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Abstract
Exascale supercomputers consist of millions of processing units, and this number is still growing. Therefore, hardware fail-
ures, such as permanent node failures, become increasingly frequent. They can be tolerated with system-level Checkpoint/
Restart, which saves the whole application state transparently and, if needed, restarts the application from the saved state; or 
with application-level checkpointing, which saves only relevant data via explicit calls in the program. The former approach 
requires no additional programming expense, whereas the latter is more efficient and allows to continue program execution 
after failures on the intact resources (localized shrinking recovery). An increasingly popular programming paradigm is 
asynchronous many-task (AMT) programming. Here, programmers identify parallel tasks, and a runtime system assigns the 
tasks to worker threads. Since tasks have clearly defined interfaces, the runtime system can automatically extract and save 
their interface data. This approach, called task-level checkpointing (TC), combines the respective strengths of system-level 
and application-level checkpointing. AMTs come in many variants, and so far, TC has only been applied to a few, rather 
simple variants. This paper considers TC for a different AMT variant: nested fork–join (NFJ) programs that run on clusters 
of multicore nodes under work stealing. We present the first TC scheme for this setting. It performs a localized shrinking 
recovery and can handle multiple node failures. In experiments with four benchmarks, we observed execution time overheads 
of around 44 % at 1536 workers, and negligible recovery costs. Additionally, we developed and experimentally validated a 
prediction model for the running times of the scheme.
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Introduction

Modern supercomputers have reached Exascale and consist 
of millions of processing units. For instance, the Frontier 
machine has over 8 million cores [23]. With an increasing 
component count, hardware failures become more frequent 
[17]. Recent studies estimate permanent node failures in 
supercomputers with a million cores to occur between every 
5 and 53 min [4, 27].

A popular approach to tolerate hardware failures is sys-
tem-level Checkpoint/Restart (C/R). It transparently saves 
the whole application state periodically at global synchro-
nization points and, when a hardware failure is detected, 
restarts the application from the last saved checkpoint [45]. 
System-level C/R incurs a significant running time overhead 
due to the synchronization and I/O to the cluster file system 
[32]. Another well-known approach is application-level 
checkpointing. Here, the programmer inserts function calls 
into the code to save only relevant data. Application-level 
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checkpointing is more efficient than system-level C/R, but 
requires additional programming effort. Several application-
level recovery schemes permit to continue running the appli-
cation after failure on the intact resources, which is called 
shrinking recovery, and/or to confine the failure handling to 
directly affected resources, which is called localized recov-
ery (e.g., [26, 35]).

While system-level and application-level checkpoint-
ing have different pros and cons, an intermediate approach, 
called task-level checkpointing (TC), promises to achieve 
transparency, efficiency, and a localized shrinking recovery 
together. Unlike the above general-purpose approaches, TC 
is specialized to Asynchronous Many-Task  (AMT) pro-
grams. AMT is an increasingly popular programming para-
digm with examples, including HPX [19], OpenMP tasks 
[30], Chapel [6], and Cilk [5]. AMT programs partition the 
computation into units, called tasks, and a runtime system 
maps the tasks to lower level resources. TC operates in the 
runtime system. By exploiting the clearly defined interfaces 
of tasks, it automatically saves task descriptors and interface 
data.

Current AMT environments differ widely in their task 
models, i.e., in the mechanisms for task generation and coop-
eration [9, 14, 49]. Examples include side effect-based task 
cooperation (such as in Chapel [6]), Sequential Task Flow 
(such as in StarPU [2]), Dynamic Independent Tasks (such 
as in GLB [53]), and Nested Fork–Join (such as in OpenCilk 
[42] and Nowa [43]). Moreover, the AMTs differ in their 
target architectures and in the runtime algorithms for task 
assignment. Thus far, TC has only been studied for a few, 
rather simple settings (e.g., [26, 36]).

This paper proposes a TC scheme for a new setting, 
namely Nested Fork–Join programs running on clusters 
with multi-worker processes under work stealing. To explain 
these terms, Nested Fork–Join (NFJ) programs begin the 
computation with a single task, which eventually returns 
the final result. Then, each task may spawn child tasks 
that return their respective results to the parent. The next 
term, work stealing, refers to workers denoting the compute 
resources that process the tasks. In our setting, workers are 
threads of multiple processes on different cluster nodes. 
Each worker maintains a task queue, from which it takes 
tasks for processing and into which it inserts newly gener-
ated tasks. If the queue is empty, the worker becomes a thief 
and tries to steal tasks from another worker, called victim. 
We consider a recent, efficient variant of work stealing in 
multicore clusters, called the lifeline-pure scheme [39].

A core challenge for our development of a TC scheme 
for NFJ was keeping the checkpoints consistent despite 
stealing-related task migration. For that, we built on 
a previous TC scheme for Dynamic Independent Tasks 

(DIT), called AllFT [35]. Major changes of AllFT were 
required, because: 1) NFJ differs from DIT insofar as NFJ 
tasks return their results to the parent, whereas DIT envi-
ronments directly compute the final result by reduction 
from the task results. 2) AllFT refers to a help-first work-
stealing policy, in which parent tasks are processed before 
child tasks, whereas our setting uses a work-first policy, in 
which the child tasks are processed first. 3) We consider 
multi-worker processes, whereas AllFT is restricted to 
single-worker processes.

