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Abstract

The aim of this paper is the investigation of the error which results from the
method of approximate approximations applied to functions defined on compact in-
tervals, only. This method, which is based on an approximate partition of unity, was
introduced by V. Maz’ya in 1991 and has mainly been used for functions defined on
the whole space up to now. For the treatment of differential equations and bound-
ary integral equations, however, an efficient approximation procedure on compact
intervals is needed.

In the present paper we apply the method of approximate approximations to
functions which are defined on compact intervals. In contrast to the whole space
case here a truncation error has to be controlled in addition. For the resulting total
error pointwise estimates and L1-estimates are given, where all the constants are
determined explicitly.
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1 Introduction

In 1991 V. Maz’ya proposed a new approximation method called the method
of approximate approximations [2], which is based on generating functions
representing an approximate partition of unity, only. As a consequence, this
approximation method does not converge if the mesh size tends to zero.
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For numerical purposes, however, this lack of convergence does not play an im-
portant role since the resulting error can be chosen less than machine precision.
On the other hand, this method has great advantages due to nice properties
of the generating functions, i.e. simplicity, smoothness and exponential decay
behavior [6].

In the first part of this paper we present the method developed by V. Maz’ya
for functions defined on the whole space. In the second part we consider func-
tions defined on compact intervals. In contrast to the whole space case here
the summation has to be truncated since the function is not defined outside
the interval. This leads to an additional truncation error to be controlled. For
the total error pointwise estimates and L1-estimates are given, where all the
constants are determined explicitly.

2 Approximate partition of unity on R

We now construct an approximate partition of unity on R using Gaussian
kernels.

Let d > 0. For m ∈ Z we define the Gaussian kernel

gm : R→ R , gm(t) :=
1√
πd

e−
1
d
(t−m)2

and consider the function

ϑd : R→ R , ϑd(t) :=
∞∑

m=−∞
gm(t).

The function ϑd is smooth, periodic with the period p = 1 and coincides
with its Fourier series. Calculating the Fourier coeffients one gets on R the
representations [1]

ϑd(t) =
1√
πd

∞∑

m=−∞
e−

(t−m)2

d

= 1 + 2
∞∑

k=1

e−π2k2d cos (2πkt) .

Using the second representation leads to

|ϑd(t)− 1| ≤ 2
∞∑

k=1

e−π2k2d ≤ 2
∞∑

k=1

e−π2kd = 2
∞∑

k=1

(
e−π2d

)k
=

2e−π2d

1− e−π2d
.
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Hence we obtain the estimate

‖ϑd − 1‖∞ ≤ 2e−π2d

1− e−π2d
=: e0(d) .

The mapping d 7→ e0(d) is strictly decreasing to zero. This means: If the
value d increases, the error |ϑd − 1| decreases. In other words: The system of
Gaussian kernels {gm}m∈Z represents an approximate partition of unity on R
if the value d is chosen large enough.

In the following table the values ϑd(0)−1 and e0(d) are given for several values
of d:

d ϑd(0)− 1 e0(d)

0.01 4.6419 19.2807

0.1 0.784286 1.18831

1 1.03446 · 10−4 1.03452 · 10−4

2 5.35058 · 10−9 5.35058 · 10−9

3 2.76668 · 10−13 2.76749 · 10−13

The table shows, that the estimate of ‖ϑd− 1‖∞ by e0(d) is quite accurate for
all d ≥ 1.

From the above representations of ϑd we get its derivatives of first and second
order in the form

ϑ′d(t) =−2

d

1√
πd

∞∑

m=−∞
(t−m)e−

(t−m)2

d

=−4π
∞∑

k=1

ke−π2k2d sin (2πkt)

and

ϑ′′d(t) =−2

d
ϑd(t) +

(
2

d

)2 1√
πd

∞∑

m=−∞
(t−m)2e−

(t−m)2

d

=−8π2
∞∑

k=1

k2e−π2k2d cos (2πkt).

Using the derivatives of the geometric series in the circle of convergence we
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obtain for |q| < 1 the identities

∞∑

k=1

k qk =
q

(1− q)2
and

∞∑

k=1

k2 qk =
q2 + q

(1− q)3
.

