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A B S T R A C T

Graph Neural Networks (GNNs) are a large class of relational models for graph processing. Recent theoretical
studies on the expressive power of GNNs have focused on two issues. On the one hand, it has been proven that
GNNs are as powerful as the Weisfeiler–Lehman test (1-WL) in their ability to distinguish graphs. Moreover,
it has been shown that the equivalence enforced by 1-WL equals unfolding equivalence. On the other hand,
GNNs turned out to be universal approximators on graphs modulo the constraints enforced by 1-WL/unfolding
equivalence. However, these results only apply to Static Attributed Undirected Homogeneous Graphs (SAUHG)
with node attributes. In contrast, real-life applications often involve a much larger variety of graph types. In
this paper, we conduct a theoretical analysis of the expressive power of GNNs for two other graph domains that
are particularly interesting in practical applications, namely dynamic graphs and SAUGHs with edge attributes.
Dynamic graphs are widely used in modern applications; hence, the study of the expressive capability of GNNs
in this domain is essential for practical reasons and, in addition, it requires a new analyzing approach due to the
difference in the architecture of dynamic GNNs compared to static ones. On the other hand, the examination
of SAUHGs is of particular relevance since they act as a standard form for all graph types: it has been shown
that all graph types can be transformed without loss of information to SAUHGs with both attributes on nodes
and edges. This paper considers generic GNN models and appropriate 1-WL tests for those domains. Then, the
known results on the expressive power of GNNs are extended to the mentioned domains: it is proven that GNNs
have the same capability as the 1-WL test, the 1-WL equivalence equals unfolding equivalence and that GNNs
are universal approximators modulo 1-WL/unfolding equivalence. Moreover, the proof of the approximation
capability is mostly constructive and allows us to deduce hints on the architecture of GNNs that can achieve
the desired approximation.
1. Introduction

Graph data is becoming pervasive in many application domains,
such as biology, physics, and social network analysis (Kazemi et al.,
2020; Skardinga, Gabrys, & Musial, 2021). Graphs are handy for com-
plex data since they allow for naturally encoding information about
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entities, their links, and their attributes. In modern applications, sev-
eral different types of graphs are commonly used and possibly com-
bined: graphs can be homogeneous or heterogeneous, directed or undi-
rected, have attributes on nodes and/or edges, and be static or dy-
namic hyper- or multigraphs (Thomas, Beddar-Wiesing, & Moallemy-
Oureh, 2021). Considering the diversity of graph types, it has recently
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been shown that Static Attributed Undirected Homogenous Graphs
(SAUHGs) with both attributes on nodes and edges can act as a standard
form for graph representation, namely that all the common graph types
can be transformed into those SAUHGs without losing their encoded
information (Thomas et al., 2021).

In the field of graph learning, Graph Neural Networks (GNNs) have
become a prominent class of models used to process graphs and address
different learning tasks directly. For this purpose, most GNN models
adopt a computational scheme based on a local aggregation mecha-
nism. It recursively updates the local information of a node stored
in an attribute vector by aggregating the attributes of neighboring
nodes. After several iterations, the attributes of a node capture the local
structural information received from its 𝑘–hop neighborhood. At the
end of the iterative process, the obtained node attributes can address
different graph-related tasks by applying a suitable readout function.

The Graph Neural Network model of Scarselli, Gori, Tsoi, Ha-
genbuchner, and Monfardini (2009), which is called Original GNN
(OGNN) in this paper, was the first model capable of facing both
node/edge and graph-focused tasks utilizing suitable aggregation and
readout functions, respectively. In the current research, a large num-
ber of new applications and models have been proposed, including
Neural Networks for graphs (Micheli, 2009), Gated Sequence Graph
Neural Networks (Li, Tarlow, Brockschmidt, & Zemel, 2016), Spectral
Networks (Bruna, Zaremba, Szlam, & LeCun, 2014), Graph Convolu-
tional Neural Networks (Kipf & Welling, 2017), GraphSAGE (Hamilton,
Ying, & Leskovec, 2017a), Graph Attention Networks (Veličković et al.,
2018), and Graph Networks (Battaglia et al., 2018). Another extension
of GNNs consisted of the proposal of several new models capable of
dealing with dynamic graphs (Kazemi et al., 2020), which can be used,
e.g., to classify sequences of graphs, sequences of nodes in a dynamic
graph or to predict the appearance of an edge in a dynamic graph.

Recently, a great effort has been dedicated to studying the theo-
retical properties of GNNs (Jegelka, 2022). Such a trend is motivated
by the attempt to derive the foundational knowledge required to de-
sign reasonable solutions efficiently for many possible applications of
GNNs (Zhou et al., 2020). A particular interest lies in the study of the
expressive power of GNN models since, in many application domains,
the performance of a GNN depends on its capability to distinguish
different graphs. For example, in Bioinformatics, the properties of a
chemical molecule may depend on the presence or absence of small
substructures; in social network analysis, the count of triangles allows
us to evaluate the presence and the maturity of communities. Similar
examples exist in dynamic domains: the distinction of substructures
contributes significantly to the successful analysis of molecular confor-
mations (Luo, Shi, Xu, & Tang, 2021); in studies of the evolution of
social networks (Deng, Rangwala, & Ning, 2019), substructures in the
form of contextual knowledge can help to improve performance.

Formally, a central result on the expressive power of GNNs has
shown that GNNs are at most as powerful as the Weisfeiler–Lehman
graph isomorphism test (1-WL) (Leman & Weisfeiler, 1968; Sher-
vashidze, Schweitzer, Van Leeuwen, Mehlhorn, & Borgwardt, 2011;
Xu, Hu, Leskovec, & Jegelka, 2019). The 1-WL test iteratively divides
graphs into groups of possibly isomorphic2 graphs using a local aggre-
ation schema. Therefore, the 1-WL test exactly defines the classes of
raphs that GNNs can recognize as non-isomorphic.

Furthermore, it has been proven that the equivalence classes in-
uced by the 1-WL test are equivalent to the ones obtained from the
nfolding trees of nodes on two graphs (D’Inverno, Bianchini, Sampoli,

Scarselli, 2021; Krebs & Verbitsky, 2015), and hence, 1-WL and
he unfolding equivalences can be used interchangeably. An unfolding
ree rooted at a node is constructed by starting at the root node and
nrolling the graph along the neighboring nodes until it reaches a

2 It is worth noting that the 1-WL test is inconclusive since there exist pairs
f graphs that the test recognizes as isomorphic even if they are not.
2

g

Fig. 1. (a) In Theorem 4.1.6, we prove the equivalence of the attributed unfolding
tree equivalence (AUT) and the attributed 1-WL equivalence (1-AWL) for SAUHGs.
Afterward in Theorem 5.1.3, we show a result on the approximation capability of
static GNNs for SAUHGs (SGNN) using the AUT equivalence. (b) Analogously to the
attributed case, we show similar results for Dynamic GNNs (DGNN) which can be used
on temporal graphs.

certain depth. If the unfolding trees of two nodes are equal in the limit,
the nodes are called unfolding tree equivalent.3 Fig. 1 visualizes the
relations between the 1-WL, the unfolding tree equivalences, and the
GNN expressiveness.

Another research goal of the expressive power of GNNs is to study
the GNN approximation capability. Formally, it has been proven in
Scarselli, Gori, Tsoi, Hagenbuchner, and Monfardini (2008) that OGNNs
can approximate in probability, up to any degree of precision, any
measurable function 𝜏(𝐆, 𝑣) → R𝑚 that respects the unfolding equiv-
lence. Such a result has been recently extended to a large class of
NNs (D’Inverno et al., 2021) called message-passing GNNs, including
ost contemporary architectures.

Despite the availability of the mentioned results on the expres-
ive power of GNNs, their application is still limited to undirected
tatic graphs with attributes on nodes. This limitation is particularly
estrictive since modern applications usually involve more complex
ata structures, such as heterogeneous, directed, dynamic graphs and
ultigraphs. In particular, the ability to process dynamic graphs is
rogressively gaining significance in many fields such as social network
nalysis (Deng et al., 2019), recommender systems (Rossi et al., 2020;
u, Ruan, Korpeoglu, Kumar, & Achan, 2020), traffic forecasting (Yu,
in, & Zhu, 2017) and knowledge graph completion (Trivedi, Dai,
ang, & Song, 2017; Wu, Cao, Cheung, & Hamilton, 2020). Several

urveys discuss the usage of dynamic graphs in other application do-
ains (Barros, Mendonça, Vieira, & Ziviani, 2021; Longa et al., 2023;

kardinga et al., 2021; Thomas, Moallemy-Oureh, Beddar-Wiesing, &
olzhüter, 2022; Xue et al., 2022).

Although GNNs are considered universal approximators on the ex-
ended domains, it is uncertain which GNN architectures contribute to
uch universality. Moreover, an open question is how the definition of
he 1-WL test has to be modified to cope with novel data structures and
hether the universal results fail for particular graph types.

In this paper, we propose a study on the expressive power of GNNs
or two domains of particular interest, namely dynamic graphs and
tatic attributed undirected homogeneous graphs (SAUHGs) with node
nd edge attributes. On the one hand, dynamic graphs are interesting
rom a practical and a theoretical point of view and are used in several
pplication domains (Kazemi et al., 2020). Moreover, dynamic GNN
odels are structurally different from GNNs for static graphs, and the

esults and methodology required to analyze their expressive power
annot directly be deduced from existing literature. On the other hand,
AUHGs with node and edge attributes are interesting because, as
entioned above, they act as a standard form for several other types of

raphs that can all be transformed to SAUGHs (Thomas et al., 2021).

3 Currently, the concept underlying unfolding trees is widely used to
tudy the GNN expressiveness, even if they are mostly called computation
raphs (Garg, Jegelka, & Jaakkola, 2020).
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First, we introduce appropriate versions of the 1-WL test and the
unfolding equivalence to construct the fundamental theory for the
domains of SAUHGs and dynamic graphs and discuss their relation
afterward. Then, we consider generic GNN models that can operate on
both domains and prove their universal approximation capability mod-
ulo the aforementioned 1-WL/unfolding equivalences. More precisely,
the main contributions of this paper are as follows.

• We present new versions of the 1-WL test and of the unfolding
equivalence appropriate for dynamic graphs and SAUHGs with
node and edge attributes, and we show that they induce the same
equivalences on nodes. Such a result makes it possible to use them
interchangeably to study the expressiveness of GNNs.

• We show that generic GNN models for dynamic graphs and
SAUHGs with node and edge attributes are capable of approxi-
mating, in probability and up to any precision, any measurable
function on graphs that respects the 1-WL/unfolding equivalence.

• The result on approximation capability holds for graphs with
unconstrained attributes of reals and target functions. Thus, most
of the domains used in practical applications are included.

• Moreover, the proof is based on space partitioning, which allows
us to deduce information about the GNN architecture that can
achieve the desired approximation.

• We validate our theoretical results conducting an experimental
validation. Our setups show that (1) sufficiently powerful DGNNs
can approximate well dynamic systems that preserve the unfold-
ing equivalence and (2) using non-universal architectures can
lead to poor performances.

he rest of the paper is organized as follows. Section 2 illustrates the
elated literature. In Section 3, the notation used throughout the paper
s described, and the main definitions are introduced. In Section 4,
e introduce the 1-WL test and unfolding equivalences suitable for
ynamic graphs and SAUHGs with node and edge attributes and prove
hat those equivalences are equal. In Section 5, the approximation
heorems for GNNs on both graph types are presented. We support our
heoretical findings by setting up synthetic experiments in 6. Finally,
ection 7 includes our conclusions and future matter of research. All of
he proofs are collected in Appendix A.

. Related work

In the seminal work (Xu et al., 2019), it has been proven that
tandard GNNs have the same expressive power as the 1-WL test. To
vercome such a limitation, new GNN models and variants of the WL
est have been proposed. For example, in You, Gomes-Selman, Ying,
nd Leskovec (2021), a model is introduced where node identities
re directly injected into the aggregate functions. In Morris et al.
2019), the k-WL test has been taken into account to develop a more
owerful GNN model, given its greater capability to distinguish non-
somorphic graphs. In Bodnar, Frasca, Wang, et al. (2021), a simplicial-
ise Weisfeiler–Lehman test is introduced, and it is proven to be strictly
ore powerful than the 1-WL test and not less powerful than the 3-WL

est; a similar test (called cellular WL test), proposed in Bodnar, Frasca,
tter, et al. (2021), is proven to be more powerful than the simplicial
ersion. Nevertheless, all these tests do not deal with edge-attributed
raphs and not with dynamic graphs.

In Barcelo, Galkin, Morris, and Orth (2022), the authors consider
GNN model for multi-relational graphs where edges are labeled

ith types: it is proven that such a model has the same computation
apability as a corresponding WL-test. The result is similar to our result
n SAUGH, but the way we aggregate the message on the edges is
ifferent. Additionally, our work extends (Barcelo et al., 2022) from
everal points of view: the approximation capability of GNNs is studied,
relationship between the 1-WL test and unfolding trees is established,
nd edge attributes include more general vectors of reals. Moreover, all
3

hose studies are extended to dynamic graphs.
Moreover, the WL test mechanism applied to GNNs has also been
studied within the paradigm of unfolding trees (Sato, 2020; Zhang & Li,
2021). An equivalence between the two concepts has been established
by Krebs and Verbitsky (2015), but it is limited to static graphs without
edge attributes.

Some studies have been dedicated to the approximation and gen-
eralization properties of Graph Neural Networks. In Scarselli et al.
(2008), the authors proved the universal approximation properties of
the original Graph Neural Network model, modulo the unfolding equiv-
alence. The universal approximation is shown for GNNs with random
node initialization in Abboud, Ceylan, Grohe, and Lukasiewicz (2021),
while, in Xu et al. (2019), GNNs are shown to be able to encode any
graph with countable input features. Moreover, the authors of Dasoulas,
Santos, Scaman, and Virmaux (2020) proved that GNNs, provided with
a colored local iterative procedure (CLIP), can be universal approxima-
tors for functions on graphs with node attributes. The approximation
property has also been extended to Folklore Graph Neural Networks
in Maron, Ben-Hamu, Serviansky, and Lipman (2019) and Linear Graph
Neural Networks, and general GNNs in Azizian and Lelarge (2021) and
Maron, Ben-Hamu, Shamir, and Lipman (2019), both in the invariant
and equivariant case. Recently, the universal approximation theorem
has been proved for modern message-passing graph neural networks
by D’Inverno et al. (2021) giving a hint on the properties of the network
architecture (e.g., the number of layers, the characterization of the
aggregation function). A relation between the graph diameter and the
computational power of GNNs has been established in Loukas (2020),
where the GNNs are assimilated to the so-called LOCAL models and it is
proved that a GNN with a number of layers larger than the diameter of
the graph can compute any Turing function of the graph. Nevertheless,
no information on the aggregation function characterization is given.

