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Abstract
Malleability—the ability for applications to dynamically adjust their resource allocations at runtime—presents great potential 
to enhance the efficiency and resource utilization of modern supercomputers. However, applications are rarely capable of 
growing and shrinking their number of nodes at runtime, and batch job schedulers provide only rudimentary support for such 
features. While numerous approaches have been proposed to enable application malleability, these typically focus on iterative 
computations and require complex code modifications. This amplifies the challenges for programmers, who already wrestle 
with the complexity of traditional MPI inter-node programming. Asynchronous Many-Task (AMT) programming presents a 
promising alternative. In AMT, computations are split into many fine-grained tasks, which are processed by workers. This 
makes transparent task relocation via the AMT runtime system possible, thus offering great potential for enabling efficient 
malleability. In this work, we propose an extension to an existing AMT system, namely APGAS for Java. We provide easy-
to-use malleability programming abstractions, requiring only minor application code additions from programmers. Runtime 
adjustments, such as process initialization and termination, are automatically managed by our malleability extension. We 
validate our malleability extension by adapting a load balancing library handling multiple benchmarks. We show that both 
shrinking and growing operations cost low execution time overhead. In addition, we demonstrate compatibility with potential 
batch job schedulers by developing a prototype batch job scheduler that supports malleable jobs. Through extensive real-
world job batches execution on up to 32 nodes, involving rigid, moldable, and malleable programs, we evaluate the impact of 
deploying malleable APGAS applications on supercomputers. Exploiting scheduling algorithms, such as FCFS, Backfilling, 
Easy-Backfilling, and one exploiting malleable jobs, the experimental results highlight a significant improvement regarding 
several metrics for malleable jobs. We show a 13.09% makespan reduction (the time needed to schedule and execute all jobs), 
a 19.86% increase in node utilization, and a 3.61% decrease in job turnaround time (the time a job takes from its submission 
to completion) when using 100% malleable job in combination with our prototype batch job scheduler compared to the best-
performing scheduling algorithm with 100% rigid jobs.

Keywords  Malleable runtime system · Malleable job scheduling · APGAS

Introduction

In the realm of modern supercomputing, the prevalence of 
dynamic and irregular workloads—which embodies vary-
ing computational demands and unpredictable computa-
tional patterns—is steadily rising. Compounded with the 
traditional static resource allocations on supercomputers, 
this leads to inefficient resource utilization and diminished 
overall performance.

On today’s supercomputers, users do not execute their 
applications directly on the nodes, but submit them to the 
batch job scheduler in the form of jobs, specifying the num-
ber of nodes and the required time. The batch job scheduler 
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then decides which jobs are started and executed, in which 
order, and on which nodes. Typically, nodes are used by jobs 
exclusively, meaning that a node is never utilized by two 
jobs simultaneously. Thus, the scheduler’s role of allocating 
nodes to jobs amounts to solving a 2-dimensional knapsack 
problem.

This leads to under-utilization of supercomputer 
resources, because the job shapes (required time × number 
of nodes) submitted by users may not fit perfectly within 
the total available node capacity of a supercomputer. One 
approach to alleviating this issue involves introducing 
elasticity for jobs, allowing them to dynamically change 
their number of nodes at runtime.

As shown in Table 1, jobs can be categorized into four 
elasticity classes based on who determines the number of 
nodes a job runs with and when this determination is made 
[11]. In this article, we focus on moldable and malleable 
jobs in which the number of nodes used by the job can be 
adjusted by the batch job scheduler when the job starts 
(moldable), and during execution (malleable), respectively.

The flexibility afforded by moldable jobs allows the 
batch job scheduler to start them more easily than classical 
rigid jobs that require a specific number of nodes. Malle-
able jobs offer further opportunities for batch job schedul-
ers. For instance, they make it possible to shrink their cur-
rent node allotment to allow other jobs to be started earlier. 
Conversely, batch job schedulers can also grow the node 
allotments of running jobs, accelerating their completion. 
Thus, elasticity promises to increase resource utilization, 
improve job throughput, and optimize overall performance 

[36]. Figure 1 shows a concise but impactful scenario com-
paring rigid (left) and elastic (right) job executions.

However, programming malleable applications remains 
more challenging than programming regular rigid ones. 
Moreover, batch job schedulers and traditional inter-node 
programming models such as MPI provide only rudimentary 
support for malleability. While numerous approaches for this 
purpose have been proposed, they often require complex 
modifications to application codes. They also typically focus 
on iterative computations that provide “natural” synchroni-
zation points for resource adjustments [24].

Asynchronous Many-Task (AMT) programming is a 
promising approach to facilitate programmer productivity, 
handle dynamic and irregular workloads, and enable 
malleability with only minor changes to application codes. 
In AMT, programmers split large computations into many 
fine-grained tasks, which are then dynamically mapped 
to processing units (e.g., CPUs), called workers, by the 
AMT runtime system. Due to this transparent resource 
management, AMT offers great potential to provide flexible 
and efficient solutions for malleability. Malleable AMT 
applications could adapt to resource changes by relocating 
tasks and data to added resources and away from released 
resources. While this potential for malleability has been 
recognized [6, 35], a lack of AMT systems that support 
malleability in an efficient and simple way still remains.

This article aims to bridge this gap by proposing a malle-
ability extension to an AMT library, namely the open-source 
APGAS for Java [42] (APGAS in short). APGAS extends 
the well-known Partitioned Global Address Space (PGAS) 
programming model by adding asynchronous task capabili-
ties. Although the original APGAS supported changes in the 
number of processes, it did so in a very rudimentary manner 
[42]. This was recently improved in the context of the Lifeline-
Based Global Load Balancing (GLB) library [35], but the 
proposed malleability technique was tightly intertwined with 
GLB. This work disentangles APGAS and GLB and makes the 
following main contributions:

•	 We propose an innovative malleability technique and 
implement it as an extension to APGAS [42]. Our malle-

Table 1   Job classification by Feitelson and Rudolph [11] based on 
who determines the number of nodes a job runs with and when this 
determination is made

Decision By job By batch job scheduler

At job start Rigid Moldable
At runtime Evolving Malleable

Fig. 1   Scheduling of rigid 
only jobs (left) and elastic 
only jobs (right). In the latter 
situation, the makespan (time 
needed to schedule and execute 
the four jobs) decreases from 
approximately 1200 min to 
approximately 1000 min thanks 
to the elastic nature of the jobs 
(adapted from [36])
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ability extension empowers programmers to enable appli-
cation malleability, requiring only small code additions 
thanks to our clear abstractions. Runtime adjustments, 
including process initiation and termination, are auto-
matically managed by our malleability extension.

•	 We substantiate the usability of our malleable APGAS 
through the adaptation of GLB including a collection of 
its benchmarks.

•	 We propose a generic communication interface that ena-
bles running APGAS applications to react to shrink and 
grow orders from a batch job scheduler.

•	 We develop a prototype batch job scheduler (called 
ElasticJobScheduler) that supports malleability and is 
capable of communicating with malleable APGAS appli-
cations. In addition, we integrate four job scheduling 
algorithms—three of which can handle moldable jobs 
and one of which can handle malleable jobs.

