due to the
required symmetry of the left and right correction functions, this is the case if the zeros are
located symmetrically in [−1, 1] with respect to the origin. In fact, the original idea of the SD
scheme is to represent the numerical solution on each cell as a polynomial of degree N and the
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corresponding flux as a polynomial of degree N + 1, obtained by interpolation on a set of flux
collocation points, also called flux points. The flux points are required to contain a sufficient
number of boundary nodes which incorporate the values of a chosen single-valued numerical
flux function. Hence, in the one-dimensional case, the cell boundaries and N interior points
are needed to represent the flux polynomial on each cell and the global representation of

the flux is continuous by construction. The cell-wise derivative
∂uih
∂t is then obtained directly

by differentiating the flux polynomial with respect to the space coordinate. Considering the
representation as a flux reconstruction scheme based on the formulation (1.91), the interior
flux points of the SD scheme are thus given as the coincident zeros of gL and gR. Therefore,
the SD schemes within the FR framework are based on a very economical formulation of the
reconstructed flux given by f ih+fCLgL+fCRgR since the effect of the correction terms may be
reduced to the boundary nodes. Unfortunately, it has henceforth been difficult to construct
SD schemes devoid of weak instabilities, in particular on triangular grids. In this regard, van
Abeele et al. [196] showed that the stability of an SD scheme generally depends only on the
choice of flux collocation points and that in one space dimension, the often used Chebyshev-
Gauss-Lobatto points result in unstable SD schemes for orders of accuracy higher than two.
Furthermore, they were unable to construct stable SD schemes of higher than second order
on triangular grids.

On the other hand, in [91], Jameson proved the stability of one-dimensional SD schemes
of any order of accuracy for the linear advection equation if the zeros of the corresponding
Legendre polynomial are chosen as the interior flux points. An extension of this analysis
lead to the development of energy stable FR (ESFR) schemes. This particular class of flux
reconstruction schemes was identified by Vincent, Castonguay and Jameson in [202], and in
reference to Huynh [85], its members are also referred to as VCJH schemes. In one space
dimension, the class of ESFR schemes contains precisely one SD type scheme which is also
the only SD type scheme that Huynh found to be stable by using von Neumann analysis
in [85].

A close connection between ESFR and SBP schemes can be found by rewriting the flux
reconstruction form (1.91) in its matrix-vector representation which was used by Jameson
and Allaneau in [3] in order to interpret ESFR schemes as filtered DG methods. The matrix-
vector formulation is established by expanding the numerical solution uih, the flux polynomial
f ih, and the derivatives g′L, g

′
R of the correction polynomials in the same basis which is given

by the Lagrange polynomials Lk corresponding to the given nodes ξk, k = 1, . . . , N + 1.
Denoting by u, f ,g′L,g

′
R the respective nodal representations on the cell Ii and using the

derivative operator D defined by the entries Djk = L′k(ξj), analogously to (1.52), we have

∆x

2

du

dt
+ D f = −fCL g′L − fCR g′R . (1.93)

Multiplying (1.93) from the left by the mass matrix M with Mjk =
∫ 1
−1 LjLk dξ as in (1.47),

we obtain

∆x

2
M
du

dt
+ S f = −fCLM g′L − fCRM g′R =: RHSFR , (1.94)

with S = MD matching the stiffness matrix defined in (1.48) and RHSFR denoting the
right-hand side of the flux reconstruction formulation (1.94).
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Temporarily neglecting the indices L and R of the correction polynomials gL and gR, the
vector g′ is the nodal representation of the polynomial g′ using the Lagrange basis Lk which
can be collected into the vector valued function L = (L1, . . . , LN+1)T as in (1.49). Therefore,
multiplication by M results in

M g′ =

∫ 1

−1
g′ L dξ = [gL]1−1 −

∫ 1

−1
gL′ dξ

and due to the conditions (1.92) on the boundary values of gL and gR, we have the decompo-
sition of the FR right-hand side

RHSFR = fCLL(−1)− fCRL(1)︸ ︷︷ ︸
RHSDG

+

∫ 1

−1
(fCL gL + fCR gR) L′dξ︸ ︷︷ ︸

Deviation from DG

(1.95)

into the right-hand side of the DG scheme RHSDG and the deviation from DG.

In [3], the derivation of energy stable FR schemes is based on the above equivalent matrix-
vector formulations (1.93) and (1.94). Given a symmetric positive semi-definite matrix K with
K D = 0, left multiplication of (1.93) by K and subsequent addition to (1.94) with RHSFR
given by (1.95) yields

∆x

2
(M + K)

du

dt
+ S f = RHSDG

+ fCL

(∫ 1

−1
gLL′dξ −K g′L

)
+ fCR

(∫ 1

−1
gRL′dξ −K g′R

)
.

(1.96)

Regarding the ESFR schemes constructed by Vincent et al. in [202], the correction polyno-
mials gL and gR are chosen such that all terms on the right-hand side of (1.96) other than
RHSDG vanish. Therefore, the ESFR scheme corresponds to a substitution of the DG mass
matrix M within a classical DG scheme by the symmetric positive definite matrix M + K.
This leads to a filtered DG scheme as uncovered by Allaneau and Jameson in [3].

In addition, noting the conformity to SBP schemes is of particular worth. In fact, since an
ESFR scheme has the representation

∆x

2
(M + K)

du

dt
+ S f = RHSDG , (1.97)

with the derivative operator D corresponding to the DG scheme and a suitable symmetric
positive semi-definite matrix K with KD = 0 = DTK, the ESFR scheme inherits its SBP
property directly from the DG scheme by considering the equality

(M + K)D + DT (M + K) = MD + DTM .

Thus, Theorem 1.5 carries over to one-dimensional ESFR schemes.

ESFR schemes on triangular grids

In the following, we will show that the ESFR schemes on triangular grids which have been
identified by Castonguay et al. in [36] satisfy an SBP property as well. For this purpose, we



46 CHAPTER 1. HIGH ORDER SCHEMES FOR CONSERVATION LAWS

use a reformulation of ESFR schemes on triangular grids in matrix-vector form analogous to
the one given by Allaneau and Jameson [3] for the one-dimensional case. This again allows us
to represent triangular-grid ESFR schemes as filtered nodal DG schemes which additionally
fulfill an SBP property of the type given in equation (1.88).

Reusing the notation introduced for nodal DG schemes on triangular grids, an FR scheme
approximating the two-dimensional scalar hyperbolic conservation law (1.71) on a triangular
element has the form

d

dt
uh +∇ · fh = −

3∑
j=1

nedge∑
ν=1

fC,jν ∇ · hjν , (1.98)

where we neglected the index i of the triangular element τi and where the flux polynomial
fh ∈ (PN (τi))

2 is obtained by interpolating f(uh(x, t)) on a suitable set of interpolation points
on τi. When using a polynomial space of degree N , the number of interpolation points on a
triangular element is NI = 1

2(N+1)(N+2), analogously to nodal DG schemes. The right-hand
side of (1.98) is a correction term containing the flux jumps fC,jν and correction polynomials
hjν corresponding to a set of pre-determined flux points on the element boundary ∂τi. For
an FR scheme of degree N , the flux points at each triangle edge are chosen as the N + 1
Legendre-Gauss integration points. Hence, the notation for triangular grid nodal DG schemes
introduced in Section 1.2.5 may be used to write the correction term in a more precise form.
Hereby, the correction polynomial hjν corresponds to the node xij(ξν) on the edge Γij of τi.
Furthermore, similar to the FR schemes in 1D, the flux jumps at edge nodes are given by

fC,jν = f∗
(
uih(xij(ξν), t), uijh (xij(ξν), t),nij

)
− fh,jν · nij , (1.99)

where fh,jν = fh(xij(ξν)).

Now, the gist of constructing FR schemes is to precisely specify the correction polynomials
hjv for each node on the element boundary τi. Hereby, the correction polynomials of ESFR
schemes are required to fulfill the properties

∇ · hjν ∈ PNτi ,
hjν · nik ∈ PNΓik ,

(1.100)

making each correction polynomial hjv a member of the Raviart-Thomas space RTN (τi) of
order N . This space is the smallest polynomial space such that the divergence maps RTN (τi)
onto PN (τi). Furthermore, the correction polynomials are supposed to satisfy

hjν(xik(ξµ)) · nik =

{
1 if k = j and µ = ν ,
0 else .

(1.101)

In order to transfer the Allaneau & Jameson procedure deriving ESFR schemes to the trian-
gular grid case, the FR scheme (1.98) is first rewritten in a matrix-vector formulation.

For this purpose, let u denote the vector of nodal values of the approximate solution and f
the vector of flux values at the same set of interpolation points. Furthermore, as before, the
matrices Dx and Dy are built by evaluating the spatial derivatives of the Lagrange polynomials
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corresponding to the interpolation points, i.e. Dx and Dy are defined as in (1.86). Since by
construction, the divergence Φjν = ∇ · hjν of any correction function hjν is a polynomial in
PN (τi), we may represent Φjν by the vector Φjν of its nodal values at the given interpolation
points. In matrix-vector form, the FR scheme (1.98) is therefore given by

d

dt
u + Dxf1 + Dyf2 = −

3∑
j=1

nedge∑
ν=1

fC,jν Φjν .

Next, we multiply the above equation from the left by the mass matrix M corresponding to
the Lagrange basis on the triangular element, i.e. M is defined as in (1.84). This yields

M
d

dt
u + MDxf1 + MDyf2 = −

3∑
j=1

nedge∑
ν=1

fC,jν MΦjν . (1.102)

Furthermore, we have

MΦjν =

∫
τi

ΦjνL dx =

∫
∂τi

(hjν · n) L dσ −
∫
τi

hjν · ∇L dx , (1.103)

where hjν · ∇L = (hjν · ∇L1, . . . ,hjν · ∇LNI )
T .

Analogously to the 1D case, for the identification of ESFR schemes, a matrix K is constructed
such that KDx = 0 = KDy. On left multiplication of (1.98) with K, we then have

K
d

dt
u = −

3∑
j=1

nedge∑
ν=1

fC,jν KΦjν . (1.104)

Adding up equations (1.102) and (1.104) results in

(M + K)
d

dt
u + MDxf1 + MDyf2 = −

3∑
j=1

nedge∑
ν=1

fC,jν (M + K)Φjν , (1.105)

while taking into account (1.103) yields

3∑
j=1

nedge∑
ν=1

fC,jν MΦjν =
3∑
j=1

nedge∑
ν=1

fC,jν

∫
∂τi

(hjν · n) L dσ −
3∑
j=1

nedge∑
ν=1

fC,jν

∫
τi

hjν · ∇L dx .

Since the N +1 flux points on each triangle edge are precisely the Legendre-Gauss integration
points transferred to the respective edge, the corresponding quadrature rule exactly integrates
polynomials of degree 2N + 1. This is sufficiently accurate in order to evaluate the first term
on the right-hand side of the above equation. Using the conditions (1.101) on the pointwise
values of the correction polynomials, we thus have

−
3∑
j=1

nedge∑
ν=1

fC,jν

∫
∂τi

(hjν · n) L dσ = −
3∑
j=1

|Γij |
2

nedge∑
ν=1

ωνfC,jν L(xij(ξν)).
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Using the definition of the flux jumps given in (1.99) shows that this is precisely the right-hand
side of a pre-integrated nodal DG scheme on triangular grids obtained by multiplying (1.90)
from left by M, i.e.

RHSDG = −
3∑
j=1

|Γij |
2

nedge∑
ν=1

ωνfC,jν L(xij(ξν)) =
〈(

fh · n− f∗(u−h , u
+
h ,n)

)
L
〉
∂τi

.

With the above considerations, we may express the FR scheme (1.105) by

(M + K)
d

dt
u + MDxf1 + MDyf2 = RHSDG

+
3∑
j=1

nedge∑
ν=1

fC,jν

(∫
τi

hjν · ∇L dx−KΦjν

)
.

(1.106)

Analogously to the one-dimensional case, the triangular grid ESFR schemes presented by
Castonguay et al. in [36] are obtained by constructing correction polynomials such that the
last term on the right-hand side of (1.106) vanishes, which means that the conditions∫

τi

hjν · ∇L dx−KΦjν , j = 1, 2, 3, ν = 1, . . . , N + 1,

are to be fulfilled. With RHSDG the only remaining term on the right-hand side of (1.106), an
ESFR scheme obviously constitutes a filtered DG scheme analogously to the one-dimensional
case given in (1.97). Furthermore, since by the specific construction of K we have

(M+K)Dx+DT
x (M+K) = MDx+DT

xM and (M+K)Dy+DT
y (M+K) = MDy+DT

y M ,

with the matrices M,Dx,Dy matching the DG case considered in Section 1.2.5, the ESFR
scheme therefore fulfills an SBP property analogous to the SBP property (1.88) of a triangular
grid nodal DG scheme.

1.4 Kinetic energy preserving DG schemes for the Euler- and
Navier-Stokes equations

In the context of numerical methods for conservation laws, the preservation of the primary
conserved quantities usually is a minimum requirement. In addition, the balance of secondary
quantities may be desirable as well, such as kinetic energy in case of the Euler equations of
gas dynamics. This also extends to the simulation of viscous flow. In fact, particularly for the
simulation of turbulent flows, an accurate simulation of the kinetic energy is generally desired,
see e.g. [137, 200, 186, 136, 63, 93]. For finite volume methods, specifically designed numerical
fluxes as in [92] may guarantee either preservation of entropy or energy. Similar construction
principles leading to mimetic schemes which guarantee enhanced conservation properties can
be found also in the context of shallow water flows. For example, energy conservation is desired
for simulations involving rapidly varied flow e.g. due to large gradients in bathymetry [181],
or total energy is conserved in addition to mass and momentum as in [79].
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Another benefit of the preservation of secondary quantities is given by additional energy
estimates which may be obtained, potentially enabling stability of the scheme without or
with a reduced amount of artificial dissipation. This in turn can improve the accuracy of
both viscous and inviscid flow computations which are otherwise often compromised by the
dissipative mechanisms used for shock capturing. Of course, this feature is particularly de-
sirable for higher order methods and is reflected by SBP finite difference schemes applied
to skew-symmetric forms of conservation laws. While the skew-symmetric form is used to
enforce enhanced conservation of specific secondary quantities, the SBP property guarantees
conservation of the primary conserved quantities.

Closely linked to the framework of SBP finite difference schemes, Gassner [61] constructed
a kinetic energy preserving discontinuous Galerkin scheme in one space dimension using
Legendre-Gauss-Lobatto nodes based on a skew-symmetric formulation of the Euler equa-
tions. This construction rests upon the classical SBP property of the Legendre-Gauss-Lobatto
DG scheme. However, as discussed in Section 1.2.1, the generalized SBP property is not re-
stricted to Legendre-Gauss-Lobatto nodes. Therefore, in [150], a kinetic energy preserving
DG scheme using Legendre-Gauss nodes has been constructed which is similar in spirit to
the skew-symmetric DG scheme [61] but builds upon the generalized SBP property shown in
Theorem 1.5.

In Section 1.4.1, the construction of the 1D KEP-DG scheme on Legendre-Gauss nodes as
in [150] is described in detail. Hereby, the required form of the corresponding boundary correc-
tion terms in the skew-symmetric formulation leading to a conservative and consistent scheme
is theoretically investigated. In fact, for a Legendre-Gauss point distribution, boundary terms
require special attention. Whereas the DG scheme on Legendre-Gauss nodes yields a diagonal
mass matrix and hence a diagonal norm SBP operator precisely as for Legendre-Gauss-Lobatto
nodes, the interface operator is not diagonal since Legendre-Gauss nodes do not include the
interval boundaries of a grid cell. Hence, the skew-symmetric DG scheme constructed in [61]
can not directly be combined with Legendre-Gauss nodes. In this regard, stability issues will
be pointed out which may arise when using a combination of skew-symmetric terms with
inconsistent boundary treatment that disagrees with exclusively interior nodal sets.

In numerical experiments we study the order of convergence for smooth solutions, the kinetic
energy balance and the behavior of different variants of the scheme applied to an acoustic
pressure wave and a viscous shock tube. Since quadrature rules based on the Legendre-Gauss
nodes provide a higher degree of exactness in comparison to an equal number of Legendre-
Gauss-Lobatto nodes, a lower error of the corresponding DG approximation may be expected.
In fact, higher accuracy of the DG scheme using Legendre-Gauss nodes will be experimentally
shown for viscous compressible flow in Section 1.4.2. Thus, the benefit of the KEP-DG
construction on interior nodes is that using Legendre-Gauss nodes instead of Legendre-Gauss-
Lobatto nodes may potentially result in a more accurate approximation also for realistic
problems involving viscous or inviscid compressible flow.

Moreover, we obtain the same favorable behavior regarding the KEP property for a test case of
two-dimensional decaying homogeneous turbulence. More precisely, also on Legendre-Gauss
nodes, the property of kinetic energy preservation of the KEP-DG scheme achieves a better
representation of the expected energy spectrum.

Finally, the KEP-DG schemes are applied to the fluid equations within the moving piston
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problem which represents a classical one-dimensional test case of mechanical fluid-structure
interaction.

1.4.1 Kinetic energy preservation in one space dimension

In this section, a kinetic energy preserving DG scheme on arbitrary nodal sets with pairwise
distinct nodes will be constructed. The corresponding scheme is still conservative with respect
to mass, momentum and energy. In order to construct this scheme, a skew-symmetric formu-
lation of the Euler equations of gas dynamics is used but the discretization is then related to
the divergence form of the Euler equations given by

∂

∂t
ρ+

∂

∂x
(ρv) = 0, (1.107)

∂

∂t
(ρv) +

∂

∂x
(ρv2 + p) = 0, (1.108)

∂

∂t
(ρE) +

∂

∂x
((ρE + p)v) = 0, (1.109)

for the density ρ, the velocity v, the specific total energy E and the pressure p. This system is
closed by the equation of state for ideal gases p = (γ−1)ρ(E−v2/2), with constant adiabatic
coefficient γ.

Furthermore, a specific skew-symmetric form has been given by Morinishi in [136]. The
resulting system of PDEs, which is also discretized in [61], is

∂

∂t
ρ+

∂

∂x
(ρv) = 0, (1.110)

1

2

[
∂

∂t
(ρv) + ρ

∂

∂t
v

]
+

1

2

[
∂

∂x
(ρv2) + ρv

∂

∂x
v

]
+

∂

∂x
p = 0, (1.111)

∂

∂t
(ρe) +

∂

∂x
(ρve+ vp)− v ∂

∂x
p = 0, (1.112)

where e denotes the specific inner energy and the equation of state can be rewritten as
(γ − 1)ρe = p. The following derivation will clarify that the first two equations, (1.110)
and (1.111), are responsible for the conservation of mass and momentum as well as the cor-
rect balance of kinetic energy. The only requirement concerning the third equation (1.112)
is conservation of total energy, which is already fulfilled by the standard DG discretization
of the energy equation (1.109) in divergence form. Therefore, we will mainly consider the
following alternative skew-symmetric form of the Euler equations,

∂

∂t
ρ+

∂

∂x
(ρv) = 0, (1.113)

1

2

[
∂

∂t
(ρv) + ρ

∂

∂t
v

]
+

1

2

[
∂

∂x
(ρv2) + ρv

∂

∂x
v

]
+

∂

∂x
p = 0, (1.114)

∂

∂t
(ρE) +

∂

∂x
(ρvE + vp) = 0. (1.115)

The quantities in equations (1.110)–(1.115) will be evaluated at the quadrature nodes, hence
we consider the corresponding vectors of nodal values given by ρ = (ρ1, . . . , ρN+1)T , v =
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(v1, . . . , vN+1)T , e = (e1, . . . , eN+1)T , p = (p1, . . . , pN+1)T and E = (E1, . . . , EN+1)T . We
will first directly discretize the above continuous formulations. As a second step, the dis-
cretization will be reformulated using the classical conservative variables at the quadrature
nodes, denoted by

u1 = (u1,1, . . . , u1,N+1)T with u1,ν = ρν ,

u2 = (u2,1, . . . , u2,N+1)T with u2,ν = ρνvν ,

u3 = (u3,1, . . . , u3,N+1)T with u3,ν = ρνeν + ρνv
2
ν/2,

in order to analyze the properties of the DG scheme applied to these skew-symmetric forms.

Once the point-wise values of the conservative variables are known, the point-wise values of
the nodal vectors v,p, e can be calculated by

vν =
u2,ν

u1,ν
, eν =

(
u3,ν

u1,ν
− 1

2

u2
2,ν

u2
1,ν

)
, pν = (γ − 1)

(
u3,ν −

1

2

u2
2,ν

u1,ν

)
, ν = 1, . . . , N + 1.

Furthermore, we consider the flux vector of the compressible Euler equations in conservative
form and denote the vector of point-wise flux values by

f1 = (f1,1, . . . , f1,N+1)T with f1,ν = ρνvν = u2,ν ,

f2 = (f2,1, . . . , f2,N+1)T with f2,ν = ρνv
2
ν + pν = vνf1,ν + pν ,

f3 = (f3,1, . . . , f3,N+1)T with f3,ν = ρνvνeν + ρνv
3
ν/2 + vνpν = vν(u3,ν + pν).

In order to use a matrix-vector formulation in the following derivation of the kinetic energy
preserving DG scheme, we need the following notation for certain diagonal matrices. For a
given vector w ∈ RN+1 of point-wise quantities, we again denote by w the diagonal matrix

w = diag(w1, . . . , wN+1),

obtained by injecting the entries of w into the diagonal.

In the following, each of the equations within the skew-symmetric formulations will be dis-
cretized by the DG scheme in one space dimension on Legendre-Gauss nodes given by the
matrix-vector formulation (1.53). This basically means that any occurrence of the partial
derivative ∂

∂x will be substituted by the matrix D. The precise choice of numerical flux func-
tions needed within the discretization will not be specified until the kinetic energy balance
is considered. For the continuity equation in divergence form given in (1.110) or (1.113) this
approach obviously yields the standard DG discretization as shown below.

The discrete continuity equation is given by a direct discretization of (1.110) (or (1.113),
respectively) via the DG scheme, i.e. neglecting the cell index i, we have

∆x

2

d

dt
u1 + D f1 = M−1[(f1,h − f∗1 )L]1−1. (1.116)

Thus, conservation of mass is automatically satisfied. Conservation of momentum and total
energy as well as the kinetic energy balance are subject of the following discussion. The
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DG discretization of equations (1.111) (or (1.114), respectively) and (1.112) will yield certain
additional terms. These terms have to be chosen in a way to guarantee conservativity and
consistency as stated more precisely in the following Lemma. Due to the references to interface
fluxes needed both in the statement of Lemma 1.18 and in the proof, the cell index i is not
neglected this time.

Lemma 1.18. For a scalar conservation law denoted by ∂
∂tu(x, t) + ∂

∂xf(u(x, t)) = 0, we
consider a cell-wise discretization of the form

∆xi
2

d

dt
ui + Df i +

[
−Dαiβi + αiDβi + βiDαi

]
= M−1

(
[(f ih − f∗,i)L]1−1 + [αi(βih − β∗,i)L]1−1

)
+ M−1([kihL]1−1 + k∗,+i L(−1)− k∗,−i+1 L(1)),

(1.117)

with arbitrary nodal values αi,βi, additional inner correction terms kih and numerical fluxes
k∗,+i , k∗,−i+1 which have to be specified. In (1.117), the functions f∗ and β∗ denote locally Lip-
schitz continuous numerical flux functions consistent to f and β, respectively. Under these
premises, the following assertions hold.

1. The scheme (1.117) is conservative, if and only if

kih(−1)− k∗,+i = −(αβ)ih(−1) + αih(−1)β∗i − C∗i (1.118)

and

kih(1)− k∗,−i+1 = −(αβ)ih(1) + αih(1)β∗i+1 − C∗i+1, (1.119)

for interface-dependent values C∗i , C
∗
i+1 depending on the nodal values α,β,u in the

corresponding left and right cells.

2. If we reduce the level of data dependence for a conservative scheme and assume that

• kih only depends on the interior values αi,βi,

• k∗,+i only depends on β∗i and αih(−1),

• k∗,−i+1 only depends on β∗i+1 and αih(1),

then we obtain C∗i = C∗(β∗i ) and C∗i+1 = C∗(β∗i+1) in (1.118), (1.119), i.e. the interface
values of C∗ only depend on the interface values of the given flux function β∗.

3. The scheme (1.117) with correction terms set to

kih = −(αβ)ih,

k∗,+i = −αih(−1)β∗i + C∗(β∗i ),

k∗,−i+1 = −αih(1)β∗i+1 + C∗(β∗i+1),

reduces to a consistent finite volume scheme for N = 0 if and only if C∗(β∗i ) =
C∗(β∗i+1) = 0.
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Proof of Lemma 1.18. For the assertion of conservativity, we multiply the scheme (1.117) from
left by 1TM. Thus, the rate of change of the cell mean within a cell [xi, xi+1] multiplied by
the cell size ∆x is given by

1TM
∆xi

2

d

dt
ui = −1TMDf i − 1TM

[
−Dαiβi + αiDβi + βiDαi

]
+1T [(f ih + αiβih + kih)L]1−1 − 1T [f∗,iL]1−1 − 1T [αiβ∗,iL]1−1

+1T
(
k∗,+i L(−1)− k∗,−i+1 L(1)

)
= −1T (B−DTM)f i

−1T
[
−(B−DTM)αiβi + αi(B−DTM)βi + βiMDαi

]
+1T [(f ih + αβih + kih)L]1−1 − 1T [f∗,iL]1−1 − 1T [αiβ∗,iL]1−1

+1T
(
k∗,+i L(−1)− k∗,−i+1 L(1)

)
,

using the SBP property MD = B−DTM.

Furthermore, the interpolation of boundary values and the corresponding boundary terms are
encoded in the matrix B. Thus, due to Theorem 1.5 we can replace the corresponding terms
by Bf i = [f ihL]1−1, Bαiβi = [(αβ)ihL]1−1 and (αi)TBβi = 1Tαi[βihL]1−1. Since this cancels

out the terms containing f ih and αiβih, it holds that

1TM
∆xi

2

d

dt
ui = (D1)TMf i −

[
(D1)TMαiβi − (αi)TDTMβi + (βi)TMDαi

]
+ 1T [

(
(αβ)ih + kih

)
L]1−1

− 1T [f∗,iL]1−1 − 1T [αiβ∗,iL]1−1 + 1T
(
k∗,+i L(−1)− k∗,−i+1 L(1)

)
.

Now, discrete differentiation yields D1 = 0, and we obviously have −αTDTMβ+βTMDα =
0. This reduces the rate of change of mass contained in the specific cell to

1TM
∆xi

2

d

dt
ui = 1T [

(
(αβ)ih + kih

)
L]1−1 − 1T [f∗,iL]1−1 − 1T [αiβ∗,iL]1−1

+ 1T
(
k∗,+i L(−1)− k∗,−i+1 L(1)

) (1.120)

In order to guarantee the conservation property, the remaining terms may only contain in-
terface contributions. Hence, the balance of flux contributions at cell interfaces has to be
investigated using the above equation (1.120).

To this end, we consider the interface at the grid node xi between two cells Ii−1 = [xi−1, xi]
and Ii = [xi, xi+1]. As the interpolation property yields 1TL(ξ) = 1, we obtain the following
fluxes over this cell interface by considering (1.120) on the two adjacent cells. Neglecting the
common flux f∗i and denoting by C∗,i−1

i the remaining flux of mass leaving the left cell Ii−1

from left to right through the interface xi, we have

C∗,i−1
i = −(αβ)i−1

h (1)− ki−1
h (1) + αi−1

h (1)β∗i + k∗,−i , (1.121)
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whereas the analogous quantity C∗,ii of mass entering the right cell Ii through xi is given by

C∗,ii = −(αβ)ih(−1)− kih(−1) + αih(−1)β∗i + k∗,+i . (1.122)

Now, the conservation property precisely requires the equality

C∗,i−1
i = C∗,ii =: C∗i , (1.123)

yielding the first assertion.

As for the second assertion, we now assume that kih only depends on the interior values αi,βi

and that k∗,+i only depends on β∗i and αih(−1). If we then modify any of the input values other

than αi,βi, β∗i , the value of C∗,ii in (1.122) does not change and thus C∗i remains constant as
well due to the equality in (1.123). If we furthermore assume that k∗,−i only depends on β∗i
and αi−1

h (1), modifying αi or βi while leaving β∗i constant does not change C∗,i−1
i in (1.121)

and hence does not change C∗i due to (1.123). Therefore, C∗i only depends on β∗i which proves
assertion 2.

Now, consistency in the finite volume sense refers to a consistent numerical flux. With
kih, k

∗,+
i , k∗,−i+1 set as in the third assertion, the scheme (1.117) for N = 0 reduces to

∆xi
d

dt
ui = [f∗,i]1−1 − [αiβ∗,i]1−1 +

(
k∗,+i − k∗,−i+1

)
= [f∗,i]1−1 −

(
C∗i+1 − C∗i

)
.

Since f∗ is consistent to f with f∗(u, u) = f(u) and β∗ is consistent to β, this above finite
volume scheme is consistent if and only if

f∗(u, u) + C∗(β∗(u, u)) = f(u) + C∗(β(u)) = f(u).

This results in the requirement C∗(β(u)) = 0, which needs to hold for any cell interface and
any value of the conserved variable u. Therefore, the last assertion is proven as well.

The discrete momentum equation

In the following derivations the skew-symmetric formulation of the momentum equation will be
discretized by the DG scheme using Legendre-Gauss nodes. The available freedom in choosing
the numerical flux function will be used to obtain a scheme which conserves momentum and
additionally fulfills a kinetic energy balance with respect to the cell means of kinetic energy.
This part follows closely the Legendre-Gauss-Lobatto case in [61].

A direct discretization of the momentum equation, neglecting the cell index i, yields

∆x

2

1

2

[
d

dt
u2 + u

1

d

dt
v

]
+

1

2

[
Dρv2 + ρvDv

]
+ Dp = M−1[(g2,h − g∗2)L]1−1, (1.124)

with terms g2,h and g∗2 which are not yet specified. We will choose these terms in a manner
to guarantee conservation of momentum. Therefore, we multiply (1.116) from left by 1

2v and
add the resulting equation to (1.124). Due to continuity in time, this yields

∆x

2

d

dt
u2 + D(ρv2 + p) +

1

2

[
−Dρv2 + ρvDv + vD f1

]
= M−1

(
[(g2,h − g∗2)L]1−1 +

1

2
v[(f1,h − f∗1 )L]1−1

)
.

(1.125)
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Setting α = 1
2v, β = ρv = f1 and β∗ = f∗1 , due to Lemma 1.18, we obtain a consistent and

conservative scheme if we set

g2,h = f2,h + k2,h = f2,h − (αβ)h =

(
1

2
ρv2 + p

)
h

(1.126)

and

g∗2(−1) = f∗2 −
1

2
v+f∗1 , g∗2(1) = f∗2 −

1

2
v−f∗1 ,

where v+ = vh(−1), v− = vh(1) denote the one-sided limits of vh at the cell interfaces. The
formulation (1.125) can finally be rewritten as

∆x

2

d

dt
u2 + D f2 + s2 = M−1[(f2,h − f∗2 )L]1−1 + M−1sbc2 , (1.127)

with the volume terms

s2 =
1

2

[
−Dρv2 + ρvDv + vDρv

]
and the boundary correction

sbc2 =
1

2

(
v[(f1,h − f∗1 )L]1−1 − [((ρv2)h − v±f∗1 )L]1−1

)
.

We may as well derive a weak formulation of this skew-symmetric discretization. Using the
SBP property MD = B − DTM with Bf = [fhL]1−1 as well as the definition of g2,h and
f2,h = (ρv2 + p)h, equation (1.125) results in

∆x

2

d

dt
Mu2 = DTM

(
1

2
ρv2 + p

)
− 1

2

[
ρvMDv − vDTMf1

]
−B

(
1

2
ρv2 + p

)
− 1

2
vBf1 +

(
[(g2,h − g∗2)L]1−1 +

1

2
v[(f1,h − f∗1 )L]1−1

)
,

which is equivalent to the weak formulation

∆x

2

d

dt
Mu2 = DTM

(
1

2
ρv2 + p

)
− 1

2

[
ρvMDv − vDTMf1

]
− [g∗2L]1−1 −

1

2
v[f∗1 L]1−1

= ST g2 −
1

2

[
ρvSv − vST f1

]
− [f∗2 L]1−1 +

1

2

[(
v±I− v

)
f∗1 L

]1
−1
.

(1.128)

In fact, for efficiency reasons, this weak formulation should be implemented instead of the
strong form as it does not require boundary interpolation of the flux values f1 and g2.

The discrete kinetic energy balance

Before considering the energy equation, i.e. the third equation of the system of Euler equa-
tions, we will derive the kinetic energy balance of the scheme. This will lead to additional
constraints on the numerical flux function f∗.
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First, we multiply the discrete momentum equation (1.124) with v and obtain

∆x

2

1

2

[
v
d

dt
u2 + u

2

d

dt
v

]
+

1

2

[
vDρv2 + ρv2Dv

]
+ vDp = M−1v[(g2,h − g∗2)L]1−1,

where we used the fact that M is diagonal.

Time derivatives can be recast to

1

2

[
v
d

dt
u2 + u

2

d

dt
v

]
=

d

dt

(
1

2
ρv2

)
hence, assuming time continuity, the kinetic energy balance is given by

∆x

2

d

dt
ekin =

∆x

2

d

dt

(
1

2
ρv2

)
=− 1

2

[
vDρv2 + ρv2Dv

]
− vDp + M−1v[(g2,h − g∗2)L]1−1.

(1.129)

The balance of the cell means of kinetic energy is then obtained by multiplying the above
equation by 1TM. That is, the total amount of kinetic energy within the cell is subject to
the following rate of change

∆x

2

d

dt
1TMekin = −1

2

[
vTMDρv2 + (ρv2)TMDv

]
− vTMDp + vT [(g2,h − g∗2)L]1−1

= −1

2

[
vTBρv2 − (D v)TMρv2 + (ρv2)TMDv

]
−vTBp + (Dv)TMp + vT [(g2,h − g∗2)L]1−1

= −vTB

(
1

2
ρv2 + p

)
+ (Dv)TMp + vT [(g2,h − g∗2)L]1−1,

where the SBP property MD = B−DTM as well as the equality

−(D v)TMρv2 + (ρv2)TMDv = 0

were used. Furthermore, since vTBg2 = vT [g2,hL]1−1 by Theorem 1.5, we obtain

d

dt
1TMekin =− vTBg2 + (Dv)TMp + vT [(g2,h − g∗2)L]1−1

=(Dv)TMp− vT [g∗2L]1−1.
(1.130)

The volume term (Dv)TMp represents a change of kinetic energy due to a pressure variation
which is physically correct. Hence, only the contribution containing the auxiliary flux g∗2
remains to be dealt with. For a correct balance of kinetic energy, only the terms contained in
g∗2 which are related to transport have to vanish. In this regard, we split g∗,±2 = f∗2 − 1

2v
±f∗1

into a transport and a pressure term, g∗,±2 = f̃∗2 + p∗ − 1
2v
±f∗1 = g̃∗,±2 + p∗ as in [61]. For the

contribution of interface fluxes at the interface (i− 1, i) to the cell means of kinetic energy as
in (1.130) we then demand

(vi)T g̃∗,−2 L(−1) = (vi−1)T g̃∗,+2 L(1).
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This yields the condition

0 =

(
f̃∗2 −

1

2
v+f∗1

)
(vi)TL(−1)−

(
f̃∗2 −

1

2
v−f∗1

)
(vi−1)TL(1)

=

(
f̃∗2 −

1

2
v+f∗1

)
v+ −

(
f̃∗2 −

1

2
v−f∗1

)
v−

= f̃∗2 (v+ − v−) +
1

2
((v−)2 − (v+)2)f∗1 ,

thus, the numerical flux f̃∗2 corresponding to the transport part ρv2 of f2 is required to fulfill

f̃∗2 =
v+ + v−

2
f∗1 . (1.131)

With this property of the numerical flux function, we have

g∗,±2 = f̃∗2 + p∗ − 1

2
vf∗1 =

v+ + v−

2
f∗1 + p∗ − 1

2
v±f∗1 =

1

2
v∓f∗1 + p∗ (1.132)

and the condition

f∗2 = f̃∗2 + p∗ =
v+ + v−

2
f∗1 + p∗. (1.133)

There are many possibilities to construct numerical flux functions satisfying (1.133). Here,
we will consider the following numerical flux functions.

• The so-called KEP flux f∗A = f∗KEP by Jameson, e.g. given in [92],

f∗A,1 = ρ̄v̄,

f∗A,2 = ρ̄v̄2 + p̄,

f∗A,3 = ρ̄v̄H̄, H = E +
p

ρ
,

(1.134)

where the quantity q̄ denotes the arithmetic average q̄ = 1
2(q+ + q−) for given left and

right values q±.

• The kinetic energy preserving and entropy consistent numerical flux given in [39], which
will be denoted KEP-EC in this work,

f∗B,1 = ρ̂v̄,

f∗B,2 =
ρ̄

2β̄
+ v̄f∗B,1,

f∗B,3 =
1

2(γ − 1)β̂
− v2

2
f∗B,1 + v̄f∗B,2,

(1.135)

where β = ρ
2p and, given left and right values q±, the quantity q̂ denotes the logarithmic

average

q̂ =
q− − q+

ln(q−)− ln(q+)
. (1.136)

For q− ≈ q+ the numerically stable approximation to (1.136) given in [89] will be used.
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• A modified version of the classical van Leer flux f∗V L given in [108] specifically designed
to fulfill the KEP property (1.133). This flux f∗C is denoted by KEP-VL and given by

f∗C,1 = f∗V L,1,

f∗C,2 = v̄f∗V L,1 + p̄,

f∗C,3 = f∗V L,3.

(1.137)

The discrete energy equation

In the previous paragraphs we constructed a skew-symmetric DG discretization of the con-
tinuity and momentum equations which is i) mass and momentum conserving and ii) fulfills
a balance of kinetic energy. Moreover, a direct discretization of the divergence form (1.109)
accomplishes the task of total energy conservation. The resulting conservative scheme then
exhibits all the desired properties and will be numerically tested in Section 1.4.2.

In addition, as in [61], a conservative discretization may be obtained for the alternative skew
symmetric form (1.112). Again, the derivations for the DG scheme on Legendre-Gauss nodes
leads to modifications of the skew-symmetric terms with respect to the interface contributions.
First, the discretization of equation (1.112) takes on a more general form given by

∆x

2

d

dt
(ρe) + D(ρve + vp)− vDp = M−1[(G3,h −G∗3)L]1−1, (1.138)

where G3,h and G∗3 now denote matrix valued quantities which have to be specified.

Using the discrete kinetic energy balance (1.129) in the form

−vDp =
∆x

2

d

dt

(
1

2
ρv2

)
+

1

2

[
vDρv2 + ρv2Dv

]
−M−1v[(g2,h − g∗2)L]1−1,

the corresponding term −vD p in (1.138) may be substituted.

Hence, for the total energy u3 =
(
ρe + 1

2ρv2
)

we have

∆x

2

d

dt
u3 + D(ρve + vp) +

1

2

[
vDρv2 + ρv2Dv

]
= M−1[(G3,h −G∗3)L + v(g2,h − g∗2)L]1−1,

which can be rearranged to

∆x

2

d

dt
u3 + D f3 +

1

2

[
−Dρv3 + vDρv2 + ρv2Dv

]
= M−1[(G3,h −G∗3)L + v(g2,h − g∗2)L]1−1

= M−1

[
(G3,h −G∗3)L + v(ph − (p∗ +

1

2
(f̃∗2 − v±f∗1 )))L +

1

2
v((ρv2)h − f̃∗2 )L

]1

−1

,

(1.139)

using the representations of g2,h and g∗2 as in (1.126) and (1.132), respectively.
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Also in this case, Lemma 1.18 can be applied again to (1.139) using α = v, β = 1
2ρv2 and

β∗ = 1
2 f̃
∗
2 . A conservative scheme is then obtained by setting

G3,h + vph = (f3,h − (αβ)h)I = (ρve+ vp)hI,

where I denotes the identity matrix, and

G∗,±3 + v

(
p∗ +

1

2
(f̃∗2 − v±f∗1 )

)
= (f∗3 − α±β∗)I =

(
f∗3 −

1

2
v±f̃∗2

)
I,

This yields

G3,h + vph +
1

2
v
(
ρv2
)
h

= f3,hI−
1

2

(
ρv3
)
h

I +
1

2
v
(
ρv2
)
h

and

G∗,±3 + v

(
p∗ +

1

2
(f̃∗2 − v±f∗1 ) +

1

2
f̃∗2

)
=

(
f∗3 −

1

2
v±f̃∗2

)
I +

1

2
vf̃∗2 .

Hence, the formulation (1.139) results in

∆x

2

d

dt
u3 + D f3 + s3 = M−1[(f3,h − f∗3 )L]1−1 + M−1sbc3 , (1.140)

with the volume terms

s3 =
1

2

[
−Dρv3 + ρv2Dv + vDρv2

]
and the boundary correction

sbc3 =
1

2

(
v[((ρv2)h − f̃∗2 )L]1−1 − [((ρv3)h − v±f̃∗2 )L]1−1

)
,

with f̃∗2 as in (1.131).

Summary of skew-symmetric DG discretizations

For convenience, we summarize the alternative discretizations of the Euler equations at this
point. The resulting discrete continuity, momentum and energy equation have the general
form

∆x

2

d

dt
uk + D fk + sk = M−1[(fk,h − f∗k )L]1−1 + M−1sbck , k = 1, 2, 3.

With respect to the following numerical investigations, four alternative choices for the volume
terms sk and boundary corrections sbck may be considered, i.e. the standard DG scheme which
is conservative regarding mass, momentum and energy, two skew-symmetric forms which
additionally preserve the kinetic energy balance as well as a naive application of the kinetic
energy preserving DG scheme in [61] to Legendre-Gauss nodes. That is, we have the following
specifications.

1. The standard DG discretization is given by

sk = sbck = 0, k = 1, 2, 3. (1.141)



60 CHAPTER 1. HIGH ORDER SCHEMES FOR CONSERVATION LAWS

2. The skew-symmetric DG discretization based on Morinishi’s skew-symmetric form,

s1 = 0,

s2 =
1

2

[
−Dρv2 + ρvDv + vDρv

]
,

s3 =
1

2

[
−Dρv3 + ρv2Dv + vDρv2

]
,

sbc1 = 0,

sbc2 =
1

2

(
v[(f1,h − f∗1 )L]1−1 − [((ρv2)h − v±f∗1 )L]1−1

)
,

sbc3 =
1

2

(
v[((ρv2)h − f̃∗2 )L]1−1 − [((ρv3)h − v±f̃∗2 )L]1−1

)
with f̃∗2 as in (1.131).

3. The skew-symmetric DG discretization based on the first two equations of Morinishi’s
skew-symmetric form, (1.110), (1.111), as well as the energy equation in divergence
form (1.109). This alternative formulation is given by

s1 = s3 = 0,

s2 =
1

2

[
−Dρv2 + ρvDv + vDρv

]
,

sbc1 = sbc3 = 0,

sbc2 =
1

2

(
v[(f1,h − f∗1 )L]1−1 − [((ρv2)h − v±f∗1 )L]1−1

)
.

(1.142)

4. An additional formulation is obtained, when the DG discretization on Legendre-Gauss-
Lobatto nodes in [61] is naively transferred to the Legendre-Gauss case. Then we have

s1 = 0,

s2 =
1

2

[
−Dρv2 + ρvDv + vDρv

]
,

s3 =
1

2

[
−Dρv3 + ρv2Dv + vDρv2

]
,

sbck = 0, k = 1, 2, 3.

(1.143)

However, in this case, the boundary treatment is inconsistent to the skew-symmetric
terms if Legendre-Gauss nodes are used. This will result in stability problems as shown
in Section 1.4.2.

These alternative discretizations are completed by the choice of a numerical flux function
f∗. If the kinetic energy balance is to be preserved, one of the numerical fluxes given in the
previous paragraph, satisfying the KEP condition (1.133), will be chosen.
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1.4.2 Numerical experiments: accuracy and evolution of kinetic energy

In the following, numerical results are reported regarding the comparison of the DG dis-
cretizations with or without skew-symmetric terms, i.e. (1.141), (1.142) and (1.143), which
are furthermore equipped with the kinetic energy preserving numerical fluxes given in the pre-
vious Section 1.4.1 in addition to the classical van Leer flux [108]. For time discretization, the
classical fourth order Runge-Kutta scheme is used. In all test cases, the adiabatic coefficient
is set to γ = 1.4. Considering notation, we reserve lower case bold letters such as the vector
u for the nodal values of the DG scheme, while we use U for the exact solution in the case of
systems such as the Euler equations of gas dynamics and upper case letters F and Q for flux
functions and source terms, respectively.

Experimental order of convergence

The first test case numerically investigates the order of convergence of the kinetic energy pre-
serving scheme based on classical Legendre-Gauss nodes. As in [61], a manufactured solution is
used to test the order of the scheme. For this purpose, the Euler equations (1.107),(1.108), (1.109)
are augmented by a source term Q(x, t). More precisely, we consider the exact solution

Ums(x, t) =

 u(x, t)
u(x, t)
u2(x, t)

 , u(x, t) = 2 + 0.1 sin(2π(x− t)),

of the balance law

∂

∂t
U(x, t) +

∂

∂x
F(U(x, t)) = Q(x, t), U =

 ρ
ρv
ρE

 , F(U) =

 ρv
ρv2 + p
v(ρE + p)

 , (1.144)

where the source term is given by

Q(x, t) =

 0
p(x, t)
p(x, t)

 , p(x, t) = 0.28π cos(2π(x− t)) + 0.008π sin(4π(x− t)).

Thus, the source term is specifically designed to enforce Ums(x, t) as the exact solution of the
continuous system of equations. The initial conditions on the computational domain Ω = [0, 1]
are given by U(x, 0) = Ums(x, 0) and periodic boundary conditions are chosen. Tables 1.2,
1.3 and 1.4 list the L2 errors and corresponding experimental order of convergence obtained
by the DG scheme with skew symmetric terms (1.142) for polynomial degrees N = 2, 3 and
N = 4, respectively, using the different numerical flux functions given in Section 1.4.1 as
well as the classical van Leer flux for reference. The number of grid cells the computational
domain Ω is divided into is denoted by K. All computations were carried out until tend = 10
with time steps small enough in order to make temporal errors negligible. Similar to the
results in [61], the scheme using central numerical fluxes which disregard upwind information
show an order reduction for odd polynomial degrees, i.e. for N = 3 the order is reduced to
EOC = 3 instead of EOC = N + 1 in the even cases N = 2, 4. Hence, this observation made
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K
van Leer KEP (1.134) KEP-EC (1.135) KEP-VL (1.137)

L2 error EOC L2 error EOC L2 error EOC L2 error EOC

10 7.23e-05 - 8.66e-05 - 8.68e-05 - 1.57e-03 -
20 5.95e-06 3.60 4.34e-06 4.32 4.33e-06 4.32 1.15e-04 3.77
40 6.64e-07 3.16 4.26e-07 3.35 4.26e-07 3.35 8.33e-06 3.78
80 8.18e-08 3.02 5.26e-08 3.02 5.26e-08 3.02 8.35e-07 3.32

Table 1.2: L2 errors and experimental order of convergence (EOC) of the skew-symmetric
Legendre-Gauss DG scheme, case N = 2, using different numerical fluxes.

K
van Leer KEP (1.134) KEP-EC (1.135) KEP-VL (1.137)

L2 error EOC L2 error EOC L2 error EOC L2 error EOC

10 3.82e-06 - 2.72e-05 - 2.64e-05 - 1.73e-04 -
20 1.36e-07 4.81 4.35e-06 2.64 4.30e-06 2.62 1.53e-05 3.50
40 6.35e-09 4.42 5.20e-07 3.06 5.19e-07 3.05 1.81e-06 3.07
80 3.91e-10 4.02 6.38e-08 3.03 6.38e-08 3.02 2.29e-07 2.98

Table 1.3: L2 errors and experimental order of convergence (EOC) of the skew-symmetric
Legendre-Gauss DG scheme, case N = 3, using different numerical fluxes.

in [61] can be attested also in the case of Legendre-Gauss nodes. In a direct comparison of
the numerical fluxes used in the DG scheme for a constant polynomial degree, the KEP-VL
flux (1.137) yields the largest errors while the original van Leer flux performs best in this
setting. Hence, preserving the kinetic energy is no guarantee for better accuracy. Rather,
kinetic energy preservation is a property which mimics a qualitative behavior of the exact
solution. In fact, preservation of kinetic energy itself by different variants of the DG scheme
has to be studied more carefully. This is the purpose of the following test case.

K
van Leer KEP (1.134) KEP-EC (1.135) KEP-VL (1.137)

L2 error EOC L2 error EOC L2 error EOC L2 error EOC

10 1.11e-07 - 7.61e-08 - 7.61e-08 - 2.05e-06 -
20 2.21e-09 5.65 1.34e-09 5.82 1.34e-09 5.82 4.72e-08 5.44
40 4.91e-11 5.49 3.26e-11 5.37 3.26e-11 5.37 6.71e-10 6.14
80 1.51e-12 5.02 1.01e-12 5.01 1.01e-12 5.01 1.77e-11 5.24

Table 1.4: L2 errors and experimental order of convergence (EOC) of the skew-symmetric
Legendre-Gauss DG scheme, case N = 4, using different numerical fluxes.
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Conservation of mean kinetic energy

In the following, we consider a special set-up to study the conservation of kinetic energy.
Measuring the KEP property of a scheme is not straightforward as kinetic energy is generally
not conserved in the exact solution but in balance with the term vD p, see equation (1.129).
In this second test we therefore neglect the pressure term in the Euler equations, i.e. we
consider the case of constant pressure. As a result, the energy equation is automatically
fulfilled and can be dropped from the system of equations. Of course, to remain with a
consistent formulation, the pressure is also neglected in the numerical flux function. Under
these assumptions as specified above, the Euler equations reduce to the system

∂

∂t
ρ+

∂

∂x
(ρv) = 0,

∂

∂t
(ρv) +

∂

∂x
(ρv2) = 0.

The components of the corresponding numerical flux function are given by

f∗1 = (ρv)∗ = ρ̄v̄, f∗2 = (ρv2)∗ = ρ̄v̄2 = v̄f∗1 ,

which is precisely the reduction of the KEP flux (1.134) to the reduced system with fluxes

f1 = ρv, f2 = ρv2 .

Initial conditions are given by the initial density and velocity distributions

ρ(x, 0) = 2, v(x, 0) = cos(2πx),

on the computational domain Ω = [0, 1] with periodic boundary conditions.

First, Figure 1.2a depicts the time evolution of the mean kinetic energy ēkin(t), given by

ēkin(t) =
∑
i

∆xi
2

1TMekin(t) =
∑
i

∫ xi+1

xi

(
1

2
ρv2

)
h

(t) dx,

for different variants of the skew symmetric terms at the end of Section 1.4.1 in the case
N = 1. Here, we compare the DG scheme with the correctly derived skew-symmetric terms
and boundary treatment (1.142), denoted by ’DG skew1’, the standard DG scheme (1.141)
without skew-symmetric terms as well as the skew symmetric terms with inconsistent bound-
ary treatment as in (1.143), denoted by ’DG skew2’. We may observe that only the Legendre-
Gauss ’DG skew1’ scheme preserves the mean kinetic energy while the standard DG scheme
dissipates this quantity. Skew symmetric terms with inconsistent boundary treatment for ’DG
skew2’ lead to an non-physical increase of kinetic energy. This increase of kinetic energy leads
to oscillations of the DG solution, visible in Figure 1.2b showing the distribution of kinetic
energy for the different variants of the DG scheme at output time tend = 0.12. In the density
distribution depicted Figure 1.2c this effect is not present but it can be observed in terms of
less pronounced oscillations for the velocity distribution shown in Fig. 1.2d.
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(a) Time evolution of kinetic energy.
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(b) Distribution of kinetic energy (tend = 0.12).
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(c) Distribution of density (tend = 0.12).
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(d) Distribution of velocity (tend = 0.12).

Figure 1.2: Numerical results of the DG scheme for a polynomial degree of N = 1 on a
computational grid of 100 cells using different variants of the skew-symmetric terms.
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Non-linear acoustic pressure wave

In [61], Gassner proposed a test case which is sensitive to dissipation and dispersion errors to
study the performance of the kinetic energy preserving DG scheme based on Legendre-Gauss-
Lobatto nodes on course grids and for a low polynomial degree of N = 1. In comparison to
the standard DG scheme discretizing the conservative Euler equations, the approximation by
the skew-symmetric scheme using the KEP flux appeared to be closer to the reference solution
with respect to the pressure wave and the kinetic energy distribution.

The same test case is used in this work to investigate the performance of the KEP-DG scheme
based on the classical Legendre-Gauss points. Therefore, the Euler equations are augmented
by viscous terms of the compressible Navier-Stokes equations. The equations to be solved are
given by

∂

∂t
U(x, t) +

∂

∂x
F(U(x, t)) =

∂

∂x
Fvisc(U,Ux), (1.145)

where F again denotes the inviscid convective fluxes contained in the Euler equations and
Fvisc(U,Ux) contains the viscous fluxes given by

Fvisc(U,Ux) =

 0
µ4

3vx
µ4

3vvx + kTx

 . (1.146)

Herein, the viscosity coefficient µ = µ(T ) may depend on the temperature T = p
ρR =

pγ
ρ(γ−1)cp

= γ
cp
e, where R denotes the gas constant of the ideal gas law and cp is the specific

heat at constant pressure. The heat conduction coefficient is furthermore given by k =
cpµ
Pr ,

with the Prandtl number Pr. As in [61], the dependence of the viscosity µ on the temperature
is neglected to simplify the equation and its discretization.

We then note that the viscous terms can be re-written as Fvisc(U,Ux) = A(U)Ux using the
diffusion matrix

A(U) =
µ

ρ

 0 0 0

−4
3v

4
3 0

−
(

4
3v

2 + γ
Pr (e− v2)

) (
4
3 −

γ
Pr

)
v γ

Pr

 .

Now, to specify the set-up of the numerical experiment analogously to [61], the initial con-
ditions for the acoustic pressure wave are given by the following initial density, velocity and
pressure distribution

ρ(x, 0) = 1, v(x, 0) = 1, p(x, 0) = 1 + 0.1 sin(2πx)

on the computational domain Ω = [0, 1] with periodic boundary conditions. The viscosity
coefficient is set to µ = 0.002 and the Prandtl number is Pr = 0.72. The viscous terms are
discretized by the BR1 approach developed by Bassi and Rebay, see [13] or the later discussion
in Section 2.1. In order to study long time integration, the numerical computations are then
carried out until the final time tend = 20 is reached. For this test case computed by the
Legendre-Gauss DG scheme, the results showed no difference in accuracy for the DG scheme
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with or without skew-symmetric terms - even in case of the inconsistent boundary treatment.
However, we may study the effect of a higher order quadrature rule when using Legendre-
Gauss nodes instead of the Legendre-Gauss-Lobatto variant considered in [61]. Thus, Figure
1.3 reports the output of the KEP-DG scheme for N = 1 in case of Legendre-Gauss (LG)
as well as Legendre-Gauss-Lobatto (LGL) nodes using the KEP-VL flux (1.137) and correct
combinations of skew-symmetric and boundary terms, i.e. terms (1.142) for the Legendre-
Gauss case and terms (1.143) for the Legendre-Gauss-Lobatto case.

In order to account for the differences in arithmetic operations in case of Legendre-Gauss or
Legendre-Gauss-Lobatto nodes, respectively, the DG scheme on Legendre-Gauss nodes uses
40 cells while for the Legendre-Gauss-Lobatto variant 80 cells are taken. Thus, the stability
constraint for explicit time integration is roughly the same, see [65]. The additional cost
introduced by the finer grid for the Legendre-Gauss-Lobatto nodes as well as the additional
boundary interpolation and boundary correction terms for Legendre-Gauss nodes can then
be quantified and compared. More precisely, the skew-symmetric DG scheme (1.128) on
Legendre-Gauss nodes needs to interpolate the conservative variables as well as velocity to the
two boundaries of grid cells, which results in 16(N + 1) arithmetic operations per coarse grid
cell, and to evaluate the additional surface correction, i.e. the last term on the right-hand side
of (1.128), second line, for which we have 9(N + 1) arithmetic operations per coarse grid cell.
On the other hand, the Legendre-Gauss-Lobatto variant needs twice as many grid cells, hence
twice as many flux evaluations and multiplications by ST , resulting in 7(N + 1) + 6(N + 1)2

arithmetic operations per coarse grid cell. Furthermore, the double number of skew-symmetric
term evaluations is necessary, i.e. additional 4((N + 1)2 + N + 1) arithmetic operations in
the weak formulation and twice as many evaluations of numerical fluxes, resulting in 18
additional arithmetic operations per coarse grid interface for the KEP flux. For N = 1 and
periodic boundary conditions in one space dimension, i.e. an equal number of grid cells and
interfaces, this results in 50 additional arithmetic operations per coarse grid cell for the KEP-
DG scheme on Legendre-Gauss nodes in comparison to the Legendre-Gauss-Lobatto variant
on the coarser grid and 80 additional arithmetic operations for the Legendre-Gauss-Lobatto
variant on the finer grid in comparison to the coarser. Thus, the Legendre-Gauss-Lobatto
set-up is designed to be more expensive for this problem. However, in a comparison with a
reference solution obtained by the standard DG scheme for a polynomial degree N = 3 and 500
cells, this Legendre-Gauss-Lobatto variant clearly is not as accurate as the Legendre-Gauss
variant on the coarser grid as shown in Fig. 1.3 where the DG solution with Legendre-Gauss
nodes almost cannot be distinguished from the reference solution. For this test case, it has
hence payed off to consider Legendre-Gauss nodes, though kinetic energy preservation seems
to be less critical for this test case. Again one should remark that preserving a qualitative
behavior does not guarantee better accuracy in general.

