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1 General introduction 

The agricultural sector and herein the agricultural production is considered as a major 

backbone of every society, being related directly to the fulfilment of one of the basic human 

needs – food (Gillespie and van den Bold, 2017). Without reliable and sustainable food 

production it is not possible to imagine a “functional” society. Since the industrial revolution 

and beginnings of the technological advancement used in agricultural production, societies 

were changing and evolving accordingly. First world industrial countries development and 

better living conditions for members of those societies was greatly dependent on early 

investment in conventional farming machinery (Awokuse and Xie, 2015). Increase in the 

agricultural production productivity due to major investments in improving conventional 

farming equipment resulted in greater product output with less labour force required 

(Binswanger, 1986; Pingali, 2007). Technological advancement in general relies greatly on 

enormous investment, which is not always available in the agricultural sector. Only after 

specific technologies are present in industry long enough, thus the initial costs are low, an 

overflow of these technologies into the agricultural sector has been observed throughout 

history (Lowenberg-DeBoer, 1999). The reason for this is that agricultural production depends 

on relatively low profit margins with high production risks. Towards the end of the previous 

century and beginning of this, high investment in industrial technology resulted in higher 

commercialisation of specific technologies resulting in lower initial investment costs that 

found its way into the agricultural sector and agricultural production (Lowenberg-DeBoer, 

1999). Nevertheless, for already highly efficient agricultural production systems in developed 

countries one of the main goals, next to the technological advancement of agricultural 

production methods and means, is to minimize yield gaps and environmental degradation. 

The projected population increase and requirement of additional agricultural area for crop 

cultivation and renewable energy production, the competition for additional land is forcing 

agricultural producers to invest in higher productivity per land area. In addition, because of 

projected climate change effects, the importance of a more sustainable and less volatile rainfed 

agricultural production has to be considered. The productivity per land area is expected to be 

affected on already established and relatively productive agricultural production areas in 

developed countries. 

In agricultural production potential yield can be defined as yield of a specific variety cultivated 

under non-limiting and non-reducing conditions. Simplified, yield limiting factors include 

factors such as water and nutrients (abiotic) and reducing factors such as pests and diseases 

(biotic). There are other factors influencing potential yield which are not “manageable” for the 

purpose of attaining higher yield on a large-scale production, such as solar radiation and 

temperatures. The factors: nutrients and plant disease, which were selected for this study, are 

manageable to a certain extent by means of nutrient application rates or disease protective 

measures, that farmers can devise based on crop needs and economic feasibilities. Other 

factors influencing potential yield and consequently yield gap such as selection of suitable 

variety for specific region (based on required growing degree days and photoperiod), planting 

date, crop maturity and harvest date fall into crop management practices, which are 

manageable and can have a major influence on potential yield and yield gap. 

The yield gap, depending on the definition of yield, can be analysed from different 

perspectives such as genetic potential (breeding), environmental factors (different growing 

environments), management practices affected by various market and socio-political 
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imperatives (Guilpart et al., 2017; Snyder et al., 2017) etc. The definition of the yield gap, in the 

context of the yield potential or actual yield in a farmers’ field and that attained in 

experimental research stations can cause a confusion in yield gap analytical methods (Lobell 

et al., 2009), making it difficult to address the problem in the most adequate way. Throughout 

history yield gaps in general were analysed predominantly in the context of the food security 

of the rising population (Guilpart et al., 2017) as important broad scale parameter indicating 

social welfare. In technical terms based on the production means and resources within specific 

cropping systems (individual crops on farm level) yield gaps can be considered as narrow 

scale parameter. The term global (broad – region, state etc.) yield gap is used for describing or 

evaluating a multi-crop-based production output as a form of socio-economic balance that 

integrates crop-specific yield gap from one targeted cropping system (individual crop) on farm 

production level (narrow – farm level crop specific economic balance). 

Cropland management, sustainable food production and supply chains as an element of social 

welfare gained entirely new dimensions in the second half of the previous century, due to 

raising awareness about complexity of the social, food production and climate interactions, 

backed up with huge amounts of information collected. The need for decision support systems 

was recognised and gave a rise to various cropland management decision support platforms 

(Ewert et al., 2015; Jones et al., 2017; Muller and Martre, 2019). Due to the complexity of the 

task and challenges that came about, early decision support in form of crop models was very 

specific (Ewert et al., 2015; Jones et al., 2017). They were mostly targeting specific tasks such as 

better understanding of crop physiology based on the observed in-season dynamics and 

interactions of the plant with specific environmental factors for specific fields with respect to 

specific management practices (Ewert et al., 2015). With the emergence of various 

“specialised” (specific crop under specific management practice) crop modelling solutions, 

new opportunities of linking bio-physiological development of the plant based on in-season 

dynamics to the economic viability of specific crops with regard to the specific crop 

management practices were created. The combination of the bio-physiological and economic 

dimension of crop management backed up with advancement of information technologies 

(higher computation power of used devices) paved the way to more complex decision support 

platforms capable of integrating a full spectrum of the factors affecting crop management. 

Later on, crop models were integrated into computational platforms usable for analysing 

global crop management trends with respect to future climate changes (Muller and Martre, 

2019). Since field and greenhouse experiments are costly and time consuming, crop growth 

modelling environments offer unique chances to investigate crop growth and yield 

constraining factors in order to get a better insight into the factors contributing the most to the 

size of the yield gap from “crop” perspective. Since agricultural production is an economic 

entrepreneur biophysical yield maximisation of crops has to be further extended with 

economic analysis. All available and used resources in agricultural production: water, soil 

fertility maintenance, soil degradation reduction, management practices etc. are genuinely 

even more difficult to address on the level of smallholder farms where investment is limited 

and cannot rely on expensive field trials or advanced technology. Decision support tools and 

qualitative and quantative analysis tools could provide a form of “cheaper” technical support 

to enhance the overall resource use efficiency. Various technological and manual methods 

providing huge amounts of data about crop growth and efficiency of the agricultural resources 

used have to be interpreted in a meaningful way. Information about in-season biomass 

accumulation, soil texture and water, and indirectly N uptake and spread of disease in the 

field can enable more precise (temporally and spatially) crop management within decision 
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support systems capable integrating all of this information.   Due to complex interactions of 

physiological, physical and economic factors involved, the need for decision support systems 

enabling informed management is greater than ever. Optimal N management (without over- 

or under-applying) in agriculture has a direct effect on farm level revenues, soil degradation 

and environmental pollution. Already existing decision support systems even though 

advanced still need to be improved. The studies conducted in this thesis aimed in investigating 

specific aspects of yield limiting and reducing factors with emphasis of potential improvement 

and disclosure of limitations. 

There are still very important gaps in informed management of the fertiliser and chemicals in 

agricultural production under irrigated and rainfed conditions with respect to the economics 

of farm level crop management. Within the studies conducted in this thesis, analysis priority 

was given to the cropping system-based yield gap (one crop analysis) affected on a site-specific 

scale by spatial and temporal variabilities, biotic and abiotic stresses within the field of specific 

cropping systems. It has to be pointed out that a site-specific yield gap within designated 

cropping systems may have positive or negative effects on the broad yield gap in the context 

of multi-crop based cropping system interactions (Guilpart et al., 2017). The reason for 

ambiguity that arises when determining what is the most “reasonable” starting point for 

analysing the yield gap, either from cropping system (narrow scale) or global multi-crop-based 

yield gap (broad scale) is found in the specific “trade-off” resulting from objectives engraved 

in the yield maximisation concept itself. Yield maximisation, which seems to be a straight 

forward objective, connects three extremely “fluid” interconnected objectives: agronomical 

(bio-physiological), economic and socio-economic yield maximisation. Some of these three 

underlying dimensions of the cropping system-based yield gap closure were analysed within 

the current thesis in the context of the optimisation of the nutrient use efficiency on a site-

specific level (nitrogen) and field-specific biotic stress impact evaluation (leaf disease).    

1.1 Research question – aims and objectives 

Based on the existing theoretical knowledge of yield gaps derived from a socio-economic 

perspective of agricultural sectors across countries and from a “crop” perspective, general 

theoretical agreements can be found in literature as to how to solve it (Sumberg, 2012; van Oort 

et al., 2017). The problem with alleged yield gap closure “solutions” is that they are rarely 

practical solutions, but merely broad theoretical claims not derived directly from yield gap 

analysis (Sumberg, 2012). In the most cases the theoretical agreement in the essence cannot 

offer practical solutions and enable practical policies without proper quantitate analysis of 

causes and potential solutions. The broader the scope of yield gap analysis (socio-economic, 

regional or multi-cropping) the less focussed can practical solutions be (Sumberg, 2012; Van 

Ittersum et al., 2013). With more detailed and more focussed yield gap analysis such as one 

crop or crop rotations on farm level,  the easier is to empirically quantify factors causing the 

yield gap (difference between potential and actual yield) as indicated in studies such as van 

Oort et al. (2017), Grassini et al. (2015), Van Rees et al. (2014). Based on a more specific analysis 

from a “crop” perspective, yield gap analysis can offer focussed policy and management 

recommendations empirically supported, with unfortunately limited applicability on the 

entire agricultural sector level (Sumberg, 2012). 

The underlying objectives of the scientific studies conducted within this thesis was to quantify 

in-field heterogeneity with respect to the yield limiting and reducing factors. In the analysis of 

yield gaps, the priority was given first to the empirical understanding of the given yield gap 
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with respect to spatial and temporal variabilities based on empirically demonstrable bio-

physiological factors causing this yield gap (such as site-specific soil profile characterisation). 

Crop models have enabled a more detailed scientific analysis of bio-physiological factors 

causing the yield gap with respect to spatial and temporal variabilities affecting measured 

yield variability in the field. Furthermore, bio-physiological net contributors were analysed 

economically based on a simplified marginal net return concept, in order to give a better 

insight into two major aspects of the crop production: bio-physiological yield constraints and 

economic implications when it comes to management recommendations. 

With the focus on the nutrient management on commercial farm production, where commonly 

uniform fertiliser application rates are applied, the difference between potential yield and 

actual yield can be directly related to the site-specific nutrient availability and uptake 

conditioned by different soil properties and water and nutrient availability. If hypothetically 

all other non-controllable weather factors would be assumed static, then differences between 

potential yield and actual yield in the field would be the result of the in-field heterogeneity 

and as such this difference could be minimised by site-specific fertiliser management based on 

the site-specific soil profile requirements. Site-specific management of fertiliser is not focussed 

explicitly on the reduction of applied fertiliser in some of the in-field zones compared to the 

uniform fertiliser application. More or less, it is based on the plant requirement with respect 

to the soil profile characterisation and thus the indicated or calculated appropriate amount 

even if this leads to higher amounts than a previous uniform application rate would have 

indicated. In the same fashion as with site-specific management of fertiliser application rates 

chemicals applied for controlling pest and leaf disease in the field should be considered, 

without complying with the general myth that site-specific fertiliser and chemical 

management will inevitably lead to reduction of fertiliser and chemicals in the field. 

Only after bio-physiological factors were quantified and the theoretical framework is 

supported by data, socio-economic imperatives could be included into the scientific analysis, 

before any practical policy or management recommendations could be devised. Economic and 

social constraints are external factors dictating policy and management recommendations, as 

crop production is an economic entrepreneur. Having said that, it has to be pointed out that 

bio-physiologically maximised yield with all yield increasing and protective measures does 

not paint a real picture of profitable agricultural production without revenues and costs 

included in production management. Only if additional revenue from additional yield (gain 

through yield increasing and protection measures) is covering the costs of yield increasing and 

protective measures based on marginal net return analysis, the yield gap closure is a 

meaningful entrepreneur.  

The thesis is assembled of three research articles already published. All three articles are a 

form of independent research based on crop growth models, conducted with the overall 

objective to contribute to the improvement of existing agricultural practices. Crop growth 

models were used to target specifically applied N rates as yield limiting factor (attainable 

yield) and leaf disease as yield reducing factor (actual yield). 

The thesis objectives were defined based on the farm “crop perspective” with respect to major 

factors influencing the yield gap. Potential yield can be defined based on the importance of 

factors contributing the most to the yield gap (hierarchical significance): crop growth defining 

factors (e.g. plant genetics, temperatures, solar radiation), yield limiting factors (e.g. water 

availability and nutrients) and yield reducing factors (e.g. diseases, pests, pollutants). 
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Conducted studies included field trials relying on rainfed conditions. Thus water availability 

was implicitly investigated through its effect on nutrient transfer and leaf disease favourable 

weather conditions. Nutrient (mis)management can lead to sub-optimal growing conditions 

and can increase the yield gap to a large extent before biotic factors (disease, pests) might 

further reduce yield. In this regard a nitrogen optimisation study was considered as a very 

important starting point of the thesis. Overall nutrient management can be considered as a 

form of yield “increasing” measures with respect to underlying economics. If crop growth and 

nutrient management can be considered to be in optimum the next major yield influencing 

factors are diseases, pests and pollutants. Especially for sugar beet leaf diseases play a major 

role in reducing yield and extractable sugar. This has a direct influence on the economic 

rentability (rate of return ROR) of the farm crop management. In addition, specific 

mathematical aspects of decision support tools (crop model) were analysed in order to 

demonstrate the potential and limitations of the specific methodological approaches used. 

 

Thus, the overall objectives of the thesis addressed within the conducted three studies were: 

 

1) Crop model-based analysis of yield gaps in maize production based on economic 

optimization of nitrogen as an example for a yield limiting factor. 

 

2) Crop model-based analysis of leaf disease impact on sugar beet yield as an example for 

a yield reducing factor. 

 

3) Analysis of specific mathematical abstractions used in crop models. Influence of 

predicted mathematical constants defining plant growth and in-season biomass 

accumulation rates on potential yield and yield gap. 
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2 State of the art 

2.1 Yield gap overview  

Within the overall context of this thesis, the potential crop yield and associated yield gaps were 

considered in the framework of crop growth simulating platforms and yield limiting and 

reducing factors that can be captured with these platforms. Crop production can be separated 

into three different conceptual frameworks: potential, attainable and actual yield, based on the 

defining factors (Figure 2-1). Potential yield defining factors are: CO2, solar radiation, day 

length crop characteristics, physiology, phenology and canopy architecture, the traits specific 

for site and cultivar grown (Lövenstein et al., 1992) .The attainable yield refers to the attained 

yield based on the yield limiting factors such as water and nutrients (nitrogen, phosphorus 

etc.) (Lövenstein et al., 1992). The actual yield is defined based on the yield reducing factors 

such as weeds, pests, leaf diseases and various pollutants (Lövenstein et al., 1992; Sumberg, 

2012) in addition to already mentioned yield limiting factors.  

 

Figure 2-1 Production frameworks: potential, attainable and actual yield. Own illustration 

based on World Food Production: Biophysical Factors of Agricultural Production (1992) 

(own illustration). 

The importance of separating yield situations into these three conceptual frameworks lies in 

the underlying means to address problems within each conceptual yield framework. Potential 

yield is defined by selected location and cultivar. The attainable yield is defined by yield 

limiting factors and yield increase measures that can be implemented. Finally, the actual yield 

is defined according to the yield reducing factors and crop protection measures. Different crop 

simulation models were developed with different goals and underlying structural concepts 

(process-oriented models, mechanistic etc.) in order to capture 

crop×environment×management processes with respect to climate (Ewert et al., 2015), plant 

development and C (carbon) and N (nitrogen) balances. Maximum attainable yield, as defined, 

is the highest yield at a specific location resulting from specific 

genetic×environment×managment interactions in agricultural production. Maximum 

attainable yield can be achieved in controlled environments under fully controlled conditions 
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within different experiments and is a great indicator of specific aspects of the agricultural 

production that impair its accomplishment. Large scaled fields, due to specific environmental 

factors such as heterogeneity of the soil and non-regular water and nutrient supply, commonly 

do not deliver maximum potential yield, but actual yield averages that vary from year to year. 

2.2 Overview of agricultural systems 

Many farmers and agricultural scientists were aware of yield variability throughout history, 

but lacked tools, methods and incentives to cope with these problems and factors causing them 

(Braga et al., 2015; Jones et al., 2017). New technologies have enabled a better insight into the 

scale of given site-specific variability based on observed spatial and temporal variabilities 

(Sishodia et al., 2020), giving rise to a “new” production approach in agriculture. The Precision 

Agriculture (PA) concept gained entirely new dimensions due to the industrial technological 

advancement that found its way into the agricultural sector (Lowenberg-DeBoer, 1999) 

(Sishodia et al., 2020).With support of various smart farming technologies, management of 

agricultural inputs on a site-specific level with respect to all occurring spatial and temporal 

variabilities became more feasible. 

Management of site-specific inputs can be separated into three conceptual frameworks: meta-

analysis, empirical models and process-based crop growth models. These three different 

approaches were widely used in different forms for addressing excessive use of N fertiliser for 

different crops in recent decades (Parent et al., 2017). The main differences among these 

approaches is the complexity of the underlying N-related decisions based on a different 

amount of data used in the process. Crop growth models are very complex and require 

relatively detailed information about crop genetics, environment and management practices 

when compared to other approaches, which made them not readily usable in practice in the 

past. With technological advancement of sensors used in agriculture in the context of PA 

deeper insight has been gained on the presence of variabilities by e.g. yield monitoring sensors 

or other remote-sensing technologies. Various sensors have been developed for investigating 

causes of yield variations capturing dynamics of plant physical transfers (water, nitrogen, etc.) 

(Gopala et al., 1999) and created potential for better economic and environmental management 

of production inputs in agriculture (Thorp et al., 2006). Economic and environmental 

management in agricultural production roughly consist of better management of yield 

limiting and reducing factors. With remote- and near-sensing technologies a better insight can 

be gained in physical transfers occurring during plant growth (Flowers et al., 2003) as well as 

in soil and atmosphere enabling farmers to manage fertiliser and chemicals more economically 

with regard to the environment. 

The simplest way of defining spatial and temporal variability can be done with an example of 

fertiliser used in agricultural production, where application of the fertiliser is conducted on 

site-specific units that have relatively homogenous site-specific properties (spatial variability 

management) at the time when the plant is ready for uptake in order to accumulate biomass 

and protein based on the available water in the soil (temporal variability management) 

(Maestrini and Basso, 2018). In this case, spatial unit delineation predominantly depends on 

the soil-related properties, and available water in the soil with respect to timing of 

precipitation/irrigation (temporal variability caused by weather conditions changing over 

time) (Paz et al., 2001). In-field spatial and temporal variability of weeds, pests and leaf 

diseases are a form of yield reducing factors that are extremely difficult to quantify and 

delineate (Rasche and Taylor, 2017), compared to the soil properties-related variabilities. The 
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spatial and temporal scales of these factors are more difficult to quantify and treat even if they 

exhibit a patchy in-field behaviour that might be predictable to a certain extent, in the context 

of favourable weather conditions and plant density related micro climate changes. 

The easiest and the least costly approach of measuring in-field variability in the field is through 

observed yield variability as a final output of entire plant in-season development. In-field yield 

variability observed on a single location in one season (one year) is an indicator of spatial yield 

variability, while yield variability over multiple seasons on the same location is an indicator 

of temporal variability, as it relates effects of changing weather conditions over time (Maestrini 

and Basso, 2018). Even though the crop growing season (one year) is subjected to specific 

temporal factors (that vary in time), when considered in the context of observed end-of-season 

yield (point-based indicator), the end-of-season yield still can be used as an important 

indicator of spatial variability. Based on the conceptualisation of spatial and temporal 

variability with point measures of (end-of-season) yield on site-specific units, where yield is 

consistently higher (lower) compared to the field average yield, N recommendations 

(less/more apply) are relatively “simple” depending on management criteria. The problem 

occurs in the cases when measured end-of-season yield varies from year to year 

“inconsistently” (on one location) preventing a more generic management approach as the 

causes of year-to-year fluctuations are not easy to determine and to address (Maestrini and 

Basso, 2018). Whether end-of-season data can be used as an indicator of spatial or temporal 

variability and to what extent, will be addressed later on in the thesis with examples. 

Current and future trends in utilising smart farming technologies aim to establish farms based 

on semi- or fully-autonomous platforms relying on complimentary technologies serving the 

same purpose. Originally segmented efforts of using specific technologies such as Global 

Positioning Systems (GPS), Geographic Information Systems (GIS), and computation 

machines with more power for analysing larger amounts of agronomic data when unified 

under decision support platforms can lead to the establishment of futuristic Smart Farms. On 

one side automation of the vehicles used in agriculture evaluated through positioning 

accuracy from GPS, through Differential GPS (DGPS) to Real Time Kinematics GPS (RTK-GPS) 

is a great example of how beneficial technological progress can be for implementing 

agricultural tasks. The improvement of the positioning accuracy interpreted by the 

implementation of a specific agricultural production task can be summarised as the use of less 

accurate GPS signals for observation and data collection about crop development in the field 

on larger scales (yield monitoring), to more accurate vehicle guidance for reducing overlaps 

during the fertiliser or chemical applications, and finally to very accurate positioning where 

positioning information can be used for mechanical weeding (inter- and intra-row) 

(Griepentrog et al., 2006). Remote- (satellite-based) and near-sensing (airborne-based and 

sensors mounted on vehicle) images used for yield and soil mapping show great potential in 

providing insight in in-season crop development non-destructively. In addition to the data 

collection with satellite and airborne machines real-time sensors mountable on tractors and 

field scouting autonomous robots are also commercially available (e.g. Yara, Claas Crop 

Sensor Isaria, Topcon CropSpec etc.).  

These sensors are measuring N status in the plant canopy with respect to chlorophyll in 

relative terms based on the spectral reflectance. Even though the measurements are in relative 

terms they are a great indicator of the spatial variability in the field. Whether sensors readings 

(in absolute or relative terms) that indicate in-field variability can be used in real-time for N 

fertilisation is open for discussion and interpretation, but when those in-field variabilities are 



25 
 

coupled with soil maps, historical yield maps and decision support based on bio-physiological 

plant knowledge, they offer a great opportunity for further N application rates optimisation 

on a site-specific level. Real-time sensor measurements and N application are based on one 

very simple deterministic approach. In many cases, the underlying assumption is: “If the plant 

did not take-up N (based on sensor readings), N is not available (or it is not there for various 

reasons)”, which can result in the decision of additional N application. This can result in over-

fertilisation in the cases where N is still in the soil, but for some reasons not available to the 

plant. In-season plant development depends on various biotic and abiotic factors that limit 

and reduce plant growth potential over time. Measurements of N status in the canopy in 

relative terms does not give enough insight into underlying dynamics of plant development 

with respect to genetics, management and environment. Similar deterministic approaches can 

be found in sensor solutions used for measuring soil texture (e.g. EM-38) (Heil and 

Schmidhalter, 2017) based on soil electrical conductivity. Sensors measuring electrical 

conductivity indeed can be used for delineating soil spatial variability, but should be 

complimented with ground-truth data before using. Due to the large amount of data that can 

be collected with various sensor technologies the need for computational mechanisms capable 

of making “sense” in terms of crop production management is more needed than ever. Various 

forms of machine learning, neural networks and artificial intelligence (AI) are being employed 

for analysis of sensor-based data for helping “informed” agricultural production management 

decisions due to the potential of “effortless” data analysis based on generic mathematical 

patterns used in written underlying algorithms. The AI based approaches depend on large 

amounts of data required for training and evaluation of the corresponding algorithms, which 

might be attainable non-destructively via remote sensing technologies (Jung et al., 2021). The 

problem with using the tremendous amount of non-destructively collected data is often a lack 

of ground-truth data that should accompany it. Without ground-truth data it is often not 

possible to make bio-physiologically informed crop management decisions. 

With all available technologies and agronomic knowledge, a very important distinction has to 

be made when it comes to the methodological approach of implementing site-specific 

agricultural input management with respect to the technological solutions. Originally two 

main approaches were devised: sensor-based (real-time) and map-based. 

The map-based approach is a form of pre-sampling where the data is subsequently processed 

and used in the process of informed decision making. This approach can utilise various 

information from different sources such as in-field sensors, destructive sample collection, 

historical yield data etc., aiming in generating field maps for producing field scale or site-

specific maps providing the base for informed decision making in agricultural inputs 

management (e.g. variable N application rates). The map-based approach enables inclusion of 

data that is not necessarily easy to collect about soil properties without proper ground-truth 

sampling. Site-specific field maps are very useful when it comes to specific data that is less 

variable over multiple years and have a major influence on management of agricultural 

production inputs. One of the most important indicators affecting yield variability that is 

constant over time is soil texture, which has direct influence on the site-specific soil water 

holding capacity and N uptake throughout the season, depending on precipitation/irrigation 

seasonal patterns. Based on site-specific soil maps, variable N application can be controlled by 

applying the amount of N per site-specific unit according to the agronomic recommendations 

and seasonal precipitation patterns. 
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With technological advancement in sensors applicable for the estimation of N status in canopy 

based on chlorophyll, colour and light reflectance, a form of real-time sensing is possible with 

real-time variable N application controllers. With this approach, the sensors are measuring 

plant N status on-the-go with the sensor mounted on the front part of the vehicle and send 

signals to the N spreader at the back of the vehicle in order to adjust the N application rates 

based on the canopy N status (Figure 2-2). 

 

Figure 2-2 Sensor-based approach: real-time canopy sensing with application controller (own 

illustration). 

A combination of the map- and sensor-based approaches is a methodological approach 

promising to utilise all benefits of both map- and sensor-based approaches, while eliminating 

the disadvantages (Figure 2-3). The biggest disadvantage of the map-based approach is the 

post-processing element and decision making that takes place subsequently. This implies the 

use of the post-processed data later in the season or in next years without proper ability to 

account for the field factors that change over time forcing it to an adjustment that is always 

one step behind. The most important problem of the sensor-based (real-time) approach is that 

specific plant growth aspects cannot be captured and lead to “informed” decisions based on 

one in-season measurement in real-time, because the in-season plant growth and biomass 

accumulation is a dynamical process resulting from various soil, weather and nutrient 

interactions over time. Crop growth models seem to be promising tools due to advanced 

computational power of new machines and their ability to integrate map-based approaches 

benefits into field management that can be updated and adjusted based on on-the-go sensor 

readings. 
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Figure 2-3 Combination of the map- and sensor-based approaches (own illustration). 

Among other technological advancements originally developed for other purposes such as 

military, GPS and satellite-based remote sensing can only reach their true potential in 

agricultural production if they are used in combination with agronomic knowledge (inclusion 

of all biotic and abiotic factors in crop management decisions). There have been various efforts 

in establishing decision support platforms capable of using all sorts of data relevant for a more 

efficient crop production such as those based on fuzzy logic theory (Papadopoulos et al., 2011; 

Heiß et al., 2021). Crop growth models are one of those specialised cases that show great 

potential. In order to unify the large amount of sensor based collected data with plant growth 

dynamics and to spatially delineate management guidelines for the farmer, process-oriented 

crop models have been developed in the previous century (Jones et al., 2017; Muller and 

Martre, 2019). With further development of sensor technologies real-time management of 

agricultural production inputs with regard to spatial and temporal variability with accurate 

GPS navigation of the agricultural vehicles has become more feasible. The agricultural 

production management can then be based on crop growth models as real-time decision 

support tools for various sensors in the framework of PA. Further, crop models can be used 

for evaluating the trade-off between economic benefits and environmental consequences of 

applying various agricultural production inputs in interaction with sensor-based data. Various 

process-oriented crop growth models exist with underlying cropping system models for 

simulating in-season plant development and yield prediction based on in-season 

plant×environment×genetic dynamics. As mentioned previously various economic, social, 

technological and environmental factors played a decisive role in the rise of crop simulation 

models in order to enable the understanding and interactions of very complex factors (Jones 

et al., 2017). Underlying imperatives behind the rise of agricultural systems modelling were 

summarised nicely by Jones et al. ( 2017) with a historical timeline based on prime motivators 
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behind agricultural system crop modelling. Based on the brief history overview conducted by 

Jones et al. (2017) important lessons can be learned. With regard to specific environmental, 

economic and social factors interactions and long-term consequences, a “catch-up” game has 

been played with decision support systems capable of capturing complexity beyond 

individual human mind and understanding. Compared to the period 40-50 years ago todays 

technological advancement is more fluid with lower investment costs enabling scientists, 

researches and the private sector involved to shorten “catch-up” time gaps between 

mentioned factors supported by high machine computational power in various forms of 

cropping system models, machine learning, artificial intelligence etc. Based on the experience 

of pioneers of decision support systems from previous centuries more robust decision support 

systems can be achieved through open-source harmonised data sharing efforts of different 

market stake holders with easier access to know–how of different disciplines in order to enable 

inclusion that can offer benefits to all stakeholders.       

At the beginnings of various crop model developing efforts, different crop simulation models 

were developed by different scientific communities without much interactions or feedback 

(Jones et al., 2017; Muller and Martre, 2019), resulting in a great variety of crop models that 

were interconnected or based on the same or similar theoretical framework with minor/major 

variations in basics, as illustrated in Muller and Martre (2019). In the last decade there have 

been few initiatives of creating global crop modelling networks in order to compare CSM 

models and enable improvement, such as the International Crop Modelling Symposium 

(iCROPM) (Hoogenboom et al., 2020) or the Agricultural Intercomparison and Improvement 

Project (AgMIP) (Rosenzweig et al., 2013; Müller et al., 2019). 

