
Vol.:(0123456789)

SN Computer Science (2024) 5:349
https://doi.org/10.1007/s42979-024-02641-7

SN Computer Science

ORIGINAL RESEARCH

On the Performance of Malleable APGAS Programs and Batch Job
Schedulers

Patrick Finnerty1  · Jonas Posner2  · Janek Bürger2 · Leo Takaoka1 · Takuma Kanzaki1

Received: 3 November 2023 / Accepted: 18 January 2024
© The Author(s) 2024

Abstract
Malleability—the ability for applications to dynamically adjust their resource allocations at runtime—presents great potential
to enhance the efficiency and resource utilization of modern supercomputers. However, applications are rarely capable of
growing and shrinking their number of nodes at runtime, and batch job schedulers provide only rudimentary support for such
features. While numerous approaches have been proposed to enable application malleability, these typically focus on iterative
computations and require complex code modifications. This amplifies the challenges for programmers, who already wrestle
with the complexity of traditional MPI inter-node programming. Asynchronous Many-Task (AMT) programming presents a
promising alternative. In AMT, computations are split into many fine-grained tasks, which are processed by workers. This
makes transparent task relocation via the AMT runtime system possible, thus offering great potential for enabling efficient
malleability. In this work, we propose an extension to an existing AMT system, namely APGAS for Java. We provide easy-
to-use malleability programming abstractions, requiring only minor application code additions from programmers. Runtime
adjustments, such as process initialization and termination, are automatically managed by our malleability extension. We
validate our malleability extension by adapting a load balancing library handling multiple benchmarks. We show that both
shrinking and growing operations cost low execution time overhead. In addition, we demonstrate compatibility with potential
batch job schedulers by developing a prototype batch job scheduler that supports malleable jobs. Through extensive real-
world job batches execution on up to 32 nodes, involving rigid, moldable, and malleable programs, we evaluate the impact of
deploying malleable APGAS applications on supercomputers. Exploiting scheduling algorithms, such as FCFS, Backfilling,
Easy-Backfilling, and one exploiting malleable jobs, the experimental results highlight a significant improvement regarding
several metrics for malleable jobs. We show a 13.09% makespan reduction (the time needed to schedule and execute all jobs),
a 19.86% increase in node utilization, and a 3.61% decrease in job turnaround time (the time a job takes from its submission
to completion) when using 100% malleable job in combination with our prototype batch job scheduler compared to the best-
performing scheduling algorithm with 100% rigid jobs.

Keywords  Malleable runtime system · Malleable job scheduling · APGAS

Introduction

In the realm of modern supercomputing, the prevalence of
dynamic and irregular workloads—which embodies vary-
ing computational demands and unpredictable computa-
tional patterns—is steadily rising. Compounded with the
traditional static resource allocations on supercomputers,
this leads to inefficient resource utilization and diminished
overall performance.

On today’s supercomputers, users do not execute their
applications directly on the nodes, but submit them to the
batch job scheduler in the form of jobs, specifying the num-
ber of nodes and the required time. The batch job scheduler

This article is an extended version of “Patrick Finnerty, Leo
Takaoka, Takuma Kanzaki, Jonas Posner: Malleable APGAS
Programs and their Support in Batch Job Schedulers. International
European Conference on Parallel and Distributed Computing,
Workshop Asynchronous Many-Task Systems for Exascale (AMTE)
2023”.

This article is part of the topical collection “Applications and
Frameworks using the Asynchronous Many Task Paradigm” guest
edited by Patrick Diehl, Hartmut Kaiser, Peter Thoman, Steven R.
Brandt and “Ram” Ramanujam.

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-024-02641-7&domain=pdf
http://orcid.org/0000-0002-9037-967X
http://orcid.org/0000-0002-6491-1626

	 SN Computer Science (2024) 5:349 349   Page 2 of 18

SN Computer Science

then decides which jobs are started and executed, in which
order, and on which nodes. Typically, nodes are used by jobs
exclusively, meaning that a node is never utilized by two
jobs simultaneously. Thus, the scheduler’s role of allocating
nodes to jobs amounts to solving a 2-dimensional knapsack
problem.

This leads to under-utilization of supercomputer
resources, because the job shapes (required time × number
of nodes) submitted by users may not fit perfectly within
the total available node capacity of a supercomputer. One
approach to alleviating this issue involves introducing
elasticity for jobs, allowing them to dynamically change
their number of nodes at runtime.

As shown in Table 1, jobs can be categorized into four
elasticity classes based on who determines the number of
nodes a job runs with and when this determination is made
[11]. In this article, we focus on moldable and malleable
jobs in which the number of nodes used by the job can be
adjusted by the batch job scheduler when the job starts
(moldable), and during execution (malleable), respectively.

The flexibility afforded by moldable jobs allows the
batch job scheduler to start them more easily than classical
rigid jobs that require a specific number of nodes. Malle-
able jobs offer further opportunities for batch job schedul-
ers. For instance, they make it possible to shrink their cur-
rent node allotment to allow other jobs to be started earlier.
Conversely, batch job schedulers can also grow the node
allotments of running jobs, accelerating their completion.
Thus, elasticity promises to increase resource utilization,
improve job throughput, and optimize overall performance

[36]. Figure 1 shows a concise but impactful scenario com-
paring rigid (left) and elastic (right) job executions.

However, programming malleable applications remains
more challenging than programming regular rigid ones.
Moreover, batch job schedulers and traditional inter-node
programming models such as MPI provide only rudimentary
support for malleability. While numerous approaches for this
purpose have been proposed, they often require complex
modifications to application codes. They also typically focus
on iterative computations that provide “natural” synchroni-
zation points for resource adjustments [24].

Asynchronous Many-Task (AMT) programming is a
promising approach to facilitate programmer productivity,
handle dynamic and irregular workloads, and enable
malleability with only minor changes to application codes.
In AMT, programmers split large computations into many
fine-grained tasks, which are then dynamically mapped
to processing units (e.g., CPUs), called workers, by the
AMT runtime system. Due to this transparent resource
management, AMT offers great potential to provide flexible
and efficient solutions for malleability. Malleable AMT
applications could adapt to resource changes by relocating
tasks and data to added resources and away from released
resources. While this potential for malleability has been
recognized [6, 35], a lack of AMT systems that support
malleability in an efficient and simple way still remains.

This article aims to bridge this gap by proposing a malle-
ability extension to an AMT library, namely the open-source
APGAS for Java [42] (APGAS in short). APGAS extends
the well-known Partitioned Global Address Space (PGAS)
programming model by adding asynchronous task capabili-
ties. Although the original APGAS supported changes in the
number of processes, it did so in a very rudimentary manner
[42]. This was recently improved in the context of the Lifeline-
Based Global Load Balancing (GLB) library [35], but the
proposed malleability technique was tightly intertwined with
GLB. This work disentangles APGAS and GLB and makes the
following main contributions:

•	 We propose an innovative malleability technique and
implement it as an extension to APGAS [42]. Our malle-

Table 1   Job classification by Feitelson and Rudolph [11] based on
who determines the number of nodes a job runs with and when this
determination is made

Decision By job By batch job scheduler

At job start Rigid Moldable
At runtime Evolving Malleable

Fig. 1   Scheduling of rigid
only jobs (left) and elastic
only jobs (right). In the latter
situation, the makespan (time
needed to schedule and execute
the four jobs) decreases from
approximately 1200 min to
approximately 1000 min thanks
to the elastic nature of the jobs
(adapted from [36])

SN Computer Science (2024) 5:349 	 Page 3 of 18  349

SN Computer Science

ability extension empowers programmers to enable appli-
cation malleability, requiring only small code additions
thanks to our clear abstractions. Runtime adjustments,
including process initiation and termination, are auto-
matically managed by our malleability extension.

•	 We substantiate the usability of our malleable APGAS
through the adaptation of GLB including a collection of
its benchmarks.

•	 We propose a generic communication interface that ena-
bles running APGAS applications to react to shrink and
grow orders from a batch job scheduler.

•	 We develop a prototype batch job scheduler (called
ElasticJobScheduler) that supports malleability and is
capable of communicating with malleable APGAS appli-
cations. In addition, we integrate four job scheduling
algorithms—three of which can handle moldable jobs
and one of which can handle malleable jobs.

•	 We perform extensive real-world experiments of job
batches execution involving rigid, moldable, and mal-
leable programs to evaluate the impact of deploying
malleable APGAS applications on supercomputers.
The results show that both shrinking and growing
a malleable job’s node allotment cause only a small
execution time overhead. In addition, the results show
a significant improvement of supercomputer perfor-
mance regarding several metrics, including a 13.09%
makespan reduction, a 19.86% increase in node utili-
zation, and a 3.61% decrease in job turnaround time,
when using 100% malleable job in combination with
our scheduler for malleable jobs compared to the best-
performing scheduling algorithm with 100% rigid
jobs.

The remainder of this article is structured as follows. We
first cover background information on APGAS and GLB
before introducing our malleability extension to APGAS.

In the “Evaluation” section, we describe our extensive
real-world experiments including the derived results.
We then discuss related work before concluding. All the
software discussed in this article is freely available on
GitHub.1

Background

In this section, we first provide background information
about the APGAS programming model. We then discuss the
Lifeline-Based Global Load Balancing scheme we extended
using our new malleable programming abstractions.

APGAS Programming Model

The Partitioned Global Address Space (PGAS) [3, 9]
programming model facilitates programmer productivity
for programming inter-node parallel programs. PGAS
allows programmers to see memory as a single, logically
partitioned, global address space where each process
maintains its local memory. It offers direct access to remote
memory partitions alleviating the need for explicit message-
passing operations as in, e.g., MPI [26].

The PGAS programming model has been implemented
in several programming languages and runtime libraries in
different ways. For example, Co-Array Fortran (CAF) [29]
is a standalone programming language; OpenSHMEM [31],
Unified Parallel C (UPC) [10], and UPC++ [4] are libraries
for C/C++; and Titanium [45] and PCJ [28] are libraries
for Java.

