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Consideration of nonlinear multipoint constraints in finite element
analyses based on a master-slave elimination scheme operating at the
global level

Jonas Boungard1,∗ and Jens Wackerfuß1

1 Institute of Structural Analysis, University of Kassel

A method to consider nonlinear multipoint constraints in finite element analysis based on a master-slave elimination scheme
operating at the global level is presented. We focus on systems with nonlinear constraints in which the number of constraints is
of the same order of magnitude as the number of degrees of freedom. Therefore, we rely on the master-slave elimination which
gives us the huge benefit of drastically reducing the problem size. In the literature the presented master-slave elimination
schemes for linear constraints are based on the manipulation of the system equations (global level), but the master-slave
elimination schemes for nonlinear constraints are based on manipulation of the element formulation (local level). In contrast
to that we use a global approach for which the nonlinear constraints are applied directly on the system equations in analogy to
linear constraints. Thus, the method is independent of the underlying element formulation and the type of constraints which
makes it more flexible.
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1 Introduction

Nonlinear multipoint constraints can be used to model a wide range of features in engineering structures like joints [1, 2] or
coupling of elements [3]. Therefore, efficient and accurate methods for the consideration of such constraints in finite element
analyses are needed. This is particularly important for systems in which the number of constraints nc is of the same order of
magnitude as the number of degrees of freedom ndof, i.e. nc = O (ndof).

Constraints can be considered in the resulting system of equations (global level) or under certain circumstances at the
element level of the underlying finite element approach (local level). In the following we focus on a treatment of constraints at
global level. Thus, the discussed methods are independent of the underlying element formulation and the type of constraints
which make them more flexible.

The following three equations describe a general nonlinear FE model with nonlinear constraints:

nonlinear equilibrium equation: R(V) = 0 ; vector of dofs V ∈ Rndof , residual vector R ∈ Rndof (1)

linearization of equilibrium equation: K∆V = −R ; tangential stiffness matrix K ∈ Rndof×ndof (2)

nonlinear constraint equation: c(V) = 0 ; vector of constraint equations c ∈ Rnc (3)

Four methods can be found in the literature to incorporate multipoint constraints in finite element analyses: Lagrange multipli-
ers, penalty method, augmented Lagrange multipliers and master-slave elimination. In the following each method is presented
briefly and its advantages and disadvantages are discussed.

The overview and notation is based on the widely used book by Belytschko et al. [4]. The following three quantities are
needed for all methods:

• constraint vector c

• constraint jacobian G = ∂c
∂V

• constraint hessian Hi =
∂2ci
∂V2 with i = 1, . . . , nc

1.1 Lagrange Multipliers

In the Lagrange multiplier method nc additional unknowns in form of the Lagrange multipliers λ are introduced. This leads
to the following modified system:

[
K+ λiHi GT

G 0

] [
∆V
∆λ

]
=

[
−R− λTG

−c

]
; λ ∈ Rnc (4)

Usage of Lagrange multipliers satisfies the constraints exactly and gives direct information on the constraint forces. However,
Lagrange multipliers lead to a larger system of equations which is a huge drawback for systems with a large number of
constraints. Without additional modification the resulting matrix is not positive definite [4].
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1.2 Penalty Method

In the penalty method additional terms with the penalty factor β are introduced. This leads to the following modified system:
(
K+ βGTG+ βciHi

)
∆V = −R− βcTG ; β ∈ R; β ≫ 0 (5)

Penalty methods are very easy to implement but they exhibit two main drawbacks. Firstly, the constraints are not fulfilled
exactly. Secondly, choosing the proper penalty values is difficult, as small values worsen the problem of not fulfilling the
constraints and large values can lead to an ill-conditioned stiffness matrix and therefore a deterioration of the convergence of
the solution and numerical stability issues [4].

1.3 Augmented Lagrange Method

There also exists a mixture of the Lagrange multiplier method and the penalty method, the so called augmented Lagrange
method. Here both Lagrange multipliers λ and penalty terms with penalty factor β are introduced:

[
K+ λiHi + βGTG+ βciHi GT

G 0

] [
∆V
∆λ

]
=

[
−R− λTG− βcTG

−c

]
; λ ∈ Rnc ; β ∈ R; β ≫ 0 (6)

This augmentation leads to an improved numerical stability [4].