Like AllFT, our scheme can handle any number of per-
manent worker failures, including simultaneous failures 
and failures during recovery. Failures never compromise a 
returned result, but in a few rare cases, the program aborts. 
To the best of our knowledge, our scheme is the first TC 
scheme for NFJ, and at the same time, it is the first TC 
scheme for multi-worker processes under work stealing.

We implemented and experimentally evaluated the 
scheme. In experiments on two clusters with up to 1280 
and 1536 workers, respectively, we observed fault-toler-
ance overheads of up to 28.3% and up to 43.98% , respec-
tively. Thereby the recovery costs were negligible. These 
observed fault-tolerance overheads are higher than those 
of the AllFT scheme for DIT, but well below those of C/R 
[32].

The remainder of this paper is organized as follows. 
"Background" describes NFJ, the lifeline-pure scheme, 
and AllFT. Then, "Task-Level Checkpointing for NFJ" pre-
sents our new TC scheme, and "Implementation" sketches 
its implementation. Experimental results are provided and 
discussed in "Experiments". Thereafter, "Prediction of 
Running Times" derives a formula to predict running times 
of our TC scheme and compares them to measured running 
times. The paper ends with related work and conclusions 
in "Related Work" and Conclusions, respectively.

Background

Nested Fork–Join Programs (NFJ)

Listing 1 depicts pseudocode of a naive recursive Fibo-
nacci program in NFJ. The computation begins with 
a root task computing f(n) for a given n. Then, each 
task spawns two child tasks whose results are assigned to 
variables a and b. At the sync statement, the parent task 
waits until all previous assignments have been performed. 
Beyond the example, NFJ programs contain an implicit 
sync at the end of each task function. Furthermore, we 
assume the tasks to be free of side effects.
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Listing 1: NFJ example: naive recursive Fibonacci implementation
f (n) { // 0

i f (n < 2) re turn 1 ;
a = spawn f (n 1); // 1
b = spawn f (n 2); // 2
sync ; // 3
re turn a + b ;

The execution of an NFJ program gives rise to a tree, such 
as the one for the Fibonacci example in Fig. 1. In the fig-
ure, rounded rectangles denote functions spawned as tasks. 
Numbers 0 to 3 correspond to the sequential code sections 
marked in Listing 1. For instance, section 0 runs from the 
beginning of the function until the spawn of the first child. 
Downward edges (solid) mark spawns, and upward edges 
(dotted) mark result returns at explicit or implicit sync’s.

Lifeline‑Pure Scheme

As noted in "Introduction", the tasks are executed by a set of 
worker threads from multiple processes. Each worker owns 
a task queue, in which it saves task descriptors, which are 
continuations. Thereby, continuation denotes the remain-
ing computation of a function together with variable values. 
Continuations are represented by stack frames.

The lifeline-pure scheme [39] is an efficient work-stealing 
variant for, e.g., NFJ, that adapts lifeline-based global load 
balancing [41] to multi-worker processes. It uses cooperative 

work stealing, i.e., a thief sends a steal request to the vic-
tim, and the victim actively responds with either loot or a 
reject message. All communication is realized with active 
messages. Workers answer steal requests periodically after 
every k processed tasks. In our case, the loot is always a 
single task, namely the oldest task from the victim pool. In 
the lifeline-pure scheme, a thief first attempts to steal from 
up to w random victims, and then, if not successful, from 
up to z lifeline buddies [39]. These are preselected victims, 
which remember any unsuccessful lifeline steal requests. If 
they obtain tasks later, they share these tasks with the thief. 
After z unsuccessful lifeline steal requests, a thief becomes 
inactive. It is reactivated when a lifeline buddy later sends 
tasks. The program ends when the root task has finished.

The lifeline-pure scheme deploys the work-first policy, 
in which a worker encountering a spawn branches into the 
child task and puts a continuation of the parent task into 
its queue. Figure 2 illustrates work-first work stealing. The 
notation is the same as in Fig. 1, but the task structure differs 
to facilitate further discussion. Each color marks the work 
performed by a particular worker.

The computation starts with the green worker (called 
Green) processing the A function. At the first spawn, Green 
branches into child task B, and Brown later steals the con-
tinuation of A, which at that time encompasses A2 to A6 
and is represented by A2. In general, thieves process parent 
frames, and victims process children, as illustrated on the 
right side of the figure.

The lifeline-pure scheme matches child results with their 
parent frames in the same way as in reference [20]: When a 
thief encounters a sync, it sends the frame back to the vic-
tim (or transitively to all victims), where the actual matching 
is accomplished with the help of a frame identifier. Note 
that the parent frame is sent back to the child (and not vice 
versa), even though the dotted arrows in Fig. 2 indicate that, 
logically, the result is incorporated into the parent. When a 
victim finishes a task whose parent is away, it locally saves 
the result and steals a new task.

For an example, consider Red in Fig. 2. It stole frame B 
from Green at B2, and was stolen from by Yellow at B3. Fig. 1  Execution of a nested fork–join program

Fig. 2  Work stealing under the 
work-first policy
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Red finished F before Yellow returned the frame. There-
fore, Red kept the result (called rF) and stole the A frame 
from Brown at A3. Later, Blue stole the A frame at A4 and 
already returned it (called fA) at the sync opening A5. 
Thereby Blue returned the frame to Red, because Red was 
the most recent victim. The dotted red line indicates that fA 
resides at Red again. After having inserted the result from D, 
Red will return the frame to Brown, and later Brown will 
return it to Green. Green will insert the result from the B 
function, and afterwards, Green will continue at A6.