1  https://​github.​com/​Proje​ctWag​omu.

Fig. 2   Asynchronous Partitioned Global Address Space (APGAS)
[3, 9] programming model. In the PGAS model, every process has
its own memory partition, represented here by different colors. A
process can access both the local memory partition (1) or a mem-
ory partition belonging to another process through the partitioned

global address space (2). Local access is faster than remote access.
The extended APGAS model adds Asynchrony to make it possible to
spawn asynchronous tasks that can can spawn other new asynchro-
nous tasks on both the local and remote processes (3) at runtime

https://github.com/ProjectWagomu

	 SN Computer Science (2024) 5:349 349   Page 4 of 18

SN Computer Science

Some languages and libraries extend PGAS into the
Asynchronous PGAS (APGAS) programming model [38].
As illustrated in Fig. 2, this allows tasks running on a
memory partition to spawn new tasks either on the same
or on a remote memory partition. In the APGAS model, a
large number of asynchronous tasks can be processed by
processing units (e.g., CPUs), called workers. Among the
programming systems that adopt the APGAS program-
ming model, a notable one is IBM’s parallel programming
language X10 [7, 23]. The X10 language introduced high-
level control structures that allow programmers to easily
express task completion constraints.

In this work, we extend the open-source APGAS for
Java library [42] (APGAS for short), which ports the key
language constructs of X10 to Java. In APGAS, a memory
partition is called a place and is typically mapped to a
physical node or processor in a distributed system.

Places are sequentially numbered from 0 to n − 1
for an n-process execution. The asyncAt construct
allows asynchronous task spawn at a remote place. Task
termination is managed with the finish construct,
which only completes once all transitively spawned
asynchronous tasks have been executed. This principle
is illustrated in Listing 1 along with a possible execution
result shown in Listing 2. The Bye message in Line 8 of
Listing 1 is printed only after each place has completed
printing its Hello message in Line 4 of Listing 1.

Lifeline‑Based Global Load Balancing

Lifeline-Based Global Load Balancing (GLB) [39] is a fully
distributed work-stealing scheme that was first implemented
as a library in X10 [44, 47] and later adapted in APGAS
[14, 34]. GLB combines random victim selection for stealing
work with pre-determined stealing channels (the so-called
lifelines) through which places that run out of work signal
their lifeline buddys and passively for work to reach them.

In this work-stealing scheme, the key work abstraction
that needs to be implemented by programmers is called a
bag. It can generally be understood as a queue of tasks,
although there are no requirements for the programmer to
actually implemented it as such.

The computation starts from a single bag given to the first
place. It is then successively split by the stealing network,
spreading the work to the other places in the execution. As
the computation progresses, each place keeps track of the
their contribution to the result. The computation completes
when all the places run out of work, which is elegantly
implemented using a single finish provided by the APGAS
runtime. The final result is then obtained by performing a
reduction across all places.

In the APGAS variant, the bag is implemented using two
generic types, B and R, where B is the implementing class
itself, and R is the type of the result produced by the com-
putation. The final overall result is obtained by performing

SN Computer Science (2024) 5:349 	 Page 5 of 18  349

SN Computer Science

a reduction on all the nodes that participated in the com-
putation. It is assumed that each task can be computed by
any worker and that they are independent of each other. In
addition, tasks cannot communicate with each other, except
for passing parameters when creating new tasks. The key
operations that a bag implementation needs to perform are:

•	 boolean process(int): processes a certain
amount of work (passed as parameter) contained in the
bag

•	 B split(boolean): returns a new bag instance
containing a splitted part (generally half) of the work
contained in the original bag; the boolean parameter
is used to take away all of the contents of the bag in case
the work it contains cannot be split

•	 void merge(B): takes a passed bag and merges its
work into the current bag

•	 boolean isEmpty(): returns whether the bag is
empty, i.e., whether it contains work or not

•	 boolean isSplittable(): returns whether split-
ting the bag is possible, i.e., if it contains enough work
to be split into two bags by calling split(false) or
if calling split(true) is necessary to obtain work
from it

•	 void submit(R): puts the contribution of this bag
into the passed instance of the result R

In this work, we build on a GLB variant enabling multiple
workers per place, where each worker has its own bag
instance [13]. Load balancing within a place is performed
by the means of a shared bag in which the workers take up
more work when they empty their bag, and collaboratively
put work back into when it is emptied.

When all the workers of a place run out of work, the
place enters a stealing phase. It first attempts to steal work
from the shared bag of a randomly selected remote place. If
successful in this random steal, new workers are spawned
and the load balancing within a place starts again. If not, the
place establishes its lifelines on pre-determined places and

passively waits for work to reach it. If able, the places on
which the lifelines were established, called lifeline buddies,
will send back some work to the place that ran out and start
new workers using an asynchronous task.

When the computation begins, the bag containing the
totality of the work is given to place(0), with the other
places stealing from it (either directly or indirectly) through
their lifelines. The computation completes when all the
places run out of work, which is elegantly implemented
using a single finish provided by the APGAS runtime.

The network created between the places by the lifelines
describes a directed graph between the places. It is necessary
for this graph to be connected; otherwise, some places may
never obtain new work once they run out. In addition, the
graph should have a bounded out-degree, meaning the num-
ber of lifelines that individual nodes can establish should be
limited. This prevents nodes from spending excessive time
addressing lifeline thieves instead of focusing on computa-
tion. Moreover, the graph should possess a low diameter, i.e.,
any place should be reachable within just a few hops from
another place. This ensures that when some places run out
of work, they can quickly receive tasks from the few places
that still have available work. A class of graph which fulfills
these properties are the cyclic hypercubes which establish
a lifeline between two places if their number (written in a
certain base z) is within a distance +1 in the Manhattan dis-
tance in modulo z arithmetic [39].

Malleable Programs in APGAS

At its most fundamental level, a malleable program needs to
react to shrink and grow orders sent by the batch job sched-
uler. In the programming model implemented by APGAS,
this finds an intuitive translation consisting of releasing and
adding places to the partitioned global address space, as
illustrated in Fig. 3.

This requires APGAS to be able to communicate with
the batch job scheduler following a certain protocol.

Fig. 3   Malleable APGAS
program reacting to received
shrink/grow orders

	 SN Computer Science (2024) 5:349 349   Page 6 of 18

SN Computer Science

Additionally, APGAS must be capable of initiate new
processes and terminate processes at runtime. Finally, some
level of preparation in response to changes in resources must
be performed by the running user program.

To enable malleability in APGAS, we designed a generic
framework composed of several components, as illustrated in
Fig. 4. First, the MalleableCommunicator is responsi-
ble for communicating with the batch job scheduler. Second,
the MalleableHandler defines the actions that need to
be performed upon receiving a shrink or grow order from the
batch job scheduler. As this is program-specific, program-
mers are expected to implement this MalleableHandler
to specify these actions.

In the following section, we introduce our new
programming abstractions accompanied by an application
example (GLB). We then explain how APGAS interacts with
the batch job scheduler, followed by the consequences on
the programming model. The source code of our modified
APGAS library2 and the example application3 are both freely
available on GitHub.

Programmer Abstractions

We provide an interface for the programmers to implement
the MalleableHandler. A single instance of this
handler will be prepared on place(0) (this choice will be
justified in the “Consequences on the Programming Model”
section) and its methods automatically called by APGAS

when the corresponding orders are received. This interface
presents the following four methods for programmers to
implement:

•	 List<Place> preShrink(int nbPlaces)
•	 void postShrink(int nbPlaces, List<Place>

removedPlaces)
•	 void preGrow(int nbPlaces)
•	 void postGrow(int nbPlaces, List<Place>

continuedPlaces, List<Place> newPlaces)

Shrinking

In the implementation of the method preShrink ,
programmers choose the places to be released and perform
any preparatory steps prior to effectively terminating their
corresponding processes. Typically, data and tasks must be
relocated from the places to be released to the remaining
ones.

APGAS only terminates the corresponding processes
when the preShrink method has returned. This allows
programmers to use all APGAS constructs in a stable runt-
ime, thereby guaranteeing that all necessary preparations
have completed. Upon successful process termination, the
method postShrink is called to signal the end of the
transition period. Here, programmers can perform the steps
necessary for their program to resume normal execution,
thus logically completing the shrink.

Fig. 4   Malleable APGAS
architecture

2  https://​github.​com/​Proje​ctWag​omu/​APGAS.
3  https://​github.​com/​Proje​ctWag​omu/​Lifel​ineGLB.

https://github.com/ProjectWagomu/APGAS
https://github.com/ProjectWagomu/LifelineGLB

SN Computer Science (2024) 5:349 	 Page 7 of 18  349

SN Computer Science

Growing

Similar to shrinking, APGAS automatically calls the
methods preGrow and postGrow before and after an
increase in the number of places. In the method preGrow,
the number of places to be added is passed. After new places
have joined the runtime, the method postGrow is called.
For convenience, the places that were continued/added are
indicated in two distinct lists as parameters this method.

Handler Registration and De‑registration

To enable malleability in a running program, programmers
need to register their MalleableHandler implementation
with the APGAS runtime. This is done using a new construct
called defineMalleableHandler. Until this registration
occurs, the APGAS program ignores any orders sent by the
batch job scheduler and is effectively rigid.

We justify this design by the fact that no arbitrary pro-
gram can be malleable until some level of initialization has
been performed. This is true of the MalleableHandler
in particular, as it may need specific data structures pertain-
ing to the running program to be initialized before it can
be created. Hence, we consider that an APGAS program is
malleable from the moment the MalleableHandler is
registered with the APGAS runtime. In our implementation,
registering the handler causes the APGAS runtime to contact
the batch job scheduler to inform it of the fact it can now
receive and handle malleable orders (shrink and grow).