All crop models can be separated into two groups: cropping system models (CSM) and 

functional-structural plant models (FSPM). The CSM models were mainly simulating crop 

development on canopy level where either the entire plant is simulated as a whole with an 

underlying radiation use efficiency approach (such as DSSAT-CERES) or plant development 

is simulated at leaf-level with its underlying energy balance mechanism (such as DSSAT-

CROPGRO). On the other hand, FSPM were developed to consider the 3-dimensional 

morphology and architecture of the plants. Both modelling approaches have advantages and 

disadvantages and can be used for addressing different aspects of plant growth and 

development depending on the research or practical objective. The CSM takes into account the 

entire plant cycle with respect to the environment and genetics, while the FSPM are/were 

mostly used for targeting specific processes with limited scope in regard to environment and 

genetics (Muller and Martre, 2019). Due to the large number of research communities and lack 

of communication among them, a huge number of crop growth models has been published 

throughout the last 50-60 years (Muller and Martre, 2019). In many cases crop model 

development, extension to additional crops, theoretical updates in the crop model source code 

was not consistently updated and reported in the corresponding documentation. Muller and 

Martre (2019) grouped models based on the publication chronology and scientific 

communities such as those in Netherland, France, US and the rest.  

2.3 The DSSAT crop modelling 

DSSAT was developed as a form of decision-making tool for different environments for 

reducing the costs of conducting field experiments and for saving time in decision making. 

Among the variety of available crop growth models (CSM) (Müller et al., 2019;  Ewert et al., 

2015; Jones et al., 2017; Muller and Martre, 2019) DSSAT was selected for conducting analysis 
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of yield limiting and reducing factors in this thesis, because it can be used for various 

economically “relevant” crops and enables knowledge transfer across multiple locations and 

climates, while integrating local information about crop production. The DSSAT crop growth 

models have been used for different purposes such as for studying and optimising various 

agricultural production practices including fertiliser optimisation, pest management, smart 

farming etc. (Jones et al., 2003). Within the DSSAT-CSM sensitivity tools, yield limiting and 

yield reducing factors can be investigated for better understanding of the yield gap and 

underlying reasons for its occurrence and management scope. Estimation of yield gap in the 

model is based on the potential maximum yield being limited by water and/or N stress 

(abiotic), and reduced by pest and leaf diseases (biotic) factors (Madani et al., 2018). The origins 

of DSSAT go back to the early 1970s initiative of the United States Agency for International 

Development (USAID) to support systemic analysis of agricultural production systems for 

addressing food supply in developing countries. Early initiatives in analysing agricultural 

production systems had more focus on specific aspects of the production such as impact of soil 

type. These approaches led to the conclusion that focussing on one specific aspect of the 

production cannot lead to an overall improvement in agricultural production. Finally, this 

insight resulted in new initiatives that can capture various aspects of the production such as 

genetics, management and environment. Early work of different scientific communities was 

then unified under the International Benchmark Sites Network for Agrotechnology Transfer 

(IBSNAT), which resulted in a more generic Minimum Data Set approach with standardised 

inputs for the use of crop simulation models. 

Crop growth models are mathematical algorithms simulating crop growth and yield as a 

function of the entire crop environment including physical transfers occurring in the soil, 

weather conditions, and crop management practices (Jones et al., 2003; Baey et al., 2014). Most 

of the available crop growth models are developed to simulate plant growth or yield on a field 

scale neglecting entirely or averaging within fields present spatial and temporal variabilities 

(Braga et al., 2015). The DSSAT crop models have been successfully used for simulating crop 

growth and yield on site-specific level (Paz et al., 2001; Batchelor et al., 2004). DSSAT was 

initially developed and revised in a way to integrate all information about farming practice 

with respect to soil conditions, weather and to enable easier transfer of plant knowledge from 

one location to another (Jones et al., 2003). The model requirement consists of a minimum of 

four different daily weather input variables (solar radiation, precipitation, minimum and 

maximum temperature), crop management practices (sowing date, plant population rate and 

fertiliser type and amount etc.), soil parameters (% of silt, clay, sand, rooting depth, etc.), and 

crop cultivar characteristics (genetic coefficients). The DSSAT model is the sum of various 

mathematical functions governing phenological traits of different crops in different 

conditions. In order to simulate specific crop growth, the model requires genetic information 

of the grown cultivar as input. Genetic information enables the users to differentiate cultivar 

specific phenological traits for different crops by externally adjusting specific model processes 

internally defined in the code. The process of identification of externally adjustable genetic 

coefficients based on the physiological traits of plant is defined as calibration.  

One of the earliest and the most substantial attempts of using the DSSAT crop model for 

precision farming was the APOLLO program for site-specific soil and nitrogen optimisation 

in wheat and maize (Batchelor et al., 2004). Models that were originally developed to work on 

larger scales (hectare basis), are not necessarily able to capture sub-field (site-specific) 

environmental dynamics. Site-specific division of the field (site-specific units delineation) itself 
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can be conducted based on the economic benefits (Link et al., 2006a; Koch et al. 2004), and not 

solely based on the bio-physical potential of the plants. Yield maximisation based on bio-

physiological full growth potential and marginal net return maximising yield are not the same 

and as such have to be addressed accordingly. The real potential of site-specific nitrogen 

applications can be implemented only if variability exists and if the given variability is not too 

random to the point where it would make more sense to apply fertiliser uniformly. This means 

that field scale variability can be delineated on site-specific field level, where site-specific units 

are relatively homogeneous and can accordingly be treated uniformly.  

In this thesis the DSSAT crop growth models: CSM-CERES-Maize and CSM-CERES-Beet are 

simulating genetic×environment×management dynamic interactions on a daily basis with 

respect to daily weather data. Commonly done static statistical analysis are not able to capture 

the dynamic interactions of various factors affecting crop growth and plant stresses. Daily 

simulation, from planting to harvest, provide the chance for investigating dynamics behind 

the ability of a crop to fix CO2 as a function of energy required over time. The correlation 

between solar radiation and biomass growth with respect to phenological phases of the plant 

based on temperature response have been in the focus of early modelling efforts. Both used 

crop growth models are based on the radiation use efficiency (RUE) approach according to the 

Beer’s low (Ritchie et al., 1984; Jones and Kiniry 1986). With this simple mechanism daily plant 

growth is a product of intercepted solar radiation based on the RUE approach. Even though 

the underlying mechanism of RUE is very simplistic, it proved to be very robust and was the 

base for many crop growth simulation models (Ritchie et al., 1984; Jones and Kiniry 1986).   

2.3.1  DSSAT water balance 

It is impossible to speak about fertiliser efficiency, especially N, without considering soil water 

balance with respect to seasonal rainfall patterns and soil properties. The original version of 

the DSSAT soil water balance subroutine was developed for CERES-Wheat (Ritchie and Otter 

1995). The generic version of this model was later integrated and used in all DSSAT crop 

models, since the DSSAT 3.5 version. Broadly speaking this one-dimensional soil water 

balance uses a water infiltration amount (precipitation and/or irrigation), water drainage, and 

unsaturated water flow, soil evaporation in combination with water taken up by roots for 

calculating soil water content on a daily basis with respect to soil lower limit, soil upper limit 

and soil saturation rate. Soil layer based daily water content is based on the tipping-bucket 

approach for calculating water drainage above soil upper limit. More specifically daily soil 

water content is calculated with the Eq. 3. 

𝛥𝑆 = 𝑃 + 𝐼 − 𝐸𝑃 − 𝐸𝑆 − 𝑅 − 𝐷     (3) 

where ΔS is the change in soil water content based on the water infiltration amount calculated 

from precipitation (P) + irrigation (I) as added water to the soil profile, and transpiration (EP) 

+ soil evaporation (ES) + surface runoff (R) + drainage from soil profile (D) as water removed 

from the soil profile. 

2.3.2 DSSAT N-balance 

The crop model nitrogen balance is simulated with the soil carbon and nitrogen balance sub-

module (Soil Organic Matter - SOM). The original SOM sub-module was developed and 

described in Godwin and Jones (1991) and Goodwin and Singh (1998). It was integrated in the 

current DSSAT-Cropping System Module (CSM), with minor structural modifications. 

Currently it provides the template for simulating crop growth of more than 40 crops in the 

DSSAT-CSM. Soil N dynamics are integrated through two soil organic matter modules and an 
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inorganic N module. The inorganic N module is used for integrating inorganic N additions 

into the system for accumulating additional plant biomass with respect to the soil conditions 

and N transformation from one type to another. The N balance includes available N from 

decomposing organic matter and can be included within crop model input files in a form of 

residues and expected rates and amounts of decomposition with respect to environmental 

factors such as soil temperature, soil moisture, soil pH etc. Soil crop model N balance includes: 

plant N uptake, immobilisation, leaching, N gas losses, denitrification and nitrification. 

Simulated gas emissions are based on the DayCent model (Del Grosso et al., 2001) and include 

N20, NO and CO2 resulting from organic matter decomposition, denitrification and 

nitrification. The soil organic dynamics can be calculated with two different methods in 

DSSAT: CERES-based module (Godwin and Singh, 1998) and Century-based module (Gijsman 

et al., 2002), while the Century-based module can compute the balance based on three soil 

organic pools. Initialisation of three separate soil organic matter pools is more complex and 

relies on additional input data. The N balance and within in it, the N transport through soil 

layers is directly dependent on the water flux values calculated in the soil water sub-module. 

2.3.3 DSSAT leaf disease modelling   

In the DSSAT-CSM the damage caused by pest and leaf diseases (yield reducing factors) can 

only be introduced as an observation on specific dates and the effects on yield can be simulated 

through different methods. The DSSAT-CSM does not have simulation subroutines for 

simulating pest or leaf disease spread rate. A different approach was recently adapted in the 

Agricultural Production Systems sIMulator (APSIM). APSIM as a crop modelling platform 

does not include direct pest and disease sub-modules, but uses an approach that enables the 

integration of the external pest damage simulation models (APSIM-DYMEX link) and 

simulates their impact on crop development indirectly (Donatelli et al., 2017). 

With the CERES family models, few major pest damage types are available for simulating the 

effects on leaf, stem, root, seed weight, leaf area index and daily carbon assimilation, among 

others (Batchelor et al., 1993; Jones et al., 2003; Boote et al., 2010; Dodds et al., 2019). The 

information about pest damage is passed into the model through time-series file (file T) and 

can be entered as date specific input. Among four different types of damage one at the time 

can be selected in the PEST file in order to affect photosynthetically active biomass (to reduce 

it) through specific state variables, and by doing so affect daily carbon assimilation rates and 

ability of the plant to produce additional biomass. For the simulation of pest or/and leaf 

diseases, damage observations have to be provided as external input. 
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3 Materials and methods 

3.1 Crop model-based analysis of yield limiting factors – N case study 

Within the current thesis the yield limiting factor N was investigated in a study conducted 

with the DSSAT-CERES-Maize crop growth model. The study aimed for the optimisation of N 

usage based on short- and long-term marginal net return while maximising variable N 

application rates on site-specific level. For maize (Zea mays L.) production, N is crucial for 

maximising biomass accumulation. In most cases, N-based fertilisers contain ammonium 

(NH4+) and highly dissolvable nitrate (NO3-) that leaches into the groundwater causing 

pollution (Martínez-Dalmau et al., 2021). One of the potential solutions is a timely application 

of inorganic N at the periods when the plant is ready for uptake, depending on water 

availability, in the manner of site-specific N application (right amount at right time in right 

place). Due to political and social imperatives for plant-based renewable energy sources, 

backed up with the German Renewable Energy Act, cereal production, with maize among 

them, increased in Germany over the last two decades (Appel et al., 2016; Theuerl et al., 2019). 

Further, larger maize cultivation areas increased the pressure for more sustainable and 

efficient production. As a result, additional N demand was created leading to environmental 

pollution and affecting the sustainability principles requested by EU regulations. 

This study aimed at developing a QGIS based software solution that can be used with a crop 

growth model for evaluating (recommending) site-specific variable N application rates based 

on a simplified marginal net return concept and observed in-field yield variability.  Within 

this study the DSSAT-CERES-Maize based site-specific nitrogen prescription optimisation 

program was developed. The program was designed for estimating site-specific variable N 

application optimums based on marginal net return over long periods of weather data for 

different planting populations of maize. The developed Nitrogen Prescription Model (NPM) 

estimated yield and variable N levels at harvest for defined site-specific units. Based on the 

estimated yield and N levels required for attaining that yield, marginal net return was 

calculated. For the approach the modified DSSAT-CERES-Maize (v 3.7) was used with site-

specific soil profiles estimated with GeoSim (Thorp et al., 2006; Thorp et al., 2008; Link et al., 

2013). Two different fields were used for evaluating the NPM program: McGarvey field (US) 

and Riech field (Germany).  

Objectives-summary: 

1) Development of an open source software plug-in for evaluation of economic 

consequences of N recommendations for maize. 

2) Evaluation of different plant population densities on maize yield with respect to site-

specific soil and nutrient requirements. 

3) Evaluation of the developed software plug-in with two maize datasets, from Germany 

and US. 

3.2 Crop model-based analysis of yield reducing factors – leaf disease case study 

In the context of yield reducing factors, a study was conducted within the current thesis on 

sugar beet (Beta vulgaris L.) focusing on Cercospora leaf spot disease. The Cercospora beticolla 

leaf disease pathogen causing Cercospora leaf spot disease has a major effect on harvested 

sugar beet yield in south-west Germany (Wolf and Verreet, 2002). Sugar beet yield reduction 

(harvested sugar beet dry matter) directly affects extractable sugar as shown in Shane and 
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Teng (1992). Other relevant diseases observed in south-west Germany are caused by Ramularia 

beticola, Uromyces betae and Phoma betae and are commonly treated with the same fungicide 

while treating Cercospora beticolla. 

This study describes the integration of a leaf disease subroutine into an already existing sugar 

beet crop growth model. Approximately 20% of sugar produced in the world is extracted from 

sugar beet (Eurostat, 2020). 50% of sugar beet used for sugar production in the world is 

cultivated in EU (Eurostat, 2020). When considering the impact of foliar disease on crop 

growth, temporal and spatial in-field variability of the disease have to be accounted for. 

Temporal variability management depicts disease favourable weather conditions throughout 

the growing season, while spatial variability management depicts spatial distribution of 

spores in the field. In this study an existing sugar beet model was used for simulating yield 

losses based on the mesured Cercospora leaf spot ratings. In order to develop functional 

decision support systems for quantifying leaf disease impact on sugar, yield loss estimates are 

essential. The objective of this study was the development of a decision support tool that can 

use data from sensors (in future) able to quantify leaf disease damage on sugar beet canopy. 

Objectives-summary: 

1) Development of a crop model sub-routine for simulating impact of measured 

Cercospora leaf spot disease ratings on sugar beet canopy that subsequently affects 

harvested yield and extracted sugar by using the CSM-CERES-Beet model. 

2) Evaluation of the crop model leaf disease sub-routine with three years of observed data 

from south-west Germany. 

3) Evaluation of sugar yield and sugar yield losses due to occurring Cercospora disease 

indirectly through sugar beet canopy losses and its impact on the measured storage 

root dry matter quantities. 

3.3 Crop model parameters accuracy influencing potential yield and yield gap - case 

study 

Since crop models are a mathematical representation of plant development, specific aspects of 

plant growth are to a certain extent mathematical abstraction in a form of mathematical 

constants. Plant phenological development and above- and below-ground biomass 

accumulation is defined directly through crop species and cultivar coefficients (Hogenboom 

et al., 2011; Hogenboom et al., 2019a). In the DSSAT model two tools are available for “semi-

automatic” cultivar coefficient estimation: Genotype Coefficient Calculator (GENCALC) 

(Hunt et al., 1993) and generalised likelihood uncertainty estimation (GLUE) (He et al. 2010). 

Both tools use end-of-season field observations for estimating cultivar coefficients. Most of the 

crop model output variables do not have constant (linear) growth rates throughout the 

growing period and because of that one end-of-season observation cannot provide proper 

insight into the in-season growth rates, based on which cultivar coefficients are estimated. Due 

to the importance of the in-season dynamics on simulation of the in-season biomass 

accumulations in the context of the used N and observed leaf disease it is very important to 

use cultivar coefficients representative of those in-season dynamics. In order to achieve the 

inclusion of the in-season plant growth dynamics and biomass partitioning among different 

plant organs, the use of time-series data for the cultivar coefficient estimation process was 

investigated within an additional study of this thesis. 
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In this study a newly developed external python plug-in for the DSSAT model was described 

and tested with a new underlying mechanism of using time-series data for estimating cultivar 

coefficients for all crops available in the DSSAT shell (more than 40 crops). The time-series 

estimator plug-in was made available in GitHub repository with user guidelines, and is 

already being used by few other crop modellers (https://github.com/memicemir/TSE). The 

Time-Series cultivar coefficient Estimator (TSE) was developed and designed to use multiple 

in-season observations on biomass accumulation throughout the season of multiple target 

variables (such as LAI, leaf weight, grain weight etc.) simultaneously. The objective was the 

development of a program with an intuitive user interface that enables users to automatically 

calibrate crop genetics. 

Objectives-summary: 

1) Development of an error minimisation methodology for estimation of phenology- and

growth-related cultivar coefficients for the DSSAT CSM.

2) Evaluation of an error minimisation methodology including single and multiple

locations and seasons based on experimental in-season observations with respect to

multiple-treatment based observations for establishing more robust cultivar

coefficients capable reflecting plant growth in multiple locations and seasons.
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4 GIS-based spatial nitrogen management model for maize: short- and long-term 

marginal net return maximising nitrogen application rates 

Memic, E.; Graeff, S.; Claupein, W.; Batchelor, W. D. (2019): GIS-based spatial nitrogen 

management model for maize: short- and long-term marginal net return maximising nitrogen 

application rates. Precision Agriculture 20 (2), S. 295–312. DOI: 10.1007/s11119-018-9603-4. 

 

Abstract 

Crop growth models including CERES-Maize and CROPGRO-Soybean have been used in the 

past to evaluate causes of spatial yield variability and to evaluate economic consequences of 

variable rate prescriptions. In this work, a nitrogen prescription program has been developed 

that simulates the consequences of different nitrogen prescriptions using the DSSAT crop 

growth models. The objective of this paper is to describe a site-specific nitrogen prescription 

and economic optimizer program developed for computing spatially optimum N rates over 

long periods of weather and plant population for maize (Zea mays L.) using the CERES-Maize 

model. The application of the model was demonstrated on a field in Germany and another one 

in the USA to evaluate the concept across different environmental conditions. The user can 

determine the short- and the long-term optimal spatial nitrogen prescription based on crop 

price and nitrogen cost. The program simulated short-term optimum N applications that 

averaged 9% (McGarvey field, USA) and 48% (Riech field, Germany) lower than the uniform 

rates actually applied in the fields. The program indicated different site-specific N 

management options for low and high yielding fields under the assumed prices for maize and 

N. The implementation of a site-specific plant population management was investigated. A

site-specific-optimization of plant population showed a higher profitability in the

heterogeneous field in Germany. Hard pan depth, hard pan factor, root distribution factor and

the percentage of available soil water across the heterogeneous field were useful indicators in

predicting the magnitude of site-specific plant population benefits over uniform rates.

Keywords: CERES-Maize, nitrogen management, plant population, nitrogen balance, 

marginal net return 

4.1 Introduction 

Precision agriculture is a revolutionary technology for crop production around the world. The 

importance of decision support tools complimenting available sensor technologies for 

economic and environmental risk assessment of farming practices is increasing. The DSSAT 

crop growth models are designed to simulate the crop growth and development processes 

from sowing to harvest by incorporating all information of farming practices, soil properties, 

crop genetics and weather (Jones et al., 2003). The DSSAT models can be used to evaluate 

farming practices at different locations by incorporating site-specific information on soil 

properties, management and weather.  

Today, producers can measure spatial yields, obtain aerial images of crop biomass, gather 

information such as soil water content and spatial N levels, and use this information to manage 
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their crops precisely at a small spatial scale. However, producers have difficulties in 

interpreting the vast amount of data available and turning that data into production decisions. 

Nitrogen (N) is critical for crop production, but over-application of N can reduce profits and 

cause environmental degradation. In 2014, nearly 2 Mt of N was used for agricultural 

production in Germany, while 12.5 Mt were used in the USA (FAO 2014). Over-application of 

N is common in these countries and around the world and there is a great need to reduce NO3–

N amounts left in the soil after harvest to prevent leaching into the ground water. Optimizing 

N timing and spatial application rate to better match crop needs can lead to a reduction in N 

losses to the environment.   

Crop growth models have been used in the past to estimate long term optimum spatial N rates 

for maize (Zea mays L.).  Paz et al. (1999) developed a technique to calibrate spatial soil 

properties for the CERES-Maize v3.7 model for individual grids within a field to minimize the 

error between simulated and measured yields over multiple years. In this approach, they 

divided fields into smaller grids and collected spatial yield data over several seasons for each 

grid. They developed crop model input files and weather files for each year and grid. Then 

they coupled the CERES-Maize model to an optimizer that used a simulated annealing 

algorithm to estimate optimum soil parameters for each grid that minimized the error between 

simulated and measured yield, over multiple seasons for each grid. Using this technique, they 

were able to explain over 80% of spatial yield variability in maize and soybean fields in Iowa 

based on variable soil properties. This technique was integrated into a software system called 

Apollo (Application of PrecisiOn AgricuLture for FieLd Management Optimization) which 

was developed in Visual Basic for implementation on a personal computer (Batchelor et al., 

2004). The Apollo software was extended to evaluate optimum N rates and plant population 

for each grid. The software was designed to use calibrated soil properties for each grid to 

simulate different combinations of N application timing and rate, and plant populations over 

many seasons of historical weather data in order to determine the N rate and population that 

maximized the long-term marginal net return for assumed values of N and seed cost and yield 

price (Batchelor et al., 2004). The software was written in Visual Basic for Windows XP and is 

no longer operational on recent Microsoft Windows platforms due to substantial changes 

made to Visual Basic to integrate it with the Microsoft.NET platform supported in recent 

releases of Windows.  

Other researchers have implemented these techniques for soybean (Paz et al., 2001), wheat 

(Link et al., 2008) and maize (Miao et al., 2006), but required extensive training from the Apollo 

model developers. Using process-oriented crop growth models to evaluate spatial yields and 

prescriptions at small spatial scales is complex, because the crop models require numerous 

inputs and specialized software such as Apollo to assist with spatial model calibration and 

prescription development. Thus, these techniques have not been widely adopted, and a 

comprehensive software package does not exist to use crop growth models for precision 

agriculture decisions (Link et al., 2006a).  

Thorp and Bronson (2013) developed an open source model optimization software package 

called GeoSim, which is distributed as a plug-in to the open source QGIS geographic 

information software (QGIS Development Team, 2009). The purpose of GeoSim is to allow 

users to calibrate parameters for any environmental or crop model using an optimizer based 

on the simulated annealing optimization technique. This software offers a modern open source 

replacement to the calibration procedures developed in the Apollo software. Using QGIS and 
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GeoSim, users can develop a map of a field, divide the field into management units, set up 

crop modelling input files for each grid, and calibrate soil properties to minimize the error 

between simulated and measured spatial yields over multiple seasons of weather and yields. 

GeoSim was written in Python, which is an open source language and is available as a plug-

in for QGIS. It can be downloaded at http://www.qgis.org/. While GeoSim provides an 

excellent platform for model calibration, it does not contain software to develop and evaluate 

N management prescriptions.  

The objectives of this work were to 1) develop a prototype open source software package to 

evaluate economic consequences of N management prescriptions for maize, 2) evaluate effects 

of different plant population rates on maize yield based on the site-specific concept, and 3) test 

the software for two maize datasets in Germany and the US. The long-term goal is to distribute 

this software as an additional plug-in to the QGIS software to be used in conjunction with 

GeoSim. This pair of plug-ins to QGIS will provide users with the tools needed to calibrate 

crop models to simulate historical spatial yield variability and to develop optimum N 

management prescriptions using long-term historical or future climate change weather 

records.  

4.2 Materials and Methods 

4.2.1 Field Experiments Description 

McGarvey field 

The 20.25 ha McGarvey field is located near Perry, Iowa, USA (41.93080˚N, 94.07254˚W). 

Spatial maize yield data were collected every even-numbered year from 1994-2002, as maize 

was planted with soybean in a crop rotation. The field was divided into 100 grids 0.2025 ha in 

size. Weather data were measured at a weather station directly at the site. In 1994 and 1996, a 

uniform N rate of 207 kg N ha-1 and 40.8 kg ha-1 phosphorus (P) and potassium (K) was applied 

just before planting. In 1998, 2000 and 2002, 224 kg N ha-1 and 121 kg ha-1 of P and K were 

applied each season. A more detailed description of the soil information and the related crop 

management practices can be found in Thorp at al. (2006). 

Riech field 

The Riech field is 10 ha in size and located at Ihinger Hof, Agricultural Research Station, 

University of Hohenheim, Germany (48.666˚N, 8.967˚W). Maize was planted in 2006, 2007 and 

2008 following standard farmer’s management practices. Weather data were taken from a local 

weather station at the research station. The field was divided into 80 grids (0.125 ha) for this 

analysis. Yield was measured each season using a yield monitor implemented on a combine 

harvester. Soil information was available for crop model input file development based on the 

publication of Link at al. (2013). Model inputs were developed for each grid and year. Initial 

NO3-N was measured for each grid (Fig. 5), prior to sowing. The farmer’s practice was to apply 

160 kg N ha-1 as KAS (26 % N) as a uniform rate. 

4.2.2 Model Development Methodology 

In this project, the GeoSim Nitrogen Prescription Model (GeoSim NPM) was developed as a 

stand-alone Python program to simulate optimum N prescriptions for maize. The program 

uses optimum soil parameters calibrated using GeoSim (Thorp and Bronson, 2013) to run 

different combinations of N rates and application dates using a user specified number of 

historical (or future) years of weather data. The program generates yield and N levels in the 
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soil at harvest for user specified grids and weather years. The economic optimizer component 

of GeoSim NPM allows the user to enter the selling price for maize, the cost of N, and the cost 

of leaving N in the field to account for policies such as the current German compensation 

payment, which incentivises producers to limit N left in the field. It then computes the 

marginal net return (MNR) for a range of N rates for user specified historical weather years. 

The seasonal MNRs are then used to compute the N prescription that maximizes the long-term 

MNR over the user selected seasons of weather data.  

Figure 4-1 shows a block diagram of the system. Grey boxes represent computational parts of 

GeoSim and GeoSim NPM, while white boxes represent passed or computed (simulated) 

parameters or additional information necessary to compute final result. The modified version 

of CERES-Maize (v 3.7) used in Apollo allows the optimization of up to 10 soil-related input 

parameters for each grid in the field, including SCS (Soil Conservation Service) runoff curve 

number, drainage rate, effective tile drainage rate, saturated hydraulic conductivity of deep 

impermeable layer, hard pan factor, depth of hard pan, root distribution reduction factor, N 

mineralization factor, soil fertility factor and adjustment of soil water availability (Thorp at al., 

2008). The setup of soil-related crop model input parameters was based on the given field-

specific soil properties (Thorp et al., 2006; Link et al. 2013). The model uses a self-annealing 

algorithm to optimize the given soil-related input parameters for each grid to the obtained 

yield. Site-specific soil parameter optimization resulting in a small gap between observed and 

simulated yield can theoretically be achieved, when more soil-related input parameters are 

used, but overfitting of the soil profile is unlikely to give a good fit in the final validation 

process (Thorp et al. 2008). Combinations of these 10 parameters are optimized by GeoSim 

(Fig. 1a) and passed to GeoSim NPM using a text file (Fig. 1b). 

In GeoSim NPM (Fig. 1c), the user specifies the historical weather seasons to be simulated, as 

well as the date of N applications, range and increments within the range of N levels to 

simulate yield and N left in the field at the end of each season in order to compute the optimum 

N rate for each grid or management zone over long term seasons of weather. The user can also 

define different plant population densities (population rate) (Fig. 1c). Plant population density 

has an important role in maize growth due to the interplant competition (Tetio-Kagho and 

Gardner, 1988). According to Duncan (1958), plant population density increase led to 

individual plant yield reduction while increasing maize yield per area unit. Plant population 

densities that maximise yield and economic return often vary from 3 to 9 plants per square 

meter, due to infield site-specific variabilities (Olson and Sanders, 1988). The CERES-Maize 

model is then run for all combinations of N rates/plant population densities and seasons of 

weather data for each grid using the parameters calibrated for each grid by GeoSim and stores 

this information in a database for future analysis.  

The GeoSim NPM software also requires the user to specify economic information including 

N price and value of yield in order to simulate marginal net return (MNR) for different 

combinations of N rates. Marginal net return is computed with Eq. 1.  

𝑀𝑁𝑅 = 𝑌𝑖𝑒𝑙𝑑 ∗ 𝑃𝑟𝑖𝑐𝑒 − 𝑁𝑅𝑎𝑡𝑒 ∗ 𝑁𝐶𝑜𝑠𝑡 + 𝐶𝑜𝑚𝑝𝑒𝑛𝑠𝑎𝑡𝑖𝑜𝑛 𝑃𝑎𝑦𝑚𝑒𝑛𝑡  (1) 

where, MNR is the marginal net return ($ ha-1), Yield is simulated crop yield (kg ha-1), Price is 

crop price ($ kg-1), NRate is the N application rate (kg N ha-1), NCost is nitrogen cost ($ kg-1), 

and Compensation Payment is the value or penalty for leaving N in the field at harvest ($ kg N-

1 ha-1). Once the database is computed for all combinations of N rates and seasons of weather, 
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GeoSim NPM searches the database to determine the N rate that maximizes the average MNR 

computed over all seasons.  

