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Abstract

Abstract. In [4], Guillard and Viozat propose a finite volume method for the
simulation of inviscid steady as well as unsteady flows at low Mach numbers, based on
a preconditioning technique. The scheme satisfies the results of a single scale asymptotic
analysis in a discrete sense and comprises the advantage that this can be derived by a
slight modification of the dissipation term within the numerical flux function. Unfortu-
nately, it can be observed by numerical experiments that the preconditioned approach
combined with an explicit time integration scheme turns out to be unstable if the time
step ∆t does not satisfy the requirement to be O(M 2) as the Mach number M tends
to zero, whereas the corresponding standard method remains stable up to ∆t = O(M),
M → 0, which results from the well-known CFL-condition.

We present a comprehensive mathematical substantiation of this numerical phe-
nomenon by means of a von Neumann stability analysis, which reveals that in contrast
to the standard approach, the dissipation matrix of the preconditioned numerical flux
function possesses an eigenvalue growing like M−2 as M tends to zero, thus causing
the diminishment of the stability region of the explicit scheme. Thereby, we present
statements for both the standard preconditioner used by Guillard and Viozat [4] and the
more general one due to Turkel [21]. The theoretical results are after wards confirmed
by numerical experiments.

Keywords: Preconditioning, Low Mach number flow, Asymptotic analysis, Finite volume
method, Conservation laws

1 Introduction

The efficient simulation of low Mach number flows is a subject of ongoing discussion in the
CFD community. While the flow is expected to be incompressible, in a lot of applications
the Mach number or the compressibility properties vary strongly in time or space. This is
for example the case in nozzle flow, chemically reacting flows or laminar combustion. A
specific example is a fire in a road tunnel, where the strong heat sources make parts of
the flow compressible although the Mach number M remains small, i.e. M ≈ 10−3. It is
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well known that purely compressible flow solvers which were developed for transonic flow
produce wrong results at low Mach numbers. On the other hand, standard incompressible
flow solvers cannot deal with strong temperature or strong density gradients. This sets a
demand for codes that can deal with flows at all Mach numbers.

As a lot of expertise and development time was put into currently used codes, the desire to
expand an existing code as opposed to writing a completely new one is very natural. Con-
sequently, there are two main approaches to the design of numerical methods for the above
mentioned flows: use either the compressible or the incompressible Euler or Navier-Stokes
equations as the basic model and improve upon the existing methods. Both approaches are
pursued and widely used. One important idea in this context was the artificial compressibil-
ity method by Chorin that inspired the preconditioner of Turkel [21] for the compressible
equations. These methods incorporate a preconditioning of the time derivative of the PDE,
thus allowing faster convergence to steady state but sacrificing time accuracy. Along these
lines, other preconditioners were proposed [23, 1]. The crucial idea is, that as the Mach
number tends to zero, the original system develops a large disparity in wave speeds, as some
of the eigenvalues grow to infinity while others stay O(1). The preconditioner changes all
the wave speeds to O(1), thus greatly improving the condition number of the system.

For incompressible flows, there are two main techniques that are used to expand the validity
of the scheme into the compressible regime. One class of schemes is based on the marker
and cell method, MAC for short, by Harlow and Welch [5], which is a finite difference
method on a staggered grid. The method is quite fast, but it is very difficult to use the
staggered location of the variables in the context of unstructured grids. Recently, Wen-
neker, Segal and Wesseling proposed a method that faces this difficulty [26]. On the other
hand, Patankar and Spalding [16] published their SIMPLE scheme in 1972. Based on an
approximation of the pressure, a velocity field is computed using the momentum equations.
Then, an elliptic pressure correction equation is solved to improve the approximation of
the pressure. These steps are then iterated until convergence is achieved. The approach
is not limited to incompressible flows: see [2]. Both SIMPLE and MAC scheme as well as
their improved descendants have in common that they work on the velocity field and the
pressure distribution. By contrast, codes for compressible flow are usually based on the
conserved variables density, momentum and energy. Thus, in the context of methods for all
Mach numbers it is useful not to speak of incompressible and compressible solvers, but of
pressure based and density based schemes.