Moreover, we also account for cases in which the
program is in its shutdown phase and can no longer
handle malleable orders. Therefore, we provide method
disableMalleableHandler as a new construct to
allow the user to prevent the arrival of further malleable
orders. Similar to the first notification that signals to the
batch job scheduler the capability of the program to receive
malleable orders, a de-registration notification signals the
batch job scheduler that it should no longer send malleable
orders to that programs. From the moment the program
sends this notification, it is effectively rigid.

We do not allow programs to re-register the Mallea-
bleHandler after it has been de-registered. If a malleable
program presents phases during which a malleable change is
not possible immediately, methods preShrink and pre-
Grow should be used to wait until the program progresses
into a phase where malleable changes are possible.

Example: GLB Library

As introduced in the “Lifeline-Based Global Load
Balancing” section, the Lifeline-Based Global Load

Balancing is a fully distributed work-stealing scheme.
We converted it to a malleable implementation in which
places can be added or released at runtime. We build on an
existing malleable GLB implementation [35], but adapt it
to our new malleable APGAS, thus significantly reducing
its complexity and increasing the general usability. Indeed,
the MalleableHandler implementation for our GLB
involves the following:

•	 preShrink: disconnect the places to be released from
the lifeline work-stealing network and relocate tasks and
intermediate results from the places to be released to
continuing places

•	 postShrink: no operation to be performed
•	 preGrow: no operation to be performed
•	 postGrow: new places are initialized and join the

lifeline work-stealing network

The MalleableHandler is registered using
defineMalleableHandler when the computation
begins (right before the first task is created) and
the program remains malleable until the it reaches
the final result reduction phase, at which point the
MalleableHandler is de-registered using using
disableMalleableHandler. This guarantees that
the parts of the result held by each node are kept during
the reduction that is occurring at that moment. Moreover,
as the result reduction is usually brief, there is not merit in
changing the allotment at this phase in the execution, since
the program will terminate anyway, thus releasing all the
nodes it was using up.

While other malleability approaches often rely on syn-
chronization points in the user program—most commonly
provided by iterative computations [24]—our combination
of GLB and APGAS does not require any interruption of the
computation to react to malleable orders.

Fig. 5   Lifecycle of a malleable APGAS program. In this example, the
program receives a shrink and a grow order. In general, a malleable
program may receive multiple such orders (or none at all) depending
on the decisions made by the batch job scheduler

	 SN Computer Science (2024) 5:349 349   Page 8 of 18

SN Computer Science

Batch Job Scheduler Interactions

As explained in the “Programmer Abstractions” section,
malleable programs and the batch job scheduler managing
the resources of a supercomputer need to interact to
successfully perform malleable changes. The lifecycle of a
malleable APGAS program and its possible interactions with
the batch job scheduler are shown in Fig. 5.

Our malleable APGAS architecture is illustrated in Fig. 4.
Here, the MalleableCommunicator communicates
with the batch job scheduler. While the abstract Mallea-
bleCommunicator we provide implements the general
procedures to handle shrink and grow orders, a child class
has to implement the details of the communication protocol
with the batch job scheduler.

We provide the implementation SocketMalleable-
Communicator inspired by Prabhakaran et al. [37]. True
to its name, it uses a sockets to communicate with the batch job
scheduler. The socket is opened to receive connections upon
the programmer registering the MalleableHandler (i.e.,
defineMalleableHandler has been called). The Sock-
etMalleableCommunicator then notifies the batch job
scheduler that the application is now capable of receiving shrink
and grow orders. The socket remains open until either the main
method completes or the MalleableHandler is de-regis-
tered (i.e., disableMalleableHandler has been called),
at which point a notification signaling the end of the malleable
phase of the application is sent to the scheduler before the socket
is closed.

The design of our MalleableCommunicator is modu-
lar, so that possible future expansion to other batch job sched-
ulers that may use a different protocol than the one we imple-
mented with our custom batch job scheduler. Indeed, adapting
the APGAS runtime to work with a different batch job scheduler
would only involve implementing the communication between
the two; existing malleable applications and the procedures used
to perform the malleable changes (adding and releasing places)
need not be modified.

Shrink Orders

When the batch job scheduler sends a shrink order, the
socket expects to receive the string shrink followed by
the number of nodes to release. The order is then transmitted
to the method preShrink. When the places to be released
are identified, the corresponding nodes to be released are
identified with an internal mapping of APGAS. After APGAS
is called to shut down the corresponding processes, the nodes
on which they were running are returned to the batch job
scheduler through the socket connection, indicating that the
may now be used by another job. The shrinking procedure is
then completed by calling the method postShrink.

Grow Orders

Similar to shrink orders, for grow orders the batch job
scheduler sends the string grow followed by the number of
nodes added to the allotment, and the names of the nodes
to spawn new processes on. The order is transmitted to the
method preGrow. When preGrow returns, new processes
are started on the designated nodes by the APGAS runtime.
When all new places have successfully started, the method
postGrow is called. Unlike shrink orders, no notification
needs to be sent back to the batch job scheduler in this case.

Consequences on the Programming Model

As discussed above, malleable APGAS programs can add
and release places at runtime. This straightforward concept
has significant consequences on the APGAS programming
model, challenging several seemingly intuitive assumptions.

In a regular, rigid, APGAS program, places are
sequentially numbered from 0 to n − 1 for an n-process
execution. For a shrink order, the MalleableHandler
implementation decides which places to release, potentially
leading to gaps in the numbering. Also, as the ids of the
released places are not reused, gaps will remain when new
places are later added, as illustrated in Fig. 3.

Another consequence of changing the number of places
is a potential disruption to ongoing for loops on
participating places. Consider the for loop in Line 2 of
Listing 1. If a change of the number of places is ongoing,
such a for loop may try to spawn new asynchronous
tasks using asyncAt on a place that is currently leaving the
computation, resulting in an error; or places that just joined
the runtime may be left out of the for loop.

This is the reason why we introduce four methods for
programmers to specify the actions to perform before and
after any malleability order. This way, programmers can
prevent any ongoing for loop from spawning a task
that would fail immediately or, more likely, ensure that any
such ongoing for loop is allowed to complete before the
methods preShrink or preGrow return and the actual
malleable change occurs. In the case of GLB, this involves
temporarily pausing inter-place stealing to ensure that places
to be removed are no longer considered.

The existing APGAS implementation has certain limita-
tions, notably the inability to remove place(0). This is
due to its unique role in runtime setup and its responsibility
for executing the main method. This motivates our decision
to assign the MalleableCommunicator and Mallea-
bleHandler roles to place(0), given that this place is
an immutable component of the runtime.

Another limitation is the inability for the finish
construct to be relocated to another place. As this construct
controls task termination, it is not possible to immediately

SN Computer Science (2024) 5:349 	 Page 9 of 18  349

SN Computer Science

release a place containing a finish with pending tasks.
These pending tasks need to complete for the finish to
return, allowing the task that spawned the finish to continue
and complete its execution. Only then will the place be
shut down. In practice, this should be not an obstacle
for applications unless they rely on many nested finish
constructs opened on different places.

In the case of GLB, there are only two finish layers. At
the top level, a single finish on place(0) controls the
global completion of the computation and remains present
throughout. Within this finish, one finish per place is
spawned to control the completion of workers on that place.
This finish returns when all tasks on that place has been
processed; a new finish is opened in its place when work
is received through the stealing channels. As this second
finish only spawns local tasks, when a shrink operation
occurs, simply causing the workers on that place to terminate
causes this finish to also terminate, thus preserving the
integrity of the global termination mechanism.

Evaluation

In this section, we evaluate our malleable APGAS imple-
mentation through real-world experiments. We assess the
overhead introduced by handling shrink and grow orders
(i.e., initiating and terminating processes). We then evalu-
ate the impact of deploying malleable APGAS programs on
supercomputers with regard to multiple metrics. For that, we
execute job batches composed of real rigid/moldable/malle-
able programs on a 32-node cluster, adjusting the proportion
of moldable/malleable jobs in the job batch from 0 to 100%.

First, we present a job scheduler prototype designed to
support malleability, including communication with malle-
able jobs. We then detail our experimental settings. The find-
ings and analysis related to malleable runtime performance
are presented in the “Malleable Runtime Performance”
section, while section “Scheduler Performance” focuses
on the scheduling performance metrics of supercomputers.
The experimental results are further discussed in section
“Discussion”.

Job Scheduler

Existing batch job schedulers currently used in production,
such as Slurm [46] or Torque [41], offer no or only limited
support for malleability. Thus, we developed a modular pro-
totype of a batch job scheduler, called ElasticJobScheduler,
that provides support for both moldable and malleable jobs.
Its source code is freely available on GitHub.4

ElasticJobScheduler is implemented in a modular design
to allow for the evaluation of job scheduling algorithms
that can handle both moldable and malleable jobs. These
algorithms can be easily implemented and need be selected
when starting ElasticJobScheduler.

ElasticJobScheduler resembles most of the well-known
concepts of existing batch job schedulers. Consequently,
programs to be executed are submitted as jobs. While
rigid jobs are submitted with an exact number of required
nodes, malleable jobs are submitted with a minimum and a
maximum number of nodes. For malleable jobs, the number
of nodes to be used to execute this job is decided by the
scheduler at job start. ElasticJobScheduler may further
adjust the number of nodes allocated to them between their
specified minimum and maximum during their execution.
If the selected job scheduling algorithm only supports
moldable jobs, malleable jobs are treated as moldable, i.e.,
even if these jobs are capable of changing the number of
nodes they are running on during their execution, they use
the same number of nodes throughout.

To allow for dynamic changes in the allotment of
malleable jobs, communication is established between
ElasticJobScheduler and the malleable jobs. We
implemented the workflow depicted in Fig. 5 between
APGAS and ElasticJobScheduler. Communication is
implemented using sockets, as detailed in section “Batch
Job Scheduler Interactions”. Given ElasticJobScheduler
’s modular design, it allows for future expansion in
communication methods and, e.g., supporting evolving jobs.

