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Abstract. In natural languages with a high degree of word-order free-
dom syntactic phenomena like dependencies (subordinations) or valen-
cies do not depend on the word-order (or on the individual positions of
the individual words). This means that some permutations of sentences
of these languages are in some (important) sense syntactically equiva-
lent. Here we study this phenomenon in a formal way. Various types
of j-monotonicity for restarting automata can serve as parameters for
the degree of word-order freedom and for the complexity of word-order
in sentences (languages). Here we combine two types of parameters on
computations of restarting automata:

1. the degree of j-monotonicity, and

2. the number of rewrites per cycle.
We study these notions formally in order to obtain an adequate tool for
modelling and comparing formal descriptions of (natural) languages with
different degrees of word-order freedom and word-order complexity.

1 Introduction

The original motivation for introducing the restarting automaton was the desire
to model the so-called analysis by reduction of natural languages. Many aspects
of the work on restarting automata are motivated by the basic tasks of com-
putational linguistics. (e.g., devising multilevel language descriptions) as well as
by applied tasks (e.g., constructing grammar checkers for free word-order lan-
guages). More about the motivation and about the corresponding literature can
be found in [13,15].

From a theoretical point of view the restarting automaton can be seen as a
tool that yields a very flexible generalization of analytical grammars, that is, in a
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very flexible way it introduces a basic syntactic system (an approximation to the
formalization of the analysis by reduction), which contains the full information
about the input vocabulary (set of wordforms), the categorial vocabulary, the set
of reductions (rewritings), the recognized language, the language of sentential
forms, and the categorial language. On the other hand, the restarting automa-
ton can be considered as a generalization and a refinement of the pushdown
automaton (see [14]).

Various restricted versions of the restarting automaton and various con-
straints for it are considered in the literature. In particular, a monotonicity
constraint has been introduced for restarting automata which is based on the
idea that from one rewrite operation to the next within a computation, the ac-
tual place where the rewriting is performed must not increase its distance from
the right end of the tape. The monotone restarting automata essentially model
bottom-up context-free analyzers. Accordingly, it was shown that the monotone
restarting automata (with auxiliary symbols) characterize exactly the class CFL
of context-free languages. and various restricted versions of deterministic mono-
tone restarting automata (with or without auxiliary symbols) characterize the
class DCFL of deterministic context-free languages [9].

Also a generalization of the constraint of monotonicity has been considered,
which models the generalization from bottom-up one-pass parsers to bottom-up
multi-pass parsers. For an integer j > 1, a computation is called j-monotone if
the corresponding sequence of rewrite steps can be partitioned into at most j
subsequences such that each of these subsequences is monotone. It was shown
that by increasing the value of the parameter j, the expressive power of restarting
automata without auxiliary symbols is increased [16].

Here we introduce and use a new type of restarting automaton, the freely
rewriting restarting automaton, FRR-automaton for short, which may perform
an unlimited number of rewrite operations per cycle, in order to classify the
word-order of natural languages. In fact, we propose an infinite hierarchy of
classes of basic syntactic systems and of classes of languages of sentential forms
(of restarting automata) from the points of view of word-order complexity and
word-order freedom. Our main goal is to show that the word-order freedom
(together with some type of valencies (dependencies)) can cause complex syn-
tactic phenomena. Similar considerations were made before using dependency
grammars [8], however our approach is more general, and it can be applied to
various types of grammars, including Chomsky, categorial, pure, Marcus and de-
pendency grammars, using simulations by restarting automata. The word-order
constraints play an important role in modern computational linguistics (see, e.g.,
[5]). We only consider restarting automata, which are not stronger (with respect
to their weak generative capacity) than linear-bounded automata. In order to ob-
tain the intended results certain combinations of constraints for FRR-automata
are studied.

The complexity of word-order of natural languages can be illustrated by
several constructions found in some languages. The first two samples show non-
context-free constructions in languages which are considered to be languages
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with fixed word-order. The next three samples are taken from languages with a
considerable degree of word-order freedom.
In [3] Bresnan et al. give the following example from Dutch:

(dat) Jan Piet Marie de kinderen zag helpen laten zwemmen.
[(that)-Jan- Piet-Marie-the-children-saw-help-make-swim.]
[(that) Jan saw Piet help Marie make the children swim.)

which shows a duplication-like structure ww, where w is the word obtained from
w by replacing each symbol by its barred copy. Using analysis by reduction we
would like to get the following sequence of reductions:

(dat) Jan Piet Marie de kinderen zag helpen laten zwemmen.
(dat) Jan Piet Marie zag helpen VG, ;.
(dat) Jan Piet zag VGgas.

where the rewritten parts are in bold font. In the first step, the noun phrase 'de
kinderen’ (the children) and the infinitival verb complement ’laten zwemmen’
are replaced by the category VGiy, s, which means that an infinitive construction
was deleted. Note that the rewritten part is not contiguous. In the second step,
the words "Marie’, 'helpen’ and the category VG, are replaced by a category
VG4,.: which represents a subordinate clause.