Despite the availability of universal approximation theorems for
static graphs with node attributes, the theory lacks results about the
approximation capability of other types of graphs, such as dynamic
graphs and graphs with attributes on both nodes and edges. Therefore,
this paper aims to extend the results of the expressive power of GNNs
for dynamic graphs and SAUHGs with node and edge attributes.

3. Notation and preliminaries

Before extending the work about the expressive power of GNNs to
dynamic and edge-attributed graph domains, the mathematical nota-
tion and preliminary definitions are given in this chapter. In this paper,
only finite graphs are under consideration.

N natural numbers
N0 natural numbers starting at 0
R real numbers
R𝑘 R vector space of dimension 𝑘
N𝑘 N vector space of dimension 𝑘
Z𝑘 Z vector space of dimension 𝑘
0 = (0,… , 0)⊤ zero vector of corresponding size
|𝑎| absolute value of a real 𝑎
‖ ⋅ ‖ norm on R
‖ ⋅ ‖𝑝 𝑝-norm on R
‖ ⋅ ‖∞ ∞-norm on R
|𝑀| number of elements of a set 𝑀
[𝑛], 𝑛 ∈ N sequence 1, 2,… , 𝑛
[𝑛]0, 𝑛 ∈ N0 sequence 0, 1,… , 𝑛
∅ empty set
⟂ undefined; non-existent element
{⋅} set
{| ⋅ |} multiset, i.e. set allowing

multiple appearances of entries
(𝑥𝑖)𝑖∈𝐼 vector of elements 𝑥𝑖

for indices in set 𝐼
[𝑣|𝑤] stacking of vectors 𝑣,𝑤
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∧ conjunction
∪ union of two (multi)sets
⊆ sub(multi)set
⊊ proper sub(multi)set
× factor set of two sets

The following definition introduces a static, node/edge attributed,
ndirected and homogeneous graph called SAUHG. The reason for
efining and using it comes from Thomas et al. (2021). Here, it is
hown that every graph type is bijectively transformable into each
ther. Therefore, SAUHGs will be used as a standard form for all struc-
urally different graph types as directed or undirected simple graphs,
ypergraphs, multigraphs, heterogeneous or attributed graphs, and any
omposition of those. For a detailed introduction, see Thomas et al.
2021).

efinition 3.1 (Static Attributed Undirected Homogeneous Graphs). 𝐺′

is called static, node/edge attributed, undirected, homogeneous
graph (SAUHG) if 𝐺′ = ( ′,  ′, 𝛼′, 𝜔′), with  ′ ⊂ N is a finite set of
nodes,  ′ ⊂ {{𝑢, 𝑣} ∣ ∀ 𝑢, 𝑣 ∈  ′} is a finite set of edges and node and
edge attributes are determined by the mappings 𝛼′ ∶  ′ → 𝐴, 𝜔′ ∶  ′

→ 𝐵 that map into the arbitrary node attribute set 𝐴, and edge attribute
set 𝐵. The domain of SAUGHs will be denoted as ′.

Remark 3.2 (Attribute sets). In the above definition of the SAUHG, the
node and edge attribute sets 𝐴 and 𝐵 can be arbitrary. However, with-
out loss of generality, we can assume that the attribute sets are equal
because they can be arbitrarily extended to 𝐴′ = 𝐴 ∪ 𝐵. Additionally,
any arbitrary attribute set 𝐴′ can be embedded into the 𝑘-dimensional
vector space R𝑘. Since the attribute sets in general do not matter for
the theories in this paper and to support a better readability, in what
follows we consider 𝛼′ ∶  ′ → R𝑘, 𝜔 ∶  ′ → R𝑘 for every SAUHG.

All the aforementioned graph types are static, but temporal changes
play an essential role in learning on graphs representing real-world
applications; thus, dynamic graphs are defined in the following. In
particular, the dynamic graph definition here consists of a discrete-time
representation.

Definition 3.3 (Dynamic Graph). Let 𝐼 = [0,… , 𝑙] ⊊ N0 be a set
of timesteps. Then a (discrete) dynamic graph can be considered
as a vector of static graph snapshots, i.e., 𝐺 = (𝐺𝑡)𝑡∈𝐼 , where 𝐺𝑡 =
(𝑡, 𝑡) ∀𝑡 ∈ 𝐼 . Furthermore,

𝛼𝑣(𝑡) ∶= 𝛼(𝑣, 𝑡), 𝑣 ∈ 𝑡 and

𝜔{𝑢,𝑣}(𝑡) ∶= 𝜔({𝑢, 𝑣}, 𝑡), {𝑢, 𝑣} ∈ 𝑡

where 𝛼 ∶  × 𝐼 → 𝐴 and 𝜔 ∶  × 𝐼 → 𝐵 define the vector of dynamic
node/edge attributes. Further, let  ∶=

⋃

𝑡∈𝐼 𝑡 and  ∶=
⋃

𝑡∈𝐼 𝑡 the
total node and edge set of the dynamic graph.

In particular, when a node 𝑣 does not exist, its attributes and
neighborhood are empty, respectively. Moreover, let

𝛺𝑛𝑒𝑣 (𝑡) =
(

𝜔{𝑣,𝑥1}(𝑡),… , 𝜔{𝑣,𝑥
|𝑛𝑒𝑣(𝑡)|}

(𝑡)
)

𝑡∈𝐼

be the sequence of dynamic edge attributes of the neighborhood cor-
responding node at each timestep. Note that, as in Remark 3.2, in what
follows, we assume the attribute sets to be equal and corresponding to
R𝑘.

To prove the approximation theorems for SAUHGs and dynamic
graphs, we need to specify the GNN architectures capable of handling
those graph types. The standard Message-Passing GNN for static node-
attributed undirected homogeneous graphs is given in Xu et al. (2019).
4

Here, the node attributes are used as the initial representation and
input to the GNN. The update is executed by aggregation over the
representations of the neighboring nodes (see Fig. 2).

Given that a SAUHG acts as a standard form for all graph types, the
ordinary GNN architecture will be extended to take also edge attributes
into account. This can be done by analogously including the edge
attributes in the first iteration to the processing of the node information
in the general GNN framework as follows.

Definition 3.4 (SGNN). For a SAUHG 𝐺′ = ( ′,  ′, 𝛼′, 𝜔′) let 𝑢, 𝑣 ∈  ′

and 𝑒 = {𝑢, 𝑣}. The SGNN propagation scheme for iteration 𝑖 ∈ [𝑙], 𝑙 > 0
is defined as

𝐡(𝑖)𝑣 = COMBINE(𝑖)
(

𝐡(𝑖−1)𝑣 ,AGGREGATE(𝑖)
(

{𝐡(𝑖−1)𝑢 }𝑢∈𝑛𝑒𝑣 , {𝜔{𝑢,𝑣}}𝑢∈𝑛𝑒𝑣
))

The output for a node-specific learning problem after the last iteration
𝑙 respectively is given by

𝐳𝑣 = READOUT
(

𝐡𝑙𝑣
)

,

using a selected aggregation scheme and a suitable READOUT function,
and the output for a graph-specific learning problem is determined by

𝐳 = READOUT
(

{𝐡𝑙𝑣 ∣ 𝑣 ∈  ′}
)

.

For the dynamic case, we chose a widely used GNN model that is
consistent with the theory we built. Based on Skardinga et al. (2021),
the discrete dynamic graph neural network (DGNN) uses a GNN to
encode each graph snapshot. Here, the model is modified by using the
previously defined SGNN in place of the standard one.

Definition 3.5 (Discrete DGNN). Given a discrete dynamic graph 𝐺 =
(𝐺𝑡)𝑡∈𝐼 , a discrete DGNN using a continuously differentiable recursive
function 𝑓 for temporal modeling can be expressed as:

𝐡1(𝑡),… ,𝐡𝑛(𝑡) ∶= SGNN(𝐺𝑡) ∀ 𝑡 ≥ 0

𝐪1(0),… ,𝐪𝑛(0) = 𝐡1(0),… ,𝐡𝑛(0) ∶= SGNN(𝐺0)

𝐪𝑣(𝑡) ∶= 𝑓 (𝐪𝑣(𝑡 − 1),𝐡𝑣(𝑡)) ∀ 𝑣 ∈ 

(1)

where 𝐡𝑣(𝑡) ∈ R𝑟 is the hidden representation of node 𝑣 at time 𝑡 of
dimension 𝑟 and 𝐪𝑣(𝑡) ∈ R𝑠 is an 𝑠-dimensional hidden representation
of node 𝑣 produced by 𝑓 , and 𝑓 ∶ R𝑠 × R𝑟 → R𝑠 is a neural architecture
for temporal modeling (in the methods surveyed in Skardinga et al.
(2021), 𝑓 is almost always an RNN or an LSTM).

The stacked version of the discrete DGNN is then:
𝐻(𝑡) = SGNN(𝐺𝑡)

𝑄(0) = 𝐻(0) = SGNN(𝐺0)

𝑄(𝑡) = 𝐹 (𝑄(𝑡 − 1),𝐻(𝑡))

(2)

where 𝐻(𝑡) ∈ R𝑛×𝑟, 𝑄(𝑡) ∈ R𝑛×𝑠, 𝐹 ∶ R𝑛×𝑠 × R𝑛×𝑟 → R𝑛×𝑠, being 𝑛 the
number of nodes, 𝑟 and 𝑠 the dimensions of the hidden representation
of a node produced respectively by the SGNN and by the 𝑓 . Applying
𝐹 corresponds to component-wise applying 𝑓 for each node (Skardinga
et al., 2021).

To conclude, a function READOUTdyn will take as input 𝑄(𝑡) and
gives a suitable output for the considered task, so that altogether the
DGNN will be described as

𝜑(𝑡, 𝐺, 𝑣) = READOUTdyn(𝑄(𝑡)).

Remark 3.6. The DGNN is a Message-Passing model because the SGNN
is one, by definition.

The GNNs expressivity is studied in terms of their capability to
distinguish two non-isomorphic graphs.

Definition 3.7 (Graph Isomorphism). Let 𝐺1 and 𝐺2 be two static graphs,
then 𝐺1 = (1, 1) and 𝐺2 = (2, 2) are isomorphic to each other
𝐺1 ≈ 𝐺2, if and only if there exists a bijective function 𝜙 ∶ 1 → 2,

with
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Fig. 2. Illustration of the statification of a dynamic graph. On the left, the temporal evolution of a graph, including non-existent nodes and edges (gray), is given, and on the
right, the corresponding statified graph with the total amount of nodes and edges together with the concatenated attributes is shown.
i

𝐓

1. 𝑣1 ∈ 1 ⇔ 𝜙(𝑣1) ∈ 2 ∀ 𝑣1 ∈ 1,
2. {𝑣1, 𝑣2} ∈ 1 ⇔ {𝜙(𝑣1), 𝜙(𝑣2)} ∈ 2 ∀ {𝑣1, 𝑣2} ∈ 1

In case the two graphs are attributed, i.e., 𝐺1 = (1, 1, 𝛼1, 𝜔1) and
𝐺2 = (2, 2, 𝛼2, 𝜔2), then 𝐺1 ≈ 𝐺2 if and only if additionally there exist
bijective functions 𝜑𝛼 ∶ 𝐴1 → 𝐴2 and 𝜑𝜔 ∶ 𝐵1 → 𝐵2 with images
𝐴𝑖 ∶= im(𝛼𝑖) and 𝐵𝑖 ∶= im(𝜔𝑖), 𝑖 = 1, 2.

1. 𝜑𝛼(𝛼1(𝑣1)) = 𝛼2(𝜙(𝑣1)) ∀ 𝑣1 ∈ 1,
2. 𝜑𝜔(𝜔1({𝑢1, 𝑣1})) = 𝜔2({𝜙(𝑢1), 𝜙(𝑣1)}) ∀ {𝑢1, 𝑣1} ∈ 1.

If the two graphs are dynamic, they are called to be isomorphic if and
only if the static graph snapshots of each timestep are isomorphic.

Graph isomorphism (GI) gained prominence in the theory com-
munity when it emerged as one of the few natural problems in the
complexity class NP that could neither be classified as being hard
(NP-complete) nor shown to be solvable with an efficient algorithm
(that is, a polynomial-time algorithm) (Grohe & Schweitzer, 2020).
Indeed it lies in the class NP-Intermediate. However, in practice, the
so-called Weisfeiler–Lehman (WL) test is used to at least recognize non-
isomorphic graphs (Sato, 2020). If the WL test outputs two graphs as
isomorphic, the isomorphism is likely but not given for sure.

The expressive power of GNNs can also be approached from the
point of view of their approximation capability.

It generally analyzes the capacity of different GNN models to ap-
proximate arbitrary functions (Bronstein, Bruna, Cohen, & Velickovic,
2021). Different universal approximation theorems can be defined
depending on the model, the considered input data, and the sets of
functions. This paper will focus on the set of functions that preserve
the unfolding tree equivalence, defined as follows.

Since the results in this section hold for undirected and unattributed
graphs, we aim to extend the universal approximation theorem to
GNNs working on SAUHGs (cf. Definition 3.1) and dynamic graphs (cf.
Definition 3.3). For this purpose, in the next sections, we introduce
a static attributed and a dynamic version of both the WL test and
the unfolding trees to show that the graph equivalences regarding the
attributed/dynamic WL test and attributed/dynamic unfolding trees
are equivalent. With these notions, we define the set of functions that
are attributed/dynamic unfolding tree preserving and reformulate the
universal approximation theorem to the attributed and dynamic cases
(cf. Theorem 5.1.3 and Theorem 5.2.4).