Marginal net return for simulating different combinations of N rates and population densities 

simultaneously is computed with Eq. 3. Seed costs are calculated as plant population times 

cost per seed (Eq. 3).   

𝑆𝑒𝑒𝑑𝐶𝑜𝑠𝑡 = 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 (ℎ𝑎) ∗ 𝑆𝑖𝑛𝑔𝑙𝑒 𝑆𝑒𝑒𝑑 𝑃𝑟𝑖𝑐𝑒  (2) 

𝑀𝑁𝑅 = 𝑌𝑖𝑒𝑙𝑑 ∗ 𝑃𝑟𝑖𝑐𝑒 − 𝑁𝑅𝑎𝑡𝑒 ∗ 𝑁𝐶𝑜𝑠𝑡 − 𝑆𝑒𝑒𝑑𝐶𝑜𝑠𝑡 + 𝐶𝑜𝑚𝑝𝑒𝑛𝑠𝑎𝑡𝑖𝑜𝑛 𝑃𝑎𝑦𝑚𝑒𝑛𝑡 (3) 

Eq. 3 is used for MNR calculations only if the Population Rate option is activated in GeoSim 

NPM (Fig. 1c), in order to see the effect of different population densities on MNR. Once 

GeoSim NPM computes the MNR for combinations of N rate, population and years of weather, 

the optimum prescription can be determined for each grid by searching for the N rate and 

population that maximizes the average MNR over all seasons.  

Figure 4-1 Flow diagram of the optimization and simulation process in GeoSim NPM (Memic 

et al., 2019). 

4.3 Results 

4.3.1 McGarvey field 

The process of site-specific soil parameters optimization based on GeoSim indicated that the 

three soil parameters, effective tile drain spacing, saturated hydraulic conductivity of the 

lower impermeable layer and the percentage of available soil water in each soil layer were the 

major soil factors that described spatial yield variability. The calibration of these three soil 

parameters minimized the error between simulated and observed maize yields in each of the 

100 grids over five seasons, while the impact on yield of all other available soil parameters in 

the model could be neglected. Crop rotation effects of nitrogen fixing soybean as a previous 

crop where accounted for in the initial conditions of the model. The calibration results of the 

simulated and observed maize yields for the 100 grids and five years are shown in Figure 4-2. 
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The R2 between simulated and observed yield over all grids and years was 0.94, which is 

consistent with results reported by Thorp et al. (2006), who used the Apollo model to conduct 

a similar calibration for this dataset. The calibrated soil properties explained 94% of given 

spatial yield variability over the 100 grids and 5 seasons.  

Figure 4-2 Relationship between simulated and measured maize yield [kg ha-1] for the 

McGarvey field, Perry, Iowa using the following three soil parameters: the optimum effective 

tile drain spacing, the saturated hydraulic conductivity and the percentage of available soil 

water (n=500) (Memic et al., 2019). 

GeoSim NPM was then used to compute MNR for different combinations of N rates for these 

five seasons (1994, 1996, 1998, 2000 and 2002) using measured weather data from the site. The 

price of maize and N fertiliser was assumed to be 0.13 $ kg-1 and 0.5 $ kg-1, respectively. The N 

compensation payment was set to 0 $ kg-1 ha-1 since there is no compensation payment for N 

management in the US. The GeoSim NPM simulation of N rates were defined in a range 

between 40 and 240 kg N ha-1 with an increase in increments of 10 kg N ha-1. The N rate 

associated with the highest MNR for each grid was selected as the optimum N rate for each 

season. Table 4-1 shows the field level computed MNR for the producer’s practice. Different 

grids had different simulated optimum N rates that maximized MNR for each year. Table 4-1 

shows the simulated optimum N rates and MNR averaged over all grids to compare to the 

producer’s practices at the field level. Following the optimum N rates simulated by GeoSim 

NPM for each season, the producer would have obtained a 5% increase in MNR and 9% 

reduction in the applied amount of N compared to his current practice. Table 4-1 shows 

averaged values of NO3-N and NH4-N left after harvest each year over 100 grids based on the 

GeoSim NPM model.  
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Figure 4-3 shows the simulated optimum N rate for each grid. The years 1998 and 2002 had a 

low variability in simulated optimum N rate, with most grids having an optimum N rate of 

201-230 kg N ha-1. The year 2000 had lower optimum N levels, which corresponded with lower

simulated yields (Table 4-1) due to unfavourable weather conditions. Lower simulated yield

potential led to lower simulated optimum N rates due to the relative differences in yield value

and cost of N.  However, years 1994, 1998 and 2000 had higher simulated optimum N rates,

ranging from 111-230 kg N ha-1.
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Table 4-1 Calculated marginal net return (MNR) for measured yields and simulated MNR, measured grain yield kg ha-1, simulated optimum N 

rate averaged over all grids for each growing season, N leached and left in the soil after harvest averaged over 100 grids for each season (Memic et 

al., 2019). 

[kg ha-1] [$ ha-1] [kg ha-1] 

Year 

M 

Yield 

S 

Yield 

M 

MNR 

S 

MNR 

Applied 

N 

Simulated 

N 

Avg. N 

Leached 

Avg. NO3-N 

Left 

Avg. NH4-N 

Left 

1994 10788 11021 1299 1331 207 202 0.2 4.1 6.3 

1996 9076 8887 1076 1061 207 189 13.1 3.1 6.3 

1998 9862 10172 1170 1210 224 225 5.8 3.2 6.3 

2000 7598 8768 876 1064 224 152 0.4 3.1 6.3 

2002 10431 10661 1244 1274 224 225 8.4 3.2 6.3 

Change 4 % 5 % -9 %

M – Measured, S – Simulated, MNR – Marginal Net Return, N – Nitrogen, Avg. – Averaged 
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Table 4-2 shows the simulated N kg ha-1 rates grouped in representative application ranges 

and number of corresponding covered grids. The geospatial spread of N groups across the 

field for every simulated year is shown in Figure 4-3. Because of missing data in the years 1996, 

1998 and 2002, no N application rates could be simulated for six grids out of 500. Grid maps 

were generated in QGIS and exported as images in QGIS Print Composer. 

Table 4-2 Number of the grids with simulated optimum N ranges over five growing seasons 

(Memic et al., 2019). 

N Simulation Ranges [kg ha-1] 

Year 111-140 141-170 171-200 201-230 Grids 

1994 0 3 50 47 100 

1996 1 23 49 25 98 

1998 1 1 3 94 99 

2000 20 77 3 0 100 

2002 0 0 5 92 97 

Figure 4-3 Maps of simulated N application rates that maximized MNR in each growing 

season (from left: 1994, 1996, 1998, 2000 and 2002) using GeoSim NPM (Memic et al., 2019). 

Additional simulations were conducted to simulate both optimum N rate and plant 

population densities that maximized simulated MNR for each of the five seasons. Two 

simulation scenarios were compared: N optimisation (N Only) and N with population 

densities optimisation (N and Pop). The N simulation scenarios were 40-240 kg N ha-1 with an 

increase in increments of 10 kg N ha-1. Population densities were simulated in a range between 

3-9 plants per square meter with one plant increments. Price of a single seed was assumed to

be 0.0022 $. Table 4-3 shows the results of the simulation scenarios, in which N Only MNR and

N and Pop MNR included seed costs. According to the simulation results, a site-specific

population density increase of 8 % per m2 resulting in a plant density of 7-9 plants per m²

instead of 7-8 would require an additional 2 % N kg ha-1 increase to approximately maintain

grain yields at the same level. In retrospect, site-specific plant population densities

optimisation in combination with N optimisation would result in higher MNR.
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Table 4-3 Simulation scenarios of N levels (Only N), and combination of N rates and plant population (N and Pop) as conducted for each simulation 

scenario with corresponding MNR, N-rates, and plant population (number of the plants per square meter) (seed costs are included in MNR 

calculations of N simulation scenarios (N Only) and plant population simulation scenarios (N and Pop)) (Memic et al., 2019). 

 Simulated [kg ha-1] [$ ha-1] Simulated [kg ha-1] Measured [m-2] Simulated [m-2] 

Simulation 

Scenarios 

N Only N and Pop N Only N and Pop N  Only N and Pop N  Only N and Pop 

Year  Yield Yield  MNR MNR N  N  Plant Pop Plant Pop 

1994 11021 11782 1148 1234 202 199 8.3 9 

1996 8887 8881 878 887 189 193 8.3 7 

1998 10172 11183 1025 1153 225 222 8.4 9 

2000 8768 9630 901 967 152 173 7.4 9 

2002 10661 11070 1111 1131 225 227 7.4 9 

Change  6 %  6 %  2 %  8 % 

N Only – Nitrogen optimisation only, N and Pop – Nitrogen and plant population optimisation combined, N – Nitrogen, Plant Pop – Plant population 
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Farmer’s profit maximising N rates over 18 years of weather data (1966-1972, 1975-1982 and 

1985-1987) were simulated with GeoSim NPM and are shown in Table 4-4. In these simulation 

scenarios, field-specific optimised soil parameters, farmer’s practice (Uniform N Rates) and 

current prices were fixed. In GeoSim NPM, only daily temperature, precipitation and solar 

radiation varied on a daily basis over 18 years. The long-term N optimum showed 6% lower 

N application rates, averaged over five years. 

The profit maximising simulated N rates in a long-term, especially over long periods of 

weather variability, did not convey optimum N rates for any specific grid or year. In a long-

term with over 18 years of weather, simulated N rates would maximise the difference between 

the farmer’s income and the costs for N applications with current maize and N price.  

Table 4-4 Calculated MNR for simulated yield, and simulated N kg ha-1 compared to the 

applied uniform N kg ha-1 against 18 years of weather data (seed costs are not included in the 

calculations of simulated MNR in a long-term simulation scenario) (Memic et al., 2019). 

Year Simulated 

Yield [kg ha-1] 

 MNR  

[$ ha-1] 

Uniform N 

[kg ha-1] 

Simulated N  

[kg ha-1] 

1994 9590 1150 207 192 

1996 9892 1187 207 198 

1998 10053 1202 224 209 

2000 10111 1209 224 210 

2002 10168 1217 224 210 

Change    -6 % 

MNR – Marginal Net Return, N - Nitrogen 

 

4.3.2 Riech field 

In the simulation scenario for the Riech field, four soil parameters provided the best fit 

between observed and simulated yield values over three seasons and were chosen as the best 

soil-related input parameters combination of the field-specific soil properties. The soil-related 

crop model input parameters indicating a major impact on yield were: hard pan depth, hard 

pan factor, root distribution factor and percentage of available soil water. The results of the 

calibrations are shown in Figure 4-4. The R2 between simulated and measured yields across all 

grids and seasons was 0.75. Thus, 75 % of the spatial yield variability in the field across all 

grids and seasons were explained by the four soil parameters.  
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Figure 4-4 Relationship between simulated and measured maize grain yield [kg ha-1] 

calibrated using four soil parameters for the Riech field, Ihinger Hof, Germany (n=240) 

(Memic et al., 2019). 

GeoSim NPM was then used to compute MNR for different combinations of N rates for these 

three seasons (2006, 2007, and 2008). The price of maize and N fertiliser was assumed to be 

0.13 $ kg-1 and 0.5 $ kg-1, respectively. First, an N optimisation scenario was conducted without 

compensation payment (0 $ -1 ha-1). GeoSim NPM simulation N rates were set in a range 

between 40 and 180 kg N ha-1 with an increase in increments of 10 kg N ha-1. Simulation results 

suggested a 48 % lower N rate, resulting in 11 % higher MNR over three growing seasons 

compared to the farmer’s actual practice (Table 4-5). 

Riech field had substantially lower yields kg ha-1 when compared to the McGarvey field. Due 

to this, costs of N have a higher impact on MNR levels. Lower N rates in the simulations are 

also a result of the already existing high NO3-N levels in the soil (Fig. 5), which were 

considered during the soil parameter optimisation in the GeoSim. 
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Table 4-5 Simulated MNR, grain yield kg ha-1 and simulated N kg ha-1 compared with calculated MNR for measured yields, measured yield grain 

kg ha-1 and applied N kg ha-1, over three growing seasons (seed costs are not included in calculations of M or S MNR and compensation payment 

was not activated, N leached and left in the soil after harvest averaged over 80 grids for each season (Memic et al., 2019). 

 [kg ha-1] [$ ha-1] [kg ha-1] 

Year M  

Yield 

S  

Yield 

M  

MNR 

S  

MNR 

Applied  

N 

Simulated 

N 

Avg. N 

Leached 

Avg. NO3-N 

Left 

Avg. NH4-N 

Left 

2006 5369 6167 617 766 160 71 0.0 3.9 7.2 

2007 7016 7294 832 903 160 90 0.0 3.4 6.1 

2008 5715 5459 662 664 160 91 0.0 3.7 6.4 

Change   5 %  11 %  - 48 %    

M – Measured yield, S – Simulated yield, MNR – Marginal Net Return, N – Nitrogen, Avg. – Averaged 
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Additional simulations including the compensation payment (165 $ ha-1) were conducted for 

the Riech field. GeoSim NPM compensation payment option is based on the NO3-N and NH4-

N left in the upper soil layer at harvest (0-0.90 m). The N compensation threshold was set to 

less than 45 kg of NO3–N plus NH4-N kg ha-1 left in the soil after harvest. Due to the simulated 

low amounts of NO3–N and NH4-N kg ha-1 left in the field at harvest, the compensation 

payment did not affect N rate optimisation. All simulation output values were the same as in 

the basic N rate optimisation scenario, as shown in Table 4-5.  

Over three growing seasons, the applied N rates are grouped in representative application 

amounts kg ha-1 (Table 4-6). They are graphically shown in Figure 4-5. Orange boxes in Figure 

4-5 indicate the amount of NO3-N in the soil for each grid prior to sowing, based on the soil

samplings. Grid maps were generated in QGIS and exported as images in QGIS Print

Composer.

Table 4-6 Number of the field grids with specific N amount ranges over three growing 

seasons (Memic et al., 2019). 

N Simulation Ranges [kg ha-1] 

Year 40-70 71-85 86-100 101-115 116-130 131-145 146-160 Grids 

2006 54 16 8 2 0 0 0 80 

2007 13 15 42 7 3 0 0 80 

2008 19 22 20 5 9 0 5 80 

Figure 4-5 Maps of simulated N application rates that maximized MNR in each growing 

season (2006, 2007 and 2008) for the Riech field (green squares) using GeoSim NPM. Orange 

boxes indicate the NO3-N kg ha-1 levels before sowing in the soil as mean of the 

corresponding grids. Amount of NO3-N kg ha-1 for each grid was considered in the 

computation of necessary N application rates and thus in the overall N balance of the 

vegetation period of maize (Memic et al., 2019).  
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Additional simulations were conducted to test the influence of population densities on MNR 

levels and optimum N rates. GeoSim NPM simulation N rates were set in a range between 40 

and 180 kg N ha-1 with increments of 10 kg N ha-1. Plant population densities were set in a 

range between 5 and 10 plants per square meter with one plant increase for each run. GeoSim 

NPM nitrogen and plant population optimisation included seed costs. Price of one single seed 

was assumed to be 0.0022 $. Over three growing seasons, simulated MNR was 3 % higher 

when plant population (N and Pop) was considered, and both nitrogen and population 

densities were optimised simultaneously (Table 4-7). With relatively low yield kg ha-1 as is the 

case of Riech field, profit maximisation would be achieved by reducing the amount of seeds 

by 15 % and N by 8 % (Table 4-7). 
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Table 4-7 Simulation scenarios of N levels (Only N), and the combination of N rates and plant population (N and Pop) as conducted for each 

simulation scenario with corresponding MNR, N-rates, plant population (number of the plants per square meter), (seed costs are included in MNR 

calculations of N simulation scenarios (N Only) and plant population simulation scenarios (N and Pop)) (Memic et al., 2019). 

Simulated [kg ha-1] [$ ha-1] Simulated [kg ha-1] Measured [m-2] Simulated [m-2] 

Simulation 

Scenarios 

N Only N and Pop N Only N and Pop N     Only N and Pop N Only N and Pop 

Year Yield Yield MNR MNR N N Plant Pop Plant Pop 

2006 6167 6194 586 600 71 71 8.2 7 

2007 7294 7348 701 712 90 86 9.2 9 

2008 5459 5186 479 503 91 74 8.4 6 

Change -1 % 3 % -8 % -15 %

N Only – Nitrogen optimisation only, N and Pop – Nitrogen and plant population optimisation combined, Plant Pop – Plant population 



51 
 

Farmer’s profit maximising N rates over 11 years of weather data (1992-2002) were simulated 

with GeoSim NPM and are shown in Table 4-8. In these simulation scenarios, field specific 

optimised soil parameters, farmer’s practice (Uniform N rates), current prices and observed soil 

values were fixed. Long-term optimum N showed 45 % lower N rates, averaged over three 

years. 

The profit maximising simulated N rates in a long-term did not convey optimum N rates for 

any specific grid or year. In a long-term with over 11 years of weather, simulated N rates 

would maximise the difference between the farmer’s income and the costs for N applications 

with current maize and N price. 

Table 4-8 Calculated MNR for simulated yield, and simulated N kg ha-1 compared to the 

applied uniform N kg ha-1 against 11 years of weather data (seed costs are not included in the 

calculations of simulated MNR in a long-term simulation scenario) (Memic et al., 2019). 

Year Simulated Yield 

[kg ha-1] 

 MNR  

[$ ha-1] 

Uniform N 

[kg ha-1] 

Simulated N 

[kg ha-1] 

2006 6107 750 160 89 

2007 6251 769 160 89 

2008 5487 671 160 85 

Change    -45 % 

MNR – Marginal Net Return, N – Nitrogen 43.4 Discussion 

According to the results of the simulations, it can be concluded that low yielding fields (kg ha-

1) can maximize their profit with lower N amounts applied, depending on the N price. If the 

gap between price of maize kg-1 and price of N kg-1 is high, profit can be maximised with lower 

amounts of applied N, because yield increases in low yielding fields are not high enough to 

cover N costs. With GeoSim NPM, it would be possible to investigate which price gap (the 

grain yield price kg-1 and N price kg-1) and grain yield range (maximum and minimum yield 

kg-1 ha out of all defined grids in the field) would be a good indicator for a farmer to adjust an 

already existing uniform rate, if not ready to switch to variable N application.  

Results of the model soil properties calibration for fields in Germany and the USA explained 

75% and 94% of historical spatial yield variability. This indicates that the adjustments of soil 

parameters accounted for a significant amount of the spatial and temporal yield variability 

across the field.  

The lower R2 between simulated and observed yield in the field in Germany can be explained 

by a higher variability within the field, wherefore a higher level of insecurity is associated with 

the simulated N prescriptions for the field in Germany. 

For the McGarvey field, the simulated average yield across the field over five years was 9902  

kg-1 ha with a standard deviation of 524 kg-1 ha. For the Riech field, the simulated average grain 

yield over three years and all grids was 6307 kg ha-1 with a standard deviation of 1445 kg ha-1. 

The higher standard deviation of the Riech field may be a result of the given higher spatial 

variably within the field in comparison to the McGarvey field as well as the availability of only 

three years of yield data in comparison to five years  

The GeoSim NPM was used to compute the optimum N rates that maximized marginal net 

return. Results indicated that N rates could be reduced in both fields compared with current 

producer practices. In the McGarvey field, N rates could be 9 % lower and in Riech field N 

rates could be 48 % lower without profit loss. 
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As can be seen from the results of short (McGarvey 9 % and Riech 48 % lower N rates) and 

long-term (McGarvey 6 % and Riech 45 % lower N rates) N optimisation, site-specific N 

application has a short-term management potential, based on averaging N rates across longer 

periods (long-term). The profit maximising N rates over long periods of weather data could 

result in an over- application in low yielding years and N deficiencies in high yielding years. 

However, in the long-term, the farmer’s profit would be maximised. In order to quantify a 

potential increase in uncertainty associated with predicted weather data for the rest of the 

growing season, a more detailed analysis of weather data is needed. 

The impact of year due to changing weather conditions was obvious regarding the different 

grain yield amounts over a few seasons on the same field, assuming that all other inputs and 

practices were not changed. Additional analysis could be done to test GeoSim NPM N 

application timing (temporal variability) options and to see if different N application timings 

would have more influence on grain yield with more efficient use of N. According to the 

difference between short- and long-term differences lower site-specific variability in the field 

leads to more uniform N rate prescriptions. 

It has to be noted that the results regarding plant population and N are all model-based and 

were not validated with field samplings or experiments. However, they can serve as a good 

indicator of farm cost management strategies of N and plant population site-specifically in the 

context of fields indicating a high spatial heterogeneity (Riech) versus fields with a lower 

heterogeneity (McGarvey). If the causes of the spatial variability are soil-related, they cannot 

be changed easily or without substantial costs involved. In that case, the farmer can consider 

the option of reducing existing costs involved in the production, rather than trying to further 

increase the yield.  

The objective of the site-specific N and plant population simulations was to highlight the 

impact of crop production related costs on decision making in precision farming. Crop models 

can play a major role in trying to minimize the uncertainty associated with certain 

management actions as they integrate and consider multiple factors for the decision-making 

process. However, the results of model calibration were affected by the soil parameters used 

for calibration. Overall the ideal combination of soil parameters used for the calibration 

process seems to be determined by the underlying factors leading to spatial yield variability. 

Further research is needed to determine a suitable approach for the assessment of soil 

parameters in model calibration that captures enough information to represent spatial yield 

variability and temporal stability at a scale appropriate to finally optimize crop management 

and reduce yield gaps. The aim of using the model is of course to find a fertilization and 

sowing strategy better than the one used so far by the farmer and, in this way, increase the 

profit of the farmer. But while the model results seem to generate good profit characteristics, 

it has to be considered that the model responses to N application and population changes, N 

leaching and N left in the soil after harvest need to be validated. Based on a qualitative analysis 

of the results, it can be concluded that the model is doing well and could be applied in practice 

as a management decision support tool to achieve good profit performance of the farm. 

Further validation experiments would be an asset as model predictions are highly dependent 

on calibrated soil and yield parameters.  
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4.4 Conclusion 

The potential of crop models as decision support for variety broad range of field scouting and 

sampling sensor technologies is evident. However, the collected data has to be linked with 

proper decision support tools to reach the full potential and gain further insights in to existing 

complexity and interactions between different parameters influencing crop growth and thus 

final management.  

In this project, an open source software package has been developed that can be used in 

conjunction with the GeoSim open source software and QGIS to allow users to calibrate the 

CERES-Maize model to simulate historical spatial yield variability (GeoSim) and evaluate the 

economic consequences of variable rate N and plant population prescriptions (GeoSim NPM). 

While GeoSim NPM is currently operated as a stand-alone program, future work will focus on 

making this an open source plug-in for QGIS, which can be installed with the GeoSim plug-

in.  



54 

5 Extending the CSM-CERES-Beet Model to Simulate Impact of Observed Leaf Disease 

Damage on Sugar Beet Yield 

Memic, E.; Graeff-Hönninger, S.; Hensel, O.; Batchelor, W.D. Extending the CSM-CERES-Beet 

Model to Simulate Impact of Observed Leaf Disease Damage on Sugar Beet 

Yield. Agronomy 2020, 10, 1930. https://doi.org/10.3390/agronomy10121930 

  

Abstract 

A CSM-CERES-Beet pest damage routine was modified to simulate the impact of Cercospora 

leaf spot disease effects on sugar beet yield. Foliar disease effects on sugar beet growth and 

yield were incorporated as daily damage to leaf area and photosynthesis, which was linked to 

daily crop growth and biomass accumulation. An experiment was conducted in Southwest 

Germany (2016–2018) with different levels of disease infection. Data collected included time-

series leaf area index, top weight, storage root weight and Cercospora leaf spot disease 

progress. The model was calibrated using statistical and visual fit for one treatment and 

evaluated for eight treatments over three years. Model performance of the calibration 

treatment for all three variables resulted in R2 values higher than 0.82 and d-statistics higher 

than 0.94. Evaluation treatments for all three observation groups resulted in high R2 and d-

statistics with few exceptions mainly caused by weather extremes. Root mean square error 

values for calibration and evaluation treatments were satisfactory. Model statistics indicate 

that the approach can be used as a suitable decision support system to simulate the impact of 

observed Cercospora leaf spot damage on accumulated above-ground biomass and storage 

root yield on a plot/site-specific scale. 

Keywords: Cercospora leaf spot in sugar beet; Cercospora beticola; CSM-CERES-Beet; decision 

support system 

5.1 Introduction 

The EU is the largest producer of sugar beet (Beta vulgaris L.) in the world with approximately 

50% of global production (Eurostat, 2020). Approximately 20% of global sugar is produced 

from sugar beet (Eurostat, 2020). The sugar beet industry plays a very important role in the 

EU rural and agricultural economy and as such requires studies for increasing competitiveness 

of the sugar beet crop. Due to the abolishment of the production quotas, the EU farmers have 

increased sugar beet production. In 2017, cultivated area used for sugar beet production 

increased by 17.2% compared to 2016 (Eurostat, 2020). The EU-28 production quantities of 

sugar beet in 2017 was 27.3% higher than in 2016 (Eurostat, 2020). In 2018, sugar beet sown 

area was 1.2% lower when compared to the previous year with harvested sugar beet being 

16.5% lower (Eurostat, 2020). The sudden drop in harvested amount of sugar beet was very 

likely caused by recorded drought conditions and not quota abolishment related price 

volatility (Eurostat, 2020). Based on the general economic theory with market defined prices, 

more volatility is to be expected in sugar beet pricing, which will affect production quantities 

in the EU. The increase in sugar beet production in 2017 led to a fall in prices by an average of 

5.4% in real terms when compared to the prices from 2016 (Eurostat, 2020) and because of this, 

improved management of production resources might help to mitigate the impact on sugar 

beet production profitability. 
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Cercospora beticola (Sacc.) is a leading leaf pathogen affecting sugar beets in Germany (Wolf and 

Verreet, 2002). Economic consequences of Cercospora leaf spot in sugar beet are evident and 

quantifiable in the context of storage root yield and extractable sugar losses as reported by 

Shane and Teng (1992). Shane and Teng (1992) reported that sugar loss due to reductions in 

storage root and sugar concentration had more impact on dollar return than sugar loss to 

molasses due to impurities. The Cercospora leaf spot (caused by Cercospora beticola) has a 

significant influence on sugar beet yield, causing up to 30% yield losses (Wolf and Verreet, 

2002). Economically less significant sugar beet leaf diseases in Germany are caused by 

Ramularia beticola, Uromyces betae, and Phoma betae, which are normally not treated with specific 

fungicides, as some appear later in the growing season and/or are slow to develop (Wolf and 

Verreet, 2002). 

Crop growth models were developed as a tool to help researchers and farmers understand 

how genetics, environment and management impact daily crop growth and yield. They have 

been used to identify crop management practices (Jones et al., 2003), and the impact of climate 

change on yield (Olesen et al., 2011). However, most crop growth models do not simulate the 

impact of pest damage on crop growth and yield (Röll et al., 2019; Batchelor et al. 2020). One 

of the earliest efforts to simulate Cercospora leaf spot effects on yield was undertaken by 

Bourgeois (1989), based on the peanut crop growth (PNUTGRO) model (Boote et al., 1985). 

Similar efforts for evaluating disease effects on photosynthesis and yield estimates were 

performed by Nokes and Young (1991) and Batchelor et al. (1993). 

The CERES-Beet (Crop Environment Resource Synthesis – Beet) model developed by Leviel 

(2000) simulates growth and development processes of sugar beet. It has been tested using 

data from France, Romania (Leviel et al., 2003), and North Dakota, USA (Anar et al., 2015). 

Anar et al. (2015) modified the CERES-Beet model of Leviel (2003) and incorporated it as the 

CSM-CERES-Beet (Cropping System Model) model in the Decision Support System for 

Agrotechnology Transfer 4.6 (DSSAT4.6). A model comparison of five sugar beet crop models 

showed that the CERES model provided overall good simulations of plant growth and yield, 

based on the evaluation criteria that consisted of: relative root mean square error, model 

efficiency coefficient and yield prediction error (Baey et al., 2014). The CSM-CERES-Beet model 

was improved and successfully tested with additional data from North Dakota, USA (2016–

2018) and made available within GitHub DSSAT 4.7 release (Hoogenboom et al., 2019a; 

Hoogenboom et al., 2019b; Anar et al., 2019). The CERES-Beet and the CSM-CERES-Beet 

models are derivatives of the CERES-Maize model (Jones et al., 1986). The CERES-Maize 

model is deterministic and simulates different phenology events of the crop, including growth 

rates and biomass partitioning among crop organs (roots, stem, leaves and kernels) on a daily 

basis (López-Cedrón et al., 2008). The model requires a minimum of four different daily 

weather input variables (solar radiation, minimum temperature, maximum temperature, and 

precipitation), crop management practices (sowing date, plant population density and 

fertiliser amounts) and crop cultivar characteristics (genetic coefficients). The CSM-CERES-

Beet considers sugar beet as an annual crop for beet production purposes and classifies the 

phenology into five events: sowing, germination, emergence, vegetative phase, and harvest. 

The CSM-CERES-Beet model did not include leaf disease damage. 