We implemented the following four job scheduling
algorithms. While the first three job scheduling algorithms—
FCFS, Backfilling, and Easy-Backfilling—are well known in
the context of rigid job scheduling, we extended them to
handle malleable jobs as well. As such, malleable jobs, when
scheduled by these job scheduling algorithms, are considered
as moldable. ElasticJobScheduler executes the selected job
scheduling algorithm at 5-s intervals. In addition, the job
scheduling algorithm is also triggered by specific events,
such as the submission or completion of jobs.

First Come First Served (FCFS)

The First Come First Served (FCFS) job scheduling
algorithm sorts submitted jobs in a queue determined by
their submission timestamp. Jobs in this queue are started
sequentially as soon as their required number of nodes is
available in the supercomputer. For moldable jobs, the FCFS
starts the jobs with the maximum possible number of nodes,
taking both into account the specified maximum of the job
and the currently idle nodes.

4  https://​github.​com/​Proje​ctWag​omu/​Elast​icJob​Sched​uler.

https://github.com/ProjectWagomu/ElasticJobScheduler

	 SN Computer Science (2024) 5:349 349   Page 10 of 18

SN Computer Science

Backfilling

Similar to FCFS, the Backfilling job scheduling algorithm
sorts jobs in a queue based on submission timestamps. If the
required number of nodes for the foremost job in the queue is
available, the foremost job is started. If not, Backfilling scans
the queue for smaller jobs that may start with the currently
available number of nodes in the supercomputer. We applied
the same moldable job extension to Backfilling as we did
for FCFS.

Easy‑Backfilling

The job scheduling algorithm Easy-Backfilling enhances
Backfilling by incorporating a fairness mechanism.
Specifically, Easy-Backfilling identifies smaller jobs that
can run on the available nodes without impeding the start
of the foremost job in the queue. To make this decision, the
estimated amount of time needed by the job to complete
execution (as specified by the user at job submission) is
taken into account. The FCFS moldable extension was
similarly applied to Easy-Backfilling.

Malleable‑Algorithm

The job scheduling algorithm Malleable-Algorithm adopts
the so-called minAgree algorithm from [36], which operates
in following three steps:

1.	 Waiting jobs are started using Easy-Backfilling.
Malleable jobs are always started with their minimum
number of nodes.

2.	 If there are jobs in the queue and but not enough idle
nodes to start them, nodes are extracted from running
malleable jobs, allowing the start of a waiting job. The
malleable jobs running with the largest number of nodes
see their allotment reduced.

3.	 Any remaining idle nodes are assigned to running
malleable jobs, with preference given to malleable jobs
running with the smallest number of nodes.

Experimental Setting

Environment

To run the experiments, we used the cluster of the University
of Kassel [8]. It consists of Infiniband-connected nodes, each
equipped with two 24-core AMD EPYC 7443 CPUs and 256
GB of main memory. As this cluster deploys Slurm, we encap-
sulate each of our job batches into a Slurm job that allocates
33 nodes. One node is used to run ElasticJobScheduler, and
32 nodes are used as compute nodes for executing jobs. All jobs

start one process per allocated node with 48 worker threads each.
We used Java in version 19.0.2.

Jobs

As described in section “Example: GLB Library”, we made
GLB malleable by deploying our proposed malleability
features of APGAS. Consequently, we have deployed the
following GLB programs as jobs. These programs did not
need to be adapted; they are automatically malleable thanks
to our added malleability in GLB.

•	 Unbalanced Tree Search (UTS) [30] dynamically gener-
ates a highly irregular tree at runtime. Each tree node
represents a task. The result is the number of generated
tree nodes.

•	 N-Queens [17] calculates the number of placements of
N queens on an N × N chessboard, so that no two queens
threaten one-another.

•	 Betweenness Centrality (BC) [15] calculates a centrality
score for each node of a given static graph.

•	 Pi calculates the value of � based on a number of random
samples using a Monte Carlo algorithm.

BC and Pi deploy static tasks, i.e., all tasks are known from
the beginning and are therefore evenly distributed at the
beginning, and no new tasks are generated at runtime. In
contrast, UTS and N-Queens deploy dynamic tasks and start
the computation with a single task. This single task gener-
ates new tasks at runtime, and these new tasks can in turn
generate new tasks, etc. Consequently, those generated tasks
are shared between workers and nodes.

In both UTS and N-Queens, the result is a single long
value. In Pi, the result is a single double value. In contrast,
in BC, the result is a long array.

To facilitate the creation of well-structured job batches,
we executed each program in multiple configurations to cre-
ate various job sizes.

Fig. 6   Running time of the GLB programs when run in rigid configu-
ration with strong-scaling from one to 16 nodes

SN Computer Science (2024) 5:349 	 Page 11 of 18  349

SN Computer Science

•	 UTS: geometric tree shape, branching factor 4, random
seed 19, tree depth d = 18, 19, 20

•	 N-Queens: N = 17, 18

•	 BC: random seed 2, number of graph nodes 217 , 218 , 219
•	 Pi: samples = 8 × 1010, 6 × 1011, 1.2 × 1012.

We measured the execution times of each program in strong-
scaling from 1 node up to 16 nodes for the above configura-
tions. The measured running times in rigid configuration are
reported in Fig. 6, reflecting the average of three executions
per configuration.

Batches

Our objective is to construct representative job batches
designed for an approximate execution duration of 15 min
using 32 nodes, comprising 25 distinct jobs. Consequently,
the aggregate computational demand for one job batch is
defined as 32 × 0.25 = 8 node hours.

To distribute this 8 node hours among the 25 jobs,
we have allowed flexibility in job sizes, with some jobs

demanding more nodes than others. The specific configura-
tions for these jobs, encompassing both their parameters and
the allowed node range, are summarized in Table 2.

Relative selection probabilities were determined to facili-
tate the construction of job batches that closely match with
the desired 8 node hours goal. To construct a job batch con-
taining 100% rigid jobs, 25 rigid jobs are selected accord-
ing to the distribution specified in Table 2, resulting in an
approximate total of 8 node hours. However, due to inher-
ent variations—particularly in cases where a job batch may
contain a preponderance of larger jobs—the computational
demand (in node hours) may vary between job batches.

For our study, we generated 10 distinct job batches con-
taining 100% rigid jobs, leveraging a pseudo-random num-
ber generator initialized with 10 unique seeds.

Job batches containing malleable jobs are constructed
based on a corresponding rigid job batch. To instantiate a
job batch comprising, for instance, 20% (or 40%, and so on)
malleable jobs, a subset—equivalent to 5 out of 25 (or 10
out of 25, respectively)—of the rigid jobs are made malle-
able. The batch job schedulers can choose to execute these
jobs with any number of nodes within the range indicated
in Table 2.

We assume that all jobs in a job batch are submitted to
ElasticJobScheduler within the first 10 min, and the first five
jobs are submitted immediately at time step 0. The times-
tamps for each job submission are determined stochastically,
following a uniform distribution [0, 10).

In total, we conducted 240 runs: 10 job batches, each
having six proportions of malleable jobs (0%, 20%, … ,
100%), scheduled by four job scheduling algorithms.

Malleable Runtime Performance

In this section, we examine the experimental results of our
evaluation as it pertains to the performance of APGAS pro-
grams. We analyze the overhead caused by resource changes
in malleable GLB programs (i.e., initiating and terminating

Table 2   Job configurations and relative selection probability in the
job batches

Program Rigid:
number of
nodes

Relative
probability

Moldable/
malleable: range
of nodes

UTS d = 18 2 1.5 1–4
4 0.5 1–4

UTS d = 19 2 1.5 1–8
4 1 1–8
8 1 1–8

UTS d = 20 8 1 8–16
16 0.5 8–16

N-Queens N = 17 2 1.5 1–4
4 1 1–4

N-Queens N = 18 8 1 8–16
16 0.5 8–16

BC N = 217 2 1.5 1–4
4 1 1–4

BC N = 218 2 1.5 1–8
4 1 1–8
8 0.5 1–8

BC N = 219 8 1 8–16
16 0.5 8–16

Pi 8 × 1010 2 1.5 1–4
4 1 1–4

Pi 6 × 1011 4 1.5 4–16
8 1 4–16
16 0.5 4–16

Pi 12 × 1012 8 1 8–16
16 0.5 8–16

Fig. 7   Running time costs for adaption to resource changes

	 SN Computer Science (2024) 5:349 349   Page 12 of 18

SN Computer Science

processes). Figure 7 presents the measured times in seconds,
averaged over all malleable job executions of all job batches.

The startup of a malleable GLB program takes about 6 s
for the program to be able to receive malleable orders. This
time includes the startup time of APGAS (unrelated to mal-
leability) which takes about 4.27 s. This is primarily caused
by the distributed initiation of all processes/places and their
inter-connection. The initialization of all GLB constructs
takes 0.32 s. In addition, registering the MalleableHan-
dler and the connection establishment with the ElasticJob-
Scheduler account for the remaining 1.45 s.

Grow orders add an average of 3.8 places to the run-
ning program, which takes an average of 14.55 s. Of which,
APGAS requires 14.09 s to initiate and connect the new pro-
cesses, following which GLB takes only 0.46 s to logically
initialize the new workers and incorporate the new places
into the work-stealing network. As expected, the preGrow
method takes 0 s, since no action need be performed, while
the postGrow method accounts for the entire 0.46 s.

Shrink orders release an average of 2.55 places,
consuming a total of 7.41 s. Of this time, APGAS requires
6.31 s to release and terminate the corresponding processes.
GLB requires a mere of 1.1 s to relocate all tasks and
intermediate results from the places to be released to the
remaining places, and to subsequently disconnect the places
to be released from the work-stealing network. As expected,
shrinking is more time-consuming for GLB compared to
growing, since the former entails the movement of tasks
and intermediate results—a step absent in the latter. The
method preShrink accounts for the totality of the 1.1 s as
the method postShrink does not carry out any operation.