In this paper, we will concentrate on the case of density based flow solvers. Here, three main
techniques to obtain time accuracy can be distinguished. First of all, there is the technique
to use the above mentioned preconditioning methods for steady state flows in a pseudo time
stepping scheme [20, 22, 25]. Furthermore, there is the flux correction approach, where an
approximation to the Euler or Navier-Stokes equations is solved and then corrected via
elliptic correction equations [6, 10, 18]. Finally, there is the flux preconditioning approach,
where only the dissipation within the numerical flux function of the flow solver is changed
by low Mach number preconditioning [4, 14]. This has several advantages. An important
one is that the implementation is quite simple. The only part of the flow solver that needs
to be changed is the flux function. The other one is that compared to the flux correction
approach, the computational effort per time step is less expensive.
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However, numerical experiments indicate that the stability region of an explicit precon-
ditioned method deteriorates as the Mach number tends to zero. In order to overcome
this severe disadvantage implicit methods are usually employed. Although this behavior
of explicit schemes is often reported, a comprehensive analysis of this phenomenon is still
missing. The paper is devoted to close this gap and to present a detailed stability analysis
of a class of preconditioned Lax-Friedrich type schemes. Besides the method proposed by
Guillard and Viozat [4] a more general preconditioning matrix due to Turkel [21] is inves-
tigated. Thereby, it is proved that the whole class of this approaches suffers from similar
stability problems and thus, an implicit time stepping scheme should be preferred for this
kind of method in the regime of low Mach numbers. The outline of the article is as fol-
lows: First, we briefly introduce the Euler equations of gas dynamics. In order to get a
deeper insight into the behavior of the corresponding physical quantities, we summarize
the main results of an asymptotic analysis in the low Mach number limit. Thereafter, a
finite volume approximation of the governing equations using a Lax-Friedrichs type scheme
is presented whereby we curtly discuss the asymptotic behavior of the preconditioned as
well as the unpreconditioned approach as the Mach number tends to zero. The core of the
paper is a L2-stability analysis of a class of preconditioned methods, where we will prove
the general unfavorable behavior of the explicit scheme. The theoretical results are after
wards confirmed by numerical experiments.

2 The governing equations

The Euler equations consist of the conservation laws of mass, momentum and energy, closed
by an equation of state. Given an open domain D ⊂ R

d, the dimensional form can be
expressed as

∂t̂û +
d∑

j=1

∂x̂j
f̂j(û) = 0 in D × R

+,

where û = (ρ̂, m̂1, ..., m̂d, ρ̂Ê)T represents the vector of conserved variables. The flux func-
tions f̂j are given by

f̂j(û) =




m̂j

m̂j v̂1 + δ1j p̂
...

m̂j v̂d + δdj p̂

Ĥm̂j




, j = 1, ..., d,

with δij denoting the Kronecker symbol. The dimensional quantities ρ̂, v̂ = (v̂1, v̂2)
T ,

m̂ = (m̂1, m̂2)
T , Ê and Ĥ = Ê + p̂

ρ̂
describe the density, velocity, momentum per unit

volume, total energy per unit mass and total enthalpy per unit mass, respectively. The
pressure is defined by the equation of state for a perfect gas p̂ = (γ − 1)ρ̂(Ê − 1

2 |v̂|2), where
γ denotes the ratio of specific heats, taken as 1.4 for air.

Numerical schemes are usually based on a non-dimensional form of the Euler equations.
Such a form is obtained by introducing reference values. Usually, these are the reference
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values for the length x̂ref , the density ρ̂ref and the velocity v̂ref . Reference values for other
quantities are derived from these by functional relationships, for example t̂ref = x̂ref/v̂ref

and p̂ref = ρ̂ref v̂2
ref . This well-known approach leads to an identical non-dimensional

system, compared to the dimensional form. Unfortunately, for low Mach numbers, the
pressure reference has no longer a valid physical meaning and the non-dimensional quantity
p is not O(1).