•	 We perform extensive real-world experiments of job 
batches execution involving rigid, moldable, and mal-
leable programs to evaluate the impact of deploying 
malleable APGAS applications on supercomputers. 
The results show that both shrinking and growing 
a malleable job’s node allotment cause only a small 
execution time overhead. In addition, the results show 
a significant improvement of supercomputer perfor-
mance regarding several metrics, including a 13.09% 
makespan reduction, a 19.86% increase in node utili-
zation, and a 3.61% decrease in job turnaround time, 
when using 100% malleable job in combination with 
our scheduler for malleable jobs compared to the best-
performing scheduling algorithm with 100% rigid 
jobs.

The remainder of this article is structured as follows. We 
first cover background information on APGAS and GLB 
before introducing our malleability extension to APGAS. 

In the “Evaluation” section, we describe our extensive 
real-world experiments including the derived results. 
We then discuss related work before concluding. All the 
software discussed in this article is freely available on 
GitHub.1

Background

In this section, we first provide background information 
about the APGAS programming model. We then discuss the 
Lifeline-Based Global Load Balancing scheme we extended 
using our new malleable programming abstractions.

APGAS Programming Model

The Partitioned Global Address Space (PGAS) [3, 9] 
programming model facilitates programmer productivity 
for programming inter-node parallel programs. PGAS 
allows programmers to see memory as a single, logically 
partitioned, global address space where each process 
maintains its local memory. It offers direct access to remote 
memory partitions alleviating the need for explicit message-
passing operations as in, e.g., MPI [26].

The PGAS programming model has been implemented 
in several programming languages and runtime libraries in 
different ways. For example, Co-Array Fortran (CAF) [29] 
is a standalone programming language; OpenSHMEM [31], 
Unified Parallel C (UPC) [10], and UPC++ [4] are libraries 
for C/C++; and Titanium [45] and PCJ [28] are libraries 
for Java.

1  https://​github.​com/​Proje​ctWag​omu.

Fig. 2   Asynchronous Partitioned Global Address Space (APGAS) 
[3, 9] programming model. In the PGAS model, every process has 
its own memory partition, represented here by different colors. A 
process can access both the local memory partition (1) or a mem-
ory partition belonging to another process through the partitioned 

global address space (2). Local access is faster than remote access. 
The extended APGAS model adds Asynchrony to make it possible to 
spawn asynchronous tasks that can can spawn other new asynchro-
nous tasks on both the local and remote processes (3) at runtime

https://github.com/ProjectWagomu
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Some languages and libraries extend PGAS into the 
Asynchronous PGAS (APGAS) programming model [38]. 
As illustrated in Fig. 2, this allows tasks running on a 
memory partition to spawn new tasks either on the same 
or on a remote memory partition. In the APGAS model, a 
large number of asynchronous tasks can be processed by 
processing units (e.g., CPUs), called workers. Among the 
programming systems that adopt the APGAS program-
ming model, a notable one is IBM’s parallel programming 
language X10 [7, 23]. The X10 language introduced high-
level control structures that allow programmers to easily 
express task completion constraints.

In this work, we extend the open-source APGAS for 
Java library [42] (APGAS for short), which ports the key 
language constructs of X10 to Java. In APGAS, a memory 
partition is called a place and is typically mapped to a 
physical node or processor in a distributed system.

Places are sequentially numbered from 0 to n − 1 
for an n-process execution. The asyncAt  construct 
allows asynchronous task spawn at a remote place. Task 
termination is managed with the finish  construct, 
which only completes once all transitively spawned 
asynchronous tasks have been executed. This principle 
is illustrated in Listing 1 along with a possible execution 
result shown in Listing 2. The Bye message in Line 8 of 
Listing 1 is printed only after each place has completed 
printing its Hello message in Line 4 of Listing 1.

Lifeline‑Based Global Load Balancing

Lifeline-Based Global Load Balancing (GLB) [39] is a fully 
distributed work-stealing scheme that was first implemented 
as a library in X10 [44, 47] and later adapted in APGAS 
[14, 34]. GLB combines random victim selection for stealing 
work with pre-determined stealing channels (the so-called 
lifelines) through which places that run out of work signal 
their lifeline buddys and passively for work to reach them.

In this work-stealing scheme, the key work abstraction 
that needs to be implemented by programmers is called a 
bag. It can generally be understood as a queue of tasks, 
although there are no requirements for the programmer to 
actually implemented it as such.

The computation starts from a single bag given to the first 
place. It is then successively split by the stealing network, 
spreading the work to the other places in the execution. As 
the computation progresses, each place keeps track of the 
their contribution to the result. The computation completes 
when all the places run out of work, which is elegantly 
implemented using a single finish provided by the APGAS 
runtime. The final result is then obtained by performing a 
reduction across all places.

In the APGAS variant, the bag is implemented using two 
generic types, B and R, where B is the implementing class 
itself, and R is the type of the result produced by the com-
putation. The final overall result is obtained by performing 
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a reduction on all the nodes that participated in the com-
putation. It is assumed that each task can be computed by 
any worker and that they are independent of each other. In 
addition, tasks cannot communicate with each other, except 
for passing parameters when creating new tasks. The key 
operations that a bag implementation needs to perform are:

•	 boolean process(int): processes a certain 
amount of work (passed as parameter) contained in the 
bag

•	 B split(boolean): returns a new bag instance 
containing a splitted part (generally half) of the work 
contained in the original bag; the boolean parameter 
is used to take away all of the contents of the bag in case 
the work it contains cannot be split

•	 void merge(B): takes a passed bag and merges its 
work into the current bag

•	 boolean isEmpty(): returns whether the bag is 
empty, i.e., whether it contains work or not

•	 boolean isSplittable(): returns whether split-
ting the bag is possible, i.e., if it contains enough work 
to be split into two bags by calling split(false) or 
if calling split(true) is necessary to obtain work 
from it

•	 void submit(R): puts the contribution of this bag 
into the passed instance of the result R

In this work, we build on a GLB variant enabling multiple 
workers per place, where each worker has its own bag 
instance [13]. Load balancing within a place is performed 
by the means of a shared bag in which the workers take up 
more work when they empty their bag, and collaboratively 
put work back into when it is emptied.

When all the workers of a place run out of work, the 
place enters a stealing phase. It first attempts to steal work 
from the shared bag of a randomly selected remote place. If 
successful in this random steal, new workers are spawned 
and the load balancing within a place starts again. If not, the 
place establishes its lifelines on pre-determined places and 

passively waits for work to reach it. If able, the places on 
which the lifelines were established, called lifeline buddies, 
will send back some work to the place that ran out and start 
new workers using an asynchronous task.

When the computation begins, the bag containing the 
totality of the work is given to place(0), with the other 
places stealing from it (either directly or indirectly) through 
their lifelines. The computation completes when all the 
places run out of work, which is elegantly implemented 
using a single finish provided by the APGAS runtime.

The network created between the places by the lifelines 
describes a directed graph between the places. It is necessary 
for this graph to be connected; otherwise, some places may 
never obtain new work once they run out. In addition, the 
graph should have a bounded out-degree, meaning the num-
ber of lifelines that individual nodes can establish should be 
limited. This prevents nodes from spending excessive time 
addressing lifeline thieves instead of focusing on computa-
tion. Moreover, the graph should possess a low diameter, i.e., 
any place should be reachable within just a few hops from 
another place. This ensures that when some places run out 
of work, they can quickly receive tasks from the few places 
that still have available work. A class of graph which fulfills 
these properties are the cyclic hypercubes which establish 
a lifeline between two places if their number (written in a 
certain base z) is within a distance +1 in the Manhattan dis-
tance in modulo z arithmetic [39].