The Fourier series of the derivatives now lead to the estimates

‖ϑ′d‖∞ ≤ 4π e−π2d

(1− e−π2d)2
=: e1(d)

and

‖ϑ′′d‖∞ ≤ 8π2 e−π2d(1 + e−π2d)

(1− e−π2d)3
=: e2(d).

Here the mappings d 7→ e1(d) and d 7→ e2(d) are also strictly decreasing to
zero. The following table shows e1(d) and e2(d) for various values of d:

d e1(d) e2(d)

0.01 1289.01 164256

0.1 11.9025 163.654

1 6.5004 · 10−4 4.08474 · 10−3

2 3.36187 · 10−8 2.11232 · 10−7

3 1.73886 · 10−12 1.09256 · 10−11

3 Approximate approximations on R

For u ∈ C2
0(R) and h > 0 we define

ud,h : R→ R , ud,h(t) :=
1√
πd

∞∑

m=−∞
u(mh)e−

1
d(

t
h
−m)

2

.

The function ud,h is called the approximate approximation of u (or the quasi-
interpolant of u), since for sufficiently large d the values ud,h(mh) and u(mh)
are approximately the same.

Using Taylor’s formula we find for t ∈ R and m ∈ Z the representation

u(mh) = u(t) + u′(t)(mh− t) +
u′′(tm)

2
(mh− t)2,

where tm lies between t and mh. Substituting this expression in ud,h, for the
difference ud,h(t)− u(t) we obtain
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ud,h(t)− u(t) =
u(t)√

πd

∞∑

m=−∞
e−

1
d(

t
h
−m)

2

− hu′(t)√
πd

∞∑

m=−∞

(
t

h
−m

)
e−

1
d(

t
h
−m)

2

+
h2

2
√

πd

∞∑

m=−∞
u′′(tm)

(
t

h
−m

)2

e−
1
d(

t
h
−m)

2

− u(t).

With
1√
πd

∞∑

m=−∞
e−

1
d(

t
h
−m)

2

= ϑd

(
t

h

)

and

− 1√
πd

∞∑

m=−∞

(
t

h
−m

)
e−

1
d(

t
h
−m)

2

=
d

2
ϑ′d

(
t

h

)

it follows

ud,h(t)− u(t) =
(
ϑd

(
t

h

)
− 1

)
u(t) +

dh

2
ϑ′d

(
t

h

)
u′(t)

+
h2

2
√

πd

∞∑

m=−∞
u′′(tm)

(
t

h
−m

)2

e−
1
d(

t
h
−m)

2

.

Since u ∈ C2
0(R), the functions u, u′ and u′′ are bounded, hence

|ud,h(t)− u(t)| ≤ ‖ϑd − 1‖∞ ‖u‖∞ +
dh

2
‖ϑ′d‖∞ ‖u′‖∞

+
h2‖u′′‖∞
2
√

πd

∞∑

m=−∞

(
t

h
−m

)2

e−
1
d(

t
h
−m)

2

.

Using

1√
πd

∞∑

m=−∞

(
t

h
−m

)2

e−
1
d(

t
h
−m)

2

=
d

2

(
ϑd

(
t

h

)
+

d

2
ϑ′′d

(
t

h

))

we get

|ud,h(t)− u(t)| ≤ ‖ϑd − 1‖∞ ‖u‖∞ +
dh

2
‖ϑ′d‖∞ ‖u′‖∞

+
dh2

4

(
ϑd

(
t

h

)
+

d

2
ϑ′′d

(
t

h

))
‖u′′‖∞.

Setting

‖u‖2,∞ := max{‖u‖∞, ‖u′‖∞, ‖u′′‖∞}
and

c(d) :=
d

4

(
1 + e0(d) +

d

2
e2(d)

)
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we finally obtain the error estimate

‖ud,h − u‖∞ ≤ ‖u‖2,∞

(
e0(d) +

d

2
e1(d) h + c(d) h2

)
.