Now, consider the time when A has finished all sections 
printed in bold and is going to branch into H. At this time, 
Red holds rF, fA, a local pool with the continuations start-
ing at D2 and G2, and a descriptor of H. Furthermore, Red 
knows the identities of all victims and thieves with still 
unmatched results: Green and Yellow for the B2 frame, and 
Brown for the A3 frame. In its entirety, this information 
forms Red’s state.

Original Task‑Level Checkpointing and Recovery 
Scheme for DIT

We adapted the AllFT scheme from Posner et al. [35] to 
our NFJ setting. The original AllFT scheme encompasses a 
checkpointing procedure, a steal protocol, a restore protocol, 
and a selection scheme for buddy workers:

Checkpointing is performed independently by each 
worker. It always writes them after having finished one task 
and before starting the next one, more specifically in the 
following situations:

• every about R seconds, called regular backups,
• during stealing at the victim and thief sides, called steal 

backups, and
• during restore, called restore backups.

Each backup contains the worker state and some status 
information. The latter is a compact representation of all 
pieces of loot that have been sent and received so far by 
this worker (see [33]). In the DIT context, the worker state 
consists of the contents of the worker’s task queue and 
the worker’s current contribution to the final result, called 
worker result. Task descriptors in the DIT setting are just 
task parameters. The worker result is the combined result 
of all tasks that have been processed by this worker so far, 
e.g., the sum of these results. The checkpoints are saved in a 
resilient store, for which AllFT requires that it must support 
the grouping of multiple access operations into transactions.

The AllFT steal protocol ensures consistency between 
a victim, a thief, and their respective backups, despite 
possible failures. In addition to the steal backups, the 
protocol involves a temporary loot saving in the resilient 
store. While being saved during the protocol, the loot is 

denoted as open. Each worker numbers the loot that it sent 
in ascending order and attaches the number to the loot, 
called loot identifier.

The restore protocol presupposes that all workers are 
informed about failures, although possibly at different times. 
One designated partner worker B, called buddy, adopts the 
tasks from the checkpoint of a failed worker X and makes 
sure that open loot sent from X is taken over by either the 
thief or by B. Open loot sent to X is taken care of by the 
victim. For that, each worker looks up whether it has been a 
victim of X and, if so, re-inserts any open loot into its own 
queue, deletes it from the resilient store, and writes a restore 
backup. As an example, the deletion of the open loot and the 
writing of the restore backup are grouped into a transaction 
to ensure consistency in case of an intermediate failure of X. 
Altogether, the restore protocol guarantees that each task is 
processed exactly once.

The selection scheme for buddy workers is based on a 
consecutive numbering of the workers with wraparound. The 
buddy of a failed worker is defined as the next worker alive 
in this ring. Buddy selection is still nontrivial, since AllFT 
allows simultaneous failures and failures during recovery. 
Thus, the role of buddy can move during an ongoing recov-
ery. Details and a case-by-case analysis of correctness are 
given in reference [11].

Task‑Level Checkpointing for NFJ

We applied the following major changes, which are further 
explained below: 

1. We defined the state of an NFJ worker and modified the 
contents of checkpoints, so that they save this state in 
addition to the status information. Also, we clarified the 
times of checkpoint writing.

2. We newly added a frame return protocol and extended 
the restore protocol by the adoption of task results and 
frames (such as rF and fA).

3. We adapted the buddy worker selection scheme to multi-
worker processes.

Regarding item 1, we define the state of a worker W to com-
prise the following information. Examples refer to "Lifeline-
Pure Scheme" and Fig. 2:

• the current contents of W’s local pool (e.g., a queue with 
the task descriptors of D2 and G2),

• all locally saved task results of W that are yet to be incor-
porated into their parent frame (e.g., rF),

• all frames returned to W from their thieves that are await-
ing result incorporation (e.g., fA),
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• the identities of all victims of W to which W has yet 
to return the respective stolen frame (e.g., Green and 
Brown),

• the identities of all thieves of W that have yet to return 
their frame to W (e.g., Yellow), and

• a task descriptor of the next task (if relevant, see below).

Like in AllFT, checkpoints are only written when the worker 
is outside task processing. Thus, there are three possible 
occasions for checkpoint writing: 

A. At a spawn: Before branching into the child (e.g., before 
branching into H).

B. At a sync: Right before returning the frame to the 
child (e.g., right before returning fA).

C. At the end of a function, which gives rise to two sub-
cases: 

 C1. After the function had been finished and 
its result was incorporated into the parent 
frame (e.g., after H had been finished and its 
result was incorporated into the G frame)

 C2. After the function had been finished and its result 
was stored locally (e.g., after F had been finished 
and rF was stored).

The last item from the above definition of worker state is 
relevant in occasion A, but not in occasions B and C. In 
occasions B and C, the next task will either be taken from 
the local queue, and is then part of the state anyway, or be 
stolen anew, and is then contained in the checkpoint that is 
written during the steal protocol.

Checkpoints contain the newly defined worker state 
and the same status information as in AllFT (see "Origi-
nal Task-Level Checkpointing and Recovery Scheme for 
DIT"). Checkpoints are saved in a resilient store with the 
same requirements as for AllFT.