Thus, following [9, 8], we employ an independent pressure reference p̂ref . We introduce the
expression

ϕ̂ = ϕ̃ · ϕ̂ref

for each physical quantity ϕ̂ into the governing equations and hence the resulting non-
dimensional formulation of the Euler equations as well as the equation of state read

∂tρ̃+ ∇x · m̃ = 0,

∂tm̃+ ∇x · (m̃⊗ ṽ) + 1
M2∇xp̃ = 0, (1)

∂t(ρ̃Ẽ)+ ∇x · (H̃m̃) = 0

and

p̃ = (γ − 1) ρ̃

(
Ẽ − M2

2
|ṽ|2

)
. (2)

The non-dimensional characteristic number M appearing within (1) and (2) is called the
Mach number which is defined as

M =
v̂ref

ĉref
, (3)

where ĉref =
√

p̂ref/ρ̂ref denotes the reference value for the speed of sound ĉ. Note that
the non-dimensional solution depends on the reference values and therefore we take into
account this fact by writing ϕ̃(x, t;M). Based on the characteristic number M we are now
able to investigate the behavior of the physical quantities in the low Mach number limit by
means of a formal asymptotic analysis.

Throughout this paragraph we assume that the non-dimensional formulation of the gov-
erning equations (1) consists exclusively of physical quantities ϕ̃ satisfying ϕ̃ = O(1) if the
Mach number tends to zero.

We expand every physical variable in a single time scale, single space scale asymptotic
expansion

ϕ̃(x, t;M) =

j∑

m=0

Mmϕ̃(m)(x, t) + o(M j), M → 0, j = 0, 1, 2 (4)
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and introduce it into system (1). We will only briefly present the results of this technique.
A comprehensive survey can be found in [12, 9].

Theorem 1 Let ũ be a solution of system (1). Then the leading order pressure satisfies

p̃(x, t;M) = p̃(0)(t) + Mp̃(1)(t) + M2p̃(2)(x, t) + o
(
M2
)
, M → 0.

Therefore, the pressure varies in space with O(M 2) if the Mach number is sufficiently small.
This is an important result that the discrete scheme has to take into account.

Theorem 2 Let ũ be a solution of system (1). Thus there holds

1

γp̃(0)

d

dt
p̃(0) = − 1

|Ω|

∫

∂Ω
ṽ(0) · n ds, M → 0.

Theorem 2 implies that the temporal change of the leading order pressure is only due to
compression from the boundary or expansion of the gas itself.

Theorem 3 Let ṽ be a velocity vector corresponding to a solution of (1). Then it satisfies
the divergence constraint

∇x · ṽ =
1

|Ω|

∫

∂Ω
ṽ · n ds + o(1), M → 0.

Note, that for a vanishing right hand side, we obtain the divergence constraint on the
velocity field known from incompressible flow.

3 Preconditioned Finite Volume Method

In order to rewrite the Euler equations (1) in a convenient manner for standard compressible
flow solvers we define the auxiliary variables

p =
p̃

M2
, c =

c̃

M
, E =

Ẽ

M2
and H =

H̃

M2
. (5)

Thus, system (1) becomes

∂tu +
2∑

`=1

∂x`
f`(u) = 0 in D × R

+, (6)

where u = (ρ, ρv1, ρv2, ρE)T , f`(u) = (ρv`, ρv`v1 + δ`
1p, ρv`v2 + δ`

2p, ρHv`)
T and

p = (γ − 1)ρ
(
E − |v|2

2

)
.
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It is well known that smooth solutions of the Euler equations exist in general only for
short times and thus one usually introduces the concept of weak solutions. By means of
integrating the system (6) over a control volume Ω ⊂ D and applying Gauss’ integral
theorem one obtains

d

dt

∫

Ω

u dx +

2∑

`=1

∫

∂Ω

f`(u)n` ds = 0, (7)

where n = (n1, n2)
T represents the outer unit normal vector on ∂Ω. A mapping u is called

a weak solution of the governing equations (6) if u satisfies the integral form of the Euler
equations (7) on every bounded set Ω ⊂ D which allows to utilize Gauss’ integral theorem.

Introducing the cell average ui(t) = 1
|Ωi|
∫
Ωi

u(x, t) dx, the integral form with respect to a
box Ωi can be written as

d

dt
ui(t) = − 1

|Ωi|
∑

eij⊂∂Ωi

∫

eij

2∑

`=1

f`(u(x, t))n` ds,

where eij denotes the edge between the adjacent control volumes Ωi and Ωj . In order to
evaluate the integral we employ a numerical flux function of Lax-Friedrichs type

H(ui,uj ,n) =
1

2

(
2∑

`=1

(f`(ui) + f`(uj))n` − D(ui,uj ,n)(uj − ui)

)
. (8)

Numerical methods of this type differ only in the dissipation term D. With respect to the
governing equations (6) Hu and Shu [7] defined D ∈ R to be the largest absolute eigenvalue
of the corresponding Jacobi matrix

F (u,n) =

2∑

`=1

∂f`

∂u`
(u)n`.