Let us summarize the above results in the following theorem.

1. Theorem. For u ∈ C2
0(R) and d, h > 0 we define the approximate approx-

imation

ud,h : R→ R , ud,h(t) :=
1√
πd

∞∑

m=−∞
u(mh)e−

1
d(

t
h
−m)

2

and get the error estimate

‖ud,h − u‖∞ ≤ ‖u‖2,∞

(
e0(d) +

d

2
e1(d) h + c(d) h2

)

with

e0(d) =
2e−π2d

1− e−π2d
, e1(d) =

4π e−π2d

(1− e−π2d)2
, e2(d) =

8π2 e−π2d(1 + e−π2d)

(1− e−π2d)3

and

c(d) =
d

4

(
1 + e0(d) +

d

2
e2(d)

)
.

For sufficiently large values of d the first two terms in the error estimate are
small and c(d) is of the same order as d. So ud,h represents an approximation
of u which is pseudo convergent of second order.

Here the notation pseudo convergence is used since on the one hand there is
no convergence ud,h → u for h → 0, but on the other hand the first two terms
in the error estimate can be chosen less than machine precision, and therefore
they can be neglected for numerical purposes.

If the parameter d is not too small the term of second order is dominating,
hence we call this approximation pseudo convergent of second order.

We use the compact support of u only for the boundedness of u and its deriva-
tives. The error estimate also holds true if we require that u and its derivatives
up to second order are bounded, only.

The essential advantage of functions with compact support is that u(mh) 6= 0
only for a finite number of m, so that the summation can be realized nu-
merically. For functions with unbounded support the summation has to be
truncated somewhere, and the resulting truncation error has to be investi-
gated.

6



4 Approximate approximations on [−1, 1]

We now consider the approximate approximation of functions which are de-
fined on a nontrivial compact interval. Since such intervals can be mapped
bijectively on the interval [−1, 1], in the following we restrict ourselves to this
interval.

To approximate functions u ∈ C2([−1, 1]) with the method presented above,
we have to take into account that u(mh) is defined only for mh ∈ [−1, 1].

One way to overcome this difficulty is the prolongation of u to a C2
0(R)-

function. This leads to a function with larger support and hence to additional
numerical costs. Here we propose another way: Summing up over all m with
mh ∈ [−1, 1], only. For the resulting truncation error we will give pointwise
estimates and L1-estimates.

In the following, let u ∈ C2([−1, 1]) be given. Furthermore, let N ∈ N and
h = 1/N . We define the approximate approximation of u by

ud,h : [−1, 1] → R , ud,h(t) :=
1√
πd

N∑

m=−N

u(mh)e−
1
d
(tN−m)2 .

To obtain estimates for the error |u−ud,h| we need the following two functions:

2. Definition. For t ∈ [−1, 1] we define

ϑd,N(t) :=
1√
πd

N∑

m=−N

e−
1
d
(tN−m)2

and

rd,N(t) :=
1√
πd


 e−

1
d
((1+t)N+1)2

1− e−
2
d
((1+t)N+1)

+
e−

1
d
((1−t)N+1)2

1− e−
2
d
((1−t)N+1)


 .

3. Lemma. Let e0(d) as in Theorem 1. Then for all t ∈ [−1, 1] we have

|ϑd,N(t)− 1| ≤ rd,N(t) + e0(d).

Proof. Using the formula
∞∑

m=0

qm =
1

1− q

for |q| < 1 we find
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∞∑

m=0

e−
1
d
((1±t)N+1+m)2 =

∞∑

m=0

e−
1
d
((1±t)N+1)2 e−

2
d
m(1±t)N+1) e−

1
d
m2

≤ e−
1
d
((1±t)N+1)2

∞∑

m=0

e−
2
d
((1±t)N+1)m

= e−
1
d
((1±t)N+1)2

∞∑

m=0

(
e−

2
d
((1±t)N+1)