Similar constructions, where an adequate analysis by reduction requires
rewriting words which are in distant parts of a sentence can be found in many
other languages. Shieber found the following construction in Ziirich dialect of
German [18]:

Jan sdit das mer d’chind em Hans es huus haend wele laa hilfe aastriiche.
[Jan-said-that-we-the-children- Hans-the-house-wanted-to-let-help-paint.]
[Jan said that we wanted to let the children help Hans paint the house.]

It has the structure zwa™b"yc™d"z, where a, b stand for dative and accusative
noun phrases, respectively, and ¢, d for the corresponding dative and accusative
verb phrases, respectively.

Analysis by reduction for the above two sample sentences (more precisely
their generalized forms) can be modelled by 2-monotone FRR-automata with two
rewrites per cycle which we call 2-constrained. The degree of j-constrainability
will serve as a synonym for word-order complexity. In this way we enrich the
taxonomy of various word-order constraints given in [8].

In German the following are correct (parts of) sentences [17]:

— ...daf} Peter dem Kunden den Kiihlschrank zu reparieren zu helfen
versucht.
[. .. that-Peter-the-client-the-refrigerator-to-repair-to-help-tries.]
[...that Peter tries to help the client to repair the refrigerator.]

— ...daf} Peter versucht, dem Kunden zu helfen, den Kiihlschrank zu
reparieren.
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— ...da8} Peter versucht, dem Kunden den Kiihlschrank zu reparieren
zu helfen.

Even more correct sentences can be obtained by permuting five elements (de-
limited by < and >) in the following example taken from [7]:

...daB} <eine hiesige Firma> <meinem Onkel> <die M&bel> <vor drei
Tagen> <ohne Voranmeldung> zugestellt hat.

[.. . that-< a-local-company>-<my-uncle>-< the-furniture>-< three-days-
ago>-<without-advance-notice>-delivered-has.)

[...that a local company delivered the furniture to my uncle three days
ago without advance notice.]

For a more detailed discussion on word-order of German see [17].

In some other languages like most Slavonic languages, the syntactic relations
between words are specified by means other than the position in a sentence — by
a rich inflexion. Often all the permutations of words in a clause are possible3.
All the following sentences are correct in Czech:

— Vsichni prosli kursem.

[All-passed-the course.]
— Kursem v8ichni prosli.
— Kursem prosli v§ichni.
— Progli vichni kursem.
— Prosli kursem v§&ichni.
— Vsichni kursem prosli.

In the last three examples some words in each sentence can be (almost) freely
permuted. This could resemble the transformational grammar approach [4],
where the transformations are used to increase the descriptive power of context-
free grammars. We will deal with permutations only and say that all sentences
which differ in the word-order only are Parikh equivalent (that is, they contain
the same number of occurrences of each word). Based on the Parikh equiva-
lence we introduce a reduction equivalence of sentences and study the degree of
word-order freedom of languages.

The paper is structured as follows. In the next section we present definitions
of FRR-automata and their j-constrained versions. The language Lsr(M) ac-
cepted by an FRR-automaton M is called a language of sentential forms. If we
restrict the set of possible input symbols to a fixed subset X' of the working alpha-
bet, we say that the automaton M accepts the input language Ly = Lgp N X*.
In Section 3 we show the power of j-constrained FRR-automata: the languages
of sentential forms accepted by j-constrained FRR-automata create an infinite
hierarchy. Further, for each degree j of constrainability, the class of languages of
sentential forms accepted by j-constrained FRR-automata is a proper subclass of
the class of input languages accepted by j-constrained FRR-automata. In other

3 While the permutations mostly share the same basic meaning represented by depen-
dencies, they nevertheless differ in the topic-focus articulation.
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words: the use of auxiliary (non-input) symbols can hide the real complexity
of the word-order. Then we formalize the degree of word-order freedom of a
language (or an FRR-automaton) through the notion of j-scalability. Roughly
speaking, an FRR-automaton is j-scalable if increasing constrainability of its
computations from i to i+ 1, for all 1 < i < j, extends the set of accepted words
only by words obtained by permutations of symbols in words accepted already
by i-constrained computations and simultaneously the structure of reductions
defined by cycles of M remains the same (up to the Parikh equivalence). Finally,
in Section 4 we shortly discuss the achieved results and state some problems for
further research on this subject.