Malleable Programs in APGAS

At its most fundamental level, a malleable program needs to 
react to shrink and grow orders sent by the batch job sched-
uler. In the programming model implemented by APGAS, 
this finds an intuitive translation consisting of releasing and 
adding places to the partitioned global address space, as 
illustrated in Fig. 3.

This requires APGAS to be able to communicate with 
the batch job scheduler following a certain protocol. 

Fig. 3   Malleable APGAS 
program reacting to received 
shrink/grow orders
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Additionally, APGAS must be capable of initiate new 
processes and terminate processes at runtime. Finally, some 
level of preparation in response to changes in resources must 
be performed by the running user program.

To enable malleability in APGAS, we designed a generic 
framework composed of several components, as illustrated in 
Fig. 4. First, the MalleableCommunicator is responsi-
ble for communicating with the batch job scheduler. Second, 
the MalleableHandler defines the actions that need to 
be performed upon receiving a shrink or grow order from the 
batch job scheduler. As this is program-specific, program-
mers are expected to implement this MalleableHandler 
to specify these actions.

In the following  section, we introduce our new 
programming abstractions accompanied by an application 
example (GLB). We then explain how APGAS interacts with 
the batch job scheduler, followed by the consequences on 
the programming model. The source code of our modified 
APGAS library2 and the example application3 are both freely 
available on GitHub.

Programmer Abstractions

We provide an interface for the programmers to implement 
the MalleableHandler. A single instance of this 
handler will be prepared on place(0) (this choice will be 
justified in the “Consequences on the Programming Model” 
section) and its methods automatically called by APGAS 

when the corresponding orders are received. This interface 
presents the following four methods for programmers to 
implement:

•	 List<Place> preShrink(int nbPlaces)
•	 void postShrink( int nbPlaces, List<Place>  

removedPlaces)
•	 void preGrow(int nbPlaces)
•	 void postGrow(int nbPlaces, List<Place>  

continuedPlaces, List<Place> newPlaces)

Shrinking

In the implementation of the method preShrink , 
programmers choose the places to be released and perform 
any preparatory steps prior to effectively terminating their 
corresponding processes. Typically, data and tasks must be 
relocated from the places to be released to the remaining 
ones.

APGAS only terminates the corresponding processes 
when the preShrink method has returned. This allows 
programmers to use all APGAS constructs in a stable runt-
ime, thereby guaranteeing that all necessary preparations 
have completed. Upon successful process termination, the 
method postShrink is called to signal the end of the 
transition period. Here, programmers can perform the steps 
necessary for their program to resume normal execution, 
thus logically completing the shrink.

Fig. 4   Malleable APGAS 
architecture

2  https://​github.​com/​Proje​ctWag​omu/​APGAS.
3  https://​github.​com/​Proje​ctWag​omu/​Lifel​ineGLB.

https://github.com/ProjectWagomu/APGAS
https://github.com/ProjectWagomu/LifelineGLB
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Growing

Similar to shrinking, APGAS automatically calls the 
methods preGrow and postGrow before and after an 
increase in the number of places. In the method preGrow, 
the number of places to be added is passed. After new places 
have joined the runtime, the method postGrow is called. 
For convenience, the places that were continued/added are 
indicated in two distinct lists as parameters this method.

Handler Registration and De‑registration

To enable malleability in a running program, programmers 
need to register their MalleableHandler implementation 
with the APGAS runtime. This is done using a new construct 
called defineMalleableHandler. Until this registration 
occurs, the APGAS program ignores any orders sent by the 
batch job scheduler and is effectively rigid.

We justify this design by the fact that no arbitrary pro-
gram can be malleable until some level of initialization has 
been performed. This is true of the MalleableHandler 
in particular, as it may need specific data structures pertain-
ing to the running program to be initialized before it can 
be created. Hence, we consider that an APGAS program is 
malleable from the moment the MalleableHandler is 
registered with the APGAS runtime. In our implementation, 
registering the handler causes the APGAS runtime to contact 
the batch job scheduler to inform it of the fact it can now 
receive and handle malleable orders (shrink and grow).

Moreover, we also account for cases in which the 
program is in its shutdown phase and can no longer 
handle malleable orders. Therefore, we provide method 
disableMalleableHandler as a new construct to 
allow the user to prevent the arrival of further malleable 
orders. Similar to the first notification that signals to the 
batch job scheduler the capability of the program to receive 
malleable orders, a de-registration notification signals the 
batch job scheduler that it should no longer send malleable 
orders to that programs. From the moment the program 
sends this notification, it is effectively rigid.

We do not allow programs to re-register the Mallea-
bleHandler after it has been de-registered. If a malleable 
program presents phases during which a malleable change is 
not possible immediately, methods preShrink and pre-
Grow should be used to wait until the program progresses 
into a phase where malleable changes are possible.

Example: GLB Library

As introduced in  the “Lifeline-Based Global Load 
Balancing” section, the Lifeline-Based Global Load 

Balancing is a fully distributed work-stealing scheme. 
We converted it to a malleable implementation in which 
places can be added or released at runtime. We build on an 
existing malleable GLB implementation [35], but adapt it 
to our new malleable APGAS, thus significantly reducing 
its complexity and increasing the general usability. Indeed, 
the MalleableHandler implementation for our GLB 
involves the following:

•	 preShrink: disconnect the places to be released from 
the lifeline work-stealing network and relocate tasks and 
intermediate results from the places to be released to 
continuing places

•	 postShrink: no operation to be performed
•	 preGrow: no operation to be performed
•	 postGrow: new places are initialized and join the 

lifeline work-stealing network

The MalleableHandler  is registered using 
defineMalleableHandler when the computation 
begins (right before the first task is created) and 
the program remains malleable until the it reaches 
the final result reduction phase, at which point the 
MalleableHandler  is de-registered using using 
disableMalleableHandler. This guarantees that 
the parts of the result held by each node are kept during 
the reduction that is occurring at that moment. Moreover, 
as the result reduction is usually brief, there is not merit in 
changing the allotment at this phase in the execution, since 
the program will terminate anyway, thus releasing all the 
nodes it was using up.

While other malleability approaches often rely on syn-
chronization points in the user program—most commonly 
provided by iterative computations [24]—our combination 
of GLB and APGAS does not require any interruption of the 
computation to react to malleable orders.

Fig. 5   Lifecycle of a malleable APGAS program. In this example, the 
program receives a shrink and a grow order. In general, a malleable 
program may receive multiple such orders (or none at all) depending 
on the decisions made by the batch job scheduler
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Batch Job Scheduler Interactions

As explained in the “Programmer Abstractions” section, 
malleable programs and the batch job scheduler managing 
the resources of a supercomputer need to interact to 
successfully perform malleable changes. The lifecycle of a 
malleable APGAS program and its possible interactions with 
the batch job scheduler are shown in Fig. 5.

Our malleable APGAS architecture is illustrated in Fig. 4. 
Here, the MalleableCommunicator communicates 
with the batch job scheduler. While the abstract Mallea-
bleCommunicator we provide implements the general 
procedures to handle shrink and grow orders, a child class 
has to implement the details of the communication protocol 
with the batch job scheduler.