Notably, both growing and shrinking are efficiently
executed at the GLB level. Moreover, the times indicated
reflect only the times registered in the respective methods;
the actual computation of the tasks and the work-stealing of
the unaffected workers remain undisturbed.

The time required by the APGAS runtime is relatively
high, primarily due to the Hazelcast [18] library it relies on
to manage the communication between the processes. Thus,

there is potential for enhancement in APGAS ’s process
management in future research. More efficient deployments
could be achieved using tools such as PMIx [21].

Figure 8 presents the average number of shrink and grow
orders received by malleable jobs averaged across all execu-
tions of all job batches for the Malleable-Algorithm. As the
proportion of malleable jobs increases, there is a discernible
shift in shrink and grow orders. For 20% malleable jobs,
there are 0.78 shrink orders per malleable job and 0.96 grow
orders per malleable job. However, for 100% malleable jobs,
these values decline to 0.71 shrink orders per malleable job
and 0.58 grow orders per malleable job. This indicates that
as the system adapts to a greater number of malleable jobs it
stabilizes and requires fewer malleable orders per job. Over-
all, the values remain low for both shrink and grow orders in
all situations, settling any concern about loss of performance
due to too frequent allotment changes.

Scheduler Performance

When comparing the performance of the job scheduling
algorithms, there are mostly two points of view that can
be adopted: that of the operator of the supercomputer and
that of individual users. The former may be more concerned
with the overall usage of the entire supercomputer and its
capability to process jobs without focusing on the jobs
of a single user. The latter will be more concerned with
how long it takes to obtain the results from their jobs. We
therefore split this section into two subsections to reflect
these different perspectives in sections “Makespan and Node
Utilization” and “Average Job Turnaround Time.”

Makespan and Node Utilization

The metric makespan represents the overall completion time
required to complete an entire job batch, including sched-
uling, starting, and finishing all jobs. A shorter makespan
indicates more efficient job scheduling by the batch job

Fig. 8   Average number of shrink and grow orders Fig. 9   Average job batch makespan depending on the proportion of
malleable/moldable jobs and the job scheduling algorithm used

SN Computer Science (2024) 5:349 	 Page 13 of 18  349

SN Computer Science

scheduler. Recall that we constructed the job batches to com-
plete in around 15 min (or 900 s) on 32 nodes. In practice,
since the jobs do not fit perfectly, there are times when nodes
remain idle, resulting in longer makespans than 15 min as
shown in Fig. 9.

As can be seen in Fig. 9, the job scheduling algorithm
Backfilling shows the lowest makespan of all job scheduling
algorithms. However, Backfilling exhibits only a marginal
time decrease as the proportion of moldable jobs increases,
with times of 1035.23 s for 0% moldable jobs and 1005.2 s
for 100%, i.e., only a 3% improvement. Small anomalies
appear for 60% moldable jobs and 80% moldable jobs where
the makespan increases compared to cases where fewer
jobs were moldable. This can be explained by unfortunate
resource allocation or consolidation of nodes by moldable
jobs. While Backfilling exhibits commendable performance
for the metric makespan, it does not incorporate fairness
considerations for jobs or users, potentially limiting its prac-
tical applicability.

The other job scheduling algorithms—FCFS, Easy-
Backfilling, and Malleable-Algorithm—demonstrate a
more pronounced makespan reduction as the proportion
of malleable/moldable jobs increases. FCFS, being a
fundamental job scheduling algorithm, improves from
1157.46 s (for 0% moldable jobs) to 1021.68 s (for 100%
moldable jobs), marking a 13.3% improvement. Easy-
Backfilling, an extension of Backfilling with fairness
considerations, understandably lags behind Backfilling in
terms of this metric. However, Easy-Backfilling improves
from 1171.95 s (for 0% moldable jobs) to 1014.40 s (for
100% moldable jobs), marking a 15.5% improvement

Malleable-Algorithm is particularly interesting, since it is
the only job scheduling algorithm leveraging malleable (not
just moldable) jobs. For 0% malleable jobs, performance
of Malleable-Algorithm is in line with Easy-Backfilling as
expected (in the absence of moldable/malleable jobs, these
two job scheduling algorithms are identical; minor devia-
tions result from natural variations of real program execu-
tions). As expected, Malleable-Algorithm shows improved

performance as the proportion of malleable jobs increases,
and for 100% malleable jobs, Malleable-Algorithm shows
the (almost) best performance even accounting for fair-
ness across all job scheduling algorithms. Malleable-Algo-
rithm starts at 1168 s for 0% malleable jobs and decreases
to 1006.13 s for 100% malleable jobs, an improvement of
16.1%.

The metric average node utilization, depicted in Fig. 10,
represents the fraction of time during which nodes are
actively executing jobs. A higher utilization signifies that
the nodes are being used more, potentially processing more
jobs faster. This is confirmed when comparing the makespan
against the average node utilization: the node utilization is
clearly inversely correlated to the makespan—the shorter the
makespan, the higher the node utilization.

Backfilling shows with 84.45% average node utiliza-
tion the highest value for 0% moldable jobs. This superior
value can again be attributed to its disregard for fairness in
job scheduling. Even as the proportions of moldable jobs
increase, Backfilling ’s utilization remains commendably
high, inching toward 89.54% for 100% moldable jobs. Such
consistent efficiency underscores Backfilling ’s ability to fill
gaps, regardless of malleable job.

The other job scheduling algorithms—FCFS, Easy-
Backfilling, and Malleable-Algorithm—show a consistent
upward trend in average node utilization with an increasing
proportion of malleable/moldable jobs. FCFS scales from
an initial 75.52% for 0% moldable jobs to 88.18% for 100%
moldable jobs, successfully leveraging the flexibility of
moldable jobs, optimizing node utilization and reducing
idle time of nodes Easy-Backfilling ’s trajectory closely
parallels FCFS. It embarks with a 74.83% average node
utilization, culminating at 88.75% as the job batches become
predominantly malleable/moldable. The average node
utilization of Easy-Backfilling runs largely parallel to FCFS.

Fig. 10   Average node utilization depending on the proportion of mal-
leable/moldable jobs and the job scheduling algorithm used

Fig. 11   Average job turnaround times

	 SN Computer Science (2024) 5:349 349   Page 14 of 18

SN Computer Science

For 0% moldable jobs, Easy-Backfilling has a average node
utilization of 74.83%, and for 100% moldable Jobs, it has
an average node utilization of 88.75%. The increase in node
utilization for Easy-Backfilling and Malleable-Algorithm
confirms that the fairness mechanisms embedded into these
algorithms do not unduly hamper their ability to utilize
nodes efficiently.

Among all job scheduling algorithms, Malleable-Algo-
rithm has the highest increase in utilization. From an average
node utilization of 74.78% for 0% malleable jobs, it reaches
90.52% average node utilization for 100% moldable jobs.
This is consistent with the nature of the algorithm as it is
capable of of both selecting the number of nodes that mold-
able/malleable jobs use when starting their execution (just
as both FCFS and Easy-Backfilling), and change the number
of nodes of running jobs. Among the candidates we have
evaluated so far, this makes Malleable-Algorithm the most
promising overall.

Average Job Turnaround Time

The metric average job turnaround time refers to the time a
job takes from its submission to completion, as visualized in
Fig. 11. This metric is a composite of the job waiting time—
the time the job spends in the queue waiting to be started—
and the job computation time—the time the job needs to exe-
cute to completion—offering a comprehensive perspective on
job processing efficiency from the users’ perspective.

Backfilling shows a relatively constant job turnaround
time, as it is 284.41 s for 0% moldable jobs and 281.86 s for
100% moldable jobs. However, as the proportion of mold-
able jobs increases, the job waiting times increase, because
the moldable jobs are often started with more nodes than
their rigid counterparts. This is also reflected in the fact that
as the proportion of malleable jobs increases, the job com-
putation time decreases.

FCFS shows consistent decrease of the average job
turnaround time with increasing proportion of moldable
jobs. For 0% moldable jobs, FCFS has a turnaround time
of 366.20 s and for 100% malleable jobs of 306.31 s. This
is due to the fact that the flexible node numbers of the jobs
allow for better utilization of nodes, and thus, both the job
waiting time and the job computation time decrease as the
proportion of moldable jobs increases. Easy-Backfilling
corresponds quite closely to the behavior of FCFS.

Malleable-Algorithm ’s job turnaround time varies only
slightly, with 368.87 s for 0% malleable jobs and 352.99 s for
100% malleable jobs. While its job waiting time decreases
from 173.51 to 140.67 s, its job computation time increases
from 195.36 to 212.31 s. Both are caused by the fact that
malleable jobs do not only run with more nodes than their
rigid counterparts but also with fewer nodes. Moreover, the

times needed by the programs to react malleable orders are
also taken into account.

Discussion

The experimental results reinforce the anticipated correlation
between the proportion of moldable/malleable jobs and
job scheduling flexibility, revealing a positive impact on
supercomputer performance across various metrics.

Notably, while Backfilling frequently yielded
commendable outcomes, its practical relevance is
diminished by its disregard for fairness. Consequently, it has
been excluded from subsequent discussions. The synergy
between Malleable-Algorithm and 100% malleable GLB
programs utilizing our malleable APGAS runtime led to
significant enhancements in regard to following metrics:

•	 Makespan: 13.09% decrease compared to the top-
performing algorithm for 0% malleable jobs (FCFS)

•	 Node utilization: increase of 19.86% compared to the top-
performing algorithm for 0% malleable jobs (FCFS)

•	 Job turnaround time: decrease of 3.61% compared to the
top-performing algorithm for 0% malleable jobs (FCFS)

We should, however, introduce a word of caution concerning
node utilization. Indeed, in the context of malleable job
scheduling, this metric should not be seen as a primary
objective to maximize, but rather as a reflection of the
reduced makespan and job turnaround time. This is because
there are limits to how much additional nodes can benefit
the performance of parallel programs—as modeled by
Amdhal’s law [20] for instance. Increasing the number of
nodes of running jobs beyond reason would increase node
utilization without actually bringing about any benefit. In our
evaluation, the range of allowable nodes for each job were
all chosen within a reasonable range, i.e., within the range
where the program scales strongly (see Fig. 6 and Table 2).
Under these conditions, the node utilization is a reasonable
indicator of the job scheduling algorithm performance.