The objectives of this study were to: (1) to develop a method to simulate the impact of observed 

Cercospora leaf spot disease on sugar beet yield and sugar content using the CSM-CERES-Beet 

model, (2) to evaluate the leaf disease model with three years of observed data from Southwest 
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Germany, (3) to evaluate sugar yield based on the measured storage root dry matter (DM) 

quantities in defined plots. 

This is an extended version of the conference paper published and presented at the 12th 

European Precision Agriculture Conference in Montpellier, France 2019 as preliminary work 

under the title “Extending the CERES-Beet model to simulate leaf disease in sugar beet”, 

Memic et al. (2019b). 

5.2 Materials and Methods 

5.2.1 Field Experiment Description and Data Collection 

In 2016–2018, field experiments were conducted at three different fields located at Ihinger Hof, 

Agricultural Research Station of Hohenheim University (30 km from Stuttgart, latitude: 48.666, 

longitude: 8.967, elevation: approximately 490 m). Weather data (solar radiation, rainfall, 

minimum and maximum temperature) for model simulations were collected from a local 

station 200–600 m away from the fields. According to the World Reference Base (FAO, 2006), 

experimental soils can be characterized as vertic Luvisol and vertic Cambisol. Organic carbon 

was assumed to be on average 3.8%, based on historic site measurements recorded at the 

research station over multiple years (unpublished). 

In 2017, after sugar beet had been planted, temperatures dropped below 0 °C (Figure 5-1). 

Sugar beet in the field managed to recover, but in the model, low temperatures had a 

significant influence on the simulation of the crop emergence and early growth as can be seen 

in the results section. 

 
Figure 5-1 Daily minimum temperatures (Min Temp) (°C) observed at the weather station 

near to the sugar beet field experiment (2016–2018) (Memic et al., 2020). 

In 2018, drought was recorded in the region as can be seen from seasonal cumulative rain 

curves shown in Figure 5-2, and the impact on simulated sugar beet growth was not entirely 

captured by the model. 

–10

–5

(0)

5

10

15

20

25

20 40 60 80 100 120 140 160 180 200

M
in

 T
e

m
p

 [
˚C

]

Days after planting

Min Temp 2016 Min Temp 2017 Min Temp 2018



57 
 

 
Figure 5-2 Cumulative rain (mm) observed at the weather station near to the sugar beet field 

experiment (2016–2018) (Memic et al., 2020). 

The sugar beet cultivar BTS940 (Betaseed GmbH, 60,325 Frankfurt am Main, Germany), a 

Rhizomania tolerant cultivar moderately susceptible to Cercospora beticola, was planted in all 

experiments. In 2016, sugar beet was sown on 29 April 2016 (120th day of the year) and 

harvested 177 days after planting. In 2017, sugar beet was sown on 4 April 2017 (94th day) and 

harvested 184 days after planting. In 2018, sowing took place on 18 April 2018 (108th day) and 

sugar beet was harvested 169 days after planting. Furthermore, 107.000 seeds ha−1 were 

planted in 2 cm depth with Khun Maxima precision seed drill, with an inter-row spacing of 50 

cm and intra-row spacing of 19 cm. 

In 2016, five different fungicide levels, consisting of 0, 25, 50, 75 and 100% of the recommended 

rates, were applied. The fungicide Spyrale (Syngenta Agro, Basel, Switzerland) was applied 

twice (according to the application recommendation), first at the beginning of August and 

second three weeks later. For the 100% fungicide treatment, 1 L of Spyrale was solved in 350 

L water for application per hectare. Treatments 75, 50, and 25% consisted of 0.75, 0.5, and 0.25 

L, respectively. Fungicide levels 0, 50 and 100% were investigated in order to estimate level of 

disease leaf area within the plots (defined as plot-specific units). Respected repetitions for 

investigated treatments were averaged in order to get robust model evaluation values across 

different treatments. The plots were fully randomised with three replications in 2016. 

Observed values used for the simulations were the mean values of the three repetitions. Total 

plot size was 576 m2 (24 × 24 m) in 2016. Plots were evenly divided into sampling and 

harvesting areas. 

In 2017 and 2018, the treatment consisted of different amounts of Cercospora beticola inoculum 

per plot named as 0% inoculum (no inoculum) and 100% inoculum (with inoculum), with 4 

replications in both years. Inoculum was collected at the field in 2016 and 2017. The number 

of Cercospora beticola spores was analysed in the laboratory. In both years, 1 g m−2 of inoculum 

was applied with a rate of 5.35 × 106 spores g−1 in the 100% inoculum treatments with Massey 

Ferguson (90 horsepower) at 4.5 km h−1 with 12 m wide sprayer. The sugar beets in the plots 

were first wetted with 400 L ha−1 and then an inoculum semolina mixture was spread. In 2017, 

plot size was 96 m2 (12 × 8 m) and in 2018, 192 m2 (24 × 8 m). Emergence rate was 7.5 beets m−2 
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in 2016, 9 beets m−2 in 2017 and 8 beets m−2 in 2018. In 2016, within a week after sowing, 130 kg 

N ha−1 was applied on the field as calcium ammonium nitrate (CAN, 27% N). In 2017, 150 kg 

ha−1 and in 2018 140 kg ha−1 was applied as CAN (27% N) within a week after sowing. 

During the growing seasons, leaf area index (LAI) was measured every two weeks non-

destructively using a LAI 2000 (LICOR Inc., Lincoln, NE, USA), by taking one reference 

measurement above the canopy and four measurements within the canopy. Top weight 

(leaves and petiole separately) and storage root weight were sampled in two to four-week 

intervals during the growing period (2016–2018). For each storage root, sampling date, sugar 

yield was measured as percent of storage root dry matter. Each sampled beet (storage root) 

was cut in half, where one half was used for determining sugar content and the other half for 

nitrogen analysis. The sugar content was analysed according to the polarisation method 

(ICUMSA 2003). 

Leaf disease ratings were conducted for Cercospora leaf spot, after canopy closure 

(approximately 90% of leaves from one row were touching those in neighbouring rows), 

starting at the end of June in each year. Minor incidents of Ramularia beticola and Pseudomonas 

syringae pathogens were observed in inspected plots. The damage caused by these two 

pathogens was minor, when compared to Cercospora beticola. Every 2–3 weeks, 10 middle 

leaves (long-term leaves) were inspected from 10 plants in 2016 (three plot repetitions), 4 

plants in 2017 (four plot repetitions) and from 5 plants in 2018 (four plot repetitions) per plot, 

mostly as part of destructive sampling. Based on the diseased leaf area, plot-specific leaf area 

disease progress (%) was recorded (Table 5-1) and used as input for the model. Model 

calibration was conducted on the 2016 100% fungicide treatment. The remaining data of 2016 

were used in addition to the treatments of the years 2017 and 2018 for model evaluation. 
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Table 5-1 Observed Cercospora leaf spot, as leaf area disease progress (%), on indicated days 

after planting (DAP) for three different fungicide treatments: 0%, 50% and 100% in which 0, 

0.5, and 1 L ha−1 of Spyrale fungicide was applied, respectively, and 0% and 1 g m−2 of 

inoculum was applied, respectively (Memic et al., 2020). 

Year DAP Cercospora Leaf Spot Leaf Area Disease Progress (%) 

2016  0% fungicide 50% fungicide 100% fungicide 

63 0 0 0 

83 3 3 1 

103 13 20 20 

125 22 21 24 

138 47 25 22 

152 48 33 33 

177 48 33 33 

2017  0% inoculum 100% inoculum  

106 0 0  

127 18 46  

140 56 74  

169 92 100  

184 92 100  

2018  0% inoculum 100% inoculum  

106 0 0  

119 1 7  

126 46 52  

133 49 57  

147 75 79  

154 100 100  

169 100 100  

5.2.2 Leaf Disease Damage Coupling Points 

The CSM-CERES-Beet model (Leviel, 2000; Anar et al., 2019) inherited pest coupling points for 

simulation of many types of pest damage. Currently, there are four approaches for applying 

foliar damage through pest coupling points that reduce daily state variables or growth rate 

processes: (1) daily absolute damage rate, (2) percent observed damage (measured by 

comparison of different treatments), (3) daily percent damage rate, and (4) daily absolute 

damage rate with preference and competition (Batchelor et al., 1993). The existing pest damage 

module structure in the DSSAT (Figure 5-3) was used for simulating Cercospora leaf spot 

impact on plant growth and yield by means of “daily percent damage rate (no. 3)”. This 

method was selected for introducing the damage caused by Cercospora leaf spot disease 

because it showed the required flexibility and reliability using the collected data. In 

combination with linear interpolation (between two in-season observations), the chosen 

approach provided acceptable results based on the model evaluation criteria described in the 

Results section. 

Figure 5-3 shows the simplified modular structure with a minimal input data approach 

hypothetically required for evaluation of leaf disease impact on crop yield. The crop model 

simulates in-season crop growth and yield, which is then reduced by yield limiting factors 

such as leaf disease through the reduction in cumulative leaf area in the pest module (Pest.for) 

and damage calculated in the vegetation damage sub-module (VEGDEM.for) (Figure 5-3). In-
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season above- and below-ground accumulation rates are defined in the crop model genetic 

coefficients input file (Figure 5-3) and through genetic coefficients and above- and below-

ground biomass in-season growth ratios, a direct connection is established between leaf 

disease damage (in this case, Cercospora leaf spot) and storage root (yield) simulated in the 

model. With this approach, Cercospora leaf spot damage does not have an instant effect on 

reduction in the storage root in the CSM-CERES-Beet model, but rather limits further storage 

root growth due to reduced photosynthesis rates and the radiation use efficiency approach 

implemented in the model. The disease damage passed into the model earlier had a more 

devastating effect on yield when compared to the damage introduced later (high percentages 

close to harvest time). 

 
Figure 5-3 Crop model inputs: experimental file, soil characterisation file, genotype file and 

daily weather observations in the model with pest modular structure and vegetation damage 

coupling point (Memic et al., 2020). 

The foliar disease Cercospora leaf spot was integrated into the model based on Equations 

(1) and (2), where xit is the modified cumulative leaf area state variable after applying daily 

damage Di on cumulative leaf area state variable Xi on day t. 

𝑥𝑖𝑡 = 𝑋𝑖𝑡 − 𝐷𝑖𝑡 (1) 

The “percent of the cumulative leaf area” damage method was defined and selected in the 

crop model pest file, as shown in Table 5-2. Based on the selected method, Cercospora leaf spot 

damage is computed on a daily basis. The daily disease damage (WLIDOT) is subtracted from 

simulated plant leaf area (PLA), Equation (2). SENLA in Equation (2) refers to growth related 

senescence, and LFWT is simulated leaf weight dry matter based on the plant population 

(PLTPOP). 

PLA = PLA − 𝑊𝐿𝐼𝐷𝑂𝑇 ∗ 
𝑃𝐿𝐴 − 𝑆𝐸𝑁𝐿𝐴

𝐿𝐹𝑊𝑇 ∗ 𝑃𝐿𝑇𝑃𝑂𝑃
 (2) 

For application of leaf damage caused by Cercospora beticola leaf pathogen, the model variables 

“LAI” and “cumulative leaf area” were selected as the primary coupling points. LAI is 

calculated from specific leaf area. Based on the calculations in the model and the direct 

relationship between leaf area and LAI, applied damage will affect both cumulative leaf area 

and LAI, as LAI damage is subsequently deduced based on cumulative leaf area damage. Leaf 
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mass damage proportionally affects leaf N concentration, photosynthesis and subsequently 

storage root dry mater. The daily crop growth reduction rate computation is shown in 

Equation (3), where CARBO is daily biomass production and DISLA is photosynthesis 

reduction due to leaf disease. 

CARBO = CARBO ∗ [1 − 
𝐷𝐼𝑆𝐿𝐴

𝑃𝐿𝐴 ∗ 𝑃𝐿𝑇𝑃𝑂𝑃
] (3) 

Manual estimates of Cercospora leaf spot leaf disease area progress (%) (or sensor-based leaf 

disease area progress (%)) can be passed into the model as percent damage. Percent damage 

is calculated in Equation (4): 

𝐷𝑖𝑡 =
𝑅𝑖𝑡

100 
 𝑋𝑖𝑡 (4) 

where Rit is the observed percent damage applied to the coupling point on day t. The CSM-

CERES-Beet model simulates individual leaf development (Leviel, 2000), and leaf area is 

computed based on leaf number and leaf weight. Leaf disease severity is measured in the field 

and computed as an average per plant. The model can simulate disease effects by entering 

observed leaf area disease progress levels in an input file, which is used to simulate daily 

damage on leaf area and subsequently, light interception and daily photosynthesis rate. This 

method computes cumulative leaf area damage rates between two disease observation points 

from scouting and uses a linear interpolation (for simplicity) to convert time-series scouting 

observations into daily damage. Disease progress interpolation between field observation 

dates is computed in the model. The leaf disease damage method with damage rates is defined 

in the pest definition file for DSSAT sugar beet model, BSCER047.PST (Table 5-2). A more 

detailed description of the disease related model structure can be found in the recent 

publication on leaf disease damage application in Cropsim-CERES-Wheat (Röll et al., 2019; 

Batchelor et al., 2020) and in Batchelor et al. (Batchelor et al., 1993). 

 

Table 5-2 Information and format of the pest definition file for the CSM-CERES-Beet 

(Cropping System Model – Crop Environment Resource Synthesis – Beet) model, used for 

defining coupling point and damage method in the crop model programming code 

(BSCER047.PST) (Memic et al., 2020). 

No. PID Method Name DM CP Coeff. 

1 PCLA Observed % defoliation 3 LAD 2.0 

PID—leaf disease damage identifier. DM—damage characterisation method: 1–4 (3—daily 

percent damage rates). CP—coupling point identifier in the model. Coeff. —damage 

application rates. PCLA—percent cumulative leaf area. 

Observed leaf disease percentages are passed into the model through the time-series file, called 

the T-File (treatment file), which contains observed damage on each field scouting day. The 

leaf area damage (LAD) method uses time series observations from the T-File to calculate 

percent leaf mass, leaf N and leaf area damage based on the LAD formulation in the code. The 

function uses a coefficient value of 2.0 to double the impact of necrotic leaf area on daily 

photosynthesis. The adapted damage approach in the model was based on the principle of 

defoliation by insects. Only physically missing leaf parts were reported in the model as 

observed damage affecting the overall photosynthetical activity of the plant. For Cercospora 

leaf spot, the diseased leaf is still present and absorbs light, but its photosynthetic activity is 

reduced. Jones et al. (1955) reported that removal of the foliage (by 25%) mechanically at the 
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eight-leaf stage did not have an appreciable effect on storage root weight and sugar content 

because leaves were able to re-grow and regain photosynthetic activity. Mechanically removed 

leaves do not block the sunlight for remaining leaves. 

5.3 Results 

The genetic coefficients of the model were calibrated using the 2016 100% fungicide treatment 

(the treatment, described in materials and methods section, in which 1 L of Spyrale was 

applied per hectare), based on given regulations in Germany that limited the amount of 

fungicide to be applied. The 100% fungicide application treatment was used to calibrate 

genetic coefficients, even though there were some disease incidents in this treatment. For 

calibration, a two-step approach was used. First, the genetic coefficients were calibrated 

assuming no disease was present, which helped us to understand the magnitude of each 

genetic coefficient required for the model to fit measured growth data. Next, the observed 

disease levels were incorporated into the model and the genetic coefficients were re-adjusted 

to attain the optimum calibration combination. 

Genetic coefficients (Table 5-3) were manually adjusted to obtain the best visual and statistical 

fit, based on the crop model evaluation criteria used in this study, between simulated and 

observed values for LAI, top weight, and storage root. During the calibration process, each 

coefficient range was kept within minimum and maximum values recommended for the 

model. 

Table 5-3 Sugar beet cultivar specific genetic coefficients for CSM-CERES-Beet model 

(BTS940) (Memic et al., 2020). 

 Definition Units BTS940 

P1 Growing Degree Days from the seedling emergence to 

the end of juvenile phase (juvenile group of leaves, 

depending on the cultivar up to 15–20 leaves) 

°C-d 760.0 

P2 Photo period sensitivity hr−1 0.0 

P5 Thermal time from leaf growth to physiological 

maturity 

°C-d 700.0 

G2 Leaf expansion rate during leaf growth stage cm2 cm−2 d−1 420.0 

G3 Maximum root growth rate gm−2 d−1 27.5 

PHINT Phyllochron interval, the interval in thermal time 

between successive leaf tip appearances 

°C-d 43.0 

For the evaluation, two treatments from 2016 (0 and 50% fungicide treatments) and treatments 

from 2017 (0% and 100% inoculum level) and 2018 (0 and 100% inoculum level) were used. 

The calibrated model was used to simulate LAI, top weight, and storage root dry weight. 

For statistical evaluation (as model performance evaluation criteria) of the simulated results, 

the coefficient of determination, the root mean square error (RMSE) and the d-statistics (index 

of agreement) were used. RMSE was used to estimate the deviation between measured (xi) and 

simulated (yi) values in the same unit (absolute measure of fit) Equation (5). 

𝑅𝑀𝑆𝐸 =  √∑(𝑦𝑖 − 𝑥𝑖)2/𝑛 (5) 

Model performance was evaluated with the index of agreement (unitless measure), because it 

is more sensitive to larger deviations than smaller, due to the calculation of the difference 
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between simulated and observed as squared values by Equation (6), as described in Yang et 

al. (2014). 

𝑑 = 1 − ∑(𝑦𝑖 − 𝑥𝑖)2 / ∑(|𝑦𝑖 − 𝑥̅| + |𝑥𝑖 − 𝑦̅|)2 (6) 

Variation range of the index of agreement is 0.0–1.0, and values closer to 1 indicate a better fit. 

5.3.1 Calibration Results 

Calibration results are shown as time series graphs (Figures 5-4 and 5-5). As Cercospora leaf 

spot disease was introduced as damage on cumulative leaf area per plot, top and storage root 

weight were considered as important indicators of the overall model performance. In Figure 

4, LAI (a) and top weight (b) are shown with observed values, and storage root yield in Figure 

5. The model gave reasonably good estimations, based on the model evaluation criteria with 

high R2 and d-stat. and relatively low RMSE of observed data, as can be seen from figures and 

statistics in Table 5-4. For LAI, top weight, and storage root weight (DM) R2 were >0.82 and d-

statistics > 0.94 (Table 5-4). Even though RMSE for storage root was 1696 kg ha−1, it is not an 

indicator of bad model performance due to the existence of two large deviations from the 

observed time-series trend (Figure 5-5, Table 5-4). The dip in the simulation curve of top 

weight (Figure 5-4b) on the 140th day after planting was not caused by Cercospora leaf spot 

disease damage integration as can be seen from the disease-free curve (“no-dis” sugar beet 

growth simulated with current genetics without disease ratings being included in simulation 

process—(red) dotted line), but a result of a structural issues within the model. 

Detailed views of the measured data and the effects of disease levels on the calibration 

treatment (100% fungicide in 2016) are shown in Figure 5-6. Cercospora leaf spot disease 

impact on sugar beet growth was demonstrated with manually measured data with 

corresponding impacts on top weight (primary y axis) and storage root (secondary y axis) 

(Figure 5-6). 

  
(a) (b) 

Figure 5-4 Simulated and observed values (2016: 100% fungicide) with Cercospora leaf spot 

ratings included in the simulation results: (a) leaf area index (LAI); (b) top weight (DM t ha−1) 

for the calibration treatment with sugar beet growth simulated with current genetics and 
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without Cercospora leaf spot disease ratings being included in the simulation process as “no 

dis” treatment (Memic et al., 2020). 

 
Figure 5-5 Simulated and observed values (2016: 100% fungicide) with Cercospora leaf spot 

ratings included in the simulation results: storage root weight (DM t ha−1) for the calibration 

treatment with sugar beet growth simulated with current genetics and without Cercospora 

leaf spot disease ratings being included in the simulation process as “no dis” treatment. 

Table 5-4Detailed statistics for simulated and observed values of LAI (m2 m−2), top weight 

(DM) kg ha−1, and storage root weight (DM) kg ha−1 for the calibration treatment (100% 

fungicide in 2016) (Memic et al., 2020). 

Year Variable Treatment R2 RMSE d Stat. Total Obs. 

2016 

LAI 100% fungicide 0.87 0.52 0.95 14 

Top weight 100% fungicide 0.82 686 0.94 7 

Storage root 100% fungicide 0.95 1696 0.99 9 

Total Obs.—number of in-season observations used 
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Figure 5-6 Simulated and observed values with Cercospora leaf spot ratings 

included in the simulation results: (y0 axis) top weight; (y1 axis) storage root weight 

and observed Cercospora leaf spot disease ratings on specific dates, and sugar beet 

growth simulated with current genetics without disease ratings being included in 

the simulation process as “no dis” treatment (100% fungicide in 2016) of top and 

storage root weight (Memic et al., 2020). 

5.3.2 Evaluation Results 

In 2016, the 0 and 50% fungicide treatments were available for evaluating model performance. 

For each evaluation treatment, 14 observations were available for LAI, seven for top weight 

and nine for storage root. Simulated LAI, top weight and storage root curves showed fewer 

fluctuations when compared among each other than observations on the same sampling dates 

across different treatments (Figures 5-7 and 5-8). Simulated LAI was underestimated 

compared to observed values (Figure 5-7a). Overall statistics (Table 5-5) and visual fit (Figure 

5-7a) were adequate for rough estimates, with d-statistics >0.91. Top weight (Table 5-5, Figure 

5-7b) had the same problem as in calibration treatments after 140th day (the dip in simulation 

curve) but had a d statistic >0.92. Visual model fit for storage root (Figure 5-8) was good. 

Storage root R2 and d-statistics (Table 5-5) were very good with exception of the RMSE. 

In 2017, the model simulated top weight and storage root well with the exception of the LAI. 

LAI was only partially satisfying (Figure 5-9a, Table 5-6) due to over-estimation of observed 

values with R2 being 0.54, 0.81 and d-statistics 0.63, 0.83 for 0% and 100% inoculum treatment, 

respectively (Table 5-6). Top weight (Figure 5-9b) and storage root (Figure 5-10) R2 and d-

statistics were >0.96 with exception of top weight d-statistics for 0% inoculum treatment being 

0.74 (Table 5-6). 
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(a) (b) 

Figure 5-7 Simulated and observed values (2016) with Cercospora leaf spot ratings included 

in the simulation results: (a) LAI; (b) top weight (DM t ha−1) for the evaluation treatments 

with sugar beet growth simulated with current genetics and without Cercospora leaf spot 

disease ratings being included in the simulation process as “no dis” treatment (Memic et al., 

2020). 

 
Figure 5-8 Simulated and observed values (2016): storage root weight (DM t ha−1) for the 

evaluation treatments with (0% fungicide, 50% fungicide) and without (‘no dis”) Cercospora 

leaf spot ratings included in the simulation (Memic et al., 2020). 
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Table 5-5 Detailed statistics for simulated and observed values of LAI (m2 m−2), top weight 

(DM) kg ha−1 and storage root weight (DM) kg ha−1 for the evaluation treatments 0% and 50% 

fungicide in 2016 (Memic et al., 2020). 

Year Variable Treatment R2 RMSE  

(kg ha−1) 

d Stat. Total Obs. 

2016 LAI 0% fungicide 0.85 0.63 0.92 14 

LAI 50% fungicide 0.80 0.63 0.91 14 

Top weight 0% fungicide 0.85 565 0.95 7 

Top weight 50% fungicide 0.74 751 0.92 7 

Storage root 0% fungicide 0.94 2270 0.97 9 

Storage root 50% fungicide 0.94 2362 0.97 9 

Total Obs.—number of in-season observations used 

 

(a) (b)  

Figure 5-9 Simulated and observed values (2017): (a) LAI; (b) top weight (DM t ha−1) for the 

evaluation treatment with (0% inoculum, 100% inoculum) and without (“no dis”) simulated 

Cercospora leaf spot disease damage included in the simulation (Memic et al., 2020). 
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Table 5-6 Detailed statistics for simulated and observed values of LAI (m2 m−2), top weight 

(DM) kg ha−1, and storage root weight (DM) kg ha−1 for the evaluation treatments 0% and 

100% inoculum in 2017 (Memic et al., 2020). 

Year Variable Treatment R2 RMSE 

(kg ha−1) 

d Stat. Total Obs. 

2017 LAI 0% inoculum 0.54 0.85 0.63 8 

LAI 100% inoculum 0.81 0.72 0.83 8 

Top weight 0% inoculum 0.80 747 0.74 4 

Top weight 100% inoculum 0.96 402 0.96 4 

Storage root 0% inoculum 0.93 2399 0.98 4 

Storage root 100% inoculum 0.87 3124 0.96 4 

Total Obs.—number of in-season observations used 

 
Figure 5-10 Simulated and observed values (2017): storage root weight (DM t ha−1) for the 

evaluation treatment with (0% inoculum, 100% inoculum) and without (“no dis”) simulated 

Cercospora leaf spot disease damage ratings included in the simulation (Memic et al., 2020). 

Evaluation results for 2018 are shown in Figures 5-11 and 5-12 with corresponding statistics in 

Table 5-7. In 2018, a drought period occurred in the region. The model did not entirely capture 

drought effects causing minor over- and under-estimations of observed values. Still, the visual 

fit (Figures 5-11 and 5-12) indicated a satisfactory performance supported with reasonably 

good statistics (Table 5-7), based on the model evaluation criteria. R2 of 0.76 (0% inoculum 

treatment) and 0.70 (100% inoculum treatment) were due to the over-estimation of LAI. LAI 

curve trend was simulated well, as can be seen in Figure 5-11a and LAI d-statistics 0.87 and 

0.84 for 0% inoculum and 100% inoculum treatment, respectively. The same over-estimation 

of the observed values occurred for top weight dry matter (Figure 5-11b) with slightly better 

R2 and d-statistics than for LAI (Table 5-7). Storage root dry matter simulation results (Figure 

5-12) were partially satisfying with under-estimation close to harvest time. For both 

treatments, storage root dry matter R2 and d-statistics were >0.94 (Table 5-7). 
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Table 5-7 Detailed statistics for simulated and observed values of LAI (m2 m−2), top weight 

(DM) kg ha−1, and storage root weight (DM) kg ha−1 for the evaluation treatments 0% and 

100% inoculum in 2018 (Memic et al., 2020). 

Year Variable Treatment R2 
RMSE  

(kg ha−1) 

d 

Stat. 

Total 

Obs. 

2018 

LAI 0% inoculum 0.76 0.57 0.87 9 

LAI 100% inoculum 0.70 0.64 0.84 9 

Top weight 0% inoculum 0.92 812 0.78 6 

Top weight 100% inoculum 0.81 953 0.71 6 

Storage root 0% inoculum 0.97 3045 0.94 6 

Storage root 100% inoculum 0.99 3486 0.93 6 

Total Obs.—number of in-season observations used 

 
(a) (b) 

Figure 5-11 Simulated and observed values with Cercospora leaf spot ratings 

included in simulation results: (a) LAI; (b) top weight (DM t ha−1) for the evaluation 

treatment with sugar beet growth simulated with current genetics and without 

Cercospora leaf spot disease ratings being included in the simulation process as “no 

dis” treatment (Memic et al., 2020). 
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Figure 5-12 Simulated and observed values with Cercospora leaf spot ratings included in 

simulation results: storage root weight (DM t ha−1) for the evaluation treatment with sugar 

beet growth simulated with current genetics and without Cercospora leaf spot disease 

ratings being included in the simulation process as “no dis” treatment (Memic et al., 2020). 

5.3.3 Model-Based Yield Losses Evaluation Results 

Sugar content was analysed for every sampling date, as described in the Methodology section. 

Sugar content was measured as percent of dry matter within weeks before harvest (three 

samples each in 1–2 weeks interval) and the average across all treatments (2016–2018) was 68% 

as shown in Table 5-8. 
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Table 5-8 Observed storage root weight (SRW) (DM) kg ha−1, sugar yield (SY) kg ha−1 and sugar content as (%) of (DM) (Sc (%)) for three different 

fungicide treatments: 0%, 50% and 100% in which 0, 0.5, and 1 L ha−1 of Spyrale fungicide was applied, respectively, and 0% and 100% inoculum 

treatments in which 0 and 1 g m−2 of inoculum was applied, respectively (Memic et al., 2020). 

 DAY SRW 

kg ha−1 

SY 

kg ha−1 

Sc 

(%) 

SRW 

kg ha−1 

SY 

kg ha−1 

Sc 

(%) 

SRW 

kg ha−1 

SY 

kg ha−1 

Sc 

(%) 

2016  0% fungicide 50% fungicide 100% fungicide 

138 15,241 10,171 67 16,153 10,625 66 18,319 12,438 68 

152 16,768 11,343 68 15,005 9906 66 18,091 12,366 68 

160 18,024 12,072 67 18,180 12,231 67 22,184 14,911 67 

Avg.    67   66   68 

2017  0% inoculum 100% inoculum    

114 11,820 8233 70 10,461 7109 68    

140 16,538 10,970 66 19,270 13,384 69    

169 27,956 20,166 72 27,915 19,944 71    

Avg.    69   69    

2018  0% inoculum 100% inoculum    

119 17,115 11,839 69 15,736 10,937 70    

147 17,748 12,842 72 21,111 13,941 66    

161 21,308 14,890 70 21,462 15,533 72    

Avg.    70   69    
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In retrospect, sugar yield was quantified as percent of dry matter per experimental plot (Table 

5-8) and used for quantifying sugar yield in simulated dry matter. To simulate sugar yield 

losses (SY loss, based on the measured sugar content percentage shown in Table 5-8), the 

model-based storage root dry matter quantities (SRW) were evaluated by comparing the no 

disease treatment (“no dis”—Cercospora leaf spot disease damage ratings not included in the 

simulation process) and disease treatments (“dis”—with Cercospora leaf spot disease damage 

ratings included) based on Equation (7) with results shown in Table 5-9. 