We provide the implementation SocketMalleable-
Communicator inspired by Prabhakaran et al. [37]. True 
to its name, it uses a sockets to communicate with the batch job 
scheduler. The socket is opened to receive connections upon 
the programmer registering the MalleableHandler (i.e., 
defineMalleableHandler has been called). The Sock-
etMalleableCommunicator then notifies the batch job 
scheduler that the application is now capable of receiving shrink 
and grow orders. The socket remains open until either the main 
method completes or the MalleableHandler is de-regis-
tered (i.e., disableMalleableHandler has been called), 
at which point a notification signaling the end of the malleable 
phase of the application is sent to the scheduler before the socket 
is closed.

The design of our MalleableCommunicator is modu-
lar, so that possible future expansion to other batch job sched-
ulers that may use a different protocol than the one we imple-
mented with our custom batch job scheduler. Indeed, adapting 
the APGAS runtime to work with a different batch job scheduler 
would only involve implementing the communication between 
the two; existing malleable applications and the procedures used 
to perform the malleable changes (adding and releasing places) 
need not be modified.

Shrink Orders

When the batch job scheduler sends a shrink order, the 
socket expects to receive the string shrink followed by 
the number of nodes to release. The order is then transmitted 
to the method preShrink. When the places to be released 
are identified, the corresponding nodes to be released are 
identified with an internal mapping of APGAS. After APGAS 
is called to shut down the corresponding processes, the nodes 
on which they were running are returned to the batch job 
scheduler through the socket connection, indicating that the 
may now be used by another job. The shrinking procedure is 
then completed by calling the method postShrink.

Grow Orders

Similar to shrink orders, for grow orders the batch job 
scheduler sends the string grow followed by the number of 
nodes added to the allotment, and the names of the nodes 
to spawn new processes on. The order is transmitted to the 
method preGrow. When preGrow returns, new processes 
are started on the designated nodes by the APGAS runtime. 
When all new places have successfully started, the method 
postGrow is called. Unlike shrink orders, no notification 
needs to be sent back to the batch job scheduler in this case.

Consequences on the Programming Model

As discussed above, malleable APGAS programs can add 
and release places at runtime. This straightforward concept 
has significant consequences on the APGAS programming 
model, challenging several seemingly intuitive assumptions.

In a regular, rigid, APGAS program, places are 
sequentially numbered from 0  to n − 1 for an n-process 
execution. For a shrink order, the MalleableHandler 
implementation decides which places to release, potentially 
leading to gaps in the numbering. Also, as the ids of the 
released places are not reused, gaps will remain when new 
places are later added, as illustrated in Fig. 3.

Another consequence of changing the number of places 
is a potential disruption to ongoing for loops on 
participating places. Consider the for loop in Line 2 of 
Listing 1. If a change of the number of places is ongoing, 
such a for loop may try to spawn new asynchronous 
tasks using asyncAt on a place that is currently leaving the 
computation, resulting in an error; or places that just joined 
the runtime may be left out of the for loop.

This is the reason why we introduce four methods for 
programmers to specify the actions to perform before and 
after any malleability order. This way, programmers can 
prevent any ongoing for loop from spawning a task 
that would fail immediately or, more likely, ensure that any 
such ongoing for loop is allowed to complete before the 
methods preShrink or preGrow return and the actual 
malleable change occurs. In the case of GLB, this involves 
temporarily pausing inter-place stealing to ensure that places 
to be removed are no longer considered.

The existing APGAS implementation has certain limita-
tions, notably the inability to remove place(0). This is 
due to its unique role in runtime setup and its responsibility 
for executing the main method. This motivates our decision 
to assign the MalleableCommunicator and Mallea-
bleHandler roles to place(0), given that this place is 
an immutable component of the runtime.

Another limitation is the inability for the finish 
construct to be relocated to another place. As this construct 
controls task termination, it is not possible to immediately 
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release a place containing a finish with pending tasks. 
These pending tasks need to complete for the finish to 
return, allowing the task that spawned the finish to continue 
and complete its execution. Only then will the place be 
shut down. In practice, this should be not an obstacle 
for applications unless they rely on many nested finish 
constructs opened on different places.

In the case of GLB, there are only two finish layers. At 
the top level, a single finish on place(0) controls the 
global completion of the computation and remains present 
throughout. Within this finish, one finish per place is 
spawned to control the completion of workers on that place. 
This finish returns when all tasks on that place has been 
processed; a new finish is opened in its place when work 
is received through the stealing channels. As this second 
finish only spawns local tasks, when a shrink operation 
occurs, simply causing the workers on that place to terminate 
causes this finish to also terminate, thus preserving the 
integrity of the global termination mechanism.

Evaluation

In this section, we evaluate our malleable APGAS imple-
mentation through real-world experiments. We assess the 
overhead introduced by handling shrink and grow orders 
(i.e., initiating and terminating processes). We then evalu-
ate the impact of deploying malleable APGAS programs on 
supercomputers with regard to multiple metrics. For that, we 
execute job batches composed of real rigid/moldable/malle-
able programs on a 32-node cluster, adjusting the proportion 
of moldable/malleable jobs in the job batch from 0 to 100%.

First, we present a job scheduler prototype designed to 
support malleability, including communication with malle-
able jobs. We then detail our experimental settings. The find-
ings and analysis related to malleable runtime performance 
are presented in  the “Malleable Runtime Performance” 
section, while section “Scheduler Performance” focuses 
on the scheduling performance metrics of supercomputers. 
The experimental results are further discussed in section 
“Discussion”.

Job Scheduler

Existing batch job schedulers currently used in production, 
such as Slurm [46] or Torque [41], offer no or only limited 
support for malleability. Thus, we developed a modular pro-
totype of a batch job scheduler, called ElasticJobScheduler, 
that provides support for both moldable and malleable jobs. 
Its source code is freely available on GitHub.4

ElasticJobScheduler is implemented in a modular design 
to allow for the evaluation of job scheduling algorithms 
that can handle both moldable and malleable jobs. These 
algorithms can be easily implemented and need be selected 
when starting ElasticJobScheduler.

ElasticJobScheduler resembles most of the well-known 
concepts of existing batch job schedulers. Consequently, 
programs to be executed are submitted as jobs. While 
rigid jobs are submitted with an exact number of required 
nodes, malleable jobs are submitted with a minimum and a 
maximum number of nodes. For malleable jobs, the number 
of nodes to be used to execute this job is decided by the 
scheduler at job start. ElasticJobScheduler may further 
adjust the number of nodes allocated to them between their 
specified minimum and maximum during their execution. 
If the selected job scheduling algorithm only supports 
moldable jobs, malleable jobs are treated as moldable, i.e., 
even if these jobs are capable of changing the number of 
nodes they are running on during their execution, they use 
the same number of nodes throughout.

To allow for dynamic changes in the allotment of 
malleable jobs, communication is established between 
ElasticJobScheduler and the malleable jobs. We 
implemented the workflow depicted in Fig.  5 between 
APGAS and ElasticJobScheduler. Communication is 
implemented using sockets, as detailed in section “Batch 
Job Scheduler Interactions”. Given ElasticJobScheduler 
’s modular design, it allows for future expansion in 
communication methods and, e.g., supporting evolving jobs.

We implemented the following four job scheduling 
algorithms. While the first three job scheduling algorithms—
FCFS, Backfilling, and Easy-Backfilling—are well known in 
the context of rigid job scheduling, we extended them to 
handle malleable jobs as well. As such, malleable jobs, when 
scheduled by these job scheduling algorithms, are considered 
as moldable. ElasticJobScheduler executes the selected job 
scheduling algorithm at 5-s intervals. In addition, the job 
scheduling algorithm is also triggered by specific events, 
such as the submission or completion of jobs.