The steal protocol is almost identical to that in AllFT, 
since the handshaking to reach consistency is independent 
of the contents of checkpoints. We merely added book-
keeping for the identities of victims and thieves. For com-
pleteness, we depict the protocol in Fig. 3. It shows a suc-
cessful random steal. The wavy and dashed lines indicate 
time the worker spends on task processing and waiting, 
respectively. The resilient store is briefly abbreviated as 
resiStore. The figure begins at the top with a victim, who 
is busy processing tasks, and a thief, who has no tasks and 
thus attempts to steal (here: from Victim) and waits for an 
answer. Steal requests are active messages, whose action is 
written next to the wavy line. The messages are processed 
in parallel to the victim thread by another thread of the 
victim process. If the victim pool is empty, this thread 
immediately sends back a reject message; otherwise, it 

records the request. The victim occasionally interrupts its 
task processing to react to the recorded messages. In our 
example, the victim has tasks in its queue. Therefore, it 
takes out the oldest task, increments and attaches the loot 
identifier, saves the open loot and its checkpoint in the 
resilient store, and sends the loot to the thief. On arrival of 
the loot, the thief compares the loot identifier with the last 
received loot identifier from the same victim, and ignores 
the loot if the thief already received it (can happen during 
recovery, see below). Normally, the thief inserts the loot 
into its queue, locally saves the loot identifier and the vic-
tim, saves a backup in the resilient store, acknowledges the 
receipt, and begins to process the loot. On arrival of the 
acknowledgement, the victim deletes the open loot from 
the resilient store.

Whereas in the AllFT scheme for DIT, worker results are 
local and just have to be included in checkpoints, in NFJ, we 
must deal with consistency regarding the results. Recall that, 
for result matching, frames are sent back to the victims. This 
leads to a similar consistency problem as in stealing insofar 
as data (loot or a frame, respectively) are moved from one 
worker to another. We solve the problem with a frame return 
protocol, which closely resembles the steal protocol, except 
that it is initiated by the sender (there is no preceding steal 
request).

Figure 4 illustrates our new frame return protocol. It 
shows the case of two consecutive frame returns of a parent 
frame, first by Thief 1 and then by Thief 0. The protocol 
starts when Thief 1 encounters a sync in some task. Then, 
Thief 1 writes a checkpoint to the resilient store, called 
frame return backup, and additionally saves the continua-
tion (i.e., a frame) of the corresponding task there tempo-
rarily. In analogy to open loot, the frame is denoted as open 

Fig. 3  Example of the steal protocol with a successful random steal
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while being kept in the resilient store. Next, Thief 1 sends 
the frame to the last victim (here: to Victim 1) and continues 
task processing with a new task.

If a last victim does not expect the frame, which may 
happen during restore (see below), the frame is ignored. In 
our example, the frame is expected, and so, Victim 1 saves a 
checkpoint, which includes the frame, in the resilient store, 
and sends an acknowledgement to Thief 1. This acknowl-
edgement would also be sent for ignored frames for which 
the protocol would end afterward.

The figure shows a case where Victim 1 is still processing 
the child task when the frame arrives. Therefore, Victim 1 
saves the frame locally. When the child task eventually fin-
ishes, Victim 1 looks up the frame and inserts the child task 
result. Thereby it recognizes that the frame expects another 
result, and therefore, Victim 1 becomes Thief 0 and initiates 
another frame return protocol analogously.

For the second frame return, the figure shows a differ-
ent case where Victim 0 has already finished the child task. 
Therefore, Victim 0 inserts the result right after the frame 
receipt. Victim 0 recognizes that the frame has all needed 
results, and so, Victim 0 inserts the frame at the bottom of 
its queue.

The restore protocol extends that of AllFT. Let X 
denote a failed worker, and B the buddy of X, respectively. 
Then, like in AllFT, B adopts all tasks from X’s check-
point and any open loot sent from X. Additionally, now, 
B adopts all task results and frames from X’s checkpoint. 
B just stores them alongside its own results and frames: 
The results will eventually be located by their associated 

thieves (see below); and the frames are awaiting results 
from X’s tasks, which have been adopted by B as well. 
When learning about X’s failure, victims that are awaiting 
a frame return from X inspect the resilient store to see if 
the frame is open. If so, they take it, and thereby send the 
acknowledgement to B instead of X.

Frames sent to X are handled by the sender, as is open 
loot sent to X in AllFT. Unlike the loot, however, the 
frames cannot be taken back by the sender. Instead, the 
sender delivers them to the owner of the associated results, 
which is B. The sender locates B as being the next worker 
alive in the ring of workers. Frames to X that are finished 
later are handled the same way. In any case, if a frame was 
already received, it is ignored by the victim.

AllFT assumes all workers are equal when defining 
the ring. For our multi-worker processes, we number 
the workers in the ring blockwise: workers of process 0 
get numbers 0… d − 1 , workers of process 1 get num-
bers d… 2d − 1 , etc. While individual worker failures 
can be handled, usually it is processes that fail. A process 
failure is handled like a simultaneous failure of multiple 
workers. By definition, the buddy of all of these work-
ers is the first worker of the next process. As usual, it is 
responsible for the restore of all failed workers. We chose 
the above numbering scheme, although it may create some 
temporary load imbalances, since it enables many other 
workers to continue task processing despite the failure. 
Senders of loot/frames to a failed worker recognize that 
a whole process has failed and avoid trying every single 
worker in the search for the buddy.