Viscous Sod shock tube

In order to investigate the behavior of KEP schemes near their limits of applicability, i.e.
exact solutions with shocks, Allaneau and Jameson studied their performance for viscous
shock test cases e.g. in [4]. For finite volume approximations on coarse meshes, a comparison
of numerical fluxes gave better, oscillation-free, results in case of diffusive numerical fluxes.
However, the KEP flux (1.134) lead to stable computations whereas the regular central scheme
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Figure 1.3: KEP-DG approximate solutions for N = 1, Legendre-Gauss (40 cells) vs.
Legendre-Gauss-Lobatto nodes (80 cells) using the kinetic energy preserving flux f∗C . Left:
pressure. Right: kinetic energy.

blew up. In [4], high order DG schemes on coarse meshes where considered as well, where
again the KEP flux performed better than a regular central scheme in damping oscillations
due to odd/even decoupling. With these former investigations in mind, it should be interesting
to study DG schemes incorporating different skew-symmetric terms in addition to a kinetic
energy preserving numerical flux. Hence, we now consider a corresponding test case of a
viscous Sod shock tube. The system of equations to be solved is again the Navier-Stokes
equations as in the previous test case using a constant viscosity coefficient µ = 0.0001. The
initial conditions on the computational domain Ω = [0, 1] are given by

U(x, 0) =

{
Uleft for, x < 0.5,

Uright, otherwise,

with left and right states Uleft and Uright given by ρleft
vleft
pleft

 =

 1
0
1

 ,

 ρright
vright
pright

 =

 0.125
0

0.1

 .

Both of the computational boundaries are supplemented by inflow boundary conditions and
the computations are carried out until the final time tend = 0.15.

Figure 1.4 shows the DG solution for N = 1 on a coarse grid of 100 cells using the different
skew-symmetric terms (1.142) and (1.143) as well as the kinetic energy preserving KEP-VL
flux (1.137). We clearly see oscillations at the shock position produced by the DG scheme using
skew symmetric terms with inconsistent boundary treatment. No such instability phenomenon
is present in the case of the usual van Leer flux, see Figure 1.5a, whereas Figure 1.5b again
shows larger oscillations for the inconsistent boundary treatment when choosing the KEP
flux (1.134). For the DG scheme with N = 3 and 100 cells, the resolution is high enough and
the precise choice of numerical flux function has less effect as shown in Figure 1.6.
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Figure 1.4: DG scheme for N = 1 and 100 cells using different skew-symmetric terms and
kinetic energy preserving flux f∗C . Right: close-up at instability region.
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(a) Van Leer flux f∗V L.
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(b) Kinetic energy preserving KEP flux f∗A.

Figure 1.5: Numerical results given by the DG scheme for a polynomial degree of N = 1 on
100 cells using different skew-symmetric terms for two choices of the numerical flux function.
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Figure 1.6: Numerical results given by the DG scheme for a polynomial degree of N = 3
on 100 cells using correct skew-symmetric terms and two different choices of numerical flux
functions both having the KEP property.

1.4.3 Extension to cartesian grids in two space dimensions

The skew-symmetric, kinetic energy preserving DG scheme on Legendre-Gauss nodes easily
extends to two-dimensional cartesian grids using tensor-product basis functions Li(ξ)Lj(η) on
the reference element K = [−1, 1]2. In this case, a nodal DG scheme with an SBP property
may be constructed as in Section 1.2.4 based on the 1D formulation by using Kronecker
products. Applied to a skew-symmetric formulation of the Euler equations in two space
dimensions, this tensor-product DG formulation allows for a kinetic energy preserving DG
scheme in 2D with similar additional terms as in the 1D case. In particular, the necessary
boundary correction terms for the interior node distributions are a direct extension of the
one-dimensional case. In this section, we will derive this 2D extension. Furthermore, in
Section 1.4.4, the advantage of using a kinetic energy preserving scheme is demonstrated in
the context of two-dimensional turbulent flow.

For the construction of a kinetic energy preserving DG scheme on two-dimensional cartesian
grids, we consider the skew-symmetric form of the Euler equations in two space dimensions
given by

∂

∂t
ρ = − ∂

∂x
(ρv1)− ∂

∂y
(ρv2),

1

2

[
∂

∂t
(ρv1) + ρ

∂v1

∂t

]
= −1

2

[
∂

∂x
(ρv2

1) + ρv1
∂v1

∂x

]
− 1

2

[
∂

∂y
(ρv1v2) + ρv2

∂v1

∂y

]
− ∂p

∂x
,

1

2

[
∂

∂t
(ρv2) + ρ

∂v2

∂t

]
= −1

2

[
∂

∂x
(ρv1v2) + ρv1

∂v2

∂x

]
− 1

2

[
∂

∂y
(ρv2

2) + ρv2
∂v2

∂y

]
− ∂p

∂y
,

∂

∂t
(ρE) = − ∂

∂x
(ρv1E + v1p)−

∂

∂y
(ρv2E + v2p).
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The scheme (1.73) applied to the continuity equation is given by

∆x∆y

4

d

dt
u1 + Dξf

ξ
1 + Dηf

η
1 = M−1

〈(
nξf

ξ
1,h + nηf

η
1,h − f

∗
1

)
L(ξ, η)

〉
∂K

In the same manner, we may discretize the energy equation as it is given in divergence form.
For the skew-symmetric forms of the momentum equations, discretization of ∂

∂x by Dξ and
∂
∂y by Dη as well as interface terms corresponding to the right-hand side of (1.73) yield

∆x∆y

4

1

2

[
du2

dt
+ u

1

dv1

dt

]
+

1

2

[
Dξ ρv2

1 + u
2
Dξv1 + Dη u

3
v1 + u

3
Dηv1

]
+ Dξp

= M−1
〈

(nξg
ξ
2,h + nηg

y
2,h − g

∗
2)L
〉
∂K

,

(1.147)

and

∆x∆y

4

1

2

[
du3

dt
+ u

1

dv2

dt

]
+

1

2

[
Dξ u

2
v2 + u

2
Dξv2 + Dη ρv2

2 + u
3
Dηv2

]
+ Dηp

= M−1
〈

(nξg
ξ
3,h + nηg

η
3,h − g

∗
3)L
〉
∂K

,

(1.148)

with terms g2,h, g
∗
2, g3,h, g

∗
3 to be specified. As in the 1D case, multiplication of the semi-

discrete continuity equation from left by 1
2v

1
, adding the result to (1.147) and using continuity

in time, we have

∆x∆y

4

du2

dt
+ Dξf

ξ
2 + Dηf

η
2 + sξ2 + sη2

= M−1

(〈
(nξg

ξ
2,h + nηg

η
2,h − g

∗
2)L
〉
∂K

+
1

2
v

1

〈
(nξf

ξ
1,h + nηf

η
1,h − f

∗
1 )L

〉
∂K

)
,

with skew-symmetric terms sξ2, s
η
2 given by

sξ2 =
1

2

[
−Dξ u

2
v1 + u

2
Dξv1 + v

1
Dξu2

]
,

sη2 =
1

2

[
−Dη u

3
v1 + u

3
Dηv1 + v

1
Dηu3

]
.

Using the SBP properties of Dξ and Dη a corresponding weak formulation may be obtained.
Analogous to the 1D case, we multiply by the diagonal matrix M to obtain

∆x∆y

4
M
du2

dt
+ (Bξ − STξ )

(
f ξ2 −

1

2
u

2
v1

)
+ (Bη − STη )

(
fη2 −

1

2
u

3
v1

)
+

1

2

[
u

2
Sξv1 + v

1
(Bξ − STξ )u2 + u

3
Sηv1 + v

1
(B− STη )u3

]
=

(〈
(nξg

ξ
2,h + nηg

η
2,h − g

∗
2)L
〉
∂K

+
1

2
v

1

〈
(nξf

ξ
1,h + nηf

η
1,h − f

∗
1 )L

〉
∂K

)
.

(1.149)
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Choosing gξ2,h =
(

1
2ρv

2
1 + p

)
h

and gη2,h =
(

1
2ρv1v2

)
h

in accordance with the 1D case and using
Lemma 1.13 to cancel out boundary terms yields

∆x∆y

4
M
du2

dt
= STξ

(
f ξ2 −

1

2
u

2
v1

)
+ STη

(
fη2 −

1

2
u

3
v1

)
− 1

2

[
u

2
Sξv1 − v

1
STξ u2 + u

3
Sηv1 − v

1
STη u3

]
−
(
〈g∗2L〉∂K +

1

2
v

1
〈f∗1 L〉∂K

)
.

(1.150)

Multiplying (1.150) from left with 1T cancels the volume terms and we obtain

∆x∆y

4
1TM

du2

dt
= −

(〈
g∗21TL

〉
∂K

+
1

2
vT1 〈f∗1 L〉∂K

)
= −

〈(
g∗2 +

1

2
v1,hf

∗
1

)
L

〉
∂K

.

Hence consistency demands g∗2 = f∗2 − v1,hf
∗
1 in accordance with the one-dimensional case.

Analogous derivations for the y-direction of the momentum equations yield the corresponding
weak formulation

∆x∆y

4
M
du3

dt
= STξ (f ξ3 −

1

2
u

2
v2) + STη (fη3 −

1

2
u

3
v2)

− 1

2

[
u

2
Sξv2 − v

2
STξ u2 + u

3
Sηv2 − v

2
STη u3

]
−
〈(

f∗3 I +
1

2

(
v

2
− v2,hI

)
f∗1

)
L

〉
∂K

.

(1.151)

Furthermore, the same derivations as in the 1D case yield a semi-discrete balance equation
for the kinetic energy ekin = 1

2ρ
(
v2

1 + v2
2

)
. Similar to equation (1.130) we arrive at

d

dt
1TMekin =

(
(Dξv1)T + (Dηv2)T

)
Mp− vT1 〈g∗2L〉∂K − vT2 〈g∗3L〉∂K .

Hence, for a correct kinetic energy balance the left and right-hand sided transport terms within
the surface fluxes have to cancel out as in the 1D case. Decomposing g∗,±2 = g̃∗,±2 + nξp

∗ and
g∗,±3 = g̃∗,±3 + nηp

∗ with g̃∗,±k = f̃∗k −
1
2v
±
k−1f

∗
1 a condition of the form

v−1 g̃
∗,−
2 + v−2 g̃

∗,−
3 = v+

1 g̃
∗,+
2 + v+

2 g̃
∗,+
3

needs to be fulfilled. Thus, a suitable choice for kinetic energy preservation similar to the 1D
case is

f̃∗k = v̄k−1f
∗
1 , k = 2, 3.

In particular, this holds for the KEP flux using rotational invariance of the Euler equations.
This numerical flux is given by

f∗1
f∗2
f∗3
f∗4

 =


f∗,1D1 (u−, u+, n)

nξf
∗,1D
2 (u−, u+, n)− nηf∗,1D3 (u−, u+, n)

nηf
∗,1D
2 (u−, u+, n) + nξf

∗,1D
3 (u−, u+, n)

f∗,1D4 (u−, u+, n)

 ,
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where f∗,1D denotes the 1D KEP flux in normal direction

f∗1D,1 = ρ̄v̄n,

f∗1D,2 = ρ̄v̄2
n + p̄,

f∗1D,3 = ρ̄v̄nv̄t,

f∗1D,4 = ρ̄v̄nH̄,

using the normal and tangential velocity vn = nξv1 + nηv2 and vt = nξv2 − nηv1.

1.4.4 Numerical simulation of 2D homogeneous turbulence

Two-dimensional homogeneous turbulence is an energy-decaying system which is extensively
used to study accuracy and efficiency of numerical methods, e.g. in [88, 170, 215]. Our
purpose is to demonstrate the improved resolution of the proposed kinetic energy preserving
skew-symmetric DG scheme for this test case compared to the standard DG scheme. The
computational domain is the square [0, 2π]2 supplied with periodic boundary conditions. The
initial energy spectrum is given in Fourier space by

E(k) =
as
2

1

kp

(
k

kp

)2s+1

exp

[
−
(
s+

1

2

)(
k

kp

)2
]
,

where k =
√
k2
x + k2

y. The initial energy spectrum attains its maximum at the wavenumber

kp. As in the references, the parameters are set to kp = 12, as = (2s+1)s+1

2ss! , s = 3. From this
initial energy spectrum an initial velocity distribution is obtained using transfer procedures
described in [88, 170] where a random phase is introduced into the vorticity field. The initial
velocity distribution in physical space is then given by the inverse Fourier transform. For
the compressible flow computations the initial density is set to ρ0 = 1 while the pressure is
computed setting the initial Mach number to Ma = 0.1. The viscosity coefficient µ may be
varied to study the quality of the numerical solutions for different Reynolds numbers. We then
compute the numerical solution to this test problem both with the standard DG scheme and
the kinetic energy preserving skew-symmetric DG scheme based on the Legendre-Gauss nodes
until time T = 10. The resulting energy spectrum E(k) at this final time is then computed
from the velocity distribution by the same procedures as in [170]. Figure 1.7 depicts the
comparison of the standard DG scheme on Legendre-Gauss nodes for N = 1 and its kinetic
energy preserving variant KEP-DG in terms of their energy spectrum for a lower Reynolds
number of Re = 100. A reference solution is obtained by the standard DG scheme of 5th order
on 80 grid cells. A more accurate representation of the energy spectrum is obvious for the
second order KEP-DG scheme, both on the very coarse grid with 40 cells and on the finer one
of 80 cells. Figure 1.8 shows the corresponding comparison of the second order standard DG
scheme vs. the KEP-DG scheme on Legendre-Gauss points for Re = 600. Now, the reference
solution is obtained by the standard 5th order DG scheme on 160 grid cells, although this
numerical solution is indistinguishable from the one on 80 grid cells in this case. Also for the
higher Reynolds number, the energy spectrum is represented more accurately by the KEP-DG
scheme.
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Figure 1.7: Comparison of DG scheme and KEP-DG on Legendre-Gauss nodes for N = 1 and
Re = 100. Energy spectrum at time T = 10. Left: 40 cells. Right: 80 cells.
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Figure 1.8: Comparison of DG scheme and KEP-DG on Legendre-Gauss nodes for N = 1 and
Re = 600. Energy spectrum at time T = 10. Left: 80 cells. Right: 160 cells.
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1.4.5 Extension to moving grids: application to fluid-structure interaction

The interaction between a moving piston attached to a spring and an inviscid fluid contained
in the piston chamber is a classical test case in the context of fluid-structure interaction which
is described for instance in [112, 19]. The coupled piston problem and its one-dimensional
set-up are illustrated in Figure 1.9, where L0 denotes the chamber length at rest and q(t)
is the piston position at time t. Since the computational domain Ω(t) = [−L0, q(t)] is time
dependent, the position of the equidistant grid nodes x1 = x1(t), . . . , xK+1 = xK+1(t) of the
spatial discretization also varies in time.

x1 x2 xi xi+1 xK xK+1

L0 0 q(t)

Figure 1.9: One-dimensional piston problem.

In the mathematical formulation of the classical piston problem, the fluid is described by the
one-dimensional inviscid Euler equations while the displacement of the piston is modeled by
an undamped harmonic oscillator.

On the moving grid, the Euler equations are now given in arbitrary Lagrangian-Eulerian (ALE)
formulation according to the introductory paper by Lefrançois and Boufflet [112]. Using a
reference coordinate ξ = ξ(x, t) ∈ [0, L] on the fixed domain given by the state at rest, this
formulation of the Euler equations in one space dimension is

∂

∂t
(JU) + J

∂

∂x
F̂(U, w) = 0, (1.152)

where J = J(x, t) denotes the Jacobian of the grid motion and w = w(x, t) refers to the local
domain velocity specified by

J =
∂x(ξ, t)

∂ξ
, w =

∂x(ξ, t)

∂t
.

In the ALE formulation (1.152), the vector of conserved variables U = (ρ, ρv, ρE)T is unaltered
in comparison to the formulation (1.144) on fixed grids whereas the adjusted flux vector F̂
defined by

F̂(U, w) =

 ρ(v − w)
ρv(v − w) + p
ρE(v − w) + vp


now takes into account the relative velocity v̂ = v − w due to grid motion.

The piston displacement is modeled by a mass-spring system driven by the difference of the
ambient pressure pA to the pressure pI inside the chamber at the interface. Denoting the
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piston displacement by q(t), its behavior is therefore described by the second-order linear
ODE

mq̈ + kq = A(pI − pA) , (1.153)

with mass m, stiffness k and cross-sectional area A, and the initial conditions

q(0) = q0, q
′(0) = r0 .

Coupling conditions for this fluid-structure interaction problem are specified by enforcing

x(ξ = L, t) = q(t) ,

x(ξ = 0, t) = −L0 ,

for the moving right chamber boundary and the fixed left-hand side of the chamber, respec-
tively. For the coupling between the local domain velocity w and the fluid velocity v at the
chamber boundaries, we therefore demand

w(q(t), t) = q̇(t) = v(q(t), t) ,

w(−L0, t) = 0 = v(−L0, t) .

Concerning the grid movement, the most natural choice is to set

x(ξ, t) =
ξ + L0

L0
(q(t) + L0)− L0 , (1.154)

whereby we obtain a space invariant grid Jacobian

J(x, t) =
∂x(ξ, t)

∂ξ
=
q(t) + L0

L0
, (1.155)

which facilitates the set-up of the DG scheme.

In the following, we again employ a DG space discretization for the fluid equations in standard
and in skew-symmetric form, where the grid nodes in Figure 1.9 are the element boundaries of
the time-dependent DG cells Ii(t) = [xi(t), xi+1(t)]. For a fixed grid, this notation is consistent
with the one introduced in Section 1.2.1. Now, the reference cell [−1, 1] is mapped to the cells
Ii(t) by the transformation

Λi

(
ξ̃, t
)

= ξ̃
xi+1(t)− xi(t)

2
+
xi(t) + xi+1(t)

2
, ξ̃ ∈ [−1, 1] , (1.156)

analogous to the definition in (1.43).

Reusing the notation for the mass matrix M and the first-derivative operator D introduced
in Section 1.2.1, the DG space discretization of the compressible Euler equations on moving
domains in ALE formulation is now given by

∆x

2

d

dt
(Juk) + Df̂k + ŝk = M−1

(
[(f̂k,h − f̂∗k )L]1−1 + ŝbck

)
, k = 1, 2, 3,
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with modified nodal flux evaluations f̂k, interpolated fluxes f̂k,h and numerical fluxes f̂∗k , taking
into account the relative fluid velocity, as well as correspondingly adjusted skew-symmetric
volume terms ŝk and boundary corrections ŝbck . More precisely, the nodal flux evaluations are
given by

f1 = ρ v̂, f2 = ρv v̂ + p, f3 = ρE v̂ + vp,

incorporating the relative nodal velocity v̂ = v − w, while the interpolated fluxes f̂k,h and

numerical fluxes f̂∗k are modified accordingly. Furthermore, for the standard DG scheme, we
set

ŝk = ŝbck = 0, k = 1, 2, 3,

while for the skew-symmetric variant, only for the momentum equation, the skew-symmetric
volume term and boundary correction are nonzero, setting

ŝ2 =
1

2

[
−Dρv v̂ + ρ v̂ Dv + vDρ v̂

]
,

ŝbc2 =
1

2

(
v[(f̂1,h − f̂∗1 )L]1−1 − [(ρvv̂)h − v±f̂∗1 )L]1−1

)
.

For time discretization of the coupled system, we employ a partitioned scheme based on
the explicit second-order Heun method for the semi-discrete fluid equations and the implicit
trapezoidal rule for the structure ODE. While the structure displacement determines the
displacement of the equidistant fluid grid nodes, calculation of the mesh velocity obeys the
geometric conservation law.

Collecting the fluid unknowns into the vector u = (u1,u2,u3)T , the DG semi-discretization
can be written as a system of ordinary differential equations, if the grid velocity w and the
grid Jacobian J are known. This system of ODEs has the form

d

dt
u = g{f} (u,w, J) . (1.157)

Furthermore, we may transform the second-order linear ODE (1.153) into a system of first-
order ODEs for the vector of unknowns q = (q, q̇)T . Thus, we have

d

dt
q = g{s} (u,q) =

(
0 1

− k
m 0

)
q +

(
0

A
m (pI(u)− pA)

)
. (1.158)

These two systems of ODEs are obviously coupled, since the interface pressure pI = pI(u)
required in (1.158) is defined by the fluid solution while the arguments w, J of the right-hand
side of the fluid equations (1.157) are related to the piston position by (1.154).

Time integration is now carried out by the following partitioned Runge-Kutta (RK) scheme
with coefficients listed in the Butcher array (1.159), employing explicit discretization of the
fluid equations (1.157) and implicit discretization of the structure equations (1.158).

c1 a
{f}
1,1 a

{f}
1,2 a

{s}
1,1 a

{s}
1,2

c2 a
{f}
2,1 a

{f}
2,2 a

{s}
2,1 a

{s}
2,2

b
{f}
1 b

{f}
2 b

{s}
1 b

{s}
2

=

0 0 0 0 0
1 1 0 1/2 1/2

1/2 1/2 1/2 1/2

(1.159)
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This is a particular implicit-explicit Runge-Kutta (IMEX-RK) scheme which will be discussed
in more detail in Section 3.2 regarding the time discretization of advection-diffusion problems.
Its precise implementation is given in Algorithm 1.1 which lists one step of this scheme when
applied to the coupled system of ODEs resulting from the piston problem. Hereby, the grid
Jacobian and mesh velocity needed by the fluid equations are computed from the structure
states. While the grid Jacobian is simply obtained by evaluating (1.155) at the current piston
position, the computation of the mesh velocity is more elaborate. Using the piston positions
both at time tn and at an intermediate time corresponding to the fluid stage, Algorithm 1.2
provides the nodal velocities of the DG nodes needed in order to compute the current fluid
stage derivative. Regarding this computation, in Algorithm 1.1, Line 4, and Algorithm 1.2,
Line 4, we employ the notation

a
{f}
3,k = b

{f}
k , k = 1, 2,

for code simplification.

Applying partitioned time integration schemes to coupled problems as in the context of fluid-
structure interaction accounts for the fact that the involved subsystems may considerably
deviate in terms of their time scales or stiffness properties. Considering the moving piston
test case, several forms of mixed time integration approaches have been suggested. In [221],
an IMEX-RK approach similar to the above was used, discretizing the fluid and structure
equations in time by the same implicit scheme but realizing the coupling of the two physi-
cal fields in an explicit way. A similar IMEX procedure was used in [58]. In [161, 160], a
multirate scheme referred to as subcycling was used to advance the fluid with small explicit
time steps while an implicit scheme was employed to discretize the structure equations using
large time steps. More recently, in [25], the moving piston test case was discretized in time by
the so-called GARK framework [171] which is a generalized-structure approach to additively
partitioned Runge-Kutta methods. The resulting scheme combines IMEX and multirate ap-
proaches while coupling of the subproblems is realized both on the level of the discrete time
steps and at the level of interior Runge-Kutta stages.

The procedure to compute the mesh velocity as described in Algorithm 1.2 is designed to
satisfy the so-called geometric conservation law (GCL) in the discrete sense. The GCL is a
partial differential equation which has first been formulated by Thomas and Lombard in [193]
and basically states that arbitrary mesh motion does not disturb uniform flow. Hence, a
corresponding discrete statement is that no disturbances should be introduced by the mesh
motion in case of uniform flow, see for instance [129]. The computation of the GCL com-
pliant mesh velocity in Algorithm 1.2 is adapted from the procedure by van Zuijlen and Bijl
in [221], where IMEX time integration is applied to the piston problem with finite volume
space discretization of the fluid equations. Slight differences between the computation of mesh
velocities in Algorithm 1.2 and in [221] are due to the fact that [221] employs implicit time
discretization both to the fluid equations and the structure equations, and only handles the
coupling procedure explicitly.

In the following numerical experiments, the influence of the fluid discretization on the structure
displacement is investigated. Extending the classical moving piston test case, we now assume
viscous compressible fluid flow. Therefore, the fluid equations (1.152) are extended to the
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Algorithm 1.1 Partitioned RK step for piston problem

Input: un,qn,∆t
Output: un+1,qn+1

1: for j = 1,2 do

2: z(j) ← ∆tg{s}
(
un +

∑2
k=1 a

{f}
j,k r(k), qn +

∑2
k=1 a

{s}
j,k z(k)

)
3: J (j) ← z(j)+L0

L0

4: w(j) ← MeshVelocity
(
qn,qn +

∑2
k=1 a

{f}
j+1,k r(k),

∑j−1
k=1 a

{f}
j+1,k w(k),∆t, j

)
5: r(j) ← ∆tg{f}

(
un +

∑2
k=1 a

{f}
j,k r(k), w(j), J (j)

)
6: end for
7: un+1 ← un +

∑2
j=1 b

{f}
j r(j)

8: qn+1 ← qn +
∑2

j=1 b
{s}
j z(j)

Algorithm 1.2 MeshVelocity

Input: structure states qn,q{f}, lower stage velocities w{f},∆t, stage s
Output: current mesh velocity w

1: Compute old grid nodes by xn by xni = −L0 + (i− 1)
qn1 +L0

K

2: Compute new grid nodes by x{f} by x
{f}
i = −L0 + (i− 1)

q
{f}
1 +L0

K

3: Transfer xn, x{f} to global vectors of DG nodes Xn, X{f} via (1.156)

4: w←
(
a
{f}
s+1,s

)−1 (
1

∆t

(
X{f} −Xn

)
−w{f}

)

compressible Navier-Stokes equations

∂

∂t
(JU) + J

∂

∂x
F̂(U, w) = J

∂

∂x
Fvisc(U,Ux), (1.160)

which is the ALE formulation of the compressible Navier-Stokes equations on fixed grids
defined in (1.145). The viscous fluxes Fvisc(U,Ux) are again defined by (1.146), where the
viscosity coefficient is now set to µ = 0.001, whereas the adiabatic coefficient γ and the Prandtl
number Pr are set to γ = 1.4 and Pr = 0.72 as in Section 1.4.2.

The further parameters of the moving piston test case are set to

m = 0.1, k = 1.0, A = 0.02, pA = 1.0, L0 = 1.0 ,

and the initial conditions to

ρ0(x) = 1.0, v0(x) = 0.0, p0(x) = 1.0, for all x ∈ Ω(0), q0 = 0.0, r0 = 0.01 .

With respect to space discretization of the fluid equations, different variants of piecewise linear
DG approximation are used – the skew-symmetric variant is combined with the Jameson KEP
flux to obtain the KEP-DG scheme, while the standard DG scheme uses a Lax-Friedrichs flux
function. Both Legendre-Gauss (LG) and Legendre-Gauss-Lobatto (LGL) nodal distributions
are used.
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Figure 1.10: Comparison of FV and DG
scheme.
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Figure 1.11: KEP-DG scheme vs. standard
DG scheme on LG nodes.
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Figure 1.12: Standard DG scheme on LG vs.
LGL nodes.
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Figure 1.13: KEP-DG scheme on LGL nodes
vs. standard DG scheme on LG nodes.

Figures 1.10 to 1.13 show the structural displacement for the various fluid discretizations.
The results are furthermore compared to a reference solution which is obtained by the stan-
dard fourth-order DG scheme on 500 cells. Furthermore, Figure 1.10 depicts the structural
displacement until the final time T = 150 and thereby illustrates the amount of dissipation
introduced by a first order finite volume discretization on 80 equidistant cells compared to
the second order standard DG scheme on only 10 cells. For a fair comparison, time inte-
gration uses the same time step for both spatial discretizations. A higher order scheme is
hence mandatory to capture the long term oscillations in the structure. Figure 1.11 shows a
comparison of the KEP-DG and the standard DG scheme on LG nodes (again on 10 cells)
for a time span from t = 138 to t = 150 with no significant differences. However, for the
LGL nodes, Figure 1.12 and Figure 1.13 show considerable differences between the KEP-DG
scheme and the standard DG scheme as the frequency of the structure displacement for the
kinetic energy preserving variant is closer to the reference solution. The KEP property is thus
beneficial regarding the less accurate DG scheme on Legendre-Gauss-Lobatto nodes.
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Figure 1.14: LGL DG schemes vs FV scheme.
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Figure 1.15: LGL KEP-DG scheme vs LG
DG schemes.

For the DG scheme on LGL nodes, the increase in accuracy regarding the piston displacement
for the KEP variant in comparison to the standard DG scheme has to be attributed to a more
accurate fluid approximation in this case. In fact, Figures 1.14 and 1.15 show the pressure
distribution with respect to the fixed reference domain [−L0, 0] = [−1, 0] at time T = 40
for the investigated DG schemes as well as the finite volume scheme for comparison. In
this regard, Figure 1.14 shows that in case of the DG scheme on LGL nodes, the standard
DG scheme produces a solution which is closer to the dissipative first order finite volume
scheme while the solution of KEP-DG scheme is closer to the reference solution and also to
the approximate solution produced by the DG scheme on LG nodes, as shown in Figure 1.15.
Since the piston displacement is influenced by the interface pressure, the significant reduction
of numerical dissipation introduced to the fluid approximate solution by the KEP-DG scheme
transfers to higher accuracy of the approximate structure solution. In addition, Figure 1.15
compares the LGL KEP-DG solution to the approximations produced by the two variants
of the DG scheme using the more accurate LG nodes. Here, the results show that both DG
variants using LG nodes are more accurate than the LGL KEP-DG scheme. Thus, the higher
degree of exactness of the DG quadrature rule pays off for this test case.

1.5 Energy conservative approaches for the shallow water equa-
tions

The preservation of specific secondary quantities in addition to the primary conserved ones
is also of interest in case of the shallow water equations which will be discussed in more
detail in Chapter 4 where the focus is put on the simulation of wetting and drying shallow
water flows. In fact, while the shallow water equations represent a system of conservation
laws consisting of a continuity and a momentum equation which describe the evolution of the
water height and the discharge, respectively, we may derive an additional conservation law for
the evolution of the total energy which is fulfilled for smooth solutions. However, discretizing
the given continuity and momentum equations by conservative schemes does not necessarily
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yield a discrete analog of energy conservation. Nonetheless, preventing excessive energy gain
or loss may become crucial both from the viewpoint of a theoretical stability analysis and with
regard to an accurate simulation of practically relevant fluid flows. For instance, in [79], van’t
Hof and Veldman argue that respecting both momentum and energy balance is of particular
importance for rapidly varied shallow water flows and therefore design a mass, momentum
and energy conservative (MaMEC) scheme on staggered grids.

The total energy furthermore represents an entropy function for the shallow water equations
and resumes an important role if the exact solution develops discontinuities. In this case,
the notion of a solution is extended to weak solutions derived from the integral form of the
conservation law and uniqueness is lost. The uniqueness of the physically relevant solution is
then recovered by the enforcement of an entropy inequality. In particular, for the shallow water
equations, the entropy inequality dictates that the total energy should be dissipated across
shock discontinuities. A numerical scheme which satisfies a discrete version of the entropy
inequality is called entropy stable whereas entropy conservative schemes satisfy a discrete
entropy conservation law and thus a discrete version of an entropy equality. Since Tadmor’s
pioneering papers [189, 190], entropy conservative schemes have been used as an important
building block to devise entropy stable schemes using a comparison principle which roughly
states that a finite volume scheme is entropy stable if it contains more numerical diffusion
than present in an entropy conservative one, where “more” is to be understood in the sense
of ordering between symmetric matrices.

Along this route, in [57], the concept of entropy conservation has been used to construct
entropy stable finite volume schemes for the shallow water equations with discontinuous to-
pography. As a second major contribution of [57], a relation has been detected between energy
conservation and the preservation of moving water equilibria of the shallow water equations.
This is an important aspect since designing numerical schemes which preserve the physically
relevant equilibrium states prevents the production of artificial disturbances close to these
stationary solutions.

The classical conservative form of the shallow water equations with non-constant bottom
topography is given by

Ht + (Hv)x = 0, (1.161)

(Hv)t +

(
Hv2 +

1

2
gH2

)
x

= −gHbx, (1.162)

where H denotes the water height above the bottom elevation b, while g denotes the grav-
itational constant and v the flow velocity. The resulting skew-symmetric momentum for-
mulation will be given in Section 1.5.1 and other practically relevant formulations will be
discussed in Section 4.1. All stationary solutions of the one-dimensional system of equa-
tions (1.161), (1.162) are characterized by the algebraic relations

q := Hv ≡ const, p :=
v2

2
+ g(H + b) ≡ const , (1.163)

where q and p are referred to as the equilibrium variables. The most important special case
of these stationary solution is the so-called lake at rest solution with zero flow velocity and
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constant water surface, i.e.

v ≡ 0, H + b ≡ const . (1.164)

A failure to preserve this particularly relevant stationary solution will most certainly result
in severely disturbed simulations of slightly perturbed lake at rest situations, such as tsunami
waves in deep ocean, unless extremely fine computational grids are used. Therefore, con-
temporary schemes for the simulation of shallow water flows are generally designed to be
well-balanced, i.e. preserve the steady state solution (1.164) due to its significance. The de-
sign of numerical schemes preserving the more general moving water equilibria characterized
by (1.163) is significantly more difficult. Examples of numerical schemes which preserve these
general stationary solutions are the finite volume scheme [142] by Noelle et al. and the DG
scheme [211] by Xing which are both based on the technique of hydrostatic reconstruction
also briefly discussed in Section 4.3.1. The energy conservative and energy stable numeri-
cal schemes constructed by Fjordholm et al. in [57] also preserve the general equilibrium
states (1.163) of the one-dimensional shallow water equations but do not require a hydro-
static reconstruction. Thus, the energy conservative approach results in a remarkably simple
formulation of an equilibrium preserving scheme. In the following, we will refer to numerical
schemes preserving the general steady state solutions (1.163) as being well-balanced for mov-
ing water equilibria while numerical schemes preserving the special case (1.164) will simply
be called well-balanced.

The use of energy conservation to construct well-balanced numerical schemes with or with-
out the inclusion of moving water equilibria will be theoretically analyzed and numerically
investigated in the following. First, Section 1.5.1 presents an approach based on the skew-
symmetric formulation of the shallow water equations which are discretized in space by the
DG scheme on Legendre-Gauss nodes having a generalized SBP property as demonstrated in
Section 1.2.1. This scheme is well-balanced without the necessity to use hydrostatic recon-
struction in contrast to the schemes discussed in Section 4.3.1 and 4.3.2. However, it is not
possible to prove well-balancedness for moving water equilibria for this scheme.

Second, Section 1.5.2 deals with the already mentioned MaMEC scheme [79] by van’t Hof
and Veldman. This scheme has been constructed with the sole purpose of providing global
and local energy conservation in addition to already guaranteed local mass and momentum
conservation and the authors do not refer to the issue of well-balancedness in their work.
While [79] also compares the MaMEC scheme to a naive finite volume formulation which turns
out to disrespect the preservation of the lake at rest equilibrium, the question of provable well-
balancedness with or without the inclusion of moving water equilibria remains for this specific
scheme. A positive answer regarding simplified staggered grids will be given in Section 1.5.2,
proving that the MaMEC scheme is indeed well-balanced for moving water equilibria.

1.5.1 A well-balanced and energy conservative DG scheme on Legendre-
Gauss nodes for shallow water flow

Analogously to the discrete preservation of the kinetic energy balance in case of the Euler
equations as discussed in Section 1.4, we may achieve total energy preservation in the dis-
crete sense for the shallow water equations by using a suitable skew-symmetric form of these
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equations and a space-discretization having an SBP property. In this spirit, in [68], the SBP
property of the DG scheme on Legendre-Gauss-Lobatto nodes is used to construct a high order
entropy preserving numerical method for the shallow water equations in one space dimension
which is provably well-balanced regarding still water equilibria, i.e. preserves lake at rest sta-
tionary solutions. The considered entropy function is thereby given by the total energy. Fur-
thermore, several variants of entropy stable and well-balanced split-form semi-discretizations
based on generalized SBP operators have been designed in [165]. In the following, we present
the construction carried out in [153] of an entropy preserving, well-balanced DG scheme on
Legendre-Gauss nodes for shallow water flow, based on the generalized SBP property of the
DG scheme on Legendre-Gauss nodes as derived in Section 1.2.1. Thus, the construction of
entropy preserving well-balanced DG schemes based on a skew-symmetric from of the shallow
water equations is not restricted to nodal distributions containing the boundary nodes of DG
cells.

Skew-symmetric formulation of the shallow water equations

Using the product rule, it is possible to derive from the divergence form (1.161), (1.162) of
the shallow water equations the skew-symmetric formulation of the momentum equation

1

2
[(Hv)t +Hvt] +

1

2

[
(Hv2)x +Hvvx

]
+ gH(H + b)x = 0. (1.165)

In [68], this formulation is used to derive an entropy preserving, well-balanced DG scheme
on Legendre-Gauss-Lobatto nodes using the summation-by-parts property. Hereby, entropy
preservation refers to the preservation of total energy e which represents an entropy function
for the shallow water equations. The total energy e = k+ p is composed of the kinetic energy
k = 1

2Hv
2 and the potential energy p = 1

2gH
2 + gHb.

The DG scheme on Legendre-Gauss nodes uses a quadrature rule of higher degree of exactness
but the set of nodes does not include the cell boundaries. However, the same derivations as
on [68] can be carried out in order to obtain the desired properties. Given a specific DG cell,
we now collect the nodal values of the water height and the discharges into the vectors

u1 = h = (H1, . . . ,HN+1)T ,

u2 = h v = (H1v1, . . . ,HN+1vN+1)T .

Furthermore, the nodal values of the flux functions are given by

f1 = h v ,

f2 = h v2 +
g

2
h2 .

Discretizing the skew-symmetric formulation (1.161), (1.165) by the DG scheme (1.53) and
reusing the respective notation of Section 1.2.1, we obtain

∆x

2

du1

dt
+ D f1 = M−1[(f1,h − f∗1 )L]1−1 ,

(1.166)

∆x

2

1

2

(
du2

dt
+ h

dv

dt

)
+

1

2

(
D h v2 + h v D v

)
+ gh D(h + b) = M−1[(kh − k∗)L]1−1, (1.167)
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where kh and k∗ are not yet specified.

Multiplying the above semi-discrete continuity equation by 1
2v and adding this to the skew-

symmetric momentum equation yields, due to time continuity,

∆x

2

du2

dt
+ D f2 +

1

2
sHv,v +

g

2
sH,H + gh D b

= M−1

(
[(kh − k∗)L]1−1 +

1

2
v[(f1,h − f∗1 )L]1−1

)
,

(1.168)

where sHv,v = −D h v2 + h v D v + v D h v and sH,H = −D h2 + 2h D h.

Mass and momentum balance

Now, the semi-discrete continuity equation (1.166) is obtained by applying the standard DG
scheme to the continuity equation (1.161) in divergence form, hence mass preservation is auto-
matically guaranteed. For the momentum balance we consider the additional skew-symmetric
discrete terms in equation (1.168) which have the form

sα,β = −Dαβ + αDβ + βDα

mimicking the product rule. We have

1TM sα,β = 1TM
(
−Dαβ + αDβ + βDα

)
= 1T

[(
DTM−B

)
αβ + α

(
B−DTM

)
β + βM Dα

]
= −1TBαβ + αT Bβ .

(1.169)

In case of interior node distributions, the boundary matrices B are generally not diagonal and
1TM sα,β 6= 0. Therefore, boundary correction terms have to be added to the right-hand side
of the DG scheme. Using (1.169), we have

1TM sHv,v = 1TM sv,Hv = −1TB h v2 + vT B f1 ,

1TM sH,H = −1TB h2 + hT B h .

From (1.168) we derive that for constant bottom topography, D b = 0, the contribution of
the volume terms to the change of momentum within a DG cell sums up to

1TM

(
D f2 +

1

2
sHv,v +

g

2
sH,H

)
=

1

2
1TB h v2 +

1

2
vTB f1 +

g

2
hTB h . (1.170)

Furthermore, as 1T
(

1
2v[(f1,h − f∗1 )L]1−1

)
= 1

2vTB f1 − 1
2 [vhf

∗
1 ]1−1, we may choose

kh =
1

2

(
(Hv2)h + g(Hh)2

)
= f2,h −

1

2
(Hv2)h +

g

2

(
(Hh)2 − (H2)h

)
, (1.171)

k∗(±1) = f∗2 −
1

2
vh(±1)f∗1 , (1.172)
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in order to obtain for the surface terms

1T
(

[(kh − k∗)L]1−1 +
1

2
v[(f1,h − f∗1 )L]1−1

)
=

1

2
1TB h v2 +

g

2
hT [HhL]1−1 −

[
f∗2 −

1

2
vhf

∗
1

]1

−1

+
1

2
vTB f1 −

1

2
[vhf

∗
1 ]1−1

=
1

2
1TB h v2 +

g

2
hTB h +

1

2
vTB f1 + [f∗2 ]1−1 .

(1.173)

Comparing (1.170) and (1.173), the change of momentum within a cell directly corresponds
to momentum fluxes across the cell boundaries. In addition, the numerical flux f∗2 is unique
on each cell boundary. Therefore, for constant bottom topography, momentum is conserved.

The final form of the skew-symmetric semi-discrete momentum equation is thus given by

∆x

2

du2

dt
+ D f2 +

1

2
sHv,v +

g

2
sH,H + gh D b = M−1[(f2,h − f∗2 )L]1−1 + M−1sbc , (1.174)

with the cell boundary correction term

sbc =
1

2
v[(f1,h − f∗1 )L]1−1 −

1

2

[(
(Hv2)h − vhf∗1 − g(Hh)2 + g(H2)h

)
L
]1
−1

.

Conservation of total energy as an entropy function

As already stated, an entropy function for the shallow water equations is given by the total
energy composed of the kinetic energy k = 1

2Hv
2 and the potential energy p = 1

2gH
2 + gHb.

In the following, we consider these terms separately. The semi-discrete kinetic energy balance
can be reconstructed from the initial momentum discretization (1.167) multiplied by v, since
d
dtk = 1

2(v du2
dt + u

2
dv
dt ). We have

∆x

2

dk

dt
+

1

2
v
(
D h v2 + h v D v

)
+ gh v D(h + b) = M−1v[(kh − k∗)L]1−1 .

The semi-discrete potential energy balance can be obtained from the semi-discrete continuity
equation multiplied by g(h + b) since d

dtp = g(h + b)dhdt . We obtain

∆x

2

dp

dt
+ g(h + b)D f1 = M−1g(h + b)[(f1,h − f∗1 )L]1−1 .

For the total energy, we hence obtain

∆x

2

de

dt
+ D

(
1

2
h v3 + gu

2
(h + b)

)
+

1

2
sv,Hv2 + gsHv,H+b

= M−1v[(kh − k∗)L]1−1 + M−1g(h + b)[(f1,h − f∗1 )L]1−1 .

Considering the cell means, using (1.169), we have

1TM
∆x

2

de

dt
= −1

2
vTBh v2 − guT2 B(h + b) + vT [(kh − k∗)L]1−1

+ g(h + b)T [(f1,h − f∗1 )L]1−1

= vT
[(g

2
(Hh)2 − k∗

)
L
]1

−1
− g(h + b)T [f∗1 L]1−1 .

(1.175)
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Now, at an interface the sum of ingoing and outgoing fluxes has to be zero. Given such
an interface between two cells Ii−1 = [xi−1, xi], Ii = [xi, xi+1], we define the jump and the
arithmetic mean of a quantity ah as

[ah] = ai+1
h (−1)− aih(1) , {ah} =

1

2

(
ai+1
h (−1) + aih(1)

)
,

respectively. Thus, at an interface, the right-hand side of equation (1.175) provides the terms

(vi+1)T
((g

2
(H i+1

h )2(−1)− k∗,i+1(−1)
)

L(−1)
)
− g(hi+1 + bi+1)T f∗1 L(−1)

− (vi)T
((g

2
(H i

h)2(1)− k∗,i(1)
)

L(1)
)

+ g(hi + bi)T f∗1 L(1)

=
g

2

[
(vh)(Hh)2

]
− f∗2 [vh] +

1

2
f∗1
[
(vh)2

]
− gf∗1 [(H + b)h] ,

where the last equality is obtained by inserting the definition of the auxiliary flux function k∗

given in (1.172) .

Furthermore, since [ahbh] = {ah} [bh] + [ah]{bh}, and assuming a continuous bottom topogra-
phy, i.e. [bh] = 0, we may rewrite this last expression as

g{vh}{Hh}[Hh] +
g

2
{(Hh)2}[vh]− f∗2 [vh] + f∗1 {vh}[vh]− gf∗1 [Hh]

= g ( {vh}{Hh} − f∗1 ) [Hh] +
(g

2
{(Hh)2} − f∗2 + f∗1 {vh}

)
[vh]

This expression vanishes for the energy conservative numerical flux given by

f∗ =

(
f∗1
f∗2

)
=

(
{Hh}{vh}

{Hh}{vh}2 + g
2{(Hh)2}

)
.

By using this numerical flux within the nodal DG scheme on Legendre-Gauss nodes, an entropy
conserving scheme for the shallow water equations is constructed.

Well-balancedness

Well-balancedness for lake at rest situations vh ≡ 0 and Hh + bh ≡ const and a continuous
discrete bottom topography can also be proven for the entropy conserving DG scheme on
Legendre-Gauss nodes. We need to show that these lake at rest steady state solutions are
discretely preserved. Since the velocity for the still water steady state is vh ≡ 0, the continuity
equation (1.166) directly reduces to stationary water height, i.e. ∆x

2
du1
dt = 0. The momentum

equation (1.174) yields

∆x

2

du2

dt
= −gh D (h + b) + M−1

[(g
2

(Hh)2 − f∗2
)

L
]1

−1

= M−1
[(g

2
(Hh)2 − g

2

{
(Hh)2

})
L
]1

−1
.

Now, since we assume a continuous discrete bottom topography, hence [bh] = 0, the lake at
rest condition [Hh + bh] = 0 yields [Hh] = 0 and thus[(g

2
(Hh)2 − g

2

{
(Hh)2

})
L
]1

−1
=
[(g

2
(Hh)2 − g

2
(Hh)2

)
L
]1

−1
= 0 .

Hence we obtain ∆x
2
du2
dt = 0, proving that the lake at rest situation is preserved.
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Violation of well-balancedness for moving water equilibria

For the skew-symmetric DG scheme on Legendre-Gauss notes constructed in this section, the
preservation of moving water equilibria already fails for the momentum equation.

In fact, if Hv ≡ const, then f1 contains constant nodal values and thus D f1 = 0. The
semi-discrete continuity equation (1.166) thus yields

∆x

2

du1

dt
= M−1[((Hv)h − {Hh}{vh}) L]1−1 (1.176)

However, even though q = (Hv)h is constant and thus continuous over cell boundaries, Hh and
vh or at least one of these representations in DG space generally admit jumps at these points.
Therefore, we generally have q 6= {Hh}{vh} implying that the right-hand side of (1.176) does
not vanish unless the polynomial degree of the DG space is N = 0 .

One might argue that the lack of well-balancedness for moving water equilibria probably
results from the exclusion of the cell boundary nodes from the DG nodal set. Thus, we
next consider the skew-symmetric DG formulation on Legendre-Gauss-Lobatto (LGL) nodes,
assume a continuous bottom topography and construct an initial solution by evaluating an
equilibrium solution at the DG nodes such that

h v = const,
1

2
v2 + g (h + b) = const

for the initial state. Thereby, we obtain unique values at the cell boundaries. Due to the
resulting initial continuity of Hh and vh, the right-hand side of (1.176) vanishes at least
for t = 0. Furthermore the cell boundary contributions in the skew-symmetric momentum
equation (1.174) cancel out with sbc = 0 and f2,h−f∗2 = 0. Considering the remaining volume
terms, since we have sHv,v = 0 due to (Hv)h being constant, the momentum equation for
t = 0 results in

∆x

2

du2

dt
= −D hv2 − gh D (h + b) = −h

(
v D v − gD (h + b)

)
. (1.177)

Since in general, we have v D v 6= 1
2D v2, the right-hand side of equation (1.177) does not

vanish.

Therefore, we may not expect the skew-symmetric DG schemes to respect moving water
equilibria. In fact, for the DG scheme on LGL nodes we can simply measure the right-hand
side of (1.177) for the widely used classical test case regarding a moving water stationary state
described for instance in [142, 57, 211]. For this test case on the spatial domain Ω = [0, 25],
the gravitational constant is set to g = 9.812 and the bottom topography is described by the
function

b(x) =

{
0.2− 0.05(x− 10)2 if |x− 10| ≤ 2 ,

0 otherwise .
(1.178)

Furthermore, initial solutions for the water height H and the discharge Hv are computed at
the LGL nodes using the following values for the equilibrium variables,

q = Hv = 4.42, p =
v2

2
+ g(h+ b) = 22.06605 , (1.179)
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N = 3 N = 4 N = 5 N = 6 N = 7

maxKi=1 ‖r1‖∞ 4.73e-04 1.10e-04 4.84e-06 1.98e-06 1.55e-07

maxKi=1 ‖r2‖∞ 1.78e-14 3.55e-14 8.53e-14 1.95e-13 2.25e-13

Table 1.5: Magnitude of the terms (1.180) on LGL nodes.
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Figure 1.16: Initial equilibrium solution and nodal values of r1 defined in (1.180) for the DG
scheme on LGL nodes and N = 3.

where Newton iteration is applied in order to solve for the initial nodal values of H as described
for instance in [142]. For the DG space discretization, the computational domain Ω is hereby
divided into 125 cells. For comparison, the terms

r1 = v D v + gD(h + b) and r2 = D

(
1

2
v2 + g(h + b)

)
(1.180)

are now evaluated on each DG cell, where D is the first-derivative operator on LGL nodes.
In Table 1.5, the maximum norm of the vectors r1, r2, taken over the nodes of all DG cells,
is listed for polynomial degrees N = 3, . . . , 7. As we can see, the magnitude of the respective
term on the right hand side of (1.177) is generally small and decreasing with increasing order
of the DG scheme but is not on the level of machine accuracy. From Figure 1.16, depicting
the initial solution and the nodal values of r1 for the DG(N = 3) scheme on LDG nodes,
we furthermore deduce that the largest absolute values of r1 are assumed in the regions of
non-flat bottom topography. In contrast, the components of the vector r2 are in the range
of machine accuracy indicating that the constructed initial solution is in fact an equilibrium
solution.
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1.5.2 Well-balancedness of the energy conservative MaMEC scheme

The MaMEC scheme [79] is a structure-preserving finite volume type scheme which is mass,
momentum and energy conservative. Furthermore, as highlighted in [57], there is a close
relationship between energy conservation and the preservation of general equilibrium states
of the shallow water equations. However, to the author’s knowledge, an investigation of the
MaMEC scheme in one space dimension regarding its potential well-balancedness properties
for moving water equilibria has not yet been undertaken. In addition, the characterization of
energy conservative finite volume schemes in [57] does not directly translate to the MaMEC
scheme since this method operates on staggered grids using alternate grid points for the water
height on the one hand and the velocity and discharge on the other hand. Hereby, the scheme
is allows for non-uniform grids, i.e. it is not necessary that one set of nodes lies halfway the
other set of nodes.

In order to construct the MaMEC scheme in one space dimension, two grids need to be defined.
For this purpose, we consider given grid points xi, i = 1, . . . ,K, not necessarily equidistant,
with xi < xi+1. We then construct finite volume cells around these nodes with left and right
cell boundary points denoted by xi− 1

2
, xi+ 1

2
, respectively. This second set of nodes constitutes

a dual grid with nodes xi+ 1
2
, i = 0, . . . ,K. Specific distances needed for the definition of the

MaMEC scheme are given by the lengths of the finite volume and the dual cells, i.e.

∆xi+ 1
2

= xi+1 − xi , ∆xi = xi+ 1
2
− xi− 1

2
. (1.181)

In addition, we need the distances between adjacent alternate grid points, given by

δxi+ 1
4

= xi+ 1
2
− xi , δxi+ 3

4
= xi+1 − xi+ 1

2
. (1.182)

The unknowns of the MaMEC semi-discretization of the shallow water equations are specified
by the nodal values of the water height H at the nodes xi and the velocity v at the dual nodes
xi+ 1

2
. Furthermore, the bottom topography b is computed at the primary nodes xi analogous

to the water height.

The semi-discrete continuity equation is now given by

dHi

dt
+
qi+ 1

2
− qi− 1

2

∆xi
= 0, (1.183)

where the discharges qi± 1
2

at the dual grid points are defined by

qi± 1
2

= vi± 1
2
{H}i± 1

2
, with {H}i± 1

2
:=

Hi +Hi±1

2
. (1.184)

As shown in [79], the semi-discrete continuity equation (1.183) on the primary grid now
translates to an analogous finite volume semi-discretization on the dual grid of the form

dHi+ 1
2

dt
+
qi+1 − qi
∆xi+ 1

2

= 0, (1.185)
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with

Hi+ 1
2

=
δi+ 1

4
Hi + δi+ 3

4
Hi+1

∆xi+ 1
2

, qi =
δi− 1

4
qi+ 1

2
+ δi+ 1

4
qi− 1

2

∆xi
. (1.186)

The momentum equation is furthermore discretized on the dual grid by

d
(
Hi+ 1

2
vi+ 1

2

)
dt

+
FVi+1 − FVi

∆xi+ 1
2

= −g{H}i+ 1
2

bi+1 − bi
∆xi+ 1

2

, (1.187)

where the finite volume type discrete flux FVi is defined by

FVi = qi
vi+ 1

2
+ vi− 1

2

2
+ g

H2
i

2
. (1.188)

In the context of investigating well-balancedness, boundary conditions are usually neglected.
We therefore only consider periodic problems and realize periodic boundary conditions by
setting xK+1 = x1, xK+ 1

2
= x 1

2
. Regarding the above MaMEC scheme for the shallow water

equations in one space dimension, we now have the following result on well-balancedness for
moving water equilibria.

Lemma 1.19. The MaMEC scheme (1.183), (1.187) is well-balanced for moving water equi-
libria. More precisely, if

qi+ 1
2
≡ C1 and pi =

vi+ 1
2
vi− 1

2

2
+ g(Hi + bi) ≡ C2

for all i, with constants C1 and C2, then

dHi(t)

dt
=
d(Hv)i+ 1

2
(t)

dt
= 0, for all t ≥ 0,

on all grid nodes. Hence, the scheme exactly preserves general equilibrium states of the shallow
water equations in one space dimension including moving water stationary solutions.

Proof. Concerning the continuity equation, by inserting the assumption qi+ 1
2

= qi− 1
2

= C1

into the equation (1.183) we directly obtain dHi
dt ≡ 0. Constancy of qi+ 1

2
also yields constancy

of the discharges at the primary nodes, as by the definition of qi in (1.186) and the definition
of the distances in (1.181) and (1.182), we have

qi = C1

δi− 1
4

+ δi+ 1
4

∆xi
= C1 , for i = 1, . . . ,K.

Therefore, the momentum equation (1.187) expands to

d(Hv)i+ 1
2

dt
+ C1

vi+ 3
2
− vi− 1

2

2∆xi+ 1
2

+ g
H2
i+1 −H2

i

2∆xi+ 1
2

= −g{H}i+ 1
2

bi+1 − bi
∆xi+ 1

2

.
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Using 1
2

(
H2
i+1 −H2

i

)
= {H}i+ 1

2
(Hi+1 −Hi), this further simplifies to

d(Hv)i+ 1
2

dt
= −C1

vi+ 3
2
− vi− 1

2

2∆xi+ 1
2

− g{H}i+ 1
2

(
Hi+1 + bi+1 −Hi − bi

∆xi+ 1
2

)
.

Substituting C1 = qi+ 1
2

= ({H}v)i+ 1
2

and rearranging, we obtain

d(Hv)i+ 1
2

dt
= −
{H}i+ 1

2

∆xi+ 1
2

(vi+ 1
2
vi+ 3

2

2
+ g(Hi+1 + bi+1)−

(vi− 1
2
vi+ 1

2

2
+ g(Hi + bi)

))

= −
{H}i+ 1

2

∆xi+ 1
2

(pi+1 − pi) = 0 ,

where in the last equality, we used the assumption pi+1 = pi = C2 on the constancy of the
discrete equilibrium variable pi. Hence, the MaMEC scheme in one space dimension preserves
general equilibrium states.

Remark 1.20. The values qi+ 1
2

and pi which are assumed to be constant in Lemma 1.19

represent the discrete equilibrium variables with continuous counterparts defined in (1.163).
Hereby, both qi+ 1

2
and pi depend on water height and velocity values on the respective other grid

and therefore assume a staggered form depending on a slightly larger stencil. We note, that a
similar trait is found in the well-balancedness property of the energy conservative finite volume
schemes by Fjordholm et al. [57]. In that work, the discrete equilibrium variable q considered
for well-balancedness for moving water equilibria is taken as the staggered momentum qi+ 1

2
=

{H}i+ 1
2
{v}i+ 1

2
. We may therefore assume that some kind of staggered definition of the discrete

equilibrium variables is necessary in order to preserve moving water equilibria without special
design features like hydrostatic reconstruction.