1.4 Master-Slave Elimination

Master-slave elimination schemes partition the degrees of freedom into ndof − nc master dofs, denoted with m, and nc slave
dofs, denoted with s, see the following equation:

[
Kmm Kms

Ksm Kss

] [
∆Vm

∆Vs

]
= −

[
Rm

Rs

]
(7)

For each constraint there is no more than one slave dof. A standard master-slave elimination scheme operating at the global
level developed by Shephard [5] which leads to a symmetric modified matrix is presented in the following:

(
Kmm +GT

mKsm +KmsGm +GT
mKssGm

)
∆Vm = −Rm −GT

mRs −Kmsc−GT
mKssc (8)

∆Vs = Gm∆Vm − c (9)

The master-slave elimination also satisfies the constraints exactly and leads to a smaller resulting system of equations. How-
ever, this approach relies on heavy manipulation of the system matrix and system vector which can, under certain circum-
stances, lead to a loss of favorable properties of the system matrix e.g. a small bandwidth. By using modern mathematical
libraries, highly efficient functions are available for these manipulations. Thus, the computational cost of these manipulation
is small compared to the gain of efficiency by reduction of the number of equations. However, the master-slave elimination
schemes operating at the global level found in the literature are limited to linear constraints, e.g. [5]. In contrast there are
master-slave elimination schemes operating at the local level that are designed to handle nonlinear constraints but they are
limited to constraints due to joints [1, 2].

Through the discussion, it becomes clear that there is no master-slave elimination scheme operating at the global level that
is capable of handling nonlinear constraints. In the following such a new master-slave elimination scheme operating at the
global level is presented which can be used to consider nonlinear multipoint constraints in contrast to the existing schemes.

2 New Master-Slave Elimination Scheme

Due to the constraints additional constraint forces are induced in the system. These constraint forces perturb the equilibrium
defined by equation (1). Therefore the premise of the new method is to include the constraint forces C in the equilibrium
equations which is similar to the approach by Narayanaswamy [6]. However, the constraints are introduced in the equilibrium
equation (1) and not in the linearization (2). In constrast to [6] this results in a consistent linearization of the constraint forces.
In the following the new method is derived in a compact manner. For more details, see [7].

The new approach leads to the following modified equilibrium equation:

Rmod = R+C ; C ∈ Rndof (10)

The constraint forces C can be separated into different parts Ci for each individual constraint i:

C =

nc∑

i=1

Ci ; Ci ∈ Rndof (11)
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The constraint forces C are additional unknowns. Thus, to calculate these ndof unknowns ndof additional equations are
needed. By numerical experiments the following relationship between constraint forces at master dofs and slave dofs could
be identified:

−Gi,sCi,mj +Gi,mjCi,s = 0 ⇐⇒ Ci,mj =
Gi,mj

Gi,s
Ci,s (12)

The theoretical justification of this relationship (12) is part of ongoing research.
In a first step the relationship (12) can be used to express constraint forces at master dofs with constraint forces at slave

dofs. For the sake of simplicity this is only shown for one constraint with n master dofs, i.e. nc = 1:

c(Vm1 , . . . , Vmn , Vs) = 0 (13)

Incorporating equation (12) in equation (10) yields the following expression for the modified equilibrium equations:




Rm1 + Cm1

. . .
Rmn

+ Cmn

Rs + Cs


 =




Rm1
+

Gm1

Gs
Cs

. . .

Rmn +
Gmn

Gs
Cs

Rs + Cs


 =




Rm1
− Gm1

Gs
Rs

. . .

Rmn − Gmn

Gs
Rs

Rs + Cs


 = 0 (14)

Thus, the constraint force at the slave dof Cs remains as the only unknown variable in equation (14)n+1. It can be shown that
the last equation in (14) is linearly dependent on all the other equations in (14). To show this the equations in (14)n+1 are
scaled.

Rs + Cs = 0 ⇔ Gm1

Gs
Rs +

Gm1

Gs
Cs = 0 ⇔ . . . ⇔ Gmn

Gs
Rs +

Gmn

Gs
Cs = 0 (15)

Thus, equation (14)n+1 can now be replaced



Rm1
− Gm1

Gs
Rs

. . .