Overall, our results emphasize the potential benefits
of adopting malleable job scheduling algorithms to better
harness the processing power of supercomputers. In this
work, we have only implemented one relatively simple
existing malleable job scheduling algorithm. In future
work, we expect to draw further benefits by adopting more
complex malleable job scheduling algorithms.

As discussed in section “Batch Job Scheduler
Interactions,” our current implementation of communication
between APGAS and ElasticJobScheduler is based on
sockets. To enable compatibility of APGAS with other
batch job schedulers that support malleability, only the
MalleableCommunicator component would need to
be modified to allow existing applications to be ported to this

SN Computer Science (2024) 5:349 	 Page 15 of 18  349

SN Computer Science

new batch job scheduler. The converse is also true; to enable
compatibility of ElasticJobScheduler with other parallel
programming runtimes that support malleability, only a new
communication method for ElasticJobScheduler needs to be
implemented. Until evolving and malleable jobs are natively
supported in batch job schedulers, encapsulating these jobs
inside a larger one managed by ElasticJobScheduler appears
to be a viable option for experimentation.

Related Work

While malleability has not yet been established in everyday
supercomputing, several approaches have been proposed,
e.g., [2, 16]. Each technique has distinct characteristics and
may vary in effectiveness and programmer productivity
impact. Typically, malleability solutions tailored to specific
applications or fields prove more efficient.

The well-known checkpoint/restart technique can enable
malleability for applications. Regularly storing the running
application’s state as a checkpoint allows for resource adjust-
ments due to both unforeseen hardware failures or malleabil-
ity orders [19, 40]. However, since it is necessary to write
checkpoints as well as termination and restart the applica-
tion, this results in a significant reconfiguration penalty. In-
memory checkpoint writing can mitigate this penalty [48]
by bypassing the distributed file system. While checkpoint/
restart can be semi-transparently implemented at the user
level, it still requires adaptations of user codes [25, 27]. In
contrast, our proposed malleable APGAS does not require
any checkpointing nor restarting, and facilitates program-
mer productivity through clear and easy-to-use program-
ming abstractions.

Programming systems supporting user-level malleability
are still rare, with a few exceptions such as ULFM [5]
and X10 [22, 43]. In ULFM, procedures render the use
of a communicator impossible upon the discovery that
a process has failed. Procedures to then reconstruct a
new communicator containing one less process are then
undertaken before the program can resume execution. These
programming constructs are intentionally rather low-level
and should be considered as anchor points for fault-tolerant
libraries to to plug into. While APGAS initially supported
changing the number of places at runtime, it did so in a
rudimentary manner [42] before it was improved only in
the context of GLB [35]. In this work, we disentangles
the intertwined malleability of APGAS and GLB, further
refined the malleability concept and improved the usability
significantly.

Malleable algorithm research has mainly focused on itera-
tive computations offering natural synchronization points for
application adaptation [24]. While our malleable APGAS
requires few user code additions, it is not limited to iterative

computations, but is ideally suitable for dynamic and irregu-
lar workloads.

Another malleability approach rather close to ours is that
of parallel programming system Charm++ [1]. Contrary
to the PGAS programming model, which exposes the
distributed nature of the computation to the programmer,
the programming model adopted by Charm++ hides this
nature to the programmer. Instead, a Charm++ program is
composed of multiple independent objects called chares, on
which methods can be called by sending an asynchronous
message from one chare to another. The messages received
by a chare are processed sequentially by the processing
element which hosts this chare. New chares can be created
dynamically at runtime, and relocated between processing
elements. As a result, converting existing application
codes so that they become malleable can be done without
significant code modifications, simply by activating the
internal load balancing strategy [37].

DMRlib [24] proposes a common interface for MPI to
support malleability by automating data redistribution
and hide the reconfiguration internals. Both the DMRlib
approach and that of Charm++ were combined with a
customized version of a batch job scheduler, Slurm [46]
and Torque [41], respectively, whereas we resorted to
implementing a prototype batch job scheduler for the
purpose of the experimental evaluation presented in this
work. One next significant hurdle to overcome in providing
support for malleable jobs will consist in integrating support
in batch job schedulers used in current production systems,
such as Slurm, Torque, or others. As mentioned above, some
attempts have been made and some efforts are ongoing, but,
understandably, they often focus on a single distributed
runtime systems and batch job scheduler pair at a time.

Recent work by Huber et. al. made significant progress in
this direction, adding new programming constructs to MPI
[21] by extending the concept of MPI sessions as introduced
as part of MPI 4.0 [26]. Requests for additional nodes
coming from a running evolving program are transmitted
to a slightly extended version of PMIx [33]. Our malleable
APGAS runtime should be capable of accessing these new
interfaces of PMIx thanks to the modular design of our
MalleableCommunicator. Also, as current batch job
systems already rely on PMIx to control some aspects of
running jobs, they would only need to be modified to interact
with running elastic jobs through the PMIx interface.

Once the challenge of communication between jobs and
batch job schedulers is solved, the challenge of finding
a common interaction protocol between the batch job
schedulers and jobs will have to be resolved. One main
challenge is that a multitude of distributed runtime systems
that support elasticity now exist, and such a hypothetical
standard will have to be sufficiently generic to guarantee
program portability from a batch system to another. While

	 SN Computer Science (2024) 5:349 349   Page 16 of 18

SN Computer Science

the 3-phase Startup/Malleable/Termination we propose is
sufficient for the application we presented here, it lacks
consideration for cases of program or hardware failures.

AMT’s malleability potential remains largely untapped.
Prior research has explored worker addition in a resilient
GLB variant in X10 [6], but lacked a shrinking protocol. A
multi-worker GLB variant in APGAS enabled both shrinking
and growing [14, 35]. We adapted this GLB variant and
several benchmarks to our new malleable APGAS to
demonstrate its ease of use. However, while we used GLB
as an application, our malleability is not limited to GLB
but extends to a more generic parallel programming system,
APGAS. To the best of our knowledge, no research has
proposed such an easy-to-use malleable AMT.

While we were able to run our experiments using a real
supercomputer and real programs for the purposes of our
evaluation, this approach has its limits. First and foremost,
the job submission patterns on supercomputers are known to
follow certain patterns and vary at multiple time scales [12],
i.e., depending on the hour of the day, the day of week, etc.
Studying the behavior of job scheduling algorithms should,
therefore, be done on such time scales. Moreover, a large
number of job batches generated with different seeds should
be run to be able to draw general trends. This makes actually
running malleable workloads on larger systems with larger
number of nodes completely impractical as it would require
a long time and significant computing resources, that would
be better used by other “real” jobs. The only viable option
is to resort to simulation.

The recent release of Elastisim [32] makes this possible.
This simulator allows users to describe a supercomputer and
job submission patterns using simple JSON files. Jobs are
assigned configurable models that describe the behavior of
a program such as its different computation and communi-
cation phases, the amount of computation to perform, and
amount of data to exchange. The job scheduling algorithm
is a modular component of the simulator and can be imple-
mented in Python, allowing easy comparison between dif-
ferent job scheduling algorithms [36]. Clearly, the reliability
of the results obtained through simulations depends in part
on the accuracy of the job models used for the simulations.
The construction of a model of our GLB program for use in
Elastisim simulations is a prospect for future work.

Conclusion

In this work, we have proposed a malleability extension for
an existing AMT system, namely APGAS, which allows
applications to easily adapt the node allotments by minimal
additions to the user code. Runtime adjustments, such
as process initiation and termination, are automatically
managed by our malleable APGAS. The practical usability

of our malleable APGAS was validated by adapting the GLB
library including a collection of its benchmarks.

Furthermore, we showed the seamless integration
potential of our malleable APGAS with potential future
batch job schedulers, demonstrated by our newly developed
prototype batch job scheduler, i.e., ElasticJobScheduler.
For ElasticJobScheduler, we implemented four distinct job
scheduling algorithms, with three handling moldable jobs
and one specifically designed for handling malleable jobs.

For evaluations, we conducted comprehensive real-world
experiments involving executing batches of rigid, moldable,
and malleable jobs. The experimental results show that both
shrinking and growing cause only a small running time
overhead. Notably, we observed significant improvements
in supercomputer performance metrics, including a 13.09%
makespan reduction, a 19.86% increase in node utilization,
and a 3.61% decrease in job turnaround time.

Future work could explore the development of evolving
applications that autonomously initiate shrink/grow requests,
rather than relying on the orders initiated by the batch job
scheduler. However, determining the optimal timing and
conditions for such requests, as well as how batch job
schedulers should respond to these requests (given that it
may not be possible to grant all grow requests) remains an
open question.

The question of fairness between users of elastic jobs
and rigid jobs also remains open. As demonstrated in
numerous articles about the integration of elastic jobs in
a batch system, elastic jobs bring various benefits for the
entire supercomputer in terms of node utilization, or job
turnaround times, etc. Nevertheless, the development
of elastic programs requires more programming effort
compared to the conventional rigid programs. Once the
question of supporting elastic jobs is solved, the question
of how to create the appropriate incentive for users to create
elastic workloads will become prevalent. Without the
adequate incentive, users of supercomputers may not make
the effort to create elastic programs.

Author Contributions  The authors are listed in order of contribution
to this article.

Funding  Open Access funding enabled and organized by Projekt
DEAL. This research received no funding.

Data availability  The entirety of the source code of the programs used
in this paper is available online:

APGAS: https://​github.​com/​Proje​ctWag​omu/​APGAS/​relea​ses/​tag/​
v0.0.2, https://​doi.​org/​10.​5281/​zenodo.​10495​541.

GLB: https://​github.​com/​Proje​ctWag​omu/​Lifel​ineGLB/​relea​ses/​tag/​
v0.0.2, https://​doi.​org/​10.​5281/​zenodo.​10495​547.