For the same test case as studied in Section 1.5.1, we now compute solutions with the MaMEC
scheme on a uniform staggered grid, using the uniform cell length ∆x.

Hereby, the computational domain Ω = [0, 25] is discretized by K primary grid points for the
water height, denoted by xi = (i − 1

2)∆x, i = 1, . . . ,K, and K + 1 dual grid points for the

velocity, given by xi+ 1
2

= i∆x, i = 0, . . . ,K, where ∆x = |Ω|
K . The bottom topography and

initial conditions in terms of the equilibrium variables are again given by (1.178) and (1.179),
respectively, and periodic boundary conditions are implemented. The simulation is run until
final time T = 5 using the third order Shu-Osher TVD Runge-Kutta scheme developed in [177]
for time integration with time step ∆t = 1

200 . Table 1.6 presents the errors in maximum
norm of the nodal values of H and v, respectively, for successively refined grids. The table
clearly shows that the MaMEC scheme is well-balanced. In addition, Figure 1.17 depicts
the numerical solution at time T = 5 using the MaMEC scheme on K = 125 primary grid
points. The numerical solution is clearly indistinguishable from the initial equilibrium state
as predicted by the theoretical investigation of well-balancedness for moving water equilibria.
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N = 10 K = 50 K = 100 K = 200 K = 400

errH 2.22e-16 2.22e-16 2.22e-16 2.66e-15 4.00e-15

errv 4.44e-16 4.44e-16 8.88e-16 7.99e-15 7.99e-15

Table 1.6: Well-balancedness of MaMEC scheme: errors in maximum norm for water height
and velocity.
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Figure 1.17: Numerical solution of the moving water well-balancedness test case at time T = 5
produced by the MaMEC scheme with uniform cell length ∆x = 0.2.



Chapter 2

Viscous Flow

Discretizing Diffusion Terms in DG Framework

Various approaches to discretize diffusion terms within a DG scheme have been introduced in
the literature since the discretization of higher order spatial derivatives is less natural than
for first order derivatives. In fact, the original introduction of the DG approach was aimed at
the numerical approximation of first order hyperbolic conservation laws as an alternative to
the widely used finite volume approaches.

Therefore, at first sight, although quite natural for advection operators, the inherent discon-
tinuity of the DG approximate solution does not offer any intrinsic way to discretize diffusion
operators. When computing the diffusion flux at cell interfaces, neither a unique solution
value nor unique derivatives are available. However, several techniques to compute diffusion
fluxes within a discontinuous Galerkin framework have been successfully employed, either
using specially designed penalty terms within a finite element approach as in [5, 17] or by
rewriting equations of convection-diffusion type into a system of first order equations using
auxiliary variables for the solution derivatives as in [13, 44, 14, 6]. Among these schemes,
the first method by Bassi and Rebay [13] is the first extension of the DG scheme to the
compressible Navier-Stokes equations and is usually termed the BR1 scheme. It is based on
rewriting the equations containing viscous terms into a larger, extended first-order degenerate
system of PDEs with the gradient as a new unknown. After this reformulation, the standard
DG approach is applied to the extended system which necessitates to prescribe two types of
numerical fluxes. Hereby, the BR1 scheme is the simplest approach, using arithmetic means
for both types of fluxes.

Motivated by the successful numerical results obtained with the BR1 scheme, Cockburn and
Shu [44] analyzed various methods based on the reformulation into a first-order PDE and
identified the class of local discontinuous Galerkin (LDG) methods. For this, they derived
conditions on the numerical fluxes to guarantee stability, convergence and a suboptimal error
estimate of order N when using an approximation space of polynomial degree N . The analysis
by Cockburn and Shu shows suboptimal convergence of the BR1 scheme for odd N while
the choice of alternating numerical fluxes usually associated with the LDG scheme lead to
optimal convergence of order N + 1. Some further disadvantageous properties for purely

93
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elliptic problems such as a widened stencil and lack of stability have been attributed to the
BR1 scheme in [6]. However, being simple to code, parameter-free, and generic for non-linear
viscous fluxes and arbitrary grids, the BR1 scheme is still considered an attractive approach
and has recently been re-investigated in Gassner et al. [67], where the neutral behavior of BR1
with respect to artificial dissipation over element interfaces and the resulting stability for the
compressible Navier-Stokes equations has been proven. In [15], Bassi and Rebay introduced
a second approach to the discretization of viscous terms within the DG framework, termed
the BR2 scheme, which modifies the BR1 approach to yield a more compact stencil suitable
for efficient implicit time integration. The BR2 diffusion discretization includes a penalty
parameter which determines stability and accuracy of the scheme. The above methods using
a reformulation into a first order system were then analyzed by Arnold et al. [6] in a unified
framework also including the early penalty approaches [5, 17]. For this unified analysis, Arnold
et al. rewrote the schemes into a primal formulation by eliminating the introduced auxiliary
variable. Related to the early penalty methods is the so-called (σ, µ)-family of DG diffusion
discretizations which has been revisited more recently by van Leer et al. in [109] and will be
discussed in Section 2.2.

Initially, the focus of the above approaches concentrated on developing stable and accurate DG
discretizations of diffusion terms. Subsequently, particular attention was paid to increasing
the efficiency of these schemes also considering the aspect of time integration.

On the one hand, by successively reducing the amount of coupling between the degrees of
freedom on adjacent DG cells, efficiency was increased – particularly in view of implicit time
integration and implementation in parallel hardware environment. For this purpose, based
on the LDG scheme, Peraire and Persson developed the compact DG (CDG) scheme [157,
158] increasing compactness of the formulation in the multi-dimensional case. With particular
regard to efficient implicit time integration, the class of hybridizable discontinuous Galerkin
(HDG) schemes which has been reviewed in [140] locally projects the numerical solution to
the element boundaries resulting in a final system with significantly less globally coupled
unknowns. On the other hand, efficiency may be increased by compensating the lack of conti-
nuity of the DG approximation since for diffusion problems, standard DG schemes are known
to be more time-consuming than classical finite element schemes, see [120]. Examples are the
recovery-based DG method by van Leer et al. [110] which recovers a smooth approximation
and increases the accuracy of the DG scheme, as well as the reconstructed DG method by Luo
et al. [120] which locally reconstructs a polynomial approximation to the DG solution across
element boundaries and computes the diffusion fluxes based on this smooth approximation.

The recovery-based and the reconstructed DG scheme are formulated without rewriting vis-
cous equations into first order systems. Other DG diffusion discretizations using this approach
are the method by Gassner et al. [66] constructing diffusion fluxes based on the solution of
diffusive generalized Riemann problems and the direct discontinuous Galerkin (DDG) method
introduced by Liu and Yan [117, 116] which can be viewed as a multi-term penalty method.

Organization of this chapter

This chapter concentrates on specific aspects regarding the discretization of diffusion terms in
the DG framework. First, in Section 2.1, for the one-dimensional linear diffusion equation, we



2.1. DG DISCRETIZATION OF LINEAR DIFFUSION IN 1D 95

review those contemporary approaches which are based on a reformulation into a first-order
system, namely the LDG and BR schemes. In this context, the upwind SBP properties of
some of these schemes will be investigated more closely. Thereafter, Section 2.2 deals with
(σ, µ)-family of DG diffusion discretizations. For DG schemes in one space dimension on
Legendre-Gauss-Lobatto nodes, we show that both the BR1 scheme and the BR2 scheme
for any value of the penalty parameter may be understood as (σ, µ)-schemes. Furthermore,
we prove certain properties of the (σ, µ)-family regarding symmetry and dissipativity under
conditions on the parameters σ and µ. Finally, considering the BR2 flux for the DG scheme
on Legendre-Gauss-Lobatto nodes, the lifting operator may be calculated either by exact
projection or using inexact numerical integration on the given nodes. Both versions are
brought together in Section 2.3 by extending recent results by Quaegebeur et al. [162] on
the equivalence of the BR2 scheme and the classical interior penalty formulation for linear
diffusion in one space dimension.

Subsequently, in Section 2.4, we study the influence on dissipation and dispersion properties
of the two most frequently used alternating versions of the LDG scheme as well as the BR
schemes. The analysis highlights a significant difference between the two possible ways to
choose the alternating LDG fluxes. Furthermore, we will detect an odd-even phenomenon
regarding the accuracy of the different DG diffusion discretizations for well-resolved problems
and differences of the wave propagation properties for DG schemes on either Legendre-Gauss
nodes or on Legendre-Gauss-Lobatto nodes.

2.1 DG discretization of linear diffusion in one space dimen-
sion

To simplify the presentation, we consider the linear heat equation

∂

∂t
U(x, t) = d

∂2

∂x2
U(x, t), (x, t) ∈ Q = Ω× (0, T ), Ω = (xα, xβ) (2.1)

with diffusion coefficient d > 0, supplemented by the periodic initial condition U(x, 0) = U0(x)
in L2(Ω) and periodic boundary conditions. In the above definition of the linear heat equation,
we now use the upper case letter U , different from the use of lower case u within the scalar
partial differential equations introduced in Chapter 1. This change in notation allows to
simplify the variational DG formulation of (2.1) by using u to indicate the DG approximation
instead of uh as in Section 1.2.1.

The DG discretization of (2.1) is now obtained as follows. First, the computational domain Ω
is again partitioned into cells denoted by Ij = (xj , xj+1), j = 1, . . . , E with x1 = xα, xE+1 =
xβ. In the following, we shall consider uniform grids with cell length xj+1 − xj = ∆x.
Analogously to the construction of DG schemes in one space dimension in Section 1.2.1, basis
functions and test functions are taken from the finite element space

Vh =
{
v ∈ L2(Ω) | v

∣∣
Ij
∈ PN (Ij) , ∀j = 1, . . . , E

}
, (2.2)

where PN (Ij) denotes the space of polynomial functions on Ij of degree at most N . Herein,
in order to simplify the notation in the current section, the approximate solution of the
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DG scheme and the test functions do not carry the subscript h. As already discussed in
Section 1.2.1, the functions in Vh may be discontinuous across element boundaries. In this
chapter, at an element boundary given by xj , the left-hand side and right-hand side values of
a piece-wise continuous function v are denoted by v−j = v−(xj) and v+

j = v+(xj), respectively.

The corresponding jump at element interfaces is denoted by [v]j = v+
j −v

−
j and the arithmetic

mean is given by {v}j = 1
2(v+

j +v−j ). Furthermore, periodicity is realized by setting v−1 = v−E+1

and v+
E+1 = v+

1 .

The BR1, BR2 and the LDG scheme are all derived from the following first order reformulation
of the linear heat equation (2.1) given by

∂

∂t
U(x, t) = d

∂

∂x
Q(x, t), Q(x, t) =

∂

∂x
U(x, t), (2.3)

with an auxiliary variable Q. The corresponding element-wise DG space discretization to
obtain both the approximate solution u(t) ∈ Vh and the auxiliary variable q(t) ∈ Vh is then
given by

(ut, v)j = d
(
−(q, vx)j + q∗j+1 v

−
j+1 − q

∗
j v

+
j

)
, ∀ v ∈ Vh, ∀ j = 1, . . . , E, (2.4)

(q, r)j = −(u, rx)j + u∗j+1 r
−
j+1 − u

∗
j r

+
j , ∀ r ∈ Vh, ∀ j = 1, . . . , E, (2.5)

where (·, ·)j denotes the usual inner product in L2(Ij) and where q∗ and u∗ represent suitable
numerical fluxes determining the chosen DG diffusion scheme.

Regarding the specification of the numerical fluxes, the simplest approach is the BR1 scheme
given by the choice of arithmetic means, i.e.

q∗,BR1
j = {q}j , u∗,BR1

j = {u}j . (2.6)

Furthermore, the original LDG scheme [44] yields a parameter-dependent family of diffusion
fluxes

q∗,LDGj = {q}j − c12[q]j + c11[u]j , u∗,LDGj = {u}j + c12[u]j , (2.7)

which, in one space dimension, contains the BR1 approach as a specific case with c11 = c12 = 0.
Here, we only consider the common choice of alternating LDG fluxes with c12 = ±1, c11 = 0,
which offers two different variants. One implementation is thus given by

q∗,LDGaj = q−j , u∗,LDGaj = u+
j , (2.8)

which uses opposite wind direction compared to the upwind advective flux in (2.4) and is
therefore termed as inconsistent with the advective flux by Cheng and Shu [40]. The second
variant is specified by

q∗,LDGbj = q+
j , u∗,LDGbj = u−j (2.9)

and termed consistent with the advective flux.

The BR2 scheme is a modification of the BR1 approach which was first suggested in [15] in
order to obtain a more compact stencil suitable for efficient implicit time integration since the
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BR2 stencil contains only immediate neighbors. In the general case, this is in contrast to the
wider stencils of BR1 scheme. However, in one space dimension and integrated into a nodal
DG scheme on Legendre-Gauss-Lobatto nodes, the stencils of BR1 and BR2 are the same.

For the BR2 approach, the numerical flux in the auxiliary equation (2.5) equals the choice for
BR1, i.e. u∗,BR2 = {u}. Furthermore, q∗,BR2 is determined by local lifting operators lj which
lift the jumps [u]j into the DG approximation space. More precisely, we calculate lj ([u]) ∈ Vh
based on the projection property

(lj ([u]) , v) = [u]j {v}j , ∀ v ∈ Vh , (2.10)

where (·, ·) denotes the classical L2 inner product on Vh, i.e. (v, w) =
∑E

j=1(v, w)j .

The numerical flux q∗ in (2.4) is then defined by

q∗j = q∗,BR2
j = {ux + ηelj([u])}j , (2.11)

with a penalty parameter ηe, which was set to ηe = 1 in the original formulation by Bassi
and Rebay in [15] but is considered variable by Brezzi et al. in [26]. The calculation of the
lifting operator based on (2.10) involves exact integration. However, from a computational
viewpoint, using numerical integration simplifies the algorithms. Hereby, it is also reasonable
to use the same the numerical quadrature rule which is already applied within the DG scheme.
In case of a sufficient degree of exactness, i.e. for Legendre-Gauss quadrature, this essentially
does not change the lifting operator. However, if the DG scheme is based on Legendre-Gauss-
Lobatto integration, a second variant of the BR2 lifting operator is obtained due to the inexact
numerical integration. We denote by BR2LGL the variant based on Legendre-Gauss-Lobatto
nodes while the lifting operator based on exact integration calculated e.g. by Legendre-Gauss
quadrature is denoted by BR2LG.

For the BR2LGL flux, the lifting operator is therefore computed as

〈lj ([u]) , v〉LGL = [u]j {v}j , ∀v ∈ Vh , (2.12)

where < ·, · >LGL denotes the discrete inner product on Vh computed via Legendre-Gauss-
Lobatto quadrature, i.e.

< v,w >LGL=
∆x

2

E∑
j=1

N+1∑
ν=1

ων u (Λj (ξν)) v (Λj (ξν)) , (2.13)

with the Legendre-Gauss-Lobatto quadrature nodes ξν , ν = 1, . . . , N + 1, which are trans-
formed to the given cell Ij by the map Λj defined in (1.43) and the corresponding quadrature
weights ων , ν = 1, . . . , N + 1.

Considering the penalty parameter ηe, it has been shown by Brezzi et al. [26] using a coercivity
condition, that the BR2 scheme is stable on triangular grids if ηe > 3. Since ηe is determined
by the number of adjacent cells, this corresponds to ηe > 2 for the one-dimensional case. In
[162], Quaegebeur et al. obtained a sharper bound on ηe via energy stability considerations
which yields ηe ≥ N

N+1 for the variant BR2LG. This is the assertion of Theorem 2.4 in
Section 2.3. However, the variant BR2LGL is not considered in the analysis by Quaegebeur et
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al. in [162]. Therefore, an extension of their results to the calculation of the lifting operator via
Legendre-Gauss-Lobatto quadrature is provided by Theorem 2.6. The interesting result is that
the BR2LGL scheme with parameter ηe is equivalent to the BR2LG scheme with parameter
η̂e = N

N+1ηe. In addition, for the DG scheme on Legendre-Gauss-Lobatto nodes, the BR1
scheme is proven equivalent to BR2LGL for ηe = 1.

Rewriting LDGa, LDGb and BR1 as second-derivative upwind SBP operators

In the following, we will identify generalized upwind SBP properties of the second-derivative
operators given by the previously introduced specific DG diffusion discretizations, analogously
to the construction (1.39) in Section 1.1.

Using the notation introduced in Section 1.2.1, we may rewrite the above variational formu-
lation (2.4), (2.5) into a strong DG formulation similar to (1.51), whereby a transfer to the
reference interval [−1, 1] is carried out. Thus, we obtain the equations

∆x

2

duj

dt
= dD qj − dM−1[(qj − q∗,j)L]1−1 ,

∆x

2
qj = D uj −M−1[(uj − u∗,j)L]1−1 ,

for nodal values uj and qj of the primary and auxiliary variable, respectively, on each cell Ij .
The above notation with respect to the numerical flux function is to be understood as

q∗,j(−1) = q∗j , u
∗,j(−1) = u∗j and q∗,j(1) = q∗j+1, u

∗,j(1) = u∗j+1 .

For the LDGa, the LDGb and the BR1 scheme, the numerical flux q∗ can now be written as

q∗j =

(
1

2
+ θq

)
q−(xj) +

(
1

2
− θq

)
q+(xj) ,

with

θq =


1
2 for LDGa ,
−1

2 for LDGb ,
0 for BR1 .

Furthermore, we have

u∗j =

(
1

2
+ θu

)
u−(xj) +

(
1

2
− θu

)
u+(xj) ,

with

θu =


−1

2 for LDGa ,
1
2 for LDGb ,
0 for BR1 .

Following the derivation of a global upwind SBP formulation for the DG-discretized one-
dimensional advection equation in Section 1.2.3, the LDGa scheme in terms of the global
nodal DG representation given by u = (u1, . . . ,uK)T , q = (q1, . . . ,qK)T then rewrites as

du

dt
= dD−glob q , q = D+

glob u ,
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with D−glob = D−glob
(
θ = 1

2

)
, i.e. for the LDGa scheme, we have

LDGa :
du

dt
= dD+

2 u = dD−globD
+
glob u .

Analogously, for the LDGb variant we obtain

LDGb :
du

dt
= dD−2 u = dD+

globD
−
glob u .

Both of these formulations correspond to true upwind SBP operators approximating the sec-
ond derivative as defined in (1.39). In contrast, for the BR1 scheme, we have

BR1 :
du

dt
= dD2 u = dDglob Dglob u ,

where Dglob = D−glob(θ = 0) = D+
glob(θ = 0) is a generalized SBP first-derivative operator

in the sense of Definition 1.3, as already mentioned in Remark 1.12. Thus, the BR1 scheme
represents a second-derivative SBP operator which is is obtained by applying the above first-
derivative SBP operator twice, similar to the definition for finite difference schemes by (1.17).

2.2 The (σ, µ)-family of DG diffusion discretizations

The so-called (σ, µ)-family of DG diffusion discretizations has been revisited more recently
in a series of works by van Leer et al. in [111, 119, 109]. In fact, diffusion discretizations
of this type have first been recognized as a two-parameter family in a PhD thesis by van
Raalte [163] although specific members of this family were already been well-known. Actually,
the earliest approaches to discretize viscous fluxes within the DG framework can be cast into
this formulation since this family naturally includes the original DG diffusion discretizations
in [5, 17].

Various more recent DG diffusion approaches also lie within the (σ, µ)-family. More precisely,
if the integrals in the DG variational form are numerical solved by Legendre-Gauss-Lobatto
quadrature, the (σ, µ)-family contains both the BR1 and BR2 scheme as well as a symmetrized
form of LDG, see [109]. Moreover, in [111, 119], the (σ, µ)-family is considered a starting point
for the recovery approach to the discretization of diffusion fluxes in the context of DG schemes.

Now, the element-wise variational formulation of the (σ, µ)-family of DG diffusion discretiza-
tions reads

(ut, v)j = dLj (u, v) , ∀ v ∈ Vh, ∀ j = 1, . . . , E, (2.14)

where the operator Lj (·, ·) referring to an element Ij is given by

Lj (u, v) = −(ux, vx)j + {ux}j+1v
−
j+1 − {ux}jv

+
j

+
σ

2

((
v−x [u]

)
j+1

+
(
v+
x [u]

)
j

)
+

µ

∆x

((
[u]v−

)
j+1
−
(
[u]v+

)
j

)
.

(2.15)

This DG diffusion discretization is hence specified by the two parameters σ, µ ∈ R. Hereby,
the choice σ = −1, µ ≥ 1 corresponds to the interior penalty scheme of Arnold [5] which
is symmetric and stable, while σ = 1, µ = 0 yields the non-symmetric but stable scheme of
Baumann and Oden [17], see also the revision of this family of diffusion discretizations in [109].
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2.2.1 Connection to contemporary DG diffusion discretizations

Considering the nodal DG scheme on Legendre-Gauss-Lobatto nodes using mass lumping, one
may cast the BR1 scheme [13] and the BR2 scheme [14] as well as a symmetric variant of the
LDG scheme [44] into the framework of the (σ, µ)-family, as will be shown in the following.

For this purpose, we set r = vx in order to insert (2.5) into (2.4), yielding

(ut, v)j = d
(

(u, vxx)j − (u∗ v−x )j+1 + (u∗ v+
x )j + q∗j+1 v

−
j+1 − q

∗
j v

+
j

)
.

Using partial integration (u, vxx)j = (uvx)−j+1 − (uvx)+
j − (ux, vx)j , the above equation now

rewrites as

(ut, v)j = d
(
−(ux, vx)j −

(
(u∗ − u−)v−x

)
j+1

+
(
(u∗ − u+)v+

x

)
j

)
+ d

(
q∗j+1v

−
j+1 − q

∗
j v

+
j

)
.

(2.16)

Furthermore, partially integrating the term −(u, rx) in (2.5), we have

(q, r)j = (ux, r)j + (u∗ − u−)j+1 r
−
j+1 − (u∗ − u+)j r

+
j . (2.17)

Although the linear heat equation enables an exact evaluation of the integrals occurring in
the DG formulation, spatial integration is usually carried out numerically in order to allow for
extensions also to nonlinear equations. Equivalence of specific (σ, µ)-schemes to contemporary
DG schemes for diffusion necessitates that numerical integration is carried out using the
Legendre-Gauss-Lobatto quadrature rule, which computes the left-hand side terms (ut, v)j
and (q, r)j in (2.16) and (2.17), respectively, with reduced accuracy.

Connections to contemporary DG schemes will be established in the following paragraphs
by inserting suitable test functions r into (2.17). For this purpose, global functions on the
complete domain Ω = ∪Ej=1Ij will be defined from local ones on cells Ij . Therefore, we need
to define the surjection Mj for a given cell Ij by

Mj : Ω→ [−1, 1], x 7→ 2x− (xj + xj+1)

∆x
χ|Ij ,

using the indicator function χ|Ij with χ|Ij (x) = 1 if x ∈ Ij and χ|Ij (x) = 0.

The BR1 scheme

In order to obtain the representation of BR1 as a member of the (σ, µ)-family, we insert the
Lagrange polynomials L1, LN+1 corresponding to the first and last Legendre-Gauss-Lobatto
node, i.e. to the boundary nodes ξ1 = −1 and ξN+1 = 1, as test functions into (2.17). As
stated before, the integrals in (2.17) are numerically computed using the Legendre-Gauss-
Lobatto quadrature rule. Setting r = L1 ◦ Mj χ|Ij in (2.17) with r+

j = 1, r−j+1 = 0, and

keeping in mind u∗,BR1
j = {u}j , we hence obtain

q+
j = (ux)+

j +
1

∆xω1
[u]j . (2.18)
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On the other hand, setting r = LN+1 ◦Mj χ|Ij in (2.17) with r+
j = 0, r−j+1 = 1, and using

symmetry of the weights ωN+1 = ω1, we have

q−j+1 = (ux)−j+1 +
1

∆xω1
[u]j+1. (2.19)

Inserting the BR1 fluxes u∗,BR1
j = {u}j and q∗,BR1

j = {ux}j + 1
∆xω1

[u]j into (2.16), we then
have

(ut, v)j = d

(
−(ux, vx)j −

1

2

(
[u]v−x

)
j+1
− 1

2

(
[u]v+

x

)
j

)
+ d

(
{ux}j+1v

−
j+1 +

1

∆xω1
[u]j+1v

−
j+1

)
− d

(
{ux}jv+

j +
1

∆xω1
[u]jv

+
j

)
.

Comparing with the definition of the operator Lj in (2.15), the parameters of the BR1 scheme
are thus σ = −1 and µ = 1

ω1
.

A symmetric form of the LDG scheme

Now, we consider the arithmetic average of the two alternating variants of the LDG scheme.
For the LDGa fluxes with u∗,LDGa = u+ and u∗,LDGa = q−, inserting the test function
r = LN+1 ◦Mj χ|Ij into (2.17), and shifting the right-hand side index j + 1 to j, we obtain

q∗,LDGaj = q−j = (ux)−j +
2

∆xω1
[u]j .

Analogously, for the LDGb flux with u∗,LDGb = u− and q∗,LDGb = q+, inserting the test
function r = L1 ◦Mj χ|Ij into (2.17) yields

q∗,LDGbj = q+
j = (ux)+

j +
2

∆xω1
[u]j .

The arithmetic average of the two alternating variants of the LDG fluxes is then given by
inserting the arithmetic means

u∗j =
1

2

(
u∗,LDGaj + u∗,LDGbj

)
= {u}j , q∗j =

1

2

(
q∗,LDGaj + q∗,LDGbj

)
= {ux}j +

2

∆xω1
[u]j

into (2.16). Thus, we have

(ut, v)j = d

(
−(ux, vx)j −

1

2

(
[u]v−x

)
j+1
− 1

2

(
[u]v+

x

)
j

)
+ d

(
{ux}j+1v

−
j+1 +

2

∆xω1
[u]j+1v

−
j+1

)
− d

(
{ux}jv+

j +
2

∆xω1
[u]jv

+
j

)
.

The parameters of this symmetric variant of the LDG scheme are thus σ = −1 and µ = 2
ω1

.
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The BR2 scheme

For the BR2 approach, the numerical flux u∗ used in the auxiliary equation is again given by
u∗,BR2
j = {u}j and the numerical flux q∗,BR2

j is determined by the local lifting operators lj
calculated either as an exact projection of the jump [u]j in (2.10) or by the equation (2.12)
based on Legendre-Gauss-Lobatto quadrature. In the later case, inserting the test functions
v1 = L1 ◦Mj χ|Ij and v2 = LN+1 ◦Mj−1 χ|Ij−1 into (2.12) results in

{lj([u])}j =
1

∆xω1
[u]j

and thus
q∗,BR2
j = {ux}j +

ηe
∆xω1

[u]j .

Analogously to the derivation for the BR1 scheme and the symmetrized arithmetic mean
LDG scheme in the previous paragraphs, inserting the fluxes u∗,BR2 and q∗,BR2 into (2.16)
now identifies the BR2 scheme as a (σ, µ)-scheme with σ = −1 and µ = ηe

ω1
.

The
(

1
4 ,

9
4

)
-recovery scheme

An interesting member of the (σ, µ)-family is the
(

1
4 ,

9
4

)
-recovery scheme [111, 109]. For a

polynomial degree of N = 1, it can be interpreted by a recovery approach where a continuous
representation of the DG approximation over two adjacent cells is constructed and used to
approximate the diffusion flux. More precisely, for each interface, the piece-wise linear DG
representation on the two adjacent cells is replaced by a single cubic function on the union of
those two cells such that the piece-wise linear DG approximation is the L2-projection of the
recovered cubic function. By using a cubic representation, recovery is done with maximum
accuracy. In fact, the

(
1
4 ,

9
4

)
-recovery scheme is formally forth order accurate.

2.2.2 An energy estimate for the global diffusion operator

Next, we provide the following useful properties regarding dissipativity of the (σ, µ)-family
under specific conditions on σ and µ on the one hand, and boundedness of the interface
terms of the formulation on the other hand. In particular, these properties will be needed
in Section 3.2 for the L2-stability analysis of specific DG methods coupled with IMEX time
integration schemes based on advection-diffusion IMEX splitting.

Built from the local diffusion operators Lj , we define the corresponding global operator of a
given (σ, µ)-scheme by

L (u, v) =

E∑
j=1

Lj (u, v) .

For this global operator, we have

L (u, v) = −(ux, vx)−
E∑
j=1

{ux}j [v]j + σ
E∑
j=1

{vx}j [u]j −
µ

∆x

E∑
j=1

[u]j [v]j . (2.20)
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In order to obtain an energy estimate regarding the diffusion operator, we will need to provide
an upper bound for the interface terms in the above definition. Based on the classical L2 inner
product (·, ·) the corresponding L2-norm ‖ · ‖ is defined on Vh, i.e.

‖v‖2 = (v, v) =
E∑
j=1

(v, v)j .

In addition, we define the jump semi-norm [[v]] for v ∈ Vh via

[[v]]2 =
E∑
j=1

[v]2j .

We now have the following auxiliary estimate for the mixed interface terms occurring in the
definition of the diffusion operator L.

Lemma 2.1. For any u, v ∈ Vh and for any constant C̃ > 0, a bound on the boundary terms
occurring in the definition of L (u, v) is given by∣∣∣∣∣∣

E∑
j=1

{ux}j [v]j

∣∣∣∣∣∣ ≤ C̃‖ux‖2 +
1

4C̃∆xω1

[[v]]2 . (2.21)

Proof. Since this estimate is trivial for the first-order DG scheme as in this case the piece-wise
derivative vanishes on each cell, we only consider higher than first-order schemes, i.e. N ≥ 1
in the definition (2.2) of Vh.

We note that the piece-wise derivative ux of u ∈ Vh fulfills ux|Ij ∈ PN−1(Ij). Therefore,
Legendre-Gauss-Lobatto (LGL) integration exactly computes ‖ux‖2. To incorporate the ex-
act numerical integration by LGL quadrature into our analysis, we reuse the notation in (2.13)
for this quadrature rule which has been introduced in Section 2.1 and incorporates the trans-
formation of Ij to the reference interval [−1, 1] by the map Λj . For the norm ‖ux‖, we then
have

‖ux‖2 =
E∑
j=1

‖ux‖2j =< ux, ux >LGL=
∆x

2

∑
1≤j≤E

1≤ν≤N+1

ων(ux(Λj(ξν)))2

=
∆x

2

 ∑
1≤j≤E

1<ν<N+1

ων(ux(Λj(ξν)))2 +
E∑
j=1

ω1(ux(Λj(ξ1)))2 +
E∑
j=1

ωN+1(ux(Λj(ξN+1)))2


=

∆x

2

∑
1≤j≤E

1<ν<N+1

ων(ux(Λj(ξν)))2 + ∆x

E∑
j=1

ω1

{
u2
x

}
j
, as ωN+1 = ω1 .
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Hence, we may estimate the term
∑

j {ux}j [v]j by∣∣∣∣∣∣
E∑
j=1

{ux}j [v]j

∣∣∣∣∣∣ ≤ 1

2

E∑
j=1

|ux(Λj(ξ1))[v]j |+ |ux(Λj−1(ξN+1))[v]j |

≤ 1

2

E∑
j=1

(
C̃∆xω1

(
u2
x(Λj(ξ1)) + u2

x(Λj−1(ξN+1))
)

+
1

2C̃∆xω1

[v]2j

)

≤ C̃ < ux, ux >LGL +
1

4C̃∆xω1

E∑
j=1

[v]2j

= C̃‖ux‖2 +
1

4C̃∆xω1

[[v]]2 ,

for any constant C̃ > 0.

Using the above intermediate result, we can prove the following Theorem regarding dissipa-
tivity of the discrete diffusion operator L.

Theorem 2.2. The diffusion operator L fulfills the following properties.

1. If the parameters σ and µ fulfill the condition (1−σ)2

4ω1
≤ µ, we have dissipativity of L,

i.e. L (u, u) ≤ 0 for any u ∈ Vh.

2. Let u,v ∈ (Vh)n, and define a vectorized version of the diffusion operator as

L (u,v) =

n∑
i=1

L (ui, vi) .

If again (1−σ)2

4ω1
≤ µ is fulfilled, then we have the following assertions.

(a) For u ∈ (Vh)n, we have L (u,u) ≤ 0.

(b) For A ∈ Rn×n symmetric, we have

L (u, Av) = L (Au,v) .

(c) For B ∈ Rn×n symmetric and positive definite, we have

L (u, Bv) ≤ 0 .

Proof. 1. This assertion follows from summing up the cell-wise definition (2.15) of the
diffusion operator. We have

L (u, u) = −(ux, ux)− (1− σ)
∑
j

{ux}j [u]j −
µ

∆x
[[u]]2 .
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If σ = 1, we directly obtain L (u, u) ≤ 0. Otherwise, setting C̃ = 1
|1−σ| in the inequality

(2.21) given in the previous Lemma 2.1 yields

L (u, u) ≤
(

(1− σ)2

4∆xω1
− µ

∆x

)
[[u]]2 .

Therefore, choosing the parameters of the (σ, µ)-family such that they fulfill (1−σ)2

4ω1
≤ µ,

we have the dissipative property L (u, u) ≤ 0.

2. (a) This assertion obviously follows from the definition of L since

L (u,u) =

n∑
i=1

L (ui, ui) ≤ 0 .

(b) Since L inherits bi-linearity from L, a simple calculation using the symmetry of A
yields

L (u, Av) =
n∑
i=1

n∑
k=1

aikL (ui, uk) =
n∑
k=1

L

(
n∑
i=1

aikui, uk

)
= L (Au,v) .

(c) Since B is symmetric and positive definite, it has a unique symmetric square root
A. Using the previous assertions, we thus obtain

L (u, Bu) = L
(
u, A2u

)
= L (Au, Au) ≤ 0 .

2.3 Energy stability of the BR2 scheme

Recently, Quaegebeur et al. [162] investigated the class of ESFR schemes described in Sec-
tion 1.3 in terms of energy stability for the one-dimensional linear diffusion equation using
various compact numerical diffusion fluxes. As already stated in Section 1.3, the class of ESFR
schemes is based on the flux reconstruction framework developed by Huynh [85] which has
also been applied to diffusion equations in [86]. The original identification of ESFR schemes
by Vincent et al. in [202] aimed at energy stability for the linear advection equation. Cas-
tonguay et al. [37] extended this stability proof to discretization of the linear diffusion equation
by ESFR schemes employing general LDG numerical diffusion fluxes of the form (2.7) with
non-negative penalty parameter c11. The results by Quaegebeur et al. [162] thus represent
an extension of the theoretical analysis in [37] to more general classes of compact numerical
diffusion fluxes.

In this section, we will further extend the results by Quaegebeur et al. regarding energy sta-
bility of the BR2 scheme with respect to the penalty parameter ηe by the variant of calculating
the BR2 lifting operator via Legendre-Gauss-Lobatto quadrature. In addition, we obtain a
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simplified representation of the lower bound ηe = N
N+1 for energy stability of the BR2 scheme

in case of the calculation of the BR2 lifting operator by exact projection.

Considering the first order reformulation of the linear diffusion equation given in (2.3) and the
approximation space Vh defined in (2.2), the ESFR schemes construct a piecewise polynomial
solution u(t) ∈ Vh approximating U(x, t) and an auxiliary quantity q(t) ∈ Vh approximating
the auxiliary variable Q(x, t), similarly to DG schemes. As described in Section 1.3, the ESFR
schemes are characterized by the chosen correction functions to deal with the discontinuous
approximation space. For the first-order system (2.3), the correction functions are denoted
by hL, hR : [−1, 1]→ R for the primary equation and by gL, gR : [−1, 1]→ R for the auxiliary
equation, respectively.

Analogously to (1.91), we obtain the ESFR schemes for the linear diffusion equation on general
non-overlapping one-dimensional grids by the cell-wise formulation

∂uj
∂t

(ξ, t) = d
2

∆xj

[
∂qj
∂ξ

(ξ, t) +
(
q∗j − qj(−1, t)

)
h′L(ξ) +

(
q∗j+1 − qj(1, t)

)
h′R(ξ)

]
, (2.22)

qj =
2

∆xj

[
∂uj
∂ξ

(ξ, t) +
(
u∗j − uj(−1, t)

)
g′L(ξ) +

(
u∗j+1 − uj(1, t)

)
g′R(ξ)

]
, (2.23)

with not necessarily uniform cell lengths ∆xj . Hereby, we again denote the representation of
the approximate solution on each cell Ij by

uj(ξ, t) = u (Λj(ξ), t) , qj(ξ, t) = q (Λj(ξ), t) ,

with the reference coordinate ξ ∈ [−1, 1] and the mapping Λj to a specific cell Ij defined
in (1.43). Numerical diffusion fluxes are now specified by a suitable choice of q∗j and u∗j .
Furthermore, the correction functions derived in [202] in order to obtain energy stability have
the form

gL,κ =
(−1)N

2

[
ΨN −

ηN,κΨN−1 + ΨN+1

1 + ηN,κ

]
, gR,κ(ξ) = gL,κ(−ξ) , (2.24)

hL,c =
(−1)N

2

[
ΨN −

ηN,cΨN−1 + ΨN+1

1 + ηN,c

]
, hR,c(ξ) = hL,c(−ξ) , (2.25)

where ΨN denotes the Legendre polynomial of degree N and the parameters are given by

ηN,κ =
κ(2N + 1)(aNN !)2

2
, ηN,c =

c(2N + 1)(aNN !)2

2
,

with aN = (2N)!
2N (N !)2 depending on the polynomial degree.

The correction polynomials defined in (2.24) and (2.25) thus depend on the two parameters
κ and c. Therefore, the primary and auxiliary equation are not necessarily discretized by the
same member of the class of ESFR schemes. Considering the representation of nodal DG
schemes in ESFR framework, the DG scheme on Legendre-Gauss nodes chooses the left and
right Legendre-Gauss-Radau polynomials as correction polynomials for both equations, i.e.
ηN,κ = ηN,c = 0, or else κ = c = 0, while the DG scheme on Legendre-Gauss-Lobatto nodes
is obtained by choosing ηN,κ = ηN,c = N+1

N , see e.g. Huynh [85].
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In particular, Quaegebeur et al. [162] showed that for ESFR schemes, the BR2LG diffusion
fluxes with exact projection property to calculate the lifting operators lj are equivalent to the
interior penalty (IP) fluxes

u∗,IP = {u}, q∗,IP = {ux}+ τ [u] (2.26)

if the penalty parameter τ ≥ 0 is chosen appropriately. Therefore, energy stability of the
ESFR schemes with IP diffusion fluxes carries over to ESFR schemes with BR2LG diffusion
fluxes.

More precisely, from [162], we have the two following results for ESFR schemes constructing a
piecewise polynomial solution of degree N on a non-overlapping grid in one space dimension.

Theorem 2.3. Employing IP fluxes within ESFR schemes for the linear diffusion equation
is energy stable if the penalty parameter τ in (2.26) is chosen such that τj ≥ τ∗j holds locally
on each cell interface, with

τ∗j =
1

2

(
∆xj−1 + ∆xj

∆xj−1∆xj

)
min
κ

(
|g′L,κ(1)| − g′L,κ(−1)

)
. (2.27)

Theorem 2.4. The BR2LG formulation is equivalent to the IP formulation if and only if

τ =
∆xj−1 + ∆xj
4∆xj−1∆xj

(N + 1)2 ηe . (2.28)

Furthermore, employing BR2LG fluxes within ESFR schemes for the linear diffusion equation
is energy stable if the penalty parameter ηe in (2.11) is chosen such that ηe ≥ η∗e with

η∗e =
2 minκ

(
|g′L,κ(1)| − g′L,κ(−1)

)
(N + 1)2

. (2.29)

The above relations by Quaegebeur et al. may be simplified using the following auxiliary
result based on the properties of the Legendre polynomials.

Lemma 2.5. For the parameter-dependent ESFR correction polynomial gL,κ of degree N + 1
defined in (2.24), we have

min
κ

(
|g′L,κ(1)| − g′L,κ(−1)

)
=
N(N + 1)

2
. (2.30)

Proof. The Legendre polynomials occurring in the definition of the correction polynomials as
well as their first derivatives have well-known boundary values. Specifically, e.g. from [1], we
have

Ψ′N (1) =
N(N + 1)

2
and Ψ′N (−1) = (−1)N+1N(N + 1)

2
.

Inserting this into (2.24), we have

4
(
|g′L,κ(1)| − g′L,κ(−1)

)
=

∣∣∣∣N(N + 1)−
ηN,κN(N − 1) + (N + 1)(N + 2)

1 + ηN,κ

∣∣∣∣
+N(N + 1) +

ηN,κN(N − 1) + (N + 1)(N + 2)

1 + ηN,κ
.

(2.31)
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If N(N +1) <
ηN,κN(N−1)+(N+1)(N+2)

1+ηN,κ
, e.g. for the DG scheme on Legendre-Gauss nodes with

ηN,κ = 0, we have

|g′L,κ(1)| − g′L,κ(−1) =
1

2

ηN,κN(N − 1) + (N + 1)(N + 2)

1 + ηN,κ
>
N(N + 1)

2
.

Therefore, the minimum value of the above term is obviously attained for values of κ such

that N(N+1) ≥ ηN,κN(N−1)+(N+1)(N+2)
1+ηN,κ

, e.g. for the DG scheme on Legendre-Gauss-Lobatto

nodes with ηN,κ = N+1
N . For these values of ηN,κ, the minimum value of

|g′L,κ(1)| − g′L,κ(−1) =
N(N + 1)

2

is obtained, which proves the assertion.

Inserting the above equality (2.30) into (2.27) and (2.29) yields a simplification of the param-
eter restrictions of the form

τ∗j =
∆xj−1 + ∆xj
4∆xj−1∆xj

N(N + 1) , (2.32)

η∗e =
N

N + 1
. (2.33)

For the IP formulation on uniform grids with equal cell lengths, this further simplifies to

τ∗j = τ∗ =
N(N + 1)

2∆x
.

Regarding the computation of the BR2 lifting operator by Legendre-Gauss-Lobatto quadra-
ture, an extension of the analysis by Quaegebeur et al. yields the following result for the
BR2LGL diffusion fluxes employed within ESFR schemes of degree N on non-overlapping
one-dimensional grids.

Theorem 2.6. The BR2LGL formulation with parameter ηe is equivalent to the BR2LG for-
mulation with parameter η̂e = N

N+1ηe. Therefore, employing BR2LGL fluxes within ESFR
schemes for the linear diffusion equation is energy stable if ηe ≥ 1.

Proof. In case of Legendre-Gauss-Lobatto quadrature, the cell boundaries are contained in
the nodal set. Hence, we have

{lj([u])}j =
1

ωN+1∆xj−1

〈
lj([u]), LN+1 ◦Mj−1 χ|Ij−1

〉
LGL

+
1

ω1∆xj

〈
lj([u]), L1 ◦Mj χ|Ij

〉
LGL

,

where L1 and LN+1 are the Lagrange polynomials corresponding to the boundary nodes
ξ1 = −1 and ξN+1 = 1 and ω1 = ωN+1 = 2

N(N+1) are the corresponding Legendre-Gauss-

Lobatto quadrature weights, see e.g. [1]. Inserting the weights and further simplification
yields

{lj([u])}j =
N(N + 1)

4
[u]j

(
1

∆xj−1
+

1

∆xj

)
= N(N + 1)

∆xj−1 + ∆xj
4∆xj−1∆xj

[u]j . (2.34)
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Hence, for ESFR schemes, the BR2LGL diffusion discretization is equivalent to an IP formu-
lation with τj = ηeN(N + 1)

∆xj−1+∆xj
4∆xj−1∆xj

. Comparing with (2.28), the BR2LGL formulation is

therefore also equivalent to the BR2LG formulation with penalty parameter η̂e = N
N+1ηe.

According to Theorem 2.3 with τ∗j in the simplified form (2.32), employing the BR2LGL
diffusion fluxes within an ESFR scheme thus results in an energy stable scheme if ηe ≥ 1.

Furthermore, for DG schemes on Legendre-Gauss-Lobatto nodes, the equivalence result of
Theorem 2.6 is supplemented by equivalence to the BR1 formulation. More precisely, for this
particular ESFR scheme, the BR1 formulation is recovered by a particular choice of BR2 as
shown in the following

Theorem 2.7. For the DG scheme on Legendre-Gauss-Lobatto nodes, the BR1 scheme, the
BR2LGL scheme with ηe = 1, and the BR2LG scheme with ηe = N

N+1 are equivalent.

Proof. Obviously, due to the assertion of equivalence in Theorem 2.6, proving the equivalence
of the BR1 scheme to the BR2LGL scheme with ηe = 1 is sufficient.

The BR1 formulation within a nodal DG scheme using Legendre-Gauss-Lobatto quadrature
has already been identified as a member of the (σ, µ)-family in Section 2.2.1. In this context,
the left-hand side and right-hand side values of the auxiliary quantity q in a specific cell Ij
are derived from the auxiliary equation (2.17). On general non-overlapping grids, the uniform
cell length ∆x appearing in equations (2.18) and (2.19) is replaced by the length ∆xj and the
precise value of the first Legendre-Gauss-Lobatto weight ω1 = 2

N(N+1) is inserted. Thus, we
obtain

q+
j = (ux)+

j +
N(N + 1)

2∆xj
[u]j ,

q−j+1 = (ux)−j+1 +
N(N + 1)

2∆xj
[u]j+1.

Hence, the diffusion flux for the auxiliary variable q at the cell interface xj between the cells
Ij−1 and Ij is given by

q∗,BR1
j = {q}j =

1

2

(
q−j + q+

j

)
= {ux}j +N(N + 1)

∆xj−1 + ∆xj
4∆xj−1∆xj

[u]j = q
∗,BR2LGL(ηe=1)
j .

2.4 A comparative Fourier analysis for linear advection-diffusion
problems

In this section, we review the investigation of the wave propagation properties of discontinuous
Galerkin schemes for advection-diffusion problems with respect to several classical discretiza-
tions of the diffusion terms which was carried out by the author in [148]. Specifically, the
influence on dissipation and dispersion properties of the two alternating versions of the LDG
scheme as well as the BR1 and the BR2 scheme is studied in [148]. The analysis highlights
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a significant difference between the two possible ways to choose the alternating LDG fluxes
showing that the variant which is inconsistent with the upwind advective flux is more accurate
in case of advection-diffusion discretizations. Furthermore, while for the BR1 scheme used
within a third order DG scheme on Legendre-Gauss nodes, a higher accuracy for well-resolved
problems has previously been observed in the literature, we will see that higher accuracy of
the BR1 discretization only holds for odd orders of the DG scheme. In addition, this higher
accuracy is generally lost on Legendre-Gauss-Lobatto nodes.

The investigation of wave propagation properties in terms of dispersion and diffusion errors
depending on the wave number is of utmost importance for the analysis of accuracy and
stability of any numerical scheme applied in the context of computational fluid dynamics.
Especially in case of high order methods and for under-resolved turbulence simulation, a
desired small numerical dissipation competes with robustness and thus has to be carefully
analyzed. Therefore, dispersion and diffusion properties have been investigated for major
classes of high order schemes such as the DG scheme [82], the spectral difference method [196],
flux reconstruction schemes [203] and continuous Galerkin (CG) approximations [138].

Dissipation and dispersion properties are usually inspected via Fourier analysis. For linear
advection, Hu et al. [82] have shown that the DG scheme admits one physical mode and N spu-
rious modes which dissipate quickly for upwind fluxes but remain for central fluxes. Gassner
and Kopriva [65] investigated the influence of Legendre-Gauss and Legendre-Gauss-Lobatto
integration rules on the dispersion and dissipation characteristics of nodal DG schemes. Moura
et al. [139] observed that the spurious modes are in fact replications of the physical mode and
contribute to the overall accuracy of the scheme. In particular, for higher wave numbers,
the secondary eigenmodes may strongly influence the behavior of the scheme. Furthermore,
based on the related flux reconstruction approach, Asthana and Jameson [9] derived a family
of schemes with minimal dissipation and dispersion error for advection problems and Vermeire
and Vincent [199] investigated the behavior of fully discrete flux reconstruction schemes which
includes the influence of the chosen explicit or implicit Runge-Kutta scheme for time integra-
tion.

In the above works, with the exception of [138], eigenanalysis of the numerical scheme is based
on the linear advection equation. Furthermore, Manzanero et al. [123] develop a generalized
von Neumann technique to study the dispersion and dissipation properties of various DG
schemes for nonconstant coefficient advection equations. However, parabolic equations have
not been extensively studied in this context.

Regarding wave propagation characteristics, the investigation of dissipation and dispersion
properties of DG schemes applied to advection-diffusion problems is more recent than for
pure advection. For pure diffusion problems, eigenanalysis for both well-resolved and under-
resolved cases has been carried out e.g. by Huynh [86] for flux reconstruction schemes and by
Alhawwary and Wang [2] for DG schemes. Furthermore, analytic Fourier eigenanalysis of DG
diffusion discretizations for the well-resolved regime of wave numbers has been carried out for
the DG scheme in [216, 74].

For advection-diffusion problems, an eigenanalysis by Manzanero et al.[122] for DG schemes
considers the influence of a parameter-dependent Riemann solver for advective terms and the
BR1 scheme for viscous terms. Their study investigates both the individual contribution of
the dissipative mechanisms on the whole range of wave numbers and their combined effect.
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In addition, the authors correlate their findings to the results for 3D compressible Navier-
Stokes flow. Furthermore, Watkins et al. [210] carry out a von Neumann analysis of nodal
DG schemes obtained via flux reconstruction, in order to investigate the stability, dissipation
and dispersion properties for advection-diffusion problems. In particular, their work analyzes
the influence of different interface flux formulations. More precisely, for a DG scheme of poly-
nomial degree N = 2 on Legendre-Gauss nodes, differences of its wave propagation properties
are studied in case of either upwind or central flux for advection as well as either a partic-
ular alternate LDG scheme or the BR1 approach for diffusion. Their results show that the
corresponding schemes with central flux discretization (central flux for advection and BR1
discretization for diffusion) produce smaller errors for well-resolved solutions whereas one-
sided flux discretizations (upwind flux combined with LDG discretization) produce smaller
errors in the under-resolved case. It is also worth mentioning that the analysis by Watkins
et al. [210] combines all eigenmodes into a wave number dependent error measure for the DG
approximate solution instead of considering only the dispersion and dissipation properties of
a single eigenmode which is regarded as the physical one.

Following the investigations by Zhang and Shu [216] and Guo et al. [74], a comparative Fourier
analysis of the Legendre-Gauss and Legendre-Gauss-Lobatto DG schemes has been carried out
by the author in [149] for N = 1 using different viscous flux discretizations which confirmed
the higher accuracy of Legendre-Gauss integration nodes in the well-resolved regime, i.e. for
small wave numbers or small cell sizes. In [148], this analysis is extended to the full range
of wave numbers in order to gain additional insight into the numerical behavior for under-
resolved waves. Hereby, we use the combined approach of Watkins et al. to obtain a wave
number dependent error bound. Extending the study by Watkins et al. [210], DG schemes
on Legendre-Gauss-Lobatto nodes are considered as well and a larger range of interface fluxes
for diffusion terms is investigated including the BR2 scheme. While the focus of the analysis
in [210] was put on the DG scheme for N = 2, in this work, the combined error measure is
computed for a larger range of polynomial degrees to detect odd-even phenomena.

Regarding the wave number dependent error analysis, significant differences can be noted for
the classical DG diffusion discretizations LDG and BR1/BR2. The original LDG scheme [44]
represents a parameter-dependent family of diffusion discretizations. However, it commonly
denotes the choice of alternating fluxes for the reformulated viscous term. For this choice,
there are two alternatives, also considered with respect to their superconvergence properties
by Cheng and Shu [40]. For advection-diffusion equations, this means that the diffusion
fluxes are chosen either consistent with the convective flux, namely the numerical flux for
the unknown quantity is chosen equal to the upwind flux while the numerical flux for the
gradient is taken from the opposite direction as in (2.9), or the choice of diffusion fluxes
is inconsistent with the convective flux when the directions are reversed as in (2.8). While
for pure diffusion problems, there is no preferred direction, the LDG scheme for advection-
diffusion problems is often preferred in its consistent variant. Although Cheng and Shu [40]
show superconvergence properties for both variants, they state a preference for the consistent
variant in their conclusions. Furthermore, a recent investigation on IMEX time integration
for LDG schemes by Wang et al. [205] also uses the consistent variant. In this work, it is
shown that the two choices of alternating fluxes lead to significant differences in the error
vs. wave number characteristics. More precisely, the variant which is inconsistent with the
upwind advective flux is more accurate in case of advection-diffusion discretizations for a large
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range of wave numbers. Furthermore, the investigations in this work show that the higher
accuracy of the BR1 flux for well-resolved solutions observed in [210] is restricted to the DG
scheme on Legendre-Gauss nodes and to an even polynomial degree N . For the DG scheme
on Legendre-Gauss nodes with odd N , both the BR2 flux for larger penalty parameters and
the more accurate variant of LDG produce smaller errors for well-resolved problems, while
for Legendre-Gauss-Lobatto nodes, the inconsistent LDG variant generally performs better
as well.

In the following, we first introduce the DG space discretization for linear advection-diffusion
equations in one space dimension building on the notation used in Section 2.1. Afterwards,
Fourier analysis is introduced to numerically compute the eigensolutions of the respective
variants of the DG scheme and derive the corresponding relative error vs. non-dimensional
wave number. Numerical experiments for the advection-diffusion problem are then carried
out to verify the error analysis.

2.4.1 The DG-discretized linear advection-diffusion equation

We consider the linear advection-diffusion equation

∂

∂t
U(x, t) + a

∂

∂x
U(x, t) = d

∂2

∂x2
U(x, t), (x, t) ∈ Q = Ω× (0, T ), Ω = (xα, xβ) , (2.35)

with diffusion coefficient d > 0 and advective velocity a > 0, supplemented by the periodic
initial condition U(x, 0) = U0(x) in L2(Ω) and periodic boundary conditions.

Analogously to the construction of DG schemes for the linear diffusion equation in Section 2.1,
the space discretization of (2.35) is derived from the first order reformulation

∂

∂t
U(x, t) + a

∂

∂x
U(x, t) = d

∂

∂x
Q(x, t), Q(x, t) =

∂

∂x
U(x, t), (2.36)

introducing the auxiliary variable Q. Although the analysis of energy stability with respect
to the BR2 penalty parameter in the previous section applies to general non-overlapping one-
dimensional grids, for the currently presented eigensolution analysis, the computational grid is
again assumed to be uniform with constant cell size ∆x. Reusing the notation in Section 2.1,
the element-wise DG space discretization to obtain the approximate solution (u(t), q(t)) ∈ V 2

h

is derived from the variational formulation

(ut, v)j = a
(

(u, vx)j − u−j+1v
−
j+1 + u−j v

+
j

)
+ d

(
−(q, vx)j + q∗j+1v

−
j+1 − q

∗
j v

+
j

)
, ∀ v ∈ Vh, (2.37)

(q, r)j = −(u, rx)j + u∗j+1r
−
j+1 − u

∗
jr

+
j , ∀ r ∈ Vh, (2.38)

where q∗ and u∗ represent suitable numerical fluxes determining the chosen DG diffusion
scheme and upwind fluxes are applied to the advective term. Therefore, the focus of the
eigensolution analysis is put on the influence of the various contemporary diffusion fluxes
introduced in Section 2.1). In a similar setting, the influence of central fluxes for advection
has been studied in [151].
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For the following eigensolution analysis with respect to different diffusion fluxes, numerical
integration of the occurring integrals is carried out either exactly using Legendre-Gauss nodes
or less accurately with Legendre-Gauss-Lobatto quadrature. Denoting by ξν , ν = 1, . . . , N+1,
the set of quadrature nodes on the reference cell I = [−1, 1] and by ων , ν = 1, . . . , N + 1, the
corresponding quadrature weights, we hence replace the integrals occurring in (2.37),(2.38)
by

(u, v)j =

∫ xj+1

xj

uv dx ≈ ∆x

2

N+1∑
ν=1

ων u (Λj(ξν)) v (Λj(ξν)) =< u, v >j , for u, v ∈ Vh . (2.39)

The formulation (2.37),(2.38) is thus replaced by

< ut, v >j = a
(
< u, vx >j −u−j+1v

−
j+1 + u−j v

+
j

)
+ d

(
− < q, vx >j +q∗j+1v

−
j+1 − q

∗
j v

+
j

)
, ∀ v ∈ Vh, (2.40)

< q, r >j = − < u, rx >j +u∗j+1r
−
j+1 − u

∗
jr

+
j , ∀ r ∈ Vh. (2.41)

Analogously to the derivation of the matrix-vector formulation of the DG scheme in Sec-
tion 1.2.1, applying partial integration in space to the terms < u, vx >j , < q, vx >j in (2.40)
and < u, rx >j in (2.41), we obtain the cell-wise strong form of the DG semi-discretization on
the reference cell as follows. Hereby, we also recall that the above terms are exactly integrated
in case of Legendre-Gauss-Lobatto quadrature We collect the nodal values of the approximate
solution at the N + 1 quadrature points Λj(ξν) within a DG cell (using either Legendre-
Gauss or Legendre-Gauss-Lobatto nodes) into the solution vector u = (u1, . . . , uN+1)T , i.e.
uν ≈ U (Λj(ξν), t). Furthermore, the Lagrange polynomials Lk(ξ) corresponding to the nodal
set are used as the DG test and basis functions and collected into the vector valued function
L given by L(ξ) = (L1(ξ), . . . , LN+1(ξ))T . Defining the differentiation matrix D and discrete
mass matrix M by their entries Djk = L′k(ξj) and Mjk = δjkωj = Mkj , the resulting DG
formulation reads

∆x

2
ut + aD u− dD q = M−1

(
a[(u− u−)L]1−1 − d[(q − q∗)L]1−1

)
, (2.42)

∆x

2
q−D u = −M−1[(u− u∗)L]1−1 , (2.43)

where q∗ and u∗ again represent the numerical diffusion fluxes.