𝑆𝑅𝑊 𝑙𝑜𝑠𝑠 [𝐷𝑀] = SRW′no dis′[DM] − SRW′dis′[DM] (7) 



73 
 

Table 5-9 Simulated storage root (DM) kg ha−1: disease free storage root (“no dis”—Cercospora leaf spot disease ratings not included in 

the model input files), storage root simulated quantity with Cercospora leaf spot disease ratings included in the model input files (“dis”) 

and storage root weight (SRW) losses (Memic et al., 2020). 

Simulated Storage Root (DM) (kg ha−1) 

 DAY ‘No Dis’ ‘Dis’ SRW Loss ‘Dis’ SRW Loss ‘Dis’ SRW Loss 

2016   0% fungicide 50% fungicide 100% fungicide 

63 478 478 0 478 0 478 0 

83 3738 3728 10 3728 10 3735 3 

103 8867 8776 91 8741 126 8759 108 

125 15,565 15,269 296 15,202 363 15,207 358 

138 17,983 17,636 347 17,645 338 17,655 328 

152 20,802 20,221 581 20,291 511 20,307 495 

177 22,506 21,232 1274 21,424 1082 21,440 1066 

2017   0% inoculum 100% inoculum   

106 2742 2742 0 2742 0   

127 9792 9787 5 9779 13   

140 12,577 12,529 48 12,456 121   

169 21,108 20,481 627 20,145 963   

184 28,518 26,068 2450 25,489 3029   

2018   0% inoculum 100% inoculum   

106 10,971 10,971 0 10,971 0   

119 12,654 12,651 3 12,632 22   

126 13,171 13,082 89 13,047 124   

133 14,418 14,187 231 14,133 285   

147 16,506 15,939 567 15,841 665   

154 16,506 15,939 567 15,841 665   

169 16,506 15,939 567 15,841 665   
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Sugar yield loss (SY loss kg ha−1) was then computed with Equation (8), by a sugar content (Sc) 

of 68% (Table 8) based on the storage root losses (SRW loss) shown in Table 5-9. 

𝑆𝑌 𝑙𝑜𝑠𝑠 = SRW loss [DM] ∗ Sc [%] (8) 

The results of simulated sugar yield loss (SY loss) based on the simulated storage root weight 

loss (SRW loss) are shown in Table 5-10. In 2016, three fungicide application rates (0%, 50% 

and 100%) resulted in different observed leaf disease percentages. Higher applied fungicide 

amount resulted in lower disease damage and lower storage root loss and consequently lower 

sugar yield loss as shown in Table 5-10. In 2017 and 2018, Cercospora beticola inoculum was 

mechanically spread as two different treatments (0% and 100%) in order to cause additional 

leaf disease damage for investigating the impact on above-ground biomass and storage root 

accumulation rates. Applied inoculum resulted in higher observed leaf disease percentages 

that correlated with higher storage root losses (Table 5-10). For modelling purposes, in-field 

leaf disease was observed for designated plots without investigating direct relationships 

between observed leaf disease percentages and quantities of applied fungicide and inoculum. 

Table 5-10 Simulated storage root weight (DM) losses (SRW) (kg ha−1) and corresponding 

sugar yield losses (SY) (kg ha−1) at harvest as days after planting (DAY) (Memic et al., 2020). 

Year DAY Treatments SRW Loss (DM) 

(kg ha−1) 

SY Loss 

(kg ha−1) 

2016 177 0% fungicide 1274 866 

50% fungicide 1082 735 

100% fungicide 1066 725 

2017 184 0% inoculum 2450 1666 

100% inoculum 3029 2060 

2018 169 0% inoculum 567 386 

100% inoculum 665 452 

5.4 Discussion 

In 2017, sugar beet was planted at the beginning of April in a period with lower temperatures 

(Figure 5-1). The model simulated the overall LAI pattern quite well. However, likely due to 

the lower temperatures around emergence, the model did not simulate LAI growth correctly 

20 to 30 days after planting. 

The Cercospora leaf spot leaf area disease progress (%) was capturing plot-based disease status 

very well until leaf disease patches in the plots were observed (within days after leaf area 

disease progress (%) = 100). Above that level, leaf area disease progress (%) did not reflect the 

severity of the spread. During the study, Cercospora leaf spot patches were recorded on plot 

level. A further method needs to be developed that compliments the approach (leaf area 

disease progress (%)), to enable the user to add information on disease severity based on the 

observed Cercospora leaf spot disease patches. This additional method will help to integrate 

Cercospora leaf spot disease severity information from the point where leaf area disease 

progress (%) method of the middle 10 leaves (long-term leaves) lose explanatory power, closer 

to harvest time. 

When interpreting the results, many factors have to be included, such as the length of the 

growing period, timing of Cercospora leaf spot occurrence and leaf area disease percentages. 
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For example, lower Cercospora leaf spot disease damage introduced earlier in the CSM-

CERES-Beet model led to higher reduction in above-ground biomass compared to higher leaf 

disease damage introduced in the model closer to the harvest time. Sugar beet has the ability 

to produce new leaves throughout its entire vegetative stage (in its first year). Depending on 

the soil and weather conditions, it can “replace” lost leaves. Currently, the model does not 

account for this, as it is accumulating dry matter on a daily basis. 

The occurrence of Cercospora leaf spot disease depends on specific weather factors, as 

optimum daily temperatures are 20 to 25 °C (Wolf and Verreet, 2002). Cercospora leaf spot can 

occur at lower temperatures and a broad range of humidity (Wolf and Verreet, 2002) and 

changing microclimates within a plant stand. It was observed in the experimental field that 

Cercospora leaf spot often exhibited a patchy distribution later in the growing season, close to 

harvest. 

Reliable and timely assessments of Cercospora leaf spot occurrence and spread are the basis 

for planning targeted plant protection activities in the field. Visual plant disease estimations 

by extension officers is one way to collect these data, or leaf disease spread simulation models 

such as that developed by Rossi and Battailani. Rossi and Battailani (1991) used the CERCOPRI 

model to quantify the effects of Cercospora leaf spot on sugar yield. Rossberg et al. (2000) 

modified CERCOPRI in order to simulate early Cercospora leaf spot epidemic’s impact on 

sugar beet growth and yield and to evaluate the impacts of fungicide applications. Their work 

resulted in the development of CERCBET 1, which was further improved by Racca et al. (2004). 

Other significant Cercospora leaf spot forecasting models are: the leaf spot model for sugar 

beet (Windels et al., 1998), the integrated pest management system in Germany (Wolf and 

Verreet, 2002), and the integrated surveillance of leaf disease in sugar beet (Mittler et al., 2004). 

All of these model development efforts were conducted in order to moderate application of 

chemicals based on the environmental conditions combined with field scouting reports. 

If crop growth models can be coupled in the future with suitable sensor technologies (Bock et 

al., 2020) or models capable of predicting leaf disease occurrence based on the leaf disease 

favouring weather conditions, their potential as decision support tools is enormous. 

Hyperspectral imaging can be used for analysis of Cercospora leaf spot as shown in Leucker 

et al. (2017). More importantly, various aspects of the crop growth and leaf disease dynamics 

and interactions can be investigated in detail. Using a crop model, impact of soil profile (e.g., 

soil texture, soil water holding capacity, soil organic matter etc.) and daily weather data 

(temperature minimum and maximum, precipitation, and solar radiation) on overall crop 

growth can be investigated in more detail. With the ability to estimate growth limiting factors 

and leaf disease effects, a detailed economic analysis can be conducted based on the detailed 

field information included in the crop model analysis. With further development and 

improvement, the CSM-CERES-Beet might be used as a decision support system, coupled with 

sensors capable of quantifying Cercospora leaf spot diseases in sugar beet. Overall, further 

model developments are needed as leaf disease severity information is used for the evaluation 

of sugar beet dry matter losses per defined plot. Nevertheless, three years of observed data for 

this specific cultivar are not enough for determining Cercospora leaf spot damage. There is a 

need to look at more than one cultivar and in a greater diversity of fields and environmental 

conditions to further improve the models. 
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5.5 Conclusions 

Field experiments were conducted over three years to develop and test the Cercospora leaf 

spot disease subroutines for simulating the damage caused by Cercospora leaf spot disease in 

sugar beet with CSM-CERES-Beet. Values for Cercospora leaf spot leaf area disease progress 

(%) were converted into leaf disease damage rates (internally in the model) and applied to the 

selected disease coupling point. Introducing leaf disease impact played a very important role 

in simulating storage root yield and sugar content during the later sugar beet growing period 

and led to an overall better fit between observed and simulated values when compared to the 

results where disease damage was not reported or included. The approach can serve as a 

suitable decision support system to simulate the impact of observed Cercospora leaf spot 

damage on accumulated above-ground biomass and storage root yield on a plot/site-specific 

scale. 
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6 Cultivar Coefficient Estimator for the Cropping System Model Based on Time-Series 

Data - A Case Study for Soybean 

Memic, E.; Graeff, S.; Boote, K. J.; Hensel, O.; Hoogenboom, G. (2021): Cultivar Coefficient 

Estimator for the Cropping System Model Based on Time-Series Data: A Case Study for 

Soybean. Transactions of the ASABE 64 (4), S. 1391–1402. DOI: 10.13031/trans.14432  

Abstract 

The Decision Support System for Agrotechnology Transfer is one of the most popular crop 

modelling software solutions for predicting crop growth and yield while capturing the effect 

of management practices and interactions between the crop and environment. An accurate 

estimation of the crop cultivar specific coefficients that govern in-season growth and 

development is critical for correct yield estimates. The manual cultivar coefficient estimation 

process is time consuming and results in user-dependent, subjective optimums that are 

difficult to reproduce. Typically, end-of-season observations (point based) are used for 

estimating dynamic in-season biomass accumulation rates. The objective of this study was the 

development of a tool capable of using multiple in-season observations for estimating 

coefficients that define in-season growth and partitioning. Using the time-series cultivar 

coefficient estimator, coefficients were estimated based on multiple in-season observations for 

leaf area index, shoot, leaf, and grain weights. The cultivar coefficients were estimated from 

single- and multiple-treatment (seasons/locations) in-season observations. This was done for 

two cultivars for six management × environment combinations. Estimated multiple-treatment-

based cultivar coefficients were evaluated with an independent data set and compared to 

DSSAT standard (manual) and the cultivar coefficients estimated with the GLUE tool. The 

average normalised root mean squared error for grain weight, leaf area index, shoot weight 

and leaf weight was 26% lower for one cultivar and about the same for the other when 

compared to the DSSAT standard. Since GLUE uses an end-of-season point-based cultivar 

coefficient estimation approach, the grain weight over time was under-estimated in earlier 

phases and more accurate towards harvest. The times-series estimator estimated cultivar 

coefficients, based on 346 in-season observations across multiple target variables and six 

experiments, reflected more accurately in-season growth and grain weight without 

compromising final grain weight predictions.  

Keywords. DSSAT; CROPGRO-Soybean; genetic coefficients; normalized root mean square 

error minimization; time-series observations 

6.1 Introduction 

A wide range of crop models have been developed for various purposes, such as yield 

prediction, agricultural production inputs management evaluation, and assessment of long-

term impacts of agricultural management practices on soil and environment degradation 

(Boote et al., 2010; Ewert et al., 2015; Rötter et al., 2015; Tsuji et al., 1998). In general, these 

models are capable of predicting crop growth and quantifying yield limiting factors 

(Hoogenboom et al., 2019a; Thorp et al., 2010), while capturing effects of crop management 

(fertilizer, sowing date, sowing density, etc.) and interactions between crops and environment 
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(soil, weather etc.) (Jones et al., 2003). The Decision Support System for Agrotechnology 

Transfer (DSSAT) software represents a conceptual and practical solution for capturing many 

important factors affecting agricultural production of more than 40 crops (Hoogenboom et al., 

2019a). Within the DSSAT, the Cropping System Model (CSM)-CROPGRO-legume model 

(Boote et al., 1998) simulates crop growth and development from planting to harvest on a daily 

basis (carbon and nitrogen balances) throughout the vegetative and reproductive phases with 

different biomass and yield accumulation rates. 

The CROPGRO model simulates canopy photosynthesis on an hourly basis based on leaf-level 

photosynthesis parameters and simulates complete plant C and N balance including N effects 

on photosynthesis, biomass accumulation and grain growth (Boote et al., 1998). Model outputs 

are crop growth variables, soil water and crop N balance on a daily basis. Within the 

CROPGRO model, various legumes such as soybean (Glycine max L. Merr.), peanut (Arachis 

hypogaea L.), dry bean (Phaseolus vulgaris L.), cowpea (Vigna unguiculata L.), faba bean (Vicia 

faba L.), velvet bean (Mucuna pruriens L.), and chickpea (Cicer aretinum L.) (Boote et al., 2009; 

2021) can be simulated. The conceptual design of defining specific genetic traits through input 

files (species, ecotype and cultivar input files) enables the use of generic algorithms for 

simulating crop growth and development of multiple crops without modifying crop 

development and growth subroutines individually. The cultivar input files contain 

information for differentiating cultivars within a crop species and contain parameters 

important for influencing photoperiodic response, photothermal durations of specific growth 

phases, leaf appearance rate, seed fill duration and composition (Hoogenboom et al., 2011; 

Hoogenboom et al., 2019a). The CROPGRO model cultivar file contains 18 cultivar coefficients. 

These cultivar coefficients are externally defined and setup in a way to enable users to modify 

internally defined crop growth processes such as defining the influence of specific cultivar 

parameters on crop growth and development rates. In general, the overall model application 

relies considerably on the estimation of cultivar coefficients and the reliability and accuracy of 

their evaluation (Seidel et al., 2018).  In many cases, comprehensive experimental data sets for 

model evaluation are rare (Hoogenboom et al., 2012; White et al., 2013; Boote et al., 2015; 

Kersebaum et al., 2015). 

Currently, two different tools are available within DSSAT for optimization of the cultivar 

coefficients: genotype coefficient calculator (GENCALC) (Hunt et al., 1993) and generalized 

likelihood uncertainty estimation (GLUE) (He et al., 2010; Jones et al., 2011; Boote, 2019). Both 

tools have been included in DSSAT Version 4.5 (Hoogenboom et al., 2011) and later DSSAT 

versions (Hoogenboom et al., 2019b). Both GENCALC and GLUE use end-of-season field 

observations (point based) introduced into the model through “FileA” for estimation of the 

cultivar coefficients. FileA contains data that are collected only once in a season such as yield 

and yield components, or are summarized during the season such as anthesis and maturity 

dates and maximum leaf area index (LAI). Within GENCALC, the selection of optimal cultivar 

coefficients is based on Root Mean Square Error (RMSE) (Jones et al., 1998). The cultivar 

coefficients combination with the smallest difference between observed and model simulated 

values is taken as an optimum value. Within GLUE, a Monte Carlo distribution sampling 

method based on a Bayesian estimation approach with Gaussian likelihood function is used 

for optimizing cultivar coefficients (He et al., 2010; Jones et al., 2011). Similar to GENCALC, 

only end-of-season observations can be introduced for multiple target variables into GLUE 

through “FileA” for error minimization between model-simulated outputs and observed data. 

The approach optimizes all phenology-related coefficients at one time, then all growth-related 
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cultivar coefficients, with the strongly recommended possibility to consider multiple-

treatments of the same cultivar (He et al., 2010; Jones et al., 2011; Gao et al., 2020). 

However, GENCALC and GLUE cannot handle inputs of time-series observations 

(Buddhaboon et al., 2018). Therefore, the only option for a user to use time-series observations 

for optimization of coefficients is to conduct manually. Calibration of models against time-

series data traditionally attempts to reduce total model prediction error by changing 

parameters so that simulations match or closely resemble observations. The goal of this study 

was to develop a cultivar coefficient estimator tool based on both time-series observations 

and end-of-season observations. It is expected that time-series experimental observations 

(multiple in-season observations) will enable a more accurate estimation of cultivar 

coefficients, because the time-series observations are the outcome of cultivar coefficient effects 

on dynamically-varying growth rates. By extending the list of the target variables to total shoot 

weight, leaf area index (LAI), leaf weight, and other observations measured during the 

growing season, additional aspects of the crop model performance throughout the season can 

be evaluated and used for estimating cultivar coefficients in addition to the onset of flowering 

and crop physiological maturity. 

The specific objectives of the study were: 1) to develop a method for the estimation of 

phenology- and growth-related cultivar coefficients for the CSM model of DSSAT, and 2) to 

evaluate an error minimization method that includes single and multiple seasons/treatments 

of experimental in-season observations with an emphasis on the multiple-treatment-based 

cultivar coefficient estimates for establishing more robust cultivar coefficient values 

representative of multiple locations and seasons. 

6.2 Materials and Methods 

6.2.1 Experimental data 

Experimental data for soybean conducted in different locations in the USA were selected for 

testing the new tool. The experimental data were initially collected for evaluating the impact 

of irrigation management and weather on the performance of soybean. The experiment 

conducted in Ohio in 1990 was meant to be irrigated but never required irrigation. The 

experimental files including management practices, weather, soil characteristics, and 

observations of crop growth and yield are found within the official DSSAT Version 4.7 

(Hoogenboom et al., 2019b). Four selected irrigated treatments (Table 6-1) of soybean cultivar 

Bragg were grown on an Arredondo fine sand soil with planting dates in June. Detailed 

information of environmental conditions (seasonal rainfall, irrigation amounts and mean 

temperatures) are shown in Table 6-1 with the corresponding row spacing, plant populations, 

observed yield and biomass (Wilkerson et al., 1983; Boote et al., 1997). The soybean cultivar 

Williams (four selected treatments) was grown in Ohio in 1988 (Irrigated) and 1990 and in 

Iowa in 1988 and 1990 (Table 6-1). Detailed environmental conditions and measured data are 

shown in Table 6-1, with corresponding row spacing and plant populations.
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Table 6-1 Cultivar and related crop management information for the experiments used for model calibration and evaluation (Wilkerson et al., 1983; 

Boote et al., 1997) (From Memic et al., (2021). Used with permission.). 

Location Treatment Planting 

date 

(dd/mm) 

Row 

spacing 

(cm) 

Plant 

population 

(plants m-2) 

Seasonal 

rainfall 

(mm) 

Total 

irrigation 

(mm) 

Mean 

temp. 

(°C) 

Seed yield  

(kg ha-1) 

Biomass at 

maturity  

(kg ha-1) 

Bragg 

Gainesville (1976) Irrigated 05/5 30 12.9 776 75 26.12 3439 6848 

Gainesville (1978) Irrigated 15/06 91 29.9 534 196 27.12 3041 6068 

Gainesville (1979) Irrigated 19/06 91 47.0 695 113 26.95 2891 5781 

Gainesville (1984) Irrigated 12/6 76 31.1 469 382 26.34 3723 6689 

Williams 

Ohio (1988) Irrigated 01/05 19 31.1 370 557 20.61 3976 8090 

Ohio (1990) Rainfed 30/4 19 41.2 581 - 19.24 3149 7113 

Iowa (1988) Rainfed 11/05 70 27.2 381 - 23.26 3222 6617 

Iowa (1990) Rainfed 08/5 70 19.2 776 - 21.50 3168 6674 

Seasonal rainfall, mean temp. - Crop growing season, from planting to harvest, Ohio 1990, Iowa 1990 - Irrigation was intended but never required, Iowa 1988 - 

Rainfed with significant water stress 
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6.2.2 Time-Series cultivar coefficient Estimator 

The Time-Series observations-based cultivar coefficient Estimator (TSE) was developed as a 

potential DSSAT plug-in with generic algorithm, written in python with an intuitive interface. 

The TSE requires functional experimental input files in DSSAT4.7 such as complete crop 

management, weather data, soil surface and profile data, and observations stored in a time-

series file (FileT) and a summary file (FileA). It is assumed that functioning default genetics 

files are provided for species, ecotype and cultivar.  

The program setup and optimization were designed in three steps. During the first step 

(Figure 6-1; Step 1) the experiment treatment(s) (or multiple treatments) that will be used for 

computation of the cultivar coefficients is (are) selected by a user. At this stage the user can 

select optimization of the phenology- and growth-related cultivar coefficients separately. 

Phenology-related coefficients in CROPGRO-Soybean are optimized during the first round. 

The optimization of the phenological events such as the onset of flowering and physiological 

maturity is not based on time-series observations and, as such, is easier to optimize by 

minimizing the difference between simulated and observed day of onset of flowering or 

physiological maturity. The optimization of the growth-related cultivar coefficients is 

conducted by using all available time-series observations throughout the season and by 

minimizing the normalized root mean square error between simulated and observed values 

of total crop dry weight, grain dry weight, leaf dry weight, and leaf area index. Based on the 

selected treatment, all available in-season observations are read in and saved in a temporary 

file for a later comparison with simulation outputs. In this step (Figure 6-1; Step 1.) initial 

ranges of selected cultivar coefficients and associated incremental steps are defined by the 

user. The allowed range of cultivar coefficients is defined by the user in a program input file, 

based on literature knowledge and previously determined cultivars within the desired cultivar 

group. The initial coefficient ranges and incremental steps are read by the program, but enable 

the user to modify the ranges and increment steps if deemed necessary during the cultivar 

coefficient estimation procedure. During the second step, the crop model execution is 

completed (Figure 6-1; Step 2). The model is executed for each given coefficient combination 

and simulations were conducted for as many cultivar coefficient combinations as defined 

during coefficient preparation in Step 1, Figure 6-1. After each model run, the simulated output 

values are extracted from the model time-series simulation outputs and saved in a TSE output 

file containing both simulated and observed outputs. During the final step, the TSE output file 

is analyzed and the coefficient combination giving the smallest average nRMSEs is selected as 

the optimum (Figure 6-1; Step 3.).  
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Figure 6-1 Flow chart showing the overall approach used for model calibration (Röll et al., 

2020) (From Memic et al., (2021). Used with permission.). 

The TSE generic algorithm, when executed and depending on selected DSSAT version, reads 

all available crop models listed in SIMULATION.CDE file located in the native DSSAT 

directory (Figure 6-2b). After selecting the desired model from the list, the TSE algorithm 

collects information required for running the model and modifying the cultivar files from the 

DSSAT configuration file (DSSATPRO) located in the DSSAT native directory (Figure 6-2b). 

    

a    b 

Figure 6-2 The Time-Series observations-based cultivar coefficient Estimator (TSE) interface 

section of a) the list of crop models and b) corresponding model specifications of the 

DSSATPRO file (From Memic et al., (2021). Used with permission.). 
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Based on the selected model and model-specific properties shown in Figure 6-2b the TSE 

algorithm lists the names of all available cultivars in the cultivar file. For the example shown 

in Figure 6-2b, the TSE algorithm locates the soybean cultivar file (SBGRO047.CUL) and lists 

all cultivars available in the file for selection in an additional list widget window (Figure 6-3a). 

After the cultivar is selected from the list, the TSE algorithm locates all experiment files 

available in the crop directory and lists for selection only those experiment files (Figure 6-3b) 

that contain the selected cultivar name (cultivar Bragg selected in Figure 6-3a). 

     

a      b 

Figure 6-3 The Time-Series observations-based cultivar coefficient Estimator (TSE) interface 

section of a) the cultivar list and b) the corresponding experiment files list (From Memic et 

al., (2021). Used with permission.). 

Based on the selected crop model experiment file (Figure 6-3b) the TSE generic algorithm 

locates this specific experiment file with related in-season observations and lists target variable 

names in the list widget window for selection and initialization (Figure 6-4a). At the same time 

in a different list widget window, all cultivar coefficients available in the cultivar file are listed 

for optimization selection (Figure 4b).  

     

a      b 

Figure 6-4 The Time-Series observations-based cultivar coefficient Estimator (TSE) interface 

section with a) an example for selecting growth-related target variables and b) the available 

cultivar coefficients (From Memic et al., (2021). Used with permission.). 
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The TSE algorithm dynamically locates the cultivar header line in the cultivar file and lists 

possible genetic coefficients in the list widget window (Figure 6-4b). One of the options in the 

program is to enable access only to those cultivar coefficients with predefined 

Phenology/Growth related flags (=P or G), with a separate coefficient flags file. The 

functionality of the TSE algorithm is not dependent on the mentioned flags, but they can be 

used to help users if they are uncertain whether a coefficient is meant for optimization of a 

given phenological event or growth-related variable. The generic TSE algorithm was written 

in a way to enable cultivar coefficient estimation of all the crop models available in the DSSAT 

interface including CROPGRO and CERES-style models. A more detailed description of the 

TSE algorithm functionality is available in the user guidelines available in the GitHub 

repository (https://github.com/memicemir/TSE).  

Within the CROPGRO-Soybean cultivar file, there are a total of 18 coefficients available, used 

for determining plant development and growth aspects of different cultivar groups (Boote et 

al., 2003) and are listed in list widget shown in Figure 6-4b. The program was used for 

estimating only eleven coefficients of those listed in Table 6-2. The selected cultivar coefficients 

are those that differ the most within cultivar groups and have a substantial effect on the 

simulated outputs and were designated with Phenology or Growth flags visible in Figure 6-

4b. The coefficients in Table 6-2 are separated into those that are used for determining the 

timing of cultivar-specific phenological events such as onset of first flowering day, first pod 

day, first seed day and physiological maturity day (Figure 6-4b, P flagged) and those that are 

related to biomass and yield accumulation rates during specific growth phases (G flagged). 

The distinction of the coefficients into these two groups has an important theoretical and 

practical background. Crop phenology depends on day length and temperature and, thus, is 

mostly independent from growth, but on the other hand, crop growth (biomass and yield 

accumulation rates) are affected by all environmental and management factors as well as 

phenological development (Jones et al., 2011). 
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Table 6-2 List of coefficients targeted for optimization and their definitions in the cultivar file 

for the CROPGRO-Soybean model (Boote et al., 2003) (From Memic et al., (2021). Used with 

permission.). 

Coeff. Definitions Units 

CSDL (P) Critical Short-Day Length below which 

reproductive development progresses with no 

day length effect (for short day plants) 

hour 

PPSEN (P) Slope of the relative response of development to 

photoperiod with time (positive for short day 

plants) 

1/hour 

EM-FL (P) Time between plant emergence and flower 

appearance (R1) 

photothermal days 

Fl-SH (P) Time between first flower and first pod (R3) photothermal days 

FL-SD (P) Time between first flower and first seed (R5) photothermal days 

SD-PM (P) Time between first seed (R5) and physiological 

maturity (R7) 

photothermal days 

LFMAX (G) Maximum leaf photosynthesis rate at 30 C, 350 

vpm CO2, and high light 

mg CO2/m2-s 

SLAVR (G) Specific leaf area of cultivar under standard 

growth conditions 

cm2/g 

SIZLF (G) Maximum size of full leaf (three leaflets) cm2 

WTPSD (G) Maximum weight per seed g 

SFDUR (G) Seed filling duration for pod cohort at standard 

growth conditions 

photothermal days 

P - Phenology-related coefficient, G - Growth-related coefficient 

6.2.3 Error minimization 

Single-treatment based normalized RMSE 

For quantifying the variation between simulated (Si) and observed (Oi) values, the statistical 

method of nRMSE (Eq. 2) was used. The nRMSE, is RMSE (Eq. 1) normalized by mean of all 

available in-season observations (𝑂), for each observed crop variable in Eq. 2. 

𝑅𝑀𝑆𝐸 = [
1

𝑛
∑ (𝑆𝑖 − 𝑂𝑖)2𝑛

𝑖=1 ]
0.5

 (1) 

 

𝑛𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

𝑂̅
 (2) 

 

The nRMSE is a simplified selection criterion that is applicable across multiple target variables 

with different scales, and because it is normalized, it can be averaged over multiple target 

variables. The coefficients (n coefficient combinations) are estimated across multiple target 

variables, with the aim of a low average nRMSE over all variables (Eq. 3).  

 

𝑛𝑅𝑀𝑆𝐸𝑎𝑣𝑔(𝑛) = (𝑛𝑅𝑀𝑆𝐸𝑔𝑤𝑎𝑑 + 𝑛𝑅𝑀𝑆𝐸𝑙𝑎𝑖  + 𝑛𝑅𝑀𝑆𝐸𝑐𝑤𝑎𝑑 + 𝑛𝑅𝑀𝑆𝐸𝑙𝑤𝑎𝑑)/4 (3) 
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The selection of the coefficient combination with the lowest nRMSEs averaged across all target 

variables proves to be a good solution as illustrated for the 1978 Gainesville experiment (Table 

6-3, AVG-nRMSE=0.12).  

Table 6-3 The nRMSE - simplified example of varying one of the cultivar parameters affecting 

growth (G) related target variables, i.e., grain weight, LAI, shoot weight, and leaf weight, for 

the 1978 Gainesville experiment for Bragg and optimum selection based on the lowest 

average nRMSE (AVG-nRMSE) over multiple target variables (From Memic et al., (2021). 