Fig. 4  Example of the frame 
return protocol with a frame that 
was stolen two times: initially 
from Victim 0 by Thief 0, and 
then from Victim 1 by Thief 1
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Implementation

Our implementation is based on the APGAS for Java 
library [48] for programming distributed parallel applica-
tions, and on a resilient store, called IMap, from Hazel-
cast [16]. The APGAS library provides methods to send 
active messages, which are processed by threads of the 
Java fork–join pool [24]. Thus, they can be handled in 
parallel to task processing at the receiver. Further, the 
APGAS library provides failure notifications. More spe-
cifically, it invokes a failure handler on all processes that 
have registered for the service. We register all processes. 
Each of the failure handlers decides on the role of all of 
its workers during restore and, if needed, initiates the 
restore protocol.

The IMap internally saves workers and their check-
points as key-value pairs, groups the pairs into parti-
tions, and evenly distributes the partitions over nodes. 
We configured the IMap, so that the checkpoints of 
all workers from the same process are mapped to the 
same partition, to reduce network communication dur-
ing restore. Moreover, the IMap supports transactions, 
as it was required in Original Task-Level Checkpointing 
and Recovery Schemefor DIT. The IMap works with at 
most six replicas of each partition, and we configured it 
with one replica. If more cluster nodes than the number 
of replicas fail simultaneously or in close succession, a 
checkpoint may be irrecoverably lost and the program 
aborts. This, as well as the loss of all workers are the 
only occasions in which our TC scheme aborts. AllFT, in 
contrast, also aborts after failure of worker 0, due to dif-
ferences in termination detection between DIT and NFJ.

The source code of our implementation is available 
online [38].

Experiments

Experimental Setting

We evaluated our scheme with four benchmarks:

• FIB: The Fibonacci benchmark resembles that from 
"Background" for n = 67 , except that we spawn a task 
for only one of the two recursive function calls.

• UTS: The Unbalanced Tree Search benchmark gener-
ates an irregular tree, using some statistical method that 
allows to control the number of child nodes. The tree is 
not stored, but its number of nodes is counted on-the-fly. 
We spawn a task for each tree node. We used a geometric 
distribution with expected value b = 4 for the distribution 

of the number of child nodes, initial seed s = 19 for a 
pseudorandom number generator, and tree height d = 19.

• NQ: The N-Queens benchmark counts the number of 
valid placements of n queens on an n × n chessboard, 
such that no two queens can attack each other. The 
computation begins with one task which operates on 
the first column of the chessboard. Each task loops 
through the fields of its column and attempts to place a 
queen on it. If successful, it spawns a task for the next 
column. We used n = 18.

• SYN: The synthetic benchmark recursively spawns 
tasks, so that they form a perfect w-ary task tree. Each 
task runs a dummy computation with configurable dura-
tion and then reports back to its parent [36]. We con-
figured m = 106 tasks per worker with total duration 
T
calc

= 100 s, and v = 20% load variance between work-
ers.

We used the existing FIB, UTS, and SYN implementa-
tions from reference [39], and implemented NQ from 
scratch.

FIB, UTS, and NQ allow setting a sequential cut-off (C), 
which is a problem size threshold at which the spawn key-
word is ignored: for FIB, it refers to calls with n < C , for 
UTS, it refers to all tree nodes with a depth greater than C, 
and for NQ, it refers to tasks with at most C  unplaced 
queens. Like in reference [39], we set C = 30 for FIB, C = 13 
for UTS, and we found C = 6 to perform well for NQ. Recall 
that parameter k denotes the number of tasks that a worker 
processes before answering steal requests. Like in reference 
[39], we set k = 10 for FIB, k = 16 for UTS, and k = 1 for 
NQ and SYN. We set R = 10 s, like in reference [35].

Experiments were conducted on two clusters:
Goethe: We used a partition of the Goethe cluster of the 

University of Frankfurt [50], which consists of homoge-
neous Infiniband-connected nodes, each with two 20-core 
Intel Xeon Skylake Gold 6148 CPUs and 192 GB of main 
memory. We assigned one process with 40 workers to each 
cluster node.

Lichtenberg: We used a partition of the Lichtenberg 
cluster of the Technical University of Darmstadt [51], which 
consists of homogeneous Infiniband-connected nodes, each 
with two 48-core Intel Xeon Platinum 9242 CPUs and 
384 GB of main memory. We assigned one process with 
96 workers to each cluster node.

On both clusters, we used Java version 19.0.2 and the 
APGAS for Java library from [18].

Failure‑Free Runs

Figure 5 depicts the performance of failure-free FIB, UTS, 
NQ, and SYN executions with and without protection on 
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Goethe and Lichtenberg. Corresponding raw data are given 
in Tables 1 and 2. All values are averages over 10 runs.

Figures 5a–c depict running times. They employ strong 
scaling to give an impression of magnitudes. In all cases, the 
costs for protection increase with the number of workers. On 
Goethe at 1280 workers, the difference in running times of 
protected vs unprotected runs is 144.3 s vs 113.7 s (FIB), 
114.3 s vs 89.1 s (UTS), and 107.01 s vs 85.38 s (NQ). On 
Lichtenberg at 1536 workers, it is 179.67 s vs 126.05 s (FIB), 
126.5 s vs 89.6 s (UTS), and 139.64 s vs 98.74 s (NQ).