2 Definitions

Throughout the paper we will use A to denote the empty word. Further, |w|
will denote the length of the word w, and if a is an element of the underlying
alphabet, then |w|, denotes the a-length of w, that is, the number of occurrences
of the letter @ in w. Further, N, will denote the set of all positive integers.

We start by describing the model of the restarting automaton we are going
to use in this paper.

A freely rewriting restarting automaton, FRR-automaton for short, is a (non-
deterministic) machine that is described by a 7-tuple M = (@, I,¢,$, o, k, ),
where @ is a finite set of states, I is a finite tape alphabet, ¢,$ & I" are symbols
that are used as markers for the left and right border of the work space, respec-
tively, go € @ is the initial state, k > 1 is the size of the read/write window,
and ¢ is the transition relation that associates to each pair (g, u) consisting of a
state ¢ and a possible content u of the read/write window a finite set of possible
transition steps. There are four types of transition steps:

1. A move-right step (MVR) causes M to shift the read/write window one po-
sition to the right and to change the state. However, the read/write window
cannot move across the right sentinel $.

2. A rewrite step causes M to replace a non-empty prefix u of the content of
the read/write window by a string v, thereby possibly changing the length
of the tape, and to change the state. Further, the read/write window is
placed immediately to the right of the string v. However, occurrences of the
delimiters ¢ and $§ can neither be deleted nor newly created by a rewrite step.

3. A restart step causes M to place its read/write window over the left end of
the tape, so that the first symbol it sees is the left sentinel ¢, and to reenter
the initial state qq.

4. An accept step causes M to halt and accept.

If 8(q,u) = 0 for some pair (g, u), then M necessarily halts, and we say that
M rejects in this situation. In addition, it is required that there exists a weight
function w : I' — Ny such that, for each rewrite operation u — v, w(v) < w(u)
holds. Here w is extended to a morphism w : I'* — N by taking w(X) := 0 and
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w(wa) = w(w) + w(a) for all w € I'* and all @ € I'. Thus, the FRR-automaton
is a variant of the shrinking restarting automaton considered in [12].

A configuration of M is a string aqB where ¢ € @), and either @ = A and
B € {ec-I'* {8} or a € {¢}-I* and B € I'* - {$}; here g represents the
current state, af is the current content of the tape, and it is understood that
the window contains the first k symbols of § or all of 8 when |3| < k. A restarting
configuration is of the form goew$.

We observe that any computation of M consists of certain phases. A phase,
called a cycle, starts in a restarting configuration, the head moves along the tape
performing move-right and rewrite operations until a restart operation is per-
formed and thus a new restarting configuration is reached. If no further restart
operation is performed, the computation necessarily finishes in a halting configu-
ration — such a phase is called a tail. It is required that in each cycle M performs
at least one rewrite step — thus each cycle reduces the weight of the actual tape
content with respect to the weight function w mentioned above. Further, it is
required that M does not perform any rewrite steps in a tail. We use the nota-
tion u F§; v to denote a cycle of M that begins with the restarting configuration
gocu$ and ends with the restarting configuration gocv$; the relation 5, is the
reflexive and transitive closure of -4,. The pair RS(M) := (I'*,}4,) is called the
reduction system induced by M.

A sentential form w € I'™ is accepted by M, if there is an accepting com-
putation which starts from the restarting configuration gocw$. By Lsp (M) we
denote the language consisting of all sentential forms accepted by M; we say
that Lgr(M) is the language of sentential forms recognized by M.

From the above description it is easily concluded that, starting from a con-
figuration of the form goe¢w$, M will execute at most ¢- |w| many cycles for some
constant ¢ € Ny, which implies that Lgr (M) is accepted by a nondeterministic
Turing machine simultaneously in quadratic time and in linear space, that is,
Lsp(M) € NP N CSL.

If a proper subalphabet X' of I' is fixed as an alphabet of terminal symbols (or
input symbols), then the language Ly(M) := Lsp(M)NXE* of all input sentences
accepted by M is called the input language recognized by M. In this case the
four-tuple BS; (M) := (X, I, Lsp(M),RS(M)) is called the basic syntactic sys-
tem of M with input alphabet X. Observe that BS;(M) contains the complete
information about L;(M),Lsp(M), and RS(M), and that Lgwr(M) plays the
main role among the two languages. In an obvious way one can introduce basic
syntactic systems also for Chomsky grammars and various types of categorial
and dependency grammars.