Rmn
− Gmn

Gs
Rs

Gm1

Gs
Rs +

Gm1

Gs
Cs + . . .

Gmn

Gs
Rs +

Gmn

Gs
Cs


 =




Rm1
− Gm1

Gs
Rs

. . .

Rmn
− Gmn

Gs
Rs

Gm1

Gs
Rs −Rm1 + . . .+

Gmn

Gs
Rs −Rmn


 = 0 (16)

As equation (16)n+1 is linearly dependent on the other equations in (16), it has to be replaced by another equation. This can
only be done by the constraint (13) itself. The modified equilibrium equations are:




Rm1
− Gm1

Gs
Rs

. . .

Rmn
− Gmn

Gs
Rs

c


 = 0 (17)

The summation of the constraint forces for different constraints (11) leads to the following expression for the modified equi-
librium equations for an arbitrary number of constraints:

Rmod =

[
Rmod, m
Rmod, s

]
=

[
Rm −GT

mG−1
s Rs

c

]
= 0 ; Rmod ∈ Rndof (18)

Therefore, the total constraint forces at the master dofs can be calculated as follows:

Cm = −GT
mG−1

s Rs (19)

Remark: The jacobian of the constraint equations with respect to the slave dofs Gs is a diagonal matrix. This is computation-
ally beneficial because the inversion of the matrix can be computed very easily.

Gs = diag

(
∂ci
∂Vs,i

)
; Gs ∈ Rnc×nc ; i = 1, . . . , nc (20)

If the modified equilibrium equation (18) is solved by a NEWTON-RAPHSON scheme, the linearization is needed:

Kmod =
∂Rmod

∂V
; Kmod ∈ Rndof×ndof (21)
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The modified linearized equilibrium equation is given by:
[
Kmod,mm Kmod,ms

Gm Gs

] [
∆Vm

∆Vs

]
=

[
−Rmod,m

−c

]
(22)

As a second step the dimension of the system is reduced by elimination of the increment of the slave dofs ∆Vs. This is done
by a static condensation on the global level. This leads to the following reduced system of equations:

Kred∆Vm = Rred (23)

Kred = Kmod,mm −Kmod,msG
−1
s Gm ; Kred ∈ R(ndof−nc)×(ndof−nc) (24)

Rred = −Rmod,m +Kmod,msG
−1
s c ; Rred ∈ Rndof−nc (25)

It can be shown that the reduced tangential stiffness matrix Kred is symmetric. As already mentioned more details can be
found in [7].

3 Example

In the following the performance of the new method is compared to established methods. The example is a simple tensile test
as shown in figure 1 with the following parameters: E = 1, A = 1, L = 1. The nonlinear constraint takes the form of:

1 2 3 4 5 6

λ · F
V1 = 0 V2 V3 V4 V5 V6

C3 C4 C5

12 23 34 45 56

L L L L L

Fig. 1: tensile test with nonlinear constraint

c(V4, V3, V5) = V 1+γ
4 − 1

2
V 1+α
3 − 1

2
V 1+β
5 = 0 (26)

In terms of the master-slave elimination V4 is the slave dof, V3 and V5 are the master dofs. The underlying finite element
formulation is linear and the load F is increased linearly. The parameters α, β and γ control the nonlinearity of the constraint
(26). For three sets of these parameters the results of the example are shown in table 1.

In the first row the constraint force at the slave dof for the master-slave elimination is shown. It can be seen that the results
are in good agreement for different load steps. This demonstrates the robustness of the new method.

In the second row the error eC is shown for the master-slave elimination and the penalty method. It is defined as the relative
error in the constraint force at the slave dof in comparison to the result for the Lagrange multiplier method which is used as a
reference because it fulfills the constraints exactly:

eC =
|C4 − C4,Lagrange|

|C4,Lagrange|
(27)

The diagram shows that the error for the master-slave elimination is of the same order as the achievable computational ac-
curacy. It can be deduced that the master-slave elimination gives the same results for the constraint force as the Lagrange
multiplier method and is therefore of similar accuracy. For comparison the result for the penalty method for different values
of the penalty parameter β are plotted, too. As expected the penalty method is not as accurate as the other methods.