4. Weisfeiler–Lehman and unfolding trees

There are many different extensions of the WL test, e.g., n-dim. WL
test, n-dim folklore WL test, or set n-dim. WL test (Sato, 2020). In
general, the 1-WL test is based on a graph coloring algorithm. The
coloring is applied in parallel on the nodes of the two input graphs, and
at the end, the number of colors used per each graph is counted. Then,
two graphs are detected as non-isomorphic if these numbers do not
coincide, whereas when the numbers are equal, the graphs are possibly
isomorphic (WL equivalent). Another way to check the isomorphism of
two graphs and therefore compare the GNN expressivity is to consider
5

i

Fig. 3. Unfolding tree recursive construction.

the so-called unfolding trees of all their nodes. An unfolding tree
consists of a tree constructed by a breadth-first visit of the graph,
starting from a given node. Two graphs are possibly isomorphic if
all their unfolding trees are equal. From Krebs and Verbitsky (2015),
it is known that for static undirected and unattributed graphs, both
the unfolding tree and the Weisfeiler–Lehman approach for testing the
isomorphism of two graphs are equivalent.

In this section, we extend the unfolding tree (UT) and the Weisfeiler–
Lehman (WL) tests to the domains of SAUHGs and dynamic graphs
respectively. Using these we show that also the extended versions of
UT-equivalence and WL-equivalence are equivalent.

4.1. Equivalence for attributed static graphs

The extended result on SAUHGs is formalized and proven in Theo-
rem 4.1.6. The original WL test and unfolding tree notions cover all
graph properties except edge attributes. Thus, the notion of unfold-
ing trees and the Weisfeiler–Lehman test have to be extended to an
attributed version.

Definition 4.1.1 (Attributed Unfolding Tree). The attributed unfolding
tree 𝐓𝑑

𝑣 in graph 𝐺′ = ( ′,  ′, 𝛼′, 𝜔′) of node 𝑣 ∈  ′ up to depth 𝑑 ∈ N0
s defined as

𝑑
𝑣 =

{

𝑇 𝑟𝑒𝑒(𝛼′𝑣), if 𝑑 = 0
𝑇 𝑟𝑒𝑒

(

𝛼′𝑣, 𝛺
′
𝑛𝑒𝑣

,𝐓𝑑−1
𝑛𝑒𝑣

)

if 𝑑 > 0 ,

where 𝑇 𝑟𝑒𝑒(𝛼′𝑣) is a tree constituted of node 𝑣 with attribute 𝛼′𝑣.
𝑇 𝑟𝑒𝑒

(

𝛼′𝑣, 𝛺
′
𝑛𝑒𝑣

,𝐓𝑑−1
𝑛𝑒𝑣

)

is the tree consisting of the root node 𝑣 and
subtrees 𝐓𝑑−1

𝑛𝑒𝑣
= {|𝐓𝑑−1

𝑢1
,… ,𝐓𝑑−1

𝑢
|𝑛𝑒𝑣 |

|} of depth 𝑑−1, that are connected by
the corresponding edge attributes 𝛺′

𝑛𝑒𝑣
= {|𝜔′

{𝑣,𝑢1}
,… , 𝜔′

{𝑣,𝑢
|𝑛𝑒𝑣 |}

|} of the
neighbors of 𝑣 (see Fig. 3).

Moreover, the attributed unfolding tree of 𝑣 determined by 𝐓𝑣 =
lim𝑑→∞ 𝐓𝑑

𝑣 is obtained by merging all unfolding trees 𝐓𝑑
𝑣 of any depth

𝑑.

Definition 4.1.2 (Attributed Unfolding Equivalence). Let 𝐺1 = (1, 1,
𝛼1, 𝜔1) and 𝐺2 = (2, 2, 𝛼2, 𝜔2) be two SAUHGs. Then 𝐺1 and 𝐺2
are attributed unfolding tree equivalent, noted by 𝐺1 ∼𝐴𝑈𝑇 𝐺2,

f and only if {|𝐓𝑢 ∣ 𝑢 ∈ 1|} = {|𝐓𝑣 ∣ 𝑣 ∈ 2|}. Analogously, two nodes
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𝑢 ∈ 𝑉1, 𝑣 ∈ 2 are unfolding tree equivalent, noted by 𝑢 ∼𝐴𝑈𝑇 𝑣 if
and only if 𝐓𝑢 = 𝐓𝑣.

Using the definition of the attributed unfolding equivalence on
graphs, the 1-Weisfeiler Lehman (1-WL) test provided in D’Inverno
et al. (2021) is extended to attributed graphs. This allows for the defini-
tion of the attributed 1-WL equivalence on graphs and the subsequent
Lemma 4.1.5 and the resulting Theorem 4.1.6 that pose the relation
between the attributed unfolding equivalence and the attributed 1-WL
test.

Definition 4.1.3 (Attributed 1-WL test). Let HASH be a bijective func-
tion that codes every possible node attribute with a color from a color
set  and 𝐺′ = ( ′,  ′, 𝛼′, 𝜔′). The attributed 1-WL (1-AWL) test is
defined recursively through the following.

• At iteration 𝑖 = 0, the color is set to the hashed node attribute:

𝑐(0)𝑣 = HASH(𝛼′𝑣)

• At iteration 𝑖 > 0, the HASH function is extended to the edge
weights:

𝑐(𝑖)𝑣 = HASH
(

(

𝑐(𝑖−1)𝑣 , 𝛺′
𝑛𝑒𝑣

, 𝑐(𝑖−1)𝑛𝑒𝑣

)

)

In the following, the 1-WL equivalence of graphs and nodes is
xtended by using the attributed version of the 1-WL test (cf. Defini-
ion 4.1.3).

efinition 4.1.4 (Attributed 1-WL Equivalence). Two nodes 𝑢, 𝑣 are
ttributed WL-equivalent, noted by 𝑢 ∼𝐴𝑊𝐿 𝑣, if and only if 𝑐𝑢 = 𝑐𝑣.

Analogously, let 𝐺1 = (1, 1, 𝛼1, 𝜔1) and 𝐺2 = (2, 2, 𝛼2, 𝜔2) be two
SAUHGs. Then, 𝐺1 ∼𝐴𝑊𝐿 𝐺2, if and only if for all nodes 𝑣1 ∈ 1 there
xists a corresponding node 𝑣2 ∈ 2 such that 𝑣1 ∼𝐴𝑊𝐿 𝑣2.

Finally, to complete the derivation of the equivalence between
he attributed unfolding equivalence (cf. Definition 4.1.2) and the
ttributed WL-equivalence (cf. Definition 4.1.4), the following helping
emma Lemma 4.1.5 is given, which directly leads to Theorem 4.1.6.
he lemma states the equivalence between the attributed unfolding tree
quivalence of nodes and the equality of their attributed unfolding trees
p to a specific depth. In Scarselli et al. (2008), it has been shown that
he unfolding trees of infinite depth are not necessary to consider for
his equivalence. Instead, the larger number of nodes of both graphs
nder consideration is sufficient for the depth of the unfolding trees,
hich is finite since the graphs are bounded. The following lemma
etermines the equivalence between the attributed unfolding trees of
wo nodes and their colors resulting from the attributed 1-WL test.

emma 4.1.5. Consider 𝐺′ = ( ′,  ′, 𝛼′, 𝜔′) as the SAUHG resulting from
transformation of an arbitrary static graph 𝐺 = ( ,  , 𝛼, 𝜔) with nodes

𝑢, 𝑣 ∈  and corresponding attributes 𝛼𝑢, 𝛼𝑣. Then it holds

∀ 𝑑 ∈ N0 ∶ 𝐓𝑑
𝑢 = 𝐓𝑑

𝑣 ⟺ 𝑐(𝑑)𝑢 = 𝑐(𝑑)𝑣 .

The proof can be found in Appendix A.2
Directly from Lemma 4.1.5, the equivalence of the attributed un-

olding tree equivalence and the attributed 1-WL equivalence of two
odes belonging to the same graph can be formalized.

heorem 4.1.6. Consider 𝐺′ as in Lemma 4.1.5. Then, it holds

𝑢, 𝑣 ∈  ′ ∶ 𝑢 ∼𝐴𝑈𝑇 𝑣 ⟺ 𝑢 ∼𝐴𝑊𝐿 𝑣.

Proof. The proof follows from the proof of Lemma 4.1.5. □

4.2. Equivalence for dynamic graphs

In this section, the previously introduced concepts of unfolding tree
6

and WL equivalences are extended to the dynamic case. Note that a
Lemma 4.1.5 and, therefore, Theorem 4.1.6 also hold in case 𝐺′ is
he SAUHG (cf. Definition 3.1) resulting from a transformation of a
ynamic graph 𝐺 = (𝐺𝑡)𝑡∈𝐼 to its static attributed version. However, the
NNs working on dynamic graphs usually use a significantly different
rchitecture than those that work on static attributed graphs. Therefore,
he following includes the derivation of the various equivalences on
ynamic graphs separately.

First, dynamic unfolding trees are introduced as a sequence of
nfolding trees for each graph snapshot respectively. Afterward, the
quivalence of two dynamic graphs regarding their dynamic unfolding
rees is presented.

efinition 4.2.1 (Dynamic Unfolding Tree). Let 𝐺 = (𝐺𝑡)𝑡∈𝐼 with 𝐺𝑡 =
𝑡, 𝑡, 𝛼𝑡, 𝜔𝑡) be a dynamic graph. The dynamic unfolding tree 𝐓𝑑

𝑣 (𝑡)
t time 𝑡 ∈ 𝐼 of node 𝑣 ∈  up to depth 𝑑 ∈ N0 is defined as

𝑑
𝑣 (𝑡) =

{

𝑇 𝑟𝑒𝑒(𝛼𝑣(𝑡)), if 𝑑 = 0
𝑇 𝑟𝑒𝑒

(

𝛼𝑣(𝑡), 𝛺𝑛𝑒𝑣(𝑡),𝐓
𝑑−1
𝑛𝑒𝑣(𝑡)

(𝑡)
)

if 𝑑 > 0,

here 𝑇 𝑟𝑒𝑒(𝛼𝑣(𝑡)) is a tree constituted of node 𝑣 with attribute 𝛼𝑣(𝑡).
urthermore, 𝑇 𝑟𝑒𝑒

(

𝛼𝑣(𝑡), 𝛺𝑛𝑒𝑣(𝑡),𝐓
𝑑−1
𝑛𝑒𝑣(𝑡)

(𝑡)
)

is the tree with root node 𝑣
ith attribute 𝛼𝑣(𝑡). Additionally, 𝐓𝑑−1

𝑛𝑒𝑣(𝑡)
(𝑡) = {|𝐓𝑑−1

𝑢1
(𝑡),… ,𝐓𝑑−1

𝑢
|𝑛𝑒𝑣 (𝑡)|

(𝑡)|}
re corresponding subtrees with edge attributes 𝛺𝑛𝑒𝑣(𝑡). If the node 𝑣
oes not exist at time 𝑡, the corresponding tree is empty, there is no
ree of depth 𝑑 > 0 for this timestep and 𝑣 does not occur in any
eighborhood of other nodes.

In total, the dynamic unfolding tree of 𝑣 at time 𝑡, 𝐓𝑣(𝑡) = lim𝑑→∞
𝑑
𝑣 (𝑡) is obtained by merging, i.a., all the unfolding trees 𝐓𝑑

𝑣 (𝑡) for any
.

efinition 4.2.2. Two nodes 𝑢, 𝑣 ∈  are said to be dynamic
nfolding equivalent 𝑢 ∼𝐷𝑈𝑇 𝑣 if 𝐓𝑢(𝑡) = 𝐓𝑣(𝑡) for every timestep
. Analogously, two dynamic graphs 𝐺1, 𝐺2 are said to be dynamic
nfolding equivalent 𝐺1 ∼𝐷𝑈𝑇 𝐺2, if there exists a bijection between
he nodes of the graphs that respects the partition induced by the
nfolding equivalence on the nodes.

efinition 4.2.3 (Dynamic 1-WL Test).Let 𝐺 = (𝐺𝑡)𝑡∈𝐼 with 𝐺𝑡 =
 ,  , 𝛼𝑡, 𝜔𝑡) be a dynamic graph. Let HASH0

𝑡 be a bijective function
ncoding every node attribute of 𝐺𝑡 with a color from a color set .
he dynamic 1-WL test (1-DWL) generates a vector of color sets one
or each timestep 𝑡 ∈ 𝐼 by:

• At iteration 𝑖 = 0 the color is set to the hashed node attribute or
a fixed color for non-existent nodes:

𝑐(0)𝑣 (𝑡) =

{

HASH0
𝑡
(

𝛼𝑣(𝑡)
)

if 𝑣 ∈ 𝑡,
𝑐⟂ otherwise.

• Then, the aggregation mechanism is defined by the bijective
function HASH𝑡 for 𝑖 > 0:

𝑐(𝑖)𝑣 (𝑡) = HASH𝑡

(

(

𝑐(𝑖−1)𝑣 (𝑡), 𝛺𝑛𝑒𝑣(𝑡), 𝑐
(𝑖−1)
𝑛𝑒𝑣(𝑡)

(𝑡)
)

)

Note that for 𝑖 > 0, 𝑐(𝑖−1)(𝑡)𝑣 = 𝑐⟂ holds for a non-existent node at
time 𝑡. Further, the neighborset is empty so the other inputs of
HASH𝑡 are empty, and together with 𝑐⟂ it will always give the
same color for non-existent nodes.

efinition 4.2.4 (Dynamic 1-WL Equivalence). Two nodes 𝑢, 𝑣 ∈  in
dynamic graph 𝐺 are said to be dynamic WL equivalent, noted

y 𝑢 ∼𝐷𝑊𝐿 𝑢, if their colors resulting from the WL test are pairwise
qual per timestep. Analogously, let 𝐺1 and 𝐺2 be dynamic graphs.
hen 𝐺1 ∼𝐷𝑊𝐿 𝐺2, if and only if for all nodes 𝑣1 ∈  (1)

𝑡 there exists
(2)
corresponding node 𝑣2 ∈ 𝑡 with 𝑐𝑣1 (𝑡) = 𝑐𝑣2 (𝑡) for all 𝑡 ∈ 𝐼 .
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Theorem 4.2.5 (Equivalence of Dynamic WL Equivalence and Dynamic
UT Equivalence for Nodes). Let 𝐺 = (𝐺𝑡)𝑡∈𝐼 be a dynamic graph and
𝑢, 𝑣 ∈  . Then, it holds

𝑢 ∼𝐷𝑈𝑇 𝑣 ⟺ 𝑢 ∼𝐷𝑊𝐿 𝑣.