We emphasize the following nice properties of restarting automata, which are
often used implicitly in proofs. Observe that the latter property does in general
not hold for input languages.

Fact 1 (Error Preserving Property). Let M be an FRR-automaton, and let
u,v € I'*. IfutS, v and u ¢ Lsp(M), then v ¢ Lgp(M), either.
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Fact 2 (Correctness Preserving Property). Let M be a an FRR-automa-
ton, and let u,v € I'*. If u l—ﬁ} v is a part of an accepting computation of M,
then v € Lgp(M).

Finally we come to the notion of monotonicity. Let C' := aqf be a rewrite
configuration of a FRR-automaton M, that is, a configuration in which a rewrite
instruction is to be applied. Then || is called the right distance of C, which is
denoted by D,(C). A sequence of rewrite configurations S = (C1,Cs,...,Cp)
is called monotone if D,.(Cy) > D,(Cs) > ... > D.(Cy).

Let j be a positive integer. We say that a sequence of rewrite configurations
S =(C1,Cs,...,Cy) is j-monotone if there is a partition of S into j subsequences

S1=(C1,1,C12,---,C1p,)5---,8 = (Cj,1,Cl2,- -, Ci ),

such that each S;, 1 < i < j, is monotone. Obviously a sequence of rewrite
configurations (C1, Ca, - - -, Cy,) is not j-monotone if and only if there exist indices
1 <iy <iy <... <ijp1 < msuch that D.(Cj,) < D,(Cy,) < ... < Dp(Cyyl,)-

A computation of an FRR-automaton M is called j-monotone if the corre-
sponding sequence of rewrite configurations is j-monotone. A computation is
j-rewriting if none of its cycles contains more than j rewrite steps. Finally, a
computation is j-constrained if it is both j-rewriting and j-monotone.

Notation. For any class A of automata and any index Y € {I,SF}, Ly (A) will
denote the class of Y-languages recognizable by automata from A, and BS(A)
will denote the class of basic syntactic systems determined by A. By (D)CFL we
denote the class of (deterministic) context-free languages, and by C we denote
the proper subset relation. Sometimes we will use regular expressions instead of
the corresponding regular languages.

3 Constraints of word-order

In this section we introduce some constraints which will be used for characteri-
zations of word-order complexity and word-order freedom. For us the degree of
word-order freedom means a certain degree of robustness against permutations
of sentential forms and their reductions, while the degree of constrainability
serves as a synonym for the degree of word-order complexity. In the following
we will restrict our attention mainly to languages of sentential forms. First we
introduce an infinite hierarchy of classes of languages of sentential forms based
on the notion of constrainability.

Definition 3. For an FRR-automaton M over I', and an integer i € N,
Lsp(M,i):={w € Lgp(M) | M accepts w by an i-constrained computation }.
In addition, if an input alphabet X C I" is fized for M, then

Li(M,i):={we Li(M)| M accepts w by an i-constrained computation }.
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For each FRR-automaton M, each input alphabet X, each Y € {I, SF'}, and
each ¢ > 1, Ly (M,i) C Ly (M,i + 1), as each i-constrained computation is also
(7 4+ 1)-constrained.

Definition 4. Let i € Ny, and let A be a type of restarting automaton. Then
Lsp(i,A) :={Lsp(M,i) | M is an A-automaton }.

Further, by
Lr(i, A) == {Li(M,i) | M is an A-automaton }

we denote the corresponding class of languages obtained when considering A-
automata with designated input alphabets.

The next theorem follows from results presented in [9].
Theorem 1. DCFL C Lgr(1,FRR) C CFL = £;(1,FRR).

Proof. In [11] the shrinking restarting automaton is introduced (see also [12]). It
differs from the standard restarting automaton in that rewrite steps of the form
u — v are not necessarily length-reducing, but that they are only required to be
weight-reducing with respect to some weight function. Each monotone shrinking
restarting automaton without auxiliary symbols (that is, a monotone shrinking
RRW-automaton in the notation of [14]) can be seen as an FRR-automaton that
executes only 1-constrained computations. Thus, Lgr (1, FRR) = £(mon-sRRW).
Hence, we obtain the proper inclusions DCFL C Lgr(1,FRR) C CFL from the
results of [9]. While in [9] only restarting automata are considered for which
each rewrite step is length-reducing, it is easily seen that the context-free exam-
ple language given there which is not accepted by any RRW-automaton is not
accepted by any shrinking RRW-automaton, either.