First Come First Served (FCFS)

The First Come First Served (FCFS) job scheduling 
algorithm sorts submitted jobs in a queue determined by 
their submission timestamp. Jobs in this queue are started 
sequentially as soon as their required number of nodes is 
available in the supercomputer. For moldable jobs, the FCFS 
starts the jobs with the maximum possible number of nodes, 
taking both into account the specified maximum of the job 
and the currently idle nodes.

4  https://​github.​com/​Proje​ctWag​omu/​Elast​icJob​Sched​uler.

https://github.com/ProjectWagomu/ElasticJobScheduler


	 SN Computer Science           (2024) 5:349   349   Page 10 of 18

SN Computer Science

Backfilling

Similar to FCFS, the Backfilling job scheduling algorithm 
sorts jobs in a queue based on submission timestamps. If the 
required number of nodes for the foremost job in the queue is 
available, the foremost job is started. If not, Backfilling scans 
the queue for smaller jobs that may start with the currently 
available number of nodes in the supercomputer. We applied 
the same moldable job extension to Backfilling as we did 
for FCFS.

Easy‑Backfilling

The job scheduling algorithm Easy-Backfilling enhances 
Backfilling by incorporating a fairness mechanism. 
Specifically, Easy-Backfilling identifies smaller jobs that 
can run on the available nodes without impeding the start 
of the foremost job in the queue. To make this decision, the 
estimated amount of time needed by the job to complete 
execution (as specified by the user at job submission) is 
taken into account. The FCFS moldable extension was 
similarly applied to Easy-Backfilling.

Malleable‑Algorithm

The job scheduling algorithm Malleable-Algorithm adopts 
the so-called minAgree algorithm from [36], which operates 
in following three steps: 

1.	 Waiting jobs are started using Easy-Backfilling. 
Malleable jobs are always started with their minimum 
number of nodes.

2.	 If there are jobs in the queue and but not enough idle 
nodes to start them, nodes are extracted from running 
malleable jobs, allowing the start of a waiting job. The 
malleable jobs running with the largest number of nodes 
see their allotment reduced.

3.	 Any remaining idle nodes are assigned to running 
malleable jobs, with preference given to malleable jobs 
running with the smallest number of nodes.

Experimental Setting

Environment

To run the experiments, we used the cluster of the University 
of Kassel [8]. It consists of Infiniband-connected nodes, each 
equipped with two 24-core AMD EPYC 7443 CPUs and 256 
GB of main memory. As this cluster deploys Slurm, we encap-
sulate each of our job batches into a Slurm job that allocates 
33 nodes. One node is used to run ElasticJobScheduler, and 
32 nodes are used as compute nodes for executing jobs. All jobs 

start one process per allocated node with 48 worker threads each. 
We used Java in version 19.0.2.

Jobs

As described in section “Example: GLB Library”, we made 
GLB malleable by deploying our proposed malleability 
features of APGAS. Consequently, we have deployed the 
following GLB programs as jobs. These programs did not 
need to be adapted; they are automatically malleable thanks 
to our added malleability in GLB.

•	 Unbalanced Tree Search (UTS) [30] dynamically gener-
ates a highly irregular tree at runtime. Each tree node 
represents a task. The result is the number of generated 
tree nodes.

•	 N-Queens [17] calculates the number of placements of 
N queens on an N × N chessboard, so that no two queens 
threaten one-another.

•	 Betweenness Centrality (BC) [15] calculates a centrality 
score for each node of a given static graph.

•	 Pi calculates the value of � based on a number of random 
samples using a Monte Carlo algorithm.

BC and Pi deploy static tasks, i.e., all tasks are known from 
the beginning and are therefore evenly distributed at the 
beginning, and no new tasks are generated at runtime. In 
contrast, UTS and N-Queens deploy dynamic tasks and start 
the computation with a single task. This single task gener-
ates new tasks at runtime, and these new tasks can in turn 
generate new tasks, etc. Consequently, those generated tasks 
are shared between workers and nodes.

In both UTS and N-Queens, the result is a single long 
value. In Pi, the result is a single double value. In contrast, 
in BC, the result is a long array.

To facilitate the creation of well-structured job batches, 
we executed each program in multiple configurations to cre-
ate various job sizes.

Fig. 6   Running time of the GLB programs when run in rigid configu-
ration with strong-scaling from one to 16 nodes
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•	 UTS: geometric tree shape, branching factor 4, random 
seed 19, tree depth  d = 18, 19, 20

•	 N-Queens: N = 17, 18

•	 BC: random seed 2, number of graph nodes 217 , 218 , 219
•	 Pi: samples = 8 × 1010, 6 × 1011, 1.2 × 1012.

We measured the execution times of each program in strong-
scaling from 1 node up to 16 nodes for the above configura-
tions. The measured running times in rigid configuration are 
reported in Fig. 6, reflecting the average of three executions 
per configuration.

Batches

Our objective is to construct representative job batches 
designed for an approximate execution duration of 15 min 
using 32 nodes, comprising 25 distinct jobs. Consequently, 
the aggregate computational demand for one job batch is 
defined as 32 × 0.25 = 8 node hours.

To distribute this 8 node hours among the 25  jobs, 
we have allowed flexibility in job sizes, with some jobs 

demanding more nodes than others. The specific configura-
tions for these jobs, encompassing both their parameters and 
the allowed node range, are summarized in Table 2.

Relative selection probabilities were determined to facili-
tate the construction of job batches that closely match with 
the desired 8 node hours goal. To construct a job batch con-
taining 100% rigid jobs, 25 rigid jobs are selected accord-
ing to the distribution specified in Table 2, resulting in an 
approximate total of 8 node hours. However, due to inher-
ent variations—particularly in cases where a job batch may 
contain a preponderance of larger jobs—the computational 
demand (in node hours) may vary between job batches.

For our study, we generated 10 distinct job batches con-
taining 100% rigid jobs, leveraging a pseudo-random num-
ber generator initialized with 10 unique seeds.

Job batches containing malleable jobs are constructed 
based on a corresponding rigid job batch. To instantiate a 
job batch comprising, for instance, 20% (or 40%, and so on) 
malleable jobs, a subset—equivalent to 5 out of 25 (or 10 
out of 25, respectively)—of the rigid jobs are made malle-
able. The batch job schedulers can choose to execute these 
jobs with any number of nodes within the range indicated 
in Table 2.

We assume that all jobs in a job batch are submitted to 
ElasticJobScheduler within the first 10 min, and the first five 
jobs are submitted immediately at time step 0. The times-
tamps for each job submission are determined stochastically, 
following a uniform distribution [0, 10).

In total, we conducted 240 runs: 10 job batches, each 
having six proportions of malleable jobs (0%, 20%, … , 
100%), scheduled by four job scheduling algorithms.