Proof. Two nodes are dynamic unfolding tree equivalent iff they are
attributed unfolding tree equivalent at each timestep 𝑢 ∼𝐴𝑈𝑇 𝑣 ∀𝑡 ∈ 𝐼
4.2.2. Further, as consequence of Theorem 4.1.6, it holds that for all
𝑡 ∈ 𝐼 the two nodes are attributed WL equivalent 𝑢 ∼𝐴𝑊𝐿 𝑣 and
thus, the two nodes are dynamic WL equivalent by Definition 4.2.4.
In case of the non-existence of 𝑢 at a certain timestep 𝑡, the Theorem
still holds. □

5. Approximation capability of GNN’s

In this section, the results from Sections 4.1 and 4.2 are brought
together in the formulation of a universal approximation theorem for
GNNs working on SAUHGs and dynamic graphs and the set of func-
tions that preserve the attributed or dynamic unfolding equivalence,
respectively.

5.1. GNNs for attributed static graphs

Since the goal is to show the attributed extension of the universal
approximation theorem, it is necessary to define the corresponding
family of attributed unfolding equivalence-preserving functions. A func-
tion preserves the attributed unfolding equivalence if the output of the
function is equal when two nodes are attributed unfolding equivalent.

Definition 5.1.1. Let ′ be the domain of bounded SAUHGs, 𝐺′ =
( ′,  ′, 𝛼′, 𝜔′) ∈ ′ a SAUHG and 𝑢, 𝑣 ∈  ′ two nodes. Then a function
𝑓 ∶ ′ → R𝑚 is said to preserve the attributed unfolding equivalence
on ′ if

𝑣 ∼𝐴𝑈𝑇 𝑢 ⇒ 𝑓 (𝐺′, 𝑣) = 𝑓 (𝐺′, 𝑢).

All functions that preserve the attributed unfolding equivalence are
collected in the set  (′).

Analogous to the argumentation in Scarselli et al. (2008), there ex-
ists a relation between the unfolding equivalence preserving functions
and the unfolding trees for attributed graphs, as follows.

Proposition 5.1.2 (Functions of Attributed Unfolding Trees). A function
𝑓 belongs to  (′) if and only if there exists a function 𝜅 defined on trees
such that for any graph 𝐺′ ∈ ′ it holds 𝑓 (𝐺′, 𝑣) = 𝜅(𝐓𝑣), for any node
𝑣 ∈ 𝐺′.

The proof works analogously to the proof of the unattributed version
presented in Scarselli et al. (2008) and can be found in Appendix A.1.

Considering the previously defined concepts and statements for
SAUHGs in Section 4.1, finally, the following theorem states the uni-
versal approximation capability of the SGNNs on bounded SAUHGs.

Theorem 5.1.3 (Universal Approximation Theorem by SGNN). Let ′
be the domain of bounded SAUHGs with the maximal number of nodes
𝑁 = max𝐺′∈′ |𝐺′

|. For any measurable function 𝑓 ∈  (′) preserving the
attributed unfolding equivalence (cf. Definition 5.1.1), any norm ‖ ⋅ ‖ on
R, any probability measure 𝑃 on ′, for any reals 𝜖, 𝜆 where 𝜖, 𝜆 > 0,
there exists a SGNN defined by the continuously differentiable functions
COMBINE(𝑖), AGGREGATE(𝑖), at iteration 𝑖 ≤ 2𝑁 − 1, and by the function
READOUT, with hidden dimension 𝑟 = 1, i.e, ℎ𝑖𝑣 ∈ R ∀𝑖, such that the
function 𝜑 (realized by the GNN) computed after 2𝑁−1 steps for all 𝐺′ ∈ ′
satisfies the condition

′ ′
7

𝑃 (‖𝑓 (𝐺 , 𝑣) − 𝜑(𝐺 , 𝑣)‖ ≤ 𝜀) ≥ 1 − 𝜆.
The corresponding proof can be found in A.4.
As in Scarselli et al. (2008) we want now to study the case when

the employed components (COMBINE, AGGREGATE, READOUT) are
sufficiently general to be able to approximate any function preserving
the unfolding equivalence. We call this class of networks, 𝑆 , SGNN
models with universal components. To simplify our discussion, we intro-
duce the transition function 𝑓 (𝑖) to indicate the concatenation of the
AGGREGATE(𝑖) and COMBINE(𝑖), i.e.,

𝑓 (𝑖)(𝐡𝑖𝑣, {𝐡
𝑖−1
𝑢 , 𝑢 ∈ 𝑛𝑒[𝑣]}{𝜔{𝑢,𝑣}}𝑢∈𝑛𝑒𝑣 ) =

COMBINE(𝑖)
(

𝐡(𝑖−1)𝑣 ,AGGREGATE(𝑖)
(

{𝐡(𝑖−1)𝑢 }𝑢∈𝑛𝑒𝑣 , {𝜔{𝑢,𝑣}}𝑢∈𝑛𝑒𝑣
))

Then, we can formally define the class 𝑆 .

Definition 5.1.4. A class 𝑆 of SGNN models is said to have universal
components if, for any 𝜖 > 0 and any continuous target functions
COMBINE

(𝑖)
, AGGREGATE

(𝑖)
, READOUT, there exists an SGNN belong-

ing to 𝑆 , with functions COMBINE(𝑖)
𝜃 , AGGREGATE(𝑖)

𝜃 , READOUT𝜃 and
parameters 𝜃 such that
‖

‖

‖

𝑓 (𝑖)(𝐡, {𝐡1,… ,𝐡𝑛}) − 𝑓 (𝑖)
𝜃 (𝐡, {𝐡1,… ,𝐡𝑛})

‖

‖

‖∞
≤ 𝜖

‖

‖

‖

READOUT(𝐪) − READOUT𝜃(𝐪)
‖

‖

‖∞
≤ 𝜖,

holds, for any vectors 𝐡, 𝐡1,… ,𝐡𝑛 ∈ R𝑟, 𝐪 ∈ R𝑠. The transition
functions 𝑓 (𝑖) and 𝑓 (𝑖)

𝜃 correspond to the target function and the SGNN,
respectively.

The following result shows that Theorem 5.1.3 still holds even for
SGNNs with universal components.

Theorem 5.1.5 (Approximation by Neural Networks). Assuming that the
hypotheses of Theorem 5.1.3 are fulfilled and 𝑆 is a class of SGNNs with
universal components. Then, there exists a parameter set 𝜃 and some func-
tions COMBINE(𝑖)𝜃 , AGGREGATE

(𝑖)
𝜃 , READOUT𝜃 , implemented by Neural

Networks in 𝑆 , such that the thesis of Theorem 5.1.3 holds. □

Proof. The proof is identical to the one contained in Scarselli et al.
(2008); to give a hint on the methodology, we refer to the more
complex proof of the analogous Theorem 5.2.6 for DGNN. □

5.2. GNNs for dynamic graphs

Suitable functions that preserve the unfolding equivalence on dy-
namic graphs are dynamic systems. Before this statement is formalized
and proven in Proposition 5.2.3, dynamic systems and their property
to preserve the dynamic unfolding equivalence are defined in the
following.

Definition 5.2.1 (Dynamic System). Let  be a domain of dynamic
graphs and let  =

⋃

𝑡 𝑡. A dynamic system is defined as a function
dyn ∶  ∶= 𝐼 ×  ×  → R𝑚 formalized for 𝐺 = (𝐺𝑡)𝑡∈𝐼 ∈ , and 𝑣 ∈ 𝑡
by

dyn(𝑡, 𝐺, 𝑣) ∶= 𝑔(𝑥𝑣(𝑡)). (3)

Here, 𝑔 ∶ R𝑟 → R𝑚 is an output function, and the state function 𝑥𝑣(𝑡) is
determined by

𝑥𝑣(𝑡) =

{

𝑎(𝑡, 𝐺, 𝑣) if 𝑡 = 0
𝑓 (𝑥𝑣(𝑡 − 1), 𝑎(𝑡 − 1, 𝐺, 𝑣)) if 𝑡 > 0,

for 𝑣 ∈ 𝑡, where 𝑎 ∶ 𝐼 ×  ×  → R𝑟 is a function that processes the
graph snapshot at time 𝑡 and provides an 𝑟-dimensional internal state
representation for each node 𝑣. Finally, 𝑓 ∶ R𝑟 ×R𝑟 → R𝑟 is a recursive
function, that is called state update function.
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Definition 5.2.2. A dynamic system dyn(⋅, ⋅, ⋅) preserves the dynamic
unfolding tree equivalence on  if and only if for any input graph
sequences 𝐺1, 𝐺2 ∈ , and two nodes 𝑢, 𝑣 ∈  it holds

𝑣 ∼𝐷𝑈𝑇 𝑢 ⟹ dyn(𝑡, 𝐺1, 𝑣) = dyn(𝑡, 𝐺2, 𝑢) ∀𝑡.

The class of dynamic systems that preserve the unfolding equiva-
ence on  will be denoted with  (). A characterization of  () is

given by the following result (following the work in Scarselli et al.
(2008)).

Proposition 5.2.3 (Functions of Dynamic Unfolding Trees). A dynamic
system dyn belongs to  () if and only if there exists a function 𝜅 defined
on attributed trees such that for all (𝑡, 𝐺, 𝑣) ∈  it holds

dyn(𝑡, 𝐺, 𝑣) = 𝜅
(

(

𝐓𝑣(𝑖)
)

𝑖∈[𝑡]

)

.

The proof can be found in Appendix A.3.
Finally, the universal approximation of the Message-Passing GNN

for dynamic graphs is determined as follows.

Theorem 5.2.4 (Universal Approximation Theorem by DGNN). Let 𝐺 =
(𝐺𝑡)𝑡∈𝐼 be a discrete dynamic graph in the graph domain  and 𝑁 =
max𝐺∈ |𝐺| be the maximal number of nodes in the domain. Let dyn(𝑡, 𝐺, 𝑣)
∈  () be any measurable dynamical system preserving the unfolding
equivalence, ‖ ⋅ ‖ be a norm on R, 𝑃 be any probability measure on 
and 𝜖, 𝜆 be any real numbers where 𝜖, 𝜆 > 0. Then, there exists a DGNN
composed by SGNNs with 2𝑁 − 1 layers and hidden dimension 𝑟 = 1, and
Recurrent Neural Network state dimension 𝑠 = 1 such that the function 𝜑
realized by this model satisfies

𝑃 (‖dyn(𝑡, 𝐺, 𝑣) − 𝜑(𝑡, 𝐺, 𝑣)‖ ≤ 𝜀) ≥ 1 − 𝜆 ∀𝑡 ∈ 𝐼.

The proof can be found in Appendix A.5.
Theorem 5.2.4 intuitively states that, given a dynamical system dyn,

there is a DGNN that approximates it. The functions which the DGNN
is a composition of (such as the dynamical function 𝑓 , COMBINE(𝑖),
AGGREGATE(𝑖), etc.) are supposed to be continuously differentiable but
still generic, while can be generic and completely unconstrained. This
situation does not correspond to practical cases where the DGNN adopts
particular architectures, and those functions are Neural Networks, or
more generally, parametric models — for example, made of layers of
sum, max, average, etc. Thus, it is of fundamental interest to clarify
whether the theorem still holds when the components of the DGNN are
parametric models.

Definition 5.2.5. A class 𝐷 of discrete DGNN models is said to have
universal components if the employed SGNNs have universal components
as defined in Definition 5.1.4 and the employed recurrent model is
designed such that for any 𝜖1, 𝜖2 > 0 and any continuously differentiable
target functions f, READOUTdyn there is a discrete DGNN in the class
𝐷, with functions 𝑓𝜃 , READOUTdyn,𝜃 and parameters 𝜃 such that, for
ny input vectors 𝐡 ∈ R𝑟, 𝐪,𝐪⋆ ∈ R𝑠, it holds

‖

‖

‖

𝑓 (𝐪,𝐡) − 𝑓𝜃(𝐪,𝐡)
‖

‖

‖∞
≤ 𝜖1,

‖

‖

‖

READOUTdyn(𝐪⋆) − READOUTdyn,𝜃(𝐪⋆)
‖

‖

‖∞
≤ 𝜖2.

The following result shows that Theorem 5.2.4 still holds even for
iscrete DGNNs with universal components.

heorem 5.2.6 (Approximation by Neural Networks). Assume that the
hypotheses of Theorem 5.2.4 are fulfilled and 𝐷 is a class of discrete
DGNNs with universal components. Then, there exists a parameter set 𝜃,
and the functions f, READOUTdyn, implemented by Neural Networks in 𝐷,
uch that Theorem 5.2.4 holds.

The proof can be found in Appendix A.6
8

.3. Discussion

The following remarks may further help to understand the results
roven in the previous paragraphs:

• Theorem 5.1.3 suggests an alternative approach to process several
graph domains with a universal SGNN model. Actually, almost
all the graphs, including, e.g., hypergraphs, multigraphs, directed
graphs, etc., can be transformed to SAUGHs with node and edge
attributes (Thomas et al., 2021). Then, we can use a univer-
sal GNN model on such a domain using sufficiently expressive
AGGREGATE and COMBINE functions.

• The proofs of Theorems 5.1.3 and 5.2.4 are based on space par-
titioning reasoning. Differently from technique based on Stone–
Weierstrass theorem (Azizian & Lelarge, 2021), which are ex-
istential in nature, such an approach allows us to deduce in-
formation about the characteristics of networks that reach the
desired approximation. Actually, the theorems point out that the
approximation can be obtained with a minimal hidden dimension
𝑟 = 1 both in SGNNs and DGNNs and with a state dimension
𝑠 = 1 in the Recurrent Neural Network of DGNNs. Such a result
may appear surprising, but the proofs show that GNNs can encode
unfolding trees with a single real number.