The language class CFL coincides with the class of languages that are ac-
cepted by monotone RRWW-automata. In fact, it coincides with the class of
languages accepted by monotone shrinking RRWW-automata [11]. However, it
is easily seen that monotone shrinking RRWW-automata correspond to FRR-
automata with designated input alphabets executing only 1-constrained compu-
tations. This yields the equality CFL = £;(1, FRR). O

Next we introduce a restricted type of FRR-automaton called MRR-automa-
ton. The transition relation of an MRR-automaton M is given through a finite
sequence of so-called meta-instructions of the form

(E17u1 — U17E27u2 — U27E37 .- 7Eiaui — Ui7Ei+1)7

where E,. .., E;11 are regular expressions, and foreachn =1,...,4, up,v, € I'*
are strings satisfying w(v,) < w(uy,), where w : I' — Ny is a weight function
associated with M. The rules u; — v1, ug = vo, ..., u; = v; embody rewrite
steps of M. On trying to execute this meta-instruction, M will get stuck (and so
reject) starting from the configuration goew$, if w does not admit a factorization
of the form w = wyuywaus . . . wju;w;11 such that cwy € L(Ey), wy € L(Es), ...,
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wit1$ € L(E;y1), where L(E,) denotes the language described by the regular
expression E,. On the other hand, if w does have a factorization of this form, then
one such factorization is chosen nondeterministically, and go¢w$ is transformed
into goewviwavaws - .. wiv;w;r18. In order to describe the tails of accepting
computations of M (during which M cannot apply any rewrite operations at
all), we use meta-instructions of the form (¢ - E - $, Accept), which accepts the
sentences from the regular language L(E).

For each MRR-automaton M, there exists a number jjs such that no cycle of
any computation of M contains more than jjs applications of rewrite steps, that
is, each computation of M is jar-rewriting. Thus, MRR-automata have limited
rewriting only. In this sense MRR-automata are weaker than FRR-automata.

Ezample 1. We consider the language Lo, := { (a™b™)™ | n,m > 0}. It is easily
seen that the following deterministic FRR-automaton M., with initial state gq
and tape alphabet I' := {a, b} accepts this language:

(qu ¢$) = Accepta 6(q1a aaa) = (qu MVR))
(qu ¢aa) (qOJ MVR) 5(q1a aab) = (qu MVR)J
4(go,aaa) = (go, MVR), 0(q1,bb8) = Restart,
0(go, aab) = (go, MVR), 0(g1,b8) = Restart,
6(q07 abb) (qla )7 6(q17 $) = Restart,
6(q17 bbb) (qla MVR) 6(QO, ¢ab) = (q27 ¢)7
(g1, bba) = (g1, MVR), 6(g2,ab) = (g2, ),
(g1, baa) = (qo, MVR) 6(q2,8) = Accept.
Given the string w = (a®b®)* as input, M will execute the following compu-

tation:

go¢a®b®(a®b®)3$ 4, ca’qoabbb(a®b®)$
Far ca?bqib(a®h?®)3$
F*, ca?b?a®qoabbb(a®b®)?$
Far ca?b?a®bg b(a®b3)?$
F4, c(a?b?)2agoabbba®b®$
Far ¢(a®b?)?abq ba’b$
F=, c(a?b?)3agoabbb$
Far ¢(a®b?)3a?bg, b$
Far gocaabb(a®b?)*$
F*; cagoabb(a?b?)3$
Far cabgiaabb(a®b?)%$
Far cabagoabb(a®b?)?$
Far cababg aabba?b>$
Fr cababagoabba?b®$
Far cabababgiaabb$
Fr cabababagoabb$
s cababababg, $
Far gocabababab$
Fur ¢qoababab$
Fir ¢g2$ Far Accept.
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On the other hand, if M’ is an MRR-automaton on I', then M’ has no
accepting computation for an input of the form w := (a™b™)/m' 1, where n is
sufficiently large. Indeed, as M’ can execute at most ju rewrite steps per cycle,
the first cycle of M’ in an accepting computation on input w will transform
the string w into a string not belonging to the language L., thus violating the
Correctness Preserving Property.