Figure 5d depicts the difference between measured run-
ning times and T

calc
 , called overall runtime overhead, which 

includes both the costs of load balancing and the costs of 
protection. One can see that this overhead increases with the 
number of workers up to 32.9% on Goethe and up to 50.98% 
on Lichtenberg. For comparison, the pure work stealing 
overhead in unprotected runs is up to 4.27% on Goethe and 
up to 5.45% on Lichtenberg.

The results from Fig. 5 are summarized in Fig. 6. The 
figure shows the protection overhead, which is the quotient 
of the running times of protected runs over unprotected runs 
minus one as percentage. As can be seen in the figure, the 
protection overhead curves are similar for the four bench-
marks, with a maximum of 28.3% at 1280 workers on Goe-
the, and 43.98% at 1536 workers on Lichtenberg.

These numbers are roughly in line with previously 
reported protection overheads for AllFT. To see this, observe 

that our protection overheads can be expected to be roughly 
twice of those of AllFT, since each AllFT steal gives rise to 
the execution of a steal protocol, whereas each of our steals 
gives rise to the execution of both a steal and a frame return 
protocol. Thus, the number of checkpoint writings, which 
are the most expensive operations, approximately doubles.

The most recent performance evaluation of AllFT is given in 
[36]. This reference only reports protection overheads for SYN 
with up to 144 workers on a different cluster. Additionally, it 
reports running times for UTS with up to 640 workers on Goe-
the. We used the raw data of these running times to calculate 
the protection overhead of AllFT at 640 workers on Goethe. 
It is about 5.5% . Comparing this number with the protection 
overhead of our new scheme at 640 workers on Goethe, which 
is 13.6% , our expectation of a factor of two is approximately 
met. The remaining difference can be attributed to a different 
design of the data structures (e.g., larger task descriptors in NFJ 
vs DIT), and to a slightly less sophisticated implementation.

Estimation of Restore Overhead

In a second group of experiments, we estimated the restore 
overhead after worker failures. This overhead includes the 
times for: failure detection, execution of the restore protocol, 
and reprocessing of the lost tasks. It does not include the 
increase in running time that is due to our usage of a shrink-
ing recovery, i.e., to the use of less resources after the failure.

Table 1  Average running times 
in seconds with and without 
failure protection on Goethe

Benchmark Protection Workers

40 80 160 320 640 1280

FIB Protected 3532.39 1798.49 907.52 464.96 244.30 144.31
Unprotected 3523.55 1780.05 882.66 447.40 225.07 113.65

UTS Protected 2628.18 1372.52 707.35 370.94 200.20 114.25
Unprotected 2612.21 1342.14 696.51 355.36 176.22 89.06

NQ Protected 2492.58 1300.79 666.83 347.50 184.49 107.01
Unprotected 2477.38 1284.32 652.76 333.88 167.67 85.38

SYN Protected 104.70 106.32 109.05 113.55 118.11 132.93
Unprotected 102.97 102.71 104.13 103.32 103.54 104.27

Table 2  Average running 
times in seconds with and 
without failure protection on 
Lichtenberg

Benchmark Protection Workers

96 192 384 768 1536

FIB Protected 1957.49 987.96 534.15 285.02 179.67
Unprotected 1938.16 959.80 497.94 248.28 126.05

UTS Protected 1446.45 719.23 369.81 205.24 126.50
Unprotected 1422.35 699.10 343.46 176.73 89.6

NQ Protected 1419.61 750.29 399.22 236.11 139.64
Unprotected 1405.37 713.30 368.20 202.63 98.74

SYN Protected 105.40 110.27 116.74 122.86 150.98
Unprotected 103.00 103.60 103.93 104.18 104.86
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We estimated the overhead with the help of a methodol-
ogy from reference [35]. For that, we measured the running 
times of three program executions: 

(A) with 640 workers,
(B) with 600 workers, and

Fig. 5  Performance in failure-
free runs on Goethe (left) and 
Lichtenberg (right)
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(C) with 640 workers, of which we crashed 80 workers 
(2 processes) after half of the expected running time 
by calling System.exit(). Thereby, the expected 
running time was taken from execution (A) (245.23 s).

Because executions (B) and (C) use the same average num-
ber of workers, we roughly estimated the restore overhead 
as the difference between the running times of executions 
(C) (291.28 s) and (B) (277.38 s). All numbers are averages 
over 50 runs of each execution.

As can be seen from the numbers, the restore overhead is 
about 5% of the running time. Since this overhead refers to 
the failure of 80 workers, the overhead of a single-worker 
failure is negligible.