Malleable Runtime Performance

In this section, we examine the experimental results of our 
evaluation as it pertains to the performance of APGAS pro-
grams. We analyze the overhead caused by resource changes 
in malleable GLB programs (i.e., initiating and terminating 

Table 2   Job configurations and relative selection probability in the 
job batches

Program Rigid: 
number of 
nodes

Relative 
probability

Moldable/
malleable: range 
of nodes

UTS  d = 18 2 1.5 1–4
4 0.5 1–4

UTS  d = 19 2 1.5 1–8
4 1 1–8
8 1 1–8

UTS  d = 20 8 1 8–16
16 0.5 8–16

N-Queens  N = 17 2 1.5 1–4
4 1 1–4

N-Queens  N = 18 8 1 8–16
16 0.5 8–16

BC  N = 217 2 1.5 1–4
4 1 1–4

BC  N = 218 2 1.5 1–8
4 1 1–8
8 0.5 1–8

BC  N = 219 8 1 8–16
16 0.5 8–16

Pi  8 × 1010 2 1.5 1–4
4 1 1–4

Pi  6 × 1011 4 1.5 4–16
8 1 4–16
16 0.5 4–16

Pi  12 × 1012 8 1 8–16
16 0.5 8–16

Fig. 7   Running time costs for adaption to resource changes
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processes). Figure 7 presents the measured times in seconds, 
averaged over all malleable job executions of all job batches.

The startup of a malleable GLB program takes about 6 s 
for the program to be able to receive malleable orders. This 
time includes the startup time of APGAS (unrelated to mal-
leability) which takes about 4.27 s. This is primarily caused 
by the distributed initiation of all processes/places and their 
inter-connection. The initialization of all GLB constructs 
takes 0.32 s. In addition, registering the MalleableHan-
dler and the connection establishment with the ElasticJob-
Scheduler account for the remaining 1.45 s.

Grow orders add an average of 3.8 places to the run-
ning program, which takes an average of 14.55 s. Of which, 
APGAS requires 14.09 s to initiate and connect the new pro-
cesses, following which GLB takes only 0.46 s to logically 
initialize the new workers and incorporate the new places 
into the work-stealing network. As expected, the preGrow 
method takes 0 s, since no action need be performed, while 
the postGrow method accounts for the entire 0.46 s.

Shrink orders release an average of 2.55  places, 
consuming a total of 7.41 s. Of this time, APGAS requires 
6.31 s to release and terminate the corresponding processes. 
GLB requires a mere of 1.1  s to relocate all tasks and 
intermediate results from the places to be released to the 
remaining places, and to subsequently disconnect the places 
to be released from the work-stealing network. As expected, 
shrinking is more time-consuming for GLB compared to 
growing, since the former entails the movement of tasks 
and intermediate results—a step absent in the latter. The 
method preShrink accounts for the totality of the 1.1 s as 
the method postShrink does not carry out any operation.

Notably, both growing and shrinking are efficiently 
executed at the GLB level. Moreover, the times indicated 
reflect only the times registered in the respective methods; 
the actual computation of the tasks and the work-stealing of 
the unaffected workers remain undisturbed.

The time required by the APGAS runtime is relatively 
high, primarily due to the Hazelcast [18] library it relies on 
to manage the communication between the processes. Thus, 

there is potential for enhancement in APGAS ’s process 
management in future research. More efficient deployments 
could be achieved using tools such as PMIx [21].

Figure 8 presents the average number of shrink and grow 
orders received by malleable jobs averaged across all execu-
tions of all job batches for the Malleable-Algorithm. As the 
proportion of malleable jobs increases, there is a discernible 
shift in shrink and grow orders. For 20% malleable jobs, 
there are 0.78 shrink orders per malleable job and 0.96 grow 
orders per malleable job. However, for 100% malleable jobs, 
these values decline to 0.71 shrink orders per malleable job 
and 0.58 grow orders per malleable job. This indicates that 
as the system adapts to a greater number of malleable jobs it 
stabilizes and requires fewer malleable orders per job. Over-
all, the values remain low for both shrink and grow orders in 
all situations, settling any concern about loss of performance 
due to too frequent allotment changes.

Scheduler Performance

When comparing the performance of the job scheduling 
algorithms, there are mostly two points of view that can 
be adopted: that of the operator of the supercomputer and 
that of individual users. The former may be more concerned 
with the overall usage of the entire supercomputer and its 
capability to process jobs without focusing on the jobs 
of a single user. The latter will be more concerned with 
how long it takes to obtain the results from their jobs. We 
therefore split this section into two subsections to reflect 
these different perspectives in sections “Makespan and Node 
Utilization” and “Average Job Turnaround Time.”

Makespan and Node Utilization

The metric makespan represents the overall completion time 
required to complete an entire job batch, including sched-
uling, starting, and finishing all jobs. A shorter makespan 
indicates more efficient job scheduling by the batch job 

Fig. 8   Average number of shrink and grow orders Fig. 9   Average job batch makespan depending on the proportion of 
malleable/moldable jobs and the job scheduling algorithm used
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scheduler. Recall that we constructed the job batches to com-
plete in around 15 min (or 900 s) on 32 nodes. In practice, 
since the jobs do not fit perfectly, there are times when nodes 
remain idle, resulting in longer makespans than 15 min as 
shown in Fig. 9.

As can be seen in Fig. 9, the job scheduling algorithm 
Backfilling shows the lowest makespan of all job scheduling 
algorithms. However, Backfilling exhibits only a marginal 
time decrease as the proportion of moldable jobs increases, 
with times of 1035.23 s for 0% moldable jobs and 1005.2 s 
for 100%, i.e., only a 3% improvement. Small anomalies 
appear for 60% moldable jobs and 80% moldable jobs where 
the makespan increases compared to cases where fewer 
jobs were moldable. This can be explained by unfortunate 
resource allocation or consolidation of nodes by moldable 
jobs. While Backfilling exhibits commendable performance 
for the metric makespan, it does not incorporate fairness 
considerations for jobs or users, potentially limiting its prac-
tical applicability.

The other job scheduling algorithms—FCFS, Easy-
Backfilling, and Malleable-Algorithm—demonstrate a 
more pronounced makespan reduction as the proportion 
of malleable/moldable jobs increases. FCFS, being a 
fundamental job scheduling algorithm, improves from 
1157.46 s (for 0% moldable jobs) to 1021.68 s (for 100% 
moldable jobs), marking a 13.3% improvement. Easy-
Backfilling, an extension of Backfilling with fairness 
considerations, understandably lags behind Backfilling in 
terms of this metric. However, Easy-Backfilling improves 
from 1171.95 s (for 0% moldable jobs) to 1014.40 s (for 
100% moldable jobs), marking a 15.5% improvement

Malleable-Algorithm is particularly interesting, since it is 
the only job scheduling algorithm leveraging malleable (not 
just moldable) jobs. For 0% malleable jobs, performance 
of Malleable-Algorithm is in line with Easy-Backfilling as 
expected (in the absence of moldable/malleable jobs, these 
two job scheduling algorithms are identical; minor devia-
tions result from natural variations of real program execu-
tions). As expected, Malleable-Algorithm shows improved 

performance as the proportion of malleable jobs increases, 
and for 100% malleable jobs, Malleable-Algorithm shows 
the (almost) best performance even accounting for fair-
ness across all job scheduling algorithms. Malleable-Algo-
rithm starts at 1168 s for 0% malleable jobs and decreases 
to 1006.13 s for 100% malleable jobs, an improvement of 
16.1%.

The metric average node utilization, depicted in Fig. 10, 
represents the fraction of time during which nodes are 
actively executing jobs. A higher utilization signifies that 
the nodes are being used more, potentially processing more 
jobs faster. This is confirmed when comparing the makespan 
against the average node utilization: the node utilization is 
clearly inversely correlated to the makespan—the shorter the 
makespan, the higher the node utilization.