Thus, we have the following consequence.
Corollary 1. L5r(MRR) C Lsr(FRR).
For the FRR-automaton M of Example 1 we see that
Lsp(M,i) ={(@"b™)™ |n>0,m<i},

which shows that the languages Lsp(M,4) (i > 1) form an infinite strictly
ascending sequence approximating the language Lsp(M) = L. Again the lan-
guage { (a™b™)™ | n > 0, m < i} cannot be accepted by any FRR-automaton
performing only (¢ — 1)-constrained computations. Hence, we have the following
infinite hierarchy.

Corollary 2.
(a) Foralli > 1, Esp(i, FRR) C Esp(i + 1, FRR)
(b) Uj>1 £s#(i,FRR) C Lsp(FRR).

Ezample 2. Let M; be the MRR-automaton with tape alphabet {a,b} that is
given through the following set of meta-instructions:

(1) (¢-a*,abb — b,b* - $), (3) (¢ - (ab+ ababd) - $, Accept).
(2) (¢-a™,abb — b,b* - at,abb — b, b* - §),

It is easy to see that Lgp(Mi,1) = {a™" | n > 0} U {abab}, as in
1-constrained computations M; can only use meta-instructions (1) and (3),
while LSF(M1,2) = LSF(Ml,l) U {a"b"a”b" | n > 0} Hence, LSF(MI) =
Lsrp(M1,2) D Lsp(Mi,1).

Remark 1. Observe that Lgp(M;) = Lgp(M1,2) = {a™b",a™b"a™b" | n > 0}
is not context-free, and so Lgp(M;) ¢ Lsr(1,FRR) by Theorem 1.

Example 3. Let Ms be the MRR-automaton with the same tape alphabet as
M, that is given through the meta-instructions of M; and the following two
instructions:

(4) (¢-at,abb — b,b* -ab-$), (5) (¢-ab-a™,abb — b,b* - $).

In 1-constrained computations M, can use the meta-instructions (1) and (3)
to (5). It follows easily that Lgp(M2,1) = { a™b", aba™b™,a™b"ab | n > 0 }, while
LSF(MQ,Q) = {a"b"ambm | n>0m> 0} = LSF(MQ).
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In contrast to Lsr (M), the language Lsr (M) is context-free, and Lgpr(Ms)
can even be accepted by an MRR-automaton M’ that executes only 1-constrained
computations, that is, Lgr(M2) € Lsr(1,FRR). M is given through the follow-
ing meta-instructions:

(1) (¢c-a™,abb — b,b*-8), (3) (¢-aT,abb— b,b*-at -bT -9),
(2) (¢c-ab— X at-bt-8), (4) (¢-ab-$, Accept).

Below we will use the following families of sample languages, where j € N,
I :={a,b,co,¢1,...,¢j_1}, and A; := {a1,a9,...,a;}:

LCj :={cwerw...ciw...cj2wcj1w |w € {a,b}* } CI7,

LE; = {w € {ay, 0} | [wlay = [0]ay = . = [wlay } C A3.

Let us remark that the languages LC; (j > 1) represent those languages in
which valencies are modelled through fixed reduction positions (with an increas-
ing number of such positions), and the languages LE; (j > 1) represent those
languages in which valencies are modelled by j-tuples of symbols in varying
positions, independent of the word-order.

Ezample 4. Let j > 1, and let MC; be the MRR-automaton with tape alpha-
bet I'; that is given through the following sequence of meta-instructions, where
Yo := {a,b}:

(1) (eco,a = A\, T -c1,a = AN X5 ¢y, X5 - cj_1,a = A, X5 - $);
(2) ((IZCo,b—) )\,Eak 'Cl,b—) /\,26 ‘02,---,26 'Cj_l,b—) )\,ES $),
(3) ((EC()Cl . Cj_1$, ACCGpt).

It follows immediately that Lsr(MCj) = LC; holds, and that MCj is j-
constrained. On the other hand, it is easily seen that LC;1 & Lsr(j, FRR), as
for a sentence x € LCj41, j rewrite operations per cycle do in general not suffice
to transform z into another string that still belongs to LC;11. Hence, LCj1q
does not coincide with the language of sentential forms for any j-constrained
FRR-automaton.