In the above formulation, we also recall that in case of Legendre-Gauss-Lobatto nodes, we
have a lumped mass matrix M with Mjk ≈

∫ 1
−1 LjLkdξ while for Legendre-Gauss nodes,

integration is exact, i.e. Mjk =
∫ 1
−1 LjLkdξ.

2.4.2 Eigensolution analysis

In the following, the accuracy of the DG schemes employing different diffusion fluxes is studied
via Fourier analysis. The linear advection-diffusion equation (2.35) admits a traveling wave
solution of the form u(x, t) = ei(kx−ωt) where k ∈ R is the wave number and ω denotes the
frequency given by ω = ak − idk2 for the analytical solution.
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Inserting a corresponding numerical solution of the form uj(t) = c ei(kj∆x−ω̃t) into the strong
DG formulation (2.42), (2.43) yields(

a
(
A0 + e−ik∆xA−1

)
+

d

∆x

(
e−2ik∆xB−2 + e−ik∆xB−1 + B0 + eik∆xB1 + e2ik∆xB2

))
c

= i∆xω̃ c ,

(2.44)

with real (N+1)×(N+1) matrices A0,A−1,Bk, k = 0,±1,±2, depending only on the chosen
nodal set and the diffusion fluxes u∗, q∗ which characterize the respective DG scheme. Numeri-
cal solutions of the prescribed form can thus be found by solving the eigenvalue problem (2.44).
We may furthermore reduce the set of parameters by defining the non-dimensional wave num-
ber K = k∆x, the non-dimensional numerical frequency Ω = ∆xω̃

a and the grid Peclet number
Pe∗ = a∆x

d to obtain the eigenvalue problem((
A0 + e−iKA−1

)
+

1

Pe∗
(
e−2iKB−2 + e−iKB−1 + B0 + eiKB1 + e2iKB2

))
c = iΩ c .

(2.45)

For a polynomial degree of N , for any K ∈ [0, π(N+1)], we obtain a set of N+1 eigenvalues of
equation (2.45). In the literature, see e.g. Hu et al. [82], often only one of these is considered
physical and the function assigning to each K its corresponding physical eigenvalue is termed
the physical mode while the remaining modes are named spurious.

Dispersion and dissipation properties depending on the diffusion fluxes

Figures 2.1a and 2.1c plot the real and imaginary part of the three modes for the DG(N = 2)
scheme on Legendre-Gauss nodes with LDG diffusion flux for a grid Peclet number of Pe∗ =
20. For both variants of LDG, the eigenvalues coincide. Figures 2.1b and 2.1d show the
eigenvalue curves for the LDG diffusion flux employed within the DG scheme on Legendre-
Gauss-Lobatto nodes while Figure 2.2 depicts the results for the BR1 and BR2 diffusion
fluxes on Legendre-Gauss and Legendre-Gauss-Lobatto nodes for N = 2, respectively. For the
BR2, scheme, the penalty parameter is hereby set to ηe = 3 and on Legendre-Gauss-Lobatto
nodes the BR2LGL variant is implemented, whereby the BR2 lifting operator is computed
using (2.12). Comparing the choice of DG nodal set in Figures 2.1 and 2.2, we see that for the
more accurate Legendre-Gauss quadrature rule, the physical mode stays close to the exact
dispersion relation for a larger range of wave numbers in all cases. For the BR1 scheme and
the BR2 scheme with ηe = 3, the numerical dispersion relations depicted in Figure 2.2 differ.
In particular, the BR2 approach introduces more numerical dissipation to the physical mode
for higher wave numbers as well as to the spurious modes due to the comparatively high value
of ηe. Figure 2.3 shows the corresponding results when varying the penalty parameter ηe of
the BR2 fluxes in case of the DG scheme on Legendre-Gauss nodes. Reducing ηe yields results
closer to BR1. In fact, for ηe = N

N+1 = 2
3 , i.e. the smallest value of the penalty parameter

yielding a provable energy stable scheme as described in Section 2.3, the eigenvalue curves are
almost indistinguishable from those of the BR1 scheme. This behavior is not surprising, since
the smallest choice of the BR2 penalty parameter in case of the DG scheme on Legendre-
Gauss-Lobatto nodes is equivalent to BR1, see Theorem 2.7.
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(b) Numerical dispersion (LGL nodes).
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(d) Numerical diffusion (LGL nodes).

0 0.5 1 1.5 2 2.5 3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(e) Energy distribution (LG nodes).
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(f) Energy distribution (LGL nodes).

Figure 2.1: Numerical dispersion relation, numerical diffusion and energy distribution of the
eigenmodes for the DG scheme of orderN = 2 using Legendre-Gauss (LG) nodes (first column)
and Legendre-Gauss-Lobatto (LGL) nodes (second column). Diffusion term discretized by the
two alternate variants of the LDG diffusion, LDGa (solid lines) and LDGb (dashed lines).



116 CHAPTER 2. VISCOUS FLOW

0 0.5 1 1.5 2 2.5 3

-3

-2

-1

0

1

2

3

(a) Numerical dispersion (LG nodes).
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(b) Numerical dispersion (LGL nodes).
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(e) Energy distribution (LG nodes).
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(f) Energy distribution (LGL nodes).

Figure 2.2: Numerical dispersion relation, numerical diffusion and energy distribution of the
eigenmodes for the DG scheme of orderN = 2 using Legendre-Gauss (LG) nodes (first column)
and Legendre-Gauss-Lobatto (LGL) nodes (second column). Diffusion term discretized by
BR1 scheme (solid lines) and BR2 method with ηe = 3 (dashed lines).
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Energy distribution of the eigenmodes

Solely regarding the physical mode does not yield a complete picture of the behavior of the
numerical scheme. In fact, Moura et al. [139] argue that the spurious modes contribute to
the overall accuracy, in particular for higher wave numbers where the secondary eigenmodes
may strongly influence the behavior of the scheme. Also deviating from the distinction of a
physical mode, Watkins et al. [210] combine all eigensolutions into an error bound depending
on the wave number. We will follow their work which also allows us to point out differences
between the two variants of the LDG approach. For this purpose, we regard the complete
set of N + 1 eigenvalues Ωp, p = 1, . . . , N + 1, and corresponding normalized eigenvectors
vp, p = 1, . . . , N + 1.

An initial wave with non-dimensional wave number K on a cell Ij , given by the initial nodal
values

uν(0) = ei(j+
ξν+1

2 )K , ν = 1, . . . N + 1 , (2.46)

can be represented as the linear combination u(0) =
∑N+1

p=1 βpvpe
ijK , where the coefficients βp

are obtained as the solution of
∑N+1

p=1 βpvp = α, with αν = ei
ξν+1

2
K . Then, the corresponding

numerical solution of the DG scheme (2.42), (2.43) on the cell Ij is a linear combination

of the waves vpe
i(jK− a

∆x
Ωpt), p = 1, . . . , N + 1. All eigenmodes are therefore present in

the numerical solution of the DG scheme for the above initial condition. As also stated by
Watkins et al. [210], the weights βp determine how each mode contributes quantitatively to

the numerical solution and the normalized weights
|βp|
‖β‖2 describe the distribution of energy

among the modes as depicted in Figures 2.1e, 2.1f, 2.2e and 2.2f.

Hereby, Figures 2.1e and 2.1f show that although both variants of LDG have the same eigen-
modes, the energy distribution among those modes is different for LDGa and LDGb. More
precisely, for moderate wave numbers the first eigenmode – which is often considered the phys-
ical one – has more influence on the numerical solution for LDGa than for LDGb. In addition,
in this wave number regime, the spurious mode 3 has less influence for LDGa. Furthermore,
Figure 2.2 depicts differences of both the eigenmodes and their energy distribution comparing
the BR1 and BR2 diffusion discretization. Here, for low to moderate wave numbers, the BR2
scheme with ηe = 3 leads to a higher energy content of the physical mode while for high wave
numbers, the energy content of the physical mode is higher for the BR1 scheme. In addition,
the BR2 approach introduces a larger amount of numerical diffusion for the spurious mode
3 for this value of ηe as shown in Figures 2.2c and 2.2d. This mode still has a significant
energy content as shown in Figures 2.2e and 2.2f and has therefore a considerable impact on
the behavior of the numerical solution. The dependency of the numerical dissipation and the
energy content of each mode on the BR2 penalty parameter ηe is indicated in Figure 2.3.

Increasing the polynomial degree, Figures 2.4 and 2.5 show the four modes for the DG(N = 3)
scheme. Considering the two variants of alternating LDG fluxes, for moderate wave numbers
the first eigenmode has again more influence on the numerical solution for LDGa than for
LDGb, while the influence of the spurious mode 4 is significantly reduced for LDGa. Consid-
ering the comparison of the BR1 scheme to the BR2 scheme with parameter ηe = 3, differences
regarding the DG nodal set can be perceived. On Legendre-Gauss nodes, the results are sim-
ilar to the DG(N = 2) scheme relating to the higher energy content of the physical mode
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(c) Energy distribution.

Figure 2.3: Numerical dispersion relation, numerical diffusion and energy distribution of the
eigenmodes for the DG scheme of order N = 2 using Legendre-Gauss nodes. Diffusion term
discretized by the BR2 scheme for ηe = 2/3 (solid lines), ηe = 2 (dashed lines) and ηe = 3
(dotted lines).

for the BR2 scheme in case of moderate wave numbers and of the BR1 scheme for high wave
numbers. However, on Legendre-Gauss-Lobatto nodes, the BR2 scheme yields higher energy
content of the physical mode for high wave numbers as well.

A wave number dependent error bound combining all eigenmodes

As in Watkins et al. [210], we now consider the error of the numerical solution depending on the
non-dimensional wave number. Hereby, we again consider the above initial condition (2.46).
The numerical solution on cell Ij corresponding to this initial condition is

u(t) =

N+1∑
p=1

βpvpe
i(jK− a

∆x
Ωpt), (2.47)

whereas the exact solution is given by

uex(t) =
N+1∑
p=1

βpvpe
ijK− a

∆x(iK+(Pe∗)−1K2) t. (2.48)

For the absolute error of the numerical solution, we therefore have

e(t) = u(t)− uex(t) = eijKe−
a

∆x
(iK+(Pe∗)−1K2) t

N+1∑
p=1

(
e
a

∆x(−i(Ωp−K)+(Pe∗)−1K2) t − 1
)
βpvp .

(2.49)

Using

‖uex(t)‖l2 = e−
a

∆x
(Pe∗)−1K2t‖u(0)‖l2 = e−

a
∆x

(Pe∗)−1K2t

√√√√N+1∑
ν=1

∣∣∣ei ξν+1
2

K
∣∣∣2

= e−
a

∆x
(Pe∗)−1K2t

√
N + 1 ,
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(a) Numerical dispersion (LG nodes).
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(e) Energy distribution (LG nodes).
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(f) Energy distribution (LGL nodes).

Figure 2.4: Numerical dispersion relation, numerical diffusion and energy distribution of the
eigenmodes for the DG scheme of orderN = 3 using Legendre-Gauss (LG) nodes (first column)
and Legendre-Gauss-Lobatto (LGL) nodes (second column). Diffusion term discretized by the
two alternate variants of the LDG diffusion, LDGa (solid lines) and LDGb (dashed lines).
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(d) Numerical diffusion (LGL nodes).
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(e) Energy distribution (LG nodes).
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Figure 2.5: Numerical dispersion relation, numerical diffusion and energy distribution of the
eigenmodes for the DG scheme of orderN = 3 using Legendre-Gauss (LG) nodes (first column)
and Legendre-Gauss-Lobatto (LGL) nodes (second column). Diffusion term discretized by
BR1 scheme (solid lines) and BR2 method with ηe = 3 (dashed lines).
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Figure 2.6: Relative error err(t) vs. non-dimensional wave number for N = 1, Pe∗ = 20,
t = 0.05.

the norm of the relative error of the numerical solution is therefore given by

err(t) :=
‖e(t)‖l2
‖uex(t)‖l2

=
1√
N + 1

∥∥∥∥∥∥
N+1∑
p=1

(
e
a

∆x(−i(Ωp−K)+(Pe∗)−1K2)t − 1
)
βpvp

∥∥∥∥∥∥
l2

. (2.50)

While Watkins et al. [210] use an upper bound of the above quantity (2.50), we will use the
exact relative error with respect to the wave number in the following analysis. Particularly for
well-resolved wave numbers, a combined error measure is advantageous since in the depiction
of eigenmodes the variations with respect to different schemes are almost indistinguishable.
In addition, the behavior of different schemes concerning each separate eigenmode is not as
perceptible for higher polynomial degrees.

Figures 2.6, 2.7, 2.8 and 2.9 show the relative error as defined in (2.50) at a given time t
versus the non-dimensional wave number for the DG schemes up to 5th order using different
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Figure 2.7: Relative error err(t) vs. non-dimensional wave number for N = 2, P e∗ = 20,
t = 0.05.
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(c) Legendre-Gauss-Lobatto nodes.
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Figure 2.8: Relative error err(t) vs. non-dimensional wave number for N = 3, Pe∗ = 20,
t = 0.05.
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Figure 2.9: Relative error err(t) vs. non-dimensional wave number for N = 4, P e∗ = 20,
t = 0.05.
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(c) Legendre-Gauss nodes, N = 3.
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Figure 2.10: Relative error err(t) vs. non-dimensional wave number for the BR2 scheme
depending on the penalty parameter ηe in comparison to BR1. DG scheme on Legendre-
Gauss nodes for N = 2 (first row) and N = 3 (second row).
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diffusion fluxes. In particular, the behavior of the alternate LDGa and LDGb fluxes, the BR1
scheme and the BR2 scheme for ηe = 3 are compared. In addition, in Figure 2.10, a study
with respect to the BR2 penalty parameter is carried out for the DG(N = 2) and DG(N = 3)
schemes on Legendre-Gauss nodes.

Considering the implemented variants of LDG, the two choices of alternating fluxes lead to
significant differences with respect to the relative error which is due to the fact that the energy
distribution among modes differs. More precisely, the variant which is inconsistent with the
upwind advective flux is more accurate in case of advection-diffusion discretizations for a large
range of wave numbers.

Furthermore, while higher accuracy of the BR1 flux for well-resolved solutions has been ob-
served in [210], the plots in logarithmic scale at the right-hand side of each figure indicate that
for very low wave numbers, this higher accuracy is restricted to the DG scheme on Legendre-
Gauss nodes with even polynomial degree N . For the DG scheme on Legendre-Gauss-Lobatto
nodes as well as for odd N , both the BR2 flux with penalty parameter ηe = 3 and the more
accurate variant of LDG produce a smaller error for well-resolved solutions.

Also for the DG scheme on Legendre-Gauss-Lobatto nodes, Figures 2.7, 2.8 and 2.9 for poly-
nomial degrees of N = 2, 3, 4, respectively, show the same behavior of the investigated schemes
with respect to accuracy. For almost the whole range of wave numbers, the LDGa scheme
is the most accurate approach, followed by the BR2 scheme with penalty parameter ηe = 3,
the BR1 scheme and lastly the LDGb scheme. For N = 1 the error curves in Figure 2.6c are
nearly indistinguishable but suggest a similar sequence for the schemes.

Concerning the BR2 penalty parameter ηe, Figure 2.10 depicts the relative errors of the DG
approximate solutions on Legendre-Gauss nodes for polynomial degrees of N = 2, 3 in case
of the parameter choices ηe = N

N+1 , 2, 3. For comparison, the results using the BR1 diffusion
fluxes are included in the error plots. Obviously, the relative error of the BR2 scheme is closest
to the relative error of the BR1 scheme for ηe = N

N+1 .

At this point, it should be remarked that even if the results for BR1 and BR2(ηe = N
N+1)

are similar, they do not coincide. In fact, on Legendre-Gauss nodes, the BR1 scheme is not
equivalent to BR2 for any value of the penalty parameter ηe, since on this set of nodes, the
BR1 diffusion discretization has a wider stencil than the BR2 and IP schemes. This does not
contradict Theorem 2.7, since its assertions only apply to the DG scheme on Legendre-Gauss-
Lobatto nodes.

Furthermore, with respect to the parameter study for ηe, it can be observed that the schemes
BR2(ηe = N

N+1) and BR2(ηe = 3) provide lower and upper bounds for the BR1 results as well
as for BR2(ηe = 2). Along the whole range from low to high wave numbers, the BR2 schemes
for ηe = N

N+1 and ηe = 3 alternate to provide the most accurate solution among the schemes
considered in Figure 2.10. Therefore, there is no optimal choice for ηe regarding accuracy
for the whole range of low to high wave numbers. However, we observe that for very high
wave numbers, the BR2(ηe = N

N+1) and BR1 schemes yield the most accurate results for both
values of N while for well-resolved wave numbers, the most accurate scheme depends on the
polynomial degree. For even polynomial degree N = 2, the parameter ηe = N

N+1 yields the
most accurate and ηe = 3 the less accurate result whereas for odd polynomial degree N = 3
the roles of the particular BR2 schemes are reversed and BR2(ηe = 3) is provides the best
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result. This odd-even phenomenon is investigated more thoroughly by carrying out numerical
experiments for the full advection-diffusion problem in Section 2.4.3.

An example regarding the influence of the grid Peclet number

In order to give an example of the influence of the grid Peclet number on the results of
the eigensolution analysis, in particular for higher order DG schemes, Figure 2.11 shows the
eigenmodes for the two alternate variants of the LDG diffusion fluxes within the DG(N = 5)
scheme on Legendre-Gauss nodes for Pe∗ = 20 as well as Pe∗ = 100. In addition, Figure 2.12
gives a comparison of the numerical errors depending on the non-dimensional wave number.
Although the structure of the eigensolutions for the LDG fluxes differs for different Peclet
numbers, with a high frequency mode for Pe∗ = 20 and replications of the physical mode
for Pe∗ = 100, the basic observations regarding the differences with respect to diffusion
discretizations still hold. Regarding the LDG variants, for moderate wave numbers, the
first eigenmode has more influence on the numerical solution for LDGa than for LDGb. In
addition, Figure 2.12 shows that LDGa is more accurate than LDGb. Regarding the results
with respect to the BR1 scheme and the BR2 scheme for ηe = 3, which are also depicted
in in Figure 2.12, the error plots in logarithmic scale indicate a smaller error for the BR2
scheme with penalty parameter ηe = 3 in comparison to the BR1 diffusion fluxes for both
Peclet numbers in accordance to the observed reduction of accuracy for the BR1 scheme for
odd polynomial degrees. A comparison of Figures 2.12a and 2.12c shows that for both Peclet
numbers, the BR1 scheme is alternately the most or least accurate scheme depending on the
wave number. A different behavior depending on the grid Peclet number can be perceived
for the LDGb scheme which produces comparatively larger errors in the higher wave number
range for Pe∗ = 100. Naturally, the differences between the diffusion schemes are generally
smaller for higher Peclet numbers since then the influence of advection dominates regarding
the underlying PDE. In that respect, the LDGa scheme and the BR2 scheme for ηe = 3
produce nearly identical results in Figures 2.12c and 2.12d for Pe∗ = 100.

2.4.3 Numerical results for the linear advection-diffusion equation

In this section, numerical experiments are carried out to solve the advection-diffusion prob-
lem (2.35) for a = 1 on the spatial domain Ω = [−10, 10] discretized by E = 20 elements, i.e
the grid size is ∆x = 1. The diffusion coefficient d varies depending on the respective test case
and can be obtained from the grid Peclet number, which in this case is Pe∗ = a∆x

d = d−1. We
consider periodic initial conditions and supplement (2.35) with periodic boundary conditions.

Now, the DG scheme (2.42), (2.43) is applied to this periodic advection-diffusion problem for
polynomial degrees of N = 1, . . . , 5. For time integration, the classical explicit fourth order
Runge-Kutta scheme is used. Given the DG solution u(t) and the exact solution uex(t), we
measure the relative L2-error by

errL2(t) = ‖u(t)− uex(t)‖L2/‖uex(t)‖L2 . (2.51)

Hereby, the L2-norm of a nodal quantity v is approximated using the given quadrature rules
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(f) Energy distribution (Pe∗ = 100).

Figure 2.11: Numerical dispersion relation, numerical diffusion and energy distribution of
the eigenmodes for the DG scheme of order N = 5 using Legendre-Gauss nodes for Pe∗ = 20
(first column) and Pe∗ = 100 (second column). Diffusion term discretized by the two alternate
variants LDGa (solid lines) and LDGb (dashed lines).
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(d) N = 5, P e∗ = 100, logarithmic scale.

Figure 2.12: Relative error err(t) vs. non-dimensional wave number for the DG(N = 5)
scheme on Legendre-Gauss nodes for Pe∗ = 20 (first row) and Pe∗ = 100 (second row).
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as

‖v‖L2 =

√√√√∆x

2

E∑
j=1

N+1∑
ν=1

ωνv2
j,ν , (2.52)

where ων , ν = 1, . . . , N+1, denote either the Legendre-Gauss or the Legendre-Gauss-Lobatto
weights corresponding to the DG nodal set employed.

Evolution of a single wave

The purpose of this first test case is to verify the error analysis in Section 2.4.2. We consider
initial solutions of the form

U0(x) = sin(K(x− t)) (2.53)

for various sizes of the wave number K. Tables 2.1 and 2.2 list the L2-errors of the numerical
solution versus the non-dimensional wave number K

N+1 for the DG schemes for N = 1, . . . , 5
on Legendre-Gauss and Legendre-Gauss-Lobatto nodes, respectively. The simulations are
run until final time t = 0.05 and the grid Peclet number is set to Pe∗ = 20, according to the
eigenanalysis in Section 2.4.2. For this test case, the DG scheme is combined with both variants
of the alternate LDG diffusion flux as well as the BR1 and BR2 diffusion discretization. The
study in Section 2.4.2 regarding the dissipation and dispersion properties with respect to
the BR2 penalty parameter is continued by choosing ηe = N

N+1 , 2, 3 for the DG scheme on

Legendre-Gauss nodes and ηe = 2, 3, 3(N+1)
N for the DG scheme on Legendre-Gauss-Lobatto

nodes using the BR2LGL implementation with inexact calculation of the BR2 lifting operator
through (2.12) as described in Section 2.1. We recall from our analysis in Section 2.3, the
BR2LGL(ηe = 3N+1

N ) scheme is equivalent to BR2LG(ηe = 3) and for the DG scheme on
Legendre-Gauss-Lobatto nodes, BR2LGL(ηe = 1) is equivalent to the BR1 scheme. Regarding
the numerical results listed in Tables 2.1 and 2.2, the following observations can be made:

• In almost all set-ups, the LDGa variant performs better than LDGb.

• In case of Legendre-Gauss nodes, for all N , there is some range of wave numbers where
the BR1 scheme and the BR2 scheme for η3 = N

N+1 beat the LDGa discretization and

the BR2
(
η3 = N

N+1

)
scheme actually performs best of all schemes.

• On Legendre-Gauss-Lobatto nodes, LDGb yields the largest error of all schemes except
for the case N = 4, K

N+1 = 4π
5 , with similarly large errors of all schemes. Further-

more, increasing the penalty parameter of the BR2 scheme increases the accuracy of
the numerical solution on this set of nodes except for the cases N = 1, K

N+1 = π
3 and

N = 5, K
N+1 = π

2 .

• We observe consistency of the above results with the eigensolution analysis in Sec-
tion 2.4.2 by considering Figures 2.6, 2.7, 2.8, 2.9, 2.10 and 2.12.
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N K/N + 1 LDGa LDGb BR1
BR2

ηe = N/N + 1 ηe = 2 ηe = 3

1

π/10 3.27e-03 5.97e-03 4.74e-03 4.75e-03 4.61e-03 4.54e-03

π/5 1.27e-02 2.20e-02 1.71e-02 1.71e-02 1.72e-02 1.74e-02

π/2 1.12e-01 1.22e-01 1.07e-01 9.00e-02 1.16e-01 1.33e-01

4π/5 2.32e-01 2.33e-01 1.96e-01 1.86e-01 2.32e-01 2.63e-01

9π/10 3.01e-01 3.01e-01 2.59e-01 2.56e-01 3.01e-01 3.31e-01

2

π/10 1.16e-03 1.32e-03 9.36e-04 7.61e-04 1.19e-03 1.48e-03

π/5 7.65e-03 1.17e-02 7.78e-03 7.54e-03 9.19e-03 1.05e-02

π/2 6.45e-02 1.74e-01 1.27e-01 1.31e-01 1.18e-01 1.10e-01

4π/5 3.75e-01 4.27e-01 3.29e-01 2.95e-01 3.97e-01 4.64e-01

9π/10 5.03e-01 5.21e-01 3.98e-01 3.84e-01 5.10e-01 5.90e-01

3

π/10 1.68e-04 3.82e-04 2.65e-04 2.72e-04 2.48e-04 2.47e-04

π/5 4.20e-03 5.38e-03 3.65e-03 3.15e-03 4.53e-03 5.39e-03

π/2 9.83e-02 6.93e-02 2.45e-02 2.45e-02 8.18e-02 1.04e-01

4π/5 4.85e-01 6.50e-01 5.14e-01 4.90e-01 5.56e-01 6.00e-01

9π/10 7.10e-01 7.84e-01 6.02e-01 5.74e-01 7.35e-01 8.08e-01

4

π/10 5.24e-05 7.22e-05 5.07e-05 4.95e-05 6.06e-05 6.69e-05

π/5 7.06e-04 3.41e-04 1.06e-04 1.06e-04 4.84e-04 6.12e-04

π/2 1.19e-01 1.41e-01 7.93e-02 6.38e-02 1.25e-01 1.44e-01

4π/5 8.33e-01 9.77e-01 8.90e-01 8.60e-01 9.24e-01 9.44e-01

9π/10 9.03e-01 9.86e-01 8.34e-01 8.09e-01 9.16e-01 9.53e-01

5

π/10 1.05e-05 1.50e-05 1.28e-05 1.28e-05 1.41e-05 1.50e-05

π/5 6.74e-04 8.80e-04 4.30e-04 2.31e-04 7.11e-04 8.50e-04

π/2 1.12e-01 1.84e-01 1.16e-01 9.20e-02 1.47e-01 1.63e-01

4π/5 7.42e-01 8.24e-01 9.35e-01 9.74e-01 8.81e-01 8.55e-01

9π/10 1.15e+00 1.17e+00 1.12e+00 1.11e+00 1.13e+00 1.14e+00

Table 2.1: Comparison of relative L2-errors depending on the non-dimensional wave number
for the DG scheme on Legendre-Gauss nodes.
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N K/N + 1 LDGa LDGb BR1
BR2

ηe = 2 ηe = 3 ηe = 3(N + 1)/N

1

π/10 8.39e-03 1.01e-02 9.31e-03 9.27e-03 9.22e-03 9.09e-03

π/5 3.32e-02 3.91e-02 3.62e-02 3.61e-02 3.60e-02 3.55e-02

π/3 9.13e-02 1.02e-01 9.59e-02 9.63e-02 9.68e-02 9.86e-02

4π/5 3.14e-01 3.15e-01 3.15e-01 3.15e-01 3.15e-01 3.15e-01

9π/10 3.34e-01 3.34e-01 3.34e-01 3.34e-01 3.34e-01 3.34e-01

2

π/10 2.31e-03 2.46e-03 2.39e-03 2.38e-03 2.37e-03 2.35e-03

π/5 1.68e-02 1.93e-02 1.81e-02 1.79e-02 1.77e-02 1.75e-02

π/2 1.72e-01 2.31e-01 2.03e-01 1.99e-01 1.95e-01 1.89e-01

4π/5 5.08e-01 5.42e-01 5.25e-01 5.22e-01 5.20e-01 5.18e-01

9π/10 6.14e-01 6.27e-01 6.20e-01 6.19e-01 6.18e-01 6.17e-01

3

π/10 4.43e-04 5.93e-04 5.25e-04 5.03e-04 4.88e-04 4.76e-04

π/5 7.33e-03 8.87e-03 8.15e-03 7.95e-03 7.81e-03 7.72e-03

π/2 1.32e-01 1.58e-01 1.49e-01 1.43e-01 1.39e-01 1.36e-01

4π/5 6.49e-01 7.34e-01 6.87e-01 6.75e-01 6.67e-01 6.62e-01

9π/10 8.11e-01 8.65e-01 8.32e-01 8.25e-01 8.21e-01 8.19e-01

4

π/10 9.92e-05 1.36e-04 1.20e-04 1.13e-04 1.10e-04 1.09e-04

π/5 9.92e-04 1.53e-03 1.37e-03 1.20e-03 1.12e-03 1.09e-03

π/2 1.92e-01 2.44e-01 2.20e-01 2.11e-01 2.07e-01 2.07e-01

4π/5 1.01e+00 9.98e-01 1.01e+00 1.00e+00 1.00e+00 1.00e+00

9π/10 1.12e+00 1.17e+00 1.13e+00 1.12e+00 1.12e+00 1.12e+00

5

π/10 2.02e-05 3.02e-05 2.49e-05 2.31e-05 2.27e-05 2.26e-05

π/5 1.13e-03 1.79e-03 1.41e-03 1.31e-03 1.31e-03 1.31e-03

π/2 2.35e-01 2.99e-01 2.53e-01 2.52e-01 2.54e-01 2.55e-01

4π/5 1.17e+00 1.23e+00 1.22e+00 1.19e+00 1.18e+00 1.17e+00

9π/10 1.53e+00 1.54e+00 1.53e+00 1.52e+00 1.52e+00 1.52e+00

Table 2.2: Comparison of relative L2-errors depending on the non-dimensional wave number
for the DG scheme on Legendre-Gauss-Lobatto nodes.
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A well-resolved test case

As in Watkins et al. [210] we now consider the solution of the 1D advection-diffusion equation
with a well-resolved approximate Gaussian as initial condition. Hereby, the initial condition
u(0) as well as the exact solution uex(t) can be computed from the analytical solution

U(x, t) =

Nk̂∑
µ=−Nk̂

θµe
−dk̂2

µt cos
(
k̂µ(x− t)

)
, (2.54)

where θµ is the µ-th spectral weight given below, k̂µ = 2πµ/L is the µ-th wave number
associated with the domain length L = 20 and Nk̂ is the number of waves used, where Nk̂ is

chosen the largest positive integer such that k̂Nk̂ ≤ (N + 1)π/∆x. The spectral weights θµ
are defined as

θµ =
e−(σk̂µ)

2
/2

√
2πσ

∑Nk̂
s=−Nk̂

e−(σk̂s)
2
/2
, −Nk̂ ≤ µ ≤ Nk̂ , (2.55)

where σ is the standard deviation of the Gaussian which dictates its width. For the well-
resolved Gaussian, we set σ = 8/

√
2π.

We now compute the numerical solution u(t) using the DG scheme for N = 1, . . . , 5 with
different diffusion discretizations. Tables 2.3 and 2.4 contain the relative L2-errors ‖u(t) −
uex(t)‖L2/‖uex(t)‖L2 for the various versions of the DG scheme at output times t = 0.1, 1, 10.
The results in the top rows of Tables 2.3 and 2.4 show that

• regarding the two alternative LDG variants, LDGa yields lower numerical errors in all
set-ups.

• for odd polynomial degrees N = 1, 3, 5, the LDGa diffusion discretization performs best
for all investigated output times and both nodal sets except for the case N = 1, t = 1
on Legendre-Gauss-Lobatto nodes. Furthermore, the BR2 schemes with large penalty
parameters ηe = 2, 3 and ηe = 3(N+1)

N beat the BR1 scheme in all odd degree cases,
with errors decreasing for increasing ηe, except for the DG(N = 1) scheme on Legendre-
Gauss-Lobatto nodes and output time t = 10. In addition, on Legendre-Gauss nodes,
the BR2 scheme with small penalty parameter ηe = N

N+1 yields larger errors than BR1
for N = 3, 5.

• for even polynomial degrees N = 2, 4, the situation above is reversed, i.e. the BR2
scheme for ηe = N

N+1 performs best of all diffusion discretizations in case of Legendre-
Gauss nodes followed by the BR1 scheme. Furthermore, regarding the BR2 penalty
parameter, increasing ηe increases the error of the numerical solution. For the even
degree case and Legendre-Gauss-Lobatto nodes, either the LDGa variant or the BR1
scheme yield the lowest numerical error, also depending on the output time t.

A low-resolution test case

For this test case, basically the same set-up is used as for the previous test case. However, the
standard deviation is reduced to σ = 1/

√
2π to produce a poorly resolved initial condition. The
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last five rows of Tables 2.3 and 2.4 contain the relative L2-errors at output times t = 0.1, 1, 10
for this low-resolution test case. The results show that

• regarding the two alternative LDG variants, LDGa yields lower numerical errors in all
set-ups except for the DG(N = 4) scheme on Legendre-Gauss nodes at t = 0.1 where
both variants yield almost the same error.

• On Legendre-Gauss-Lobatto nodes, the behavior of the schemes with respect to accuracy
corresponds to the error plots in Section 2.4.2 for low output times t = 0.1 (for all
polynomial degrees) and t = 1 (for N = 2, 4). More precisely, in these cases, the most

accurate diffusion scheme is LDGa, followed by the BR2 schemes for ηe = 3(N+1)
N , ηe = 3

and ηe = 2, in this order, while the second largest error is given by the BR1 scheme and
the largest one by the LDGb approach.

• On Legendre-Gauss nodes, the most accurate approach is LDGa except for the three
cases N = 1, t = 1; N = 3, t = 10 and N = 4, t = 0.1. Furthermore, considering
the BR1 and BR2 approaches and even polynomial degrees N = 2, 4, the order of these
schemes with respect to accuracy is BR2 for ηe = 3, 2, BR1, and lastly BR2 for ηe = N

N+1 .
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N t LDGa LDGb BR1
BR2

ηe = N/N + 1 ηe = 2 ηe = 3

Well-resolved test case

1
0.1 1.20e-03 2.20e-03 1.81e-03 1.82e-03 1.70e-03 1.62e-03

1 2.20e-03 4.01e-03 3.89e-03 3.92e-03 3.10e-03 2.73e-03

10 3.42e-03 4.60e-03 4.91e-03 4.96e-03 4.09e-03 3.69e-03

2
0.1 9.31e-05 9.85e-05 7.67e-05 6.05e-05 9.33e-05 1.12e-04

1 1.38e-04 1.50e-04 1.11e-04 8.76e-05 1.35e-04 1.62e-04

10 1.23e-04 1.33e-04 9.85e-05 7.77e-05 1.19e-04 1.44e-04

3
0.1 1.96e-06 4.57e-06 4.30e-06 4.38e-06 3.24e-06 2.88e-06

1 2.98e-06 5.43e-06 6.46e-06 6.59e-06 4.74e-06 4.21e-06

10 2.64e-06 4.66e-06 5.61e-06 5.72e-06 4.13e-06 3.68e-06

4
0.1 1.20e-07 1.52e-07 9.28e-08 7.22e-08 1.27e-07 1.48e-07

1 1.30e-07 1.75e-07 9.38e-08 7.16e-08 1.32e-07 1.57e-07

10 1.08e-07 1.44e-07 7.67e-08 5.77e-08 1.08e-07 1.29e-07

5
0.1 3.12e-09 4.91e-09 6.26e-09 6.26e-09 5.32e-09 5.15e-09

1 3.21e-09 5.28e-09 7.07e-09 7.24e-09 5.61e-09 5.35e-09

10 2.51e-09 4.13e-09 5.63e-09 5.75e-09 4.42e-09 4.20e-09

Low-resolution test case

1
0.1 3.46e-02 5.06e-02 3.93e-02 4.04e-02 4.06e-02 4.14e-02

1 2.08e-01 2.20e-01 2.08e-01 1.95e-01 2.14e-01 2.25e-01

10 1.32e-01 1.33e-01 1.40e-01 1.41e-01 1.37e-01 1.35e-01

2
0.1 2.14e-02 5.66e-02 4.61e-02 4.73e-02 3.86e-02 3.41e-02

1 4.04e-02 4.98e-02 5.67e-02 5.75e-02 4.82e-02 4.45e-02

10 9.30e-03 9.66e-03 1.12e-02 1.13e-02 1.04e-02 1.02e-02

3
0.1 9.46e-03 1.35e-02 1.14e-02 1.11e-02 1.14e-02 1.19e-02

1 6.81e-03 7.68e-03 7.24e-03 6.86e-03 7.65e-03 8.15e-03

10 4.44e-04 5.27e-04 4.46e-04 4.21e-04 4.88e-04 5.31e-04

4
0.1 2.12e-03 2.11e-03 2.99e-03 3.13e-03 2.56e-03 2.47e-03

1 1.39e-03 1.92e-03 2.28e-03 2.28e-03 1.94e-03 1.89e-03

10 2.83e-05 4.22e-05 4.94e-05 5.01e-05 4.13e-05 4.05e-05

5
0.1 6.60e-04 1.16e-03 1.27e-03 1.27e-03 1.15e-03 1.14e-03

1 2.07e-04 2.87e-04 3.19e-04 3.19e-04 2.86e-04 2.94e-04

10 2.20e-06 3.32e-06 2.40e-06 2.27e-06 2.77e-06 3.00e-06

Table 2.3: Relative L2-errors for the well-resolved test case with σ = 8/
√

2π and for the low-
resolution test case with σ = 1/

√
2π. The DG schemes use Legendre-Gauss (LG) nodes as well

as different diffusion discretizations.
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N t LDGa LDGb BR1
BR2

ηe = 2 ηe = 3 ηe = 3(N + 1)/N

Well-resolved test case

1
0.1 3.45e-03 4.19e-03 3.85e-03 3.82e-03 3.78e-03 3.68e-03

1 1.60e-02 1.90e-02 1.86e-02 1.75e-02 1.66e-02 1.44e-02

10 5.33e-02 5.42e-02 5.33e-02 5.37e-02 5.41e-02 5.50e-02

2
0.1 2.19e-04 2.36e-04 2.28e-04 2.26e-04 2.25e-04 2.24e-04

1 6.04e-04 7.65e-04 6.00e-04 6.45e-04 6.87e-04 7.45e-04

10 5.88e-04 7.16e-04 5.90e-04 6.22e-04 6.53e-04 6.97e-04

3
0.1 8.05e-06 1.03e-05 9.56e-06 8.98e-06 8.64e-06 8.44e-06

1 1.82e-05 2.46e-05 2.54e-05 2.13e-05 1.95e-05 1.86e-05

10 1.57e-05 2.09e-05 2.15e-05 1.83e-05 1.68e-05 1.60e-05

4
0.1 2.72e-07 4.01e-07 3.15e-07 3.06e-07 3.08e-07 3.10e-07

1 4.59e-07 7.35e-07 4.42e-07 4.70e-07 4.96e-07 5.10e-07

10 3.86e-07 6.08e-07 3.73e-07 3.95e-07 4.16e-07 4.27e-07

5
0.1 9.57e-09 1.39e-08 1.26e-08 1.12e-08 1.08e-08 1.06e-08

1 1.26e-08 2.14e-08 2.19e-08 1.68e-08 1.53e-08 1.49e-08

10 9.94e-09 1.68e-08 1.75e-08 1.33e-08 1.21e-08 1.18e-08

Low-resolution test case

1
0.1 1.10e-01 1.29e-01 1.20e-01 1.19e-01 1.18e-01 1.16e-01

1 6.00e-01 6.29e-01 6.05e-01 6.11e-01 6.18e-01 6.40e-01

10 5.07e-01 5.09e-01 4.93e-01 5.06e-01 5.17e-01 5.47e-01

2
0.1 8.04e-02 1.04e-01 9.43e-02 9.10e-02 8.82e-02 8.47e-02

1 1.01e-01 1.12e-01 1.10e-01 1.05e-01 1.03e-01 1.01e-01

10 6.57e-02 6.64e-02 7.07e-02 6.69e-02 6.45e-02 6.20e-02

3
0.1 2.35e-02 2.75e-02 2.58e-02 2.51e-02 2.48e-02 2.46e-02

1 2.12e-02 2.43e-02 2.49e-02 2.26e-02 2.18e-02 2.17e-02

10 3.86e-03 4.07e-03 3.79e-03 3.84e-03 3.91e-03 3.97e-03

4
0.1 5.59e-03 7.52e-03 6.52e-03 6.03e-03 5.86e-03 5.81e-03

1 5.23e-03 7.11e-03 6.17e-03 5.59e-03 5.44e-03 5.40e-03

10 1.94e-04 2.31e-04 2.46e-04 2.14e-04 2.04e-04 2.01e-04

5
0.1 2.00e-03 2.71e-03 2.49e-03 2.29e-03 2.24e-03 2.22e-03

1 7.05e-04 1.06e-03 1.12e-03 8.55e-04 7.91e-04 7.73e-04

10 8.45e-06 1.35e-05 8.33e-06 8.54e-06 8.77e-06 8.87e-06

Table 2.4: Relative L2-errors for the well-resolved test case with σ = 8/
√

2π and for the low-
resolution test case with σ = 1/

√
2π. The DG schemes use Legendre-Gauss-Lobatto (LGL)

nodes as well as different diffusion discretizations.



Chapter 3

Recent Advances on Time
Discretization

IMEX Advection-Diffusion Splitting and Positivity
Preservation

In the method of lines approach, once a suitable space discretization has been carried out, such
as a classical SBP finite difference scheme for the linear advection equation as in Section 1.1
or a DG scheme applied to hyperbolic conservation laws in cell-wise form as in Section 1.2 , a
system of ordinary differential equations (ODEs) is obtained, as can be seen in equations (1.3)
and (1.53), respectively. We denote this resulting system of ODEs by

du

dt
= g(t,u) , (3.1)

where u now contains all spatial degrees of freedom and g denotes the operator corresponding
to the spatial discretization. In principle, the above system can then be solved by any nu-
merical scheme designed for the approximate solution of ordinary differential equations and
in the previous numerical examples we already made use of such schemes. In the context of
the method of lines approach, this process is referred to as time discretization and the chosen
numerical scheme is the time integrator. Basically, two classes of time integrators can be
distinguished: explicit and implicit ones.

Explicit time integration

Many advantages can be listed in favor of explicit time integration schemes. They are easier to
implement because they do not require the solution of nonlinear systems and are usually quite
robust. Explicit time integrators evaluate the right hand side of the system of ODEs (3.1)
by using only already known data as input values for u, either at the current time level
tn, at computed intermediate stages or at previous time levels. Very popular explicit time
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integrators are Runge-Kutta (RK) schemes which have the form

u(i) = un + ∆t
i−1∑
j=1

aij g
(
tn + cj∆t,u

(j)
)
, i = 1, . . . , s,

un+1 = un + ∆t

s∑
i=1

bi g
(
tn + ci∆t,u

(i)
)
,

(3.2)

where ∆t denotes the time step size, un provides the approximation to u(t) at time tn and
u(i) approximates u(t) at suitable intermediate stages corresponding to time levels tn + ci∆t
with ci =

∑i−1
j=1 aij . The simplest example is the explicit Euler, or forward Euler method

un+1 = un + ∆tg (tn,un) .

As mentioned above, these explicit schemes are easy to implement, also in parallel hardware
environment, need a comparatively small amount of CPU time per time step, and may be
constructed to have a high order of accuracy. However, their range of stability is limited.
For conservation laws describing fluid flow, the allowable time step size depends on the char-
acteristic speed and, in case of a global time step size in the computational domain, on the
length scale of the smallest cell. Due to this severe time step restriction in case of locally
refined grids, explicit time integrators are sometimes used in a multirate fashion, allowing
different time step sizes in different parts of the computational domain, see e.g. the investiga-
tions by Osher and Sanders [154], Tang and Warnecke [191], Constantinescu and Sandu [46],
Hundsdorfer et al. [83], Schlegel et al. [172], Gassner et al. [64], and Seny et al. [174].

Implicit time integration

Implicit time integration methods involve the solution of linear or nonlinear equations to de-
termine the numerical solution in the next time step. Thus, the computational effort per time
step is larger than for explicit schemes and parallel computing is more difficult to realize.
However, implicit schemes may be preferred over explicit ones if the time step constraints
ensuring stability are much more restrictive than those necessary to achieve the desired ac-
curacy of the numerical solution. Then, the implicit scheme can take larger time steps and
thus be more efficient. Problems of this kind which are more efficiently solved by an implicit
scheme are called stiff.

In case of space-discretized partial differential equations stiffness may be introduced by par-
ticular terms such as diffusion terms or specific reaction terms. In addition, stiffness may
be caused by only a small subset of the degrees of freedom in the space discretization, for
instance in case of grid refinement.

In an implicit RK scheme, the stage values are now implicitly determined by

u(i) = un + ∆t
s∑
j=1

aij g
(
tn + cj∆t,u

(j)
)
,

whereas the computation of un+1 from the stage values u(i) is of the same form as in (3.2).
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A very popular subclass of implicit RK schemes are diagonally implicit (DIRK) schemes with

u(i) = un + ∆t
i∑

j=1

aij g
(
tn + cj∆t,u

(j)
)
.

For these schemes, the size of the non-linear systems is reduced since each stage is equivalent, in
terms of computational effort, to the implicit Euler scheme un+1 = un+∆tg

(
tn + ∆t,un+1

)
.

The resulting nonlinear systems may be linearized by Newton’s method leading to a sequence
of linear systems to be solved. The solution of these usually large linear systems again involves
iterative schemes such as preconditioned Krylov subspace methods.

Organization of this chapter

Advanced time integration schemes often consist in combinations of known methods or modify
existing schemes in order to increase efficiency or stability or with the purpose of transferring
additional properties of the analytical solution to the numerically computed approximation.

Regarding the first approach, the first three sections of this chapter deal with combinations
of explicit and implicit time integration methods increasing efficiency of fluid flow simula-
tions while maintaining stability. In this context, Section 3.1 reviews general implicit-explicit
approaches based on different splittings between implicitly and explicitly discretized terms
or degrees of freedom. Section 3.2 deals with the specific case of advection-diffusion split-
ting where only the diffusion terms are treated implicitly. Finally, Section 3.3 considers the
stability of DG schemes using implicit-explicit time integration based on advection-diffusion
splitting.

Modifications of known methods are usually demanded in order to achieve additional proper-
ties related to the specific application. Preserving positivity or non-negativity of certain phys-
ical quantities often is an important additional requirement regarding numerical methods in
the context of fluid simulations since disrespecting this property often leads to stability issues.
In this regard, Section 3.4 deals with positivity preserving schemes for semi-discretizations of
partial differential equations in production-destruction form.

3.1 Implicit-Explicit (IMEX) approaches for fluid flow
equations

Considering the numerical simulation of fluid flow, in particular using the compressible Navier-
Stokes equations, explicit time integration may become inefficient due to numerical stiffness
caused for example by boundary layers, acoustic waves or due to the presence of viscous terms.
Closely related, stiffness caused by viscous terms is also a well-known drawback to the use
of purely explicit time integration schemes for other convection-diffusion type problems in
particular when using high order discretizations in space such as spectral methods. However,
purely implicit time discretization applied to spatial discretizations of fluid flow equations
requires the solution of large non-linear systems of equations and may thus be computationally
expensive as well. Therefore, hybrid time integration schemes such as implicit-explicit (IMEX)
methods have frequently been considered.
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IMEX time integration methods for problems with multiple time scales such as fluid flow
or convection-diffusion type problems are generally based either on combinations of linear
multistep methods or on partitioned Runge-Kutta schemes, each applied to a partitioned
system of ordinary differential equations of the form

du

dt
= g1(t,u) + g2(t,u) . (3.3)

Hereby, different time integration schemes, i.e. an explicit and an implicit one, are applied to
the components g1 and g2 of the split right-hand side.

In order to obtain (3.3), an adequate splitting of the right-hand side of the semi-discrete system
has to be determined either a-priori or adaptively during the numerical simulation. Of course,
any suitable approach needs to take into account the kind of stiffness of the given problem. A
natural choice based on stiffness due to viscous terms is advection-diffusion splitting, whereby
the advective terms are discretized explicitly while the diffusive terms are treated implicitly,
see e.g. [8, 201, 7, 30]. This choice of splitting covers the fact that explicit time discretization
of the viscous fluxes results in an increasingly severe grid-dependent time step restriction
since the time step ∆t scales with the grid length scale ∆x as ∆t = O

(
(∆x)2

)
whereas

for pure advection problems, explicit time integration is stable under a more moderate time
step restriction of ∆t = O(∆x). In fact, this is the reason why the simulation of convection-
diffusion type problems using purely explicit time stepping is often not advisable. In addition,
implicit time stepping only applied to the viscous terms often reduces the computational effort
in comparison to a fully implicit approach since even though many applications contain non-
linear convection terms, the diffusion terms are often linear, only demanding the iterative
solution of linear algebraic systems which are positive definite, symmetric and sparse. Last
but not least, the non-linear systems resulting from potentially non-linear diffusion terms are
generally more efficient to solve than those arising from non-linear advection terms. The
stability of IMEX Runge-Kutta schemes based on advection-diffusion splitting will be dealt
with in more detail in the following Section 3.2 and in Section 3.3 in case of DG discretizations.

Advection-diffusion splitting deposes of the severe time step restrictions due to the effects of
diffusion. However, with this approach, all degrees of freedom of the complete computational
domain contribute to the implicit part of the time integration scheme. Nonetheless, for many
applications, the properties of the fluid flow and thus the cell sizes vary considerably within
the computational domain, e.g. if boundary layers are to be accurately resolved. This leads
to so-called geometry-induced stiffness where the restrictive conditions on the time step size
in case of explicit schemes are due to only a moderate number of small elements of the
computational grid. For such problems, a reasonable splitting of the form (3.3) needs to
distinguish between parts of the grid to be discretized explicitly and part of it to be discretized
implicitly resulting in domain-based splitting. In addition, this approach primarily reduces the
memory requirements regarding the implicit part of the discretization since fewer degrees of
freedom contribute to the implicit terms and the Jacobian matrices and preconditioners to
be stored are smaller. A successful application of IMEX-RK schemes using domain-based
splitting in combination with the DG space discretization is given by Kanevsky et al. in [95]
using an a-priori splitting into implicit and explicit regions of the computational domain
based on the cell sizes. In [175], based on a finite volume discretization in space, Shoeybi et
al. consider a related approach referred to as row-splitted IMEX scheme where the splitting of
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the degrees of freedom into explicit and implicit sets does not directly rely on the cell sizes but
calculates the sizes of the Gerschgorin circles corresponding to each row of the global Jacobi
matrix of the right-hand side of (3.1) in order to estimate the contribution of the respective
row to the spectral radius. Based on a user-specified maximum admissible spectral radius of
the explicit part, the rows of the semi-discrete system (3.1) are then either assigned to g1 or
to g2 in (3.3). This approach considers that both the computational grid and the properties
of the fluid flow itself may induce stiffness. Furthermore, the splitting procedure operates in
time allowing to adapt the decomposition at every time step during the simulation. In [198],
Vermeire and Nadarajah extend the row-splitted IMEX scheme in order to combine it with a
higher order discretization in space based on the flux reconstruction approach. Hereby, after
estimating their influence on the spectral radius via Gerschgorin circles as in [175], the degrees
of freedom of an entire element are moved either to the explicit or the implicit set resulting in
a conservative IMEX splitting. While the domain-based splitting approaches in [95, 175, 198]
utilize IMEX-RK schemes as specific time integrators, Straub et al. [185, 184] construct new
domain-based IMEX time integrators based on exponential integrators. Hereby, the splitting
of the right-hand side of (3.1) into two terms g1,g2 to be discretized explicitly and implicitly,
respectively, is realized by setting g1(t,u) = L(t)u and g2(t,u) = g(t, u)−L(t)u = N(t,u). In
order to achieve a domain-based splitting, the linear operator L by construction only differs
from the identity for the implicit subset of the given degrees of freedom and can thus be
implemented using matrices L̃(t) of smaller dimension. Time integration of the given ODE

du

dt
= L(t)u + N(t,u)

using exponential integrators then requires to approximate matrix exponentials as well as
related functions called ϕ-functions of the matrices L̃(t). In this context, Straub et al. [185,
184] employ EPIRK and sEPIRK schemes developed by Tokman et al. [195, 194, 164] which
incorporate adaptive Krylov subspace projections to increase efficiency of their exponential
integrators. These and similar recent approaches improving the design of such ϕ solvers have
rendered exponential integrators serious competitors to widely used classical implicit RK
schemes. Also in a domain-based IMEX setting, numerical experiments in [183] simulating
two-dimensional inviscid fluid flow in a nozzle have shown increased efficiency of IMEX-type
schemes based on exponential integrators beating classical IMEX-RK schemes by factors up
to 2.5 for third order time integration and up to 6 for first order time integration.

3.2 IMEX-RK schemes for advection-diffusion splitting

As explained in the previous Section 3.1, in case of advection-diffusion splitting, the right-
hand side of the semi-discrete system (3.3) is split such that the semi-discrete advection terms
are discretized explicitly and the semi-discrete diffusion terms are discretized implicitly.

Although IMEX linear multistep methods have been applied in the context of advection-
diffusion splitting, e.g. in [8], Ascher et al. argue in [7] that multirate schemes applied in
this context may lead to undesirable time step restrictions unless diffusion is the dominant
phenomenon and BDF based schemes are chosen. Consequently, they develop IMEX Runge-
Kutta schemes for convection-diffusion type problems with superior stability regions covering
a larger parameter range by combining DIRK schemes with explicit RK methods.
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While the splitting of advection and diffusion terms alleviates the severe time step scaling for
the diffusion terms, a CFL-type time step restriction of the form ∆t = O(∆x) may still have
to be fulfilled due to the explicit time discretization of the advection terms. However, certain
IMEX schemes using advection-diffusion splitting possess stronger stability properties. In
fact, Calvo et al. [30] showed that some IMEX-RK schemes in [7] require to reduce the time
step under grid refinement, when a linear advection-diffusion equation is solved, while others
do not. The latter authors then design IMEX methods which guarantee grid-independent time
step restrictions of the form ∆t = O(d/a2) for Fourier spatial discretization of linear advection-
diffusion equations, where a and d denote the advection and diffusion coefficient, respectively.
Hereby, the gist of these specifically designed IMEX schemes is that the implicitly discretized
diffusion terms stabilize the explicit discretization of the advection terms, and consequently,
the coupled scheme has better stability properties for advection-diffusion as compared to its
explicit part applied to the pure advection problem.

A related approach is taken in [169, 173] where the authors design unconditionally stable
IMEX linear multistep schemes where both the IMEX splitting and the employed multistep
scheme fulfill specific properties. This confirms once more that choosing arbitrarily large time
steps without losing stability may indeed be possible even though some parts of the problem
are discretized explicitly.

Returning to IMEX-RK schemes, we following the notation in [7, 30] and consider an (s+ 1)-
stage explicit Runge-Kutta method (A(1),b(1), c(1)) coupled with an implicit s-stage DIRK
scheme and (A(2),b(2), c(2)) where the abscissae c(1), c(2) of the explicit and implicit scheme,

respectively, fulfill c(1) =

(
0

c(2)

)
. The DIRK scheme is then formally recast into an (s+ 1)-

stage scheme as well by padding the first row and first column with zeros. The first stage of
the coupled scheme is thus explicit and we obtain the Butcher array

0 0 0

c2 a
(1)
21 0 0 a

(2)
22

c3 a
(1)
31 a

(1)
32 0 0 a

(2)
32 a

(2)
33

...
...

...
. . .

. . .
...

...
. . .

. . .

cs+1 a
(1)
s+1,1 a

(1)
s+1,2 · · · a

(1)
s+1,s 0 0 a

(2)
s+1,2 · · · a

(2)
s+1,s a

(2)
s+1,s+1

b
(1)
1 b

(1)
2 b

(1)
2 · · · b

(1)
s+1 0 b

(2)
2 b

(2)
3 · · · b

(2)
s+1

.

Applied to the system of ODEs (3.3), the above IMEX-RK scheme has the form

y(1) = yn

y(i) = yn + ∆t
s+1∑
j=1

a
(1)
ij g1(tn,j ,y(j)) + ∆t

s+1∑
j=1

a
(2)
ij g2(tn,j ,y(j)) , i = 2, . . . , s+ 1,

yn+1 = yn + ∆t

s+1∑
j=1

b
(1)
j g1(tn,j ,y(j)) + ∆t

s+1∑
j=1

b
(2)
j g2(tn,j ,y(j)) ,

(3.4)

where yn,yn+1 denote the approximations at times tn and tn+1 = tn + ∆t and y(i) the
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intermediate stage values corresponding to the intermediate times tn,i which are given by

tn,i = tn + ci∆t with ci =
∑s

j=1 a
(1)
ij =

∑s
j=1 a

(2)
ij .