ElasticJobScheduler: https://​github.​com/​Proje​ctWag​omu/​Elast​icJob​
Sched​uler/​relea​ses/​tag/​v0.1, https://​doi.​org/​10.​5281/​zenodo.​10495​534.

The experimental data supporting the evaluation are publicly
available online:

https://github.com/ProjectWagomu/APGAS/releases/tag/v0.0.2
https://github.com/ProjectWagomu/APGAS/releases/tag/v0.0.2
https://doi.org/10.5281/zenodo.10495541
https://github.com/ProjectWagomu/LifelineGLB/releases/tag/v0.0.2
https://github.com/ProjectWagomu/LifelineGLB/releases/tag/v0.0.2
https://doi.org/10.5281/zenodo.10495547
https://github.com/ProjectWagomu/ElasticJobScheduler/releases/tag/v0.1
https://github.com/ProjectWagomu/ElasticJobScheduler/releases/tag/v0.1
https://doi.org/10.5281/zenodo.10495534

SN Computer Science (2024) 5:349 	 Page 17 of 18  349

SN Computer Science

https://​github.​com/​Proje​ctWag​omu/​Artef​actSN​CS24/​relea​ses/​tag/​
v0.1, https://​doi.​org/​10.​5281/​zenodo.​10495​532.

Declarations 

Conflict of interest  The authors declare that they have no conflict of
interest.

Ethics Approval  This research does not contain any studies with human
participants or animals performed by any of the authors.

Informed Consent  Informed consent was obtained from all individual
participants included in this research.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

	 1.	 Acun B, Gupta A, Jain N, et al. Parallel programming with migrat-
able objects: Charm++ in practice. In: International conference
for high performance computing, networking, storage and analysis
(SC). IEEE; 2014. p. 647–658. https://​doi.​org/​10.​1109/​SC.​2014.​
58.

	 2.	 Aliaga JI, Castillo M, Iserte S, et al. A survey on malleability
solutions for high-performance distributed computing. Appl Sci.
2022. https://​doi.​org/​10.​3390/​app12​105231.

	 3.	 Almasi G. PGAS (Partitioned global address space) languages.
Berlin: Springer; 2011. p. 1539–45. https://​doi.​org/​10.​1007/​978-
0-​387-​09766-4_​210.

	 4.	 Bachan J, Baden SB, Hofmeyr S, et al. UPC++: a high-perfor-
mance communication framework for asynchronous computation.
In: International parallel and distributed processing symposium
(IPDPS). IEEE; 2019. p. 963–973. https://​doi.​org/​10.​1109/​IPDPS.​
2019.​00104.

	 5.	 Bland W, Bouteiller A, Herault T, et al. Post-failure recovery of
MPI communication capability: design and rationale. Int J High
Perform Comput Appl. 2013;27(3):244–54. https://​doi.​org/​10.​
1177/​10943​42013​488238.

	 6.	 Bungart M, Fohry C. A malleable and fault-tolerant task pool
framework for X10. In: Proceedings international conference on
cluster computing. IEEE; 2017. https://​doi.​org/​10.​1109/​clust​er.​
2017.​27.

	 7.	 Charles P, Grothoff C, Saraswat V, et al. X10: an object-oriented
approach to non-uniform cluster computing. SIGPLAN Notices.
2005;40(10):519–38. https://​doi.​org/​10.​1145/​11038​45.​10948​52.

	 8.	 Competence Center for High Performance Computing in Hessen
(HKHLR). Linux Cluster Kassel. 2023. https://​www.​hkhlr.​de/​en/​
clust​ers/​linux-​clust​er-​kassel.

	 9.	 De Wael M, Marr S, De Fraine B, et al. Partitioned global address
space languages. Comput Surv. 2015. https://​doi.​org/​10.​1145/​
27163​20.

	10.	 El-Ghazawi T, Smith L. UPC: unified parallel C. In: Proceed-
ings international conference on high performance computing,
networking, storage and analysis (SC). ACM; 2006. https://​doi.​
org/​10.​1145/​11884​55.​11884​83.

	11.	 Feitelson DG, Rudolph L . Toward convergence in job schedulers
for parallel supercomputers. In: Job scheduling strategies for par-
allel processing. Springer, p. 1–26. https://​doi.​org/​10.​1007/​bfb00​
22284.

	12.	 Feitelson DG, Tsafrir D, Krakov D. Experience with using
the parallel workloads archive. J Parallel Distrib Comput.
2014;74(10):2967–82. https://​doi.​org/​10.​1016/j.​jpdc.​2014.​06.​013.

	13.	 Finnerty P, Kamada T, Ohta C. Self-adjusting task granularity for
global load balancer library on clusters of many-core processors.
In: Proceedings international workshop on programming models
and applications for multicores and manycores. ACM; 2020. p.
1–10. https://​doi.​org/​10.​1145/​33805​36.​33805​39.

	14.	 Finnerty P, Kamada T, Ohta C. A self-adjusting task granularity
mechanism for the Java lifeline-based global load balancer library
on many-core clusters. Concurr Comput Pract Exp. 2021. https://​
doi.​org/​10.​1002/​cpe.​6224.

	15.	 Freeman LC. A set of measures of centrality based on between-
ness. Sociometry. 1977;40(1):35. https://​doi.​org/​10.​2307/​30335​
43.

	16.	 Galante G, da Rosa Righi R. Adaptive parallel applica-
tions: from shared memory architectures to fog computing.
Clust Comput. 2022;25(6):4439–61. https://​doi.​org/​10.​1007/​
s10586-​022-​03692-2.

	17.	 Gik EJ (1987) Schach und Mathematik. 1st ed. Thun.
	18.	 Hazelcast Unified Real-Time Data Platform for Instant Action.

2023. http://​hazel​cast.​org.
	19.	 Herault T, Robert Y. Fault-tolerance techniques for high-perfor-

mance computing. Berlin: Springer; 2015. https://​doi.​org/​10.​1007/​
978-3-​319-​20943-2.

	20.	 Hill MD, Marty MR. Amdahl’s law in the multicore era. Computer.
2008;41(7):33–8. https://​doi.​org/​10.​1109/​MC.​2008.​209.

	21.	 Huber D, Streubel M, Comprés I, et al. Towards dynamic resource
management with MPI sessions and PMIx. In: European MPI
users’ group meeting. ACM; 2022. https://​doi.​org/​10.​1145/​35558​
19.​35558​56.

	22.	 IBM. Elastic X10. 2014. http://​x10-​lang.​org/​docum​entat​ion/​pract​
ical-​x10-​progr​amming/​elast​ic-​x10.​html.

	23.	 IBM The X10 Programming Language. 2021. https://​github.​com/​
x10-​lang.

	24.	 Iserte S, Mayo R, Quintana-Ortí ES, et al. DMRlib: easy-coding
and efficient resource management for job malleability. Trans
Comput. 2021;70(9):1443–57. https://​doi.​org/​10.​1109/​tc.​2020.​
30229​33.

	25.	 Maghraoui KE, Desell TJ, Szymanski BK, et al. Dynamic malle-
ability in iterative MPI applications. In: International symposium
on cluster computing and the grid. IEEE; 2007. https://​doi.​org/​10.​
1109/​ccgrid.​2007.​45.

	26.	 Message Passing Interface Forum. MPI: a message-passing inter-
face standard Version 4.0. 2021. https://​www.​mpi-​forum.​org/​docs/​
mpi-4.​0/​mpi40-​report.​pdf.

	27.	 Moody A, Bronevetsky G, Mohror K, et al. Design, modeling, and
evaluation of a scalable multi-level checkpointing system. In: Inter-
national conference for high performance computing, networking,
storage and analysis (SC). IEEE; 2010. https://​doi.​org/​10.​1109/​sc.​
2010.​18.

	28.	 Nowicki M, Bała P. Parallel computations in Java with PCJ library.
In: Proceedings international conference on high performance
computing simulation (HPCS). IEEE; 2012. p. 381–387. https://​
doi.​org/​10.​1109/​HPCSim.​2012.​62669​41.

	29.	 Numrich RW, Reid J. Co-Arrays in the next Fortran Standard.
SIGPLAN Fortran Forum. 2005;24(2):4–17. https://​doi.​org/​10.​
1145/​10803​99.​10804​00.

https://github.com/ProjectWagomu/ArtefactSNCS24/releases/tag/v0.1
https://github.com/ProjectWagomu/ArtefactSNCS24/releases/tag/v0.1
https://doi.org/10.5281/zenodo.10495532
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/SC.2014.58
https://doi.org/10.1109/SC.2014.58
https://doi.org/10.3390/app12105231
https://doi.org/10.1007/978-0-387-09766-4_210
https://doi.org/10.1007/978-0-387-09766-4_210
https://doi.org/10.1109/IPDPS.2019.00104
https://doi.org/10.1109/IPDPS.2019.00104
https://doi.org/10.1177/1094342013488238
https://doi.org/10.1177/1094342013488238
https://doi.org/10.1109/cluster.2017.27
https://doi.org/10.1109/cluster.2017.27
https://doi.org/10.1145/1103845.1094852
https://www.hkhlr.de/en/clusters/linux-cluster-kassel
https://www.hkhlr.de/en/clusters/linux-cluster-kassel
https://doi.org/10.1145/2716320
https://doi.org/10.1145/2716320
https://doi.org/10.1145/1188455.1188483
https://doi.org/10.1145/1188455.1188483
https://doi.org/10.1007/bfb0022284
https://doi.org/10.1007/bfb0022284
https://doi.org/10.1016/j.jpdc.2014.06.013
https://doi.org/10.1145/3380536.3380539
https://doi.org/10.1002/cpe.6224
https://doi.org/10.1002/cpe.6224
https://doi.org/10.2307/3033543
https://doi.org/10.2307/3033543
https://doi.org/10.1007/s10586-022-03692-2
https://doi.org/10.1007/s10586-022-03692-2
http://hazelcast.org
https://doi.org/10.1007/978-3-319-20943-2
https://doi.org/10.1007/978-3-319-20943-2
https://doi.org/10.1109/MC.2008.209
https://doi.org/10.1145/3555819.3555856
https://doi.org/10.1145/3555819.3555856
http://x10-lang.org/documentation/practical-x10-programming/elastic-x10.html
http://x10-lang.org/documentation/practical-x10-programming/elastic-x10.html
https://github.com/x10-lang
https://github.com/x10-lang
https://doi.org/10.1109/tc.2020.3022933
https://doi.org/10.1109/tc.2020.3022933
https://doi.org/10.1109/ccgrid.2007.45
https://doi.org/10.1109/ccgrid.2007.45
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://doi.org/10.1109/sc.2010.18
https://doi.org/10.1109/sc.2010.18
https://doi.org/10.1109/HPCSim.2012.6266941
https://doi.org/10.1109/HPCSim.2012.6266941
https://doi.org/10.1145/1080399.1080400
https://doi.org/10.1145/1080399.1080400

	 SN Computer Science (2024) 5:349 349   Page 18 of 18

SN Computer Science

	30.	 Olivier S, Huan J, Liu J, et al. UTS: an unbalanced tree search
benchmark. In: Languages and compilers for parallel computing
(LCPC). Springer; 2006. p. 235–250. https://​doi.​org/​10.​1007/​978-
3-​540-​72521-3_​18.