However, for each j > 1, there exists an MRR-automaton M; with input
alphabet I'; and tape alphabet (2; := I'; U D, where D := {d,,ds}, such that
L;(M,;,2) = LC;. The automaton M; is given through the following meta-
instructions, where u € Xg:

(1) (¢co,u > A\ X5 -c1-D*u = dy, Zf -co-...-cjo1 - X5+ 9),
(2) (¢coci,dy = A\, D*-co - D*,u = dy, X -c3-...-cj_1 - X5 - 8),

J— CCOCL - - - Cj—3,0y —> A, TGt T, U 7 Oy, “Cj—1 - °9),
G—2) ( i—3,d A, D* - ¢; D* dy, 5§ - ¢; X3 -9)
(J—l) (¢cocl...cj,2,du—)A,D*-cj,l,u%/\,ﬂg-ﬁi),

6); (ecocy - .. cj—19, Accept).

Given an input cowiciws . .. cj_owj_1cj_1w; withwy,...,w; € X§, Mj grad-
ually compares the neighbouring factors w; and w1 (1 <4 < j— 1) from left
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to right. First meta-instructions of type (1) are used repeatedly to compare w;
to ws, thereby deleting w; letter by letter from left to right, and encoding each
letter u of ws by the letter d,. Then meta-instructions of type (2) are used to
compare ws t0 ws, thereby deleting (the encoded version of) w, letter by let-
ter from left to right, and encoding each letter w of ws by the letter d,. This
continues for indices 3,4, ...,7 — 2 until finally meta-instructions of type (j — 1)
are used repeatedly to compare (the encoded version of) w;_; and w;, thereby
deleting both syllables from left to right. It follows that each computation of M
is 2-constrained, that is, LC; € Lr(2, FRR).

This example illustrates the fact that, considered as an input language of an
FRR-automaton, a language may be classified essentially different (lower in the
hierarchy) as when it is considered as a language of sentential forms. The reason
for this behavior is the fact that the correctness preserving property need not
hold for input languages. The following theorem summarizes these observations.

Theorem 2.

(a) Lsr(FRR) C L;(FRR), and
(b) Lsr(i,FRR) C L;(i,FRR) for all i € Ny.

Proof. For i > 2 the proper inclusion in (b) is an immediate consequence of
Example 4, while for ¢ = 1 this is simply part of the statement of Theorem 1.
For proving (a) consider the language L. := { (a™b™)" |n >1}.

Claim 1. L' € L;(FRR).

Proof. We describe an FRR-automaton M’ with tape alphabet I' := YyU{A, B}
and input alphabet Xy for the language L. . Given an input of the form w :=
am™prtgm™pm2 L a™b™ (t > 0,ni,m; > 0,0 = 1,...,t) M' will proceed as
follows.

Each restarting configuration that M’ reaches during its computation on
input w will be of the form

Cj 1= qoeA™IB™M ™I | ATTI BN T @Mt T pi1TI | gMTIpneTI g,

where the initial configuration go¢w$ is just the special case Cy. M' will accept
starting from Cj, if the tape content of C; is from the regular language

¢-(AB)* -ab-$.

If the tape content is not of this form, then M’ executes a cycle that comprises
the following operations when starting from Cj:

— In each block of the form A™i—7B"~J (1 <i < j), a factor AB is deleted.
If m; —j=1ormn; —j =1, then M’ halts and rejects.

— The first block from atbt, that is, a™i+1—9p%+177, is rewritten into
Amit1—i—1priti—i—1 [f mjp1 —J = lornjy —j =1, then M’ halts
and rejects.
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— In each block of the form a™i+i=ipni+i=i (2 < § < t — j), a factor ab is
deleted. Again if mji; —j =1 of njy; —j = 1, then M’ halts and rejects.
— Upon reaching the right delimiter $, M' restarts.

If M' does not reject while performing these operations, then it reaches the
restarting configuration Cj;1, that is, the computation of M’ on input w has
the form

Co o C1 Fopr -+ Fo €y,

and either M’ halts and rejects starting from Cj, or j = t — 1 and C; =
go¢(AB)'~'ab$, in which case M’ halts and accepts. Thus, L;(M') =L’ . 0O

Claim 2. L, ¢ Lsr(FRR).

Proof. Assume that L. = Lgp(M) for some FRR-automaton M. Then M has
tape alphabet X only. Given an input of the form (a™b™)" for sufficiently large n,
M cannot accept in a tail computation, that is, starting from the initial configu-
ration go¢(a™b™)™$, an accepting computation of M will begin with a cycle that
leads to a restarting configuration go¢u$. As M must satisfy the Correctness Pre-
serving Property, we see that u € L._ holds. Further, as each rewrite step of M
reduces the weight of the tape content with respect to some appropriate weight
function, we see that u must be of the form u = (a™b™)™ for some integer m < n.
Thus, in the cycle above M deletes m — n > 0 blocks of the form a™b”, and it
rewrites all remaining blocks into a™b™ by deleting the factor a~™b" ™. If n is
sufficiently large, then M cannot ensure that the deleted blocks are of the correct

length, that is, there exists an integer j > 0 and an index ny € {1,...,n} such
that M will also execute the cycle (a™b™)™ @™t pHi (@)™ —1 1S (a™b™)™
which contradicts the Error Preserving Property. O

This completes the proof of Theorem 2. O

Next we introduce some notions in order to formalize the degree of word-order
freedom of languages.