Used with permission.). 

Coefficient nRMSE (unitless) 

LFMAX Grain 

weight 

LAI Shoot weight Leaf weight AVG-

nRMSE 

0.8 0.208 0.22 0.185 0.203 0.204 

0.912 0.131 0.153 0.119 0.146 0.137 

1.024 0.082 0.145 0.109 0.144 0.12 

1.136 0.078 0.171 0.137 0.173 0.14 

1.248 0.109 0.209 0.178 0.211 0.177 

LFMAX is defined in Table 2, AVG-nRMSE-average of normalized RMSE over four target variables 

(grain weight, leaf area index, shoot weight, leaf weight) 

Multiple-treatment based goodness of fit criteria 

The new TSE tool allows a user to estimate cultivar coefficients over multiple treatments. The 

optimization of cultivar coefficients for a single season and location is extended further for 

optimization over multiple seasons and locations with emphasis on nRMSE values. An 

example of optimizing LFMAX (as defined in Table 6-2) based on the observations from three 

different treatments is shown in Table 6-4. Calculated average nRMSE (AVG-nRMSE) over 

four target variables (as shown in Table 6-3) are extended and used for localizing the optimum 

over multiple target variables and multiple treatments (Table 6-4). If the number of the 

observations is higher for one treatment compared to other treatments, this procedure limits 

the over-representation of single treatment effects on the multi-treatment based average 

nRMSE.  

For each individual treatment, the same value for minimum (0.85), maximum (1.25) and 

increment step (0.1) for the LFMAX cultivar coefficient values were passed into the cultivar 

file and simulations were conducted (Table 6-4). For each cultivar coefficient (LFMAX) value, 

the crop model simulations were conducted and the average nRMSE was calculated for the 

four target variables (grain weight, LAI, shoot weight and leaf weight). Single treatment 

“optimums” are available (Table 6-4), but they were ignored for the calculation of the multi-

treatment based “optimum” (Table 6-4). For each coefficient value, a multi-treatment-based 

average of a single treatment normalized RMSE (AVG-nRMSE) averages was calculated. 

Based on the lowest multiple-treatment nRMSE average [(TRT1+TRT2+TRT3)/3] value, the 

multiple-treatment based cultivar coefficient optimum with LFMAX=0.95 was selected (Table 

6-4) for having the smallest AVG-nRMSE that equals 0.214 (Table 6-4). According to the AVG-

nRMSE values shown in Table 6-4, the “optimum” coefficient range for LFMAX falls between 

0.95 and 1.05, since these two LFMAX values had the lowest average nRMSEs of 0.214 and 

0.218, respectively, when compared to the AVG-nRMSEs of other LFMAX coefficient such as 

0.85 or 1.15.  The step increment could be reduced, e.g., to 0.01 to determine whether a lower 

average nRMSE could be obtained with a value for LFMAX between 0.95 and 1.05. 
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Table 6-4 The effect of the variation of the LFMAX cultivar coefficient from 0.85 to 1.25 with an increment of 0.1 while localizing single- and 

multiple-treatment optimums based on average nRMSE (AVG-nRMSE) for three experiments conducted in Gainesville, FL (From Memic et al., 

(2021). Used with permission.). 

Single-treatment “optimums” Multi-treatment based “optimum” 

Year TRT LFMAX AVG 

nRMSE 

Year TRT LFMAX AVG 

nRMSE 

Multiple TRT 

average 

1978 1 0.85 0.17 1978 1 0.85 0.17  

1978 1 0.95 0.128 1979 2 0.85 0.119  

1978 1 1.05 0.122 1984 3 0.85 0.408 0.232 

1978 1 1.15 0.142 1978 1 0.95 0.128  

1978 1 1.25 0.175 1979 2 0.95 0.14  

1979 2 0.85 0.119 1984 3 0.95 0.374 0.214 

1979 2 0.95 0.14 1978 1 1.05 0.122  

1979 2 1.05 0.177 1979 2 1.05 0.177  

1979 2 1.15 0.21 1984 3 1.05 0.355 0.218 

1979 2 1.25 0.239 1978 1 1.15 0.142  

1984 3 0.85 0.408 1979 2 1.15 0.21  

1984 3 0.95 0.374 1984 3 1.15 0.346 0.233 

1984 3 1.05 0.355 1978 1 1.25 0.175  

1984 3 1.15 0.346 1979 2 1.25 0.239  

1984 3 1.25 0.345 1984 3 1.25 0.345 0.253 

TRT-treatment, LFMAX-defined in Table 2, AVG-nRMSE-average of normalized RMSE over four target variables (grain weight, leaf area index, shoot weight, 

leaf weight). 
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Single- and multiple-treatment error minimization study cases 

The TSE normalized RMSE minimization method was tested as a single-treatment for the 

estimation of the cultivar coefficients for two soybean cultivars, i.e., Bragg, and Williams, for 

a total of six treatments. For Bragg and Williams, three treatments were used for each cultivate 

to estimate the multiple-treatment based cultivar coefficients. Multiple-treatment based 

cultivar coefficient “optimums” of Bragg and Williams were evaluated with data sets that were 

not included in the calibration process (Gainesville 1976 and Iowa 1990). The 1976 Gainesville 

experiment was selected for evaluation, because observed values for onset of flowering day, 

first pod, first seed and physiological maturity were not available and, therefore, any form of 

phenological events optimization was not possible. Both cultivars had been tested in the past 

for multiple years and for different environments and demonstrated the ability of the model 

to accurately simulate growth, flowering and physiological maturity, and grain yield for each 

cultivar for different environmental conditions (Boote et al., 1997). The cultivar coefficients 

obtained with the TSE tool were compared with those cultivar coefficients that were 

distributed with the official DSSAT Version 4.7 release (Hoogenboom et al., 2019b), which were 

shown as DSSAT standard Bragg and Williams in this study. The values for the cultivar 

coefficients that are distributed with the official DSSAT Version 4.7 release had been manually 

estimated by DSSAT developers based on seven treatments for Bragg and eight treatments for 

Williams cultivar to obtain the best performance over multiple environments and seasons per 

cultivar. All treatments were simulated with soil and plant water and nitrogen balance “on”, 

and the leaf level hedgerow photosynthesis method selected in the corresponding 

experimental files. For the 1988 Iowa experiment, drought was observed with expected stress 

on the observed target variables. Ideally stress-free observations should be used for 

optimization of cultivar coefficients, but in this study one stressed treatment was used in order 

to check the cultivar coefficient values estimated directly from stressed in-season observations. 

During the first round, phenology-related cultivar coefficients were optimized with respect to 

the observed anthesis date, first pod date, first seed date, and physiological maturity. During 

the second round, the growth-related cultivar coefficients were estimated based on four target 

variables, i.e., grain weight, leaf area index, shoot weight and leaf weight, with in-season 

observations. 

Because GLUE is an existing cultivar coefficient optimizer that is distributed with the DSSAT 

Software, it was important to compare the developed TSE approach (time-series) to the GLUE 

approach (end-of-season). In order to enable a direct comparison of the DSSAT standard, the 

TSE approach and the GLUE approach, the GLUE tool was used for estimating multiple-

treatment based cultivar coefficients with the same sets of three. For estimation of the Bragg 

cultivar coefficients with multiple-treatments with GLUE, the Gainesville 1978, Gainesville 

1979 and Gainesville 1984 treatments were used, and for estimating the cultivar coefficients 

for Williams, the Ohio 1988, Ohio 1990 and Iowa 1988 were used. The number of simulations 

for the GLUE coefficient estimation process was 6000 for optimizing phenology-related and 

6000 for growth-related target variables. 

6.3 Results 

6.3.1 Goodness of fit – Single- and Multiple-treatment 

The phenology- and growth-related statistics resulting from the TSE single-treatment (S-T) 

based Bragg and Williams cultivar coefficients are shown in Tables 6-5 and 6-6. The agreement 
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of simulated with observed onset of flowering day, first pod day, first seed day, and 

physiological maturity day is shown as the total phenological event error (Table 6-5). 

Phenological events simulated values of S-T are shown in Table 6-5 with “Error” line 

(Error=simulated-observed), indicating the difference between simulated and observed 

phenological events. The total error over all simulated phenological events with TSE for the 

Gainesville 1978 (S-T) experiment was 5 days, and was calculated as the sum of absolute errors 

of each phenological event in order to prevent error compensations in the process of 

summation [|(+2)|+|(-1)|+|(0)|+|(-2)|=|5|]. The phenology-related TSE coefficients 

optimization resulted in an almost perfect agreement between simulated and observed 

phenological events for the 1979 and 1984 (S-T) experiments conducted in Gainesville with a 

total error of 0 and 1 day, respectively (Table 6-5). For the 1988 Iowa (S-T) experiment the TSE 

optimization resulted in only 2 days total error, and for the Ohio 1988 in 4 days total error over 

four phenological events (Table 6-5). For the 1990 Ohio (S-T) experiment, a perfect agreement 

between simulated and observed three phenological events was achieved, with the onset of 

flowering reported as missing. 

Multiple-treatment (M-T) TSE based Bragg cultivar coefficients were used for simulating 

phenological events and four target output traits for the 1978, 1979, and 1984 experiments 

conducted in Gainesville. The corresponding statistics for phenology are shown in Table 6-5 

and for growth in Table 6-6. The total sum of absolute error over all M-T simulated 

phenological events with TSE for the 1978 Gainesville experiment was 3 days, for the 1979 

Gainesville experiment it was 6 days and for the 1984 Gainesville experiment it was 2 days, 

therefore resulting in an almost perfect agreement between simulated and observed data. 

Multiple-treatment based coefficients of Williams were used for simulating phenological 

development (Table 6-5) and four target traits (Table 6-6) for the 1988 and 1990 Iowa 

experiments and the 1988 Ohio experiment. The total summed absolute error over all 

simulated phenological events with TSE for the 1988 Ohio experiment was 6 days, for the 1990 

Ohio experiment 5 days and for the 1988 Iowa experiment 9 days as shown in Table 6-5. 

 



90 
 

Table 6-5 Measures of agreement between simulated and observed phenological events as days after planting (DAP) of single-treatment (S-T) and 

multiple-treatment (M-T) based phenology-related TSE cultivar coefficient estimates for the cultivars Bragg and Williams evaluated over three 

locations each (From Memic et al., (2021). Used with permission.). 

- - Bragg Williams 

- - Gainesville 1978 Gainesville 1979 Gainesville 

1984 

Ohio 1988 Ohio 1990 Iowa 1988 

- - DAP Error DAP Error DAP Error DAP Error DAP Error DAP Error 

S-T Anthesis 47 (+2) 43 (0) 48 (+1) 71 (0) 76 (ND) 51 (0) 

S-T First pod 66 (-1) 60 (0) 66 (0) 87 (-4) 96 (0) 70 (-1) 

S-T First seed 77 (0) 69 (-) 78 (0) 100 (0) 101 (0) 83 (+1) 

S-T Maturity 114 (-2) 119 (0) 121 (0) 145 (0) 150 (0) 129 (0) 

S-T |Total error|  |5|  |0|  |1|  |4|  |0|  |2| 

M-T Anthesis 45 (0) 44 (+1) 45 (-2) 74 (+3) 73 (ND) 55 (+4) 

M-T First pod 65 (-2) 64 (+4) 66 (0) 91 (0) 92 (-4) 74 (+3) 

M-T First seed 77 (0) 75 (ND) 78 (0) 98 (-2) 101 (0) 83 (+1) 

M-T Maturity 117 (+1) 118 (-1) 122 (0) 146 (+1) 149 (-1) 128 (-1) 

M-T |Total error| [b]  |3|  |6|  |2|  |6|  |5|  |9| 

Error = (simulated – observed), -/+ = underestimated/overestimated, |Total error| - Total absolute error, ND - No data 
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For estimating S-T growth-related cultivar coefficients, a total of 346 in-season observations 

were used over six experiments reflecting in-season growth of four target variables for each 

experiment. With the exception of the grain weight in-season observations, all target variables 

had on average greater than 15 observations per season (Table 6-6). The TSE lowest AVG-

nRMSE of Bragg and Williams cultivars for various coefficient combinations over four target 

variables, e.g., grain weight, LAI, shoot weight and leaf weight, as single-treatment (S-T) based 

cultivar coefficient estimation was between 0.101 and 0.201, indicating very good results (Table 

6-6). The RMSE between simulated and observed grain weight ranged between 140 and 251 

kg ha-1, which was very low and an indicator of extremely good performance, since the RMSE 

error maintains target variable unit and was calculated over multiple in-season observations.  

The RMSE measure of agreement of simulated and observed for all experiment data was 

extremely good, as can be seen in Table 6-6, with the exceptions of the shoot weight and LAI 

for Ohio 1988. 

The TSE lowest AVG-nRMSE for the cultivars Bragg and Williams for various growth 

coefficient combinations over four target variables ranged between 0.14 and 0.234, (Table 6-6). 

The RMSE error of simulated and observed grain weight was between 140 and 320 kg ha-1 over 

six treatments, for multiple in-season observations and indicated very good performance.
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Table 6-6 Measures of agreement between simulated and observed growth variables for single-treatment (S-T) and multiple-treatment (M-T) based 

growth-related TSE cultivar coefficient estimates for the cultivars Bragg and Williams evaluated over three locations each with multiple in-season 

observations (From Memic et al., (2021). Used with permission.). 

- - Bragg Williams 

- - Gainesville 1978 Gainesville 1979 Gainesville 1984 Ohio 1988 Ohio 1990 Iowa 1988 

- - RMSE No. 

Obs 

RMSE No. 

Obs 

RMSE No. 

Obs 

RMSE No. 

Obs 

RMSE No. 

Obs 

RMSE No. 

Obs 

S-T Grain weight 140 7  166 8 235 7 236 17 166 18 251 10 

S-T LAI 0.41 15 0.54 17 0.39 17 0.77 17 0.96 18 0.39 9 

S-T Shoot weight 486 15 414 17 305 17 826 17 491 18 548 9 

S-T Leaf weight 143 15 179 17 99 17 305 17 253 18 207 9 

M-T Grain weight 228 7  248 8 140 7 320 17 152 18 183 10 

M-T LAI 0.47 15 0.58 17 0.51 17 0.83 17 1.02 18 0.36 9 

M-T Shoot weight 511 15 550 17 597 17 1025 17 678 18 497 9 

M-T Leaf weight 168 15 190 17 180 17 364 17 276 18 233 9 

  nRMSE  nRMSE  nRMSE  nRMSE  nRMSE  nRMSE  

S-T Grain weight 0.07 7 0.086 8 0.114 7 0.194 17 0.163 18 0.319 10 

S-T LAI 0.145 15 0.192 17 0.13 17 0.208 17 0.303 18 0.149 9 

S-T Shoot weight 0.108 15 0.102 17 0.066 17 0.14 17 0.104 18 0.13 9 

S-T Leaf weight 0.141 15 0.186 17 0.097 17 0.229 17 0.236 18 0.187 9 

S-T AVG-nRMSE 0.116  0.141  0.101  0.193  0.201  0.196  

M-T Grain weight 0.115 7  0.129 8 0.068 7 0.264 17 0.149 18 0.232 10 

M-T LAI 0.165 15 0.204 17 0.168 17 0.225 17 0.32 18 0.134 9 

M-T Shoot weight 0.114 15 0.135 17 0.129 17 0.173 17 0.144 18 0.118 9 

M-T Leaf weight 0.166 15 0.198 17 0.175 17 0.273 17 0.257 18 0.211 9 

M-T AVG-nRMSE 0.14  0.166  0.135  0.234  0.217  0.174  

No. Obs. - Number of in-season observations used in cultivar coefficient estimation process, RMSE (kg ha-1): grain weight, shoot weight and leaf weight 
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6.3.2 Comparison of the DSSAT Standard (manual), GLUE and TSE – Independent 

evaluation 

The TSE and GLUE multiple-treatment based estimation for the cultivar coefficients for Bragg 

was conducted using the 1978, 1979, and 1984 Gainesville in-season observations (TSE only) 

for determining robust values for the cultivar coefficients (Table 6-7). For the cultivar Williams, 

three treatments including the 1988 and 1990 Ohio experiments and the 1988 Iowa experiment 

were used simultaneously for determining TSE and GLUE multiple-treatment based cultivar 

coefficients (Table 6-7). Multiple-treatment based TSE phenology- and growth-related cultivar 

coefficient values of Bragg and Williams were more or less similar to the DSSAT standard 

values for the cultivars Bragg and Williams (Table 6-7), with minor exceptions for the cultivar 

Williams for coefficients CSDL and PPSEN (phenology) and SLAVR (growth). Based on the 

multiple-treatment based cultivar coefficient values and comparison with the DSSAT standard 

Bragg and Williams values (Table 6-7), it can be concluded that TSE was able to determine 

“good values” for the cultivar coefficients that are comparable to those that had been solved 

manually by the DSSAT development team using seven or eight experimental data sets for 

each cultivar. 
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Table 6-7 Multiple-treatment based TSE and GLUE phenology- and growth-related cultivar coefficient values for Bragg and Williams for three 

locations each and compared with the DSSAT standard values (From Memic et al., (2021). Used with permission.). 

Cultivar Bragg Williams 

Coefficients  

DSSAT 

standard 

GLUE: 

Gainesville 1978, 

Gainesville 1979, 

Gainesville 1984 

TSE: 

Gainesville 1978 

Gainesville 1979 

Gainesville 1984 

 

DSSAT 

standard 

GLUE: 

Ohio 1988, 

Ohio 1990, 

Iowa 1988 

TSE: 

Ohio 1988 

Ohio 1990 

Iowa 1988 

CSDL (P) 12.33 12.36 12.56 13.40 12.86 12.64 

PPSEN (P) 0.320 0.365 0.389 0.285 0.225 0.182 

EM-FL (P) 19.5 17.44 18.86 19.0 16.03 19.19 

FL-SH (P) 10.0 10.0 10.11 8.3 8.3 8.48 

FL-SD (P) 15.2 19.21 17.29 14.2 19.22 12.60 

SD-PM (P) 37.6 33.72 38.85 32.2 27.85 34.92 

LFMAX (G) 1.00 1.000 0.995 0.99 1.171 1.013 

SLAVR (G) 355.0 302.6 356.0 385.0 377.9 425.3 

SIZLF (G) 170.0 187.1 162.0 180.0 228.5 166.1 

WTPSD (G) 0.17 0.170 0.219 0.18 0.189 0.199 

SFDUR (G) 25.0 17.00 23.0 26.0 18.80 26.77 

DSSAT standard: 7 treatments for Bragg and 8 treatments for Williams, P - Phenology-related coefficients defined in Table 2, G - Growth-related coefficients 

defined in Table 2 
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The TSE multiple-treatment based cultivar coefficients that were estimated for Bragg and 

Williams (Table 6-7) were used for simulating four phenological events and four target traits 

for one independent data set for each cultivar. The multiple-treatment based TSE cultivar 

coefficient estimates resulted in simulations that were comparable to those of the DSSAT 

standard Bragg and Williams coefficients, thus indicating potential of using the cultivar 

coefficient estimator for estimating generic phenology-related coefficients. The 1990 Iowa 

experiment was used for evaluating the TSE-based Williams cultivar coefficients; in this 

experiment the first pod day and first seed day were not observed. Physiological maturity 

simulated with TSE Williams cultivar coefficients (Table 6-8) was more accurate when 

compared to the DSSAT standard values for Williams, based on the observed date. 

The TSE AVG-nRMSE for Bragg for various coefficient combinations for the four target traits, 

e.g., grain weight, LAI, shoot weight and leaf weight, was 26% lower for the 1976 Gainesville 

experiment and for Williams it was about the same for the 1990 Iowa experiment, when 

compared to the DSSAT standard Bragg and Williams cultivar coefficient model outputs (Table 

6-8). For the Gainesville simulation results with the TSE multiple-treatment coefficient 

‘optimums’ (Table 6-7), the values for RMSE and nRMSE were lower when compared to the 

DSSAT standard Bragg coefficient simulation results for all four target traits (Table 6-8). For the 

Williams cultivar simulated for Iowa, the values for the four target traits were more or less the 

same compared to the DSSAT standard Williams coefficients (Table 6-8), with minor 

improvements in simulation of grain weight and worsening in LAI. 
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Table 6-8 Measures of agreement between simulated and observed phenological events as days after planting (DAP) and growth variables for 

DSSAT standard, GLUE and TSE cultivar coefficients when evaluated for Bragg and Williams with a treatment not included in the cultivar 

coefficient estimation process (From Memic et al., (2021). Used with permission.). 

- Bragg (Gainesville 1976) Williams (Iowa 1990) 

 DSSAT 

Standard 

GLUE TSE Used 

Obs. 

DSSAT 

Standard 

GLUE TSE Used 

Obs. 

Anthesis DAP 50 49 49 ND 62 57 61 66 

First pod DAP 80 86 83 ND 81 79 80 ND 

First seed DAP 92 106 99 ND 94 101 89 ND 

Maturity DAP 143 148 147 ND 131 135 135 139 

 RMSE:  RMSE:  

Grain weight 582 254 408 7 174 269 153 9 

LAI 1.39 1.03 1.11 20 0.24 0.62 0.33 9 

Shoot weight 335 621 288 20 454 1112 410 9 

Leaf weight 300 251 192 20 158 408 160 9 

 nRMSE:  nRMSE:  

Grain weight 0.368 0.161 0.258 7 0.214 0.331 0.188 9 

LAI 0.422 0.312 0.337 20 0.081 0.21 0.112 9 

Shoot weight 0.075 0.138 0.064 20 0.106 0.261 0.096 9 

Leaf weight 0.246 0.206 0.158 20 0.161 0.414 0.162 9 

AVG-nRMSE 0.277 0.204 0.204  0.14 0.304 0.14  

Used Obs. - Number of in-season observations used for evaluation, ND - No data, RMSE (kg ha-1): grain weight, shoot weight and leaf weight 
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The GLUE multiple-treatment based Bragg and Williams cultivar coefficients (Table 6-7) were 

evaluated with one independent experimental data set for Bragg (Gainesville 1976) and 

Williams (Iowa 1990), similar to the TSE approach. The resulting statistics (Table 6-8) show 

some important variation for the first seed and first pod dates, while for the onset of flowering 

and crop maturity the results were within an acceptable range for all three optimization 

approaches (Table 6-8).  

Based on the resulting RMSE errors (kg ha-1) for the selected four target variables, all three 

optimization approaches were satisfactory, with TSE resulting in lower overall errors. With 

the TSE approach, additional biomass variables were targeted in the optimization process such 

as shoot and leaf weight. The time-series graphs of grain weight and shoot weight for Bragg 

cultivar (Gainesville 1976) and Williams cultivar (Iowa 1990), are shown in Figure 6-5 and 6-6, 

respectively. Since GLUE is using an end-of-season point-based cultivar coefficient estimation 

approach, the grain mass over time was under-estimated during the earlier phases and more 

accurate towards harvest maturity (Figure 6-5a and 6-6a). A higher number of optimization 

combinations in GLUE resulted in more accurate grain yield simulations, at the cost of other 

target variable accuracy, as can be seen from shoot weight simulation outputs in Figure 6-5b 

and 6-6b and Table 6-8. For DSSAT standard, developers were aware of the grain yield and 

shoot weight time-series observations throughout the season and tried to balance resulting 

over- and under-estimation of multiple target variables throughout the season. The TSE tool 

is similarly using all in-season observations of multiple target variables in the estimation 

process along with final end-of-season variables, and thus strikes a balance during the process 

of estimating cultivar coefficients throughout the growing season. 

  

a      b 

Figure 6-5 Time-series graph showing simulation output results of Bragg cultivar with 

observed for a) grain weight and b) shoot weight, using three different optimization 

approaches: DSSAT standard, GLUE and TSE.  Observed corresponds to Gainesville 1976 

experiment data which was not used in cultivar coefficient estimation process (From Memic 

et al., (2021). Used with permission.). 
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a      b 

Figure 6-6 Time-series graph showing simulation output results of Williams cultivar with 

observed for a) grain and b) shoot weight, from three different optimization approaches: 

DSSAT standard, GLUE and TSE.  Observed corresponds to Iowa 1990 experiment data 

which was not used in cultivar coefficient estimation process (From Memic et al., (2021). 

Used with permission.). 

6.4 Discussion 

Single-treatment based cultivar coefficient estimation is based on observations from one 

treatment of a field experiment (single season and location). With one year of in-season field 

observations, cultivar coefficients can be adjusted to provide a very good agreement between 

simulated outputs and field observations. Ideally, the estimated cultivar coefficients depicting 

phenological plant development and growth-related values should be applicable without any 

modifications across multiple locations and seasons. However, determining cultivar 

coefficient values based on only one specific treatment and environment may result in field- 

and season-specific biases being integrated into the cultivar coefficients, thus, causing 

underperformance of the model for different seasons for the same location or for other 

locations. Ideally, optimal seasonal and environmental conditions (stress-free) for multiple 

seasons and locations are required for estimating robust representative cultivar coefficients. 

Since ideal conditions are rarely met in field experiments, cultivar coefficient estimation using 

multiple-treatments consisting of multiple seasons and environments is a must in order to 

minimize the influence of season- and environment-based biases on cultivar specific 

coefficients. 

Most of the output variables, such as grain yield, shoot weight, LAI, and leaf weight simulated 

with CROPGRO do not have constant (linear) in-season growth rates. Hence, one observation 

at the end of the season is not enough for evaluation of the results. Even if a single observation 

at the end of the growing season fits perfectly simulated, it will not guarantee realistic insight 

in the dynamic growth rates during the season. The influence of in-season growth rates of 

various variables can have an enormous influence on the above- and below-ground biomass 

accumulation rates, and on ratios within above-ground biomass, for example stem to leaf to 

grain ratios. However, these ratios will have a direct influence on the photosynthetic activity 

of the plant and consequently affect simulated yield at the end of the season.  
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Within this study a TSE tool for the estimation of cultivar coefficients was developed. The TSE 

tool provides accurate simulation of above-ground biomass and plant components based on 

commonly collected multiple in-season samples of four targeted crop variables, with emphasis 

on the grain yield. For estimating growth-related cultivar coefficients, a total 346 in-season 

observations of four growth target variables for six treatments (experiments) were used with 

TSE. 

The multiple-treatment based TSE coefficient “optimums” shown in Table 6-7, resulted in low 

AVG-nRMSE for Gainesville 1978 (0.14), Gainesville 1979 (0.166) and Gainesville 1984 (1.35) 

(Table 6-6). As expected, the robustness of the cultivar coefficients that were solved over more 

than one treatment/location resulted in less accurate single treatment-based statistics when 

compared to single treatment-based cultivar coefficients of Bragg for the 1978, 1979, and 1984 

experiments conducted in Gainesville with an AVG-nRMSE of 0.116, 0.141, and 0.101, 

respectively (Table 6-6). As single treatment optimization allows over-fitting of coefficients, 

obtained results may not apply as broadly to other years and locations. The Williams multiple-

treatment coefficient “optimums” resulted in low AVG-nRMSE of 0.234, 0.217 and 0.174 for 

the growth variables of the 1988 and 1990 Ohio experiments and the 1988 Iowa experiment, 

respectively (Table 6-6). For comparison, the single-treatment based cultivar coefficients of 

Williams for the 1988 and 1990 Ohio experiments and the 1988 Iowa experiment had AVG-

nRMSE values of 0.193, 0.201 and 0.196 respectively (Table 6-6). Multiple-treatment based 

cultivar coefficient ‘optimums’ evaluated with data not used in the coefficient estimation 

process showed great potential, especially when phenology related ‘optimums’ were 

evaluated for Gainesville 1976. This, along with excellent agreement for simulated and 

observed four phenological events, allows the conclusion that the developed TSE performed 

very well in solving for the genetic coefficients. 

Although use of any of the three compared cultivar coefficient optimization approaches 

(DSSAT standard – manual, GLUE and TSE) can be seen as a form of success based on the goals 

of specific studies, there seems to be a very important advantage of using multiple in-season 

observations across multiple target variables for estimating cultivar coefficients that correctly 

reflect growth of different plant components simulated throughout entire season. The TSE tool 

allows users to select which target variables to prioritize in the cultivar coefficient optimization 

approach, depending on the collected samples. For the users that target as accurate as possible 

yield estimates at the end of season, the GLUE approach will very likely provide quite accurate 

statistics. For the users that are investigating specific management practices with the crop 

model where it is very important to simulate as accurately as possible specific plant 

component growth throughout season (including stem to leaf to grain ratios), in order to 

accurately evaluate the impact of those management practices, the TSE approach is 

recommended.   

Most importantly, the TSE method of cultivar coefficients optimization based on 

mathematically formed selection thresholds will eliminate user-dependent bias from the 

process. With removal of the user bias from the cultivar coefficient estimation process, multi-

model approaches can be implemented for specific groups of models within DSSAT: three 

wheat models (CERES, N-Wheat and Cropsim) and two maize models (CERES-Maize and 

CSM-IXIM), as described in Röll et al. (2020). 
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6.5 Conclusions 

The TSE program is designed to work with in-season field observations, by minimizing 

differences between simulated and observed values. Single-treatment-based nRMSE error 

minimization showed the ability of the TSE tool to search and find cultivar coefficients. Based 

on the results of the multiple-treatment-based cultivar coefficient estimation, the model 

performed very well and provided robust cultivar coefficients. The program is written in a 

way to enable optimization of cultivar coefficients of all available crop models in the DSSAT 

shell. So far it has been tested with CERES-Maize and CERES-Wheat with satisfactory results 

(unpublished). It should work for many of the CROPGRO crops, especially the grain legumes, 

because they share common cultivar coefficients and definitions.  Future work will test the 

program directly with CROPGRO and CERES models with a focus on using time-series plus 

end-of-season observations rather than only end-of-season based observations for deriving 

crop specific cultivar coefficients, which is a limitation of the GENCALC and GLUE methods 

presently in DSSAT.  