	31.	 OpenSHMEM Application Programming Interface. 2020. http://​
opens​hmem.​org/​site/​sites/​defau​lt/​site_​files/​OpenS​HMEM-1.​5.​
pdf.

	32.	 Özden T, Beringer T, Mazaheri A, et al. ElastiSim: a batch-system
simulator for malleable workloads. In: Proceedings of the inter-
national conference on parallel processing (ICPP). ACM; 2023.
https://​doi.​org/​10.​1145/​35450​08.​35450​46.

	33.	 PMIx Administrative Steering Committee. Process management
interface for exascale (PMIx) Standard 4.0. 2020. https://​pmix.​
github.​io/​uploa​ds/​2020/​12/​pmix-​stand​ard-​v4.0.​pdf.

	34.	 Posner J, Fohry C. Cooperation vs. coordination for lifeline-based
global load balancing in APGAS. In: Proceedings of workshop
on X10. ACM; 2016. p. 13–17. https://​doi.​org/​10.​1145/​29310​28.​
29310​29.

	35.	 Posner J, Fohry C. Transparent resource elasticity for task-based
cluster environments with work stealing. In: International con-
ference on parallel processing workshop. ACM; 2021. p. 1–10.
https://​doi.​org/​10.​1145/​34587​44.​34733​61.

	36.	 Posner J, Hupfeld F, Finnerty P. Enhancing supercomputer perfor-
mance with malleable job scheduling strategies. In: Proceedings
Euro-Par parallel processing workshops (PECS). Springer; 2023
(to appear).

	37.	 Prabhakaran S, Neumann M, Rinke S, et al. A batch system with
efficient adaptive scheduling for malleable and evolving applica-
tions. In: Proceedings international parallel and distributed pro-
cessing symposium. 2015. p. 429–438. https://​doi.​org/​10.​1109/​
IPDPS.​2015.​34.

	38.	 Saraswat V, Almasi G, Bikshandi G, et al. The asynchronous par-
titioned global address space model. In: Proceedings SIGPLAN
workshop on advances in message passing (AMP). ACM; 2010.

	39.	 Saraswat VA, Kambadur P, Kodali S, et al. Lifeline-based global
load balancing. In: Proceedings principles and practice of parallel
programming. ACM; 2011. p. 201–212. https://​doi.​org/​10.​1145/​
19415​53.​19415​82.

	40.	 Shahzad F, Wittmann M, Kreutzer M, et al. A survey of check-
point/restart techniques on distributed memory systems. Parallel
Process Lett. 2013. https://​doi.​org/​10.​1142/​s0129​62641​34001​12.

	41.	 Staples G. TORQUE resource manager. In: Proceedings interna-
tional conference on high performance computing, networking,
storage and analysis (SC). ACM, New York, NY, USA; 2006.
https://​doi.​org/​10.​1145/​11884​55.​11884​64.

	42.	 Tardieu O. The APGAS library: resilient parallel and distributed
programming in Java 8. In: Proceedings of the ACM SIGPLAN
workshop on X10. ACM; 2015. p. 25–26. https://​doi.​org/​10.​1145/​
27717​74.​27717​80.

	43.	 Tardieu O, Herta B, Cunningham D, et al. X10 and APGAS at
Petascale. In: Proceedings principles and practice of parallel pro-
gramming. ACM; 2014. p. 53–66. https://​doi.​org/​10.​1145/​25552​
43.​25552​45.

	44.	 Yamashita K, Kamada T. Introducing a multithread and multistage
mechanism for the Global Load Balancing Library of X10. J Inf
Process. 2016;24(2):416–24. https://​doi.​org/​10.​2197/​ipsjj​ip.​24.​
416.

	45.	 Yelick KA, Semenzato L, Pike G, et al. Titanium: a high-perfor-
mance Java Dialect. Concurr Pract Exp; 1998. 10(11–13):825–
836. https://​doi.​org/​10.​1002/​(SICI)​1096-​9128(199809/​11)​10:​11/​
13%​3C825::​AID-​CPE383%​3E3.0.​CO;2-H

	46.	 Yoo AB, Jette MA, Grondona M. SLURM: simple Linux utility
for resource management. In: Job scheduling strategies for parallel
processing (JSSPP). Springer; 2003. p. 44–60. https://​doi.​org/​10.​
1007/​10968​987_3.

	47.	 Zhang W, Tardieu O, Grove D, et al. GLB: lifeline-based global
load balancing library in X10. In: Proceedings workshop on paral-
lel programming for analytics applications (PPAA). ACM; 2014.
p. 31–40. https://​doi.​org/​10.​1145/​25676​34.​25676​39.

	48.	 Zheng G, Ni X, Kale LV. A scalable double in-memory checkpoint
and restart scheme towards exascale. In: Proceedings international
conference on dependable systems and networks workshops
(DSN). IEEE; 2012. https://​doi.​org/​10.​1109/​dsnw.​2012.​62646​77.

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Authors and Affiliations

Patrick Finnerty1  · Jonas Posner2  · Janek Bürger2 · Leo Takaoka1 · Takuma Kanzaki1

 *	 Patrick Finnerty
	 finnerty.patrick@fine.cs.kobe-u.ac.jp

 *	 Jonas Posner
	 jonas.posner@uni-kassel.de

	 Janek Bürger
	 janekbuerger@outlook.de

	 Leo Takaoka
	 takaoka@fine.cs.kobe-u.ac.jp

	 Takuma Kanzaki
	 kanzaki@fine.cs.kobe-u.ac.jp

1	 Kobe University, Rokkodai‑cho 1‑1, Kobe, Hyogo 657‑0013,
Japan

2	 University of Kassel, Wilhelmshoeher Allee 73,
34121 Kassel, Hessen, Germany

https://doi.org/10.1007/978-3-540-72521-3_18
https://doi.org/10.1007/978-3-540-72521-3_18
http://openshmem.org/site/sites/default/site_files/OpenSHMEM-1.5.pdf
http://openshmem.org/site/sites/default/site_files/OpenSHMEM-1.5.pdf
http://openshmem.org/site/sites/default/site_files/OpenSHMEM-1.5.pdf
https://doi.org/10.1145/3545008.3545046
https://pmix.github.io/uploads/2020/12/pmix-standard-v4.0.pdf
https://pmix.github.io/uploads/2020/12/pmix-standard-v4.0.pdf
https://doi.org/10.1145/2931028.2931029
https://doi.org/10.1145/2931028.2931029
https://doi.org/10.1145/3458744.3473361
https://doi.org/10.1109/IPDPS.2015.34
https://doi.org/10.1109/IPDPS.2015.34
https://doi.org/10.1145/1941553.1941582
https://doi.org/10.1145/1941553.1941582
https://doi.org/10.1142/s0129626413400112
https://doi.org/10.1145/1188455.1188464
https://doi.org/10.1145/2771774.2771780
https://doi.org/10.1145/2771774.2771780
https://doi.org/10.1145/2555243.2555245
https://doi.org/10.1145/2555243.2555245
https://doi.org/10.2197/ipsjjip.24.416
https://doi.org/10.2197/ipsjjip.24.416
https://doi.org/10.1002/(SICI)1096-9128(199809/11)10:11/13%3C825::AID-CPE383%3E3.0.CO;2-H
https://doi.org/10.1002/(SICI)1096-9128(199809/11)10:11/13%3C825::AID-CPE383%3E3.0.CO;2-H
https://doi.org/10.1007/10968987_3
https://doi.org/10.1007/10968987_3
https://doi.org/10.1145/2567634.2567639
https://doi.org/10.1109/dsnw.2012.6264677
http://orcid.org/0000-0002-9037-967X
http://orcid.org/0000-0002-6491-1626

	On the Performance of Malleable APGAS Programs and Batch Job Schedulers
	Abstract
	Introduction
	Background
	APGAS Programming Model
	Lifeline-Based Global Load Balancing

	Malleable Programs in APGAS
	Programmer Abstractions
	Shrinking
	Growing
	Handler Registration and De-registration
	Example: GLB Library

	Batch Job Scheduler Interactions
	Shrink Orders
	Grow Orders

	Consequences on the Programming Model

	Evaluation
	Job Scheduler
	First Come First Served (FCFS)
	Backfilling
	Easy-Backfilling
	Malleable-Algorithm
	Experimental Setting
	Environment
	Jobs
	Batches

	Malleable Runtime Performance
	Scheduler Performance
	Makespan and Node Utilization
	Average Job Turnaround Time

	Discussion

	Related Work
	Conclusion
	References