• Moreover, Theorems 5.1.3 and 5.2.4 specify that GNNs can obtain
the approximation with 2𝑁 − 1 layers. We could incorrectly
presume that the maximum number of layers required to reach
a desired approximation depends on the diameter 𝑑𝑖𝑎𝑚(𝐺) of
the graph, which can be smaller than the number of nodes 𝑁
since a GNN can move the information from one node to another
in 𝑑𝑖𝑎𝑚(𝐺) iterations. However, 𝑑𝑖𝑎𝑚(𝐺) layers are not always
sufficient to distinguish all the nodes of a graph. In fact, it has
been proven that 𝑁 − 1 is a lower bound on the number of
iterations that the 1-WL algorithm has to carry out to be able
to distinguish any pairs of 1-WL distinguishable graphs (Kiefer &
McKay, 2020), and 2𝑁 − 1 is a lower bound for 1-WL algorithm
to distinguish pairs of nodes in two different graphs (Krebs &
Verbitsky, 2015). So overall, 2𝑁 − 1 is also the lower bound for
the GNN computation time to approximate any function for either
graph- or node-focused tasks (see D’Inverno et al. (2021) for a
detailed discussion).

• Theorems 5.1.3 and 5.2.4 specify that the approximation is mod-
ulo unfolding equivalence, or, correspondingly, modulo WL equiv-
alence. It can be observed that in the dynamic case, only a part
of the architecture affects the equivalence. Actually, a dynamic
GNN contains two modules: the first one, an SGNN, produces
an embedding of the input graph at each time instance; the
second component contains a Recurrent Neural Network that
processes the sequence of the embeddings. The dynamic unfolding
equivalence is defined by sequences of unfolding trees, which are
built independently for each node and time instance by the SGNN.
Similarly, the dynamic WL equivalence is defined by sequences
of colors defined independently at each time step. Intuitively,
the Recurrent Neural Network does not affect the equivalence,
since Recurrent Neural Networks can be universal approximators
and implement any function of the sequence without introducing
other constraints beyond those already introduced by the SGNN.

• Theorem 5.2.4 does not hold for any Dynamic GNN, as we
take into account a discrete recurrent model working on graph
snapshots (also known as Stacked DGNN). Nevertheless, sev-
eral DGNNs of this kind are listed in Kazemi et al. (2020),
such as GCRN-M1 (Seo, Defferrard, Vandergheynst, & Bresson,
2018), RgCNN (Narayan & Roe, 2018), PATCHY-SAN (Niepert,
Ahmed, & Kutzkov, 2016), DyGGNN (Taheri, Gimpel, & Berger-
Wolf, 2019), and others. Still, the approximation capability de-
pends on the functions AGGREGATE and COMBINE designed
for each GNN working on the single snapshot and the imple-
mented Recurrent Neural Network. For example, the most general
model, the original RNN, has been proven to be a universal
approximator (Hammer, 2000).
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Fig. 4. The four static graphs are used as components to generate the synthetic dataset.
raphs (a) and (b) are equivalent under the static 1-WL test; the same holds for (c)
nd (d).

. Experimental validation

In this Section, we support our theoretical findings with an exper-
mental study. For this purpose, we carry out two sets of experiments
escribed as follows:

E1. We show that a DGNN with universal components can approx-
imate a function 𝐹𝐷𝑊𝐿 ∶  → N that models the 1-DWL test.
The function 𝐹𝐷𝑊𝐿 assigns a target label to the input graph that
represents the class of 1-DWL equivalence;

E2. In the same approximation task, we compare DGNNs with differ-
ent GNN modules from the literature to show how the universality
of the components affects the approximation capability.

We focus on the ability of the DGNN to approximate 𝐹𝐷𝑊𝐿, so only
training performances are considered, i.e., we do not investigate the
generalization capabilities over a test set. Since the 1-DWL test provides
the finest partition of graphs reachable by a DGNN, the mentioned tasks
experimentally evaluate the expressive power of DGNNs.

Dataset. The dataset consists of dynamic graphs, i.e., vectors of static
graph snapshots of fixed length 𝑇 . Each static snapshot is one of the
graphs in Fig. 4. Since the dataset is composed of all the possible
combinations of the four graphs, it contains 4𝑇 dynamic graphs. Given
that the graphs in Fig. 4 are pairwise 1-WL equivalent ((a) is 1-WL
equivalent to (b) and (c) is 1-WL equivalent to (d)), the number of
classes is 2𝑇 , with 4𝑇

2𝑇 = 2𝑇 graphs in each class. For each dynamic
graph, the target is the corresponding 1-DWL output, represented as
a natural number. For training purposes, the targets are normalized
between 0 and 1 and uniformly spaced in the interval [0, 1]. Therefore,
the distance between each class label is 𝑑 = 1∕2𝑇 . A dynamic graph
𝐺 with target 𝑦𝐺 will be said to be correctly classified if, given 𝗈𝗎𝗍 =
DGNN(𝐺), we have |𝗈𝗎𝗍 − 𝑦𝐺| < 𝑑∕2.

Experimental setup.

E1 For the first set of experiments, the Dynamic Graph Neural Net-
work is composed of two modules: A Graph Isomorphism Net-
work (GIN) (Xu et al., 2019) and a Recurrent Neural Network
(RNN), which implement the static GNN and the temporal Net-
work 𝑓 of Eq. (1), respectively. Since it has been proven that the
GIN is a universal architecture (Xu et al., 2019) and the RNNs
are universal approximators for dynamical systems on vector
sequences (Hammer, 2000), the architecture used in the exper-
iments fits the hypothesis of Theorem 5.2.4. Thus, it can approx-
imate any dynamical system on the temporal graph domain.
9

m

The model hyperparameters for the experiments are set as fol-
lows. The GIN includes 𝑛max = 6 layers.4 The MLP in the GIN
network contains one hidden layer with a hyperbolic tangent
activation function and batch normalization. Hidden layers of
different sizes, i.e., ℎ𝗀𝗂𝗇 ∈ {1, 4, 8}, have been tested. For sake of
simplicity, the output network has one hidden layer with the same
number of neurons as the MLP in the GIN. Furthermore, ℎ𝗋𝗇𝗇 = 8
is the size of the hidden state of the RNN.

E2 In the other set of experiments, we test DGNNs composed by
different GNN static modules and an RNN module (analogously
to E1.). In particular, we compare DGNNs with the GNN module
taken from the following list:

– GIN as mentioned before;
– Graph Convolutional Network (GCN) (Kipf & Welling, 2017);
– GNN presented in Hamilton, Ying, and Leskovec (2017b)

(see also Morris et al. (2019)) where the aggregation func-
tion is the sum of the hidden features of the neighbors; it
will be called 𝗀𝖼𝗈𝗇𝗏_𝖺𝖽𝖽;

– GNN presented in Hamilton et al. (2017b) with mean of the
hidden features of the neighbors as aggregation function,
called 𝗀𝖼𝗈𝗇𝗏_𝗆𝖾𝖺𝗇 here;

– GAT (Veličković et al., 2018).

Here, the used hyperparameters are hidden dimension is ℎ = 8,
the number of layers 𝐿 = 4, and the time length 𝐿 = 𝑇 = 5.

In both the experimental cases, the model is trained over 300 epochs
sing the Adam optimizer with a learning rate of 𝜆 = 10−3. Each
onfiguration is evaluated over 10 runs. The overall training is then
erformed on an Intel(R) Core(TM) i7-9800X processor running at
.80 GHz using 31 GB of RAM and a GeForce GTX 1080 Ti GPU unit.
he code used to run the experiments can be found at https://github.
om/AleDinve/dyn-gnn.

esults. The results of the experiments confirm our theoretical state-
ents. More precisely, the DGNNs performed as follows during train-

ng.

E1 In Fig. 5, the evolution of the training accuracy over the epochs is
presented for different GIN hidden layer sizes ℎ𝗀𝗂𝗇 and for dynamic
graphs up to time lengths 𝑇 = 4 (Fig. 5(a)) and 𝑇 = 5 (Fig. 5(b)).
All the architectures reach 100% accuracy for experiments on
both time lengths. Even setting ℎ𝗀𝗂𝗇 = 1 leads to a perfect classifi-
cation at a slower rate. It may appear surprising that, even with a
hidden representation of size 1, the DGNN can well approximate
the function 𝐹𝐷𝑊𝐿.
However, as we already pointed out in Section 5.3, the possi-
bility of reaching the universal approximation with a feature of
dimension 1 is confirmed by Theorem 5.2.4.

E2 The DGNN with the GIN module achieve the best performance in
terms of learning accuracy and speed of decreasing, as illustrated
in Fig. 6. The DGNN with the 𝗀𝖼𝗈𝗇𝗏_𝖺𝖽𝖽 module is able to learn
the task, although learning is unstable (see Fig. 6 (b)). This is
not surprising since this module has been proven to match the
expressive power of the 1-WL test (Morris et al., 2019). The other
DGNNs are incapable to learn the objective function. This is a con-
sequence of their weaker expressive power, widely investigated in
literature (D’Inverno et al., 2021; Xu et al., 2019).

hus, overall, our theoretical expectations were met by both experi-
ents.

4 As investigated in Section 5.3, for graph-focused tasks, it is sufficient
o perform the message-passing convolution for several times equal to the
aximum number of nodes over the graphs in the dataset domain.

https://github.com/AleDinve/dyn-gnn
https://github.com/AleDinve/dyn-gnn
https://github.com/AleDinve/dyn-gnn
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Fig. 5. Experimental Framework E1. Training accuracy over the epochs for a DGNN trained on the dataset containing dynamic graphs up to time length 𝑇 = 4 (a) and 𝑇 = 5 (b).
Fig. 6. Experimental framework E2. Training accuracy (a) and training loss (b) over the epochs for several DGNNs trained on the dataset containing dynamic graphs up to time
ength 𝑇 = 5. Figure (b) is in logarithmic scale.
7. Conclusion and future work

This paper provides two extensions of the 1-WL isomorphism test
and the definition of unfolding trees of nodes and graphs. First, we
introduced WL test notions to attributed and dynamic graphs, and
second, we introduced extended concepts for unfolding trees on at-
tributed and dynamic graphs. Further, we proved the existence of a
bijection between the dynamic 1-WL equivalence of dynamic graphs
and the attributed 1-WL equivalence of their corresponding static ver-
sions that are bijective regarding their encoded information. The same
result we proved w.r.t. the unfolding tree equivalence. Moreover, we
extended the strong connection between unfolding trees and the (dy-
namic/attributed) 1-WL tests — proving that they give rise to the same
equivalence between nodes for the attributed and the dynamic case,
respectively. Note that the GNNs working on static graphs usually have
another architecture than those working on dynamic graphs. Therefore,
we have proved that both the different GNN types can approximate any
function that preserves the (attributed/dynamic) unfolding equivalence
(i.e., the (attributed/dynamic) 1-WL equivalence).

Note that the dynamic GNN considered here in this paper is given
in discrete-time representation, i.e., as a sequence of static graph snap-
shots without actual timestamps. Thus, Theorem 5.2.4 does not hold
for any Dynamic GNN, as we take into account a discrete recurrent
model working on graph snapshots (also known as Stacked DGNN).
Nevertheless, several DGNNs of this kind are listed in Kazemi et al.
(2020), such as GCRN-M1 (Seo et al., 2018), RgCNN (Narayan & Roe,
2018), PATCHY-SAN (Niepert et al., 2016), DyGGNN (Taheri et al.,
2019), and others. Still, the approximation capability depends on the
10

functions AGGREGATE and COMBINE designed for each GNN working
on the single snapshot and the implemented Recurrent Neural Network.
For example, the most general model, the original RNN, has been
proven to be a universal approximator (Hammer, 2000).

As future work, extending all our results for graphs in continuous-
time representation would be interesting. One difficulty in this context
is deciding in which sense two continuous-time dynamic graphs are
called WL equivalent since there are many possibilities for dealing
with the given timestamps. The investigation of equivalences of dy-
namic graphs requires determining the handling of dynamic graphs
that are equal in their structure but differ in their temporal occur-
rence, i.e., dependent on the commitment of the WL equivalence or
the unfolding tree equivalence, it is required to decide whether the
concepts need to be time-invariant. For time-invariant equivalence,
the following concepts hold as they are. In case two graphs with the
same structure should be distinguished when they appear at different
times, the node and edge attributes can be extended by an additional
dimension carrying the exact timestamp. Thereby, the unfolding trees
of two (structural) equal nodes would be different, having different
timestamps in their attributes. Then, all dynamic graphs 𝐺(𝑗) ∈  are
defined over the same time interval 𝐼 . Without loss of generality, this
assumption can be made since the set of timestamps of 𝐺(𝑗) noted by
𝐼𝐺(𝑗) can be padded by including missing timestamps 𝑡𝑞 and 𝐺(𝑗) can be
padded by empty graphs 𝐺(𝑗)

𝑞 =  (𝑗)
𝑞 = ∅,  (𝑗)

𝑞 = ∅, 𝛼𝑞(∅) = ∅, 𝜔𝑞(∅) = ∅.
Furthermore, this paper considers extensions of the usual 1-WL test

and the commonly known unfolding trees. Further future work could
be to investigate extensions, for example, the n-dim attributed/dynamic
WL test or other versions of unfolding trees, covering GNN models
not considered by the frameworks used in this paper. These extensions
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might result in a more exemplary classification of the expressive power
of different GNN architectures.

Moreover, the proposed results mainly focus on the expressive
power of GNNs. However, GNNs with the same expressive power may
differ for other fundamental properties, e.g., the computational and
memory complexity and the generalization capability. Understanding
how the architecture of AGGREGATE(𝑖), COMBINE(𝑖), and READOUT
impact those properties is of fundamental importance for practical
applications of GNNs.
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Appendix A

A.1. Proof of Proposition 5.1.2

A function 𝑓 belongs to  (′) if and only if there exists a function
𝜅 defined on trees such that for any graph 𝐺′ ∈ ′ it holds 𝑓 (𝐺′, 𝑣) =
𝜅(𝐓𝑣), for any node 𝑣 ∈ 𝐺′.