Similar to the formulation of Shu and Osher [19] we prefer a matrix-valued term D which
was proposed by Friedrich [3]. It is proved in [13, 14] that the use of this standard numerical
flux function leads to an unphysical pressure distribution which contradicts the statement
of theorem 1. In particular, variations of the first order pressure field are generated on the
space scale x. To extend the validity of the numerical method we utilize a preconditioning
technique originally proposed by Guillard and Viozat [4] for the Roe scheme and later on
derived in the context of the Lax-Friedrichs method in [14]. Therefore, the dissipation
matrix is defined as

D(ui,uj ,n) = P−1

(
uj + ui

2

)
R

(
uj + ui

2
,n

)
|Λ|(ui,uj ,n)R−1

(
uj + ui

2
,n

)
.

Herein, R(u,n) represents the matrix of the right eigenvectors of the corresponding pre-
conditioned Jacobian

FP (u,n) = P(u)F(u,n)

and |Λ|(ui,uj ,n) denotes the diagonal matrix defined by

|Λ|(ui,uj ,n) = diag



 max

u∈
{
ui,uj ,

ui+uj
2

} |λ1(u,n)| , . . . , max
u∈
{
ui,uj ,

ui+uj
2

} |λ4(u,n)|



 ,
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where λi(u,n), i = 1, . . . , 4 are chosen to be the eigenvalues of the matrix FP (u,n). The
properties of the derived method strongly depend on the preconditioning matrix used. Ob-
viously, arranging P(u,n) to be the identity yields the standard Lax-Friedrichs scheme [3].
In order to overcome the failure of the standard Lax-Friedrichs scheme with respect to the
pressure distribution in the low Mach number regime it is quite natural to multiply the
pressure by a factor associated with the Mach number. Therefore, we extract the pressure
by consideration of the so-called entropy variables w = (p, v1, v2, s)

T , whereby s denotes
the entropy determined as s = ln p

ργ . Following Turkel [21] we introduce

P−1 (u) =
(
UQ−1W

)
(u), (9)

where U = ∂u

∂w
, W = ∂w

∂u
and

Q−1 =




β2 0 0 0
−αv1

ρc2
1 0 0

−αv2

ρc2
0 1 0

0 0 0 1


 , with β = OS(M), M → 0 (10)

and α ∈ C. To ensure that the matrix is always nonsingular we additionally require that
β 6= 0 for all M > 0. Simple but time-consuming calculations give

P−1 (u) = I +
γ − 1

c2





(β2 − 1)




|v|2
2 −v1 −v2 1

|v|2v1

2 −v2
1 −v1v2 v1

|v|2v2

2 −v1v2 −v2
2 v2

|v|2H
2 −Hv1 −Hv2 H




−α




0 0 0 0
|v|2v1

2 −v2
1 −v1v2 v1

|v|2v2

2 −v1v2 −v2
2 v2

|v|2 −v1|v|2 −v2|v|2 |v|2








and
λ1,2(u,n) = vn := v · n,

λ3,4(u,n) =
1

2

[
(1 − α + β2)vn ±

√
(1 − α + β2)2v2

n − 4v2
nβ2 + 4β2c2

]
.

Note that the choice α = 0 yields the preconditioning matrix proposed by Guillard and
Viozat [4].

Interpreting the cell average ui(t) as a piecewise constant function on Ωi and using a simple
explicit time marching procedure leads to the first order scheme

un+1
i = un

i − ∆t

|Ωi|
∑

eij⊂∂Ωi

|eij |H(un
i ,un

j ,nij) (11)

with un
i = ui(t

n), tn+1 = tn + ∆t and nij represents the unit outer normal vector on
eij ⊂ ∂Ωi. It was recently proven in [13] that utilizing the preconditioned Lax-Friedrichs
flux (8) for the choice β = O(M), M → 0, and α = 0 within the finite volume method
associated with (11) yields a pressure distribution satisfying the statement of theorem 1 in
a discrete sense. Furthermore, a discrete divergence constraint corresponding to theorem
3 is shown for this scheme in [15] in the absence of compression and expansion over the
boundary of the computational domain.
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4 Stability Analysis

Due to the characteristic propagation speeds associated with the governing equations, i.e.

vn = O(1) and vn ± c = O
(

1

M

)
, M → 0,

we can directly conclude that the step size of an explicit time integration scheme decreases
at least linearly as the Mach number tends to zero, i.e. we expect

∆t = O (M) , M → 0

in order to fulfill the requirement that the numerical domain of dependence always covers
the physical one. However, for the specific scheme used a different condition on the time
step could be valid. To obtain a deeper insight into the behavior of the method we perform
a von Neumann stability analysis.