Since the classical Dahlquist test equation u′(t) = λu(t) is not sufficient to determine the
stability of IMEX schemes or other coupled time integration methods, a more suitable test
equation needs to be found. In case of IMEX splitting by advection and diffusion terms,
considering finite different approximations provides insight in order to derive more suitable
test equations.

We recapitulate the linear advection-diffusion equation

∂

∂t
U(x, t) + a

∂

∂x
U(x, t) = d

∂2

∂x2
U(x, t), (x, t) ∈ Q = Ω× (0, T ), Ω = (xα, xβ) , (3.5)

already introduced in Section 2.4.1, with diffusion coefficient d > 0 and advective velocity
a > 0, supplemented by the periodic initial condition U(x, 0) = U0(x) in L2(Ω) and periodic
boundary conditions. In the case of space discretization by finite difference methods, we
may derive the stability of specific IMEX schemes based on advection-diffusion splitting by
considering the eigenvalues of circulant matrices.

In fact, discretizing (3.5) on the domain Ω = (0, 1) by second order central finite difference
schemes both for the advection and the diffusion terms and setting periodic boundary condi-
tions, we obtain the semi-discretization

u′j(t) =

(
d

(∆x)2
+

a

2∆x

)
uj−1(t)− 2d

(∆x)2
uj(t) +

(
d

(∆x)2
− a

2∆x

)
uj+1(t) ,

where the values uj(t) ≈ U(xj , t) denote pointwise approximations of the exact solution at
m equidistant grid points with xj = j∆x, j = 1, . . . ,m and ∆x = 1

m . In matrix-vector
formulation, we obtain a system of linear ODEs of the form

u′(t) = Gu(t) (3.6)

with the circulant matrix G which decomposes into two circulant matrices corresponding to
the advection terms on the one hand and to the diffusion terms on the other hand, i.e.

G = Ga + Gd =
a

2∆x


0 −1 1
1 0 −1

. . .
. . .

. . .

1 0 −1
−1 1 0

+
d

(∆x)2


−2 1 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 1 −2

 .

Since circulant matrices are simultaneously diagonalizable, the system (3.6) decouples into m
scalar linear ODEs. By computing the eigenvalues of Ga and Gd, see e.g. [84], these equations
take the form

u′(t) = −
(
ia

∆x
sin(2πk∆x) +

4d

(∆x)2
sin2(πk∆x)

)
u(t), k = 1, . . . ,m . (3.7)

In addition, due to the simultaneous diagonalizability of the advection part and the diffusion
part of G, applying a partitioned RK method (3.4) to the system (3.6) using

g1(t,y) = Gay, g2(t,y) = Gdy
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may also be decoupled into scalar expressions involving (3.7). Hence, the behavior of the
IMEX-RK scheme (3.4) applied to the scalar ODEs (3.7) solely determines its behavior with
respect to the original linear system of ODEs (3.6). Scalar equations of the type

u′(t) = µu(t) + iλu(t), λ, µ ∈ R, µ ≤ 0 (3.8)

therefore often serve as test functions to determine the stability of IMEX-RK schemes applied
to advection-diffusion equations using advection-diffusion splitting. Rather than simply desir-
ing the stability region of the IMEX-RK scheme to be as large as possible in {(λ, µ) ∈ R2 |µ ≤
0}, a more specific stability condition may be derived from (3.7), In fact, the equations (3.7)
show a dependence between the corresponding eigenvalues iλ = − ia

∆x sin(2πk∆x) of Ga and

µ = − 4d
(∆x)2 sin2(πk∆x) of Gd, particularly under grid refinement. Taking into account the

time step length ∆t, we have

Lemma 3.1. Let z1 = λ∆t = − ia∆t
∆x sin(2ω) and z2 = µ∆t = − 4d∆t

(∆x)2 sin2(ω), with ω ∈ [0, π].

Choosing ∆t such that ∆t ≤ α−1 d
a2 for a fixed constant α ∈ R+, the estimate

|z2| ≥ αz2
1

holds for any value of ∆x > 0.

Proof. Using the assumption on ∆t and the equality sin(2ω) = 2 sinω cosω, we have

z2
1 =

a2(∆t)2

(∆x)2
sin2(2ω) ≤ α−1 d∆t

(∆x)2
sin2(2ω) ≤ α−1 4d∆t

(∆x)2
sin2(ω) = α−1|z2| ,

which proves the assertion.

Applying the IMEX-RK scheme (3.4) to the scalar equation (3.8) using g1(t, y) = iλy, g2(t, y) =
µy now yields yn+1 = R(z1, z2)yn with the stability function R given by

R(z1, z2) =
det(I− iz1A

(1) − z2A
(2) + iz11(b(1))T + z21(b(2))T )

det(I− iz1A(1) − z2A(2))
.

Due to the estimate provided by Lemma 3.1, it is desirable to devise IMEX-RK schemes with
the property that there is a constant α ∈ R+ such that the stability region

S = {(z1, z2) ∈ R2 | |R(z1, z2)| ≤ 1} (3.9)

of the IMEX-RK method contains the region {(z1, z2) ∈ R2 | z2 ≤ −αz2
1} below the parabola

given by z2 = −αz2
1 . For the special case b(1) = b(2), necessary condition on the IMEX-RK

coefficients to fulfill this parabola property where identified by Calvo et al in [30]. For general
IMEX-RK schemes of the form (3.4), the arguments in their paper easily transfer and we
obtain the necessary conditions

a
(2)
s+1,j = b

(2)
j , 1 ≤ j ≤ s+ 1 , (3.10)

a
(1)
s+1,1 = b

(1)
1 . (3.11)
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While in previous works considering IMEX advection-diffusion splitting, finite difference or
Fourier-type spatial discretizations have been considered, Wang et al. [205] were the first
to study grid-independent L2-stability in the context of spatial discretization by a specific
discontinuous Galerkin method. Under a time step restriction of the form ∆t = O(d/a2), they
proved L2-stability of the local discontinuous Galerkin (LDG) scheme [44] scheme applied to
linear advection-diffusion equations in one space dimension and extended their results to non-
linear problems in [204] and to the multi-dimensional case in [208]. Furthermore, in [59], Fu
and Shu prove grid-independent L2-stability for the discretization of the diffusion terms by
the embedded discontinuous Galerkin method. The question arises if this favorable property
is also inherent to more general DG diffusion schemes, e.g. if it applies to the widely used
schemes developed by Bassi and Rebay in [13, 15, 14] or to the more classical DG approaches
by Arnold et al. [5] and Baumann and Oden [17]. Before answering this question for DG
diffusion discretization by the (σ, µ)-family in Section 3.3, we review the identification of
suitable IMEX-RK schemes for advection-diffusion splitting in the following Section 3.2.

Examples of IMEX-RK schemes

A few classical low-order IMEX-RK schemes and their stability properties for advection-
diffusion equations will be discussed in the following. When constructing suitable IMEX-
RK schemes of a desired convergence order, we may use the known order conditions on the
coefficients of more general partitioned Runge-Kutta schemes [75, 90]. However, for low order
schemes, a direct Taylor expansion is more constructive. Following this approach shows that
first order IMEX-RK schemes of the form (3.4) only need to fulfill the conditions

s+1∑
j

b
(1)
j =

s+1∑
j

b
(2)
j = 1 , (3.12)

while second order schemes in addition to fulfilling (3.12) satisfy the conditions

s+1∑
j

b
(1)
j cj =

s+1∑
j

b
(2)
j cj =

1

2
. (3.13)

A classical first order IMEX-RK scheme results from combining the explicit and implicit Euler
schemes in the form

yn+1 = yn + ∆tg1(t,yn) + ∆tg2(t,yn+1) (3.14)

resulting in the combined Butcher array

0 0 0 0 0
1 1 0 0 1

1 0 0 1

. (3.15)

which fulfills the conditions on the coefficients given in (3.10) and (3.11). The stability function
of the above IMEX Euler scheme is given by

R(z1, z2) =
1 + iz1

1− z2
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Figure 3.1: IMEX stability region of the scheme (3.15).

and the stability region as defined in (3.9) is plotted in Figure 3.1. Obviously, the region
under the parabola defined by z2 = −1

2 |z
2
1 | is completely contained within the stability region

of the IMEX Euler scheme. This yields grid-independent stability of this IMEX method when
applied to the semi-discrete linear advection-diffusion equation (3.6).

A second order IMEX-RK scheme may be obtained by a combination of the explicit and
implicit trapezoidal rule yielding

y∗ = yn + ∆t

(
g1(yn) +

1

2
(g2(yn) + g2(y∗))

)
yn+1 = yn +

1

2
∆t (g(yn) + g(y∗))

with the combined Butcher array

0 0 0 0 0
1 1 0 1/2 1/2

1/2 1/2 1/2 1/2

(3.16)

and the stability function for IMEX advection-diffusion splitting given by

R(z1, z2) = 1− (iz1 + 2)(iz1 + z2)

z2 − 2
.

This scheme does not fulfill the condition (3.11). Accordingly, the stability region of this
scheme does not fulfill the parabola property as can be seen in Figure 3.2.

In [8], Ascher et al considered a second order IMEX scheme incorporating a stiffly accurate
SDIRK scheme. This scheme is defined by the Butcher array

0 0 0 0 0 0 0
γ γ 0 0 0 γ 0
1 δ 1− δ 0 0 1− γ γ

δ 1− δ 0 0 1− γ γ

(3.17)
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Figure 3.2: IMEX stability region of the scheme (3.16)

Figure 3.3: IMEX stability region of the scheme (3.17).

with γ = 1 −
√

2
2 and δ = 1 − 1

2γ . Obviously, the conditions (3.10) and (3.11) are fulfilled
by the coefficients of this scheme. Furthermore, a plot of the IMEX stability region given in
Figure 3.3 indicates that the parabola property is satisfied for the constant α = 1.

3.3 L2-stability analysis of IMEX-(σ, µ) DG schemes for
advection-diffusion

In this section, we review the fully discrete L2-stability analysis carried out in [152] for linear
advection-diffusion problems in one space dimension which are discretized in space by the DG
scheme based on the (σ, µ)-family of diffusion discretizations already discussed in Section 2.2
and discretized in time by implicit-explicit (IMEX) Runge-Kutta schemes as described in
Section 3.2. Hereby, following the approach of IMEX advection-diffusion splitting, advection
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terms are discretized explicitly in time while diffusion terms are solved implicitly. The in-
vestigation of this approach builds upon the previous results by Wang, Shu and Zhang [205].
Here, the LDG scheme for the diffusive terms used in [205] is replaced by the (σ, µ)-family. As
shown in Section 2.2, this family contains many well-known DG diffusion discretizations as
well as some newer ones. While it naturally includes the original DG diffusion discretizations
in [5, 17], it contains both the BR1 and BR2 scheme, if the integrals in the DG variational
form are numerical solved by Legendre-Gauss-Lobatto quadrature, as well as a symmetrized
form of LDG.

From a theoretical analysis, conditions on the given parameters σ and µ are derived which
guarantee L2-stability for time steps ∆t = O(d/a2), where a and d denote the advection and
diffusion coefficient, respectively, i.e. the allowable time step size does not decrease under grid
refinement. In the spirit of [205], this is referred to as unconditional L2-stability. It turns
out that these parameter restrictions are neither fulfilled by the simple BR1 approach nor by
the Baumann-Oden (BO) scheme [17]. In addition, corresponding numerical experiments for
various members of the (σ, µ)-family show that the BR1 scheme and the BO approach do not
allow for a grid-independent time step choice contrary to those members of the (σ, µ)-family
fulfilling the conditions presented in this work. In fact, both the BR2 scheme (2.11) with
penalty constant ηe > 1 using the BR2LGL implementation (2.12) for the calculation of the
lifting operator and the more recent

(
1
4 ,

9
4

)
-recovery scheme [111, 109] fulfill the presented

conditions and yield an unconditionally L2-stable IMEX-DG scheme in the sense of [205].

In the following, we present the corresponding theoretical L2-stability analysis for the two
IMEX time integration schemes of first and second order given by the Butcher arrays (3.15)
and (3.17), respectively, which were also used in [205]. IMEX time integration is combined
with the DG scheme of arbitrary order in space using (σ, µ) diffusion fluxes. Numerical results
verifying the conducted theoretical analysis are afterwards presented in Section 3.3.3.

Preliminaries

We consider the space discretization of the linear advection-diffusion equation (3.5) by the
DG scheme. Hereby, the computational domain Ω is again partitioned into cells Ij , where
presently only uniform grids are considered. Basis functions and test functions used to define
the DG scheme are taken from the finite element space

Vh = {v ∈ L2(Ω) | v|Ij ∈ PN (Ij)∀j = 1, . . . , E},

as in Section 2.1.

As in Section 2.4.1, with a slightly modified notation for the discretization of advection terms,
the semi-discrete DG scheme for (3.5) is defined as the solution u(t) ∈ Vh of the variational
formulation

(ut, v)j = aHj (u, v) + dLj (u, v) , ∀v ∈ Vh, (3.18)

with (·, ·)j denoting the usual inner product in L2(Ij). Hereby, the advection terms are
discretized by the upwind numerical flux resulting in

Hj (u, v) = (u, vx)j − u−j+1v
−
j+1 + u−j v

+
j , (3.19)



3.3. L2-STABILITY ANALYSIS OF IMEX-DG FOR ADVECTION-DIFFUSION 149

while the diffusion terms are discretized by the (σ, µ)-family of diffusion fluxes introduced in
Section 2.2, which is specified by the operator Lj defined in (2.15).

The following preliminary estimates regarding the global advection operator H defined by

H (u, v) =
E∑
j=1

Hj (u, v)

may be taken from the stability analysis of IMEX-LDG schemes in [217, 205], where we recall
that the L2-norm ‖ · ‖ and the jump semi-norm [[·]] on Vh are given by

‖v‖2 = (v, v) =

E∑
j=1

(v, v)j , [[v]]2 =

E∑
j=1

[v]2j ,

respectively.

Lemma 3.2. The global upwind operator H fulfills the following properties.

1. For any u, v ∈ Vh, we have

H (u, u) = −1

2
[[u]]2 , (3.20)

H (u, v) = −1

2
[[v]]2 −H (v − u, v) . (3.21)

2. For any u, v ∈ Vh and for any constant C > 0, we have the estimate

|aH (v − u, v) | ≤ d

C

(
||vx||2 +

ν

∆x
[[v]]2

)
+
a2C

2d
‖v − u‖2 , (3.22)

where a, d are the advection and diffusion coefficients, respectively, and ν denotes an
inverse constant depending on the polynomial degree N used to define Vh.

Remark 3.3. The values of ν in (3.22) for the polynomial degrees N = 1, 2, 3 may be taken
from [218] and are given in Table 3.1.

Proof of Lemma 3.2. Since Hj (u, v) may be rewritten as

Hj (u, v) = −(ux, v)j − [u]jv
+
j ,

we directly obtain (3.20) via

H (u, u) =
1

2

− E∑
j=1

[u]ju
+
j +

E∑
j=1

u−j [u]j

 = −1

2
[[u]]2 .

Furthermore, using both (3.20) and the linearity of H (·, ·) immediately yields (3.21). In
addition, from [205], Lemma 2.2, we obtain the estimate

|H (v − u, v) | ≤
(
||vx||+

√
ν∆x−1[[v]]

)
‖v − u‖ , (3.23)

with the inverse constant ν depending on the polynomial degree N as given in [218] for
N = 1, 2, 3. From Young’s inequality applied separately to the terms ||vx||‖v − u‖ and√
ν∆x−1[[v]]‖v − u‖ in (3.23), equation (3.22) now follows.
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N 1 2 3
ν 6 12 20

Table 3.1: Values of the inverse constant ν.

Furthermore, Lemma 2.1 and Theorem 2.2 in Section 2.2 provide several useful properties
regarding symmetry and dissipativity of the (σ, µ)-family of diffusion schemes. These prop-
erties will be needed to study L2-stability of the second order IMEX scheme in Section 3.2.
Moreover, the condition on σ and µ given in Lemma 2.2 in order to achieve dissipativity of

L shows that we need to demand (1−σ)2

4ω1
≤ µ in order to obtain semi-discrete L2-stability, i.e.

energy stability, of the spatial diffusion discretization alone, neglecting the potential presence
of advection terms.

In case of advection-diffusion equations, discretizing the advection terms by the upwind scheme
introduces additional dissipation into the semi-discrete scheme, hence L2-stability also follows
for the semi-discrete advection-diffusion equation under the above condition. For the fully-
discrete schemes analyzed in Sect. 3.2, stability in case of the additional presence of advection

terms will demand a slightly stricter condition of (1−σ)2

4ω1
< µ to allow for a grid-independent

time step choice. In particular, in case of a stable diffusion discretization only fulfilling
(1−σ)2

4ω1
= µ, such as the BR1 scheme, the implicit time discretization of the diffusion term

does not provide enough dissipation to counteract the explicitly discretized advection term in
case of large time steps.

3.3.1 Stability analysis with respect to the first order IMEX scheme

Applying the first order IMEX scheme (3.15) to the semi-discrete DG equation (3.18) yields
the fully discrete IMEX-DG scheme

(un+1, v)j = (un, v)j + ∆t aHj (un, v) + ∆t dLj(un+1, v), ∀v ∈ Vh. (3.24)

Setting v = un+1 and summing up over all cells, we obtain(
un+1, un+1

)
=
(
un, un+1

)
+ ∆t aH

(
un, un+1

)
−∆t d

(un+1
x , un+1

x

)
+ (1− σ)

E∑
j=1

{
un+1
x

}
j

[un+1]j +
µ

∆x
[[un+1]]2

 .
(3.25)

Using

(
un+1 − un, un+1

)
=

1

2

(
un+1, un+1

)
+

1

2

(
un+1 − un, un+1 − un

)
− 1

2
(un, un)

=
1

2

(
‖un+1‖2 − ‖un‖2

)
+

1

2
‖un+1 − un‖2
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together with the relations (3.21) and (3.25), we have

1

2

(
‖un+1‖2 − ‖un‖2

)
=− 1

2
‖un+1 − un‖2 − ∆t a

2
[[un+1]]2 −∆t aH

(
un+1 − un, un+1

)
−∆t d

(un+1
x , un+1

x

)
+ (1− σ)

E∑
j=1

{
un+1
x

}
j

[un+1]j +
µ

∆x
[[un+1]]2

 .

The estimate (3.22) then yields

1

2

(
‖un+1‖2 − ‖un‖2

)
≤
(

∆t a2C

2d
− 1

2

)
‖un+1 − un‖2 +

∆t d

C

(
‖un+1

x ‖2 +
ν

∆x
[[un+1]]2

)
−∆t d

‖un+1
x ‖2 + (1− σ)

E∑
j=1

{
un+1
x

}
j

[un+1]j +
µ

∆x
[[un+1]]2

 ,

and thus

1

2

(
‖un+1‖2 − ‖un‖2

)
≤
(

∆t a2C

2d
− 1

2

)
‖un+1 − un‖2

−∆t d
C − 1

C
‖un+1

x ‖2 −∆t d
µ− ν

C

∆x
[[un+1]]2

−∆t d (1− σ)

E∑
j=1

{
un+1
x

}
j

[un+1]j .

(3.26)

Obviously, in order to obtain a non-positive contribution of the term containing ‖un+1
x ‖, we

need to restrict the constant C to C ≥ 1.

If σ 6= 1, further restricting to C > 1 and setting C̃ = C−1
C

1
|σ−1| in (2.21), we obtain∣∣∣∣∣∣(1− σ)

E∑
j=1

{
un+1
x

}
j

[un+1]j

∣∣∣∣∣∣ ≤ C − 1

C
‖un+1

x ‖2 +
C

C − 1

(1− σ)2

4∆xω1
[[un+1]]2 .

Inserted into (3.26), this yields

1

2

(
‖un+1‖2 − ‖un‖2

)
≤
(

∆t a2C

2d
− 1

2

)
‖un+1 − un‖2

+ ∆t d

(
C

C − 1

(1− σ)2

4∆xω1
−
µ− ν

C

∆x

)
[[un+1]]2 .

(3.27)

Hence (3.27) shows that L2-stability can now be guaranteed if the conditions

∆t a2C

2d
≤ 1

2
(3.28)

C

C − 1

(1− σ)2

4ω1
≤ µ− ν

C
(3.29)
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are fulfilled, where the constant C > 1 may be suitably chosen to fulfill the above inequalities.
However, via (3.29), the range of admissible (σ, µ)-schemes is restricted as well.

In Theorem 2.2 we demand (1−σ)2

4ω1
≤ µ in order to obtain L2-stability of the diffusion dis-

cretization itself. However, due to the occurrence of the explicitly discretized advective terms,

here the parameters need to fulfill (1−σ)2

4ω1
< µ. More precisely, if we set

µ̃ :=
(1− σ)2

4ω1
,

the condition (3.29) can be rewritten as

µ̃C2 + (C − 1)ν ≤ µC(C − 1) ⇔ C(ν + µ) ≤ (µ− µ̃)C2 + ν .

This can be fulfilled if and only if

µ̃ < µ , (3.30)

e.g. by choosing

C ≥ ν + µ

µ− µ̃
. (3.31)

Under the restriction (3.30), we may hence achieve L2-stability for the fully discrete IMEX-
DG scheme. In fact, once the parameters of the (σ, µ)-family are chosen such that they meet
the above condition (3.30), the constant C may be adjusted using (3.31) in order to fulfill the
second condition (3.29). With C determined, the time step ∆t is then restricted according to
the first condition (3.28) in order to achieve L2-stability.

If σ = 1, the last term on the right-hand side of (3.26) vanishes. Condition (3.29) is then
replaced by µ ≥ ν

C . Since ν 6= 0, this condition can only be fulfilled if µ > 0. Analogous to the
case of σ 6= 1, the time step needs to be restricted by (3.28) where C is set to C = max{ νµ , 1}.
Both cases may be merged by demanding µ̃ := (1−σ)2

4ω1
< µ for the (σ, µ)-scheme. Summarizing

the above findings we have the following

Theorem 3.4. Let N ∈ N0 denote the polynomial degree of the DG approximation space Vh
defined in (2.2). Let σ, µ ∈ R fulfill the condition

µ̃ :=
(1− σ)2

4ω1
< µ ,

where ω1 denotes the first weight of the Legendre-Gauss-Lobatto quadrature with N + 1 nodes.
Then, the IMEX-DG scheme (3.24) with the (σ, µ)-diffusion operator Lj defined in (2.15)
fulfills ‖un+1‖ ≤ ‖un‖ if the time step is bounded by

∆t ≤ d

a2C
,

where the constant C is set to C = max{ νµ , 1}, if σ = 1, and to C = ν+µ
µ−µ̃ , if σ 6= 1.
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As we have shown in the above analysis, if µ̃ = µ in case of σ 6= 1, the condition (3.29) cannot
be fulfilled for any C > 1. Even if setting C = 1 in (3.22) and obtaining a different estimate,

|aH
(
un+1 − un, un+1

)
| ≤ d

(
||un+1

x ||2 +
ν

∆x
[[un+1]]2

)
+
a2

2d
‖un+1 − un‖2 ,

this yields, in combination with (3.26), the estimate

1

2

(
‖un+1‖2 − ‖un‖2

)
≤
(

∆t a2

2d
− 1

2

)
‖un+1 − un‖2 −∆t d · 0 · ‖un+1

x ‖2

−∆t d

2
√
ω1µ

E∑
j=1

{
un+1
x

}
j

[un+1]j +
µ− ν
∆x

[[un+1]]2

 ,

(3.32)

where 4ω1µ = (1− σ)2 is used. Hence, we have

2
√
ω1µ

E∑
j=1

∣∣∣{ux}j [u]j

∣∣∣ ≤ E∑
j=1

(
∆xω1

{
u2
x

}
j

+
µ

∆x
[u]2j

)
. (3.33)

Therefore, the left-hand side term in (3.33), also occurring on the right-hand side of (3.32)
cannot be bounded any more by the vanishing contribution of ‖un+1

x ‖2. In particular, we
may therefore assume that the BR1 scheme implemented on Legendre-Gauss-Lobatto nodes,
with σ = −1, µ = 1

ω1
and µ̃ = µ, will not admit a grid independent time step restriction

guaranteeing L2-stability when combined with IMEX time integration. Neither does the
Baumann-Oden method (σ = 1, µ = 0) fulfill the conditions on σ and µ given in Theorem 3.4.
This less favorable behavior of the BR1 and BO schemes in comparison to the LDG scheme
and other members of the (σ, µ)-family such as BR2 will be shown experimentally for the
second-order IMEX-DG scheme in Section 3.3.3.

3.3.2 Stability analysis with respect to the second order IMEX scheme

Applying the second order IMEX scheme (3.17) to the semi-discrete DG equation (3.18) yields
the fully discrete IMEX-DG scheme

(u(n,1), v)j = (un, v)j + ∆t
(
γaHj (un, v) + γdLj(u(n,1), v)

)
, (3.34)

(un+1, v)j = (un, v)j + ∆t
(
δaHj (un, v) + (1− δ)aHj

(
u(n,1), v

))
+ ∆t

(
(1− γ)dLj(u(n,1), v) + γdLj(un+1, v)

)
, (3.35)

for any function v ∈ Vh.

The L2-stability analysis for the (σ, µ)-family applied to the diffusion terms may only partially
follow the analysis for the LDG scheme in [205] since the (σ, µ)-family contains non-symmetric
schemes. In addition, the analysis differs where the LDG scheme makes use of the auxiliary
variable q ≈ ux.
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As in [205], from (3.34) and (3.35), we get

(u(n,1) − un, v)j = ∆t
(
γaHj (un, v) + γdLj(u(n,1), v)

)
, (3.36)

(un+1 − u(n,1), v)j = ∆t
(

(δ − γ)aHj (un, v) + (1− δ)aHj
(
u(n,1), v

))
+ ∆t

(
(1− 2γ)dLj(u(n,1), v) + γdLj(un+1, v)

)
. (3.37)

We then set v = u(n,1) in (3.36) and v = 1+θ
2 un+1 + 1−θ

2 u(n,1) in (3.37), where θ ∈ (0, 1) is a
free parameter chosen to allow for a larger range of admissible non-symmetric members within
the (σ, µ)-family. This parameter will also enter into the time step constraint. Adding both
equations (3.36) and (3.37) up over all elements, we now obtain

1

2

(
‖un+1‖2 − ‖un‖2 + θ‖un+1 − u(n,1)‖2 + ‖u(n,1) − un‖2

)
= ∆t(R1 +R2) , (3.38)

with

R1 = γaH
(
un, u(n,1)

)
+
δ − γ

2
aH
(
un, (1 + θ)un+1 + (1− θ)u(n,1)

)
+

1− δ
2

aH
(
u(n,1), (1 + θ)un+1 + (1− θ)u(n,1)

)
=

(
(1− θ)δ + (1 + θ)γ

2

)
a
(
H
(
u(n,1), u(n,1)

)
−H

(
u(n,1) − un, u(n,1)

))
+
θ + 1

2
(1− γ)aH

(
un+1, un+1

)
+

1− θ
2

(1− δ)aH
(
u(n,1), u(n,1)

)
− θ + 1

2
(δ − γ)aH

(
u(n,1) − un, un+1

)
− θ + 1

2
(1− γ)aH

(
un+1 − u(n,1), un+1

)
,

and

R2 = d

(
γL(u(n,1), u(n,1)) +

1− 2γ

2
L(u(n,1), (1 + θ)un+1 + (1− θ)u(n,1))

+
γ

2
L(un+1, (1 + θ)un+1 + (1− θ)u(n,1))

)
= d

(
β̃1L(u(n,1), u(n,1)) + β̃2L(u(n,1), un+1) + β̃3L(un+1, u(n,1)) + β̃4L(un+1, un+1)

)
,

where

β̃1 = θγ +
1− θ

2
, β̃2 =

(1− 2γ)(1 + θ)

2
, β̃3 =

γ(1− θ)
2

, β̃4 =
γ(1 + θ)

2
.

Using (3.20), we have

R1 = −a1− θ + (1 + θ)γ

4
[[u(n,1)]]2 − a(θ + 1)(1− γ)

4
[[un+1]]2

− a1− θ + (1 + θ)γ

2
H
(
u(n,1) − un, u(n,1)

)
+
θ + 1

2

(
aH
(
u(n,1) − un, un+1

)
− (1− γ)aH

(
un+1 − u(n,1), un+1

))
,
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since δ − γ = −1. Different from the corresponding analysis for the LDG scheme in [205], we
cannot make use of an auxiliary variable q to bound the terms of type H (u− v, w). Instead,
we use the estimate (3.22) to obtain

R1 ≤ α1

(
d

C1

(
||u(n,1)

x ||2 +
ν

∆x
[[u(n,1)]]2

)
+
a2C1

2d
‖u(n,1) − un‖2

)
+ α2

(
d

C2

(
||un+1

x ||2 +
ν

∆x
[[un+1]]2

)
+
a2C2

2d
‖u(n,1) − un‖2

)
+ α3

(
d

C3

(
||un+1

x ||2 +
ν

∆x
[[un+1]]2

)
+
a2C3

2d
‖un+1 − u(n,1)‖2

)
,

with

α1 =
1− θ + (1 + θ)γ

2
, α2 =

θ + 1

2
, α3 =

θ + 1

2
(1− γ) . (3.39)

The non-symmetric contributions of L(u(n,1), un+1) and L(un+1, u(n,1)) in the definition of R2

may be dealt with by setting u =
(
u(n,1), un+1

)T
in Theorem 2.2 and splitting into symmetric

and anti-symmetric part. Since the symmetric matrix

B =

(
2β̃1

3
β̃2+β̃3

2

β̃2+β̃3

2
2β̃4

3

)
=

(
θ(2γ−1)+1

3
(1−2γ)(1+θ)+γ(1−θ)

4
(1−2γ)(1+θ)+γ(1−θ)

4
γ(1+θ)

3

)

is positive definite for the parameter range θ ∈ [0, 0.7], Theorem 2.2 yields

L (u, Bu) ≤ 0 ,

for these values of θ. This bounds R2 by

R2 ≤ d

(
β̃1

3
L(u(n,1), u(n,1)) +

β̃2 − β̃3

2

(
L(u(n,1), un+1)− L(un+1, u(n,1))

)
+
β̃4

3
L(un+1, un+1)

)

for θ ∈ [0, 0.7].

At this point, we sum up the estimates of the right-hand side terms R1 and R2. Hereby, we
make use of the representation (2.20) of L and rename the parameters to

β1 =
β̃1

3
=
θ(2γ − 1) + 1

6
,

β2 =
β̃2 − β̃3

2
=

1 + θ − γ(3 + θ)

4
,

β3 =
β̃4

3
=
γ(1 + θ)

6
.

(3.40)
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This yields

R1 +R2 ≤ d
((

α1

C1
− β1

)
‖u(n,1)

x ‖2 +
α1ν
C1
− β1µ

∆x
[[u(n,1)]]2

)
+ d

((
α2

C2
+
α3

C3
− β3

)
‖un+1

x ‖2 +
α2ν
C2

+ α3ν
C3
− β3µ

∆x
[[un+1]]2

)

+ d |1− σ|

β1

∣∣∣∣∣∣
E∑
j=1

{u(n,1)
x }j+1[u(n,1)]j+1

∣∣∣∣∣∣+ β3

∣∣∣∣∣∣
E∑
j=1

{un+1
x }j+1[un+1]j+1

∣∣∣∣∣∣


+ d |1 + σ|β2

∣∣∣∣∣∣
E∑
j=1

{u(n,1)
x }j+1[un+1]j+1

∣∣∣∣∣∣+

∣∣∣∣∣∣
E∑
j=1

{un+1
x }j+1[u(n,1)]j+1

∣∣∣∣∣∣


+
a2

2d

(
(α1C1 + α2C2) ‖u(n,1) − un‖2 + α3C3‖un+1 − u(n,1)‖2

)

To simplify the analysis, we now choose the constants C1, C2, C3 such that the equation

α1

C1
=
β1

β3

(
α2

C2
+
α3

C3

)

is fulfilled, e.g. by setting C2 = 2β1α2

β3α1
C1 , C3 = 2β1α3

β3α1
C1.

Thereby, setting C = β1C1

α1
, we obtain the simplified estimate

R1 +R2 ≤− dβ1
C − 1

C

(
‖u(n,1)

x ‖2 +
β3

β1
‖un+1

x ‖2
)

− dβ1
µ− ν

C

∆x

(
[[u(n,1)]]2 +

β3

β1
[[un+1]]2

)
+ L1 + L2 + L3 + L4

+
a2

2d

(
(α1C1 + α2C2) ‖u(n,1) − un‖2 + α3C3‖un+1 − u(n,1)‖2

)
,



3.3. L2-STABILITY ANALYSIS OF IMEX-DG FOR ADVECTION-DIFFUSION 157

with

L1 = d |1− σ|β1

∣∣∣∣∣∣
E∑
j=1

{
u(n,1)
x

}
j

[u(n,1)]j

∣∣∣∣∣∣
≤ d |1− σ|β1

(
C̃1‖u(n,1)

x ‖2 +
1

4C̃1∆xω1

[[u(n,1)]]2
)
,

L2 = d |1− σ|β3

∣∣∣∣∣∣
E∑
j=1

{
un+1
x

}
j

[un+1]j

∣∣∣∣∣∣
≤ d |1− σ|β3

(
C̃2‖un+1

x ‖2 +
1

4C̃2∆xω1

[[un+1]]2
)
,

L3 = d |1 + σ|β2

∣∣∣∣∣∣
E∑
j=1

{
u(n,1)
x

}
j

[un+1]j

∣∣∣∣∣∣
≤ d |1 + σ|β2

(
C̃3‖u(n,1)

x ‖2 +
1

4C̃3∆xω1

[[un+1]]2
)
,

L3 = d |1 + σ|β2

∣∣∣∣∣∣
E∑
j=1

{
un+1
x

}
j

[u(n,1)]j

∣∣∣∣∣∣
≤ d |1 + σ|β2

(
C̃4‖un+1

x ‖2 +
1

4C̃4∆xω1

[[u(n,1)]]2
)
,

according to the estimate (2.21).

Setting the constants C̃2 = C̃1, C̃3 =
√

β1

β3
C̃1, C̃4 =

√
β3

β1
C̃1 and defining

C̃σ = |1− σ|+ |1 + σ| β2√
β1β3

,

we then have

R1 +R2 ≤ d
(
C̃1C̃σ −

C − 1

C

)(
β1‖u(n,1)

x ‖2 + β3‖un+1
x ‖2

)
d
ν
C + C̃σ(4C̃1ω1)−1 − µ

∆x

(
β1[[u(n,1)]]2 + β3[[un+1]]2

)
+
a2

2d

(
(α1C1 + α2C2) ‖u(n,1) − un‖2 + α3C3‖un+1 − u(n,1)‖2

)
.

(3.41)

Obviously, we need C > 1, i.e. C1 >
α1
β1

in order to obtain a non-positive factor in front of

‖ux‖2 in the above estimation of R1 +R2.

The last term on the right-hand side of (3.41) may be bounded by the corresponding left-hand
side terms in (3.38), yielding the grid-independent conditions

∆t
a2

d
(α1C1 + α2C2) ≤ 1 , ∆t

a2

d
α3C3 ≤ θ . (3.42)
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Furthermore, the precise conditions on the parameters σ and µ may be obtained in a manner
similar to the analysis for the first order IMEX scheme.

Setting C̃1 = (C − 1)(CC̃σ)−1, the first term on the right-hand side of the inequality (3.41)
vanishes. To guarantee non-positivity of the second term, the condition

C

C − 1
µ̃ ≤ µ− ν

C
, with µ̃ =

C̃2
σ

4ω1
,

needs to be fulfilled. The above condition has the same form as condition (3.29) for the first
order IMEX scheme and can thus be fulfilled by choosing C ≥ ν+µ

µ−µ̃ if µ̃ < µ. Setting

C1 =
α1

β1
C, C2 =

2α2

β3
C, C3 =

2α3

β3
C ,

we may rewrite (3.42) as

∆t
a2

d
≤ 1

C
min

{(
α2

1

β1
+

2α2
2

β3

)−1

,
θβ3

2α2
3

}
, C =

ν + µ

µ− µ̃
. (3.43)

We summarize and obtain the following

Theorem 3.5. Let N ∈ N0 denote the polynomial degree of the DG approximation space Vh
defined in (2.2). Let σ, µ ∈ R fulfill the condition

µ̃ :=

(
|1− σ|+ |1 + σ| β2√

β1β3

)2

4ω1
< µ ,

where ω1 denotes the first weight of the Legendre-Gauss-Lobatto quadrature with N + 1 nodes
and β1, β2, β3 are defined by (3.40) for θ ∈ [0, 0.7] suitably chosen.

Then, the IMEX-DG scheme (3.34), (3.35) with the (σ, µ)-diffusion operator Lj defined in (2.15)
fulfills ‖un+1‖ ≤ ‖un‖ if the time step is bounded by the conditions (3.43) with α1, α2, α3 as
in (3.39).

The condition µ̃ < µ is again a restriction on the parameters σ and µ of the chosen scheme
within the (σ, µ)-family and thus classifies the admissible members within this family. Different
from the first order IMEX scheme, admissibility is now dependent on C̃σ which in turn depends
on β1, β2, β3 and thus on the free parameter θ ∈ [0, 0.7]. Only for σ = −1, yielding the
sub-family of symmetric (σ, µ)-schemes, we have C̃σ = 2, independent of θ. For σ 6= −1,
monotonicity arguments show C̃σ to be strictly increasing. In fact, the factor β2/

√
β1β3,

depicted in Fig. 3.4a, is strictly increasing with θ. This also means that the reference quantity
µ̃ is strictly increasing. Therefore, the smaller we chose θ, the larger is the range of (σ, µ)-
schemes allowing for unconditionally stable second order IMEX time integration independent
of grid refinement.

On the other hand, for values of θ ≤ 0.4 the θ-dependent factor θβ3/(2α
2
3) dictates the time

step restriction (3.43) as can be seen in Fig. 3.4b showing both of the θ-dependent factors,
the minimum of which is relevant for determining the allowable time step as a function of the
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(a) θ-dependent factor in C̃σ and reference quan-

tity µ̃ = C̃σ

4ω1
for the

(
1
4 ,

9
4

)
-recovery scheme for

N = 1.

(b) θ-dependent factors determining the time
step restriction (3.43) for grid-independent
L2-stability.

Figure 3.4: Plots of θ-dependent parameters influencing both the range of admissible
(σ, µ)-schemes and the time step restriction.

advection and diffusion coefficients in (3.43). Therefore, smaller values of θ will lead to more
restrictive time step constraints with respect to the advection and diffusion coefficients. Thus,
for schemes far from the symmetric case σ = −1, unconditional stability may be possible but
at the expense of smaller time steps for a convection-dominated situation.

Analogous to the first order IMEX-DG scheme, the BR1 and Baumann-Oden diffusion schemes
do not fulfill the conditions on σ and µ given in Theorem 3.5. Accordingly, the numerical
experiments in Section 3.3.3 show that, in general, these schemes do not allow for a grid-
independent time step choice. For the symmetric (σ, µ)-schemes, including the BR2 scheme
and the symmetric LDG variant, the conditions on σ and µ are the same as in the first-
order case. Analogous to the first order IMEX-DG scheme, those latter schemes therefore
admit grid-independent time step choice, only based on the relation of advection and diffusion
coefficients. The

(
1
4 ,

9
4

)
-recovery scheme for a polynomial degree of N = 1 also fulfills the

conditions given in Theorem 3.5. For this scheme, the reference quantity µ̃ is depicted in
Fig. 3.4a which shows that µ̃ < µ = 9/4 for all values of θ ∈ [0, 0.7].

Extension to DG schemes on non-uniform grids and to multiple space dimensions

For simplicity of presentation, only uniform grids have been considered. However, the provided
results also carry over to a more general class of non-uniform grids, but the corresponding
analysis is more technical. For the following discussion of this extension, the cell sizes of a non-
uniform grid are denoted by ∆xj = xj+1−xj and the mesh width is defined as ∆x = max ∆xj .

For the IMEX-LDG scheme, the assumptions in Wang et al. [205] are already relaxed to

quasi-uniform partitions which assume the existence of a positive constant ρ with
∆xj
∆x ≥ ρ for

all j as ∆x → 0. Hence, considering Lemma 3.2, assertions (3.21) and (3.22) hold for these
non-uniform grids as well.
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The (σ, µ) scheme on non-uniform grids may be defined by

Lj (u, v) = −(ux, vx)j + {ux}j+1v
−
j+1 − {ux}jv

+
j +

σ

2

((
v−x [u]

)
j+1

+
(
v+
x [u]

)
j

)
+
µ

2

((
1

∆xj
+

1

∆xj+1

)(
[u]v−

)
j+1
−
(

1

∆xj−1
+

1

∆xj

)(
[u]v+

)
j

)
,

which correspondingly modifies the term in (2.20) containing µ
∆x while assertion (2.21) be-

comes ∣∣∣∣∣∣
E∑
j=1

{ux}j [v]j

∣∣∣∣∣∣ ≤ C̃‖ux‖2 +
1

8C̃ω1

E∑
j=1

(
1

∆xj−1
+

1

∆xj

)
[v]2j .

Since the modifications in (2.20) and (2.21) present the main differences with respect to the
(σ, µ)-scheme, the theoretical stability analysis of this work may accordingly be transferred
to non-uniform meshes.

Considering the multi-dimensional case, an extension of the (σ, µ)-family to uniform tensor-
product grids can be found in [163]. However, if we use tensor-product integration for the
multi-dimensional volume term (∇u,∇u), as in the proof of Lemma 3.2 for the one-dimensional
case, the numerical integration on Legendre-Gauss-Lobatto points is not exact. Remarking
that the integration rule in the proof of Lemma 3.2 only serves the analysis and is not an
integral part of the scheme, a remedy may be to use Legendre-Gauss-Lobatto integration in one
coordinate direction and classical Legendre-Gauss integration in the remaining ones, running
through all coordinate directions in this process. This modification for the multi-dimensional
case might clear the way to yield a multi-dimensional version of estimate (2.21) and allow for an
extension to the practically relevant multi-dimensional case in future work. In addition, since
practical applications often contain simplicial meshes, it would be beneficial to investigate
how the analysis in this work can be extended to unstructured triangular grids. Presumably,
a transfer of the stability results to a certain extent is possible since a corresponding analysis
is given for the IMEX-LDG scheme in [208].

3.3.3 Numerical results

In this section, we first compare stability and accuracy of the second order IMEX-DG schemes
with respect to the discretization of the diffusion terms in case of linear PDEs. Afterwards,
we study the performance of different diffusion discretizations when using a second and third
order IMEX-RK schemes in combination with higher order discretizations in space. Finally,
as a non-linear test case, the behavior of various IMEX-DG schemes for the viscous Burgers’
equation is investigated.

Linear advection-diffusion with exponentially decaying solution

First, we consider the exact solution

U(x, t) = e−dt sin(x− at)

to the linear advection-diffusion equation (2.35) in the interval (xa, xb) = (−π, π). The
advection-diffusion problem is discretized in space by the second order nodal DG scheme



3.3. L2-STABILITY ANALYSIS OF IMEX-DG FOR ADVECTION-DIFFUSION 161

E LDG Recovery BR1 BR2 BO

20 2.42 2.42 3.23e-01 2.45 4.50e-01
40 2.41 2.41 1.57e-01 2.42 2.35e-01
80 2.41 2.41 7.91e-02 2.41 8.89e-02
160 2.41 2.41 3.03e-02 2.41 4.01e-02
320 2.41 2.41 1.08e-02 2.41 2.05e-02
640 2.41 2.41 9.26e-03 2.41 9.87e-03

E
σ = −1 σ = −1 σ = 0.25 σ = 0.25 σ = 0.25
µ = 10 µ = 1.5 µ = 0.5 µ = 1 µ = 10

20 2.45 7.52e-01 2.34 2.39 2.45
40 2.42 2.42 2.39 2.40 2.42
80 2.41 2.41 2.40 2.41 2.41
160 2.41 2.41 2.41 2.41 2.41
320 2.41 2.41 2.41 2.41 2.41
640 2.41 2.41 2.41 2.41 2.41

Table 3.2: Values of τ = a2

d ∆tmax, where ∆tmax is the maximum time step to ensure a
non-increasing L2-norm for d = 0.1, a = 0.1.

on Legendre-Gauss-Lobatto nodes, hence the polynomial degree is N = 1. As in the theoret-
ical investigation, advection terms are discretized by upwind fluxes and diffusion terms are
discretized either by the LDG scheme or by various members of the (σ, µ)-family. The second
order IMEX scheme (3.17) is then used to discretize advection terms explicitly and diffusion
terms implicitly.

From the theoretical analysis, we expect the schemes to be stable for time steps ∆t ≤ τd
a2 ,

where τ is some constant independent of grid refinement.

Tables 3.2, 3.3 and 3.4 show the analysis of the maximum stable time step for different
advection and diffusion parameters a and d, where we vary the number of cells E and compute
the numerical solution until the final time T = 1000. The maximum stable time step ∆tmax
is determined as the maximum time step for which the L2-norm of the numerical solution is
non-increasing and the corresponding values of τ = a2

d ∆tmax are listed. As predicted by the
theoretical analysis, the BR1 and Baumann-Oden(BO) scheme do not admit grid-independent
time step sizes. Here, we clearly observe the behavior τ = O(∆x) for the admissible time
step, analogous to the time step restrictions for explicitly discretized advection equations. For
the other investigated diffusion schemes the values of τ nearly coincide for moderate sizes of
the diffusion coefficient (Table 3.2). For small sizes of the diffusion coefficient (Table 3.3),
on coarse grids, the allowable time step size scales with the grid size and those members of
the (σ, µ)-family with a large value of µ admit much larger time steps. On fine grids, the
allowable time step sizes almost coincide again, except for the BR1 and BO discretizations.

For the diffusion-dominated case, the time step restrictions with respect to the classical DG
diffusion discretizations are indicated in Table 3.4. Here, the implicit discretization of the
dominant diffusion term yields increased stability except for the BR1 and BO diffusion dis-
cretization. Hence, for LDG, BR2 and the Recovery discretization, no time step restriction is
needed for this particular test case.
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E LDG Recovery BR1 BR2 BO

20 6.63 6.82 6.30 6.87 6.42
40 3.45 3.78 3.15 3.80 3.21
80 1.96 2.53 1.57 2.73 1.66
160 1.40 1.77 7.82e-01 2.17 9.03e-01
320 1.50 1.48 3.92e-01 1.70 5.01e-01
640 1.42 1.42 1.96e-01 1.50 2.84e-01

E
σ = −1 σ = −1 σ = 0.25 σ = 0.25 σ = 0.25
µ = 10 µ = 1.5 µ = 0.5 µ = 1 µ = 10

20 1.05e+01 6.46 6.45 6.53 1.01e+01
40 6.22 3.30 3.24 3.35 5.95
80 3.80 1.75 1.69 1.88 3.62
160 2.39 1.01 1.01 1.32 2.28
320 1.75 6.93e-01 9.38e-01 1.24 1.69
640 1.50 1.49 1.25 1.34 1.48

Table 3.3: Values of τ = a2

d ∆tmax, where ∆tmax is the maximum time step to ensure a
non-increasing L2-norm for d = 0.01, a = 0.2.

E LDG Recovery BR1 BR2 BO

20 + + 6.65e-02 + 7.82e-02
40 + + 3.23e-02 + 3.43e-02
80 + + 1.57e-02 + 1.57e-02
160 + + 6.94e-03 + 7.91e-03
320 + + 3.03e-03 + 3.03e-03
640 + + 1.08e-03 + 1.08e-03

Table 3.4: Values of τ = a2

d ∆tmax, where ∆tmax is the maximum time step to ensure a non-
increasing L2-norm for d = 0.5, a = 0.1 an entry of “+” means that for this test case, the
scheme is unconditionally stable independent of the time step.
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Tables 3.5 and 3.6 show the L2-errors and the experimental order of accuracy for the various
schemes applied to this problem. Here, we compute the numerical solution until final time
T = 100 and use both moderate time steps ∆t = 5∆x (first part of Table 3.5) and large time
steps ∆t = 25∆x (second part of Table 3.5) for the parameters d = 0.1, a = 0.1. For the
parameters d = 0.1, a = 1, we set ∆t = ∆x to achieve stability. The corresponding L2-errors
and the derived experimental orders of accuracy are listed in Table 3.6. Basically in all cases,
a second order convergence rate is experimentally confirmed except for the poor performance
of the BR1 scheme which is unstable for the larger time step of ∆t = 25∆x (Table 3.5). In
addition, the BR1 scheme shows significantly larger errors for the convection-dominated case
(Table 3.6).

Linear advection-diffusion with exponentially growing solution

As in [205], we now supplement the linear advection-diffusion equation (2.35) by a source
term, i.e.

Ut + Ux = dUxx + g(x, t), (x, t) ∈ Q = Ω× (0, T ), Ω = (−π, π) ,

U(x, 0) = sinx , x ∈ (−π, π) ,
(3.44)

where the source term g(x, t) = edt (2d sinx+ cosx) is chosen such that the exact solution is
U(x, t) = edt sinx which is exponentially growing in time.

The computations are carried out until the final time T = 10 with time steps ∆t = ∆x.
The corresponding results for diffusion parameters d = 0.1 and d = 1 are shown in Tables 3.7
and 3.8, respectively. Again, all schemes exhibit second-order convergence behavior. Different
from the previous example, the

(
1
4 ,

9
4

)
-recovery scheme is the most accurate one in this case. As

mentioned before, this scheme has in fact been constructed to achieve a 4th-order truncation
error. Its superior performance for this test case suggests that it may be beneficial to further
consider members of the (σ, µ)-family of diffusion discretizations in combination with IMEX
time integration and that promising family members may be non-symmetric.
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∆t = 5∆x

E
LDG Recovery BR1 BR2

L2-error EOC L2-error EOC L2-error EOC L2-error EOC

20 2.38e-05 1.87e-06 8.78e-06 9.65e-06
40 5.79e-06 2.04 4.44e-07 2.07 2.40e-06 1.88 2.45e-06 1.98
80 1.46e-06 1.99 1.09e-07 2.03 6.23e-07 1.95 6.21e-07 1.98
160 3.67e-07 1.99 2.69e-08 2.02 1.58e-07 1.98 1.56e-07 1.99
320 9.24e-08 1.99 6.69e-09 2.01 3.98e-08 1.99 3.92e-08 1.99
640 2.32e-08 1.99 1.67e-09 2.01 9.99e-09 1.99 9.82e-09 1.99

E
σ = −1, µ = 10 σ = −1, µ = 1.5 σ = 0.25, µ = 0.5 σ = 0.25, µ = 10
L2-error EOC L2-error EOC L2-error EOC L2-error EOC

20 9.72e-06 9.49e-06 1.85e-05 7.40e-06
40 2.46e-06 1.98 2.45e-06 1.95 5.12e-06 1.85 1.87e-06 1.98
80 6.21e-07 1.99 6.20e-07 1.98 1.36e-06 1.91 4.73e-07 1.98
160 1.56e-07 1.99 1.56e-07 1.99 3.51e-07 1.95 1.19e-07 1.99
320 3.92e-08 1.99 3.92e-08 1.99 8.92e-08 1.98 2.99e-08 1.99
640 9.82e-09 2.00 9.82e-09 2.00 2.25e-08 1.99 7.50e-09 2.00

∆t = 25∆x

E
LDG Recovery BR1 BR2

L2-error EOC L2-error EOC L2-error EOC

20 1.25e-04 1.06e-04 - 1.00e-04
40 3.01e-05 2.06 3.37e-05 1.65 - 3.20e-05 1.65
80 7.74e-06 1.96 8.95e-06 1.91 - 8.55e-06 1.90
160 1.91e-06 2.02 2.24e-06 1.99 - 2.15e-06 1.99
320 4.72e-07 2.02 5.56e-07 2.01 - 5.34e-07 2.01
640 1.17e-07 2.01 1.38e-07 2.01 - 1.33e-07 2.01

E
σ = −1, µ = 10 σ = −1, µ = 1.5 σ = 0.25, µ = 0.5 σ = 0.25, µ = 10
L2-error EOC L2-error EOC L2-error EOC L2-error EOC

20 1.00e-04 3.36e-02 1.29e-03 1.02e-04
40 3.20e-05 1.64 3.20e-05 10.04 3.82e-05 5.08 3.24e-05 1.65
80 8.55e-06 1.90 8.55e-06 1.90 9.90e-06 1.95 8.65e-06 1.91
160 2.15e-06 1.99 2.15e-06 1.99 2.47e-06 2.00 2.17e-06 2.00
320 5.34e-07 2.01 5.34e-07 2.01 6.13e-07 2.01 5.39e-07 2.01
640 1.33e-07 2.01 1.33e-07 2.01 1.52e-07 2.01 1.34e-07 2.01

Table 3.5: Comparison of L2-errors and experimental order of convergence (EOC) with respect
to the diffusion fluxes for the parameters d = 0.1, a = 0.1. Computations carried out until
final time T = 100 with time steps ∆t = 5∆x and ∆t = 25∆x.
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E
LDG Recovery BR1 BR2

L2-error EOC L2-error EOC L2-error EOC L2-error EOC

20 1.11e-05 6.74e-05 5.14e-03 8.90e-06
40 2.59e-06 2.10 1.93e-05 1.81 1.07e-03 2.27 4.31e-07 4.37
80 6.40e-07 2.02 5.42e-06 1.83 3.15e-04 1.76 2.14e-07 1.01
160 1.59e-07 2.01 1.45e-06 1.90 6.16e-05 2.35 9.90e-08 1.11
320 3.98e-08 2.00 3.76e-07 1.95 2.83e-05 1.12 3.13e-08 1.66
640 9.95e-09 2.00 9.56e-08 1.97 6.50e-06 2.12 8.71e-09 1.85

Table 3.6: Comparison of L2-errors and experimental order of convergence (EOC) with respect
to the classical diffusion fluxes for the parameters d = 0.1, a = 1. Computations carried out
until final time T = 100 with time step ∆t = ∆x.

E
LDG Recovery BR1 BR2

L2-error EOC L2-error EOC L2-error EOC L2-error EOC

20 1.48e-01 6.65e-02 1.62e-01 1.03e-01
40 3.70e-02 2.00 1.20e-02 2.48 4.01e-02 2.02 2.36e-02 2.13
80 9.27e-03 1.99 2.23e-03 2.42 1.01e-02 1.99 5.63e-03 2.07
160 2.32e-03 1.99 4.56e-04 2.29 2.53e-03 2.00 1.38e-03 2.02
320 5.81e-04 1.99 1.02e-04 2.17 6.37e-04 1.99 3.44e-04 2.01
640 1.45e-04 1.99 2.40e-05 2.08 1.57e-04 2.01 8.60e-05 2.00

Table 3.7: Comparison of L2-errors and experimental order of convergence (EOC) with respect
to the classical diffusion fluxes for the exponentially growing solution of (3.44) with d = 0.1.
Computations carried out until final time T = 10 with time step ∆t = ∆x.

E
LDG Recovery BR1 BR2

L2-error EOC L2-error EOC L2-error EOC L2-error EOC

20 1.12e+03 3.69e+02 9.06e+02 5.63e+02
40 2.95e+02 2.00 9.84e+01 2.48 2.55e+02 2.02 1.50e+02 2.13
80 7.55e+01 1.99 2.65e+01 2.42 6.84e+01 1.99 3.97e+01 2.07
160 1.91e+01 1.99 6.81e+00 2.29 1.77e+01 2.00 1.01e+01 2.02
320 4.80e+00 1.99 1.74e+00 2.17 4.50e+00 1.99 2.57e+00 2.01
640 1.20e+00 1.99 4.37e-01 2.08 1.13e+00 2.02 6.47e-01 2.00

Table 3.8: Comparison of L2-errors and experimental order of convergence (EOC) with respect
to the classical diffusion fluxes for the exponentially growing solution of (3.44) with d = 1.
Computations carried out until final time T = 10 with time step ∆t = ∆x.
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(a) Comparison of diffusion fluxes: BR1 and
(σ, µ) = (−1, 10) for t = 1 and t = 5.
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(b) Close-up view of left figure.

Figure 3.5: DG(N = 1) solution for discontinuous initial condition (3.45).

Behavior for discontinuous solutions

Next, in order to investigate the behavior of the second order DG schemes for discontinuous
initial conditions, we consider the initial condition

U(x, 0) =

{
x+ π for x > 0 ,
x− π for x < 0 ,

(3.45)

on the interval (xa, xb) = (−π, π). This initial condition then evolves according to the linear
advection-diffusion equation (2.35).

Figure 3.5 depicts the output of the DG(N = 1) schemes on E = 40 elements using the BR1
diffusion discretization with σ = −1 and µ = 1 as well as the (σ, µ) diffusion discretization with
σ = −1 and µ = 10. The second order IMEX scheme (3.17) is used for time integration with
time step ∆t = 10∆x. A reference solution is computed using the fourth order DG(N = 3)
scheme with LDG diffusion discretization on E = 640 cells. From Figure 3.5b, we may observe
that in the smooth profile which develops out of the initial jump, the BR1 discretization
yields larger errors than the more stable variant with µ = 10 and seems to oscillate around
the profile. However, both variants of the DG scheme capture the reference solution to this
advection-diffusion problem with sufficient accuracy as shown in Figure 3.5a.