Proof. We prove by showing both equivalence directions:

⇐ If there exists a function 𝜅 on attributed unfolding trees such that
𝑓 (𝐺′, 𝑣) = 𝜅(𝐓𝑣) for all 𝑣 ∈ 𝐺′, then 𝑢 ∼𝐴𝑈𝑇 𝑣 for 𝑢, 𝑣 ∈ 𝐺 implies
𝑓 (𝐺′, 𝑢) = 𝜅(𝐓𝑢) = 𝜅(𝐓𝑣) = 𝑓 (𝐺′, 𝑣).

⇒ If 𝑓 preserves the attributed unfolding equivalence, then a func-
tion 𝜅 on the attributed unfolding tree of an arbitrary node 𝑣
can be defined as 𝜅(𝐓𝑣) ∶= 𝑓 (𝐺′, 𝑣). Then, if 𝐓𝑢 and 𝐓𝑣 are two
attributed unfolding trees, 𝐓𝑢 = 𝐓𝑣 implies 𝑓 (𝐺′, 𝑢) = 𝑓 (𝐺′, 𝑣)
and 𝜅 is uniquely defined. □
11
A.2. Proof of Lemma 4.1.5

Consider 𝐺′ = ( ′,  ′, 𝛼′, 𝜔′) as the SAUHG resulting from a transfor-
mation of an arbitrary static graph 𝐺 = ( ,  , 𝛼, 𝜔) with nodes 𝑢, 𝑣 ∈ 
and corresponding attributes 𝛼𝑢, 𝛼𝑣. Then it holds

∀ 𝑑 ∈ N0 ∶ 𝐓𝑑
𝑢 = 𝐓𝑑

𝑣 ⟺ 𝑐(𝑑)𝑢 = 𝑐(𝑑)𝑣 (4)

Proof. The proof is carried out by induction on 𝑑, which represents
both the depth of the unfolding trees and the iteration step in the WL
coloring.

= 0: It holds

𝐓0
𝑢 = 𝑇 𝑟𝑒𝑒(𝛼′𝑢) = 𝑇 𝑟𝑒𝑒(𝛼′𝑣) = 𝐓0

𝑣

⟺ 𝛼′𝑢 = 𝛼′𝑣 and 𝑐(0)𝑢 = HASH(𝛼′𝑢) = HASH(𝛼′𝑣) = 𝑐(0)𝑣 .

> 0: Suppose that Eq. (4) holds for 𝑑 −1, and prove that it holds also
for 𝑑.

- By definition, 𝐓𝑑
𝑢 = 𝐓𝑑

𝑣 is equivalent to
{

𝐓𝑑−1
𝑢 = 𝐓𝑑−1

𝑣 and
Tree

(

𝛼′𝑢, 𝛺
′
𝑛𝑒𝑢

,𝐓𝑑−1
𝑛𝑒𝑢

)

= Tree
(

𝛼′𝑣, 𝛺
′
𝑛𝑒𝑣

,𝐓𝑑−1
𝑛𝑒𝑣

)

.
(5)

- Applying the induction hypothesis, it holds that

𝐓𝑑−1
𝑢 = 𝐓𝑑−1

𝑣 ⟺ 𝑐(𝑑−1)𝑢 = 𝑐(𝑑−1)𝑣 . (6)

- Eq. (5) is equivalent to the following:

𝛼′𝑢 = 𝛼′𝑣, 𝛺′
𝑛𝑒𝑢

= 𝛺′
𝑛𝑒𝑣

and 𝐓𝑑−1
𝑛𝑒𝑢

= 𝐓𝑑−1
𝑛𝑒𝑣

.

Given the definition of the unfolding trees and their con-
struction, this is equivalent to
{

𝜔′
{𝑢,𝑢𝑖}

= 𝜔′
{𝑣,𝑣𝑖}

∀ 𝑢𝑖 ∈ 𝑛𝑒𝑢, 𝑣𝑖 ∈ 𝑛𝑒𝑣 and
𝐓𝑑−1
𝑢𝑖

= 𝐓𝑑−1
𝑣𝑖

∀ 𝑢𝑖 ∈ 𝑛𝑒𝑢, 𝑣𝑖 ∈ 𝑛𝑒𝑣.
(7)

- By the induction hypothesis, Eq. is equivalent to

𝑐𝑑−1𝑛𝑒𝑢
= 𝑐𝑑−1𝑛𝑒𝑣

, i.e.,

{|𝑐(𝑑−1)𝑢𝑖
∣ 𝑢𝑖 ∈ 𝑛𝑒𝑢|} = {|𝑐(𝑑−1)𝑣𝑖

∣ 𝑣𝑖 ∈ 𝑛𝑒𝑣|}.

- Putting together Eq. (6), , and the fact that the HASH
function is bijective, we obtain:

HASH
(

(

𝑐(𝑑−1)𝑢 , 𝛺′
𝑛𝑒𝑢

, {|𝑐(𝑑−1)𝑢𝑖
∣ 𝑢𝑖 ∈ 𝑛𝑒𝑢|}

)

)

= HASH
(

(

𝑐(𝑑−1)𝑣 , 𝛺′
𝑛𝑒𝑣

, {|𝑐(𝑑−1)𝑣𝑖
∣ 𝑣𝑖 ∈ 𝑛𝑒𝑣|}

)

)

which, by definition, is equivalent to 𝑐(𝑑)𝑢 = 𝑐(𝑑)𝑣 . □

A.3. Proof of Proposition 5.2.3

A dynamic system dyn belongs to  () if and only if there exists a
function 𝜅 defined on attributed trees such that for all (𝑡, 𝐺, 𝑣) ∈  it
holds

dyn(𝑡, 𝐺, 𝑣) = 𝜅
(

(

𝐓𝑣(𝑖)
)

𝑖∈[𝑡]

)

.

Proof. We show the proposition by proving both directions of the
equivalence relation:

⇒: If there exists 𝜅 such that dyn(𝑡, 𝐺, 𝑣) = 𝜅
(

(

𝐓𝑣(𝑖)
)

𝑖∈[𝑡]

)

for all
triplets (𝑡, 𝐺, 𝑣) ∈ , then for any pair of nodes 𝑢 ∈ 𝐺1, 𝑣 ∈ 𝐺2
with 𝑢 ∼𝐷𝑈𝑇 𝑣 it holds

dyn(𝑡, 𝐺 , 𝑢) = 𝜅
(

(

𝐓 (𝑖)
)

)

= 𝜅
(

(

𝐓 (𝑖)
)

)

= dyn(𝑡, 𝐺 , 𝑣).
1 𝑢 𝑖∈[𝑡] 𝑣 𝑖∈[𝑡] 2

https://github.com/AleDinve/dyn-gnn
https://github.com/AleDinve/dyn-gnn
https://github.com/AleDinve/dyn-gnn
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⇐: On the other hand, if dyn preserves the unfolding equivalence,
then we can define 𝜅 as

𝜅
(

(

𝐓𝑣(𝑖)
)

𝑖∈[𝑡]

)

= dyn(𝑡, 𝐺, 𝑣).

Note that the above equality is a correct specification for a
function. In fact, if

𝜅
(

(

𝐓𝑣(𝑖)
)

𝑖∈[𝑡]

)

= 𝜅
(

(

𝐓𝑢(𝑖)
)

𝑖∈[𝑡]

)

implies dyn(𝑡, 𝐺, 𝑢) = dyn(𝑡, 𝐺, 𝑣), then 𝜅 is uniquely defined. □

A.4. Sketch of the proof of Theorem 5.1.3

Let ′ be the domain of bounded SAUHGs with the maximal number
of nodes 𝑁 = max𝐺′∈′ |𝐺′

|. For any measurable function 𝑓 ∈  (′)
preserving the attributed unfolding equivalence (cf. Definition 5.1.1),
any norm ‖ ⋅ ‖ on R, any probability measure 𝑃 on ′, for any reals
𝜖, 𝜆 where 𝜖, 𝜆 > 0, there exists a SGNN defined by the continuously
differentiable functions COMBINE(𝑖), AGGREGATE(𝑖), at iteration 𝑖 ≤
2𝑁−1, and by the function READOUT, with hidden dimension 𝑟 = 1, i.e,
ℎ𝑖𝑣 ∈ R ∀𝑖, such that the function 𝜑 (realized by the SGNN) computed
after 2𝑁 − 1 steps for all 𝐺′ ∈ ′ satisfies the condition

𝑃 (‖𝑓 (𝐺′, 𝑣) − 𝜑(𝐺′, 𝑣)‖ ≤ 𝜀) ≥ 1 − 𝜆.

Proof. Since the proof proceeds analogously to the one in D’Inverno
et al. (2021), we will only sketch the proof idea here and refer to the
original paper for further details. First, we need a preliminary lemma
which is an extension of Scarselli et al. (2008, Lem. 1) to the domain of
SAUHGs ′. Intuitively, this lemma suggests that a domain of SAUGH
graphs with continuous attributes can be partitioned into small subsets
so that the attributes of the graphs are almost constant in each partition.
Moreover, in probability, a finite number of partitions is sufficient to
cover a large part of the domain.

Lemma A.4.1.
For any probability measure 𝑃 on ′, and any reals 𝜆, 𝛿, where 𝜆 > 0,

𝛿 ≥ 0, there exists a real �̄� > 0, which is independent of 𝛿, a set ̄′ ⊆ ′,
and a finite number of partitions ̄′

1,… , ̄′
𝑝 of ̄′, where ̄′

𝑗 = ′𝑗 × {𝑣𝑗},
with ′𝑗 ⊆ ′ and 𝑣𝑗 ∈ ′𝑗 , such that:

1. 𝑃 (̄′) ≥ 1 − 𝜆 holds;
2. for each 𝑗, all the graphs in ′𝑗 have the same structure, i.e., they
differ only in the values of their attributes;

3. for each set ̄′
𝑗 , there exists a hypercube 𝑗 ⊂ R𝑁𝑀2𝑘 such that

𝛾𝐺 ∈ 𝑗 holds for any graph 𝐺′ ∈ ′𝑗 with 𝑁 = 𝑚𝑎𝑥𝐺′∈′ | ′
|

and 𝑀 = 𝑚𝑎𝑥𝐺′∈′ | ′
|. Here, 𝛾𝐺′ denotes the vector obtained by

concatenating all the attribute vectors of both nodes and edges of 𝐺′,
namely 𝛾𝐺′ = [𝐴𝐺′ |𝛺𝐺′ ], where 𝐴𝐺′ is the concatenation of all the
node attributes and 𝛺𝐺′ is the concatenation of all edge attributes;

4. for any two different sets ′𝑖 , 
′
𝑗 , 𝑖 ≠ 𝑗, their graphs have different

structures, or their hypercubes 𝑖, 𝑗 are disjoint, i.e., 𝑖
⋂

𝑗 = ∅;
5. for each 𝑗 and each pair of graphs 𝐺1, 𝐺2 ∈ ′𝑗 , the inequality

‖𝛾𝐺1
− 𝛾𝐺2

‖∞ ≤ 𝛿 holds;
6. for each graph 𝐺′ ∈ ̄′, the inequality ‖𝛾𝐺′‖∞ ≤ �̄� holds.

Proof. The proof is similar to the one contained in Scarselli et al.
(2008). The only remark needed here is that we can consider the whole
concatenating of all attributes from both nodes and edges without loss
of generality; indeed, if we were considering the node and the edge
attributes separately, we would need conditions on the hypercubes, s.t.:

‖𝐴𝐺1
− 𝐴𝐺2

‖∞ ≤ 𝛿𝐴, 𝛿𝐴 > 0,
𝛺 𝛺
12

and ‖𝛺𝐺1
−𝛺𝐺2

‖∞ ≤ 𝛿 , 𝛿 > 0.
Then we can stack those attribute vectors, as in the statement, s.t. :

‖𝛾𝐺1
− 𝛾𝐺2

‖∞ = ‖

(

[𝐴𝐺1
|0] + [0|𝛺𝐺1

]
)

−
(

[𝐴𝐺2
|0] + [0|𝛺𝐺2

]
)

‖∞

≤ ‖𝐴𝐺1
− 𝐴𝐺2

‖∞ + ‖𝛺𝐺1
−𝛺𝐺2

‖∞

≤ 𝛿𝐴 + 𝛿𝛺 ∶= 𝛿

which allows us to exploit the same proof contained in Scarselli et al.
(2008). □

The following theorem, where the domain contains a finite num-
ber of graphs and the attributes are integers, is equivalent to Theo-
rem 5.1.3.

Theorem A.4.2. For any finite set of 𝑝 patterns {(𝐺′
𝑗 , 𝑣)| 𝐺

′
𝑗 ∈ ′, 𝑣 ∈  ′

𝑗 ,
𝑗 ∈ [𝑝]}, with the maximal number of nodes in the domain 𝑁 =
max𝐺′∈′ |𝐺′

|, for any function which preserves the attributed unfolding
equivalence, and for any real 𝜀 > 0, there exist continuously differentiable
functions AGGREGATE(𝑖), COMBINE(𝑖), ∀ 𝑖 ≤ 2𝑁 − 1, s.t.

𝐡𝑖𝑣 = COMBINE(𝑖)
(

𝐡(𝑖−1)𝑣 ,AGGREGATE(𝑖)
(

{𝐡𝑖−1𝑢 }𝑢∈𝑛𝑒𝑣 , {𝜔{𝑢,𝑣}}𝑢∈𝑛𝑒𝑣
))

and a function READOUT, with hidden dimension 𝑟 = 1, i.e, 𝐡𝑖𝑣 ∈ R, so that
the function 𝜑 (realized by the SGNN), computed after 𝑁 steps, satisfies the
condition

|𝜏(𝐺′
𝑗 , 𝑣) − 𝜑(𝐺′

𝑗 , 𝑣)| ≤ 𝜀 for any 𝑣 ∈  ′
𝑗 . (8)

Sketch of the Proof. The idea of the proof is designing a GNN that
can approximate any function 𝜏 that preserves the attributed unfolding
equivalence. According to Proposition 5.1.2 there exists a function 𝜅,
s.t.