Correctness

To verify that our TC scheme can handle any number of 
worker failures, regardless of their timing, we injected pro-
cess failures by calling System.exit() in particularly 
difficult situations. The test cases were selected by picking 
the hardest cases from a list of test cases for AllFT in refer-
ence [33], and adding new, similar cases to test the frame 
return protocol. In the following list of test cases, X denotes 
a random worker that was crashed so as to fulfill the test 
case. In addition, we always crashed all workers of X’s pro-
cess, and in some cases also the original buddy Y of X. The 
X worker was crashed: 

 1. after X had written its first regular backup,
 2. after X had sent the acknowledgement during the steal 

protocol,
 3. after X had sent loot, but before the acknowledgement 

arrived,
 4. after X had written the victim side steal backup, but 

before X sent the loot,
 5. after X had saved open loot to the IMap, but before X 

saved its checkpoint,

 6. after X had sent loot, and we delayed the thief side 
steal protocol until recovery (for all failed workers) 
was complete,

 7. after X had saved an open frame to the IMap, but 
before X saved its checkpoint,

 8. after X had written the victim side frame return 
backup, but before X sent the frame return message,

 9. after X had written the victim side frame return 
backup, but before X sent the acknowledgement,

 10. after X had sent a frame return message, and we 
delayed the execution of the victim side frame return 
protocol until recovery (for all failed workers) was 
complete,

 11. at a random time, and
 12. at a random time, and we additionally crashed Y at the 

beginning of the restore protocol.

In an additional test case, we crashed 90% of all processes 
to test the abort of the computation with an error message.

We run our correctness tests on Goethe with 640 workers 
using SYN. Each of the above tests was repeated 25 times. 
Our observation of the program log files showed that all 
program executions behaved correctly.

Prediction of Running Times

This section derives a formula to predict the running times 
of runs with multiple worker failures. Afterwards, we vali-
date the formula by comparing its estimates with measured 
running times on Lichtenberg. For generality, the formula 
refers to worker failures, but it can be easily extended to 
process failures by multiplying the number of failures with 
the number of workers per process.

The formula is derived with the same methodology as 
in reference [36]. Generally speaking, the formula takes 
into account three causes of running time increase: pro-
tection costs (as in "Failure-Free Runs"), restore overhead 
(as in "Estimation of Restore Overhead"), and the reduc-
tion in the number of available resources due to shrink-
ing recovery (not previously considered). We assume that 

Fig. 6  Protection overheads of 
the benchmarks in failure-free 
execution on Goethe (left) and 
Lichtenberg (right)
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the failures are uniformly distributed, i.e., a failure occurs 
with equal probability at any time during the program 
execution. The following notation is used:

• p: number of workers,
• x ≪ p : number of worker failures,
• j: number of steals per worker per second,
• r: number of regular backups per worker per second,
• TNO(p) : average running time of unprotected execu-

tions, and
• TFTx(p) : average running time of protected executions 

with x ≥ 0 worker failures.

Let us start with the protection costs. They include the 
time for regular backup writing, and the time spent in the 
steal and frame return protocols. The time to write a regu-
lar backup is about constant (for a given benchmark), and 
we denote it by c

0
 . We calculate the time spent in the pro-

tocols per steal. Per steal, four backups are written, namely 
two in the steal protocol and two in the frame return pro-
tocol, and several other actions are performed in the two 
protocols. Overall, the protection costs per steal are about 
constant, and we denote them by c

1
 . Taking the steal and 

regular backup rates into account, we get an estimate for 
the running time of failure-free, protected executions

Next, we will estimate the restore overhead. It is composed 
of 1) the costs to run the restore protocol itself, and 2) the 
costs to re-execute all the tasks that any of the failed workers 
had processed since its last checkpoint. The protocol costs 
are about constant, and we denote them by c

2
 for each of 

the x failures. For the estimation of re-execution costs, we 
first determine the length of the backup interval, which is 
the average distance between successive backups. Since a 
worker writes four backups per steal (if we offset the thief 
and victim sides), plus the regular backups, it writes 4j + r 
backups per second. Reversely, the length of the backup 
interval is b = 1∕(4j + r) . On average, a failure occurs at half 
of this interval. Thus, tasks with duration about b/2 need to 
be reprocessed per failed worker. This reprocessing is shared 
among the available workers, which are p − i workers after 
the ith failure. Consequently, the overall restore overhead is

Finally, we will estimate the impact of resource reduction. 
Due to the uniform distribution of failures, on average, fail-
ures occur at half of the running time. Thus about x/2 of 
the overall computing power is lost due to the shrinking 

TFT
0
(p) = (1 + c

0
r + c

1
j)TNO(p).

x
∑

i=1

b

2(p − i)
+ c

2
x.

recovery. This aspect leads to a proportional increase of the 
running time to

Putting the above three causes of running time increase 
together, we obtain our formula

To complete it, we need values for j, r, and c
0
 to c

2
 . These 

values are benchmark-specific, since, for instance, the costs 
for backup writing depend on the size of task descriptors.

We experimentally determined the values for the 
SYN benchmark on Lichtenberg; see Table 3. For this, 
we modified the code to log operation durations, run the 
benchmark 25 times with the parameters from "Experi-
ments", and injected a single-worker failure into each run 
at a random time. The runs used only 192 workers due to 
time and cluster compute time quota restraints. First, we 
determined j by summing up the number of steals of each 
worker (10,163 total steals) and dividing the sum by the 
number of workers and the average running time (112.11 s ). 
The runs used R = 10 s , and thus, r = 1∕R = 0.1 . For c

0
 , we 

measured the duration of writing all regular backups and 
divided the sum by the total number of regular backups 
and workers. For c

1
 , similarly, we measured the duration 

of the bookkeeping and IMap accesses during all steals 
and frame returns on the victim and thief sides, summed 
them up, and divided the sum by the number of steals and 
workers. For c

2
 , we measured the duration of all failure 

handler executions at each worker, summed them up, and 
divided the sum by the number of failures and the average 
number of workers alive.