Parallel flows show that without stability in the one-dimensional case, we cannot expect
stability in higher dimensions. Therefore, the one-dimensional Euler equations are of in-
terest also in our applications, but tremendously easier to analyze. Thus, for the sake of
simplicity we restrict ourselves to the consideration of the spatially one-dimensional case.
The relevance for multi-dimensional flow fields is obvious and after wards confirmed by
numerical experiments.

It is well known that the standard Lax-Friedrichs scheme combined with the explicit Euler
time integration is stable in the sense of von Neumann if the CFL-condition is satisfied.
In order to perform a von Neumann stability analysis we have to linearize the governing
equations as well as the preconditioning matrix. Thus, we consider the linearized one-
dimensional Euler equations in the form

∂tu + A∂x(u) = 0 (12)

where A = A(ū) = ∂f
∂u

(ū) with ū = ui for an arbitrary but fixed vector of conserved
variables corresponding to an inner control volume Ωi. Quantities derived from ū will also
be denoted with a bar. Note that in one spatial dimension, the conserved variables are ρ, m
and ρE, while the entropy variables are p, v and s. Due to the linearization it is appropriate
to define the preconditioner also in a global manner by using ū instead of the average value
of ui and uj as suggested in (9). Consequently, the preconditioned Lax-Friedrichs scheme
for the linearized Euler equations (12) reads

H(ui,uj , n) =
1

2
(A(ū)(uj + ui)n − D(ū, ū, n)(uj − ui)) . (13)

with
D(ū, ū, n) = P−1 (ū)R (ū, n) |Λ|(ū, ū, n)R−1 (ū, n) . (14)

The one-dimensional preconditioning matrix is obtained from 10 by omitting the third row
and column. For the investigation of appropriate stability requirements for the precondi-
tioned approach it is necessary to analyze the spectrum of the dissipation matrix D(ū, ū, n).
At first, we focus on the case of a vanishing parameter α. Thereafter, we will extend the
statement to the general case.
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Lemma 4 Let µi, i = 1, 2, 3 represent the eigenvalues of the linearized dissipation matrix D

corresponding to (14) of the preconditioned Lax-Friedrichs scheme (8) for equation (12) in
one spatial dimension with β = OS (M), M → 0, β 6= 0, and α = 0. Then the appropriately
renumbered eigenvalues of D have the properties

µ1, µ2 = O (1) , M → 0

and

µ3 = OS

(
1

M2

)
, M → 0.

Proof:

Analogously to the two-dimensional case the eigenvalues of the one-dimensional precondi-
tioned Jacobian FP (ū, n) read

λ1 = v̄n and λ2,3 =
1

2

[
(1 + β2)v̄n ±

√
(1 − β2)2v̄2 + (2βc̄)2

]
.

In the case that M is sufficiently small one gets c̄2 > v̄2 by which it follows that

(1 − β2)2v̄2 + 4β2c̄2 > (1 + β2)2v̄2. (15)

This inequality yields λ2 > 0 and λ3 < 0, and consequently

|λ2| − |λ3| = λ2 + λ3 = (1 + β2)v̄n. (16)

For the investigation of the spectrum of D it is advantageous to consider the matrix with
respect to the entropy variables. Hence, we write the dissipation matrix in the form

D = UQ−1S|Λ|S−1W

with S = WR. Since W = U−1 the matrices D and

D̄ = Q−1S|Λ|S−1 (17)

are related by means of a similarity transformation which maintains the eigenvalues. Uti-
lizing the abbreviations

ξ1 = λ2 − λ1β
2, ξ2 = λ3 − λ1β

2, and ξ3 =
λ3 − λ2

2

in combination with equation (16) one can write (see Appendix A)