𝜏(𝐺′
𝑗 , 𝑣) = 𝜅(𝑇𝑣).

Therefore, the GNN has to encode the attributed unfolding tree into
the node attributes, i.e., for each node 𝑣, we want to have 𝐡𝑣 = ▿(𝐓𝑣),
where ▿ is an encoding function that maps attributed unfolding trees
into real numbers. The existence and injectiveness of ▿ are ensured
by construction. More precisely, the encodings are constructed recur-
sively by the AGGREGATE(𝑖) and the COMBINE(𝑖) functions using the
neighborhood information, i.e., the node and edge attributes.

Consequently, the theorem can be proven given that there exist
appropriate functions ▿, AGGREGATE(𝑖), COMBINE(𝑖) and READOUT.
For this purpose, the functions AGGREGATE(𝑖) and COMBINE(𝑖) must
satisfy ∀ 𝑖 ≤ 2𝑁 − 1:

▿(𝐓𝑖
𝑣) = 𝐡𝑖𝑣

= COMBINE(𝑖)
(

𝐡(𝑖−1)𝑣 , AGGREGATE(𝑖)
(

{𝐡𝑖−1𝑢 }𝑢∈𝑛𝑒𝑣 , {𝜔
′
{𝑢,𝑣}}𝑢∈𝑛𝑒𝑣

))

= COMBINE(𝑖)
(

▿(𝐓𝑖−1
𝑣 ), AGGREGATE(𝑖)

(

{▿(𝐓𝑖−1
𝑢 )}𝑢∈𝑛𝑒𝑣 , 𝛺

′
𝑛𝑒𝑣

))

.

In a simple solution, AGGREGATE(𝑖) decodes the attributed trees of
the neighbors 𝑢 of 𝑣, 𝐓𝑖−1

𝑢 , and stores them into a data structure to be
accessed by COMBINE(𝑖). The detailed construction of the appropriate
functions is given in D’Inverno et al. (2021). □

Adopting an argument similar to that in Scarselli et al. (2008), it is
proven that the previous theorem is equivalent to Theorem 5.1.3 and
this concludes the proof. □

A.5. Proof of Theorem 5.2.4

Let 𝐺 = (𝐺𝑡)𝑡∈𝐼 be a discrete dynamic graph in the graph domain 
and 𝑁 = max𝐺∈ |𝐺| be the maximal number of nodes in the domain.
Let dyn(𝑡, 𝐺, 𝑣) ∈  () be any measurable dynamical system preserving
the unfolding equivalence, ‖ ⋅ ‖ be a norm on R, 𝑃 be any probability
measure on  and 𝜖, 𝜆 be any real numbers where 𝜖, 𝜆 > 0. Then, there
exists a DGNN composed by SGNNs with 2𝑁 − 1 layers and hidden
dimension 𝑟 = 1, and Recurrent Neural Network state dimension 𝑠 = 1
such that the function 𝜑 realized by this model satisfies

𝑃 (‖dyn(𝑡, 𝐺, 𝑣) − 𝜑(𝑡, 𝐺, 𝑣)‖ ≤ 𝜀) ≥ 1 − 𝜆 ∀𝑡 ∈ 𝐼.
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Proof. To prove the theorem above, we need some preliminary results.
sing the same argument used for SAUHGs in 5.1.3, we need, as a
reliminary lemma, the extension of Scarselli et al. (2008, Lem. 1) to
he domain of dynamic graphs , analogously to the extension to the
omain of SAUHGs in A.4.1.

emma A.5.1. Lemma A.4.1 holds for the domain of dynamic graphs .

Proof. Indeed, taking into account the argument in Thomas et al.
(2021), one can establish a bijection between the domain of dynamic
graphs and the domain of SAUHGs; on the latter, we can directly apply
A.4.1. □

Theorem 5.2.4 is equivalent to the following, where the domain
contains a finite number of elements in  and the attributes are
integers.

Theorem A.5.2. For any finite set of 𝑝 patterns

{(𝑡(𝑗), 𝐺(𝑗), 𝑣(𝑗))| (𝑡(𝑗), 𝐺(𝑗), 𝑣(𝑗)) ∈ , 𝑗 ∈ [𝑝]}

with the maximal number of nodes 𝑁 = max𝐺∈ |𝐺| and with graphs
having integer features, for any measurable dynamical system preserving the
unfolding equivalence, ‖ ⋅ ‖ be a norm on R, 𝑃 be any probability measure
on  and 𝜖 be any real number where 𝜖 > 0. Then, there exists a DGNN as
defined in Definition 3.5 such that the function 𝜑 (realized by this model)
computed after 𝑁 steps satisfies the condition

‖𝑑𝑦𝑛(𝑡(𝑗), 𝐺(𝑗), 𝑣(𝑗)) − 𝜑(𝑡(𝑗), 𝐺(𝑗), 𝑣(𝑗))‖ ≤ 𝜀 (9)

∀ 𝑗 ∈ [𝑝] where 𝑡(𝑗) ∈ 𝐼 .

The equivalence between Theorems 5.2.4 and A.5.2 is formally
proven by the following lemma.

Lemma A.5.3. Theorem 5.2.4 holds if and only if Theorem A.5.2 holds.

Proof. The proof is similar to the one contained in Scarselli et al.
(2008). Nevertheless, we want to highlight that in this case, patterns
are taken from  ∶= 𝐼 ×  ×  , as we are proving it in the context of
the dynamic graphs. □

Now, we can proceed to prove Theorem A.5.2.

Proof of Theorem A.5.2. The proof of this theorem involves assuming
that the output dimension is 𝑚 = 1, i.e., dyn(𝑡, 𝐺, 𝑣) ∈ R, but the result
an be extended to the general case with 𝑚 ∈ N by concatenating the
orresponding results. As a result of Proposition 5.2.3, there exists a
unction 𝜅, s.t. dyn(𝑡, 𝐺, 𝑣) = 𝑔(𝑥𝑣(𝑡)) = 𝜅((𝐓𝑣(𝑖))𝑖∈[𝑡]) where 𝐓𝑣(𝑖) is an

attributed unfolding tree. Given 𝑁𝑡 as the number of nodes of the graph
at timestep 𝑡, in order to store the graph information, an attributed
unfolding tree of depth 2𝑁𝑡 − 1 is required for each node, in such a
way that 𝜅 can satisfy

𝑑𝑦𝑛(𝑡, 𝐺, 𝑣) = 𝜅((𝐓𝑣(𝑖))𝑖∈[𝑡]) = 𝜅((𝐓𝑁𝑡
𝑣 (𝑖))𝑖∈[𝑡]).

The required depth is a straight consequence of Theorem 4.1.3
in D’Inverno et al. (2021), which we briefly report here.

Theorem A.5.4. D’Inverno et al., 2021, Theorem 4.1.3 The following
statements hold for graphs with at most 𝑁 nodes.

1. Let 𝐆 and 𝐇 be connected graphs and 𝑥, 𝑦 be nodes of 𝐆 and 𝐇,
respectively. The infinite unfolding trees 𝐓𝑥,𝐓𝑦 are equal if and only
if they are equal up to depth 2𝑁 − 1, i.e., 𝐓𝑥 = 𝐓𝑦 iff 𝐓2𝑁−1

𝑥 =
𝐓2𝑁−1
𝑦 .

2. For any 𝑁 , there exist two graphs 𝐆 and 𝐇 with nodes 𝑥, 𝑦,
respectively, such that the infinite unfolding trees 𝐓𝑥,𝐓𝑦 are different,
but they are equal up to depth 2𝑁 − 16

√

𝑁 , i.e., 𝐓𝑥 ≠ 𝐓𝑦 and
𝐓𝑡 = 𝐓𝑡 for 𝑖 ≤ 2𝑁 − 16

√

𝑁 . □
13

𝑥 𝑦
The Theorem is tightly connected to the results previously displayed
in Krebs and Verbitsky (2015).

The main idea behind the proof of Theorem A.5.2 is to design
a DGNN that can encode the sequence of attributed unfolding trees
(𝐓𝑣(𝑖))𝑖∈[𝑡] into the node attributes at each timestep t, i.e, 𝐪𝑣(𝑡) =
#𝑡((𝐓𝑣(𝑖))𝑖∈[𝑡]). This is achieved by using a coding function that maps
sequences of 𝑡 + 1 attributed trees into real numbers. To implement
the encoding that could fit the definition of the DGNN, two coding
functions are needed: the ∇ function, which encodes the attributed
unfolding trees, and the family of coding functions #𝑡. The composition
of these functions is used to define the node’s attributes, and the DGNN
can produce the desired output by using this encoded information as
follows:

𝐪𝑣(0) = 𝐡𝑣(0) = #0
(

∇−1(𝐡𝑣(0))
)

𝐪𝑣(𝑡) = #𝑡
(

APPEND𝑡
(

#−1𝑡−1(𝐪𝑣(𝑡 − 1)),∇−1(𝐡𝑣(𝑡))
)) (10)

where the auxiliary function APPEND𝑡 and the ∇, #𝑡 coding functions
are defined in the following.

APPEND𝑡
Let  𝑑 (𝑣) be the domain of the attributed unfolding trees with root 𝑣,
up to a certain depth 𝑑. The function APPEND𝑡 ∶ {(𝐓𝑑

𝑣 (𝑖))𝑖∈[𝑡−1]} ∪ ∅ ×
 𝑑 (𝑣) → {(𝐓𝑑

𝑣 (𝑖))𝑖∈[𝑡]} is defined as follows:

APPEND0
(

∅,𝐓𝑑
𝑣 (0)

)

∶= 𝐓𝑑
𝑣 (0)

APPEND𝑡
((

𝐓𝑑
𝑣 (0),… ,𝐓𝑑

𝑣 (𝑡 − 1)
)

,𝐓𝑑
𝑣 (𝑡)

)

∶=
(

𝐓𝑑
𝑣 (0),… ,𝐓𝑑

𝑣 (𝑡 − 1),𝐓𝑑
𝑣 (𝑡)

)

Intuitively, this function appends the unfolding tree snapshot of the
node 𝑣 at time 𝑡 to the sequence of the unfolding trees of that node
at the previous 𝑡 − 1 timesteps.

In the following, the coding functions are defined; their existence
and injectiveness are provided by construction.

The ∇ Coding Function
Let ∇ ∶= 𝜇∇◦𝜈∇ be a composition of any two injective functions 𝜇∇ and
𝜈∇ with the following properties:

- 𝜇∇ is an injective function from the domain of static unfolding
trees, calculated on the nodes in the graph 𝐺𝑡, to the Cartesian
product N × N𝑃 × Z𝐴 = N𝑃+1 × Z𝐴, where 𝑃 is the maximum
number of nodes a tree could have.
Intuitively, in the Cartesian product, N represents the tree struc-
ture, N𝑃 denotes the node numbering, while, for each node, an
integer vector in Z𝐴 is used to encode the node attributes. Notice
that 𝜇∇ exists and is injective since the maximal information
contained in an unfolding tree is given by the union of all its
node attributes and all its structural information, which just
equals the dimension of the codomain of 𝜇∇.

- 𝜈∇ is an injective function from N𝑃+1 ×Z𝐴 to R, whose existence
is guaranteed by the cardinality theory, since the two sets have
the same cardinality.

Since 𝜇∇𝑡
and 𝜈∇𝑡

are injective, also the existence and the injectiveness
f ∇𝑡 is ensured.

he #𝑡 Coding Family
imilarly to ∇, the functions #𝑡 ∶= 𝜇#𝑡◦𝜈#𝑡 are composed by two
unctions 𝜇#𝑡 and 𝜈#𝑡 with the following properties:

- 𝜇#𝑡 is an injective function from the domain of the dynamic
unfolding trees  𝑑

𝑡 (𝑣) ∶= {(𝐓𝑑
𝑣 (𝑖))𝑖∈[𝑡]} to the Cartesian product

N𝑡 ×N𝑡𝑃𝑡 ×Z𝑡𝐴 = N𝑡(𝑃𝑡+1) ×Z𝑡𝐴, where 𝑃𝑡 is the maximum number
of nodes a tree could have at time t.