In the third row the absolute value of the constraint equation is shown. Here the master-slave elimination and the Lagrange
multiplier method give results of the same order as the achievable computational accuracy. As a result it can be shown that
both methods fulfill the constraint exactly with respect to the achievable accuracy. As expected the penalty method does not
fulfill the constraints exactly.

In the fourth row the number of iteration per load step is shown. Here the master-slave elimination shows similar behavior
as the Lagrange multiplier method. From this it can be concluded that the master-slave elimination is of similar robustness as
the Lagrange multiplier method. It performs slightly better than the penalty method.

In the fifth row the norm of the residual during the NEWTON-RAPHSON iteration for the last load step for the master-slave
elimination is shown. It can be seen clearly that the new method exhibits quadratic convergence.
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Table 1: Results for the tensile test. Last row shows the norm of the residual vector of the last load step for the master-slave elimination.

α = 1, β = 0, γ = 0 α = 1, β = 1, γ = 0 α = 0, β = 0, γ = 1

C4

−0.4 −0.2 0 0.2
0

0.5

1

C4 , M-S elimination

lo
ad

F

27 steps

9 steps

3 steps

0 5 · 10−2 0.1 0.15 0.2
0

5 · 10−2

0.1

0.15

C4 , M-S elimination

lo
ad

F

27 steps

9 steps

3 steps

0 0.5
0

0.5

1

C4 , M-S elimination

lo
ad

F

27 steps

9 steps

3 steps

eC

0.5 1

10−16

10−9

10−2

load F

lo
g
e
C

M-S elimination

penalty β = 103

penalty β = 106

penalty β = 109

5 · 10−2 0.1 0.15

10−15

10−10

10−5

load F

lo
g
e
C

M-S elimination

penalty β = 103

penalty β = 106

penalty β = 109

0.5 1
10−17

10−10

10−3

load F

lo
g
e
C

M-S elimination

penalty β = 103

penalty β = 106

penalty β = 109

|c|

0.5 1

10−18

10−13

10−8

10−3

load F

lo
g
|c

|

M-S elimination

Lagrange

penalty β = 103

penalty β = 106

penalty β = 109

0.5 1

10−17

10−12

10−7

10−2

load F

lo
g
|c

|

M-S elimination

Lagrange

penalty β = 103

penalty β = 106

penalty β = 109

0.5 1

10−17

10−12

10−7

10−2

load F

lo
g
|c

|

M-S elimination

Lagrange

penalty β = 103

penalty β = 106

penalty β = 109

nite

0.5 1
0

2

4

6

8

load F

n
ite

M-S elimination

Lagrange

penalty β = 103

penalty β = 106

penalty β = 109

5 · 10−2 0.1 0.15
0

2

4

6

load F

n
ite

M-S elimination

Lagrange

penalty β = 103

penalty β = 106

penalty β = 109

0.5 1
0

2

4

6

8

load F

n
ite

M-S elimination

Lagrange

penalty β = 103

penalty β = 106

penalty β = 109

1.11e-01 1.67e-01 1.11e-01

4.94e-03 9.44e-03 2.17e-03

8.53e-06 5.49e-06 1.13e-06

2.33e-11 1.83e-10 9.24e-14

6.66e-16 6.95e-18
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4 Conclusion

A new method for the consideration of linear and nonlinear multipoint constraints in finite element analyses was presented. It
is a modification of the well established master-slave elimination. In contrast to the existing master-slave elimination schemes
operating at the global level it is capable of handling nonlinear constraints. In contrast to the penalty method the constraints
are fulfilled exactly. In contrast to the Lagrange multiplier method no additional unknowns are introduced. On the contrary,
the problem size is even reduced by the number of constraints nc. This is computationally beneficial especially for problems
in which the number of constraints is of the same order of magnitude as the number of degrees of freedom nc = O (ndof). The
new method is of similar accuracy and robustness and more efficient as the Lagrange multiplier method.

The theoretical justification of the relationship between the constraint forces at the master and the slave dofs (12) is part of
ongoing research. The presented method will be used to quantify the influence of constraints for highly nonlinear problems
and realistic applications. Additionally the applicability of the new method for transient problems is investigated. These
results will be available in [7].

Acknowledgements Open access funding enabled and organized by Projekt DEAL.

References
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