D̄ =




|λ2|ξ2−|λ3|ξ1
2ξ3β2 − c̄2ρ

2ξ3
(1 + β2)v̄n 0

ξ1ξ2
2ξ3β2c2ρ

(1 + β2)v̄n − 1
2ξ3

(ξ1|λ2| + ξ2|λ3|) 0

0 0 |λ1|




for sufficiently small M . By means of straightforward calculations we obtain the eigenvalues

µ1 = |λ1| = |v̄n| = O(1)

and

µ2,3 = − 1

2ξ3

(
(1 + β2)c̄2 ∓

√
(1 − β2)2(c̄4 − v̄2c̄2 + v̄4) + (2βv̄c̄)2

)
.
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Due to the fact that the speed of sound c̃ is always positive independent of the Mach number
we get c̄ = OS(M−1), M → 0 and as a result

ξ3 = −1

2

√
(1 − β2)2v̄2 + (2βc̄)2 = −1

2

√
v̄2 + (2βc̄)2

︸ ︷︷ ︸
=O(1)

+O(M2)

= O(1), M → 0 (18)

and ξ3 > 0 for all M . Similar to (15) we obtain

(1 − β2)2(c̄4 − v̄2c̄2 + v̄4) + (2βv̄c̄)2 > (1 − β2)2(c̄4 + v̄4) + (1 + β2)2v̄2c̄2 ≥ 0

for a sufficient small Mach number and hence the eigenvalues µ2,3 are real in the low Mach
number regime.

Using (18) in combination with

(1 + β2)2c̄2 = OS(M−2), M → 0

and √
(1 − β2)2(c̄4 − v̄2c̄2 + v̄4) + (2βv̄c̄)2 = OS(M−4), M → 0

directly yields

µ3 = − 1

2ξ3︸︷︷︸
=OS(1)


(1 + β2)c̄2

︸ ︷︷ ︸
=OS(M−2)

+
√

(1 − β2)2(c̄4 − v̄2c̄2 + v̄4) + (2βv̄c̄)2︸ ︷︷ ︸
=OS(M−4)




= OS(M−2), M → 0.

Now we can deduce the asymptotic behavior of the remaining eigenvalue µ2 via

µ2 =
µ2µ3

µ3
=

4c̄4β2 + v̄2c̄2 + O(M−1)

2ξ3µ3
= OS(1), M → 0.

Let us now consider the preconditioned Lax-Friedrichs scheme (13) on an equidistant grid
with fixed mesh size ∆x > 0. Using the explicit Euler time integration and taking into
account n = ±1 gives

um+1
i = um

i − ∆t

∆x

∑

j∈{i−1,i+1}
H(um

i ,um
j , n)

= um
i − ∆t

∆x

(
H(um

i ,um
i−1,−1) + H(um

i ,um
i+1, 1)

)

= um
i − ∆t

2∆x

(
A(ū)

(
um

i−1 − um
i+1

)

+ D(ū, ū, 1)
(
um

i+1 − 2um
i + um

i−1

) )
. (19)

Starting from this formulation we are now able to prove the following stability condition in
the case of a vanishing parameter α.
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Theorem 5 A necessary condition to ensure stability of the linearized preconditioned Lax-
Friedrichs scheme with β = OS (M), M → 0, β 6= 0 and α = 0 is

∆t = O(M2), M → 0.

Proof:

The investigation of the L2-stability, known as the von Neumann stability, is based on a
Fourier analysis. Therefore, we replace um

i by the corresponding Fourier expansion

um
i =

∞∑

j=−∞
hm

j eij∆xI ,

where I represents the imaginary unit. Introducing φ = j∆x we obtain the evolution of the
jth mode in the form

hm+1
j eiφI = hm

j eiφI +
∆t

2∆x

(
A(ū)hm

j

(
e(i−1)φI − e(i+1)φI

)

+ D(ū, ū, 1)hm
j

(
e(i+1)φI − 2eiφI + e(i−1)φI

))
.

Division by eiφI yields
hm+1

j = H(j,∆x,∆t)hm
j

with the amplification matrix

H(j,∆x,∆t) = I +
∆t

2∆x

(
A(ū)

(
e−φI − eφI

)
+ D(ū, ū, 1)

(
eφI − 2 + e−φI

))

= I − ∆t

∆x
D(ū, ū, 1) +

∆t

∆x
D(ū, ū, 1) cosφ − I

∆t

∆x
A(ū) sinφ.