)m

=
e−

1
d
((1±t)N+1)2

1− e−
2
d
((1±t)N+1)

and hence

|ϑd,N(t)− ϑd(tN)|= 1√
πd

∣∣∣∣∣∣

N∑

m=−N

e−
1
d
(tN−m)2 −

∞∑

m=−∞
e−

1
d
(tN−m)2

∣∣∣∣∣∣

=
1√
πd

∣∣∣∣∣∣

−N−1∑

m=−∞
e−

1
d
(tN−m)2 +

∞∑

m=N+1

e−
1
d
(tN−m)2

∣∣∣∣∣∣

=
1√
πd

∞∑

m=N+1

(
e−

1
d
(tN+m)2 + e−

1
d
(tN−m)2

)

=
1√
πd

∞∑

m=0

(
e−

1
d
((1+t)N+1+m)2 + e−

1
d
((1−t)N+1+m)2

)

≤ 1√
πd


 e−

1
d
((1+t)N+1)2

1− e−
2
d
((1+t)N+1)

+
e−

1
d
((1−t)N+1)2

1− e−
2
d
((1−t)N+1)




= rd,N(t).

This leads to

|ϑd,N(t)− 1| ≤ |ϑd,N(t)− ϑd(tN)|+ |ϑd(tN)− 1|
≤ rd,N(t) + e0(d),

as asserted. tu

4. Lemma. Let e1(d) as in Theorem 1. Then for d ≤ 2 and all t ∈ [−1, 1] we
have

∣∣∣∣∣∣
1√
πd

N∑

m=−N

(tN −m) e−
1
d
(tN−m)2

∣∣∣∣∣∣
≤ d

2
e1(d) +

2 e−
1
d√

πd

(
1 +

d

2

)
.

Proof. First we use
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1√
πd

N∑

m=−N

(tN −m) e−
1
d
(tN−m)2 =− d

2
ϑ′d(tN)

− 1√
πd

∞∑

m=N+1

(tN −m) e−
1
d
(tN−m)2

− 1√
πd

∞∑

m=N+1

(tN + m) e−
1
d
(tN+m)2 .

Since m ≥ N + 1 implies

m± tN ≥ m−N ≥ 1,

and since the function

s 7→ se−
1
d
s2

is strictly decreasing on [1,∞) for d ≤ 2, it follows

∞∑

m=N+1

(m± tN) e−
1
d
(m±tN)2 ≤

∞∑

m=N+1

(m−N) e−
1
d
(m−N)2

=
∞∑

m=1

me−
1
d
m2

.

With

∞∑

m=1

me−
1
d
m2

= e−
1
d +

∞∑

m=2

m∫

m−1

me−
1
d
m2

dy

≤ e−
1
d +

∞∑

m=2

m∫

m−1

y e−
1
d
y2

dy

= e−
1
d +

∞∫

1

y e−
1
d
y2

dy

= e−
1
d

(
1 +

d

2

)

we get

∣∣∣∣∣∣
1√
πd

N∑

m=−N

(tN −m) e−
1
d
(tN−m)2

∣∣∣∣∣∣
≤ d

2
e1(d) +

2 e−
1
d√

πd

(
1 +

d

2

)
,

as asserted. tu

These estimates now lead to the following pointwise estimate of the total error:
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5. Theorem. For u ∈ C2([−1, 1]) we define the approximate approximation

ud,h : [−1, 1] → R , ud,h(t) :=
1√
πd

N∑

m=−N

u(mh)e−
1
d
(tN−m)2 .

Then for d ≤ 2 and all t ∈ [−1, 1] we have

|u(t)− ud,h(t)| ≤ ‖u‖∞ (rd,N(t) + e0(d))

+ ‖u′‖∞ h


d

2
e1(d) +

2 e−
1
d√

πd

(
1 +

d

2

)


+ ‖u′′‖∞ c(d) h2,

where the constants ei(d) and c(d) are defined in Theorem 1 and rd,N is defined
in Definition 2.