The program is available in the GitHub repository (https://github.com/memicemir/TSE). It can 

be used without any given warranty or usage restrictions. Feedback regarding program 

performance or suggestions for improvement is welcome. 
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7 General discussion 

The objective of the thesis was to investigate yield limiting (nitrogen) and reducing factors 

(Cercospora leaf spot disease) of specific cropping systems using the DSSAT crop growth 

models. Input management in agriculture can still be improved with respect to observable and 

quantifiable in-field variabilities with various remote- and near-sensor systems unified within 

crop growth decision support platforms. Better understanding of in-field variabilities is 

expected to result in improved management of nutrients and chemicals used for increasing 

yield and crop protection. 

The cropping system platforms can capture genetic×environment×management interactions 

with respect to spatial and temporal in-field variabilities. This is of extreme importance when 

it comes to management of agricultural inputs used in production and use of the remote- or 

near-sensor measurements, because nutrient and pest/disease management can impair 

interpretation of sensor-based measurements based on which certain decisions are made. In 

the case of nutrient management sensor-based readings can help to the extent to which specific 

bio-physiological traits of plants are considered. Sensor readings that rely on the visible 

spectrum for quantifying N status are useful but plant development stage, pest and leaf 

disease status have to be considered too, in order to lead to informed management of 

agricultural inputs. Every field in itself is a unique environment and sensor-based readings 

can help improving management of agricultural inputs based on local field status with respect 

to the soil properties and weather affecting in-field microclimates favouring pest and leaf 

disease development. 

Thus, the true potential of input management depends on integration of the site-specific 

knowledge about environment and weather with respect to management practices 

complimented with various sensor systems when combined within a decision support 

platform.    

7.1 Site-specific marginal net return maximising N application rates 

Among other very important macro nutrients required for plant growth, N is the one that has 

the most influence on yield and is required in highest quantities in production of cereal crops 

(Fowler et al., 2013). It has relatively low costs and very low use efficiency based on the 

fertilized amounts and quantities taken by the plant (Martínez-Dalmau et al., 2021) and as such 

causes major problems in environmental pollution and underlying economics of profitable 

agricultural inputs management (Alotaibi et al., 2018; Wang et al., 2020). When it comes to the 

N based fertiliser (organic and inorganic) used in crop production in EU, the balance of inputs 

and outputs is in favour of inputs, which means that fertiliser used in production is not entirely 

utilised by the crop but lost to the environment (Sutton et al., 2011).  

Based on the studies conducted by Thorp and Link with APPOLO and the NPM approach 

demonstrated in chapter 4, yield maximisation without detailed analysis of underlying 

economics of N application (N price) and benefits (yield increase), N use efficiency (yield 

increase in kg ha-1 per N kg ha-1 applied) cannot be properly managed. As shown in the study 

conducted in chapter 4, there is a major difference between two seemingly intertwined 

concepts: bio-physiological yield maximisation and marginal net return maximising yield, 

especially in the context of low-yielding (Germany, Riech) and high-yielding (USA, 

McGarvay) fields. The objective was to investigate the potential of variable N application rates 

with respect to maize and N prices, and effects of the plant population densities on yield and 
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marginal net return. The results indicated that for the low-yielding fields better management 

of N application has more influence on the marginal net return than additional N that cannot 

produce additional yield to cover or justify additional costs in the production (chapter 4). A 

similar trend was observed with plant population rates. 

A similar study was conducted focussing on the economically optimal N amounts in maize 

Northeast China with two different soil types. The study evaluated the effects of weather and 

management practices on variable N application rates (Wang et al., 2020). The authors tested 

maize production with different planting densities and different N application rates focusing 

on economic optimums. Wang et al. (2020) had similar conclusions related to the soil type as 

Link et al. (2013). In a sandy soil, variable N application showed larger variability in economic 

optimum N with respect to the weather conditions, when compared to a black soil (Wang et 

al., 2020). Within their study, based on the two different soil types they concluded that a soil 

type-specific N application rate might lead to improvement of nitrogen use efficiency and 

consequently might positively affect marginal net return (Wang et al., 2020) in soils that are 

more prone to N loss. In a study conducted at a location in Canada over 12 years (Alotaibi et 

al., 2018) N application rates led to optimized corn yields when the calculation was based on 

the soil texture. 

In general, knowledge on fertiliser applications are a result of in nature static statistical 

analysis. These statistics were used to cope with a problem that is truly dynamic and a result 

of specific in-season dynamics of the plant nutrient uptake, soil water balance (in mostly 

heterogeneous soils) and weather related factors influencing the efficiency of the used fertiliser 

(Martínez-Dalmau et al., 2021). To generate this knowledge, different amounts of fertiliser 

were applied in different plots and the effects of those different rates on final crop yield were 

analysed in order to derive “optimum” fertiliser application amounts, maximising yield or 

marginal net return. These analyses were conducted with various regression models that were 

not able to account for or give any insight into temporal variabilities observed within season 

that have a major effect on the fertiliser utilisation or losses. With crop growth models a huge 

potential for sensitivity analysis of the given spatial and temporal variability exists and can 

help to reveal the underlying complexity, finally leading to more accurate fertiliser 

applications.  

As more sensors became available in the agricultural sector over the last 20-30 years, the 

potential to quantify yield variability within field increased. Hence, the solution for timely 

site-specific N applications seemed to be reachable, solvable and implementable in practice 

with relatively low costs (Sishodia et al., 2020). The first problem faced, when considering site-

specific N application, consists of defining the size of the site-specific management sub-units 

(Link et al., 2006a). Since the goal of site-specific N application is often the minimisation of the 

given in-field yield variability, the most direct solution seemed to be to delineate site-specific 

management units based on the observed yield variability within a field. The yield variability 

is relatively easy quantifiable with new sensor technologies, and is a good starting point in 

understanding yield limiting factors causing this variability. Yield limiting factors can roughly 

be split in two groups: long-term soil properties and yield response to the specific agricultural 

production inputs (Maestrini and Basso, 2018). The yield limiting factors causing low- and 

high-yielding zones in the field potentially can be considered as those that vary from year to 

year (previous crop residues in the field) and long-term factors such as soil type and texture 

(Maestrini and Basso, 2018). If yield variability (high/low yielding zones) is stable over 

multiple years (Maestrini and Basso, 2018) it offers the possibility to be used for long-term site-
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specific management zone delineation. If yield variability within a field varies from year to 

year it has to be treated differently. 

7.2 Decision support system for evaluating the impact of observed leaf disease damage 

on sugar beet yield 

Coupling of the crop growth model state variables (about plant canopy) with suitable sensor 

readings (about plant canopy) can potentially lead to decision support tools for managing leaf 

disease outbursts in the field (Thorp et al., 2010; Röll et al., 2019; Batchelor et al., 2020). Various 

aspects of crop growth (such as plant organ partitioning) and leaf disease effects on different 

plant organs can be investigated in detail (Batchelor et al., 1993). With quantification of the 

yield reducing factors and leaf disease impact, extensive economic analysis can be conducted. 

With CSM-CERES-Beet and model based genetic specifications of the cultivar used in the 

experiment, sugar beet dry matter losses and consequently extractable sugar losses were 

simulated and evaluated with observed data. Simulation of the leaf disease effects in the 

context of sugar beet development is complex. Leaf disease such as Cercospora leaf spot 

disease and occurring necrosis spots cannot be entirely excluded in their impact on biomass 

data used for evaluating disease effects through tops weight dry matter losses per defined 

field unit. Different problems can occur in the process of detecting and quantifying various 

pathogens causing leaf diseases (Hillnhütter et al., 2011; Zhang et al., 2014) due to mainly 

overlapping of the leaves and spread from plant bottom to top (Cao et al., 2015). 

Leaf disease impact on sugar beet canopy development was demonstrated with manually 

measured data with corresponding impacts on tops weight (y0 axis) and storage root (y1axis) 

(chapter 5, Figure 4-6). Detailed demonstration of the measured data and respected effects on 

100 % fungicide treatment (2016) are shown in chapter 5, Figure 4-6. Linearly interpolated 

daily damage rates are shown in chapter 5, Figure 4-6 as straight (red) lines with arrows 

between observed disease points (0%, 1%, 20%, 24% and 33%). If detailed information on leaf 

disease progress would be available, a non-linear interpolation could be introduced in the 

future. However, the current concept based on manually collected data is a good starting point 

for developing decision support tools able to integrate sensor-based disease ratings.  

Figure 7-1 shows how the concept for a DSS can be combined with sensor-based data. For 

quantifying leaf disease effects on tops weight two scenarios have to be formed: a baseline and 

a disease scenario. In a first step the crop model is executed without having disease ratings 

included in the simulation process (baseline scenario), assuming e.g. no disease is present in 

the field. In the second step the model is executed with disease ratings included in the 

simulation process (disease scenario). The difference between the baseline and the disease 

scenario enables the quantification of leaf disease effects on tops weight, and consequently on 

storage root yield. The storage root yield to tops weight ratio is defined externally through 

cultivar coefficients and the underlying dry matter partitioning assumptions among different 

plant organs. 

At the time the disease is observed in the field (Figure 7-1, point 1) the model can simulate 

only a baseline (simulating tops weight without disease information). At this point the user 

has simulated ‘potential’ tops weight, observed disease and observed tops weight (observed 

tops weight affected by disease already). By introducing diseases into the model and 

rerunning the model, the user can quantify effects of the disease on tops weight by subtracting 

the disease scenario from the baseline (tops weight loss, Figure 7-1, phase II). Tops weight 

observed at the moment of measuring the disease in the field is point 3 in Figure 7-1. In order 
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to introduce disease effects on tops weight on a daily basis (Figure 7-1, point 2-3) a starting 

point has to be selected (no disease in the field) to enable the use of the proposed interpolation 

method that enables introduction of the disease and disease damage on a daily basis (Figure 

7-1, point 2-3). 

In the next phase (III) (Figure 7-1, point 4), hypothetical projections, of future potential disease 

development under the given disease pressure and weather conditions can be used for 

hypothetical yield loss estimates from the moment of the observation (Figure 7-1, point 3-4).  

 

Figure 7-1 Own illustration, baseline and disease scenario example for tops weight – tops 

weight loss and creation of hypothetical disease treatments (own illustration). 

 

7.3 Impact of cultivar coefficients on simulated yield 

The cultivar coefficient estimation process is extremely complex and should be conducted with 

extreme care. As representative cultivar coefficients have to be estimated, the data being used 

in the process of deriving these coefficients has to be representative of plant behaviour in 

phenology and growth (Hunt et al., 1993; Guillaume et al., 2011; Wallach et al., 2011). As 

already discussed to a certain extent in chapter 6 the objective of the crop modelling study 

should decide on the needed approach in the cultivar coefficient estimation process: use of 

end-of-season grain yield or use of multiple in-season observations of multiple target variables 

(e.g. LAI, tops weight etc.). If the user has only few phenology-related observations (onset of 

flowering, physiological maturity etc.) and grain yield, the choice is simple based on the 

availability of the data. If the user possesses in-season observations of multiple target variables 

they should be used as they are an important indicator of the crop in-season growth dynamics. 

In a study on the comparison of cultivar coefficient estimation procedures conducted by 

Guillaume et al. (2011) the authors found that the use of in-season observations of multiple 

target variables resulted in worsening of end-of-season estimates of grain yield and grain N 

concentration, compared to the approach, which was based on estimating cultivar coefficients 
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only based on end-of-season grain yield. Guillaume et al. (2011) concluded to a certain extent 

that if the goal of a crop modelling study is the overall accuracy improvement of end-of-season 

variables, the use of information about in-season dynamics is not “useful”. Wheather the 

overall crop model performace (entier seasonal crop growth) is to be subjected to end-of-

season mathematical fit of grain yield and grain N concentration, as in the case of Guillaume 

et al. (2011), is up to the user. Guillaume et al. (2011) also indicated that the use of in-season 

information for estimating cultivar coefficients can improve the overall crop model 

performance (more accurate depiction of plant growth from planting to harvest) and indicate 

what parts of the model under-perform, based on in-season dynamics. However, the user 

should be aware of the fact that cultivar coefficients estimated with only end-of-season 

observations might not perform well in other environments, as they are not able to replicate 

plant-specific in-seasonal behavior that depends on certain environmental apsects, and 

susequently will give wrong end-of-season yield estimates, or “correct”, for wrong reasons. 

As explained in chapter 6, the importance of using more than just end-of-season crop 

observations should be clearer. A larger amount of available data documenting the within-

season crop×environment×management practice interactions, could lead to more 

representative (robust) predictions. The predicted yield and management practice based on 

some of the within-season plant behaviour will enable better insight into the within-season 

dynamics that have a major influence on the yield and above-ground biomass predictions. The 

influence of the cultivar coefficient “accuracy” on N balance with the respect to the predicated 

above-ground biomass and yield is shown in Table 7-1. For this example, an independent data 

set shown in chapter 6 was used. This data set was used for direct comparison of the three 

different cultivar coefficient estimation approaches: DSSAT Standard (manual), GLUE and 

TSE (chapter 6, Figure 6-5). Different cultivar coefficient estimates resulted in different shoot 

weight and yield estimates and corresponding N balances as can be seen in Table 7-1. As it can 

be seen from this example (Table 7-1) the N balance has to be interpreted based on the intensity 

of N in the system. In this example production is not relying on the additional inorganic N 

fertilizer. The plant growth and accumulated biomass has specific N requirements that have 

to be met in order to produce final grain yield. Different cultivar coefficient values will affect 

the amount of simulated biomass and plant N uptake from soil (Table 7-1). Based on the plant 

N uptake (in kg ha-1) DSSAT Standard and TSE indicated lower rates when compared to 

GLUE. If additional inorganic N was given, these different cultivar coefficients would result 

in different N recommendations and N use efficiencies. Since DSSAT Standard and TSE were 

relying on the in-season biomass accumulations rates for deriving cultivar coefficients, it is 

very likely that they represent better insight in the plant N uptake requirements and thus in 

the total N balance. 
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Table 7-1 Detailed soil N-balance with respect to simulated biomass with cultivar coefficients 

estimated with three different approaches (tools). 

 DSSAT Standard GLUE TSE 

 Initial Final Initial Final Initial Final 

Unit kg N ha-1 

Soil NO3 22.27 54.76 22.27 46.06 22.27 57.11 

Soil NH4 19.31 3.60 19.31 3.61 19.31  3.47 

Soil Urea 0.00 0.00 0.00 0.00  0.00  0.00 

Fertilizer N 0.00  0.00     0.00  

Mineralized N 178.50  186.90   183.14  

Leached NO3  14.72  14.14    14.76 

N Denitrified  0.25  0.32     0.29 

N Uptake from soil  141.86  159.46   144.20 

Ammonia 

volatilization 

 0.00  0.00     0.00 

N Immobilized  4.90  4.90     4.90 

Total N Balance 220.09 220.09 228.49 228.49 224.72 224.72 

Initial – soil N at start of the simulation, Final – soil N at harvest 

However, a critical issue in the cultivar coefficient estimation is the initial cultivar coefficient 

range setup as discussed in chapter 6 with respect to other tools and literature. If the user is 

defining for a specific cultivar coefficient a lower and upper range limit, within which 

sensitivity analysis is conducted in order to select the best value based on the AVG-nRMSE, as 

is the case for TSE, these lower and upper range limits will have a direct influence on the 

cultivar coefficient values in cases where estimated values are getting closer to the lower or 

upper range limit. If the lower and upper range limit is set based on the physiological traits of 

the plant, they should not be crossed. For an example, if the cultivar coefficient defining leaf 

size for a specific crop is defined based on in-field observed minimum and maximum leaf size, 

the simulation of abnormal leaf sizes in order to get better statistical fit of predicted end-of-

season yield, is definitely not recommended. The cultivar coefficient estimation process 

consists of varying the values for each cultivar coefficient and comparing a statistical fit of 

simulated outputs with field observations in order to determine the coefficient combination 

providing the best agreement between simulated and observed values. Various cultivar 

coefficients have potentially wide ranges (minimum and maximum values difference) with 

many in-between values that depend on the increment step size (Inc). The so called Exhaustive 

gridding - coefficient variation (Table 7-2) (Röll et al., 2020), can be used to systematically 

investigate coefficient ranges in search for coefficient values that provide the best statistical fit. 

For example, P5 coefficient value for minimum 100, maximum 900 and increment step 3.3 can 

be passed into the cultivar file and the model will be executed for each coefficient value. In this 

example as shown in Table 7-2 it can be seen that for a coefficient range from 100 to 900 with 

increment steps of 3.3 a total of 243 coefficient variations are executed for the P5 coefficient 

with Exhaustive gridding method. In order to overcome time losses in the process of cultivar 

coefficients estimation based on the statistical fit (lowest nRMSE), a range reduction method 

was implemented (Table 7-2). With this range reduction method four global phases are 

conducted in the process of estimating cultivar coefficients with smallest average nRMSE. 

Greater increment steps are used in the first phase for each given coefficient range with P5 

coefficient having minimum 100, maximum 900 and increment step 200. Based on the lowest 
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nRMSE, the value for each coefficient is selected, i.e. 300. In the second phase, the new 

coefficient ranges with a narrower increment step are executed with P5 having a minimum of 

180, maximum 420 and increment steps of 60. Based on the lowest nRMSE, the new coefficient 

“optimum” is selected, i.e.  P5=300. In the third phase new ranges for each coefficient are 

defined with P5 having a minimum of 270, a maximum of 330 and increment steps of 15. In 

the final phase the P5 minimum 263.2 and the maximum 276.7 with increment steps of 3.3 are 

passed into the cultivar file and based on the lowest nRMSE the value P5=263.2 is selected, in 

the process of determining local minimum (Duan et al., 1992). Based on the range reduction 

approach, 48% fewer combinations are executed when compared to exhaustive gridding 

coefficient variations. The range reduction method as described in Table 7-2 is expected to 

retain a systematic optimum localisation approach (achievable with exhaustive gridding 

variation), and is expected to provide more realistic values for the coefficients when compared 

to the random generation of cultivar coefficients for allowed ranges. The range reduction is 

flexible programmed and will work with different scaled coefficients.  
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Table 7-2 Exhaustive gridding and range reduction methods example with P5 coefficient. 

Exhaustive gridding Range reduction method   

P5  Phase 1 Phase 2 Phase 3 Phase 4 

Min 100 100  180  270  263.2  

Max 900 900  420  330  267.7  

Inc. step +3.3 +200  +60  +15  +3.3  

        263.2 →263.2 

        266.5  

    180  270 →270 269.9  

 100 100  240  285  273.3  

 103.3 300 →300 300 →300 300  276.7  

 … 500  360  315    

 →263.2 700  420  330    

 … 900        

 900         

No. comb. 243 5  5  5  5  

Total 243 20 
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The range reduction method was implemented in addition to the method described in chapter 

6 and is already available in the software solution shared on GitHub, with examples described 

in the user guidelines.  

7.4 Crop model-based analysis of yield limiting and reducing factors: potential and 

limitations 

It was discovered within the study (see chapter 4) that the crop-model based tool can be used 

for analysing common N management practices. It was found that soil properties and weather 

play a major role in correctly capturing and interpreting in-season N dynamics (Thorp et al., 

2006). Different studies by Link at al. were conducted for south-west Germany (Link et al., 

2006a; Link et al., 2006b;  Link et al., 2008) indicating benefits of using, at the time APOLLO, 

or similar model-based approaches for optimising N fertilisation management. The study 

conducted with APOLLO indicated that model-based site-specific N optimisation has 

potential and the focus should be kept on soil category and water holding capacity in the 

context of N management (Link et al., 2013). The N management optimisation should be 

conducted with respect to positive social externalities (reduction of the ground water 

pollution) and economic benefits (Link et al., 2006b). It has to be pointed out that a major 

restriction of the APPOLO and NPM approaches is the underlying CERES-Maize v3.7 used for 

optimising soil profile-related parameters, which is no longer updated. The soil profile 

optimisation in the soil and atmosphere model (of the DSSAT v3.7) were not carried over 

further in following versions of the DSSAT model. Currently we are developing a new 

approach based on the method and concept of the developed tool in chapter 4 for optimising 

soil profile-related parameters based on the generic soil profile setup available in DSSAT 4.7 

and future versions. 

When it comes to yield reduction due to leaf disease damage, regardless of how good in-field 

disease estimates are at a certain point, the future weather forecasts that plays a major role in 

disease development and spread is an important obstacle. Currently, the biggest challenge in 

developing a functional decision support tool is the improvement of the hypothetical disease 

projections in the context of leaf disease favourable weather conditions. Leaf disease 

management relies on the predictability of weather conditions favouring leaf disease 

development, and as such is in the focus of developing hypothetical disease progress curves. 

Spatial disease management and spatial spread of spores in the field, could only be considered 

implicitly within the observed leaf disease damage ratings in this thesis, as disease 

submodules capable of simulating the spread or accumulation of spores based on leaf disease 

favourable conditions over time are not available in DSSAT. In the DSSAT 4.7 there are two 

tools that can be used for analyses and prediction of weather conditions: Weather Analogue 

and Weatherman. The Weather Analogue and WeatherMan tools are tested, but these tools 

are not suitable for precision agricultural applications without proper sensitivity analysis. 

Overall it is quite difficult to obtain realistic estimates of future weather. But these two tools 

can at least enable the user to create different weather scenarios based on historical weather 

data (Weather Analogue) and stochastic estimates (Weatherman) for sensitivity analysis of leaf 

disease progress. In addition, a basic concept of a Leaf Disease Pressure Factor (LDPF) is being 

developed. This pressure factor will be used in the DSS for determining the slope of the 

hypothetical yield losses. LDPF values consist of leaf disease favouring weather factors 
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(minimalistic approach consist of: humidity, minimum and maximum temperatures) and a 

cultivar susceptibility factor to the corresponding disease. 

It has to be pointed out that cropping systems are not a perfect representation of the natural 

plant growth as they are mathematical abstractions of extremely complex systems. To which 

degree the bio-physiological development of a plant is accurately simulated depends in many 

cases on the data used for determining plant phenology and biomass accumulation as a 

function of the entire environment such as solar radiation, temperatures, water, soil properties 

etc. As demonstrated in chapter 6, certain mathematical abstractions such as cultivar 

coefficients can play a major role in “accurate” prediction of the plant phenology and growth. 

The users have to be fully aware of that fact that estimated cultivar coefficients based on 

specific in-season biomass observations and cultivar coefficient range limits are derived based 

on these two underlying conditions. If there is user-bias in the sampled data or unrealistic 

coefficient range limits, the derived cultivar coefficient estimates will integrate those biases in 

the cultivar coefficient values, which will make them less representative over different seasons 

and locations. 

7.5 Remote- and near-sensing data integration into the crop model – conceptual solution 

based on the method and software solution described in chapter 6 

Optical sensing technologies are used for evaluation of the plant N status (Antille et al., 2018). 

These techniques are based on the assumption that plant tissue compounds such as 

chlorophyll are an important indicator of N status and as such can be used as an indicator of 

the plant N uptake. The optical sensing is based on common principles of: multispectral 

reflectance, multispectral transmittance, chlorophyll fluorescence and hyperspectral 

reflectance (Antille et al., 2018). For macronutrients used in agricultural production, such as 

N, relatively good correlation has been found between plant canopy N status and accumulated 

plant biomass (Van Maarschalkerweerd and Husted, 2015). In situations where chlorophyll 

synthesis is not impaired by other factors indeed plant nutrient status can be assessed to a 

certain extent with  indirect measurement of organic compounds with optical sensors 

(Tremblay et al., 2010) and can result in informed N application decision. The problem occurs 

in situations when available soil N is high but chlorophyll synthesis is impaired by other soil-

related properties or leaf damage. In addition to the already mentioned “questionable” 

assumption that plant N status is indeed a valuable indicator of available soil N, depending 

on strength of correlation of plant N status and available soil N, measurement of N status in 

different crop growth phases and corresponding growth phase observable biomass plays a 

major role in measurement accuracy. The interpretation of the optical sensor-based N status 

readings can be improved to a certain extent if fully fertilised in-field reference spots are used 

for adjustment, under some soil homogeneity and pest/leaf disease free assumptions. 

The crop model platforms offer a unique opportunity to include non-destructive information 

about in-season crop development with respect to time and spatial dimension collected with 

drone or satellites (Seidl et al., 2004; Sishodia et al., 2020) or any other sensor capable 

measuring in-season N-status and biomass progress. In-season biomass accumulation 

progress and LAI data (as time-series) can be used based on site-specific grid delineation with 

the tools developed within chapter 6 for improving specific inputs based on the measurements 

on a weekly basis throughout the growing season. Different studies showed that satellite 

images based indices such as NDVI can provide usable information about in-season biomass 

progress (Haboudane et al., 2004; Xie et al., 2016). The complex dynamic interaction of the 
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yield variability underlying factors cannot be solved only through intensive yield and/or soil 

monitoring sensors. A linkage between the available data collected by sensors and crop growth 

models, will help to put the data in an overall needed context of plant-soil-weather relations. 

In order to show a conceptual design for integrating sensor-based in-season measurements 

into the crop model a simplified flow diagram is shown in Figure 7-2. In order to setup crop 

mode inputs (Figure 7-2, step 1.) already mentioned input data are required: experiment data, 

soil characterisation, genetics and measured daily solar radiation, temperature (min and max) 

and precipitation. Based on the inputs setup, the crop growth model simulates various aspects 

of plant growth on a daily basis as shown in Figure 7-2 step 2 for grain weight (kg ha-1). The 

simulated grain weight is a form of post-processing analysis in which all required data was 

collected and used for simulation of grain weight based on the daily weather parameters. 

Ideally in-season or end-of-season (harvested yield) measurements of grain weight (in this 

example) are used to evaluate the accuracy of estimated yield. Based on the simplified analysis 

shown in Figure 7-2 through steps 1-3 sensitivity analysis can be conducted in order to check 

if the production management strategies can be improved by varying either planting date, 

fertilisation amounts, planting density, harvesting date etc. Commonly crop growth models 

have been used in the past for this form of post-production sensitivity analysis. 

Because of the available sensors that can measure specific aspects of plant in-season growth, 

the post-production concept can be improved and adapted in a form of a real-time decision 

support system. If in the specific case a field-related crop model setup is ready, in-season 

measurements (indicators) of biomass progress can be included in the model. This will help to 

evaluate model performance based on the measurement with respect to the measured daily 

weather parameters to evaluate the efficiency of for example N application rate, especially if a 

split N application strategy is used. Sensor based data about in-season biomass progress can 

be included into the system to replace commonly destructive biomass samples included in the 

system shown in Figure 7-2, step 2. For real-time setup other state variables can be used instead 

of grain weight as shown in Figure 7-2. Crop model state variables such as LAI, above-ground 

biomass are important indicators of crop in-season development and efficiency of fertilisation 

strategy based on the weather and soil dynamics. Since crop growth models simulate various 

aspects of the crop above-ground biomass accumulation and N content on a daily basis, 

sensor-based measurement of either biomass or N-status can be used to evaluate the 

simulation results with respects to soil and weather dynamics. Based on the model simulation 

of the in-season N balance it can be determined whether additional N should be applied or 

not. It has to be pointed out that the real-time crop model application is dependent on weather 

forecasts. Without weather forecasts future projections cannot be formed, as in the case of leaf 

disease, since the crop model cannot be run without weather-related parameters. Different 

weather scenarios can be used, based on historical data or stochastic estimates, to conduct 

sensitivity analysis based on which management practice can be adjusted. 

Either sensors mounted on agricultural vehicles or satellite/airborne can be used for deriving 

in-season biomass (canopy) information as shown in Figure 7-2, step 4. Theoretically specific 

genetic aspects of crop model inputs can be re-calibrated in order to improve simulated crop-

genotype-environment dynamics (simplified ratios of leaf to stem etc.), or soil properties that 

vary in short term, based on the observed biomass. The idea is to re-calibrate specific crop 

model inputs and re-run the model to better reflect in-season growth with respect to measured 

weather and measured above-ground biomass. The method and the tool described in chapter 

6 offer a perfect opportunity for these tasks as it can optimise crop model input parameters 
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based on multiple in-season observations of multiple target variables (different plant organs 

such as stem, leaf etc.). The time-series estimation tool (TSE) was used in chapter 6 for 

estimating cultivar coefficients, but it can be used also for estimating soil-related properties 

such as site-specific root distribution factor, soil organic matter etc. as they all influence in our 

example the mentioned N balance. Beside re-calibration other approaches are available for 

integrating in-season measurements in the model, such as force fit and update of specific crop 

model state variables. Force fit and update of state variable such as LAI do not aid in 

improving and resolving underlying causes for inaccurate estimates of LAI in this example. 

Force fit and update relays on over-writing crop model estimates independent of in-season 

genetic×environment×management dynamics, and as such are not recommended.      

 

Figure 7-2 Crop model-based post processing analysis (step 1-3) with conceptual design of 

integrating in-season sensor-based in-season observations (step 4-5) based on re-calibration 

approach (own illustration). 