The scheme is stable in the sense of von Neumann if the spectral radius of the amplification
matrix is less than one for all φ. The eigenvalues of the matrix A(ū) are known to be

ν1 = v = O(1), M → 0

and
ν2,3 = v ± c = O(M−1), M → 0.

Consequently, for fixed ∆x > 0 Lemma 4 yields

ρ(H) = max
i=1,2,3

∣∣∣∣1 − (1 − cosφ)
∆t

∆x
µi − I sinφ

∆t

∆x
νi

∣∣∣∣ = O
(

∆t

M2

)
, M → 0.

This property proves the requirement ∆t = O(M 2), M → 0, which completes the proof.

Let us now generalize the statement of Lemma 4 to the case of an arbitrary parameter α. It
is worth mentioning that the parameter α can of course depend on the physical quantities.
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Lemma 6 If β = OS (M), M → 0, β 6= 0, then there exists an eigenvalue µ of the of
the linearized dissipation matrix D corresponding to (14) of the linearized preconditioned
Lax-Friedrichs scheme (8) such that

µ = OS

(
1

M2

)
, M → 0

independent of α.

Proof:

As we can learn from the elaborated description of the eigenvalues µi, i = 1, 2, 3 of the
dissipation matrix D in Appendix A the crucial eigenvalues can be written as

µ2,3 = a ± 1

2

√
b (20)

with

a = −β2c2

︸ ︷︷ ︸
O(1)

− c2
︸︷︷︸

OS

(
1

M2

)
+α

(
3

2
v2 − β4v2

2

)

︸ ︷︷ ︸
O(1)

+α2

(
β2v2

2
− v2

2

)

︸ ︷︷ ︸
O(1)

. (21)

In order to ensure that neither µ2 nor µ3 is any longer O
(

1
M2

)
, the parameter α has to be

chosen such that the leading order terms cancel out. Due to the fact that the parameter
α always appears in form of a product αv within the preconditioner (10) it is obvious that
one cannot improve the stability properties in the case of a vanishing velocity field. This is
also documented by equation (21) which shows that a = OS

(
1

M2

)
, M → 0 independent of

α, if v = 0.

If v 6= 0 we deduce from (21) that we have to define

α =

√
−2c2

v2
∈ C (22)

in order to remove the leading order term. However, introducing (22) into the second
addend of (20) yields

b = 4c4 + v4α4 + o

(
1

M4

)
= 8c4 + o

(
1

M4

)
= OS

(
1

M4

)
, M → 0.

This implies
√

b = OS

(
1

M2

)
, M → 0 and consequently there exists always an eigenvalue

µ = OS

(
1

M2

)
, M → 0.

We are now able to employ the statement of the above mentioned lemma to prove the
following proposition exactly in the way we perform the evidence of theorem 5.

Theorem 7 A necessary condition to ensure stability of the linearized preconditioned Lax-
Friedrichs scheme with β = OS (M), M → 0, β 6= 0 and arbitrary α is

∆t = O(M2), M → 0.
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This theoretical result is only valid for the linearized scheme and therefore only a necessary
stability condition. Later on we will confirm the significance of the results of the one-
dimensional linear theory by numerical tests in the context of the two-dimensional Euler
equations. Furthermore, we’d like to point out that the proof works analogously for other
schemes, for example the Roe-scheme [17] or the AUSMDV scheme [24] and thus these
schemes have the same stability properties.

5 Numerical Experiments

We used a standard finite volume scheme with a first order spatial discretization. The
specific scheme employed is described in [11]. Our first test problem is a NACA0012 profile
at zero angle of attack with varying inflow Mach numbers. The time step then tends to
zero quadratically with M in the case of a preconditioned Lax-Friedrichs flux. If we don’t
employ preconditioning, the time step still goes to zero, but only linearly in M . These
experiments thus confirm the theorem for the nonlinear scheme. The results can be seen
in the first tabular. The CFL number are accurate up to the leading digit: 0.1 thus means
that a CFL number of 0.2 leads to instabilities.