Performance for higher order schemes

The application of a higher order discretization in space when choosing a polynomial degree
of N > 1 is usually combined with a higher order time discretization. In this work, the
theoretical stability analysis was carried out for particular IMEX time integrators of first and
second order. Using these time discretization schemes leads to only first or second order of
the fully discrete scheme.
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Nevertheless, numerical experiments for the cases N = 2, 3 will be reported in this section,
where the DG space discretization is complemented by the second order IMEX scheme (3.17)
as well as the third order IMEX scheme taken from [30] which is given by:

0 0 0 0 0 0 0 0 0
γ γ 0 0 0 0 γ 0 0

1+γ
2

1+γ
2 − a1 a1 0 0 0 1−γ

2 γ 0
1 0 1− a2 a2 0 0 b1 b2 γ

0 b1 b2 γ 0 b1 b2 γ

(3.46)

with

γ ≈ 0.435866521508459 the middle root of 6x3 − 18x2 + 9x− 1,
b1 = −1.5γ2 + 4γ − 0.25,
b2 = 1.5γ2 − 5γ + 1.25,
a1 = −0.35,

a2 = 1/3−2γ2−2b2a1γ
γ(1−γ) .

Tables 3.9, 3.10, 3.11 and 3.12 show the numerical results for N = 2, 3 for the first test case in
this section, solving the advection-diffusion equation (2.35) in the interval (xa, xb) = (−π, π)
with periodic boundary conditions and initial condition U(x, 0) = sin(x). Hereby, Tables 3.9
and 3.10 provide a numerical analysis of the allowable time step size for IMEX time integration.
Again, the BR1 diffusion discretization does not admit a grid independent time step choice as
predicted by the theoretical analysis. However, for the Baumann-Oden method, the time step
restriction is comparable to those members of the (σ, µ)-family which respect the condition
given in Theorem 3.5. The observed grid-independent stability of the second order IMEX-DG
scheme with Baumann-Oden diffusion discretization for this particular test case is unexpected
but does not contradict the theory which only provides upper bounds. Tables 3.11 and 3.12
provide the comparison of the higher order schemes with respect to accuracy. It is shown
that due to its less favorable stability properties, the BR1 diffusion discretization yields large
L2-errors on fine grids. For the other diffusion discretizations, the expected order of accuracy
is achieved. Obviously, the order of accuracy of the fully discrete scheme is restricted to the
order of accuracy of the IMEX time integrator.
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N E LDG σ = 1
4 , µ = 9

4ω1
BR1 BR2 BO

d = 0.1, a = 0.1

2

10 2.41 2.42 2.63e-01 2.42 2.45
20 2.41 2.42 1.35e-01 2.41 2.43
40 2.41 2.41 7.09e-02 2.41 2.42
80 2.41 2.41 3.67e-02 2.41 2.41
160 2.41 2.41 1.84e-02 2.41 2.41
320 2.41 2.41 9.26e-03 2.41 2.41

3

10 2.41 2.41 1.68e-01 2.41 2.41
20 2.41 2.41 9.10e-02 2.41 2.41
40 2.41 2.41 4.83e-02 2.41 2.41
80 2.41 2.41 2.51e-02 2.41 2.41
160 2.41 2.41 1.23e-02 2.41 2.41
320 2.41 2.41 6.29e-03 2.41 2.41

d = 0.01, a = 0.2

2

10 5.28 6.13 4.75 5.96 5.00
20 2.93 3.98 2.36 3.89 2.62
40 1.88 2.48 1.18 2.80 1.50
80 1.72 1.72 5.99e-01 1.85 9.39e-01
160 1.44 1.49 3.08e-01 1.49 1.20
320 1.41 1.44 1.61e-01 1.42 1.53

3

10 3.38 5.04 2.66 5.27 3.02
20 2.22 3.03 1.34 3.27 1.72
40 1.85 2.10 6.86e-01 2.32 1.25
80 1.45 1.92 3.60e-01 1.87 2.19
160 1.41 1.81 1.96e-01 1.79 1.87
320 1.41 1.78 1.09e-01 1.78 1.81

Table 3.9: Stability analysis for the DG scheme with N = 2, 3 and second order IMEX time
integration (3.17): Values of τ = a2

d ∆tmax, where ∆tmax is the maximum time step to ensure
a non-increasing L2-norm.
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N E LDG σ = 1
4 , µ = 9

4ω1
BR1 BR2 BO

d = 0.1, a = 0.1

2

10 5.86 5.88 2.72e-01 5.87 5.97
20 5.86 5.87 1.36e-01 5.86 5.88
40 5.86 5.86 6.91e-02 5.86 5.66
80 5.86 5.86 3.49e-02 5.86 5.52
160 5.86 5.86 1.72e-02 5.86 5.68
320 5.86 5.86 8.64e-03 5.86 5.80

3

10 5.86 5.86 1.57e-01 5.86 5.86
20 5.86 5.86 8.07e-02 5.86 5.86
40 5.86 5.86 4.10e-02 5.86 5.86
80 5.86 5.86 2.02e-02 5.86 5.86
160 5.86 5.86 1.05e-02 5.86 5.86
320 5.86 5.86 4.98e-03 5.86 5.86

d = 0.01, a = 0.2

2

10 6.48 7.86 6.00 7.90 6.32
20 3.52 5.65 2.78 5.81 3.44
40 2.20 8.38 1.34 7.91 2.41
80 2.28 7.25 6.62e-01 7.01 4.46
160 6.86 6.91 3.32e-01 6.84 6.57
320 6.84 6.73 1.68e-01 6.75 6.94

3

10 4.26 7.82 2.91 7.32 3.69
20 2.51 7.10 1.45 6.82 2.63
40 2.04 6.91 7.29e-01 6.50 4.27
80 4.66 6.75 3.71e-01 6.73 6.95
160 6.62 6.65 1.91e-01 6.69 6.79
320 6.80 6.58 9.87e-02 6.60 6.63

Table 3.10: Stability analysis for the DG scheme with N = 2, 3 and third order IMEX time
integration (3.46): Values of τ = a2

d ∆tmax, where ∆tmax is the maximum time step to ensure
a non-increasing L2-norm.
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N E
LDG σ = 1

4 , µ = 9
4ω1

BR1 BR2

L2-error EOC L2-error EOC L2-error L2-error EOC

Second order time integration IMEX2

2

10 2.28e-05 2.55e-05 2.27e-05 2.29e-05
20 5.96e-06 1.94 6.85e-06 1.90 5.99e-06 5.98e-06 1.94
40 1.50e-06 1.99 1.74e-06 1.98 4.46e-05 1.50e-06 2.00
80 3.73e-07 2.01 4.35e-07 2.00 2.58e-02 3.73e-07 2.01
160 9.30e-08 2.00 1.09e-07 2.00 - 9.30e-08 2.00
320 2.32e-08 2.00 2.71e-08 2.01 - 2.32e-08 2.00

3

10 2.32e-05 2.32e-05 - 2.32e-05
20 5.99e-06 1.95 6.00e-06 1.95 - 5.99e-06 1.95
40 1.50e-06 2.00 1.50e-06 2.00 - 1.50e-06 2.00
80 3.73e-07 2.01 3.73e-07 2.01 - 3.73e-07 2.01
160 9.30e-08 2.00 9.30e-08 2.00 - 9.30e-08 2.00
320 2.32e-08 2.00 2.32e-08 2.00 - 2.32e-08 2.00

Third order time integration IMEX3

2

10 2.48e-06 6.38e-06 2.46e-06 2.61e-06
20 3.75e-07 2.73 1.44e-06 2.15 4.29e-01 3.84e-07 2.76
40 5.16e-08 2.86 3.30e-07 2.13 - 5.21e-08 2.88
80 6.74e-09 2.94 7.84e-08 2.07 - 6.75e-09 2.95
160 8.62e-10 2.97 1.90e-08 2.04 - 8.61e-10 2.97
320 1.09e-10 2.98 4.69e-09 2.02 - 1.09e-10 2.98

3

10 2.93e-06 2.94e-06 - 2.93e-06
20 4.05e-07 2.85 4.05e-07 2.86 - 4.05e-07 2.85
40 5.33e-08 2.93 5.34e-08 2.92 - 5.33e-08 2.93
80 6.83e-09 2.96 6.84e-09 2.96 - 6.83e-09 2.96
160 8.66e-10 2.98 8.66e-10 2.98 - 8.66e-10 2.98
320 1.09e-10 2.99 1.09e-10 2.99 - 1.09e-10 2.99

Table 3.11: Comparison of L2-errors and experimental order of convergence (EOC) for polyno-
mial degrees of N = 2, 3 and advection-diffusion parameters d = 0.1, a = 0.1. Computations
carried out until final time T = 100 with time step ∆t = 5∆x. An entry of “-” means that
for this test case the L2-error exceeds 1.
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N E
LDG σ = 1

4 , µ = 9
4ω1

BR1 BR2

L2-error EOC L2-error EOC L2-error L2-error EOC

Second order time integration IMEX2

2

10 2.25e-02 1.31e-02 - 1.32e-02
20 2.85e-03 2.98 1.31e-03 3.32 - 1.05e-03 3.65
40 3.63e-04 2.97 2.20e-04 2.57 - 1.10e-04 3.25
80 4.80e-05 2.92 5.16e-05 2.09 - 1.98e-05 2.47
160 7.14e-06 2.75 1.29e-05 2.00 - 4.58e-06 2.11
320 1.32e-06 2.44 3.24e-06 1.99 - 1.12e-06 2.03

3

10 8.56e-04 5.83e-04 - 6.03e-04
20 1.13e-04 2.92 1.08e-04 2.43 - 1.04e-04 2.54
40 2.58e-05 2.13 2.60e-05 2.05 - 2.57e-05 2.02
80 6.43e-06 2.00 6.45e-06 2.01 - 6.42e-06 2.00
160 1.61e-06 2.00 1.61e-06 2.00 - 1.61e-06 2.00
320 4.02e-07 2.00 4.02e-07 2.00 - 4.02e-07 2.00

Third order time integration IMEX3

2

10 2.24e-02 1.31e-02 1.18e-02 1.30e-02
20 2.82e-03 2.99 1.28e-03 3.36 - 9.82e-04 3.73
40 3.54e-04 2.99 2.06e-04 2.64 - 7.80e-05 3.65
80 4.44e-05 3.00 4.78e-05 2.11 - 7.64e-06 3.35
160 5.55e-06 3.00 1.19e-05 2.01 - 8.88e-07 3.10
320 6.94e-07 3.00 2.99e-06 1.99 - 1.09e-07 3.03

3

10 7.52e-04 3.38e-04 - 4.45e-04
20 4.77e-05 3.98 1.53e-05 4.47 - 1.88e-05 4.57
40 3.05e-06 3.97 9.91e-07 3.95 - 9.14e-07 4.36
80 2.04e-07 3.90 9.88e-08 3.33 - 8.68e-08 3.40
160 1.57e-08 3.70 1.14e-08 3.12 - 1.06e-08 3.03
320 1.51e-09 3.38 1.37e-09 3.06 - 1.32e-09 3.01

Table 3.12: Comparison of L2-errors and experimental order of convergence (EOC) for the
exponentially growing solution of (3.44) with d = 0.1. Polynomial degrees of N = 2, 3.
Computations carried out until final time T = 10 with time step ∆t = 0.5∆x for N = 2 and
∆t = 0.3∆x for N = 3. An entry of “-” means that for this test case the L2-error exceeds 1.
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Numerical results for the viscous Burgers’ equation

Finally, we study the behavior of IMEX-DG schemes with respect to different DG diffusion
discretizations solving the viscous Burgers’ equation

Ut(x, t) +

(
1

2
U2(x, t)

)
x

= dUxx(x, t) , d = 0.1,

supplemented by the initial condition

U(x, 0) = U0(x) = sinx, x ∈ [−π, π]

and periodic boundary conditions.

Figure 3.6 shows the initial solution as well as the numerical solution at time t = 2 using the
DG(N = 2) space discretization with BR2(ηe = 3) diffusion fluxes and applying the second
order IMEX time integration method (3.17) with a time step size of ∆t = 0.2. The same time
step is used both on coarse and fine grids with K = 10, 50, 200, 1000 elements, respectively.
Clearly, refining the grid does not necessitate choosing smaller time steps for this combination
of IMEX time integration and DG diffusion fluxes. Replacing BR2 fluxes by the LDG diffusion
discretization, the same favorable behavior is shown in Figure 3.7.

On the other hand, replacing the diffusion discretization by the BR1 fluxes, a time step of
∆t = 0.2 already leads to instability for K = 50 as shown in Figure 3.8. In fact, on fine grids,
the simulation needs to be stopped before reaching the final time of t = 2 due to the lack of
stability. Even reducing the time step by a factor of 10 to ∆t = 0.02, the results in Figure 3.9
for fine grids with K = 200 and K = 1000 demonstrate that combining the BR1 diffusion
fluxes with IMEX advection-diffusion splitting is not favorable in terms of stability.
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(a) K = 10, t = 2. (b) K = 50, t = 2.

(c) K = 200, t = 2. (d) K = 1000, t = 2.

Figure 3.6: DG(N = 2) approximation of the viscous Burgers’ equation using BR2(η = 3)
diffusion fluxes and second order IMEX time integration on successively refined grids.

(a) K = 10, t = 2. (b) K = 50, t = 2.

(c) K = 200, t = 2. (d) K = 1000, t = 2.

Figure 3.7: DG(N = 2) approximation of the viscous Burgers’ equation using LDG diffusion
fluxes and second order IMEX time integration on successively refined grids.
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(a) K = 10, t = 2. (b) K = 50, t = 1.6.

(c) K = 100, t = 1.2. (d) K = 200, t = 1.

Figure 3.8: DG(N = 2) approximation of the viscous Burgers’ equation using BR1 diffusion
fluxes and second order IMEX time integration on successively refined grids.

(a) K = 10, t = 2. (b) K = 50, t = 2.

(c) K = 200, t = 1.06. (d) K = 1000, t = 0.16.

Figure 3.9: DG(N = 2) approximation of the viscous Burgers’ equation using BR1 diffusion
fluxes and second order IMEX time integration using small time steps of ∆t = 0.02.
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3.4 Positivity preservation

The quantities involved in the description of physical processes are often restricted by mini-
mum or maximum values. For instance, the density and pressure in the description of com-
pressible fluid flow should both be positive quantities. Regarding the flow of water in rivers,
lakes or oceans, the water column height should be non-negative. This constraint also holds
for the concentrations of substances in chemical processes. Furthermore, the values of mass
fractions or probabilities only make sense if contained in the interval [0, 1]. In general, the
approximations given by a numerical method do not necessarily satisfy these bounds. How-
ever, a violation may cause a blow-up of the numerical solution as the involved mathematical
operations may not be well-defined anymore if the relevant quantities are located outside of
the physically meaningful range.

In the following, we focus on the preservation of non-negativity, or short positivity, and
consider initial value problems of the form

u′(t) = g(t,u), u(0) = u0 , (3.47)

with the property that

u(t) ≥ 0 for all t ≥ 0 if u0 ≥ 0 . (3.48)

The solution to the above initial value problem (3.47) obviously remains positive for all t ≥ 0,
i.e. the positivity property (3.48) holds, if the following sufficient condition for each component
of the function g is fulfilled,

if ui(t
∗) = 0 for fixed t∗ ≥ 0 then gi(t

∗, ũ) ≥ 0 for all ũ ≥ 0 with ũi = ui(t
∗) . (3.49)

Initial value problems having the property (3.48) may also stem from the space discretization
of certain partial differential equations.

In order to prevent numerical instabilities and to maintain physically meaningful approxi-
mations, we desire a numerical scheme which is positive or positivity preserving, i.e. which
satisfies (3.48) in a discrete sense. The simplest approach to ensure that the numerical scheme
is positive obviously consists in setting negative values to zero. However, this approach is not
conservative and thus of limited applicability in the context of conservation laws where certain
linear invariants need to be preserved.

Obviously, if the condition (3.49) is fulfilled then positivity is preserved by the explicit Euler
scheme if time step size is sufficiently small. In fact, if un ≥ 0 and the current time step ∆tn

is restricted by

∆tn = min
{i | gi(tn,un)<0}

∣∣∣∣ ui
gi(tn,un)

∣∣∣∣ ,
with ∆tn > 0 due to (3.49), then the execution of an explicit Euler step yields

un+1 = un + ∆tng(tn,un) ≥ 0 .

For initial value problems (3.47) satisfying the condition (3.49), the positivity property of the
explicit Euler scheme can be extended to the class of so-called strong stability preserving (SSP)
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schemes reviewed in [72], thus ensuring positivity of higher order time integration schemes.
Moreover, SSP schemes preserve quite general stability properties of the explicit Euler scheme
defined by means of convex functions. The application of an SSP scheme is thereby based on
the assumption, that there is a sufficiently small time step ∆tFE > 0 such that the forward
Euler scheme satisfies

‖un + ∆tg(un)‖ ≤ ‖un‖, ∀∆t ≤ ∆tFE . (3.50)

where ‖ · ‖ : V ⊂ Rm → R is a given convex function. In this context, the assumption (3.50)
is called the forward Euler (FE) assumption. Now, an SSP scheme is defined as follows.

Definition 3.6. A numerical method approximately solving the initial value problem (3.47)
is called a strong stability preserving (SSP) method, if there is a constant c > 0 such that

‖un+1‖ ≤ ‖un‖, ∀∆t ≤ c∆tFE ,

if the FE assumption (3.50) is fulfilled.

Originally, at the beginning of the development of SSP schemes, the TV semi-norm was
considered as the given convex function in order to design essentially non-oscillatory methods
for conservation laws. At that time, the respective time integration methods where termed
TVD time integration schemes, see [178, 176]. Furthermore, since

‖u‖ = max
i
{−ui}

obviously is a convex function, the SSP theory is also applicable to positivity preservation.
Therefore, if the forward Euler method is positive with

un ≥ 0⇒ un+1 ≥ 0 for ∆t ≤ ∆tFE ,

then this property also carries over to higher order SSP schemes under the time step restriction
∆t ≤ c∆tFE .

The first schemes having the above SSP property where members of a particular class of
Runge-Kutta schemes which may be written as convex combinations of explicit Euler steps.
The precise formulation of these SSP-RK schemes is

u(1) = un,

u(i) =

i−1∑
j=1

(
αiju

(j) + ∆t βijg
(
tn + cj∆t,u

(j)
))

, i = 1, . . . , s,

un+1 = us ,

(3.51)

with coefficients αij , βij ≥ 0, where αij is zero only if the corresponding coefficient βij is zero.

For SSP-RK schemes (3.51), the requested constant c > 0 in Definition 3.6 is determined
by the coefficients αij , βij occurring in the convex combinations of explicit Euler time steps
determining the stage values u(i). Making use of the FE assumption, we have

c = min
i,j

αij
βij

.
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The SSP property of particular RK schemes also provides the mathematical background for
positivity preserving DG schemes combined with high order explicit time integration for ap-
plications in gas dynamics by Zhang and Shu [219] guaranteeing positive density and pressure
and in the computation of shallow water flows by Xing et al. [214] ensuring non-negative
water height.

Although implicit schemes may usually take larger time steps regarding stability conditions,
positivity preservation demands an additional time step constraint which often outplays the
corresponding restriction due to stability. In fact, although the implicit Euler scheme is
unconditionally SSP independent of the time step size as proven by Higueras [78], and hence
unconditionally positive, Gottlieb et al. [72] proved that there is no Runge-Kutta scheme or
linear multi-step scheme of order ≥ 2 which is unconditionally SSP. Therefore, if the order
of accuracy of the time integration method exceeds first order, the allowable time step size
guaranteeing boundedness with respect to the given convex function is still restricted by the
finite SSP parameter c and the allowable time step ∆tFE of the forward Euler scheme. In
addition, regarding positive schemes, a classical result by Bolley and Crouzeix [24] states that
any general linear method that is unconditionally positivity preserving for all initial value
problems (3.47) satisfying the positivity property (3.48) can only be first order accurate at
best.

On this account, time step restrictions for positivity will be expected for higher order implicit
schemes as well. However, an additional restriction of the time step size for implicit schemes
to enforce positivity may lead to an inefficient scheme at the end as a lot of computational
time is required to solve potentially large systems of nonlinear equations for each time step.

As a remedy for ordinary differential equations of production-destruction type, Runge-Kutta
schemes may be modified by the so-called Patankar trick in order to alleviate the time step
restriction based on positivity. While originally applied to explicit RK schemes, the Patankar
idea has been incorporated into an SDIRK scheme in [132] to obtain an unconditionally
positivity preserving scheme for the shallow water equations to be discussed in more detail
in Section 4.4. Different approaches avoiding excessively small time steps for positivity are
diagonally split Runge-Kutta (DSRK) methods as investigated by Horváth [80] in the context
of positivity preservation or adaptive Runge-Kutta methods adapting the weights after all
stage derivatives have been computed, see [145]. Similar to Patankar approaches, the DSRK
methods may be unconditionally positive while avoiding a restriction to first order since they
do not belong to the class of general linear methods. However, for a variety of numerical
test cases, Macdonald et al. [121] demonstrated that DSRK methods may suffer from order
reduction at large time step sizes behaving like first-order implicit schemes. In addition DSRK
methods do not possess a built-in mechanism preserving linear invariants which is relevant
for instance in order to guarantee specific conservation properties for ODE systems resulting
from semi-discrete conservation laws. On the other hand, the adaptive RK methods developed
in [145] based on an adaption of the RK weights after all stage derivatives have been calculated
is specifically designed to preserve all linear invariants of the given ODE. These methods may
also reject or reduce a given time step if no feasible combination of RK weights satisfying
the positivity constraint is found. However, for many physically relevant conservation laws,
the right-hand side of the system of ODEs resulting from a suitable space discretization will
not be computable for arguments violating the positivity constraints, for instance due to the
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evaluation of the sound speed within numerical flux functions for the the Euler equations or
the shallow water equations considered in Section 1.4 and Section 1.5, respectively.

In this section, we focus on the Patankar approach modifying Runge-Kutta schemes to achieve
both unconditional positivity and conservation for production-destruction equations. First,
we will review modified Patankar-Runge-Kutta schemes for ordinary differential equations
in production-destruction form in Section 3.4.1. Furthermore, in Section 3.4.2, the be-
havior of specific Patankar-modified explicit Runge-Kutta schemes is investigated for semi-
discretizations of classical linear partial differential equations which can be written in pro-
duction-destruction form. Finally, Section 3.4.3 deals with positivity preservation in the
context of implicit schemes, where we review the construction of the unconditionally positive
implicit MPSDIRK3 scheme developed by Meister and Ortleb in [132].

3.4.1 The Patankar approach applied to production-destruction equations

In the context of geobiochemical models, so-called production-destruction equations are fre-
quently encountered. These models describe the time-evolution of non-negative quantities
and often take into account some type of mass conservation. The underlying ODE systems
describing the time-evolution of non-negative quantities u(t) can usually be written in the
form

dui
dt

= Pi(u)−Di(u), j = 1, . . . , I, t ∈ R+, (3.52)

where u = (u1, . . . , uI)
T , I ∈ N, denotes the vector of non-negative constituents and t denotes

the time. Furthermore, the terms Pi(u) and Di(u) represent the production and destruction
rates of the i-th constituent, respectively. Initial conditions for the system (3.52) are given by
u(0) = u0 ≥ 0. The production-destruction terms may now be written as

Pi(u) =
I∑
j=1

pij(u), Di(u) =
I∑
j=1

dij(u), (3.53)

where dij(u) ≥ 0 is the rate at which the i-th constituent transforms into the j-th component,
while pij(u) ≥ 0 is the rate at which the j-th constituent transforms into the i-th component.
Hence, the definition of a production-destruction equation contains the condition pij(u) =
dji(u) for i 6= j. For fully conservative production-destruction equations, we also have pii(u) =
dii(u) = 0 by definition. As also stated in [29], for non-negative initial conditions ui(0) ≥
0, i = 1, . . . , I, one can easily show by a simple contradiction argument that the condition

dij(u)→ 0 for ui → 0, (3.54)

for all i, j ∈ {1, . . . , I}, guarantees u(t) ≥ 0 for all t ∈ R+
0 . In fact, if we assume for a smooth

solution u(t) of (3.52) fulfilling the initial condition u(0) ≥ 0 that at least one component
becomes negative, e.g. uj(t

∗) < 0 at a given time t∗, then there needs to exist 0 ≤ t̄ ≤ t∗ with
uj(t̄) = 0 and d

dtuj(t̄) < 0 contradicting the condition (3.54).

In order to obtain a well-posed problem, we furthermore require Lipschitz continuity of the
right-hand side of (3.52). Hence, we have |dij(u) − dij(ũ)| ≤ L · ‖u − ũ‖. Together with
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condition (3.54) this obviously yields boundedness of the quantities
dij(u)
ui

. In addition, in
order to be able to define the Patankar approach in the following, we actually need a slightly
stronger assumption on the destruction rates. More precisely, we assume convergence of the

fractions
dij(u)
ui

for ui → 0, such that these are well-defined for ui = 0. In the following, we
will therefore assume this stronger condition to be fulfilled.

In the context of such production-destruction processes, numerical methods that compute
approximations un to the values u(tn) at time tn ∈ R+

0 are of course supposed to be both
conservative and positive. For one-step schemes, these two properties are defined as follows.

Definition 3.7. A numerical method un+1 = un + ∆tnφ(un, tn,∆tn) with incremental func-
tion φ and time step ∆tn = tn+1 − tn applied to a given conservative production-destruction
equation of the form (3.52) is called

• conservative, if

I∑
i=1

(un+1
i − uni ) = 0,

• unconditional positive, if un+1 ≥ 0 for any given previous value un ≥ 0 and using an
arbitrarily large time step ∆tn ≥ 0.

Remark 3.8. We note that this definition of unconditional positivity differs from the one
used in [29] based on strict inequality, but coincides with the definition used in [80] since in
Definition 3.7, the components are allowed to become zero. The methods thus become applicable
for a larger class of problems, e.g. shallow water equations with vanishing water height to be
discussed in Chapter 4.

In [29], Burchard, Deleersnijder and Meister pioneered the construction of so-called modi-
fied Patankar-Runge-Kutta schemes that respect both the requirement of non-negativity and
of conservation. These schemes are based on well-known Runge-Kutta methods which are
suitably modified in order to fulfill both properties, resulting in non-linear schemes even if
applied to linear ODEs. Originally, the Patankar trick was introduced in [155] as a source
term linearization dealing with the numerical simulation of turbulent flows and guaranteeing
unconditional positivity in that specific context.

Let us first note that the forward Euler scheme applied to (3.52), i.e.

un+1
i = uni + ∆t

 I∑
j=1

pij(u
n)−

I∑
j=1

dij(u
n)

 ,

is obviously a conservative method in the sense of Definition 3.7. However, it is not an
unconditionally positive scheme, because in general, we will be able to find a suitably large
time step ∆t > 0 such that un+1 6≥ 0 even though un is non-negative. The Patankar trick [29,
155] now weighs the destruction term by a certain factor that guarantees positivity but leads
to an implicit formulation. More precisely, the Patankar-Euler method is given by

un+1
i = uni + ∆t

 I∑
j=1

pij(u
n)−

I∑
j=1

dij(u
n)
un+1
i

uni

 ,
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where we need the quantities
dij(u

n)
uni

to be well-defined as mentioned above.

We may rearrange the Patankar-Euler scheme into the form

un+1
i =

uni + ∆t
∑
pij(u

n)

1 + ∆t
∑
dij(un)(uni )−1

and hence obtain positivity as pij , dij ≥ 0. However, the Patankar-Euler method is obviously
not conservative. Therefore, the modified Patankar-Euler scheme by Burchard et al. [29] also
weights the production term in an equivalent manner and is given by

un+1
i = uni + ∆t

 I∑
j=1

pij(u
n)
un+1
j

unj
−

I∑
j=1

dij(u
n)
un+1
i

uni

 . (3.55)

Due to the balance of weighted production and destruction terms, one can now prove both
unconditional positivity and conservativity for this scheme as well as first order accuracy,
see [29].

In addition, a modified Patankar scheme of second order based on Heun’s predictor corrector
method was constructed in [29]. It has the form

u
(2)
i = uni + ∆t

 I∑
j=1

pij(u
n)
u

(2)
j

unj
−

I∑
j=1

dij(u
n)
u

(2)
i

uni

 ,

un+1
i = uni +

∆t

2

 I∑
j=1

(
pij(u

n) + pij(u
(2))
) un+1

j

u
(2)
j

−
I∑
j=1

(
dij(u

n) + dij(u
(2))
) un+1

i

u
(2)
i

 ,

(3.56)

and thus requires the solution of two linear systems of the size I × I. In order to avoid
confusion with multirate partitioned Runge-Kutta schemes, we will denote the above modified
Patankar scheme by mPaRK2 instead of using the original identifier MPRK2. As shown in [29],
the mPaRK2 scheme is second order accurate with respect to the local discretization error,
conservative and unconditionally positive.

More recently, further two-stage second order modified Patankar Runge-Kutta schemes have
been constructed by Kopecz and Meister in [98]. While in the early years of Patankar-Runge-
Kutta schemes, higher than second order accuracy seemed unattainable, four-stage third order
modified Patankar-Runge-Kutta schemes have been designed in [100]. However, in [99], the
same authors were able to prove that it is impossible to construct three stage third-order
modified Patankar-Runge-Kutta schemes when taking Patankar-weight denominators which
are products of powers of previous stage values.

In the following Section 3.4.2, we will discuss the application of modified Patankar-Runge-
Kutta schemes to system of ODEs which result from the space discretization of certain PDEs in
production-destruction form. In addition, enforcing linear stability may result in inadvertently
small time steps of explicit schemes applied to stiff problems. Therefore, an implicit modified
Patankar-Runge-Kutta scheme is constructed in Section 3.4.3.
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3.4.2 Quasi-linear production-destruction equations arising from PDEs

While many interesting biochemical reactions fit into the framework of ordinary differential
equations in production-destruction form, it also includes certain space-discretized partial
differential equations, e.g. the heat equation discretized by second-order differences and the
first-order upwind-discretized advection equation.

The latter examples are quasi-linear ODEs which may be put into a vectorized production-
destruction form

u′ = P̃(u) u − Q̃(u) u, (3.57)

with matrix-valued functions P̃, Q̃ : RI → RI×I such that

P̃(u) =
(
p̃ij(u)

)
≥ 0 and Q̃(u) = diag

(
q̃i(u)

)
≥ 0

for all u ∈ RI . Thus, the component-wise formulation of the above system is given by

u′i =
(∑I

j=1 p̃ij(u) · uj
)
− q̃i(u) · ui, (3.58)

for i = 1, 2, . . . , I. Usually, we also have p̃ii(u) = 0 for all u ∈ RI and some mass conservation
property such as

∑I
j=1 p̃ji(u) = q̃i(u).

Hence, we may recover the production-destruction formulation of (3.52) and (3.53) from the
quasi-linear case by setting Pi(u) =

∑I
j=1 pij(u) =

∑I
j=1 p̃ij(u)u and Di(u) = q̃i(u)ui.

Setting A(u) = P̃(u)− Q̃(u), the production-destruction form (3.57) is written more shortly
in the standard quasi-linear form u′ = A(u) u.

Generally, numerical methods discretizing (3.57) are supposed to be positivity preserving,
conservative and of sufficiently high order. The Patankar-type approaches discussed in Sec-
tion 3.4.1 might therefore be applicable in this context. However, while positivity preservation
and conservativity directly carry over from ODEs to PDEs, the issue of consistency and con-
vergence is more subtle for PDEs. In the following, we hence take a closer look at the local
discretization error of Patankar-type methods applied to specific systems arising from the clas-
sical linear PDEs of advection and heat conduction. We thus consider autonomous systems
of ordinary differential equations of the form

u′(t) = Au(t) , (3.59)

where A is obtained by spatial discretization of the linear advection or linear diffusion equation
supplemented by periodic boundary conditions on equidistant grid points j∆x in the domain
Ω = [0, 1] and u(t) = (u(x1, t), . . . , u(xI , t))

T is the corresponding vector of nodal values at
time t of a sufficiently smooth function u ∈ Ck(Ω, [0, T ]), where k is sufficiently large. More
precisely, in the following, we will consider the upwind discretization of the linear advection
equation with periodic boundary conditions given by

A =
1

∆x


−1 1
1 −1

. . .
. . .

1 −1

 , (3.60)
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and the central discretization of the linear heat equation with periodic boundary conditions
given by

A =
1

∆x2


−2 1 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 1 −2

 . (3.61)

A first instructive example for the inadequacy of naive Patankar approaches is the inconsis-
tency of the Patankar-Euler method for the semi-discrete linear heat equation.

Inconsistency of the Patankar-Euler method

The forward Euler method applied to (3.57) will obviously be positivity preserving if we have
I−∆t Q̃(un) ≥ 0, but this requires a very severe time step restriction on ∆t for stiff systems.
To avoid time step restrictions due to positivity enforcement, the Patankar-Euler method
already introduced in the previous Section 3.4.1 written for the quasi-linear form (3.57) of the
production-destruction equations is given by

un+1 = un + ∆t P̃(un)un −∆t Q̃(un)un+1 . (3.62)

This method has been proven unconditionally positivity preserving but it is not mass con-
serving. In addition, while (3.62) is of order one in the ODE sense, consistency is lost for stiff
problems such as the discretized heat equation. In fact, the semi-discrete linear heat equation
in one space dimension

u′i(t) =
1

∆x2

(
ui−1(t)− 2ui(t) + ui+1(t)

)
, i = 1, 2, . . . , I, (3.63)

with spatial periodicity, i.e. u0(t) = uI(t) and uI+1(t) = u1(t) fits in the form (3.57) with
diagonal destruction matrix Q̃(u) = 2∆x−2I. The Patankar-Euler scheme (3.62), written out
per component, now reads

un+1
i = uni +

∆t

∆x2

(
uni−1 − 2un+1

i + uni+1

)
. (3.64)

This scheme is unconditionally positivity preserving as shown before. In addition, it is easily
verified that it is also unconditionally contractive in the maximum norm, i.e. ‖un+1‖∞ ≤
‖un‖∞ for arbitrary ∆t. However, consistency and convergence need to be regarded in the
PDE sense. Inserting exact PDE solution values in the scheme, we obtain

u(xi, t
n+1) = u(xi, t

n) +
∆t

∆x2

(
u(xi−1, t

n)− 2u(xi, t
n+1) + u(xi+1, t

n)
)

+ ∆tρni ,

with local truncation errors ρni . Taylor development shows that for small ∆t and ∆x the
leading term in these local truncation errors is given by

ρni =
2

∆x2

(
u(xi, t

n+1)− u(xi, t
n)
)

=
2∆t

∆x2
ut(xi, t

n) +O
(∆t2

∆x2

)
.
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It follows that the scheme will only be convergent in case of a very severe time step restriction
of ∆t

∆x2 → 0. This leads to an even more drastic time step reduction than the undesirable

stability restriction of ∆t
∆x2 ≤ 1

2 for the explicit Euler method applied to the semi-discrete
linear heat equation.

Modifications of the Patankar-Euler scheme

In order to obtain an unconditionally positive and additionally mass conservative scheme for
production-destruction equations, the modified Patankar-Euler method may be used. For
quasi-linear equations in production-destruction form, this method is given by

un+1 = un + ∆t P̃(un)un+1 −∆t Q̃(un)un+1 = un + ∆tA(un)un+1 .

For linear problems (3.59) with constant matrix A, such as semi-discretizations of the linear
advection or the linear heat equation, this modified method now reduces to the implicit Euler
method, so consistency in PDE sense is not a problem there.

Next, we will consider the second-order mPaRK2 method proposed in [29], see also (3.56).
This scheme does not fit directly in the vector production-destruction formulation and thus
has to be written per component, starting with the quasi-linear form u′i =

∑I
j=1 aij(u)uj , i =

1, 2, . . . , I. The mPaRK2 method is then based on the trapezoidal rule with an Euler-type
prediction to provide the internal stage value vn+1

i ≈ ui(tn+1) and reads

vn+1
i = uni + ∆t

∑
j

aij(u
n)vn+1

j

un+1
i = uni +

1

2
∆t
∑
j

(
aij(u

n)
unj

vn+1
j

un+1
j + aij(v

n+1)un+1
j

)
.

(3.65)

As shown in [29], the order of this scheme in the sense of ordinary differential equations is two.
In general, it is unknown whether there will be order reduction for stiff problems, in particular
for semi-discrete problems obtained from PDEs after space discretization. Regarding the
local discretization error, in the following, we will prove consistency of the order O(∆t3) for
sufficiently smooth exact solutions which are strictly positive. However, in the case that the
exact solution vanishes at discrete points, the order of the local discretization error is reduced.

Error recursions for semi-discrete linear advection and linear diffusion

We will study error recursions of the above mPaRK2 scheme (3.65) when applied to linear
problems with constant coefficients. These are naturally non-linear for this method, even for
linear equations. For a linear problem of the form (3.59) we will first write (3.65) in vector
form by introducing the diagonal matrix Wn = diag(uni /v

n+1
i ). Then (3.65) can be written

compactly as

vn+1 = un + ∆tAvn+1

un+1 = un +
1

2
∆tA(Wn + I)un+1 .

(3.66)
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Along with this, we also consider the scheme with the exact solution inserted,

v̄n+1 = u(tn) + ∆tAv̄n+1 ,

u(tn+1) = u(tn) +
1

2
∆tA(W̄n + I)u(tn+1) + ρn ,

(3.67)

where W̄n = diag
(
ui(t

n)/v̄n+1
i

)
and ρn = (ρni ) ∈ RI . Subtraction of (3.66) from (3.67) gives

a recursion for the global discretization errors en = u(tn)− un of the form

en+1 = Rnen + dn ,

with amplification matrix and local errors given by

Rn =
(
I− 1

2
∆tA

(
W̄n + I

))−1(
I +

1

2
∆tAGn

)
, (3.68)

dn =
(
I− 1

2
∆tA

(
W̄n + I

))−1
ρn , (3.69)

where Gn ∈ RI×I has the form

Gn = diag(un+1
i /v̄n+1

i )− diag((uni u
n+1
i )/(v̄n+1

i vn+1
i ))(I−∆tA)−1 .

The difference between ρn and its counterpart resulting from the implicit trapezoidal rule can
now be determined from

ρn = u(tn+1)− u(tn)− 1
2∆tA

(
u(tn) + u(tn+1)

)
+ 1

2∆tA
(
u(tn)− W̄nu(tn+1)

)
.

We may split the above truncation error into ρn = ρ̂n + ρ̃n, where

ρ̂n = u(tn+1)− u(tn)− 1

2
∆tA

(
u(tn) + u(tn+1)

)
is the truncation error of the trapezoidal rule and

ρ̃n =
1

2
∆tA

(
u(tn)− W̄nu(tn+1)

)
=

1

2
∆tA

(
u(tn)− diag

(
ui(t

n)

v̄n+1
i

)
u(tn+1)

)
=

1

2
∆tA diag

(
v̄n+1
i − ui(tn+1)

v̄n+1
i

)
u(tn) (3.70)

represents the difference in truncation errors between the implicit trapezoidal rule and the
mPaRK2 scheme.

Since the considered systems of quasi-linear ODEs stem from spatial discretization of PDEs
on specific grids, the matrix A appearing in (3.70) contains negative powers of the cell size
∆x. In order to obtain consistency for ∆t,∆x → 0 simultaneously, additional smoothness
assumptions of the type Aku(tn) = O(1) are needed for specific values of k depending on the
order of consistency. In the following, we will accordingly assume sufficient smoothness of
u(tn).

Furthermore, if we assume u(tn) > 0 then time stepping by the forward Euler scheme preserves
strict positivity as will be shown in Lemma 3.11, therefore we have v̄n+1 > 0. Unfortunately,
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this is not enough for the diagonal matrix in the formulation (3.70) of ρ̃n to be bounded by
some moderate constant. For this, additional assumptions are needed on the boundedness
of u(tn) away from zero which are included in the following Theorem 3.9 on the truncation
error for specific finite difference discretizations of the linear advection and the linear diffusion
equation.

Theorem 3.9. We consider the application of mPaRK2 to the system (3.59), where A is
obtained by spatial discretization of the linear advection equation (3.60) or the linear diffusion
equation (3.61) and u(t) = (u(x1, t), . . . , u(xI , t))

T is the vector of nodal values of a sufficiently
smooth function. Furthermore, we assume that there exists a constant δ > 0 such that

u(x, tn) > δ , (3.71)

for any x ∈ [0, 1]. Then the truncation error of the mPaRK2 scheme fulfills

ρn ∈ O((∆t)3), (3.72)

if the time step is chosen according to ∆t = O(∆x).

Before proving the assertions of Theorem 3.9, we need the following auxiliary result.

Lemma 3.10. Let A be the upwind discretization (3.60) of the linear advection equation or
the central discretization (3.61) of the linear diffusion equation. Then the matrix I−∆tA is
invertible for any ∆t,∆x > 0.

Furthermore, let v̄n+1 denote the result of one implicit Euler step applied to the vector of
nodal values u(tn) at time tn ∈ [0, T ] of a given function u : Ω× [0, T ]→ R, i.e.

v̄n+1 = (I−∆tA)−1u(tn) . (3.73)

Then v̄n+1 fulfills the estimate Alv̄n+1 = O(1) for l = 0, 1, . . . , k, and we have the expansion

v̄n+1 = u(tn) + ∆tAu(tn) + ∆t2A2u(tn) + · · ·+ ∆tk−1Ak−1u(tn) +O(∆tk) , (3.74)

if u(·, tn) is sufficiently smooth as a function defined on Ω, i.e. u(·, tn) = Ck+1(Ω) in the case
that A is given by (3.60) and u(·, tn) = C2k+1(Ω) in the case (3.61).

Proof. First, we note that due to the finite difference discretization on equidistant grids and
periodic boundary conditions, the matrix A is circulant and obviously, the same holds for
the matrix I−∆tA. Furthermore, applying the Gerschgorin theorem to the matrix I−∆tA
with A given either by (3.60) or by (3.61) shows that the eigenvalues λi, i = 1, . . . , I, of
I−∆tA fulfill |λi| ≥ 1. Thus I−∆tA is invertible for any choice of discretization parameters
∆t,∆x > 0.

Furthermore, the spectral radius of the inverse fulfills ρ((I − ∆tA)−1) ≤ 1. Since circulant
matrices are normal, we have ‖(I−∆tA)−1‖2 = max{|λ−1

i |} ≤ 1 and thus (I−∆tA)−1 = O(1)
and v̄n+1 = O(1) for ∆t,∆x→ 0.

Left multiplying (3.73) by Al now yields

Alv̄n+1 = Al(I−∆tA)−1u(tn) = (I−∆tA)−1Alu(tn) = O(1) (3.75)
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for l = 1, . . . , k, since the preassigned smoothness assumptions enforce Alu(tn) = O(1) for
l ≤ k.

Inserting the definition

v̄n+1 = u(tn) + ∆tAv̄n+1 (3.76)

recursively into the right-hand side of (3.76) we obtain

v̄n+1 = u(tn) + ∆tA
(
u(tn) + ∆tAv̄n+1

)
= u(tn) + ∆tAu(tn) + ∆t2A2

(
u(tn) + ∆tAv̄n+1

)
= u(tn) + ∆tAu(tn) + ∆t2A2u(tn) + · · ·+ ∆tk−1Ak−1u(tn) + ∆tkAkv̄n+1

and bounding Akv̄n+1 by (3.75) yields the assertion (3.74).

We are now ready to prove the main assertion on the truncation error of mPaRK2 applied to
the semi-discretizations specified by (3.60) and (3.61).

Proof of Theorem 3.9. By the smoothness assumptions of Theorem 3.9, Taylor expansion of
the exact solution u(tn+1) yields

u(tn+1) = u(tn) + ∆tu′(tn) +
∆t2

2
u′′(tn) +

∆t3

6
u′′′(tn) +O(∆t4)

= u(tn) + ∆tAu(tn) +
∆t2

2
A2u(tn) +

∆t3

6
A3u(tn) +O(∆t4) ,

where (3.59) was used to replace the derivatives of u(t) by the application of A.

From Lemma 3.10, it now follows that

v̄n+1 − u(tn+1) =
∆t2

2
A2u(tn) +

5∆t3

6
A3u(tn) +O(∆t4) . (3.77)

Inserting this expansion into the vector

w = diag

(
v̄n+1
i − ui(tn+1)

v̄n+1
i

)
u(tn) = diag

(
ui(t

n)

v̄n+1
i

)(
v̄n+1 − u(tn+1)

)
occurring in the formulation (3.70) of ρ̃n, we hence obtain

Aw =
∆t2

2
A diag

(
ui(t

n)

v̄n+1
i

)(
A2u(tn) +

5∆t

3
A3u(tn) +O(∆t2)

)
. (3.78)

We will first consider the case of upwind discretization of the linear advection equation where
A is given by (3.60). As common in the analysis of finite difference schemes, by Taylor
expansion in space of the function u(·, tn) we have

A2u(tn) = uxx(tn) +O(∆x) ,
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where the vector of second spatial derivatives uxx(tn) = (uxx(x1, t
n), . . . , uxx(xI , t

n))T . In
addition, the smoothness assumptions yield A3u(tn) = O(1). For the components of the
vector Aw given in (3.78), we thus have

(Aw)i =
wi−1 − wi

∆x
=

1

∆x

(
v̄n+1
i−1 − ui−1(tn+1)

)
ui−1(tn)v̄n+1

i −
(
v̄n+1
i − ui(tn+1)

)
ui(t

n)v̄n+1
i−1

v̄n+1
i−1 v̄

n+1
i

=
∆t2

2∆x

uxx(xi−1, t
n)ui−1(tn)v̄n+1

i − uxx(xi, t
n)ui(t

n)v̄n+1
i−1 +O(∆x) +O(∆t)

v̄n+1
i−1 v̄

n+1
i

=
∆t2

2

(
−uxxx(xi, t

n)ui−1(tn)ui(t
n)

v̄n+1
i−1 v̄

n+1
i

+O(1)

)
,

where we used that the time step is chosen as ∆t = O(∆x).

Furthermore, since v̄n+1 = u(tn)+O(∆t) and u(tn) > δ1 by assumption, we have the estimate
(v̄n+1
i v̄n+1

i−1 )−1 = O(1) and hence it holds that Aw = O(∆t2).

Finally, consistency of the classical trapezoidal rule for sufficiently smooth problems yields

ρ̂n = O(∆t3)

for its truncation error. Consequently, the assertion (3.72) of Theorem 3.9 in case of the
upwind finite difference discretization of the linear advection equation now follows directly
from (3.70), i.e.

ρn = ρ̂n + ρ̃n = O(∆t3) +
1

2
∆tAw = O(∆t3) .

Next, the case of linear diffusion discretized by the classical central finite difference scheme
will be studied. For this case, we have

A2u(tn) = uxxxx(tn) +O(∆x2), A3u(tn) =
∂6u(tn)

∂x6
+O(∆x2) . (3.79)

Therefore, the components of Aw are given by

(Aw)i =
wi−1 − 2wi + wi+1

∆x2

=
v̄n+1
i−1 − ui−1(tn+1)

∆x2

ui−1(tn)

v̄n+1
i−1

− 2
v̄n+1
i − ui(tn+1)

∆x2

ui(t
n)

v̄n+1
i

+
v̄n+1
i+1 − ui+1(tn+1)

∆x2

ui+1(tn)

v̄n+1
i+1

= τ1 + τ2 + τ3 ,

where the terms τ1, τ2, τ3 are obtained using the expansion of v̄n+1−u(tn+1) in (3.77) as well
as the estimates (3.79) for A2u(tn) and A3u(tn), i.e.

τ1 =
∆t2

2∆x2

(
uxxxx(xi−1, t

n)
ui−1(tn)

v̄n+1
i−1

− 2uxxxx(xi, t
n)
ui(t

n)

v̄n+1
i

+ uxxxx(xi+1, t
n)
ui+1(tn)

v̄n+1
i+1

+O(∆x2)

)
,

τ2 =
5∆t3

6∆x2

(
∂6u(xi−1, t

n)

∂x6

ui−1(tn)

v̄n+1
i−1

− 2
∂6u(xi, t

n)

∂x6

ui(t
n)

v̄n+1
i

+
∂6u(xi+1, t

n)

∂x6

ui+1(tn)

v̄n+1
i+1

+O(∆x2)

)
,

τ3 = O
(

∆t4

∆x2

)
= O(∆t2) .
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Hereby, we again used that the time step is chosen as ∆t = O(∆x) and that (v̄n+1)−1 = O(1).

In order to bound the terms τ1 and τ2, we now reformulate the expressions

y = A diag(v̄−1
i )s , (3.80)

contained therein, where s = (s1, . . . , sI)
T with si = ∂ku(xi,t

n)
∂xk

ui(t
n) for k = 4, 6 and we use

the short notation v̄ = v̄n+1.

For the i-th component of the vector y defined in (3.80), we have

yi =
1

∆x2

(
si−1

v̄i−1
− 2

si
v̄i

+
si+1

v̄i+1

)
=

1

∆x2

(
si−1 − si
v̄i−1

+
(v̄i − v̄i−1)si

v̄i−1v̄i
+
si+1 − si
v̄i+1

+
(v̄i − v̄i+1)si

v̄iv̄i+1

)
=
sx,i(v̄i−1 − v̄i) + ∆x

2 sxx,i(v̄i+1 − v̄i−1) +O(∆x2)

∆x v̄i−1v̄i+1
+ si

(v̄i − v̄i−1)v̄i+1 + (v̄i − v̄i+1)v̄i−1

∆x2 v̄i−1v̄iv̄i+1

=
sx,i

v̄i−1v̄i+1

(v̄i−1 − v̄i)
∆x

+O(1) +
si

v̄i−1v̄iv̄i+1

(
(v̄i − v̄i−1)

∆x

(v̄i+1 − v̄i−1)

∆x
− v̄i−1

v̄i−1 − 2v̄i + v̄i+1

∆x2

)
,

using smoothness assumptions on the function s : Ω→ R, s(x) = ∂ku(x,tn)
∂xk

u(x, tn) for k = 4, 6
and the designations sx and sxx for the first and second derivative, respectively.

Using v̄n+1 = u(tn) + ∆tAu(tn) + O(∆t2), choosing the time step as ∆t = O(∆x) and
employing the short notation u = u(tn), ux = (ux(x1, t

n), . . . , ux(xI , t
n))T , we may then

bound y by

yi =
sx,iux,i
v̄i−1v̄i+1

+O(1)

+
si

v̄i−1v̄iv̄i+1

(
2(ux,i)

2 − v̄i−1
ui−1 − 2ui + ui+1

∆x2
+

∆t(ux,i−1 − 2ux,i + ux,i+1)

∆x2
+O(1)

)
,

which results in y = O(1) since by assumption, we have v̄−1
i = O(1) for i = 1, . . . , I.

Substituting si = uxxxx(xi, t
n)ui(t

n), i = 1, . . . , I, into the definition of y in (3.80), we

therefore obtain τ1 = O(∆t2) whereas si = ∂6(xi,t
n)

∂x6 ui(t
n) yields τ2 = O(∆t3).

Therefore, we have Aw = O(∆t2) and ρn = O(∆t3) proving the assertion of Theorem 3.9
also in the case of the central finite difference discretization of the linear heat equation.

Numerical results

In the following, the assertions of Theorem 3.9 will be numerically demonstrated by applying
the mPaRK2 scheme to the upwind finite difference semi-discretization of the linear advec-
tion equation specified by the matrix A in (3.60) and the central semi-discretization of the
linear diffusion equation with A in (3.61). Both test cases are supplemented by smooth ini-
tial conditions. The purpose of these experiments is to highlight the effect of the positivity
condition (3.71) on the consistency of the mPaRK2 scheme.

We compute the respective local discretization errors for the first time step of the mPaRK2
scheme with time step size ∆t = 0.1∆x applied to the finite difference semi-discretizations
on successively refined grids having I = 20 · 2m grid points, where m = 1, . . . , 7. Hereby, the
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I
u0 = 0.1 + sin2(2πx) u0 = sin2(2πx)

err2(∆t) EOc err2(∆t) EOc

40 1.78e-06 3.48e-06
80 2.27e-07 2.97 6.17e-07 2.49
160 2.85e-08 2.99 1.07e-07 2.52
320 3.57e-09 2.99 1.87e-08 2.52
640 4.46e-10 3.00 3.29e-09 2.52
1280 5.58e-11 3.00 5.79e-10 2.51
2560 6.97e-12 3.00 1.02e-10 2.50

Table 3.13: Local error err2(∆t) after the first time step and corresponding experimental
order of consistency for mPaRK2 applied to semi-discrete linear advection for two different
initial conditions.

local discretization errors are measured using a reference solution uref (t) obtained by applying
the fourth order Gauss-Runge-Kutta method to the semi-discrete system. Thus, the spatial
discretization error is completely neglected. More precisely, the local discretization error at
the end of the first time step, i.e. for t = ∆t, is computed as

err2(∆t) =
√

∆x‖uref (∆t)− u(∆t)‖2.

Furthermore, from the errors on two consecutive grids, the experimental order of consistency
(EOc) is determined.

Table 3.13 lists the local discretization errors after one time step of the mPaRK2 scheme for
the semi-discrete linear advection equation as well as the experimental order of consistency
while Table 3.14 shows the corresponding results for the semi-discrete linear diffusion equation.
In accordance with the designed order of convergence, this local error behaves as O(∆x3) =
O(∆t3) for an initial solution u0 = 0.1 + sin2(2πx) satisfying the stricter positivity condition
with δ = 0.1 in (3.71). On the other hand, for an initial solution of u0 = sin2(2πx), Table 3.14
shows an order reduction to about O(∆t2.5) for the semi-discrete linear advection equation
and to about O(∆t2.3) for the semi-discrete linear diffusion equation. These numerical results
hence agree with the assertions of Theorem 3.9.

So far, these investigations show a local discretization error of order O(∆t3) for sufficiently
smooth and positive solutions. However, we should remark that for a full convergence anal-
ysis, stability has to be proven as well. This necessitates boundedness of products of the
amplification matrices Rn defined in (3.68) which seems to be quite difficult to prove due to
the non-linearity of the method.

Connections to thin-layer approaches for shallow water flow

In coastal engineering and marine ecosystems, an important feature of shallow water flows
is the alternating exposure and submerging of the seabed which is referred to as wetting
and drying. One of the computational approaches dealing with common stability issues due
to the moving shoreline and vanishing water depth are thin layer techniques enforcing a
minimum water depth such that a thin layer of water is present throughout the computational
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I
u0 = 0.1 + sin2(2πx) u0 = sin2(2πx)

err2(∆t) EOc err2(∆t) EOc

40 1.77e-03 2.18e-03
80 3.57e-04 2.31 5.37e-04 2.02
160 5.74e-05 2.64 1.17e-04 2.20
320 8.13e-06 2.82 2.45e-05 2.25
640 1.08e-06 2.91 5.12e-06 2.26
1280 1.40e-07 2.95 1.07e-06 2.26
2560 1.78e-08 2.97 2.24e-07 2.25

Table 3.14: Local error err2(∆t) after the first time step and corresponding experimental
order of consistency for mPaRK2 applied to semi-discrete linear diffusion for two different
initial conditions.

domain. In this context, Section 4.4 discusses a DG scheme constructed by Meister and
Ortleb in [132], simulating two-dimensional shallow water flow subject to wetting and drying
applying the Patankar approach to an implicit time integration scheme. In fact, the positivity
requirement in Theorem 3.9 perfectly agrees with thin-layer approaches, where the thin film of
water retained also in regions marked as dry corresponds to the positivity requirement given
in (3.71).

In order to illustrate a possible improvement of the presently considered mPaRK2 scheme, in
this paragraph, we compare it to a slight modification which follows more closely the approach
in [132]. This adapted method is based on a direct correction of the explicit part of the implicit
trapezoidal rule and reads as

vn+1/2 = un +
∆t

2
Aun , (3.81)

un+1/2 = un +
1

2
∆tAW̃ un+1/2 , (3.82)

un+1 = un+1/2 +
1

2
∆tAun+1 , (3.83)

with W̃ = diag
(
uni /ṽ

n+1/2
i

)
determined by the correction ṽn+1/2 to the quantity vn+1/2

which may have negative components. More precisely, ṽn+1/2 is given by ṽ
n+1/2
i = v

n+1/2
i

if v
n+1/2
i > 0 and ṽ

n+1/2
i = uni otherwise. We will denote this scheme by mPaRK2ex. Due

to this switch in case of vanishing components, we cannot expect an overall second order of
convergence as the update reduces to two steps of the implicit Euler scheme if vn+1/2 = 0.
However, for a test case of an advected wave mimicking wetting and drying, i.e. advection of
the initial condition u0 = 0.01 + sin4(πx), this method behaves much better than mPaRK2
as shown in Fig. 3.10.

A comparison of the Patankar-type schemes is carried out for the upwind-discretized linear
advection on 160 grid points using spatial periodicity up to a final time of T = 2. As shown
on the left of Fig. 3.10, using a time step of ∆t = 0.025 corresponding to a Courant number
of 4 does not exhibit significant differences of the schemes mPaRK2 and mPaRK2ex, also
in comparison to the implicit trapezoidal rule. However, a larger time step of ∆t = 0.0625
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corresponding to a Courant number of 10 shows the drawback of mPaRK2 on the right part
of Fig. 3.10. While mPaRK2 does not account for the vanishing solution in the interval
[0, 0.15] and the implicit trapezoidal rule clearly yields negative values, the modified scheme
mPaRK2ex seems to combine the best features of both methods. The solution is non-negative
in the whole computational domain and very accurate in the almost dry regions. Hence, this
method seems quite promising and should be further investigated, in particular with respect
to its stability.