Backfilling shows with 84.45% average node utiliza-
tion the highest value for 0% moldable jobs. This superior 
value can again be attributed to its disregard for fairness in 
job scheduling. Even as the proportions of moldable jobs 
increase, Backfilling ’s utilization remains commendably 
high, inching toward 89.54% for 100% moldable jobs. Such 
consistent efficiency underscores Backfilling ’s ability to fill 
gaps, regardless of malleable job.

The other job scheduling algorithms—FCFS, Easy-
Backfilling, and Malleable-Algorithm—show a consistent 
upward trend in average node utilization with an increasing 
proportion of malleable/moldable jobs. FCFS scales from 
an initial 75.52% for 0% moldable jobs to 88.18% for 100% 
moldable jobs, successfully leveraging the flexibility of 
moldable jobs, optimizing node utilization and reducing 
idle time of nodes Easy-Backfilling ’s trajectory closely 
parallels FCFS. It embarks with a 74.83% average node 
utilization, culminating at 88.75% as the job batches become 
predominantly malleable/moldable. The average node 
utilization of Easy-Backfilling runs largely parallel to FCFS. 

Fig. 10   Average node utilization depending on the proportion of mal-
leable/moldable jobs and the job scheduling algorithm used

Fig. 11   Average job turnaround times
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For 0% moldable jobs, Easy-Backfilling has a average node 
utilization of 74.83%, and for 100% moldable Jobs, it has 
an average node utilization of 88.75%. The increase in node 
utilization for Easy-Backfilling and Malleable-Algorithm 
confirms that the fairness mechanisms embedded into these 
algorithms do not unduly hamper their ability to utilize 
nodes efficiently.

Among all job scheduling algorithms, Malleable-Algo-
rithm has the highest increase in utilization. From an average 
node utilization of 74.78% for 0% malleable jobs, it reaches 
90.52% average node utilization for 100% moldable jobs. 
This is consistent with the nature of the algorithm as it is 
capable of of both selecting the number of nodes that mold-
able/malleable jobs use when starting their execution (just 
as both FCFS and Easy-Backfilling), and change the number 
of nodes of running jobs. Among the candidates we have 
evaluated so far, this makes Malleable-Algorithm the most 
promising overall.

Average Job Turnaround Time

The metric average job turnaround time refers to the time a 
job takes from its submission to completion, as visualized in 
Fig. 11. This metric is a composite of the job waiting time—
the time the job spends in the queue waiting to be started—
and the job computation time—the time the job needs to exe-
cute to completion—offering a comprehensive perspective on 
job processing efficiency from the users’ perspective.

Backfilling shows a relatively constant job turnaround 
time, as it is 284.41 s for 0% moldable jobs and 281.86 s for 
100% moldable jobs. However, as the proportion of mold-
able jobs increases, the job waiting times increase, because 
the moldable jobs are often started with more nodes than 
their rigid counterparts. This is also reflected in the fact that 
as the proportion of malleable jobs increases, the job com-
putation time decreases.

FCFS shows consistent decrease of the average job 
turnaround time with increasing proportion of moldable 
jobs. For 0% moldable jobs, FCFS has a turnaround time 
of 366.20 s and for 100% malleable jobs of 306.31 s. This 
is due to the fact that the flexible node numbers of the jobs 
allow for better utilization of nodes, and thus, both the job 
waiting time and the job computation time decrease as the 
proportion of moldable jobs increases. Easy-Backfilling 
corresponds quite closely to the behavior of FCFS.

Malleable-Algorithm ’s job turnaround time varies only 
slightly, with 368.87 s for 0% malleable jobs and 352.99 s for 
100% malleable jobs. While its job waiting time decreases 
from 173.51 to 140.67 s, its job computation time increases 
from 195.36 to 212.31 s. Both are caused by the fact that 
malleable jobs do not only run with more nodes than their 
rigid counterparts but also with fewer nodes. Moreover, the 

times needed by the programs to react malleable orders are 
also taken into account.

Discussion

The experimental results reinforce the anticipated correlation 
between the proportion of moldable/malleable jobs and 
job scheduling flexibility, revealing a positive impact on 
supercomputer performance across various metrics.

Notably, while Backfilling frequently yielded 
commendable outcomes, its practical relevance is 
diminished by its disregard for fairness. Consequently, it has 
been excluded from subsequent discussions. The synergy 
between Malleable-Algorithm and 100% malleable GLB 
programs utilizing our malleable APGAS runtime led to 
significant enhancements in regard to following metrics:

•	 Makespan: 13.09% decrease compared to the top-
performing algorithm for 0% malleable jobs (FCFS)

•	 Node utilization: increase of 19.86% compared to the top-
performing algorithm for 0% malleable jobs (FCFS)

•	 Job turnaround time: decrease of 3.61% compared to the 
top-performing algorithm for 0% malleable jobs (FCFS)

We should, however, introduce a word of caution concerning 
node utilization. Indeed, in the context of malleable job 
scheduling, this metric should not be seen as a primary 
objective to maximize, but rather as a reflection of the 
reduced makespan and job turnaround time. This is because 
there are limits to how much additional nodes can benefit 
the performance of parallel programs—as modeled by 
Amdhal’s law [20] for instance. Increasing the number of 
nodes of running jobs beyond reason would increase node 
utilization without actually bringing about any benefit. In our 
evaluation, the range of allowable nodes for each job were 
all chosen within a reasonable range, i.e., within the range 
where the program scales strongly (see Fig. 6 and Table 2). 
Under these conditions, the node utilization is a reasonable 
indicator of the job scheduling algorithm performance.

Overall, our results emphasize the potential benefits 
of adopting malleable job scheduling algorithms to better 
harness the processing power of supercomputers. In this 
work, we have only implemented one relatively simple 
existing malleable job scheduling algorithm. In future 
work, we expect to draw further benefits by adopting more 
complex malleable job scheduling algorithms.

As discussed in  section “Batch Job Scheduler 
Interactions,” our current implementation of communication 
between APGAS and ElasticJobScheduler is based on 
sockets. To enable compatibility of APGAS with other 
batch job schedulers that support malleability, only the 
MalleableCommunicator component would need to 
be modified to allow existing applications to be ported to this 
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new batch job scheduler. The converse is also true; to enable 
compatibility of ElasticJobScheduler with other parallel 
programming runtimes that support malleability, only a new 
communication method for ElasticJobScheduler needs to be 
implemented. Until evolving and malleable jobs are natively 
supported in batch job schedulers, encapsulating these jobs 
inside a larger one managed by ElasticJobScheduler appears 
to be a viable option for experimentation.

Related Work

While malleability has not yet been established in everyday 
supercomputing, several approaches have been proposed, 
e.g., [2, 16]. Each technique has distinct characteristics and 
may vary in effectiveness and programmer productivity 
impact. Typically, malleability solutions tailored to specific 
applications or fields prove more efficient.

The well-known checkpoint/restart technique can enable 
malleability for applications. Regularly storing the running 
application’s state as a checkpoint allows for resource adjust-
ments due to both unforeseen hardware failures or malleabil-
ity orders [19, 40]. However, since it is necessary to write 
checkpoints as well as termination and restart the applica-
tion, this results in a significant reconfiguration penalty. In-
memory checkpoint writing can mitigate this penalty [48] 
by bypassing the distributed file system. While checkpoint/
restart can be semi-transparently implemented at the user 
level, it still requires adaptations of user codes [25, 27]. In 
contrast, our proposed malleable APGAS does not require 
any checkpointing nor restarting, and facilitates program-
mer productivity through clear and easy-to-use program-
ming abstractions.