Preconditioned Unpreconditioned

M CFL number ∆t CFL number ∆t

0.1 0.1 7*10E-7 0.9 6*10E-5

0.01 0.01 10E-8 0.9 7*10E-6

0.001 0.001 10E-10 0.9 7*10E-7

0.0001 0.0001 10E-12 0.9 7*10E-8

0.00001 0.00001 10E-14 0.9 7*10E-9

The second test problem is a circular bump in a channel, again with varying inflow Mach
numbers. The asymptotic behavior predicted by the theorem can be clearly seen. For the
case M = 0.1, it can be seen that the preconditioned scheme is as stable as the unprecondi-
tioned one. This is not a contradiction to the theoretical results, where the Mach number
is assumed to be small enough. The difference in ∆t compared to the first problem is due
to a different grid with different cell sizes.

Preconditioned Unpreconditioned

M CFL number ∆t CFL number ∆t

0.1 0.9 5*10E-4 0.9 5*10E-4

0.01 0.01 6*10E-7 0.9 5*10E-5

0.001 0.001 6*10E-9 0.9 5*10E-6

0.0001 0.0001 6*10E-11 0.9 5*10E-7

0.00001 0.00001 6*10E-13 0.9 5*10E-8

If we use the implicit Euler scheme instead of the explicit Euler for the time integration,
we observe no bound on the CFL number. Not surprisingly, the von Neumann stability
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analysis reveals no bound on the time step. Only for M = 10−5, a restriction of the CFL
number was observed.

6 Conclusions

We presented a theoretical proof that the preconditioned method, combined with an explicit
scheme suffers from unphysical and much too restrictive stability conditions. This is due to
the behavior of the eigenvalues of the preconditioned dissipation. The result was confirmed
by numerical experiments. However, for an implicit method, there is no stability bound on
the time step. Therefore, we strongly recommend using implicit methods in this context.
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A Appendix

In one spatial dimension, the transformation matrices between conserved and entropic vari-
ables are given by:

U =
∂u

∂w
=




1
c2

0 − ρ
γ

v
c2

ρ −ρv
γ

H
c2

ρv −ρ|v|2
2γ


 and (23)

W =
∂w

∂u
=




1
2(γ − 1)|v|2 −(γ − 1)v γ − 1

−v
ρ

1
ρ

0
(γ−1)|v|2

2p
− γ

ρ
− (γ−1)v

p
γ−1

p


 . (24)

The preconditioner is given by

Q−1 =




β2 0 0

− αv
ρc2

1 0

1 0 0


 .

The matrices of eigenvectors that diagonalize the preconditioned Jacobian in entropy for-
mulation are:

S =




0 1 1

0 ξ1
ρβ2c2

ξ2
ρβ2c2

1 0 0


 and S−1 =




0 0 1
ξ2
2ξ3

−ρβ2c2

2ξ3
0

− ξ1
2ξ3

ρβ2c2

2ξ3
0


 . (25)
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Thus, we can compute the preconditioned dissipation matrix (17)

D̄ = Q−1S|Λ|S−1 = (d̄ij)i,j=1,2,3 (26)

with d̄3,1 = d̄3,2 = d̄2,3 = d̄1,3 = 0, d̄3,3 = |λ1|,

d̄1,1 = |λ2|ξ2−|λ3|ξ1
2β2ξ3

, d̄1,2 = c2ρ
2ξ3

(|λ3| − |λ2|),
d̄2,1 = αv

ρc22ξ3
(|λ2|ξ2 − |λ3|ξ1) + ξ1ξ2

2β2c2ρξ3
(|λ2| − |λ3|) and

d̄2,2 = β2αv
2ξ3

(|λ3| − |λ2|) + |λ3|ξ2−|λ2|ξ1
2ξ3

.

This matrix has the eigenvalues µ1 = vn and µ2,3 = a±
√

b
4ξ3

with

a = −β4v2α + β2v2α2 − c2

2
+ 3αv2 − v2α2 − β2c2 and

b = β8v4α2 − 6β4v4α2 + 4v4 − 4β4c2v2 + 4β4c2v2α + 4β4c4 − 4β2c2αv2 − 8β2c4

+4c4 − 8v4α + 13v4α2 + 4v4β4 − 6α3v4 + v4α4 − 4c2αv2 − 8v4β2α + 6α3v4β2

−2v4α4β2 + 2v4α3β4 + 24v2β2c2 − 8β2v4 − 4v2c2 + 4β6v2αc2 − 4β4v2α2c2

−2β6v4α3 + β4v4α4.
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