While the above constants were determined by injecting 
single worker failures, we tested the accuracy of our for-
mula by injecting multiple failures. Thus, we compared the 
predictions of the formula (including the constants) with 
measured running times of SYN executions on Lichten-
berg, into which we injected up to 32 worker failures at 
random times. Figure 7 shows the predicted and measured 
running times with 192 workers and the same parameter 
values as in "Experiments". The measured running times 
are averages over 25 runs. We observe that the predictions 

p

p − (x∕2)
TFT
0
(p).

(1)

TFT
x
(p) =

p

p − (x∕2)
(1 + c

0
r + c

1
j)TNO(p)

+

x
∑

i=1

b

2(p − i)
+ c

2
x.

Table 3  Constant values averaged over 25 runs

Constant j r c
0

c
1

c
2

Value 0.47 0.1 5ms 68ms 521ms
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are close to the measurements, with a maximum difference 
of 1.11% percent for 8 worker failures.

Related Work

There is a large body of work on AMTs (surveyed in [9, 
14, 49]) and on AMT scheduling  (e.g., [5, 25, 52]). The 
lifeline scheme was proposed in [41], where it referred to 
single-threaded processes. Later, it was extended to a hybrid 
scheme, in which the workers of each process balance their 
load via work sharing [8]. Reitz and Fohry [39] compared 
the hybrid scheme with the simpler lifeline-pure scheme 
introduced in that reference, and observed that the lifeline-
pure scheme usually performs better. Its efficiency can be 
further improved through locality- and load-aware victim 
selection [39].

Outside the AMT area, fault-tolerance tools for parallel 
programs include BLCR [15] and DMTCP [1] for system-
level C/R, and SCR [29] and FTI [3] for application-level 
checkpointing [45]. In addition to application-level check-
pointing, other application-level techniques are Algorithm-
Based Fault Tolerance (ABFT) and naturally fault-tolerant 
algorithms [44]. All of these techniques protect programs 
against permanent node failures. Other resilience techniques 
handle silent data corruptions (SDC), such as bit flips. A 
prominent technique to protect programs against SDC is 
replication [46].

Much of the research on AMT resilience refers to SDC, 
e.g., [13, 22, 31]. AMT research to handle permanent node 
failures can be classified according to the use of checkpoint-
ing or other techniques. Additionally, it refers to different 
task models. Most of this research refers to the DIT model. 
In addition to AllFT, other schemes have been studied, 
which, e.g., use incremental checkpointing [35], do not rely 
on a resilient store [11], or combine fault tolerance with 
elasticity [34]. Incremental checkpointing could be applied 

to our NFJ scheme to further reduce the protection over-
head. For the hybrid lifeline scheme mentioned above, a 
fault-tolerance approach has been sketched in reference 
[37]. Another recent checkpointing technique for StarPU 
concentrates on checkpointing the data that are communi-
cated between tasks [26]; whereas the tasks themselves are 
known from the beginning and can be easily re-run. Some-
what related, Ma and Krishnamoorthy [28] consider tasks 
with side effects. They log memory accesses of tasks and 
use this information to restore data and to identify tasks to 
be re-executed after failure.

A resilience technique for NFJ programs, which is not 
based on checkpointing, leverages the natural task dupli-
cation during work stealing. Victims re-initiate execution 
of their stolen tasks in case the thief dies, which is some-
times called supervision [20]. Supervision also works for 
DIT, where it was compared to TC in [36]. In this reference, 
supervision was observed to have less overhead than TC in 
failure-free runs, and TC to have lower recovery costs. The 
fault tolerance overheads for SYN with up to 144 workers 
were less than 1% for both methods in failure-free runs.

Localized recovery has been previously deployed for 
both AMT (e.g., [20, 21, 26]) and other parallel programs 
(e.g., [12]). It must be supported by a programming environ-
ment such as User-Level Failure Mitigation (ULFM [27]). 
An alternative to shrinking recovery is the usage of spare 
processes [27].

Theoretical studies on fault tolerance are common. For 
instance, models have been studied for determining the opti-
mal checkpointing interval and for comparing fault-tolerance 
approaches [4, 7, 47]. We based our running time estimation 
on a prior one for the AllFT scheme [36].

Conclusions

This paper has shown that TC can protect NFJ programs 
against permanent node failures. We presented the first TC 
scheme for NFJ, which is also the first TC scheme for multi-
worker processes under work stealing.

We evaluated the scheme in experiments with four bench-
marks and up to 1536 workers, and observed protection 
overheads of up to 43.98% and negligible recovery costs. 
The protection overheads are higher than those of TC for 
DIT, but lower than typical C/R overheads. The higher costs 
than in DIT are mostly due to the need for an additional 
frame return protocol. Nevertheless, we expect that they can 
be reduced in future work, e.g., through low-level optimiza-
tions, and by combining backups from different protocols 
into one.

Further, we proposed a formula for predicting running 
times in case of multiple worker failures and experimentally 
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validated it. We observed an error of up to 1.11% compared 
to measured running times for up to 32 worker failures.

With our work, we were able to transfer a previous TC 
scheme from DIT to NFJ. The success of this transfer is 
promising, since it suggests that future work may possibly be 
able to generalize TC to further task models. Additionally, 
future work should consider incremental checkpointing and 
more complicated benchmarks.
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