Figure 7-3 shows a more detailed example of the re-calibration process for winter wheat with 

respect to LAI, total soil N and N uptake. Because winter wheat is commonly fertilised three 

times (split N application) in order to maximise N uptake with regard to biomass and protein 

accumulation, a range of different more meaningful sensitivity analysis can be conducted. In 

Figure 7-3 the example is based on LAI, N uptake and total N available in the soil. For this 

example, LAI (leaf area per area unit) was used as an indicator of the in-season plant 

development based on which N management is evaluated. Total soil N in this case is used as 

an indicator of the available N in the soil for plant uptake in various forms (ammonium, 

nitrate, urea etc.), and plant N uptake for connecting soil N with biomass accumulation 

indirectly based on LAI. The example for winter wheat shown in Figure 7-3 is a simplified 
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form of a sensitivity analysis based on two different N application rates with three split N 

applications each, where full lines for LAI, total soil N and N uptake represent the treatment 

with a total of 240 kg N ha-1 (100+100+40). The doted lines represent the treatment with 80 kg 

N ha-1 (30+30+20). Split N application rate dates are the same for both N application rates. 

Based on Figure 7-3 it can be seen that different N application rates will result in different LAI. 

The re-calibration concept can be implemented in a way when measured in-season LAI is 

higher/lower than the one simulated in the crop model, based on soil N and N uptake. Later 

N application rates can be adjusted in order to prevent over/under fertilisation. The soil-plant-

atmosphere dynamics shown in Figure 7-3 are over-simplified in order to demonstrate 

potential practical application. 

 

Figure 7-3 The in-season interaction of LAI, total soil N and N uptake (kg ha-1) in winter 

wheat for two different split N application rates: 240 (100+100+40) and 80 (30+30+20) kg ha-1. 

7.6 Critical review of the thesis 

The greatest question that might come to one’s mind at this point in time: “why are we not 

already there, and what is the problem when it comes to practical implementation of scientifically 

meaningful concepts, since farm digitalisation started basically with the first form of electric devices and 

most of the sensor technology and methodology usable in agricultural production is already available in 

some form for 20-30 years?”. 

Within this thesis crop model-based analysis was conducted in order to investigate the 

potential yield and consequently factors causing yield gap. As already mentioned while 

reviewing the yield gap concept, the main difficulty is the hierarchy of three important 
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dimensions of agricultural production and yield maximisation: bio-physiological, economic 

and socioeconomic. As any other economic activity agricultural production is subjected to 

economically feasible profit making with respect to positive and negative externalities for 

society and environment. Different legal regulations are in place to limit the use of specific 

nutrients and chemicals in agricultural production for balancing profitable management of 

agricultural producers and pollution caused by them. Because of this, the problems faced by 

agricultural producers are even more complex than only uncertainties that rise from crop 

biological and environmental constraints affecting yield maximisation. 

When it comes to crop growth model based potential yield and yield gap analysis, or in similar 

sense meta-analysis or statistical analysis, the greatest challenge is the input data used for 

evaluation of specific agricultural production frameworks used for future projections. 

Different approaches require a different amount of input data resulting in different complexity 

levels. Too detailed analysis of specific processes may cause over-specialised solutions that 

might not be successful when applied on a larger scale. It is of great importance to strike the 

balance between input data requirement and practical benefits of different analysis 

approaches. Even though crop growth models require a relatively large quantity of input data 

for depicting bio-physiological and physical processes relevant for simulating plant growth, it 

has to be pointed out that commonly collected data for these purposes mostly reflect above-

ground biomass growth and not below-ground biomass accumulation and growth. Physical 

processes occurring in the soil with respect to soil water dynamics and nutrient transfer play 

major roles in defining above-ground biomass growth.  Data collection of below-ground plant 

traits is time consuming and expensive and as such neglected to certain extent. On top of all, 

data collection is always impaired implicitly by inaccuracies due to specific data collection 

biases based on different levels of expertise used in the process. Even though great research 

has been conducted so far, certain physiological and physical processes of plant-environment 

interaction are not clearly defined and as such cannot be correctly integrated into crop growth 

models. Commonly experimental designs used for crop model development consist of 

calibration data and evaluation. Rarely the models are validated through entirely independent 

data for validating phenology- and growth-related plant behaviour in different climates, 

continents or weather extremes (under stress). Especially in weather extremes crop growth 

models do not perform very well as they are mostly calibrated and evaluated under water and 

nutrient stress-free data. For crop growth models adjusted through stress-free conditions to 

perform well in weather extreme conditions, the great importance is to be found in soil and 

biomass dynamics, which are not easy to depict due to complexities that arise in relation to 

soil texture and water holding capacity (soil water lower limit, soil water upper limit and soil 

water saturation rate). 

The selection criteria of crop case studies (maize, sugar beet and soybean) used in this thesis 

can raise various practical questions but at the same time gives insight in already spoken input 

data requirements. The main technical and practical background of the case studies was 

discussed throughout the general discussion with respect to relevant scientific studies. The 

main underlying imperative behind using maize and sugar beet crops lays in economic and 

environmental positive and negative externalities and their implications on further 

improvement of cropping systems with respect to profitable agricultural production in studied 

regions. In order to demonstrate the importance of time-series in-season observations used for 

deriving cultivar coefficients for crop growth models, a huge amount of data is required.  
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Ideally data sets should be collected and representative for the simulated regions in a more 

consistent way in future studies.  

The current conventional farming approach consisting of uniform agricultural input 

management has to be further extended to site-specific management, where possible. Site-

specific field management is not a form of solution where one approach fits all problems. Sub-

field zones designated into homogeneously manageable site-specific units raises various 

difficulties in implementation. As shown in chapter 4, based on the field and crop model setup 

specifically for maize, meaningful site-specific sizes can be derived based on additional 

ground truth data with respect to economics related to grain and N prices. Based on the study 

presented in chapter 4, the Precision Agriculture concept is no longer based only on agronomic 

optimums. The given practices can only be further improved by an underlying economic 

analysis. The study shown in chapter 4 is a simplified example based on simple marginal net 

return analysis with grain and N prices. Even though the study revealed some very interesting 

aspects of site-specific management of high- and low-yielding fields and their effects on 

marginal net return maximising N application rates, it did not include various additional costs 

involved in crop management and as such is still a scientific and not a practical 

recommendation. 

The study of chapter 5, where leaf disease effects on sugar beet storage root dry matter loss 

and extractable sugar yield were investigated, has to be treated in the same sense. It is more of 

a scientific study rather than a practical recommendation. With all technological advancement 

and sensors available there are still uncertainties related to leaf disease quantification that 

prevent practical application. Indeed, a crop model with a leaf disease subroutine can to a 

certain extent give practical insight into potential yield losses, but leaf disease spread and 

progress under leaf disease favourable weather conditions are major obstacles in a more 

practical approach. Both N and leaf disease management are impaired by future weather 

forecasts. Without weather forecasts these kinds of daily-based crop model analysis cannot be 

conducted. Already mentioned weather extrapolation methods can be used for sensitivity 

analysis as long as users are aware of extrapolation method limitations. 

As shown in chapter 6 crop growth models and specific approaches used in their underlying 

programming solutions and practical approaches still leave room for improvement. Overall 

the results of all chapters together revealed great potential for crop models and future 

precision agriculture applications but also important limitations that have to be kept in mind 

and further investigated.            

7.7 Outlook and future prospects 

The awareness of the spatial and temporal variability in crop production is known and spatial 

and temporal agricultural inputs management was advanced over the last 20-30 years within 

conceptual frameworks such as Precision Agriculture. Throughout history conventional crop 

management defined as applying uniformly nutrients, pesticides, herbicides etc. on field level 

has been a success story in economic terms, relatively speaking in developed countries. Due 

to already described social and technological imperatives this story can be made an even 

greater success within the Precision Agriculture conceptual framework of managing inputs 

site-specifically, thus contributing to environmental protection and higher productivity. 

The first task in tackling the problem caused by such variabilities have been identified, by 

means of various ground-truth sampling methods and technologies. This segment of the entire 
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approach is of crucial importance. After entirety of all influencing factors have been observed, 

the understanding of the dynamics affecting the growth as the next step has been done to a 

certain extent in various forms of decision support systems in order to be able to predict crop 

growth. 

Modelling the life and life cycle of complex living organisms such as plants brings with it the 

complexity that is not necessarily easy to capture through mathematical abstractions. The crop 

growth models offer to a certain extent opportunity to replicate complex dynamics of 

interacting crop growth, environment and crop management, and help in understanding how 

the things were done so far and how “should” they be done in the future. Simulating “life” by 

measuring the daily weather, the soil-related dynamics with respect to the crop species, 

ecotype and cultivar traits based on the measurable phenotypical behaviour of the plants, and 

integrating the knowledge into existing ecosystems of the crop management with various 

machinery and technology through human commitment is not an easy task. The potential of 

faster collection of large amounts of data with sensors relevant for evaluating plant growth 

and yield prediction even though evident is yet to be practically implemented. Transforming 

large amounts of digital raw data about plant biomass, soil water etc. into agronomical 

meaningful plant growth and development indicators for managing crops and finally 

integrating them into various decision support mechanisms, is a great challenge. Striking the 

balance between large amounts of data and a “meaningful” amount of data in the context of 

optimal crop management with respect to economics involved is difficult and requires 

involvement of different segments of farm management and technologies. 

Based on the studies conducted within this thesis and research work conducted by 

international scientists and precision agriculture enthusiast farmers, it can be concluded that 

there is a great potential in moving from field-scale to site-specific scale. The approaches 

described in chapter 4, 5 and 6 still contain to a certain degree mathematical abstraction that 

might scare away potential users. Additional experiments with greater focus on easily 

attainable in-field measurements by technological solutions are still required to make the 

approach more robust and easier marketable to potential end users. Chapter 6 pointed out that 

there is still room for improving currently used crop growth models, either through 

adjustment of certain approaches used in models or through externally attainable sensor data 

and maybe in the future also through a combination of crop growth models with machine 

learning and neural networks. Crop growth models then would contain agronomic knowledge 

and machine learning advanced technological approaches. 

Further, the described remote- and near-sensing data integration offers a theoretical 

framework for uniting agronomic knowledge and technological advancement of various non-

destructive data collections and should be pursued in future. Sub-chapter 2.2 described the 

potential combination of near- and remote-sensing technology integrated into the agricultural 

machinery and outlined to what extent crop production system can be made autonomous. 

Based on the current trends and publications agriculture seems to move away from traditional 

destructive data collection in field experiments towards the use of non-destructive sensing 

technologies. A similar trend can be observed with crop modelling and machine learning 

based decision support systems. Higher priority is commonly given to machine learning, 

which does not necessarily include plant physiology and physical transfer occurring in the 

soil. At this point it is too difficult to claim what would be the more meaningful approach, and 

common trends observable indirectly through various publications and the amount of 
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publications related to a specific topic in agricultural journals will very likely influence the 

development direction of future decision support systems. 

It is possible from time to time to get lost in the scientific and technological futuristic wishes, 

but one must not be forgotten: sustainably attained higher yields in an environmentally friendly 

manner with respect to economics involved in farm and crop management will always be a compromise 

between an eco-friendly society and profit maximising farmers.     
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8 Summary 

The agricultural sector is considered as one of the main elements of a “functional” society and 

its welfare for providing means to fulfil the most basic human need for food. In the past, an 

improved overall welfare of developed countries was directly related to early investment in 

conventional farming machinery parallel to the industrial development. With the expected 

future population increase and climate change, farm yield gaps are expected to increase and 

become more volatile. The awareness of negative externalities of agricultural production and 

yield maximisation led to many regulations e.g. in the EU aiming to control agricultural inputs 

to prevent ground water and environmental pollution. The problems arising from maintaining 

the balance between socio-economic and environmental aspects of agricultural production 

while maximising yield are complex and cannot be solved with one single solution.  

For the studies conducted in this dissertation a simplified yield definition was used with a 

major focus on yield limiting (nutrient) and yield reducing factors (leaf disease). There are still 

major knowledge gaps in fully understanding dynamics of potential yield (attainable under 

fully controlled conditions on e.g. research stations or in controlled environments) and actual 

yield attained by farmers due to spatial and temporal heterogeneity occurring in the field on 

large scale crop production. As more insight into soil- and weather-related dynamics was 

gained with various technological solutions available for agricultural practices, a more 

detailed investigation of the variabilities affecting yield came about. These technologies 

include various remote- and near-sensing technologies specialised for measuring various 

aspects of crop growth and field spatial and temporal variabilities. The measurement range of 

remote- and near-sensing technologies is able to capture soil×crop×weather dynamics by direct 

(e.g. N status measuring sensors) and indirect measurement (e.g. measuring plant chlorophyll, 

multi-spectral reflectance etc.) of soil parameters, plant biomass accumulation (for predicting 

yield) and weather parameters affecting in-season crop growth. Decision support tools such 

as process oriented crop growth models (DSSAT-Decision Support System for Agrotechnlogy 

Transfer) have the potential to capture in-season dynamics and rely on feedback of various 

sensor data for more accurate depiction of plant growth and yield prediction. Some of the 

major problems related to crop growth models are the underlying mathematical abstractions 

of plant phenological development and required calibration of plant genetics. In the future, 

sensor-based N status can be used for checking the model prediction of plant N uptake and 

for adjusting further in-season N prescriptions on a site-specific level. Various sensors have 

also potential to be used for evaluating leaf disease status in the field for predicating yield 

losses.  

The overall objectives of dissertation were: 

1) Crop model-based analysis of yield gaps in maize production based on economic 

optimization of nitrogen as an example for a yield limiting factor. 

2) Crop model-based analysis of leaf disease impact on sugar beet yield as an example for 

a yield reducing factor. 

3) Analysis of specific mathematical abstractions used in crop models and their accuracy 

level influencing the predicted potential yield and yield gap. 

The case study on the yield limiting factor nitrogen was based on eight years of maize trials 

from two different locations using the DSSAT-CERES-Maize crop growth model. Short- and 

long-term marginal net return maximising N application rates were investigated on a site-

specific level. Within this study a QGIS based software solution was developed to complement 

the existing crop growth model and enable site-specific variable N and plant density 
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optimisation based on price of grain and N fertiliser over a longer period of weather data for 

two different fields (Germany and US). The N application recommendations were on average 

9% lower for the McGarvey field (US, 5 years) and 48% lower for the Riech field (Germany, 3 

years) when compared to the uniform N application rate commonly applied by the farmer. 

The study indicated that for low yielding heterogeneous fields, such as the Riech field, variable 

N application is crucial for-profit maximisation. Even though a simplified marginal net return 

analysis was conducted, it was apparent that additionally applied N in Riech did not increase 

grain yields in quantities to cover additional N costs.    

In a second case study Cercospora leaf spot disease in sugar beet was investigated as an 

example for a yield reducing factor. The study was based on field trial in Southwest Germany 

by using the DSSAT-CERES-Sugarbeet model. Data on Cercospora leaf spot disease was 

collected throughout the growing season starting end of June each year. Cercospora leaf spot 

disease has a major influence on harvested sugar beet yield and consequently the amount of 

extractable sugar. The study consisted of modifying and adapting an existing pest subroutine 

in DSSAT enabling the model to simulate sugar beet yield losses based on the observed 

Cercospora leaf spot disease ratings from the field. Simulation of the leaf disease effects on 

yield is an extremely complex task due to spatial (spread of spores in the field) and temporal 

variability (leaf disease favouring weather conditions) of factors that are not easy to capture. 

Based on the data collected in Southwest Germany in the three-year field experiment, the 

model was able to simulate sugar beet yield losses based on the observed Cercospora leaf spot 

disease ratings, and consequently sugar yield losses required for economic evaluation. Model 

performance of the calibration treatment for LAI, tops weight and storage root beet yield 

resulted in R2 higher than 0.82 and d-statistics higher than 0.94. Evaluation treatments resulted 

in high R2 and d-statistics, with few exceptions mostly caused by drought. 

Crop growth models are a mathematical representation of the real physiological and physical 

transfers occurring during plant development with plant behaviour derived from field 

experiments and correlations based on statistical evaluations. Plant phenological development 

and in-season above-and below-ground biomass accumulation are defined through crop 

cultivar coefficients, which have to be calibrated based on the field experiment measured data. 

Commonly cultivar coefficients are estimated manually by trial and error method. Within the 

third case study of this thesis, a cultivar coefficient estimation tool (TSE, external Python plug-

in) was developed enabling users to use all in-season measured data for estimating cultivar 

coefficients. Cultivar coefficients estimated for two different cultivar types were based on 346 

in-season observations over multiple target variables (eg. LAI, tops weight, grain weight etc.) 

of six experiments from different locations in the US. Multiple-treatment based TSE cultivar 

coefficient estimates were evaluated with independent data set and compared to the Standard 

DSSAT coefficients manually estimated by trial and error done by model developers. The 

averaged normalised root mean squared error for LAI, shoot weight, leaf weight and grain 

weight of TSE coefficient estimates was 26% lower for one cultivar and about the same for the 

other cultivar when compared to the Standard DSSAT coefficients-based crop model 

predictions. Correct simulation of the phenological events and above- and below-ground 

biomass in-season accumulation rates is crucial for accurate evaluation of specific 

management practices such as N application or leaf disease damage effects on yield.   

All studies conducted within this dissertation, even though offering insight into some very 

important aspects of the yield maximisation are still scientific recommendations and not 

practical recommendations and solutions. Based on the studies and results obtained, the 



120 
 

potential seems obvious especially when considered in the context of new technologies to 

compliment already existing agronomic knowledge that can be unified within a crop growth 

model-based decision support platform. 

9 Zusammenfassung 

Der Agrarsektor gilt als eines der Hauptelemente einer "funktionierenden" Gesellschaft und 

ihres Wohlstands, da er Mittel zur Deckung des menschlichen Grundbedürfnisses nach 

Nahrung bereitstellt. In der Vergangenheit stand die Verbesserung des allgemeinen 

Wohlstands in den Industrieländern in direktem Zusammenhang mit dem Zeitpunkt der 

Investitionen in konventionelle landwirtschaftliche Maschinen parallel zur industriellen 

Entwicklung. Angesichts des erwarteten Bevölkerungswachstums und des Klimawandels 

wird erwartet, dass die Ertragsunterschiede in der Landwirtschaft in Zukunft weiter 

zunehmen und stärker schwanken werden. Das Bewusstsein für die negativen externen 

Effekte der landwirtschaftlichen Produktion und der Ertragsmaximierung führte zu 

zahlreichen Verordnungen, z. B. in der EU, die darauf abzielen, den landwirtschaftlichen 

Input zu kontrollieren, um Grundwasser- und Umweltverschmutzung zu vermeiden. Die 

Probleme, die sich aus der Aufrechterhaltung des Gleichgewichts zwischen 

sozioökonomischen und ökologischen Aspekten der landwirtschaftlichen Produktion bei 

gleichzeitiger Ertragsmaximierung ergeben, sind komplex und lassen sich nicht mit einer 

einzigen Lösung lösen. Für die in dieser Dissertation durchgeführten Studien wurde eine 

vereinfachte Ertragsdefinition verwendet, wobei der Schwerpunkt auf ertragsbegrenzenden 

Faktoren (Nährstoffe) und ertragsmindernden Faktoren (Blattkrankheiten) lag. Es gibt immer 

noch große Wissenslücken im Hinblick auf das vollständige Verständnis der Dynamik des 

potenziellen Ertrags (der unter vollständig kontrollierten Bedingungen, z. B. auf 

Forschungsstationen oder in kontrollierten Umgebungen, erzielt werden kann) und des 

tatsächlichen Ertrags, der von den Landwirten erzielt wird. Mit einem zunehmenden Einblick 

in die boden- und wetterbedingte Dynamik und den verschiedenen technologischen 

Lösungen, die für die landwirtschaftliche Praxis zur Verfügung stehen, wurde eine 

detailliertere Untersuchung der ertragsbeeinflussenden Schwankungen möglich. Zu diesen 

Technologien gehören verschiedene Fern- und Naherkundungstechnologien, die auf die 

Messung verschiedener Aspekte des Pflanzenwachstums und der räumlichen und zeitlichen 

Variabilität des Feldes spezialisiert sind. Das Messspektrum der Fern- und 

Naherkundungstechnologien ist in der Lage, die Dynamik von Boden, Pflanze und Wetter 

durch direkte (z. B. Sensoren zur Messung des N-Status) und indirekte Messungen (z. B. 

Messung des Chlorophylls der Pflanzen, multispektrale Reflexion usw.) von 

Bodenparametern, der pflanzlichen Biomasseakkumulation (zur Vorhersage des Ertrags) und 

von Wetterparametern, die sich auf das Pflanzenwachstum während der Saison auswirken, 

zu erfassen. Entscheidungshilfen wie prozessorientierte Pflanzenwachstumsmodelle (DSSAT 

- Decision Support System for Agrotechnlogy Transfer) haben das Potenzial, die Dynamik 

während der Saison zu erfassen, und stützen sich auf die Rückkopplung verschiedener 

Sensordaten für eine genauere Darstellung des Pflanzenwachstums und der Ertragsprognose. 

Einige der Hauptprobleme im Zusammenhang mit Pflanzenwachstumsmodellen sind die 

zugrundeliegenden mathematischen Abstraktionen der phänologischen Entwicklung von 

Pflanzen und die erforderliche Kalibrierung der Pflanzengenetik. In Zukunft soll der 

sensorgestützt erfasste N-Status zur Überprüfung der Modellvorhersage der pflanzlichen N-

Aufnahme und zur Anpassung weiterer saisonaler N-Applikationen auf 

teilflächenspezifischer Ebene verwendet werden. Verschiedene Sensoren haben auch das 
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Potenzial, zur Bewertung des Blattkrankheitsstatus im Feld eingesetzt zu werden, um 

Ertragsverluste vorherzusagen.  

Die allgemeinen Ziele der Dissertation waren: 

1) Modellbasierte Analyse von Ertragsunterschieden im Maisanbau auf der Grundlage 

der wirtschaftlichen Optimierung von Stickstoff als Beispiel für einen 

ertragsbegrenzenden Faktor. 

2) Modellgestützte Analyse der Auswirkungen von Blattkrankheiten auf den 

Zuckerrübenertrag als Beispiel für einen ertragsmindernden Faktor. 

3) Analyse spezifischer mathematischer Abstraktionen, die in 

Pflanzenwachstumsmodellen verwendet werden, und ihres Genauigkeitsgrades, der 

den vorhergesagten potenziellen Ertrag und die Ertragsunterschiede beeinflusst. 

Die Studie über den ertragsbegrenzenden Faktor Stickstoff basiert auf achtjährigen 

Maisversuchen an zwei verschiedenen Standorten unter Verwendung des DSSAT-CERES-

Mais-Wachstumsmodells. Auf teilflächenspezifischer Ebene wurden kurz- und langfristige, 

den Grenzertrag maximierende N-Ausbringungsraten untersucht. Im Rahmen dieser Studie 

wurde eine QGIS-basierte Softwarelösung entwickelt, um das bestehende 

Pflanzenwachstumsmodell zu ergänzen und eine teilflächenspezifische variable N- und 

Pflanzendichte-Optimierung auf der Grundlage der Preise für Getreide und N-Dünger über 

einen längeren Zeitraum mit Wetterdaten für zwei verschiedene Felder (Deutschland und 

USA) zu ermöglichen. Die Empfehlungen für die N-Düngung lagen im Durchschnitt um 9 % 

für das McGarvey-Feld (USA, 5 Jahre) und um 48 % für das Riech-Feld (Deutschland, 3 Jahre) 

niedriger als die einheitliche N-Düngung, die der Landwirt üblicherweise vornimmt. Die 

Studie zeigte, dass bei ertragsschwachen, heterogenen Feldern, wie dem Beispiel des Riech-

Feldes, eine variable N-Ausbringung für die Gewinnmaximierung entscheidend ist. Obwohl 

eine vereinfachte marginale Nettoertragsanalyse durchgeführt wurde, zeigte sich, dass der 

zusätzlich ausgebrachte Stickstoff auf der Fläche Riech die Kornerträge nicht in dem Maße 

erhöhte, das die zusätzlichen Stickstoffkosten gedeckt werden konnten. 

In einer zweiten Studie wurde die Cercospora-Blattfleckenkrankheit bei Zuckerrüben als 

Beispiel für einen ertragsmindernden Faktor untersucht. Die Studie basierte auf einem 

Feldversuch in Südwestdeutschland unter Verwendung des DSSAT-CERES-

Zuckerrübenmodells. Die Daten zur Cercospora-Blattfleckenkrankheit wurden während der 

gesamten Vegetationsperiode ab Ende Juni eines jeden Jahres gesammelt. Die Cercospora-

Blattfleckenkrankheit hat einen großen Einfluss auf den Ertrag der geernteten Zuckerrüben 

und folglich auf die Menge des extrahierbaren Zuckers. Im Rahmen der Studie wurde ein 

bestehendes Pest-Programm in DSSAT modifiziert und angepasst, um das Modell in die Lage 

zu versetzen, Ertragsverluste bei Zuckerrüben auf der Grundlage der beobachteten 

Cercospora-Blattfleckenkrankheitswerte aus dem Feld zu simulieren. Die Simulation der 

Auswirkungen der Blattfleckenkrankheit auf den Ertrag ist aufgrund der räumlichen 

(Ausbreitung der Sporen auf dem Feld) und zeitlichen Variabilität (die Blattfleckenkrankheit 

begünstigende Witterungsbedingungen) von Faktoren, die nicht einfach zu erfassen sind, eine 

äußerst komplexe Aufgabe. Auf der Grundlage der im Rahmen des dreijährigen Feldversuchs 

in Südwestdeutschland gesammelten Daten konnte das Modell auf der Grundlage der 

beobachteten Cercospora-Blattfleckenkrankheiten Ertragseinbußen bei Zuckerrüben und 

folglich auch die für die wirtschaftliche Bewertung erforderlichen Zuckerertragsverluste 

simulieren. Die Modellleistung der Kalibrierungsbehandlung für LAI, Biomasse und 
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Rübenertrag ergab ein R2 von über 0.82 und eine d-Statistik von über 0.94. Die 

Auswertungsbehandlungen ergaben hohe R2- und d-Statistiken, mit wenigen Ausnahmen, die 

hauptsächlich durch Trockenheit verursacht wurden. 

Pflanzenwachstumsmodelle sind eine mathematische Darstellung der realen physiologischen 

und physikalischen Zusammenhänge, die während der Pflanzenentwicklung auftreten, wobei 

die Reaktion der Pflanze aus Feldversuchen und Korrelationen auf der Grundlage statistischer 

Auswertungen abgeleitet wird. Die phänologische Entwicklung der Pflanzen und die 

saisonale Akkumulation von ober- und unterirdischer Biomasse werden durch genetische 

Koeffizienten definiert, die anhand von Messdaten aus Feldversuchen kalibriert werden 

müssen. Üblicherweise werden die Koeffizienten sortenspezifisch manuell nach der Trial-and-

Error-Methode geschätzt. Im Rahmen der dritten Studie dieser Arbeit wurde ein Tool zur 

Schätzung der genetischen Koeffizienten (TSE, externes Python-Plug-in) entwickelt, das es 

den Nutzern ermöglicht, alle während der Saison gemessenen Daten zur Schätzung der 

Koeffizienten zu verwenden. Die im Rahmen dieser Studie geschätzten genetischen 

Koeffizienten für zwei verschiedene Sorten basieren auf 346 Beobachtungen während der 

Saison für mehrere Zielvariablen (z. B. LAI, Gewicht der Spitzen, Korngewicht usw.) aus sechs 

Versuchen an verschiedenen Standorten in den USA. Die auf Mehrfachbehandlungen 

basierenden TSE- Koeffizientenschätzungen wurden mit unabhängigen Datensätzen bewertet 

und mit den Standard-DSSAT-Koeffizienten verglichen, die von den Modellentwicklern 

manuell durch Trial-and-Error-Methode ursprünglich  geschätzt wurden. Der RMSE (root 

mean squared error) für LAI, Stängel-, Blatt-und Korngewicht der TSE-Schätzungen war für 

eine Sorte um 26 % niedriger und für die andere Sorte ungefähr gleich, wenn man sie mit den 

auf den Standard-DSSAT-Koeffizienten basierenden Vorhersagen des Modells vergleicht. Die 

korrekte Simulation der phänologischen Ereignisse und der Akkumulationsraten der ober- 

und unterirdischen Biomasse während der Saison ist entscheidend für die genaue Bewertung 

und Durchführung spezifischer Bewirtschaftungsmaßnahmen, wie z. B. die Applikation von 

Stickstoff oder die Auswirkungen von Blattkrankheiten auf den Ertrag.   

Alle im Rahmen dieser Dissertation durchgeführten Studien bieten zwar Einblicke in einige 

sehr wichtige Aspekte der Ertragsmaximierung, sind aber dennoch wissenschaftliche 

Empfehlungen und keine praktischen Empfehlungen und Lösungen. Auf der Grundlage der 

Studien und der erzielten Ergebnisse scheint das Potenzial dieser Ansätze allerings 

offensichtlich, insbesondere wenn man es im Zusammenhang mit neuen Technologien 

betrachtet, die das bereits vorhandene agronomische Wissen ergänzen und in einer auf einem 

Pflanzenwachstumsmodell basierenden Plattform zur Entscheidungsunterstützung vereint 

werden können. 
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