Figure 3.10: Linear transport of a wave using a Courant number of 4 (left) and 10 (right).
Comparison of mPaRK2 to mPaRK2ex.

3.4.3 Applying the Patankar trick to an implicit RK scheme

Requiring non-negativity does not only restrict the time step sizes of classical explicit schemes
but also of most implicit methods. In fact, even if the implicit scheme has a large stability
region, unconditional positivity preservation is restricted to the implicit Euler method due to
the order barrier by Bolley and Crouzeix [24].

A proof of unconditional positivity of the implicit Euler scheme can be found either in [84] or
in [78], here we review the assertion of [84].

Lemma 3.11. For a general nonlinear system of equations

u′(t) = g(t,u)

let the following conditions be fulfilled.

1. There exists α = α(u) > 0 such that

u + ∆tg(t,u) ≥ 0 for all t ≥ 0,u ≥ 0 and α∆t ≤ 1 .

2. For any u ≥ 0, t ≥ 0 and ∆t > 0 the equation

v = u + ∆tg(t,v)

has a unique solution that depends continuously on ∆t and v.
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Then, the implicit Euler scheme un+1 = un + ∆tg(t,un+1) is unconditionally positive, i.e. if
un ≥ 0, it yields un+1 ≥ 0 for any ∆t > 0. In addition, we also have strict unconditional
positivity preservation, i.e. if un > 0 then un+1 > 0 for any ∆t > 0.

Proof. Given t and u, we denote the solution of the equation v = u + τg(t,v) for a variable
τ by v(τ). Since v(τ) is continuous with respect to u, showing v(τ) > 0 if u > 0 is sufficient.
On the contrary, if we assume that vi(τ0) = 0 and vj(τ) > 0 for all τ ≤ τ0 for the other
components with j 6= i, then

0 = vi(τ0) = ui + τ0 gi(t,v(τ0)) .

However, since ui > 0, this means gi(t,v(τ0)) < 0. Considering that we assumed vi(τ0) = 0,
we therefore have vi(τ0) + τgi(t,v(τ0)) < 0 for any τ > 0 which contradicts assumption 1.

Naturally, the implicit Euler scheme is only first order accurate in terms of the local dis-
cretization error. Therefore, in order to enhance time accuracy of unconditionally positive
implicit schemes, the Patankar approach has been applied to a higher order SDIRK scheme
in [132]. In that work, the unconditionally positive modified Patankar SDIRK3 (MPSDIRK3)
scheme has been constructed, where the underlying SDIRK scheme is the third order method
of Cash [34], given by the Butcher array 3.15.

γ γ
γ + δ δ γ

1 α β γ

α β γ

with

α = 1.2084966491760101,

β = −0.6443631706844691,

γ = 0.4358665215084580,

δ = 0.2820667392457705.

Table 3.15: SDIRK3 scheme by Cash.

The construction of this method is carried out as follows. As the implicit Euler scheme is
unconditionally positive, we can safely apply the first stage of this SDIRK3 scheme, i.e.

u
(1)
i = uni + γ∆t

(
Pi

(
u(1)

)
−Di

(
u(1)

))
. (3.84)

To obtain non-negativity for u(1) in (3.84) we only need un ≥ 0. In fact, as δ < γ, we also
have

uni + δ∆t
(
Pi

(
u(1)

)
−Di

(
u(1)

))
≥ 0, ∀i ∈ I,

due to the non-negativity of u(1). Therefore, unconditional positivity of the implicit Euler
step leads to the fact that also the second stage,

u
(2)
i = uni + δ∆t

(
Pi

(
u(1)

)
−Di

(
u(1)

))
+ γ∆t

(
Pi

(
u(2)

)
−Di

(
u(2)

))
,

yields non-negative components u(2). Hence, only the last stage needs to be modified. We set

u
(3)
i = zni + γ∆t

(
Pi

(
u(3)

)
−Di

(
u(3)

))
,

un+1
i = u

(3)
i ,



3.4. POSITIVITY PRESERVATION 193

where zni is a modification of the possibly negative state

z̃ni = uni + α∆t
(
Pi

(
u(1)

)
−Di

(
u(1)

))
+ β∆t

(
Pi

(
u(2)

)
−Di

(
u(2)

))
. (3.85)

More precisely, we set

zni = uni + α∆t

 I∑
j=1

pij

(
u(1)

) znj

c̃
(1)
j

−
I∑
j=1

dij

(
u(1)

) zni

c̃
(1)
i


+ β∆t

 I∑
j=1

pij

(
u(2)

) zni

c̃
(2)
i

−
I∑
j=1

dij

(
u(2)

) znj

c̃
(2)
j

 ,

(3.86)

where for k = 1, 2 we choose

c̃
(k)
j =

{
z̃nj , if z̃nj > ε,

u
(k)
j , otherwise.

Note that in (3.86), since we have β < 0, the term dij
(
u(2)

)
now acts as a production term

and pij
(
u(2)

)
as a destruction term. Therefore, also the corresponding weights have to be

interchanged. In addition to well-defined quantities
pij(u(1))
u

(1)
j

=
dji(u(1))
u

(1)
j

we now also need

the quantities
pij(u(2))
u

(2)
i

=
dji(u(2))
u

(2)
i

to be well-defined. This latter requirement is the fulfilled if

either ui > 0 throughout the computation or if all sequences
pij(u)
ui

with ui → 0 are convergent.

The corrected vector zn is hence obtained as the solution of a linear system Azn = un, where
the matrix A has entries

aii = 1 + α∆t

I∑
j=1

dij
(
u(1)

)
c̃

(1)
i

− β∆t

I∑
j=1

pij
(
u(2)

)
c̃

(2)
i

≥ 1,

aij = −α∆t
I∑
j=1

pij
(
u(1)

)
c̃

(1)
j

+ β∆t
I∑
j=1

dij
(
u(2)

)
c̃

(2)
j

≤ 0, for i 6= j.

Under the assumption that Pi, Di are sufficiently smooth functions for i = 1, . . . , I, we now
have the following theorem concerning positivity, conservativity and consistency of the MPS-
DIRK3 method.

Theorem 3.12. The MPSDIRK3 scheme is conservative, unconditionally positive and first
order accurate in terms of the local truncation error.

Proof: In order to prove the conservativity of the MPSDIRK3 scheme, it is sufficient to show
that the construction of zn is conservative, i.e.

∑I
i=1 z

n
i =

∑I
i=1 c

n
i . However, this is easily
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seen from the implicit definition given in (3.86), as it yields

I∑
i=1

(zni − uni ) = α∆t
I∑
i=1

 I∑
j=1

pij

(
u(1)

) znj

c̃
(1)
j

−
I∑
j=1

dij

(
u(1)

) zni

c̃
(1)
i


+ β∆t

I∑
i=1

 I∑
j=1

pij

(
u(2)

) zni

c̃
(2)
i

−
I∑
j=1

dij

(
u(2)

) znj

c̃
(2)
j


= α∆t

 I∑
i,j=1

pij

(
u(1)

) znj

c̃
(1)
j

−
I∑

i,j=1

pji

(
u(1)

) zni

c̃
(1)
i


+ β∆t

 I∑
i,j=1

pij

(
u(2)

) zni

c̃
(2)
i

−
I∑

i,j=1

pji

(
u(2)

) znj

c̃
(2)
j

 = 0.

Regarding positivity, by using the same arguments as in the proof of [29, Theorem 3.5], we
obtain that A is an M-Matrix. This yields unconditional positivity as for any time step size
∆t > 0, we have zn ≥ 0 if un ≥ 0.
Furthermore, by using the same arguments as in [29, Lemma 3.10], we can show that the entries
of the matrix A−1 = (ãij) satisfy 0 ≤ ãij ≤ 1 independent of the time step size. Therefore,

we have zni =
∑I

j=1 ãiju
n
j = O(1) for ∆t → 0. Due to the boundedness of the quantities

pij(u(1))
c̃
(1)
j

=
dji(u(1))
c̃
(1)
j

,
pij(u(2))
c̃
(2)
i

=
dji(u(2))
c̃
(2)
i

and zni , equation (3.86) then yields zni − uni = O(∆t)

for i = 1, . . . , I. As u
(k)
i = uni + O(∆t), for k = 1, 2, and z̃ni = uni + O(∆t), we immediately

obtain

zni − c̃
(k)
i = O(∆t). (3.87)

For the difference z− z̃ we now have

zni − z̃ni = α∆t

 I∑
j=1

pij
(
u(1)

)
c̃

(1)
j

(
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−
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(
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)
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(1)
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(
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i

(
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(2)
i

)
−

I∑
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dij
(
u(2)

)
c̃

(2)
j

(
znj − c̃

(2)
j

) = O(∆t2).

(3.88)

Since the MPSDIRK3 scheme is a perturbation of the third order SDIRK3 scheme

c̃
(3)
i = z̃ni + γ∆t

(
Pi

(
ũ(3)

)
−Di

(
ũ(3)

))
,

c̃n+1
i = c̃

(3)
i ,

with unperturbed state z̃n defined in (3.85), we have

un+1
i − ui(tn+1) = un+1

i − c̃n+1
i + c̃n+1

i − ui(tn+1) = un+1
i − c̃n+1

i +O(∆t4) .
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Thus the MPSDIRK3 scheme can be at most of third order. Now, due to Lipschitz continuity,
we directly see

un+1
i − c̃n+1

i = u
(3)
i − c̃

(3)
i = zni − z̃ni︸ ︷︷ ︸

=O(∆t2)

+γ∆t
(
Pi

(
u(3)

)
− Pi

(
ũ(3)

)
−Di

(
u(3)

)
+Di

(
ũ(3)

))
= O(∆t).

For smooth Pi, Di we furthermore have

un+1
i − c̃n+1

i = u
(3)
i − c̃

(3)
i

= zni − z̃ni + γ∆t

 I∑
j=1

∂(Pi −Di)

∂uj
(u(3))

(
u

(3)
j − c̃

(3)
j

)
︸ ︷︷ ︸

=O(∆t)

+O
((

u
(3)
j − c̃

(3)
j

)2
)

= O(∆t2).

(3.89)

Hence, for the complete MPSDIRK3 scheme we obtain un+1 = u(tn+1) +O(∆t2). �

Though the global accuracy of the scheme, considering all components of u, is restricted to
at most first order, components that have moderate values not to close to zero may still be
approximated with higher order accuracy, as we will see next. We consider a given component
ui and assume that the two following conditions hold:

(C1) ∀j ∈ {1, . . . , I}:

1. either pij(u
(1)) = 0 or c̃

(1)
j = z̃nj and

2. either dij(u
(2)) = 0 or c̃

(2)
j = z̃nj ,

(C2) 1. either dij(u
(1)) = 0 ∀j ∈ {1, . . . , I} or c̃

(1)
i = z̃ni and

2. either pij(u
(2)) = 0 ∀j ∈ {1, . . . , I} or c̃

(2)
i = z̃ni .

Then we obtain zni − z̃ni = O(∆t3) using equation (3.88) in the proof of Theorem 3.12. For the
given component ui we then have un+1

i −ui(tn+1) = O(∆t3) due to the first equality in (3.89).

If for a given component ui, in addition to the conditions (C1) and (C2), we have

(C3) ∀j ∈ {1, . . . , I} :

{
either (C1) and (C2) also hold for uj ,

or pij(u
(1)) = dij(u

(2)) = 0 and ∂(Pi−Di)
∂uj

(u) ≡ 0,

iterating the previous argument yields zni − z̃ni = O(∆t4) as well as un+1
i −ui(tn+1) = O(∆t4).
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Figure 3.11: High-resolution approximation to production-destruction equation (3.90).

Convergence study for a nonlinear ODE of production-destruction type

In order to study the MPSDIRK3 scheme in the context of ordinary differential equations
in production-destruction form (3.52), we carry out a numerical convergence study for a
nonlinear geobiochemical model also considered in [29]. This system of equations for positive
constituents c(t) is given by

c′1 = − c2c1

c1 + 1
,

c′2 =
c2c1

c1 + 1
− ac2,

c′3 = ac2,

(3.90)

with a = 0.3. For this system, we have d12 = p21 = − c2c1
c1+1 and d23 = p32 = ac2. Given

initial data c(0) = (9.98, 0.01, 0.01)T , a reference solution for the time t = 30 is depicted in
Figure 3.11. This reference solution was obtained using the underlying SDIRK3 scheme by
Cash with a very small time step of ∆t = 0.001.

As in [29], given the reference solution c(t) and numerical approximations cn for n = 1, . . . , N∆t,
we measure the truncation errors E(∆t) by

E(∆t) =

√√√√ 1

N∆t

N∆t∑
n=1

(c1(n∆t)− cn1 )2

/(
1

N∆t

N∆t∑
n=1

c1(n∆t)

)
.

For the MPSDIRK3 scheme as well as the usual SDIRK3 method the truncation errors are
given in Table 3.16. While the error histories of both schemes coincide for time steps ∆t ≤
0.3, we observe an extremely large error for SDIRK3 with time step ∆t = 1.2 whereas the
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corresponding error for MPSDIRK3 is moderate. The SDIRK3 solution actually blows up in
this case due to the appearance of negative concentrations. For both schemes, Table 3.16 also
lists the conservation errors at time t = 30 given by

econs(∆t) = 10−
3∑
i=1

cN∆t
i .

These errors are due to the fact that we approximately solve the nonlinear systems occurring
for each RK stage by Newton iteration. Obviously, for both schemes the conservation errors
are negligible. Figure 3.12 again depicts the truncation errors versus time step size in double
logarithmic scale. Here we clearly see the higher order of the SDIRK3 and the MPSDIRK3
scheme compared to the first-order implicit Euler method and the modified Patankar-Euler
scheme as well as to the second-order mPaRK2 scheme.

For small time steps we may as well use the SDIRK3 scheme instead of MPSDIRK3. The
improvement caused by the MPSDIRK3 scheme shows in the range of moderate to large
time steps. This fact is depicted in Figures 3.13 and 3.14. Figure 3.13 shows the blow-up
of the SDIRK3 solution to equation (3.90) for a time step of ∆t = 0.75 which is due to a
negative concentration of c1. This is in contrast to the corresponding MPSDIRK3 solution for
∆t = 0.75 which is shown in Figure 3.14. Here the solution stays positive throughout the time
interval. Although in the numerical solution shows an increase of c1 with an unphysical peak
near t = 13 as well as a corresponding decrease of c2, the main features are well-represented
on this coarse time-grid.

Although there may be examples where the numerical simulation can still be continued de-
spite the computation of unphysical negative quantities, this is in general not the case in the
context of shallow water flows which are considered in more detail in Chapter 4. In particular,
the numerical fluxes employed within the spatial discretization of the shallow water equations
needs to compute the square root of the water depth to approximately compute the charac-
teristic speeds. The unconditional positivity of the MPSDIRK3 scheme thus poses a clear
advantage since larger time steps of the implicit scheme may actually employed in order to
beat explicit time-stepping in terms of CPU time.

In the context of shallow water flows discretized by the discontinuous Galerkin method, a suit-
able production-destruction equation is specifically formulated by Meister and Ortleb in [132],
in order to account for ingoing and outgoing water flows which influence the cell-wise water vol-
ume. Applying the MPSDIRK3 scheme in this framework thereby guarantees non-negativity
of the water height for any time step size while still preserving conservativity, as discussed in
Section 4.4.
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∆t
MPSDIRK3 SDIRK3
E(∆t) econs(∆t) E(∆t) econs(∆t)

1.2 7.8093e-01 1.243e-14 1.3006e+03 1.091e-11
0.6 8.0174e-03 3.553e-15 2.0372e-02 -5.329e-15
0.3 4.9465e-04 3.553e-15 4.9465e-04 -7.105e-15
0.15 6.1675e-05 -1.066e-14 6.1675e-05 1.776e-14
8.0e-02 9.4199e-06 -7.105e-15 9.4199e-06 4.086e-14
4.0e-02 1.1856e-06 -1.066e-14 1.1856e-06 -3.908e-14
2.0e-02 1.4893e-07 1.865e-13 1.4893e-07 1.350e-13
1.0e-02 1.8759e-08 1.563e-13 1.8759e-08 1.599e-13
3.0e-03 6.2983e-10 7.105e-14 6.2983e-10 -3.908e-14

Table 3.16: Truncation and conservation errors for MPSDIRK3 and SDIRK3 scheme.

Figure 3.12: Truncation errors vs. ∆t in double logarithmic scale.
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Figure 3.13: Blow-up of SDIRK3 solution to (3.90) for ∆t = 0.75.

Figure 3.14: MPSDIRK3 solution to (3.90) for ∆t = 0.75.
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Chapter 4

Wetting and Drying Shallow Water
Flows

Designing Positivity Preserving, Conservative and
Well-balanced Schemes

The study of ocean dynamics as well as the simulation of flows in rivers or lakes requires
the simulation of water flow in diverse regions of varying fluid depth. Part of the considered
regions may therefore be subject to alternating wetting and drying processes where the water
depth may drastically change. In particular, the alternating exposure and submerging of the
seabed is an important feature in coastal engineering and marine ecosystems.

Wetting and drying occurs on different time scales such as hours in the case of the tides
or days in the case of storm surges. The situations relevant to wetting and drying include
coastal regions of different characteristics, such as shores, embayments, tidal flats or estuaries.
Capturing the fluid dynamics in these areas is significant in order to study and possibly
predict singular phenomena such as storm surges or inundations. In addition, repetitive
flooding and ebbing is vital to the local ecosystem. Hence, in modeling the occurring biological
processes, the time evolution of the flooding and receding water front plays an important role.
Furthermore, the periodic occurrence of wetting and drying due to the tides affects sediment
transport. Consequently, the alternating run-up on beaches and dunes and the subsequent
receding of the water front may cause coastal erosion.

The importance of capturing wetting and drying shallow water flows in coastal engineering
and marine ecosystems is accompanied by challenges with respect to both the development
of suitable mathematical models of the occurring processes and the construction of accurate
and robust numerical methods. Wetting and drying in shallow regions of the flow challenges
the numerical simulation in terms of robustness, efficiency, and the preservation of physical
properties. More precisely, for a physically sound representation, desired numerical properties
include positivity preservation with respect to the water depth, local and global mass conser-
vation, well-balancedness with respect to lake at rest steady states, and avoidance of artificial
pressure gradients.

201
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Organization of this chapter

Considering mathematical models, this chapter focuses on the depth-averaged shallow water
(SW) equations which are commonly used in coastal areas. These equations are a valid model
of water flow in the case that the horizontal length scale is significantly greater than the vertical
one and the vertical velocity is comparatively small with respect to the horizontal velocity.
Therefore, in Section 4.1, the most popular variants of the 2D shallow water equations are
described. In particular, we discuss the different formulations with respect to their impact on
well-balancedness of the numerical schemes for still water steady states.

Subsequently, the first part of this chapter presents a review on numerical methods for wet-
ting and drying shallow water flows on fixed grids in two space dimensions based on finite
volume and discontinuous Galerkin space discretization. Hereby, Section 4.2 discusses the
general challenges faced by numerical methods for this application and Section 4.3 reviews
the wetting and drying treatment of finite volume methods in Section 4.3.1 and discontinuous
Galerkin schemes in Section 4.3.2. Section 4.4 deals with a Patankar approach developed
for a production-destruction formulation describing the time evolution of the water height
averages within a DG scheme on triangular grids. Thereby, a positivity preserving and well-
balanced DG scheme is combined with implicit time integration. Due to the incorporation of
the MPSDIRK3 scheme constructed in Section 3.4.3, for stiff problems, this implicit scheme
can take full advantage of larger time steps and is therefore able to beat explicit time stepping
in terms of CPU time.

4.1 The governing equations of shallow water flow

The SW equations are based on the assumption of a small vertical length scale compared to
large horizontal ones and a hydrostatic pressure distribution. The derivation of these governing
equations is based on depth-integration of the Navier-Stokes equations which removes the
vertical velocity from the set of variables. As such, the SW equations simplify the reality but
represent an important model in many scientific and engineering applications.

Near the wet/dry front, however, these assumptions are not fully valid. First, when the fluid
depth vanishes, these equations become ill-posed. In addition, if the model includes bottom
friction, e.g. in form of a Manning friction term with experimentally determined roughness
coefficient, this again involves division by the fluid depth. Second, near the front the horizontal
and vertical length scales become comparable. Indeed, the hydrostatic assumption may be
violated in certain cases, such as Tsunami modeling which may require the inclusion of non-
hydrostatic effects, as discussed in [31].

Nevertheless, on moderate scales as in estuaries or mud flats, the SW equations may capture
the relevant dynamics quite efficiently and to a sufficient degree of accuracy. They can be
used to provide realistic simulations of flows in rivers, lakes or coastal areas. If the bottom
topography is assumed to be constant with respect to time but non-flat in space, the SW
equations in conservative form in two space dimensions, are given by
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∂H
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+
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∂y
= 0 ,

∂Hv1
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+ fHv1 = −gH ∂b

∂y
+
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ρ

,

(4.1)

where H is the water column height, v = (v1, v2)T is the fluid velocity vector, b is the
bottom topography and g denotes the gravitational constant. Furthermore, Coriolis forces
are included in this formulation, where f denotes the Coriolis parameter depending on the
geographic latitude. Forces due to wind stress and bottom friction are contained, denoting
the surface stresses by τ sx, τ

s
y and bottom stresses by τ bx, τ

b
y , while ρ is the density of water.

Further influences, such as eddy viscosity, may be included within the momentum equations
but have been neglected in the above formulation. The SW equations in conservative form
can be rewritten more compactly as

∂

∂t
U(x, y, t) +∇ · F(U(x, y, t)) = S(U(x, y, t), x, y), (4.2)

where the conservative variables are now collected in U = (H,Hv1, Hv2)T , while F contains
the fluxes, such that ∇ · F = ∂

∂xF1 + ∂
∂yF2 with

F1(U) =

 Hv1

Hv2
1 + g

2H
2

Hv1v2

 , F2(U) =

 Hv2

Hv1v2

Hv2
2 + g

2H
2

 , (4.3)

and S contains the sources, i.e.

S =

 0

fHv2 − gH ∂
∂xb+ τsx−τbx

ρ

−fHv1 − gH ∂
∂y b+

τsy−τby
ρ

 .

Sometimes, the SW equations are rewritten in terms of the geopotential ϕ = gH.

When solving the conservative formulation of the SW equations, a central requirement is to
satisfy the well-balanced property for still water stationary solutions, i.e. to maintain a lake
at rest steady state solution. As already discussed in Section 1.5.1, this precise steady state
is given by a constant sea surface elevation η = H + b = const and a zero velocity vector, i.e.
v = 0. When neglecting wind stresses, these steady states are obviously exact solutions of
the analytical equations above, basically due to the fact that the net pressure forces vanish.
More precisely, due to the constant sea surface, we have the following balance for the first of
the momentum equations

g

2

∂H2

∂x
+ gH

∂

∂x
b = gH

∂

∂x
η = 0 , (4.4)
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and an analogous one for the second momentum equation. Hence, in the analytical equations
the pressure forces are split in two parts which attain non-zero values of opposite signs in
case of non-constant bottom topography b and thus cancel out. Also in the context of wetting
and drying, one has to ensure that the numerical scheme satisfies this analytical property
as well, at least within machine-precision. With respect to wetting and drying methods,
simultaneously satisfying both the well-balanced property and non-negativity of the water
column height is not trivial, see e.g. Xing et al. [214]. This issue may not arise for slightly
modified formulations such as the reformulation

∂Hv1

∂t
+
∂Hv2

1

∂x
+
∂Hv1v2

∂y
− fHv2 = −gH ∂η

∂x
+
τ sx − τ bx
ρ

of the first momentum equation, where the pressure gradient term is written directly with
respect to the water surface elevation η. This form of the momentum equations is given for
example in Balzano’s review paper [11].

In the non-conservative formulation of the SW equations, the pressure gradient term is based
on the water surface elevation as well. The first momentum equation is rewritten as

∂v1

∂t
+ v1

∂v1

∂x
+ v2

∂v1

∂y
− fv2 = −g ∂η

∂x
+
τ sx − τ bx
Hρ

and the second momentum equation is rewritten accordingly. Therefore, numerical schemes
based on the non-conservative formulation generally behave well for lake at rest steady states.
However, in dry areas, the non-conservative form does not admit reasonable values for the
velocity since this quantity is in fact not defined in dry areas and artificially setting v to zero
would lead to a discontinuity at a moving wet/dry front. In addition, the non-conservative
form does not hold across shocks or hydraulic jumps.

To alleviate the well-balancedness issue, some methods also use the so called pre-balanced SW
equations. These equations where designed to directly account for the balance of pressure
forces acting on a fluid control volume and employ the water surface elevation η as a prognostic
variable instead of the water height H. According to Liang and Marche in [114], the main
advantage of the pre-balanced formulation is that it maintains the hyperbolicity of the original,
conservative formulation and mathematically balances the flux and source terms at the same
time. More precisely, the sum of pressure terms g

2
∂H2

∂x + gH ∂
∂xb is rewritten in the variables

of surface elevation and bottom topography as

g

2

∂H2

∂x
+ gH

∂

∂x
b =

g

2

∂(η − b)2

∂x
+ g(η − b) ∂

∂x
b

and algebraically manipulated to obtain the form

g

2

∂(η2 − 2ηb)

∂x
+ gη

∂

∂x
b .

If η = const, both of the above summands have precisely the same form gη ∂
∂xb. The pre-
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balanced form of the SW equations is now given by the equations

∂η

∂t
+
∂Hv1

∂x
+
∂Hv2

∂y
= 0 ,

∂Hv1

∂t
+
∂
(

(Hv1)2

η−b + g
2(η2 − 2ηb)

)
∂x

+
∂Hv1Hv2

η−b
∂y

− fHv2 = −gη ∂b
∂x

+
τ sx − τ bx
ρ

,

∂Hv2

∂t
+
∂Hv1Hv2

η−b
∂x

+
∂( (Hv2)2

η−b + g
2(η2 − 2ηb))

∂y
+ fHv1 = −gη ∂b

∂y
+
τ sy − τ by
ρ

.

Last but not least, we recall the skew-symmetric momentum formulation (1.167) introduced
in Section 1.5.1 an analog of which can also be derived for the two-dimensional SW equations,
thereby facilitating the construction of well-balanced numerical schemes as proposed in [57].

4.2 Numerical challenges of shallow water flow simulation

As already indicated at the beginning of this chapter, from the numerical standpoint, several
challenges in dealing with wetting and drying in a shallow water model have been stated in
the literature.

First, a numerical scheme simulating wetting and drying must be positivity preserving, i.e.
the water depth must remain non-negative in the entire computational domain at all times
since the governing equations are ill-posed for H < 0 and the surface wave celerity

√
gH is not

defined in this case. In addition, the computation of velocity from the discharge v = (Hv)/H
becomes ill-posed as H approaches zero.

Second, the model must be locally and globally conservative. The SW equations are a system
of balance laws which is generally formulated in the conserved quantities of water volume and
momentum as in (4.1). Hereby, the volume conservation property may be seen as essential
in most applications, especially in long-term environmental applications where even a small
deviation may accumulate over long integration times. Conservation of momentum, on the
other hand, is less crucial as the coastal ocean is generally highly dissipative. Nevertheless,
a proper resolution of the momentum equation is required for correct representation of the
advancing wet/dry front.

Third, reiterating the discussion in Section 1.5.1, the SW equations admit certain steady
state solutions, most importantly the lake at rest situation which consists of a vanishing
velocity vector and a constant sea surface elevation. In this situation the potentially non-
zero flux gradients are exactly balanced by the non-zero source term due to non-flat bottom
topography. A numerical scheme which does not discretely preserve this particular steady
state is prone to instabilities as it may generate unphysical oscillations due to the improper
balance of flux and source terms which may also affect the simulation of wetting and drying
processes. In addition, such a scheme will experience difficulties to achieve lake at rest steady
state solutions in the long time limit. Therefore, much effort has been taken to construct
well-balanced schemes preserving the lake at rest steady state in a discrete sense, sometimes
by reformulating the SW equations in terms of the surface elevation instead of the water
height. It should be remarked in this context that it is still not trivial to discretely preserve
lake at rest steady states in partially dry cells, e.g. at a shoreline, see for instance [22, 81].
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A more specific requirement is the non-permeability of dry areas. Coastal domains often
feature lakes or ponds that remain wet in the dry stage and become disconnected from larger
water bodies. Such emerging dry barriers should remain impermeable, i.e. attain a zero
volume flux so that the lakes do not artificially dry out. This condition is often violated by so
called porosity schemes that relax the positivity requirement and/or allow water flow beneath
the bed.

As water depth reduces, the flow is mostly dominated by the pressure gradient and bottom
friction terms. Over a sloping bathymetry the pressure gradient remains non-zero until the
water is completely drained, whereas the bottom friction parameterization increases slowing
down the flow. The bottom friction term is problematic as it grows without bound as the depth
vanishes. The non-zero pressure gradient, on the other hand, becomes an issue in methods
that retain a thin water layer over the dry areas. Therefore, in order to ensure positivity, the
artificial pressure gradient must be omitted or canceled. In the literature several methods have
been developed for achieving this goal, including flux-limiting schemes, direct cancellation of
the pressure gradient term, and positivity preserving limiters.

In addition to the properties listed above, an ideal numerical wetting and drying method
should also be robust, computationally efficient, and generalizable to unstructured meshes.
Robustness implies that the scheme remains stable under rapid flows and highly variable
bathymetry. In terms of computational efficiency, many wetting and drying schemes introduce
time step limitations which may increase the computational cost significantly and restrict their
applicability to realistic problems.

Many techniques to deal with wetting and drying have been suggested and have been classified
in at least two classes of methods – moving mesh methods and fixed mesh methods. With
fixed mesh methods, the computational grid itself is fixed throughout the computation of
the time-dependent solution. On the other hand, moving mesh methods, also referred to as
mesh adaption algorithms adapt the boundaries of the computational mesh to precisely match
the water front. Hence, many difficulties can be circumvented as the equations are always
well-defined and there is no artificial pressure gradient. Thus, shorelines can be tracked
quite accurately and a non-negative water height is present throughout the computational
domain. However, as discussed in [141, 28, 107], moving mesh methods are computationally
more expensive than fixed grid techniques, more difficult to implement especially in case of
strongly varying bathymetry and complex boundary shapes. They can potentially lead to
excessively elongated elements along the coastline as stated in [141], and according to [28],
mesh adaption techniques do not necessarily yield more accurate solutions than fixed grid
schemes. In addition, front-tracking is difficult to combine with implicit time integration.

Considering methods on fixed computational grids, a contemporary review of wetting and
drying algorithms is given by Medeiros and Hagen [130]. It classifies the wetting and drying
fixed mesh methods into four general frameworks: (1) thin film algorithms, (2) element removal
methods that employ checking routines to determine if an element or a node is wet, dry or
potentially one of the two, subsequently adding or removing nodes from the computational
domain (3) fluid depth extrapolation from wet nodes onto dry ones, (4) negative water depth
methods. As stated in [130], the defining feature of thin film algorithms is the constant
presence of a small layer of water within the domain. The algorithm may distinguish between
wet and dry cells only by a minimum water height threshold. When the water height drops
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below the threshold, the velocity of the flow is often set to zero and fluxes between adjacent
dry cells are prohibited. Commonly, in finite volume and discontinuous Galerkin schemes, a
flux-limiting strategy is employed, where the fluxes are modified, i.e. reduced or canceled,
in the vicinity of dry zones. Recent thin film algorithms have been developed in [54, 28, 73,
214, 213, 209, 132, 197, 106]. As discussed in [28], since thin film approaches keep a small
layer of water in nominally dry regions until these cells become fully wet again, it is difficult
to determine an exact shoreline. In addition, an erroneous gradient may be present at the
shoreline, possibly generating unphysical flows which are difficult to remove without violating
momentum conservation. A recent example of a finite volume implementation of wetting and
drying via a thin layer approach is given by Warner et al. in [209]. The minimum depth used
within their algorithm is a spatially constant user-defined parameter. If the total depth at
the cell center is smaller than this thin layer tolerance, the cell is considered dry and no water
is permitted to leave the cell, however water is allowed to enter dry cells at any time. Thus,
the arrival of incoming tide is not limited. In addition, the authors state that if the blocking
of water relied on the water depth at cell faces, isolated wet patches could be generated for a
fluid depth below the tolerance, since the fluid depth at the cell center could in fact be higher.

For element removal algorithms, wet elements are included in the computational domain while
dry ones are not. At the wetting front, further consideration is needed for the treatment of
partially wet cells. For instance, this may include distinguishing partially wet cells of dam-
break type from those of flooding type as in [16]. As discussed in [28], mesh reduction
techniques may cause oscillations due to sudden elimination and addition of nodes as well
as mass and momentum loss. Considering our list of desirable numerical properties, mass
conservation and well-balancedness are hence the most endangered properties when an element
removal algorithm is applied.

Depth extrapolation methods focus on the advancing water front from which information is
extracted. Mostly, the fluid depth is extrapolated from wet cells onto dry ones, if the algorithm
detects an advancement of the front. If new wet cells occur, the corresponding velocities are
calculated. In this category, only few approaches are listed by Medeiros and Hagen and it is
mentioned that these schemes occasionally lead to artificially wetted elements. In addition,
mass conservation has to be dealt with by correction routines.

Negative depth algorithms allow the water surface to drop below the bottom topography,
similar to the idea of porosity schemes. While regions with negative depth are considered as
dry, fluid flow below the ground is dealt with a porosity approach. The concept of artificial
porosity is based on assuming a certain porosity of the sea bed which has to be properly
modeled, e.g. by a thin porous layer, and allows for non-zero fluxes in regions formerly
considered as dry. The negative depth algorithms are the most recent schemes listed by
Medeiros and Hagen. The benefit of negative depth methods is that there is no need to detect
dry elements or cancel fluxes. In these methods the continuous equations are modified slightly
to account for the porosity. As such the artificial pressure gradient issue does not arise, and
these schemes are compatible with many discretizations, including implicit time integration
schemes. However, negative depth algorithms often break the non-permeability requirement
mentioned above. An alternative approach to negative depth algorithms has been used in [96]
where the bottom topography is allowed to move in time as the water surface drops.

In the literature, explicit time stepping is implemented in the majority of previous wetting and
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drying methods. In addition to being easier to implement, explicit time integration schemes
are usually robust and provide physically sound results for wetting and drying as they can
accurately represent the dynamics of the flooding front due to the necessarily small time step
sizes. Moreover, explicit time integration is required by most flux-limiting methods as well as
thin layer methods detecting dry elements.

However, explicit schemes are subject to time step limitations that may become severe, espe-
cially if the mesh is refined in the shallow regions. Therefore, multirate explicit time stepping
using local time steps depending on the location of the flow variables within the computa-
tional domain has been applied to geophysical flows e.g. by Seny et al in [174]. The choice
of explicit or implicit time integration should also be based on the involved time scales of the
specific application. In an evaluation of several methods which were developed until 1994 for
the simulation of wetting and drying in one space dimension, Balzano [11] already includes
several implicit schemes. In addition, a simple calculation is given regarding the distance
which the moving boundary covers within one time step. More precisely, if the speed of the
moving boundary is vb and ∆t denotes the time step, we have for this distance

vb∆t =
vb√
gH

∆t

∆x

√
gH = Fr Cr ∆x,

where Fr and Cr are the Froude number and the Courant number, respectively, ∆x is the cell
size, H the water height and g is the gravitational constant. Balzano further argues that, in
practice, the Courant number is between 0.5 and 1 while the Froude number takes typical
values in the interval [0.01, 0.05], hence 20 to 200 time steps would be needed to move the
wet/dry boundary over a distance of ∆x, i.e. a cell length.

Considering the possibly severe limitation of the allowable time step size, devising implicit
time stepping schemes compatible with wetting and drying is generally desirable. In fact,
the interest in the further development of implicit schemes for this type of application has
increased in recent years.

A special unconditionally positive implicit time integration scheme is used by Casulli [38].
This approach leads to a mildly nonlinear system to be solved each time step but is mass
conserving and guarantees non-negative water height for any time step size. However, this
method is only first order accurate in space and time. In the context of stabilized residual
distribution schemes, Ricchiuto and Bollermann [168] developed a well-balanced and positiv-
ity preserving scheme for shallow water flows considering implicit time integration via the
second order trapezoidal rule. In this case, the time step size can be chosen twice as large as
for the explicit Euler scheme. A different approach is taken by Kärnä et al. [96]. There, the
bottom topography is allowed to move in time as water elevation drops, i.e. a user-defined
function is introduced which redefines the bottom topography. However, this function has
to fulfill certain conditions and hence has to be carefully chosen prior to numerical compu-
tation. In [132], Meister and Ortleb developed an unconditionally positive approach to time
integration within a DG scheme in order to obtain non-negative water heights without time
step restriction. This approach is based on the MPSDIRK3 modification of the classical third
order SDIRK scheme by Cash as described in Section 3.4.3 and will be discussed in more detail
in Section 4.4. Further recent implicit approaches are given by Marras et al. [125], combining
dynamic viscosity for shock capturing with a high-order wetting and drying method, a 3D
non-hydrostatic implicit model by Candy [31], a finite difference implicit 1D code by Kalita



4.3. WETTING AND DRYING PROCEDURES FOR FV AND DG METHODS 209

and Sarma [94], and a thin layer DG algorithm with implicit time integration developed by Le
et al. [106] adopting a regulation of gravitational forces by a blending parameter in partially
dry cells to enable fast Newton convergence of the implicit solver.

4.3 Review of wetting and drying procedures for FV and DG
methods

In recent decades, finite volume (FV) ocean circulation models have become increasingly
popular compared to previously used methods based on finite differences which is due to the
finite volume conservation properties, their suitability for advection dominated problems, and
their applicability on quite general grids. In addition, there has been an increasing interest
in developing higher-order methods since they require fewer degrees of freedom to obtain
the desired accuracy. Particularly the discontinuous Galerkin (DG) schemes are attractive
due to their support of arbitrary meshes, their amenability for hp-refinement and parallel
computation, in addition to their favorable dissipation and dispersion properties and their
similarity to finite volume schemes in terms of local conservation properties. As expounded
in this section, the wetting and drying treatments used within FV or DG schemes differ in
basic construction principles.

4.3.1 Finite Volume Methods

Finite volume methods for the SW equations commonly start from the conservative formu-
lation based on either the water height and discharge or the surface elevation and discharge.
While the numerical representation of the conserved quantities in a finite volume scheme is
given by their cell averages, the bottom topography is typically represented either by cell
means as in [10, 124, 114, 52, 41] or by a piecewise linear function which is continuous across
cell boundaries as in [105, 27, 81]. For the one-dimensional SW equations only including the
pressure forces due to non-flat bottom topography and neglecting bottom friction as well as
Coriolis forces, the governing equations are given by

∂

∂t
U(x, t) +

∂

∂x
F(U(x, t)) = S(U(x, t), x), (4.5)

with U(x, t) = (H,Hv)T , F(U) = (Hv,Hv2 + g
2H

2)T , S = (0,−gH ∂b
∂x). The basic FV

scheme discretizing the above equations in space has the form

∆xi
d

dt
Ui(t) + F∗i+1/2 − F∗i−1/2 = Si, Ui =

(
Hi

Hivi

)
, (4.6)

where Ui contains the cell means, the quantities F∗i+1/2 = F∗(Ui,Ui+1) and F∗i−1/2 =

F∗(Ui−1,Ui) denote the output of a suitable numerical flux function F∗ and Si is a suit-
able source term discretization.

Achieving well-balancedness

As stated in Section 4.1, due to the conservative formulation, special consideration has to
be taken to ensure the well-balanced property. More precisely, the necessary cancellation of
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(a) Two adjacent wet cells. (b) Dry cell adjacent to a wet cell.

Figure 4.1: Illustration of hydrostatic reconstruction approach depicting auxiliary interface
bottom topography bi+1/2 and reconstructed left and right water heights H±i+1/2.

pressure terms in equation (4.4) for the lake at rest is not fulfilled by the simple source term
discretization

−gH ∂

∂x
b ≈ −gHi

bi+1 − bi−1

∆x

coupled with a classical numerical flux such as the Lax-Friedrichs (LF) flux or the Harten-
Lax-van Leer (HLL) flux [76]. This fact has also been revisited by Clain et al. in [41].

Therefore, in [10], Audusse et al. suggested a very simple technique handling both discon-
tinuous topography and wet/dry interfaces which has become quite popular by now. Their
method will be reviewed in the following, using the illustration in Figure 4.1. In order to de-
termine the input values for the numerical flux function at a cell interface, the water surface
η = H + b and the bottom topography on the two adjacent cells are taken into account. In
a first order scheme, at an interface denoted by the index i+ 1/2, the reconstructed left and
right water height is given by the non-negative values of

H−i+1/2 = max{0, Hi + bi − bi+1/2}

H+
i+1/2 = max{0, Hi+1 + bi+1 − bi+1/2},

(4.7)

where bi+1/2 = max{bi, bi+1}.

The clipped water height values H±i+1/2 now determine the left and right states of the conserved

variables. They are computed as U±i+1/2 =

(
H±i+1/2

H±i+1/2v
±
i+1/2

)
, where v−i+1/2 = vi and v+

i+1/2 =

vi+1.

These values are then used as input values for the numerical flux function in (4.6), i.e. the
basic FV scheme is modified by inserting

F∗i±1/2 = F∗(U−i±1/2,U
+
i±1/2) (4.8)

for the numerical flux values. In order to achieve well-balancedness, the source term dis-
cretization is based on the reconstructed values of water height. If the source term simply
contains the pressure forces given by the term −gHbx due to the bottom slope and all other
forces such as bottom friction and Coriolis forces are neglected, its discretization is given by

Si =
g

2

(
0

(H−i+1/2)2 − (H+
i−1/2)2

)
.
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As mentioned in [10], this source term discretization can now be redistributed to the cell
interfaces. The scheme (4.6) using hydrostatic reconstruction via the numerical fluxes (4.8)
can then be rewritten as

∆xi
d

dt
Ui(t) + F∗l (Ui,Ui+1, bi, bi+1)− F∗r(Ui−1,Ui, bi−1, bi) = 0, (4.9)

where the left and right interface fluxes are given by

F∗l (Ui,Ui+1, bi, bi+1) = F∗(U−i+1/2,U
+
i+1/2) +

(
0

H2
i − (H−i+1/2)2

)
,

F∗r(Ui,Ui+1, bi, bi+1) = F∗(U−i+1/2,U
+
i+1/2) +

(
0

H2
i+1 − (H+

i+1/2)2

)
.

(4.10)

In order to achieve a spatial discretization of second order, a piecewise linear representation of
the conserved quantities needs to be reconstructed in a way which maintains well-balancedness
and non-negativity. Thus, starting with a first order FV scheme, a second order extension
may be obtained using reconstructed values at the cell interface. Thereby, gradients of the
conserved quantities are computed and limited if necessary, in order to avoid overshoots.
Based on the situation at an interface between a wet and a dry cell, Audusse et al. argue that
of the quantities H, b and η = H+ b, the water height H and water surface η are the variables
which should actually be reconstructed while b is to be computed as b = η −H.

Positivity preservation

In case of wetting and drying, one of the basic ingredients to ensure non-negativity of water
height within a FV discretization is a positivity preserving numerical flux. Used within a FV
method and explicit Euler time integration, these numerical flux functions yield non-negative
cell means of water height at the next time level under the premise of non-negative cell means
at the current time level. Roe-type solvers based on the linearized original equations and the
corresponding modified Riemann problems are generally not positivity preserving which is
discussed in detail by Pelanti et al. in [156] for the specific case of the SW equations. As a
remedy for the Roe solver, positivity in [156] is guaranteed by a relaxation solver modifying
Roe’s method. Several other positivity preserving fluxes may be used, e.g. the classical or
local Lax-Friedrichs flux or the HLL flux. If the well-balanced flux (4.10) designed by Audusse
et al. is based on the Lax-Friedrichs flux for F ∗, positivity in one space dimension can be
shown as follows, see also [214]. Hereby, we consider the first order finite volume scheme (4.9)
using the interface fluxes (4.10) where F∗ is the Lax-Friedrichs flux

F∗(Ul,Ur) =
1

2
(F(Ul) + F(Ur)− α(Ur −Ul)) , α = max

{
|v|+

√
gH
}
,

where the maximum is taken over the cell means in the whole region. Using explicit Euler
time integration, the cell averages of water height Hn

i , H
n+1
i at two successive time levels

tn, tn+1 are then related by

Hn+1
i = Hn

i −
∆t

∆xi

(
F ∗1 (U−i+1/2,U

+
i+1/2)− F ∗1 (U−i−1/2,U

+
i−1/2)

)
, (4.11)

where F ∗1 is the first component of the numerical flux.
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Lemma 4.1. Let all cell averages Hn
i of the water height at time tn be non-negative and

let the cell averages Hn+1
i at time tn+1 be computed by the finite volume scheme (4.11) such

that the time step ∆t fulfills the CFL condition α ∆t
∆xi
≤ 1. Then the cell averages Hn+1

i are
non-negative as well.

Proof. First, we note that the first component of the Lax-Friedrichs numerical flux is given
by

F ∗1 (Ul,Ur) =
1

2
((Hv)l + (Hv)r − α(Hr −Hl)) .

Now, since U−i+1/2 =
H−
i+1/2

Hi
(Hi, (Hv)i)

T and U+
i+1/2 =

H+
i+1/2

Hi+1
(Hi+1, (Hv)i+1)T , we can rewrite

the new water height average as

Hn+1
i =

(
1− ∆t

2∆xi

Hn,−
i+1/2

Hn
i

(vni + α)− ∆t

2∆xi

Hn,+
i−1/2

Hn
i

(α− vni )

)
Hn
i

+
∆t

2∆xi

Hn,−
i−1/2

Hn
i−1

(α+ vni−1)Hn
i−1 +

∆t

2∆xi

Hn,+
i+1/2

Hn
i+1

(α− vni+1)Hn
i+1 .

Per construction in (4.7) we have H−i+1/2 ≤ Hi and H+
i−1/2 ≤ Hi. Thus, the factor in front of

Hn
i rewrites as

1− ∆t

2∆xi

Hn,−
i+1/2

Hn
i

(vni + α)− ∆t

2∆xi

Hn,+
i−1/2

Hn
i

(α− vni ) ≥ 1− α ∆t

∆xi

max{Hn,−
i+1/2, H

n,+
i−1/2}

Hn
i

≥ 0

due to the CFL condition α ∆t
∆xi
≤ 1. Furthermore, as α ≥ max{|vni |, |vni+1|}, the factors in

front of Hn
i−1 and Hn

i+1 are non-negative as well. This proves non-negativity of the cell average

Hn+1
i .

The well-balanced and positivity preserving approach by Audusse et al. is simple and fulfills
the requirements of well-balancedness and non-negativity. It has thus been used as a basic
building block in many subsequent FV schemes in one space dimension such as [124, 114]
as well as extension to unstructured meshes in [52] and structured meshes in [41]. It should
be remarked that both of the approaches by Liang and Marche in [114] and by Duran et al
in [52] are based on the pre-balanced formulation given in Section 4.1. Using a positivity
preserving numerical flux for the conservative form of the SW equations is thereby sufficient
to guarantee non-negative cell means of water height also for the pre-balanced formulation.
For the Lax-Friedrichs flux, this has been shown by Duran and Marche in [53], while for the
HLL flux introduced in [76], positivity preservation for the pre-balanced formulation of the
SW equations has been proven by Meister and Ortleb [131] for a space discretization by the
DG scheme incorporating finite-volume subcells.

The possibility to rewrite the approach by hydrostatic reconstruction in terms of only interface
fluxes which incorporate the source term as in (4.9) has led to its use as an important ingredi-
ent within many of the discontinuous Galerkin schemes to be reviewed in Section 4.3.2. In this
respect, the approach of hydrostatic reconstruction simply yields a modification of the numer-
ical flux function used within the discontinuous Galerkin scheme in case of a discontinuous
representation of the bottom topography.
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FV schemes based on a continuous, piecewise linear representation of the bottom topography
need slightly different techniques to guarantee well-balancedness and non-negativity at the
same time. Approaches of this kind are usually found within the class of central-upwind
FV schemes as in [105, 27, 81]. The term central-upwind hereby refers to the use of a
specific numerical flux function which is a weighted sum of a central and an upwind part with
weights determined by the computed characteristic speeds. The central-upwind scheme by
Kurganov and Petrova [105] can essentially be written in the form (4.6) where the conserved

variables are now taken as the water surface and the discharge, i.e. Ui =

(
ηi

(Hv)i

)
and

the source term is computed from the linear bottom topography and the water surface as

Si =

(
0

−g(ηi − bi)(bi+1/2 − bi−1/2)

)
.

Kurganov and Petrova also explicitly mention the ill-conditioned computation of the velocity
by v = Hv

H for very small water height which is needed to evaluate the flux function as well
as the numerical fluxes and propose to avoid the division by small numbers via the formula

v :=

√
2H(Hv)√

H4 + max{H4, ε}
, (4.12)

with the regularization parameter ε chosen grid dependent, i.e. decreasing with decreasing
grid size. The algorithm then recomputes the discharge Hv using (Hv) := H · v where it is
explicitly mentioned that failing to adjust the discharge may produce negative values of H, in
accordance with the proof of non-negativity in [105]. Furthermore, the scheme by Kurganov
and Petrova has been extended to triangular grids in [27].

Regarding implicit FV schemes, fewer wetting and drying methods are reported. One of the
few algorithms which guarantee non-negative water height independent of the time step size is
the first order FV method by Casulli [38]. It is based on the non-conservative formulation of
the SW equations which is discretized in time in a semi-implicit way. The precise formulation
is vital to obtain an M-matrix property for the matrices used within the iterations of the
Newton-type scheme in order to achieve positivity. Moreover, using the properties of the
Jacobians, it can furthermore be shown that the Newton iteration generates a converging
sequence to the solution of the semi-implicit scheme.

4.3.2 Discontinuous Galerkin Schemes

The advancement of wetting and drying techniques for discontinuous Galerkin schemes is more
recent than for finite volume methods. In this context, Bokhove [21] developed a space-time
DG scheme which uses a mesh adaption strategy to accurately separate wet and dry regions.
Regarding the method-of-lines framework, the thin layer approaches of Ern et al. [54] and
Bunya et al. [28] generally provide the background for current DG approaches providing both
a well-balanced discretization and the ability to deal with wetting and drying.

Achieving well-balancedness

In order to preserve lake at rest steady state solutions, the hydrostatic reconstruction tech-
nique may be transferred from finite volume schemes to DG schemes. According to the
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discussion of the discontinuous Galerkin framework in Section 1.2, the classical derivation of
a DG scheme consists in multiplying the governing equations by test functions and integrat-
ing over the computational domain. As the governing equations, we now consider the SW
equations in compact conservative form (4.2) on the computational domain Ω × R+, with
x = (x, y)T ∈ Ω and t ∈ R+, where Ω ⊂ R2 is an open polygonal domain. Of course, initial
conditions U(x, 0) = U0(x) and appropriate boundary conditions are assumed to be given.
Unstructured triangular grids allow for a greater flexibility in discretizing spatial domains. As
in Section 1.2.5, we will therefore consider a conforming triangulation T h, consisting of trian-
gular elements τi of the given computational domain Ω. Let Wh be the piecewise polynomial
space defined by

Wh = {wh ∈ L∞(Ω) | wh|τi ∈ PN (τi) ∀ τi ∈ T h} ,
where PN (τi) denotes the space of all polynomials on τi of degree ≤ N .

Now, a DG approximation to the exact solution of the conservative SW equations is given by
a vector of piecewise polynomial functions Uh(·, t) ∈ (W h)3, with

Uh(x, t) = (Hh(x, t), (Hv1)h(x, t), (Hv2)h(x, t))T ,

which satisfies the semi-discrete equation

d

dt

∫
τi

Uh ·W dx =

∫
τi

F1(Uh) · ∂W

∂x
+ F2(Uh) · ∂W

∂y
dx−

∫
∂τi

F∗(U−i ,U
+
i ,n) ·W dσ

+

∫
τi

Sh(Uh,x) ·W dx

(4.13)

for any τi ∈ T h, W ∈ (W h)3, where the source term is discretized by

Sh(Uh,x) = −g · (0, Hh · ∂xbh, Hh · ∂ybh)T ,

with bh being a suitable projection of the bottom topography b to W h. We recall that
both the approximate DG solution and the projected bottom topography are allowed to be
discontinuous across cell interfaces. Hence, the numerical flux function F∗ takes into account
the left-hand and right-hand sided values U−i , U+

i of the approximate solution within τi and
an adjacent element, respectively, and is dependent on the outward pointing normal vector n of
the cell τi. The DG scheme may generally use any numerical flux function developed within the
context of FV schemes. However, similar to finite volume schemes, a modification is necessary
to preserve still water stationary states in case of non-constant bottom topography. Hereby,
Ern et al. design a well-balanced scheme by incorporating the hydrostatic reconstruction
numerical flux by Audusse et al. [10] described in Section 4.3.1, i.e. the numerical flux
F∗ in (4.13) is replaced by the well-balanced flux (4.10) evaluated for the hydrostatically
reconstructed left and right states. Thus, we replace the expression F∗(U−i ,U

+
i ,n) in (4.13) by

FWB(U−i,∗,U
+
i,∗, H

−
i ,n), where the well-balanced numerical flux denoted by FWB is adjusted

to the case of unstructured triangular grids, i.e. we set

FWB(U−i,∗,U
+
i,∗, H

−
i ,n) = Fnum(U−i,∗,U

+
i,∗,n) +


0

g
2

(
(H−i )2 − (H−i,∗)

2
)
n1

g
2

(
(H−i )2 − (H−i,∗)

2
)
n2

 , (4.14)
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where the modified (starred) left and right states are obtained from the hydrostatic recon-
struction

U±i,∗ = (H±i,∗, H
±
i,∗ · (v1)±i , H

±
i,∗ · (v2)±i )T ,

H±i,∗ = max
{

0, H±i + b±i −max
{
b−i , b

+
i

}}
.

Commonly, the DG scheme employs quadrature formulae to approximately solve the integrals
involved in its variational formulation. However, although we obtain a local truncation error
of order N + 1 if the integrals in (4.13) are approximated by quadrature formulae of order
2N on elements and of order 2N + 1 on edges, the well-balanced property in general requires
a higher degree of exactness. More precisely, quadrature rules of order 3N − 1 over elements
and of order 3N over edges need to be implemented in the well-balanced DG scheme, see
e.g. [133].

Specifics of thin-layer wetting and drying approaches

In order to deal with wetting and drying and thus with vanishing water height or possibly
negative values, Ern et al. [54] furthermore introduce a slope modification. Hereby, if the cell
average of the water height is negative, the water height in this cell is set to zero. If the cell
average of the water height H is non-negative, but the minimum over the integration points
is below the drying threshold, a linear representation of H is reconstructed where the slope
is modified. In addition the corresponding discharge is set to zero. As long as no negative
averages of H occur, mass is preserved by this approach but not momentum. In addition, the
method may add mass if non-negativity is violated. In order to rectify the artificial increase
of mass, Bunya et al. redistribute the water mass within an element by a modification of the
surface elevation to guarantee non-negativity. Additionally, they thereby guarantee local mass
conservation. The redistribution process heavily relies on non-negative averages of the water
height, so both a sufficient condition on the allowable time step to guarantee non-negativity is
derived and a reflection flux is introduced to dispose of the time step restriction. Furthermore,
fluxes between dry cells are restricted to prevent unphysical oscillations and to prevent dry
cells from loosing their mass.

As stated in Kärnä et al. [96], the main difficulty in thin layer approaches when used within
higher order methods such as DG is treating the wet/dry transition elements. These cells
may have “hanging nodes” above the water surface elevation possibly causing an artificial
pressure gradient, i.e. gravity forces that drag the water down, as shown in Figure 4.2. Such
a situation may also occur for the lake at rest because, in general, the prolongation of the
constant water surface by the dry bottom topography is not a smooth function. In fact, its
approximation by a polynomial function then usually yields hanging nodes. This can be seen
in Figure 4.3a where obviously the water surface elevation has an artificial slope creating an
artificial pressure gradient. This artifact does not occur for moving mesh methods adapted to
the shore line as depicted in Figure 4.3b and is also prevented in negative depth algorithms.
In this context, in order to address this problem in a numerical method, a distinction between
dam-break type (Figure 4.3c) and flooding-type partially dry cells (Figure 4.3a) has already
been proposed by Bates and Hervouet in [16]. In case of flooding-type cells which by definition
also include lake at rest situations, movement of water in dry cells is only allowed by convective
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Figure 4.2: Illustration of the numerical solution of a typical thin layer method. We note that
the method conserves a small layer of water of height Hε in an actually dry region, hence
artificial gravity forces are present due to hanging nodes above the water surface.

transport. However, for dam-break cells a high water surface level next to the dry cell results
in the flow of water due to gravitational forces, which should not be neglected in this case.
Flooding-type cells can be identified by considering the representation of water surface and
bottom topography within the numerical scheme. Given a cell τi with water surface elevation
ηh(x, y) and bottom representation bh(x, y), then τi is a flooding-type partially dry cell if we
have

max
(x,y)∈τi

ηh(x, y)− max
(x,y)∈τi

bh(x, y) < Hε , (4.15)

where Hε denotes the drying threshold under which a node is considered dry. This distinction
of partially dry cells has also been made by other authors, for example by Bunya et al. [28],
where it is included in the wet/dry status to determine fluxes between dry elements and by
Vater et al. [197] in order to cancel gravitational forces from the semi-discretization in flooding
type cells.