Proof. For m ∈ {−N, . . . , N} and t ∈ [−1, 1] we use Taylor’s formula to get
the representation

u(mh) = u(t) + u′(t)(mh− t) +
u′′(tm)

2
(mh− t)2,

where tm lies between t and mh. Inserting this term for u(mh) in ud,h, we find
for ud,h(t)− u(t) the representation

ud,h(t)− u(t) = (ϑd,N(t)− 1) u(t)

− hu′(t)√
πd

N∑

m=−N

(tN −m) e−
1
d
(tN−m)2

+
h2

2
√

πd

N∑

m=−N

u′′(tm) (tN −m)2 e−
1
d
(tN−m)2 .

Using Lemma 3 and Lemma 4 together with

1

2
√

πd

N∑

m=−N

(tN −m)2 e−
1
d
(tN−m)2 ≤ 1

2
√

πd

∞∑

m=−∞
(tN −m)2 e−

1
d
(tN−m)2

=
d

4

(
ϑd(tN) +

d

2
ϑ′′d(tN)

)

≤ d

4

(
1 + e0(d) +

d

2
e2(d)

)

= c(d),

the proof is done. tu
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Comparing this error estimate with the error estimate in Theorem 1 we no-
tice that here additional terms do appear. Furthermore we see that it is not
convenient to use the supremum norm here since there remains an error in
the boundary points which does not vanish for increasing N unless u itself
vanishes in the boundary points.

In the following we show that the L1-norm

1∫

−1

|u(t)− ud,h(t)| dt

of the total error can be made small for sufficiently large d and N . To do so
we need the error function:

6. Definition. For a, b ∈ R with a ≤ b the error function erf is defined by

erf(a, b) :=
2√
π

b∫

a

e−t2 dt.

The next lemma is essential for the L1-estimate of the total error.

7. Lemma. Let ϑd,N be given as in Definition 2 and e0(d) as in Theorem 1.
Then we have

1∫

−1

|1− ϑd,N(t)| dt ≤
erf

(
1√
d
, 2N+1√

d

)

N
(
1− e−

2
d

) + 2 e0(d).

Proof. Since
1

1− e−
2
d
((1±t)N+1)

≤ 1

1− e−
2
d

for t ∈ [−1, 1], for the function rd,N defined in Definition 2 we get the estimate

rd,N(t) =
1√
πd


 e−

1
d
((1+t)N+1)2

1− e−
2
d
((1+t)N+1)

+
e−

1
d
((1−t)N+1)2

1− e−
2
d
((1−t)N+1)




≤ 1√
πd

e−
1
d
((1+t)N+1)2 + e−

1
d
((1−t)N+1)2

1− e−
2
d

.

Using

1∫

−1

e−
1
d
((1±t)N+1)2dt =

√
d

N

2N+1√
d∫

1√
d

e−t2dt =

√
πd

2N
erf

(
1√
d

,
2N + 1√

d

)
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we find
1∫

−1

rd,N(t) dt ≤
erf

(
1√
d
, 2N+1√

d

)

N
(
1− e−

2
d

) .

From Lemma 3 we already know that

|1− ϑd,N(t)| ≤ rd,N(t) + e0(d),

and this yields

1∫

−1

|1− ϑd,N(t)| dt ≤
1∫

−1

(rd,N(t) + e0(d)) dt ≤
erf

(
1√
d
, 2N+1√

d

)

N
(
1− e−

2
d

) + 2 e0(d) ,

as asserted. tu

Now we can estimate the L1-norm of the total error as follows:

8. Theorem. Let u ∈ C2([−1, 1]). We define the approximate approximation
ud,h as in Theorem 5. Then for d ≤ 2 we have

1∫

−1

|u(t)− ud,h(t)| dt≤‖u‖∞

erf

(
1√
d
, 2N+1√

d

)

1− e−
2
d

h + 2 e0(d)




+ 2 ‖u′‖∞ h


d

2
e1(d) +

2 e−
1
d√

πd

(
1 +

d

2

)


+ 2 ‖u′′‖∞ c(d) h2,

where the constants ei(d) and c(d) are defined as in Theorem 1.

Proof. The proof follows immediately from Theorem 5 and Lemma 7. tu

The above estimate shows that the L1-norm of the total error is pseudo con-
vergent of first order even though the error in the boundary points does not
vanish.
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