- 𝜈#𝑡 is an injective function from N𝑡(𝑃+1) × Z𝑡𝐴 to R, whose
existence is guaranteed by the cardinality theory, since the two
sets have the same cardinality.
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Since 𝜇#𝑡 and 𝜈#𝑡 are injective, also the existence and the injectiveness
f #𝑡 are ensured.

he recursive function f, AGGREGATE(𝑖)
𝑡 , COMBINE(𝑖)

𝑡
he recursive function 𝑓 has to satisfy
(

𝐪𝑣(𝑡 − 1),𝐡𝑣(𝑡)
)

= #𝑡
(

(𝐓𝑣(𝑖))𝑖∈[𝑡]
)

= 𝐪𝑣(𝑡),

where the 𝐡𝑣(𝑡) is the hidden representation of node 𝑣 at time 𝑡 extracted
from the 𝑡th SGNN, i.e., 𝐡𝑣(𝑡) = SGNN (𝐺𝑡, 𝑣). In particular, at each
iteration 𝑖, we have

𝐡𝑖𝑣(𝑡) = COMBINE(𝑖)
𝑡
(

𝐡𝑖−1𝑣 (𝑡),AGGREGATE(𝑖) ({𝐡𝑖−1𝑢 (𝑡)}𝑢∈𝑛𝑒𝑣(𝑡), {𝜔{𝑢,𝑣}(𝑡)}𝑢∈𝑛𝑒𝑣(𝑡)
))

Further, the functions AGGREGATE(𝑖)
𝑡 and COMBINE(𝑖)

𝑡 – following the
proof in D’Inverno et al. (2021) – must satisfy

▿(𝐓𝑖
𝑣(𝑡)) = 𝐡𝑖𝑣(𝑡) =

COMBINE(𝑖)𝑡

(

𝐡𝑖−1𝑣 (𝑡), AGGREGATE(𝑖)𝑡

(

{𝐡𝑖−1𝑢 (𝑡) }𝑢∈𝑛𝑒𝑣(𝑡), {𝜔{𝑢,𝑣}(𝑡)}𝑢∈𝑛𝑒𝑣(𝑡)
))

= COMBINE(𝑖)𝑡

(

▿(𝐓𝑖−1
𝑣 (𝑡)), AGGREGATE(𝑖)𝑡 ({▿(𝐓𝑖−1

𝑢 (𝑡)) }𝑢∈𝑛𝑒𝑣(𝑡))
)

∀ 𝑖 ≤ 2𝑁 − 1 and ∀ 𝑡 ∈ 𝐼 .
For example, the trees can be collected into the coding of a new

tree, i.e.,

AGGREGATE(𝑖)
𝑡 (▿(𝐓𝑖−1

𝑢 (𝑡)), 𝑢 ∈ 𝑛𝑒𝑣(𝑡)) = ▿(∪𝑢∈𝑛𝑒𝑣(𝑡)▿
−1(▿(𝐓𝑖−1

𝑢 (𝑡)))),

where ∪𝑢∈𝑛𝑒𝑣(𝑡) denotes an operator that constructs a tree with a
root having void attributes from a set of subtrees (see Fig. 7). Then,
COMBINE(𝑖)

𝑡 assigns the correct attributes to the root by extracting them
from 𝐓𝑖−1

𝑣 (𝑡), i.e.,

COMBINE(𝑖)
𝑡 (▿(𝐓𝑖−1

𝑣 (𝑡)), 𝑏) = ▿(ATTACH(▿−1(▿(𝐓𝑖−1
𝑣 (𝑡))),▿−1(𝑏))),

where ATTACH is an operator that returns a tree constructed by replac-
ing the attributes of the root in the latter tree with those of the former
tree and 𝑏 is the result of the AGGREGATE(𝑖)

𝑡 function.
Now, notice that, with this definition, AGGREGATE(𝑖)

𝑡 , COMBINE(𝑖)
𝑡 ,

and READOUT𝑑𝑦𝑛 may not be differentiable. Nevertheless, Eq. (9) has to
be satisfied only for a finite number of graphs, namely 𝐺𝑗 . Thus, we can
specify other functions AGGREGATE𝑡

(𝑖)
, COMBINE𝑡

(𝑖)
, and READOUT,

which produce exactly the same computations when they are applied
on the graphs 𝐺𝑗 , but that can be extended to the rest of their domain so
that they are continuously differentiable. Obviously, such an extension
exists since those functions are only constrained to interpolate a finite
number of points.5

The READOUTdyn function
Eventually, READOUTdyn must satisfy:

𝜅(⋅) ∶= READOUTdyn(#𝑡(⋅))

so that, ultimately,

dyn(𝑡, 𝐺, 𝑣) =

READOUTdyn
(

#𝑡
(

APPEND𝑡
(

#−1𝑡−1(𝐪𝑣(𝑡 − 1)),∇−1(𝐡𝑣(𝑡))
)))

□

This concludes the proof via Lemma A.5.3. □

A.6. Proof of Theorem 5.2.6

Assume that the hypotheses of Theorem 5.2.4 are fulfilled and 𝐷 is
a class of discrete DGNNs with universal components. Then, there exists
a parameter set 𝜃, and the functions SGNN(𝑡)𝜃 , 𝑓0,𝜃 , 𝑓𝜃 , implemented by
Neural Networks in 𝐷, such that the thesis of Theorem 5.2.4 holds.

5 Notice that a similar extension can also be applied to the coding function
and to the decoding function ▿−1. In this case, the coding function is not

njective on the whole domain, but only on the graphs mentioned in the
heorem.
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Fig. 7. The ATTACH operator on trees.

roof. The idea of the proof follows from the same reasoning adopted
n D’Inverno et al. (2021). Intuitively, since the discrete DGNN of
heorem 5.2.4 is implemented by continuously differentiable functions,

ts output depends continuously on the possible changes in the DGNN
mplementation: small changes in the function implementation cause
mall changes in the DGNN outputs. Therefore, the functions of the
GNN of Theorem 5.2.4 can be replaced by Neural Networks, provided

hat those networks are suitable approximators.
As in the proof of the dynamic version of the approximation theo-

em, cf. Theorem 5.2.4, without loss of generality, we will assume that
he attribute dimension is 𝑛 = 1.6

First of all, note that Theorem 5.2.4 ensures that we can find
ontinuously differentiable functions 𝑓 , READOUT𝑑𝑦𝑛 such that, for the

corresponding function �̄� implemented by the DGNN it holds:

𝑃 (‖dyn(𝑡, 𝐺, 𝑣) − �̄�(𝑡, 𝐺, 𝑣)‖ ≤ 𝜀
2
) ≥ 1 − 𝜆 ∀ 𝑡 ∈ 𝐼, 𝜖, 𝜆 > 0. (11)

Considering that the theorem has to hold only in probability, we can
also assume that the domain is bounded to a finite set of patterns
{(𝑡(𝑖), (𝐺𝑡)

(𝑖)
𝑡∈𝐼 , 𝑣

(𝑖)) ∣ 𝑖 = 1,… , 𝑝} (as in Theorem A.5.2). As a result,
the functions, 𝑓 and READOUTdyn are bounded and have a bounded
Jacobian. We can take the maximum of these Jacobians, which we will
denote as 𝐵.

Moreover, let 𝑓𝜃 , READOUTdyn,𝜃 be universal components for DGNN,
as in Definition 5.2.5, that approximate 𝑓 , READOUTdyn, respectively.
Further, let 𝜖1, 𝜖2, > 0 be the corresponding approximation errors, i.e.,

‖

‖

‖

𝑓 (𝐪,𝐡) − 𝑓𝜃(𝐪,𝐡)
‖

‖

‖∞
≤ 𝜖1, and

‖

‖

‖

READOUTdyn(𝑄(𝑡)) − READOUTdyn,𝜃(𝑄(𝑡))‖‖
‖∞

≤ 𝜖2
(12)

hold ∀ 𝑡 ∈ 𝐼 .
Now, from the proof of Theorem 5.1.5 we know that

𝑃 (‖SGNN𝑖(𝐺, 𝑣) − SGNN𝜃,𝑖(𝐺, 𝑣)‖ ≤ 𝜖𝑠) ≥ 1 − 𝜆𝑖

for 𝑖 ∈ [𝑡], 𝜖𝑠 > 0 and for any norm. Then we can take every 𝜆𝑖 small
nough, s.t.

SGNN𝑖(𝐺, 𝑣) − SGNN𝜃,𝑖(𝐺, 𝑣)‖∞ ≤ 𝜖𝑠

holds on a finite set of patterns large enough to include those ones of
the 𝑖th timestep of each patterns of dynamic graphs on which Eq. (11)
holds.

Therefore, if we define �̄�(𝑡) ∶= SGNN𝑖(𝐺𝑡) and 𝐡𝜃(𝑡) ∶= SGNN𝜃,𝑖(𝐺𝑡)
we have

‖�̄�(𝑡) − 𝐡𝜃(𝑡)‖∞ = ‖

‖

‖

SGNN𝑖(𝐺𝑡) − SGNN𝜃,𝑖(𝐺𝑡)
‖

‖

‖∞
≤ 𝜖𝑠.

In addition, let �̄�(𝑡) and 𝐻𝜃(𝑡) be the internal representations pro-
uced by SGNN and SGNN𝜃 , stacked over all the nodes of the input

graph. Then it holds

‖�̄�(𝑡) −𝐻𝜃(𝑡)‖∞ ≤ 𝑁𝜖𝑠 ∀ 𝑡 ∈ 𝐼, (13)

where 𝑁 = max𝐺∈|𝐺| is the maximum number of nodes of the static
graphs input in the bounded domain. Let again �̄�(0) ∶= �̄�(0) and

6 A GNN can theoretically be modeled with multiple components by
tacking Neural Networks for each dimension, respectively.
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�̄�(𝑡) ∶= 𝐹 (�̄�(𝑡 − 1), �̄�(𝑡)) be the stacking of the internal states produced
by DGNN’s internal recursive function 𝑓 . Analogously, let 𝑄𝜃(0) ∶=
𝐻𝜃(0) and 𝑄𝜃(𝑡) ∶= 𝐹𝜃(𝑄𝜃(𝑡 − 1),𝐻𝜃(𝑡)) be the output produced by the
corresponding function of the parameterized DGNN.

Then it holds:

‖�̄�(0) −𝑄𝜃(0)‖∞ = ‖�̄�(0) −𝐻𝜃(0)‖∞ ≤ 𝑁𝜖𝑠 (14)

and
‖𝑓 (�̄�(0), ⋅) − 𝑓 (𝑄𝜃(0), ⋅)‖∞ ≤ 𝐵‖�̄�(0) −𝑄𝜃(0)‖∞

‖𝑓 (⋅, �̄�(1)) − 𝑓 (⋅,𝐻𝜃(1))‖∞ ≤ 𝐵‖�̄�(1) −𝐻𝜃(1)‖∞

or a bound 𝐵 on the Jacobian of 𝑓 (𝐪,𝐡) ∀ 𝑡 ∈ 𝐼 and ∀ 𝐪, which, along
ith Eqs. (13) and (14) gives

‖𝑓 (�̄�(0), ⋅) − 𝑓 (𝑄𝜃(0), ⋅)‖∞ ≤ 𝑁𝜖𝑠𝐵

𝑓 (⋅, �̄�(1)) − 𝑓 (⋅,𝐻𝜃(1))‖∞ ≤ 𝑁𝜖𝑠𝐵
(15)

Therefore, we have that:

= 1 ∶

‖�̄�(1) −𝑄𝜃(1)‖∞
=‖𝑓 (�̄�(0), �̄�(1)) − 𝑓𝜃(𝑄𝜃(0),𝐻𝜃(1))‖∞

add 0
= ∥𝑓 (�̄�(0), �̄�(1)) − 𝑓 (𝑄𝜃(0), �̄�(1))

+ 𝑓 (𝑄𝜃(0), �̄�(1)) − 𝑓 (𝑄𝜃(0),𝐻𝜃(1))

+ 𝑓 (𝑄𝜃(0),𝐻𝜃(1)) − 𝑓𝜃(𝑄𝜃(0),𝐻𝜃(1))∥∞
▵-ineq.
≤ ‖𝑓 (�̄�(0), �̄�(1)) − 𝑓 (𝑄𝜃(0), �̄�(1))‖∞

+ ‖𝑓 (𝑄𝜃(0), �̄�(1)) − 𝑓 (𝑄𝜃(0),𝐻𝜃(1))‖∞
+ ‖𝑓 (𝑄𝜃(0),𝐻𝜃(1)) − 𝑓𝜃(𝑄𝜃(0),𝐻𝜃(1))‖∞

(15)
≤ 2𝑁𝜖𝑠𝐵 +𝑁𝜖1
∶=𝜆1(𝜖𝑠, 𝜖1).

𝑡 > 0: Analogously, it follows for t> 1 that

‖�̄�(𝑡) −𝑄𝜃(𝑡)‖∞
=‖𝑓 (�̄�(𝑡 − 1), �̄�(𝑡)) − 𝑓𝜃(𝑄𝜃(𝑡 − 1),𝐻𝜃(𝑡))‖∞
=∥𝑓 (�̄�(𝑡 − 1), �̄�(𝑡)) − 𝑓 (𝑄𝜃(𝑡 − 1), �̄�(𝑡))

+ 𝑓 (𝑄𝜃(𝑡 − 1), �̄�(𝑡)) − 𝑓 (𝑄𝜃(𝑡 − 1),𝐻𝜃(𝑡))

+ 𝑓 (𝑄𝜃(𝑡 − 1),𝐻𝜃(𝑡)) − 𝑓𝜃(𝑄𝜃(𝑡 − 1),𝐻𝜃(𝑡))∥∞
≤‖𝑓 (�̄�(𝑡 − 1), �̄�(𝑡)) − 𝑓 (𝑄𝜃(𝑡 − 1), �̄�(𝑡))‖∞

+ ‖𝑓 (𝑄𝜃(𝑡 − 1), �̄�(𝑡)) − 𝑓 (𝑄𝜃(𝑡 − 1),𝐻𝜃(𝑡))‖∞
+ ‖𝑓 (𝑄𝜃(𝑡 − 1),𝐻𝜃(𝑡)) − 𝑓𝜃(𝑄𝜃(𝑡 − 1),𝐻𝜃(𝑡))‖∞

≤𝑁𝜆0𝐵 +𝑁𝜖𝑠𝐵 +𝑁𝜖1
∶=𝜆1(𝜖𝑠, 𝜖1).

The above reasoning can then be applied recursively to prove that

‖�̄�(𝑡) −𝑄𝜃(𝑡)‖∞ ≤ 𝜆𝑡(𝜖𝑠, 𝜖1),

where 𝜆𝑡(𝜖𝑠, 𝜖1) could be found as little as possible, according to 𝜖𝑠, 𝜖1.
Finally, let 𝜖2 > 0, so that

‖�̄�(𝑡, 𝐺, 𝑣) − 𝜑𝜃(𝑡, 𝐺, 𝑣)‖∞
= ‖READOUTdyn(�̄�(𝑡)) − READOUTdyn,𝜃(𝐐𝜃(𝑡))‖∞
≤ ‖READOUTdyn(�̄�(𝑡)) − READOUTdyn(𝐐𝜃(𝑡))‖∞
+ ‖READOUTdyn(𝐐𝜃(𝑡)) − READOUTdyn,𝜃(𝐐𝜃(𝑡))‖∞
≤ 𝜆𝑡𝐵 + 𝜖2 = 𝜆(𝜖𝑠, 𝜖1, 𝜖2).

hus, we choose 𝜖𝑠, 𝜖1, 𝜖2, s.t. 𝜆 ≤ 𝜀
2 ; going back in probability, we

btain

(‖�̄�(𝑡, 𝐺, 𝑣) − 𝜑𝜃(𝑡, 𝐺, 𝑣)‖ ≤ 𝜀
2
) ≥ 1 − 𝜆 ∀ 𝑡 ∈ 𝐼,

hich, along with Eq. (11), proves the result. □
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