Programming systems supporting user-level malleability 
are still rare, with a few exceptions such as ULFM [5] 
and X10 [22, 43]. In ULFM, procedures render the use 
of a communicator impossible upon the discovery that 
a process has failed. Procedures to then reconstruct a 
new communicator containing one less process are then 
undertaken before the program can resume execution. These 
programming constructs are intentionally rather low-level 
and should be considered as anchor points for fault-tolerant 
libraries to to plug into. While APGAS initially supported 
changing the number of places at runtime, it did so in a 
rudimentary manner [42] before it was improved only in 
the context of GLB [35]. In this work, we disentangles 
the intertwined malleability of APGAS and GLB, further 
refined the malleability concept and improved the usability 
significantly.

Malleable algorithm research has mainly focused on itera-
tive computations offering natural synchronization points for 
application adaptation [24]. While our malleable APGAS 
requires few user code additions, it is not limited to iterative 

computations, but is ideally suitable for dynamic and irregu-
lar workloads.

Another malleability approach rather close to ours is that 
of parallel programming system Charm++ [1]. Contrary 
to the PGAS programming model, which exposes the 
distributed nature of the computation to the programmer, 
the programming model adopted by Charm++ hides this 
nature to the programmer. Instead, a Charm++ program is 
composed of multiple independent objects called chares, on 
which methods can be called by sending an asynchronous 
message from one chare to another. The messages received 
by a chare are processed sequentially by the processing 
element which hosts this chare. New chares can be created 
dynamically at runtime, and relocated between processing 
elements. As a result, converting existing application 
codes so that they become malleable can be done without 
significant code modifications, simply by activating the 
internal load balancing strategy [37].

DMRlib [24] proposes a common interface for MPI to 
support malleability by automating data redistribution 
and hide the reconfiguration internals. Both the DMRlib 
approach and that of Charm++ were combined with a 
customized version of a batch job scheduler, Slurm [46] 
and Torque [41], respectively, whereas we resorted to 
implementing a prototype batch job scheduler for the 
purpose of the experimental evaluation presented in this 
work. One next significant hurdle to overcome in providing 
support for malleable jobs will consist in integrating support 
in batch job schedulers used in current production systems, 
such as Slurm, Torque, or others. As mentioned above, some 
attempts have been made and some efforts are ongoing, but, 
understandably, they often focus on a single distributed 
runtime systems and batch job scheduler pair at a time.

Recent work by Huber et. al. made significant progress in 
this direction, adding new programming constructs to MPI 
[21] by extending the concept of MPI sessions as introduced 
as part of MPI  4.0 [26]. Requests for additional nodes 
coming from a running evolving program are transmitted 
to a slightly extended version of PMIx [33]. Our malleable 
APGAS runtime should be capable of accessing these new 
interfaces of PMIx thanks to the modular design of our 
MalleableCommunicator. Also, as current batch job 
systems already rely on PMIx to control some aspects of 
running jobs, they would only need to be modified to interact 
with running elastic jobs through the PMIx interface.

Once the challenge of communication between jobs and 
batch job schedulers is solved, the challenge of finding 
a common interaction protocol between the batch job 
schedulers and jobs will have to be resolved. One main 
challenge is that a multitude of distributed runtime systems 
that support elasticity now exist, and such a hypothetical 
standard will have to be sufficiently generic to guarantee 
program portability from a batch system to another. While 
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the 3-phase Startup/Malleable/Termination we propose is 
sufficient for the application we presented here, it lacks 
consideration for cases of program or hardware failures.

AMT’s malleability potential remains largely untapped. 
Prior research has explored worker addition in a resilient 
GLB variant in X10 [6], but lacked a shrinking protocol. A 
multi-worker GLB variant in APGAS enabled both shrinking 
and growing [14, 35]. We adapted this GLB variant and 
several benchmarks to our new malleable APGAS to 
demonstrate its ease of use. However, while we used GLB 
as an application, our malleability is not limited to GLB 
but extends to a more generic parallel programming system, 
APGAS. To the best of our knowledge, no research has 
proposed such an easy-to-use malleable AMT.

While we were able to run our experiments using a real 
supercomputer and real programs for the purposes of our 
evaluation, this approach has its limits. First and foremost, 
the job submission patterns on supercomputers are known to 
follow certain patterns and vary at multiple time scales [12], 
i.e., depending on the hour of the day, the day of week, etc. 
Studying the behavior of job scheduling algorithms should, 
therefore, be done on such time scales. Moreover, a large 
number of job batches generated with different seeds should 
be run to be able to draw general trends. This makes actually 
running malleable workloads on larger systems with larger 
number of nodes completely impractical as it would require 
a long time and significant computing resources, that would 
be better used by other “real” jobs. The only viable option 
is to resort to simulation.

The recent release of Elastisim [32] makes this possible. 
This simulator allows users to describe a supercomputer and 
job submission patterns using simple JSON files. Jobs are 
assigned configurable models that describe the behavior of 
a program such as its different computation and communi-
cation phases, the amount of computation to perform, and 
amount of data to exchange. The job scheduling algorithm 
is a modular component of the simulator and can be imple-
mented in Python, allowing easy comparison between dif-
ferent job scheduling algorithms [36]. Clearly, the reliability 
of the results obtained through simulations depends in part 
on the accuracy of the job models used for the simulations. 
The construction of a model of our GLB program for use in 
Elastisim simulations is a prospect for future work.

Conclusion

In this work, we have proposed a malleability extension for 
an existing AMT system, namely APGAS, which allows 
applications to easily adapt the node allotments by minimal 
additions to the user code. Runtime adjustments, such 
as process initiation and termination, are automatically 
managed by our malleable APGAS. The practical usability 

of our malleable APGAS was validated by adapting the GLB 
library including a collection of its benchmarks.

Furthermore, we showed the seamless integration 
potential of our malleable APGAS with potential future 
batch job schedulers, demonstrated by our newly developed 
prototype batch job scheduler, i.e., ElasticJobScheduler. 
For ElasticJobScheduler, we implemented four distinct job 
scheduling algorithms, with three handling moldable jobs 
and one specifically designed for handling malleable jobs.

For evaluations, we conducted comprehensive real-world 
experiments involving executing batches of rigid, moldable, 
and malleable jobs. The experimental results show that both 
shrinking and growing cause only a small running time 
overhead. Notably, we observed significant improvements 
in supercomputer performance metrics, including a 13.09% 
makespan reduction, a 19.86% increase in node utilization, 
and a 3.61% decrease in job turnaround time.

Future work could explore the development of evolving 
applications that autonomously initiate shrink/grow requests, 
rather than relying on the orders initiated by the batch job 
scheduler. However, determining the optimal timing and 
conditions for such requests, as well as how batch job 
schedulers should respond to these requests (given that it 
may not be possible to grant all grow requests) remains an 
open question.

The question of fairness between users of elastic jobs 
and rigid jobs also remains open. As demonstrated in 
numerous articles about the integration of elastic jobs in 
a batch system, elastic jobs bring various benefits for the 
entire supercomputer in terms of node utilization, or job 
turnaround times, etc. Nevertheless, the development 
of elastic programs requires more programming effort 
compared to the conventional rigid programs. Once the 
question of supporting elastic jobs is solved, the question 
of how to create the appropriate incentive for users to create 
elastic workloads will become prevalent. Without the 
adequate incentive, users of supercomputers may not make 
the effort to create elastic programs.
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