Once, partially dry cells are distinguished with respect to their desired behavior, the numerical
methods are adjusted. Common to many high order schemes, Bunya et al. use cancellation
of gravity to balance the effect of an artificial gradient of the surface elevation in wetting or
drying elements. However, their precise choice of the momentum fluxes violates momentum
conservation.

In addition, we have to remark that these more or less complicated rules which are applied to
partially dry cells in order to remove the artificial pressure forces are difficult to integrate into
an implicit time stepping scheme. For instance, in [73], a flux limiting wetting and drying DG
approach is developed and applied to achieve a realistic simulation of the Scheldt Estuary.
The limitation involves computing three intermediate states of the water surface elevation
preserving local mass conservation. As in the method of Bunya et al. [28], gravitational
forces are neglected within dry elements to allow the water surface to align with the bottom
topography. Within a “buffer layer” of very shallow water, bottom stress and eddy viscosity
are increased while surface stress is decreased. Due to the many switches in turning the fluxes
on or off, the method is discontinuous with respect to the variables. Therefore, Gourge et al.
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(a) Flooding-type partially dry cell: Lake
at rest with artificial surface elevation
slope.

(b) Wet cell: Lake at rest for a moving
mesh method.

(c) Two different types of dam-break type partially dry cells.

Figure 4.3: Illustration of surface elevation, bottom topography and shoreline representation
in one discretization cell for a second order method in 1D. Black dashed vertical lines: cell
boundaries. Blue and brown dashed lines: continuous surface elevation and bottom topogra-
phy. Solid lines: discrete representation.
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state that implicit time stepping is not directly available for this approach. By preventing
the switches caused from the removal of artificial pressure forces, Le et al. [106] recently
accomplished to combine the above distinction between dam break and flooding type cells with
implicit time integration. Hereby, the condition (4.15) is incorporated into the calculation of
a blending parameter in the interval [0, 1]. Instead of employing a basic on/off switch, the
gravitational fluxes in the DG semi-discretization are then simply multiplied by this blending
parameter, thereby facilitating fast convergence of the non-linear solver.

Additional difficulties may arise through the combination of the above wetting and drying
techniques with TVB limiters for shock capturing. As reported by Ern et al. [54] and Bunya
et al. [28], the slope modification of the wet/dry treatment and the TVB slope limiter of
the DG scheme may artificially activate each other, possibly leading to instability. Thus, the
TVB limiter is commonly only applied to the fully wet region.

The numerically determined velocity in nearly dry regions can be large, especially within a
DG scheme which uses a polynomial representation of the conserved variables. In this context,
the challenge of computing a stable linear distribution of the velocity within a DG scheme
is addressed by Vater et al. in [197] via a velocity-based limiting procedure. Furthermore,
favorable properties of monotonicity preserving Bernstein polynomials have been used within
a DG model for flooding and drying by Beisiegel and Behrens in [18].

A systematic approach to positivity preservation and well-balancedness

The series of works by Xing, Zhang and Shu with the basic ideas given in [214, 213] deal
with the construction of a so-called positivity preserving limiter and the special design of
explicit Runge-Kutta time integrators based on convex combinations of explicit Euler steps.
Here, the methods are generally in line with the ideas in [54, 28], but a more systematic
approach to well-balancedness and positivity preservation is given. Therefore, in principle,
the properties of well-balancedness and positivity preservation for the SW equations carry
over to high order in space and time. One of the basic ingredients of the method by Xing et
al. [214] is a positivity preserving numerical flux function for the SW equations as introduced
in Section 4.3.1. For these flux functions which attain non-negative cell means for the finite
volume method with explicit Euler time stepping, positivity preservation can be extended
both to a DG spatial discretization and to higher order Runge-Kutta schemes in time.

For the DG scheme complemented by explicit Euler time integration, let Un
h(x) and Un+1

h (x)
denote the approximate solution at the time levels tn and tn+1 = tn + ∆t, respectively, and
let the cell averages at time tn be denoted by Ūn

i = 1
|τi|
∫
τi

Un
h(x) dx. In order to carry over

positivity preservation from the FV scheme to the DG scheme, the semi-discrete DG equations
referring to the water height cell averages are rewritten as convex combinations of finite volume
approximations. The occurring factors in this convex combination then determine the CFL
condition for positivity preservation, see [214]. Hereby, the representation of the DG scheme
is based on values at a set XN

i ⊂ τi of intermediate nodes within the DG cell, depending on
the polynomial degree of the DG approximation. Using a corresponding distribution on the
reference element, the set XN

i related to the finite volume representation may be computed a
priori. The result by Xing et al. [214, 213] is then summarized as follows.

Theorem 4.2. For the DG scheme with positivity preserving numerical flux function and
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Figure 4.4: Nodes for positivity enforcement on triangular grids for a polynomial degree of
N = 2.

explicit Euler time integration, the new cell averages H̄n+1
i of the water height at time tn+1 are

non-negative under the premises that the time step ∆t fulfills a suitable CFL-type restriction
and that Hn

h (x) is non-negative at each node in the set XN
i ⊂ τi.

Remark 4.3. The construction of the nodal set XN
i is described by Zhang et al. in [220].

Hereby, the nodes in XN
i result from quadrature rules on the triangle τi with positive weights

that exactly integrate polynomials of degree N . Furthermore, XN
i is supposed to contain the

points that are used for numerical integration over the element boundaries ∂τi within the
DG scheme. To provide an example, on the reference triangle T = {(r, s) ∈ R2 | − 1 ≤
r, s, r + s ≤ 0} also considered in Section 1.2.5, the distribution of these nodes for N = 2 is
shown in Figure 4.4.

To enforce non-negativity at each node in XN
i ⊂ τi, Xing et al. use a simple scaling of the

DG solution around the non-negative cell average, i.e. Un
i := Un

h|τi is modified to Ũn
i by

Ũn
i (x) = Ūn

i + θ
(
Un
i (x)− Ūn

i

)
, θ = min

{
1,

H̄n
i

H̄n
i −minx∈XN

i
Hn
i (x)

}
. (4.16)

In this context, equation (4.16) is called the positivity-preserving limiter. This limiter is locally
mass and momentum conserving and only requires the positivity of water height averages.

The simulation of wetting and drying using higher order time integration hinges on the subclass
of SSP-RK schemes introduced in the beginning of Chapter 3. Thereby, the assertion of
Theorem 4.2 may be extended to higher order time integration, see e.g. [214, 220]. In fact,
using the positivity preserving limiter, we can ensure that Hn

h (x) is non-negative at each
quadrature point in XN

i . Theorem 4.2 then ascertains that the FE assumption is fulfilled
for the convex function ‖U‖ = maxi{−H̄i}. Hence, the resulting DG scheme using SSP-RK
time integration preserves non-negativity of the cell means of water height as long as the
respective time step constraint is satisfied and the positivity preserving limiter is applied at
each stage. Denoting by ∆tFE the time step of the forward Euler scheme fulfilling the stability
constraints of Theorem 4.2 and defining c = mini,j

αij
βij

based on the coefficients of the given

SSP-RK scheme as defined in (3.51), the assertion is summarized in the following Theorem.
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Theorem 4.4. For the DG scheme with positivity preserving numerical flux function and
SSP-RK time integration, the new cell averages H̄n+1

i of the water height at time tn+1 are
non-negative under the premises that the time step ∆t fulfills the restriction

∆t ≤ c∆tFE

and that the positivity-preserving limiter is applied at each stage of the SSP-RK scheme to
obtain non-negative nodal water height in the set XN

i ⊂ τi on all relevant time levels.

Many of the more recent schemes discussed in Section 4.3.2 follow this approach using SSP-
RK schemes when supplementing their respective space discretization by the time stepping
routine. In summary, the resulting list of construction principles for methods of this kind
consists in:

1. designing a DG scheme for which the FE assumption (3.50) is fulfilled for the above
example of a convex function regarding positivity,

2. asserting non-negativity of the cell averages of water height by satisfying the time step
constraint of the respective SSP-RK method, given by the parameter c,

3. applying the positivity preserving limiter at each Runge-Kutta stage to obtain non-
negative water height at the intermediate nodes.

DG schemes based on the pre-balanced formulation

In [53], Duran and Marche extend a previously constructed FV scheme based on the pre-
balanced SW equations to a DG discretization. Hereby, the pre-balanced equations reduce
the required degree of exactness of the DG quadrature rule to achieve well-balancedness which
is otherwise higher than in the standard approach. Their approach is generally in line with
the methods of Xing et al. [214, 213], as they also use hydrostatic reconstruction as described
in Section 4.3.1 to determine the input values for the numerical flux, the positivity preserving
limiter and strong-stability preserving explicit time integration as described in the previous
paragraph. Furthermore, the idea of using the pre-balanced equations has been extended to
a DG method which uses finite volume subcells in nearly dry regions by Meister and Ortleb
in [131].

Implicit time integration for wetting and drying processes in DG schemes

More recently, DG schemes treating wetting and drying for shallow water flow with implicit
time integration have been developed. In fact, when explicit time step restrictions become far
too prohibitive, e.g. due to grid stiffness, implicit time stepping is the most obvious alternative.
In this case, implicit schemes can yield significant speed-up and permit simulations that would
be impossible to carry out with explicit methods.

For real applications this substantial increase in efficiency has been documented e.g. by Kärnä
et al. in [96]. In that work, the authors observe that porosity methods have the advantage
of smooth transitions for wetting and drying areas which increases their compatibility with
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implicit time integration schemes. Their approach to wetting and drying is similar to a
negative-depth algorithm but does not need to introduce the concept of porosity since it
temporarily moves the bottom topography such that the new surface elevation is always
positive. After a DG discretization, the numerical solution is obtained by high order diagonally
implicit Runge-Kutta (DIRK) schemes, whereby the nonlinear systems are solved via Newton
iteration using a finite-difference approximation to the Jacobian. Due to the removal of
switches and discontinuities within the algorithm, the Newton solver is robust and converges
rapidly. Difficulties are reported for the third Balzano test case, where the constant presence
of the gravitational forces causes the interior pond to dry out. However, this is as a common
drawback in porous media methods [141] and not specific to this scheme. Generally, lakes
may be artificially emptied when the water surface is aligned with the non-constant bottom
topography, creating an artificial flux at the corresponding cell boundaries which moves water
out of the lake.

To deal with this problem, in the already mentioned recent work by Le et al. [106], the authors
use a thin layer approach within a DG semi-discretization and employ implicit time stepping
but avoid to completely cancel out artificial gravity effects in partially dry cells. This approach
achieves fast Newton convergence analogous to porosity methods but prevents drying out of
interior lakes. Furthermore, the method is able to provide realistic simulations of the Tonle
Sap Lake in the Mekong River Basin, which is subject to significant variations of the water
level between the dry and the wet season.

In [132], Meister and Ortleb extend the framework of high order SSP explicit time integration
devised by Xing et al. [214] to unconditionally positive implicit time integration via the
Patankar approach. This method will be elaborated in more detail in Section 4.4.

Furthermore, Marras et al. [125] incorporate a wetting and drying strategy into a unified
continuous/discontinuous Galerkin (CG/DG) scheme with dynamically adaptive viscosity as
artificial dissipation used for shock capturing. In their work, they extend the already men-
tioned strategy by Xing, Zhang and Shu for wetting and drying to their CG/DG method and
use a three-stage, second order ESDIRK scheme to advance the numerical solution in time.
The scheme belongs to the category of fixed grid thin-layer methods. As the first stage of the
ESDIRK time integration scheme is explicit and equals the last stage of the previous step,
effectively only computations of a two-stage scheme are carried out. The non-linear systems
are solved by a Jacobian-free Newton-Krylov scheme, where the GMRES method is used to
solve the linear system in each Newton step. This basic strategy is similar to the ones used in
the works [96] and [132]. A closer look at the formulation of the governing equations in [125]
reveals that a very similar form to the pre-balanced SW equations is used in this work, the
only difference given in the use of H as conserved variable.

4.4 Wetting and drying treatment based on the Patankar trick

A positivity preserving and well-balanced DG scheme on unstructured triangular grids for the
SW equations was developed by Xing and Zhang in [213], based on hydrostatic reconstruction,
positivity preserving numerical fluxes and explicit SSP-RK time integration. Unfortunately,
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there are limits to the efficiency of explicit time integration schemes in case of stiff problems.
Especially for high polynomial degrees, linear stability requires very small time steps. In
addition, since time step restrictions depend on the cell sizes, implicit time stepping is often
more efficient for locally refined grids, e.g. due to refinement in wetting and drying regions.

However, also in case of implicit time integration, the positivity preserving approach of Xing et
al. [214, 213] needs to enforce non-negative cell means of water height under rather restrictive
time step constraints that also depend on the order of the DG discretization. Since these
positivity enforced time step restrictions interfere with the efficiency of the implicit time
integrator, unconditionally positive implicit schemes are desired.

In order to guarantee non-negativity of the water height for any time step size while still
preserving conservation properties, Meister and Ortleb [132] modify the strategy of positivity
preservation in [214, 213] by the Patankar approach introduced in Section 3.4. Hereby, an
implicit time integrator is desired to avoid severe time step size restrictions in case of small
grid cells. Thus, time integration is now carried out by the modified Patankar-SDIRK scheme
constructed in Section 3.4.3 which is based on an L-stable implicit Runge-Kutta scheme. We
recall that the Patankar approach allows for unconditional positivity whereas classical linear
schemes, also implicit ones, are either subject to time step restrictions in order to guarantee
positivity or are reduced to first order accuracy.

For the purpose of applying the MPSDIRK3 scheme, a suitable production-destruction equa-
tion for the cell averages of water height is first extracted from the semi-discrete continuity
equation given by the DG scheme. The weights introduced by the Patankar scheme are
thereby designed to reduce the outgoing water fluxes which constitute the destruction terms.
In the same way, the basic idea of the modified Patankar scheme, i.e. applying corresponding
weights to the production terms, yields an analogous modification of the ingoing water fluxes
and thereby respects the mass conservation property of the shallow water equations.

4.4.1 Production-destruction splitting of the DG-discretized SW equations

To obtain a suitable production-destruction splitting representing ingoing and outgoing water
fluxes, we now take a closer look at the DG discretization for the cell means of the water
height H, given by H̄i = 1

|τi|
∫
τi
Hh(x) dx on the cell τi.

Neglecting boundary terms, inserting the test function W = (1, 0, 0)T into the DG scheme (4.13),
where F∗ is given by the well-balanced flux FWB in (4.14) which modifies a given positivity
preserving flux Fnum in order to preserve lake at rest steady states, we have

d

dt
(|τi|H̄i) = −

∑
j∈N(τi)

∫
Γij

Fnum1 (U−i,∗,U
+
i,∗,n) dσ =

∑
j∈N(τi)

pij −
∑

j∈N(τi)

dij , (4.17)

where N(τi) denotes the set of indices of neighbors to τi with common edge Γij = τi ∩ τj ,
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Fnum1 is the first component of Fnum and the terms pij and dij are given by

pij = max

{
0,−

∫
Γij

Fnum1 (U−i,∗,U
+
i,∗,n) dσ

}
,

dij = max

{
0,

∫
Γij

Fnum1 (U−i,∗,U
+
i,∗,n) dσ

}
.

In this way, we now distinguish between positive and negative flux contributions over element
boundaries. The choice for the production and destruction terms hereby guarantees the two
properties

pij − dij = −
∫

Γij

Fnum1 (U−i,∗,U
+
i,∗,n) dσ ,

implying that the combination of production and destruction terms recovers the entire flux
between two adjacent cells, and

pij = dji ,

signifying conservation of the kind that the amount of water flowing into cell τi over the edge
Γij = τi ∩ τj is exactly the amount of water leaving the cell τj through the same edge.

This decomposition of fluxes in positive and negative contributions was also considered by
Bollermann et al. [23] for finite volume evolution Galerkin methods. In that work, the authors
suggest a different approach to guarantee positivity preservation which is restricted to explicit
time integration.

The application of the modified Patankar approach is now based on the resemblance of the
derived production-destruction formulation (4.17) to those production-destruction equations
frequently encountered in the context of geobiochemical models. Designing a first uncondi-
tionally positive time integration method for the cell averages of water height, we could start
by considering the modified Patankar scheme (3.55). For the cell means of water height, the
fully discrete scheme based on the DG space discretization has the form

|τi|H̄n+1
i = |τi|H̄n

i + ∆t

 ∑
j∈N(τi)

pnij
H̄n+1
j

H̄n
j

−
∑

j∈N(τi)

dnij
H̄n+1
i

H̄n
i

 , (4.18)

where

pnij = max

{
0,−

∫
Γij

Fnum1 (Un,−
i,∗ ,U

n,+
i,∗ ,n) dσ

}
= dnji .

Due to the balanced weights for production and destruction terms, this scheme respects mass
conservation as well.

However, since this Patankar modification is based on an explicit Runge-Kutta scheme, sta-
bility requirements will still demand a time step restriction depending on the cell sizes. As
already mentioned, this can be disadvantageous in case of inhomogeneous grids containing
very small cells. Furthermore, since the modified Patankar-Euler scheme is only first order
accurate, the construction of higher order time integration schemes based on the Patankar
approach will be considered in the following.
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4.4.2 MPSDIRK3 time integration for the DG-discretized SW equations

Our aim is to apply the MPSDIRK3 scheme constructed in Section 3.4.3 to the DG-discretized
shallow water equations. Regarding the physical quantities, the preservation of non-negativity
only concerns the water height. In addition, based on non-negative cell averages H̄n

i , the
positivity preserving limiter (4.16) by Xing et al. may be applied to enforce non-negative
water height at specific nodal points of the DG cells. Therefore, effectuating non-negative
cell averages of water height should be the objective of the Patankar approach. Thereby,
we achieve non-negative cell means H̄i after an intermediate or after the final RK stage of
the underlying SDIRK scheme. Regarding the benefit of the positivity preserving limiter, we
recall that non-negative water height at the predetermined points on the DG cells is a basic
prerequisite specified in Theorem 4.2 to guarantee non-negative cell means H̄n+1

i after explicit
Euler time integration with a sufficiently small time step. In turn, according to Lemma 3.11,
we need this property regarding explicit Euler time integration, in conjunction with solvability
of the non-linear equations given by an implicit Euler step, in order to guarantee unconditional
positivity of the implicit Euler scheme,

Although in general, we will not be able to prove solvability of the implicit Euler scheme
applied to the DG semi-discretization of the non-linear shallow water equations if arbitrarily
large time steps are taken, numerical experiments demonstrate non-negative cell means of
water height for implicit Euler time integration as long as the Newton process solving the
resulting system of non-linear equations is convergent. In the following, we will therefore
assume that implicit Euler integration preserves non-negativity of the cell averages of water
height if the positivity preserving limiter has been applied to the current numerical solution.

The semi-discrete DG scheme in variational formulation (4.13) represents a system of ordinary
differential equations which can compactly be written as

U′(t) = g(t,U(t)) ,

where the vector U now collects the complete set of degrees of freedom of the spatial dis-
cretization. For example, in case of a representation via PKD basis functions (1.77) used on
triangular cells in Section 1.2.5, the semi-discrete solution U is composed of the coefficient
vectors ûi,lm on each triangular element τi ∈ T h.

The MPSDIRK3 algorithm introduced in Section 3.4.3 consists of three stages whereby the
first two stages correspond to the unmodified SDIRK3 scheme by Cash specified in Table 3.15.
In pseudocode, an unmodified step of the SDIRK3 method is reviewed in Algorithm 4.1.

As already discussed in Section 3.4.3, the MPSDIRK3 algorithm consists in a modification
of the third stage of the SDIRK3 scheme since negative cell averages of water height may
potentially occur in the sum of lower stages

s = Un + α r(1) + β r(2) = Un + α∆tg
(
tn + γ∆t,U(1)

)
+ β∆tg

(
tn + (γ + δ)∆t,U(2)

)
,

computed in Line 6 of Algorithm 4.1.

However, in the present context of time stepping for the DG-discretized shallow water equa-
tions, we extend the approach in Section 3.4.3 by constructing a hybrid method. More pre-
cisely, we will only use the Patankar modification if time integration using the unmodified
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Algorithm 4.1 Unmodified step of SDIRK3

Input: Un,∆t
Output: Un+1

1: Solve U(1) = Un + γg
(
tn + γ∆t,U(1)

)
2: r(1) ← ∆tg

(
tn + γ∆t,U(1)

)
3: s← Un + δ r(1)

4: Solve U(2) = s + γ∆tg
(
tn + (δ + γ)∆t,U(2)

)
5: r(2) ← ∆tg

(
tn + (δ + γ)∆t,U(2)

)
6: s← Un + α r(1) + β r(2)

7: Solve Un+1 = s + γ∆tg
(
tn + ∆t,Un+1

)
SDIRK scheme actually yields at least one negative cell average H̄i contained in the above
vector s.

Modification of the water height averages

Our goal is to modify the vector s in the third stage, having potentially negative cell averages
H̄s
i , by a vector z having non-negative cell averages of water height H̄z

i . For this purpose, we
recompute the cell averages of water height using the MPSDIRK3 approach. For simplicity of
presentation, boundary terms corresponding e.g. to inflow or outflow conditions or fixed walls
are hereby neglected in the formulation below. The inclusion of domain boundary conditions
into the formulation is straightforward and can be found in [132].

On interior DG cells, similar to the modified Patankar-Euler approach (4.18), we have

H̄z
i = H̄n

i +
∆t

|τi|
∑

j∈N(τi)

[
α

(
p

(1)
ij

H̄z
j

H̃
(1)
j

− d(1)
ij

H̄z
i

H̃
(1)
i

)
+ β

(
p

(2)
ij

H̄z
i

H̃
(2)
i

− d(2)
ij

H̄z
j

H̃
(2)
j

)]
, (4.19)

where the fluxes over element boundaries depending on the first two stages U(k), k = 1, 2,
yield the preliminary production and destruction terms defined by

p
(k)
ij = max

{
0,−

∫
Γij

Fnum1 (U
(k),−
i,∗ ,U

(k),+
i,∗ ,n) dσ

}
= d

(k)
ji , k = 1, 2 , (4.20)

and the denominators H̃
(k)
i of the Patankar weights are given by

H̃
(k)
i =

{
H̄s
i , if H̄s

i > Hε,

H̄
(k)
i , otherwise ,

(4.21)

where a suitable positive tolerance Hε of the water height needs to be chosen.

Now, the scheme (4.19) is based on the assumption that the quantities
p

(1)
ij

H̃
(1)
j

=
d

(1)
ji

H̃
(1)
j

and
p

(2)
ij

H̃
(2)
i

=

d
(2)
ji

H̃
(2)
i

are well-defined also for vanishing water height. Hence, in analogy to the computation
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of damped velocities in case of a very small water height in [105, 214, 27] and equation (4.12),
the preliminary production and destruction terms are furthermore modified to

p
(k)
ij

H̃
(k)
l

=
d

(k)
ji

H̃
(k)
l

=

 0, if H̃
(k)
l < Hε,

2H̃
(k)
l · p

(k)
ij

/((
H̃

(k)
l

)2
+ max

{(
H̃

(k)
l

)2
, Hε

})
, otherwise,

(4.22)

where l = j for k = 1 and l = i for k = 2.

Remark 4.5. By keeping the cell averages H̄s
i as Patankar weight denominators for moderate

values corresponding to a thin layer of water height H̄s
i > Hε, we intend to reduce the influence

of the Patankar modification in wet areas away from wet/dry fronts as theoretically explained
in Section 3.4.3 for general ODEs of the form (3.52).

Modification of the remaining degrees of freedom

So far, we have only considered how to modify the cell means of H to keep these quantities
non-negative independent of the time step size. The vector z to be constructed has the form

z =

[
Ĥz
i,lm

(̂Hv)
z

i,lm

]
i,lm

,

with Ĥz
i,oo = H̄z

i already determined by the Patankar approach.

The cell averages of the discharge don’t have to be modified, thus we set (̂Hv)
z

i,oo = (̂Hv)
s

i,00.
The next step is to adjust the higher order coefficients contained in the vector for all con-
servative variables including the discharges. In [132], we suggest to cancel the higher order
degrees of freedom for vanishing water height, i.e. we set

Ĥz
i,lm = (̂Hv1)

z

i,lm = (̂Hv2)
z

i,lm = 0 for l +m > 0 if H̄s
i < 0 . (4.23)

Furthermore, in order to obtain non-negative cell means H̄i after the next RK stage to be
executed, we have to employ the positivity preserving limiter (4.16) by Xing et al. again to
adjust the values of H at the set of nodes XN

i . We recall that this procedure is necessary
to enforce the forward Euler assumption (3.50) which enables us to exploit the unconditional
SSP property of the backward Euler scheme. Applying the positivity preserving limiter to a
vector z will be denoted by PPlim(z).

With the newly computed vector z substituted for s in Line 7 of Algorithm 4.1, we may
therefore again assume that the solution vector Un+1 obtained by the third stage which
corresponds to an implicit Euler type step with initial data z and time step γ∆t contains only
non-negative water height averages.

Accuracy away from the wet/dry front

Although the global accuracy of the MPSDIRK3 scheme reduces to first order in case of van-
ishing water height, the specific choice of Patankar weight denominators in (4.21) principally
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allows for a higher order of accuracy away from the wet/dry front. In particular, transferred
to the context of the DG-discretized SW equations, conditions (C1)–(C3) on page 195 in Sec-
tion 3.4.3 are fulfilled for a specific cell τi if the water height average H̄n

i and the averages
H̄n
j on triangles τj either adjacent to τi or adjacent to neighbors of τi are larger than the thin

layer tolerance Hε in (4.21). For a typical triangular cell τi within an unstructured grid, this
neighborhood described above is also depicted in Figure 4.5.

Figure 4.5: Neighborhood to a triangle τi, in which the order of the scheme is affected by a
possible wet/dry transition in τi.

That is, if a large enough neighborhood of τi lies in a wet region away from the wet/dry front,
we can expect third order accuracy of the time integration scheme in this region. On the
other hand, in wet/dry transition areas, we can expect at most first order accuracy of the
time integration scheme. However, this is in line with the approximation order in space, since
dissipation mechanisms such as modal filtering described in Section 4.4.3 often locally reduce
the accuracy of the spatial discretization at the shoreline to first order as well.

Summary of the MPSDIRK3 routine for the DG-discretized SW equations

Complementing the MPSDIRK3 scheme by applications of the positivity preserving lim-
iter (4.16), a complete MPSDIRK3 time step for the DG-discretized SW equations is listed
in Algorithm 4.2.

4.4.3 Shock capturing by modal filtering

In order to introduce a small but sufficient amount of numerical dissipation to the DG scheme
in case of non-smooth solutions, specific damping mechanisms are frequently applied. One
approach is to introduce numerical dissipation by modal filtering as described in [134, 135].
We will give a brief review of this filtering procedure in the following.

Modal filtering relies on a modal representation of the DG solution. For this purpose, in case
of triangular grids, the approximate solution on each triangle may be represented using the
PKD basis functions (1.77) introduced in Section 1.2.5. The approximation Ui = Uh|τi on a
specific triangle τi is then given by the expansion

Uh(ψ−1
i (r, s), t) =

∑
l+m≤N

ûi,lm(t)Φlm(r, s) ,
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Algorithm 4.2 MPSDIRK3 step for DG-discretized SW equations

Input: Un containing only non-negative water height averages, ∆t
Output: Un+1 containing only non-negative water height averages

1: Un ← PPlim(Un)
2: Solve U(1) = Un + γg

(
tn + γ∆t,U(1)

)
3: r(1) ← ∆tg

(
tn + γ∆t,U(1)

)
4: s← Un + δ r(1)

5: s← PPlim(s)
6: Solve U(2) = s + γ∆tg

(
tn + (δ + γ)∆t,U(2)

)
7: r(2) ← ∆tg

(
tn + (δ + γ)∆t,U(2)

)
8: s← Un + α r(1) + β r(2)

9: if there is i with H̄s
i < 0 then

10: U(1) ← PPlim(U(1))
11: U(2) ← PPlim(U(2))

12: Compute
p

(k)
ij

H̃
(k)
l

,
d

(k)
ji

H̃
(k)
l

by (4.20) and (4.22)

13: z← s
14: Compute H̄z

i by (4.19)
15: Replace water height averages of z by H̄z

i and modify higher order coefficients by (4.23)
16: s← z
17: s← PPlim(s)
18: end if
19: Solve Un+1 = s + γ∆tg

(
tn + ∆t,Un+1

)
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where ψi maps the specific triangle to the reference element, see (1.78).

In [134, 135], exponential filters including a shock indicator to adapt artificial dissipation to
shock positions have been developed. Modal filters of this kind are function σ : [0, 1]→ [0, 1]
of the form

σ(µ) = exp
(
−αisiµ2p

)
, (4.24)

with the shock indicator si, the filter order 2p, and the filter strength αi = Cp
N∆t
hi

, where N
is the polynomial degree of the DG representation, Cp is a constant and ∆t and hi denote
the time step size and the shortest height of τi, respectively. The parameter µ refers to
the specific modal coefficient in the modal representation of the DG solution, since the aim
of modal filtering is to apply an increasing amount of artificial dissipation to higher order
coefficients in comparison to the numerical diffusion applied to lower order ones. Exponential
modal filtering by a filter function of the form (4.24) thus modifies the DG approximation to

Umod
h (ψ−1

i (r, s), t) =
∑

l+m≤N
ûmod
i,lm (t)Φlm(r, s) ,

where

ûmod
i,lm = exp

(
−αisiη2p

)
ûi,lm, η =

l +m

N + 1
, (4.25)

is the modified vector of PKD coefficients.

In [133], the filter action on the water height representation Hh was modified in order to
preserve the property of well-balancedness. However, further investigations showed, that it is
sufficient to rely on a well-balanced definition of the shock indicator si in (4.25). This indicator
is based on the decay rate of PKD coefficients, similar to the definition in [159], where now the
coefficients of the water surface level are taken into account to guarantee well-balancedness.
The precise form of the shock indicator is given by

si = (H̄∗i )−1 min

1, 1000(5N4 + 1)
∑

l+m=N

(η̂i,lm)2 ·

( ∑
l+m<N

(η̂i,lm)2 + ε̃

)−1
 , (4.26)

where ε̃ = 10−10 is a small regularization parameter, and η̂i,lm = Ĥi,lm + b̂i,lm denotes the
coefficients of surface elevation. In order to introduce more stability in nearly dry regions, a
division by the cell mean of water height is introduced in the definition (4.26), different from
the resolution indicator defined in [133]. Hereby, H̄∗i = max{H̄i, Hε} denote the cell means of
water height cut above the thin layer tolerance Hε.

4.4.4 Numerical experiments

In the following, we report the behavior of the MPSDIRK3 scheme for the DG-discretized
shallow water equations with respect to three selected test cases computed in [132].

Before describing the specific results, some of the aspects of the numerical algorithm need
clarification. First, the thin layer tolerance Hε to be defined by the user is set to Hε = 10−6
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throughout this section. Furthermore, as already discussed, a direct computation of the ve-
locities as vi = (Hv)i /Hi will eventually lead to numerical instabilities for small water height
even for bounded discharges. Similar to regularization (4.12) first introduced by Kurganov and
Petrova, we therefore compute damped velocities within the DG scheme whenever point-wise
values are required. More precisely, we set

vi = 0 if Hi < Hε and vi =
2Hi · (Hv)i

H2
i + max{H2

i , Hε}
otherwise .

The gravitational constant was set to g = 9.812 in all the following examples and as the
positivity preserving numerical flux function Fnum in (4.14), we use the HLL flux described
in [76].

For comparison to the implicit MPSDIRK3 time integration scheme we also applied the ex-
plicit third order Shu-Osher TVD Runge-Kutta time discretization (TVD-RK3) developed
in [177]. The nonlinear systems of equations arising due to the implicit time integration were
solved using a Jacobian-free Newton-GMRES scheme. In order to prevent the error in time
to dominate the error in space, the CFL number for implicit time integration was set quite
low, in fact we set

∆t = hi ·max{|vi|+
√
gHi}

unless otherwise specified, where hi denotes the shortest height of the triangle τi. The time
step choice for the explicit scheme was based on the positivity requirement leading to smaller
time steps than the linear stability requirement alone.

Oscillating Lake

For an illustration of the properties of both implicit and explicit scheme in the context of
wetting and drying, we first study a test case proposed in [60] which simulates an oscillating
lake in a paraboloidal vessel depicted in Figure 4.6. Hereby, we consider the computational
domain Ω = [−2, 2]× [−2, 2], and the bottom elevation given by

b(x) = 0.1(x2
1 + x2

2).

Figure 4.6: 2D cut of paraboloidal vessel at y = 0.
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A periodic analytical solution of the shallow water equations (4.1) is given by

H(x, t) = max{0, 0.05(2x1 cos(ωt) + 2x2 sin(ωt)) + 0.075− b(x)},
v1(x, t) = −0.5ω sin(ωt),

v2(x, t) = 0.5ω cos(ωt),

where ω =
√

0.2g.

This test case examines the ability of the numerical methods to deal with wetting and drying.
Therefore, it also tests the suitability of the positivity preserving limiter in combination with
modal filtering. As initial conditions for the DG scheme, the values of the analytical solution
at t = 0 were taken. As the fluid never reaches the boundary of the computational domain,
the choice of boundary conditions is less crucial. In our computations, periodic boundary
conditions were implemented. The algorithm was carried out for a polynomial degree of
N = 2 on a computational grid consisting of K = 23138 elements. Filter parameters where
set to p = 1 and Cp = 10.

Figure 4.7 presents a 3D view of the water surface elevation η = H + b and the discharges
Hv1, Hv2 of the DG solution at output time of T = Tper/6, where Tper = 2π/ω is the
oscillation period. Hereby, coloring refers to the non-flat bottom topography b. Figure 4.8
depicts water height H and discharges Hv1, Hv2 of the DG solution at a late output time of
T = 5 · Tper. Hereby, the implicit MPSDIRK3 scheme described in Algorithm 4.2 was used
for time integration. Due to the large number of cells, only the cell means were used for
visualization. In Figure 4.9 the time evolution of the wet/dry transition zone is shown for
output times of T = Tper/6, Tper/3, Tper/2, Tper, 2 · Tper, 5 · Tper. The results agree very well
with those presented in [214]. Hence, one can conclude that the wetting and drying treatment
suggested in that work may also be combined with shock capturing by modal filtering and
implicit time integration.

In Table 4.1, we compare the CPU times of our MPSDIRK3 scheme to those obtained by
the TVD-RK3 scheme of Shu and Osher for the oscillating lake test on increasingly stiff
computational grids. The stiffness of the grids is increased via local refinement as depicted in

Figure 4.10, where we use the stiffness measure S =
max

τi∈Th
|τi|

min
τi∈Th

|τi| . According to the results, the

implicit scheme beats the explicit one by a factor up to 3.5. Table 4.1 furthermore lists the
mass conservation errors committed by the implicit scheme. Full conservation can obviously
only be achieved if the accuracy within the iterative solver is set to zero, which is neglected due
to practical reasons as usual. However, the results in Table 4.1 show that the corresponding
conservation error can be neglected.
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η = H + b Hv1 Hv2

Figure 4.7: Oscillating lake. DG-MPSDIRK3 solution with modal filtering (parameters p = 1
and Cp = 10) for a polynomial degree of N = 2 and K = 23138 elements. 3D view of water
surface elevation η = H + b and discharges Hv1, Hv2 at output time T = Tper/6, only cell
means are used for visualization.

Figure 4.8: Oscillating lake. DG-MPSDIRK3 solution with modal filtering (parameters p = 1
and Cp = 10) for a polynomial degree of N = 2 and K = 23138 elements. Water height H and
discharges Hv1, Hv2 at output time T = 5 · Tper, only cell means are used for visualization.

Stiffness S Avg. ∆tEX Avg. ∆tIM
CPUEX

CPUIM
econs

6.5 2.99e-4 1.07e-2 0.65 2.31e-14
25.9 1.51e-4 5.42e-3 0.82 1.11e-14
103.4 7.55e-5 2.71e-3 1.29 8.88e-15
413.7 3.77e-5 1.36e-3 1.52 6.93e-14
1654.6 1.89e-5 6.79e-4 1.34 2.25e-13
105894.6 2.40e-6 8.57e-5 3.51 5.42e-13

Table 4.1: CPU time comparison and conservation error of implicit scheme.
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Figure 4.9: Wet/dry transition: Water height levels at T = Tper/6, Tper/3, Tper/2, Tper,
2 · Tper and 5 · Tper.

Figure 4.10: Stiff computational grids with S = 1654.6 (left) and S = 105894.6 (right).
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Small Perturbation of a Steady State

This classical test case was given by LeVeque in [113]. It illustrates the combination of the
well-balanced DG scheme with modal filtering and implicit MPSDIRK3 time integration. The
computational domain is the rectangle Ω = [0, 2]×[0, 1]. The non-constant bottom topography
is given by the function

b(x) = 0.8e−5(x1−0.9)2−50(x2−0.5)2

and the initial fluid depth is

H(x, 0) =

{
1− b(x) + 0.01, if 0.05 ≤ x1 ≤ 0.15,
1− b(x), otherwise.

Thus, the surface H + b is almost flat except for the small perturbation by 0.01 for 0.05 ≤
x1 ≤ 0.15, also illustrated in Figure 4.11. Furthermore, the velocity is initially set to v = 0.
The boundary conditions were specified in the following way. As in [27], periodic boundary
conditions were implemented at the lower and upper boundaries, although in [113], zero-
extrapolation (outflow) conditions were prescribed. At the left and right boundary, we em-
ployed outflow conditions as in [113]. However, outflow conditions in combination with nu-
merical dissipation introduced only by modal filters led to an instability of the scheme with
large velocities directly at the boundary. However, no problems occurred with periodic con-
ditions on a larger domain. Therefore, we used the TVD limiter by Cockburn and Shu [43]
with parameter M = 0 for those cells directly at the computational boundaries.

Figure 4.12 depicts the DG solution with modal filtering (p = 1, Cp = 10) showing the
approximate surface w = b+H at different output times T for a polynomial degree of N = 2
on a computational grid consisting of K = 46360 elements. As for the previous oscillating
lake test case, only the cell means were used for visualization. Here, the main purpose is to
show that our filtering techniques produce correct results and a very detailed resolution of
the small perturbation also in the case of implicit time integration. As in the case of explicit
time integration shown in [133], the basic features of the results are in very good agreement
with those presented in [212]. We obtain a better resolution of the wave structures due to
less dissipative shock capturing and in comparison with the second-order computations on a
much finer grid in [27], the advantage of a higher order scheme is visible.

Figure 4.11: 2D cut of the bottom topography and the initial water surface for the small
perturbation test case.
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T = 0.12 T = 0.24

T = 0.36 T = 0.48

Figure 4.12: Small perturbation test case. Water surface η = H + b output times T = 0.12,
T = 0.24, T = 0.36 and T = 0.48, with 30 contour levels from 0.99 to 1.01.

Wetting and Drying on a Sloping Shore

This test case proposed in [188, 168] describes the run-up and successive reflection of a wave
on a slope given by the bottom topography

b(x) = b(x1) =

{
0, if x1 < 2xa,
x1−2xa

19.85 , otherwise,

where xa =
√

4D
3δ arcosh

(√
1

0.05

)
, D = 1, δ = 0.019. The initial water height and initial

velocity vector for this test case are given by

H0(x) = H(x, 0) = max
{
D + δsech2(γ(x1 − xa))− b(x), 0

}
,

v0(x) = v(x, 0) =

(√
g

D
H0(x), 0

)T
,

where γ =
√

3δ
4D . The computational domain for this example is the rectangle Ω = [0, 80] ×

[0, 2]. The modal filter parameters for this test case where set to p = 1 and Cp = 10.

Figures 4.14 and 4.15 show the 2D cuts at x2 = 0.05 of the DG solutions for N = 2 at
subsequent output times T = 9, 17, 23, 28, 80. On the left side, the approximation is obtained
by the DG scheme with explicit time integration using a very fine grid for which the com-
putational domain was reduced to [0, 80]× [0, 0.2]. This grid then consists of 33602 triangles
with minimal and maximal areas of |τmin| ≈ 3.53 · 10−4 and |τmax| ≈ 6.06 · 10−4, respectively,
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and corresponds to a subdivision of the interval [0, 80] into 2400 elements of equal size at
the lower and upper grid boundary. On this fine grid, the approximate solutions using the
implicit MPSDIRK3 scheme are visually indistinguishable from those obtained by explicit
time integration. Hence, the fine grid solution serves as reference solution for the numerical
results on the much coarser grid composed of 348 elements depicted in Figure 4.13 for the
region {x ∈ Ω |x1 ∈ [40, 80]}.
The coarse grid computations, shown on the right side of Figures 4.14 and 4.15, are carried
out for a better comparison of implicit and explicit time integration. For T = 17, the DG
solutions show a small overshoot to the right of the dashed bottom line in both cases of
explicit and implicit time integration. This reflects the fact that the positivity preserving
limiter (4.16) guarantees non-negative water height only at the specified quadrature points
but not in the complete triangular subdomain. The numerical results for the coarse grid as
well as the visually indistinguishable solutions for the fine grid show that both explicit and
implicit scheme have the same ability to correctly reproduce the separate wetting and drying
phases as well as the balanced stationary state after long time integration. Although the
implicit MPSDIRK3 scheme uses much larger time steps of ∆t = 2hi · max{|vi| +

√
gHi}

on the coarse grid, the results are nonetheless as accurate as those obtained by the explicit
TVD-RK3 scheme. Hence, in this prototype example of wetting and drying processes, there
is a potential to increase the time step above the stability and positivity restrictions posed by
explicit time integration. Furthermore, the implicit scheme yields a better representation of
the stationary state at T = 80 as in this case, the coarse grid solution is closer to the straight
line of the reference solution.

Figure 4.13: Coarse grid used for comparison of implicit vs. explicit. time integration.
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Figure 4.14: Sloping shore. DG solutions for output times from top to bottom: T = 9, 17;
Water surface w = h + H. Left side: reference solution, right side: close-up for coarse grid
comparison of implicit and explicit time integration.
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Figure 4.15: Sloping shore. DG solutions for output times from top to bottom: T = 23, 28, 80;
Water surface w = h + H. Left side: reference solution, right side: close-up for coarse grid
comparison of implicit and explicit time integration.



Summary and Future Prospects

In this thesis, several aspects regarding the numerical simulation of fluid flow problems were
discussed.

Regarding high order methods for space discretization, local and global SBP properties were
detected in specific classes of DG schemes and flux reconstruction methods. Hereby, element-
wise generalized SBP operators are obtained from nodal DG and flux reconstruction schemes
on strictly interior nodal sets. The SBP properties of DG schemes were described in one
space dimension, on tensor-product grids and on unstructured triangular grids. On the other
hand, considering the DG scheme on a global level and including numerical flux functions
results in a global upwind SBP operator. The identified global upwind SBP form of the DG-
discretized advection equation should be extendable in principle to nonlinear conservation
laws and higher space dimensions. In addition, the familiar subcell finite volume property of
DG schemes on Legendre-Gauss-Lobatto nodes was transferred to the DG variant on strictly
interior Legendre-Gauss nodes. The DG scheme may thus be regarded from a microscopic
view on each cell by its subcell finite volume form and on a macroscopic scale by its global
upwind SBP form. While the subcell finite volume form may be used for instance to develop
a shock capturing mechanism with subcell resolution, the global upwind SBP form measures
the amount of diffusion introduced by the numerical flux functions employed at cell interfaces.
This shows that each of these formulations is useful in their own right. Regarding their future
prospects, these multifaceted representations of the DG scheme should therefore continue
to be of use for the further analysis and design of suitable numerical schemes for fluid flow
problems.

The SBP property itself enables to discretize skew-symmetric forms of conservation laws in
a manner which both satisfies the primary conservation principles and specific secondary
balances. In this work, we therefore used the generalized SBP properties of the DG scheme
on Legendre-Gauss-Lobatto nodes to construct kinetic energy preserving Legendre-Gauss DG
schemes for the Euler- and Navier-Stokes equations and energy conservative Legendre-Gauss
DG schemes for shallow water flow over non-flat bottom topography. When combined with
suitable correction terms for cell interfaces which compensate for the lack of cell boundary
nodes, these schemes can successfully compete with their counterparts on Legendre-Gauss-
Lobatto nodes in terms of accuracy and efficiency. The application of the standard and
KEP-DG schemes on both Legendre-Gauss and Legendre-Gauss-Lobatto nodes to the moving
piston problem provides an example of a coupled system where the additional KEP property
of the fluid solver not only results in a higher accuracy of the fluid solution but also in a better
representation of the structure displacement. In this context, the KEP property of the LGL
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DG scheme also compensates for the lower degree of exactness of the LGL nodes.

The discussion of energy conservative DG schemes for shallow water flow in this work also
contains a comparison to the MaMEC scheme on non-uniform staggered grids in terms of
well-balancedness for moving water equilibria. It was shown that while the MaMEC scheme
guarantees the preservation of these more general stationary states, the energy conservative
DG schemes do not possess this property even though they are well-balanced regarding the
lake at rest steady state. Considering the application of SBP schemes to hyperbolic systems of
conservation laws which are given in skew-symmetric form on staggered grids could therefore
be an interesting route for future investigations.

Dealing with the multitude of available schemes which realize the discretization of diffusion
terms in DG framework, specific aspects regarding their interrelation and stability properties
were studied. In particular, interrelations were found between (σ, µ)-schemes which are based
on the inclusion of penalty terms and contemporary discretizations using an auxiliary variable
for the solution derivative. Furthermore, recent results on energy stability of the BR2 flux
employed within nodal DG or ESFR schemes in one space dimension were reviewed and
extended. This results in a simplified form of the condition on the BR2 penalty parameter to
guarantee energy stability and yields equivalency assertions among different implementations
of BR2 schemes with respect to the computation of the BR2 lifting operator on the one hand
and of specific BR2 schemes to the BR1 scheme on the other hand.

Subsequently, we studied the influence of various DG diffusion discretizations on dissipation
and dispersion properties for advection-diffusion equations. By a comparison of the wave
propagation properties of the DG scheme using BR2 diffusion fluxes, a similarity to the results
of the BR1 flux for low values of the penalty parameter ηe could be observed. In addition,
there is no optimal choice of ηe which provides the most accurate result for all wave numbers
and polynomial degrees. In fact, an alternating behavior could be observed, whereby the
results for the lowest penalty parameter to guarantee energy stability and a higher value of
ηe = 3 alternate to provide the smallest error. Considering the alternate LDG fluxes, the
performance of LDGa is in general more favorable compared to LDGb, both for the well-
resolved problem and the low-resolution test case, independent of the polynomial degree and
the nodal DG set. For well-resolved wave numbers, the observation of higher accuracy of the
BR1 scheme compared to LDG generally only holds in case of Legendre-Gauss collocation
and even polynomial degree of the DG approximate solution. Furthermore, a similar odd-
even phenomenon was discovered for DG schemes on Legendre-Gauss nodes applied to the
well-resolved problem, since the BR2 schemes with moderate and large penalty parameters
beat the BR1 scheme in all odd degree cases, with errors decreasing for increasing ηe while
the BR2 scheme for the smallest energy stable penalty parameter performed best in all even
degree cases.

Regarding time integration for viscous flow computations, the stability properties of a range
of IMEX-DG schemes using advection-diffusion IMEX splitting were investigated. Thereby,
a fully discrete L2-stability analysis was carried out for the 1D linear advection-diffusion
equation discretized in space by the DG scheme using (σ, µ) diffusion fluxes and in time by
IMEX Runge-Kutta schemes. The focus of this investigation was set on the influence of the
specific diffusion treatment. With the objective of singling out combinations which allow a
time step restriction solely based on the advection and diffusion coefficients and independent
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of grid refinement, a sufficient condition regarding the parameters σ and µ was found by a
theoretical analysis. This condition is fulfilled in particular by the BR2 scheme, by a symmetric
form of the LDG scheme on Gauss-Lobatto nodes, and by the recent

(
1
4 ,

9
4

)
-recovery scheme.

However, the BR1 scheme and the Baumann-Oden method are not unconditionally stable
in this sense. This behavior was also demonstrated in corresponding numerical experiments.
Consequently, apart from the alternate LDG fluxes which have already been considered in
this context, specific (σ, µ)-schemes also possess the desired stability properties with respect
to IMEX time discretization.

This insight is relevant in particular for the a-priori selection of the different building blocks
in the design of a numerical scheme, keeping in mind that both variants of the BR scheme
are widely used DG diffusion treatments in computational fluid dynamics. If IMEX time
integration is to be applied in advection-diffusion split form, the results indicate that a small
amount of artificial diffusion concerning viscous flux discretization is necessary and schemes
with neutral behavior such BR1 should be excluded in this case. There is also a link to
the respective upwind SBP properties of the specific DG diffusion treatments involved in the
analysis. While the BR1 scheme is a second-derivative generalized SBP operator not requiring
the extension by an upwind characterization, the alternate LDG fluxes represent true upwind
SBP operators. Future work could thus consider further suitable combinations of first- and
second-derivative upwind SBP operators with a focus on the specific form of the global SBP
property which includes the influence of artificial diffusion introduced by the various types
of numerical fluxes. For the prototype non-linear testcase of the viscous Burgers’ equation,
the numerical results indicate an analogous behavior concerning grid-independent stability of
IMEX time integration depending on the evaluated diffusion fluxes. This performance should
also be validated by theoretical means. Furthermore, an extension of this investigation to the
multi-dimensional case as hinted at the end of Section 3.3 would be desirable.

A second contribution of this work in the context of advanced time integration concerns the
Patankar approach to construct unconditionally positive and conservative numerical schemes
for ordinary differential equations in production-destruction form. Hereby, we considered
the behavior of these schemes for production-destruction formulations resulting from semi-
discretized partial differential equations. More specifically, this involved the study of trun-
cation errors of Patankar-modified explicit Runge-Kutta schemes for the classical examples
of the linear advection equation and the linear heat equation discretized by low order finite
difference schemes in conservation form. In fact, a first instructive example showed that the
first order non-conservative Patankar-Euler method naively applied to the semi-discrete linear
heat equation results in an inconsistent fully discrete method. For the conservative mPaRK2
scheme, which is second order accurate for ordinary differential equations, no order reduc-
tion occurs if the exact solution is sufficiently smooth and is bounded by a strictly positive
lower limit. However, in the case that the exact solution vanishes at discrete points, order
reduction effectively occurs as confirmed by the corresponding numerical results. A possible
improvement of the original mPaRK2 scheme was given by a related approach based on a
direct Patankar-type correction of the explicit part within the implicit trapezoidal rule. Since
the enforcement of positivity also restricts the time step sizes of classical implicit methods
with the exception of first order schemes, the Patankar trick was then applied to a third-order
accurate implicit SDIRK scheme in order to combine unconditional positivity with higher
order in time.
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Subsequently, the resulting MPSDIRK3 scheme was applied to the time integration of the
DG-discretized shallow water equations on unstructured triangular grids – aiming at a ro-
bust and accurate simulation of wetting and drying processes. For this purpose, a suitable
production-destruction equation for the cell averages of water height was extracted from the
DG-discretized continuity equation. The weights introduced by the Patankar scheme are
thereby designed to sufficiently reduce the outgoing water fluxes constituting the destruc-
tion terms. Applying the corresponding weights to the ingoing fluxes which constitute the
production terms then recovers mass conservation. The MPSDIRK3 scheme is third order
accurate away from the wet/dry front but we can expect at most first order accuracy of
the time integration scheme in wet/dry transition areas. Nonetheless, this matches with the
approximation order in space, since at the shoreline, dissipation mechanisms such as modal
filtering locally reduce the accuracy of the spatial discretization to first order as well. Nu-
merical experiments were carried out for several classical test cases for shallow water flows
regarding wetting and drying and well-balancedness in order to study the performance and
accuracy of the implicit MPSDIRK3 time integration in comparison to the explicit TVD-RK3
scheme. Disposing of the restriction on the time step size for positivity preservation, the DG
scheme with MPSDIRK3 time integration may employ larger time steps compared to explicit
TVD-RK time integration and needs less computational time on stiff grids.

This thesis also contains a review on numerical methods for wetting and drying shallow water
flows showing that the variety of different wetting and drying treatments present in current
algorithms is impressive. Most numerical schemes try to satisfy the key properties of posi-
tivity preservation, local and global mass conservation, well-balancedness, non-permeability
of dry areas, and elimination of artificial pressure gradients. For first order schemes in space
and time, wetting and drying is managed more easily because many of the desired properties
can already be fulfilled by a suitable choice of the numerical flux function and the source term
discretization. For higher order schemes such as the DG scheme all of these properties require
more effort. For positivity preservation, this specifically comprises guaranteeing positivity of
the water height at additional interior nodes, employing SSP time integration with a specific
time step restriction, and preventing artificial pressure gradients. With respect to the effi-
ciency of implicit time integration, there still is room for further development. In some cases,
difficulties may arise in form of a slow convergence of the Newton solver due to non-smooth
switches caused by the wetting and drying treatment. For instance, these switches include the
computation of the velocity from the discharge, which is unstable for small water height, as
well as some computations within the Riemann solver. The check for neglecting gravitational
forces usually is a non-smooth switch as well. In this context, a promising approach by Le et
al. [106] is to regulate the gravitational forces by a blending parameter in partially dry cells
to enable fast Newton convergence of the implicit solver.
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[145] S. Nüßlein, H. Ranocha, and D. I. Ketcheson. Positivity-preserving adaptive Runge-
Kutta methods. 2020. arXiv: 2005.06268.

[146] P. Olsson. “Summation by parts, projections, and stability. I”. In: Mathematics of
Computation 64.211 (1995), pp. 1035–1065.

[147] P. Olsson. “Summation by parts, projections, and stability. II”. In: Mathematics of
Computation 64.212 (1995), pp. 1473–1493.

[148] S. Ortleb. “A comparative Fourier analysis of discontinuous Galerkin schemes for
advection-diffusion with respect to BR1, BR2, and local discontinuous Galerkin diffu-
sion discretization”. In: Mathematical Methods in the Applied Sciences 43.13 (2020),
pp. 7841–7863.

[149] S. Ortleb. “A Fourier-type analysis of the Gauss and Gauss-Lobatto P1-discontinuous
Galerkin methods for the linear advection-diffusion equation”. In: AIP Conference
Proceedings 2116 (2019), p. 340003.

[150] S. Ortleb. “A kinetic energy preserving DG scheme based on Gauss-Legendre points”.
In: J. Sci. Comput. 71 (2017), pp. 1135–1168.

[151] S. Ortleb. “Fourier analysis of DG schemes for advection-diffusion”. In: PAMM 20
(2020). accepted.

[152] S. Ortleb. “L2-stability analysis of IMEX-(σ, µ) DG schemes for linear advection-
diffusion equations”. In: Applied Numerical Mathematics 147 (2020), pp. 43–65.

[153] S. Ortleb and M. Franke. “On the benefit of the summation-by-parts property on inte-
rior nodal sets”. In: ECCM - ECFD 2018 : Proceedings of the 6th European Conference
on Computational Mechanics (Solids, Structures and Coupled Problems) and the 7th
European Conference on Computational Fluid Dynamics. Ed. by R. Owen, R. de Borst,
J. Reese, and C. Pearce. 2018, pp. 77–88.

https://arxiv.org/abs/2005.06268


254 BIBLIOGRAPHY

[154] S. Osher and R. Sanders. “Numerical approximations to nonlinear conservation laws
with locally varying time and space grids”. In: Math. Comput. 41 (1983), pp. 321–336.

[155] S. V. Patankar. Numerical heat transfer and fluid flow. Series on Computational Meth-
ods in Mechanics and Thermal Science. Hemisphere Publishing Corporation (CRC
Press, Taylor & Francis Group), 1980.

[156] M. Pelanti, F Bouchut, and A. Mangeney. “A Riemann solver for single-phase and
two-phase shallow flow models based on relaxation. Relations with Roe and VFRoe
solvers”. In: J. Comput. Phys. 230 (2011), pp. 515–550.

[157] J. Peraire and P.-O. Persson. “The compact discontinuous Galerkin (CDG) method
for elliptic problems”. In: SIAM J. Sci. Comput. 30 (2008), pp. 1806–1824.

[158] P.-O. Persson and J. Peraire. “Newton-GMRES preconditioning for discontinuous Galerkin
discretizations of the Navier–Stokes equations”. In: 30 (2008), pp. 2709–2733.

[159] P.-O. Persson and J. Peraire. “Sub-cell shock capturing for discontinuous Galerkin
methods”. In: 44th AIAA Aerospace Sciences Meeting and Exhibit. AIAA-2006-0112.
2006.

[160] S. Piperno. “Explicit/implicit fluid/structure staggered procedures with a structural
predictor and fluid subcycling for 2D inviscid aeroelastic simulations”. In: International
Journal for Numerical Methods in Fluids 25 (1997), pp. 1207–1226.

[161] Serge Piperno. “Simulation numérique de phénomènes d’interaction fluide-structure”.
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