Definition 5. (a) Two strings u,v € I'* are called Parikh-equivalent, denoted
by u = v, if |ul, = |v|o holds for each a € I.

(b) Let M be an FRR-automaton, and let u,v € Lgp(M). We say that u is M-
transformable into v, denoted by u =>u v, if u = v holds, and for each
string w1 satisfying u S, w1 and |u| > |u1|, there exists a string v1 such that
v I—f\} v1 and up = v1.

(¢) An FRR-automaton M is called reduction-preserving if, for each i > 0 and
each w € Lgp(M,i + 1), there exists a string v € Lgp(M,i) such that
U =>p 0.

If M is reduction-preserving, then for each ¢ > 0 and each string w that
is accepted by M through an (i + 1)-constrained computation, there exists a
string v that is accepted by M through an i-constrained computation such that
w and u are Parikh-equivalent, and even more, each string that is shorter than
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w and that can be reached from w by a reduction modulo M is also Parikh-
equivalent to some string that can be reached from v by a number of reductions
modulo M. Intuitively, this means that by commuting w we obtain a string v
that is of a lower degree of word-order complexity, but that admits essentially
the same reductions (modulo commutation).

Example 5. The MRR-automaton M; of Example 2 is reduction-preserving. In-
deed, let n > 2 and u := a"™b"a"b" € Lgp(M;i,2) N\ Lsp(M;y,1). Choose
v = a®"b® € Lgp(My,1). Then u =>p, v, as u = v and u F§;, uy implies
that uy = a™ 10" 1a" 'b" ! and so vy := a®"2p?" 2 € Lgr(M;,1) satisfies
the conditions v l—ﬁ}l v1 and v = uy.

An FRR-automaton M is trivially reduction-preserving, if Lgp(M,i) =
Lsp(M,1) holds for all ¢ > 1. The following notion will be used to measure
how far distant a reduction-preserving FRR-automaton is from this trivial case.

Definition 6. A reduction-preserving FRR-automaton M is called j-scalable for
some j € Ny if, for each i = 1,...,j — 1, Lgp(M,i + 1) ¢ Lsr(i,FRR). A
language Lgr of sentential forms is j-scalable, if there exists a j-scalable FRR-
automaton M such that Lsgp = Lsp(M).

Thus, if an FRR-automaton M is j-scalable, then, for all 1 < i < j —1,
the language Lgr(M,i + 1) of sentential forms that M accepts through (i + 1)-
constrained computations is not accepted by any FRR-automaton performing
only i-constrained computations. Of course, each reduction-preserving FRR-
automaton is 1-scalable. In the following the notion of scalability will serve as a
synonym for the degree of word-order freedom of a language.

The following proposition is an immediate consequence of the above defini-
tion.

Proposition 1. If an FRR-automaton M is j-scalable for some integer j > 1,
then M is (j — 1)-scalable as well.

We now illustrate the above concepts by a few examples.

Exzample 6. As seen above the MRR-automaton M; of Example 2 is reduction-
preserving. Further, the language Lgp(M;,2) = {a™b™,a™b™a™d" | n > 0}
does not coincide with the language of sentential forms that an FRR-automaton
can accept by l-constrained computations. Thus, M; is 2-scalable. However, it
is not 3-scalable, as Lgp(M1) = Lsr(M1,2). On the other hand, the MRR-
automaton M> of Example 3 is only 1-scalable, but it is not 2-scalable, as the
language Lgr(Ma2,2) is also accepted by the MRR-automaton M’ performing
only 1-constrained computations.

Example 7. The language LC5 is easily seen to be 2-scalable, as it is accepted
by the MRR-automaton My of Example 4 which performs only 2-constrained
computations, and which can easily be modified to a reduction-preserving MRR-
automaton. On the other hand, it is rather obvious that LC5 does not coincide
with the language Lsr(M,1) for any FRR-automaton M.
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For j = 3 and j =4, it is easily seen that whenever M is an FRR-automaton
such that LC; = Lgrp(M), then Lgrp(M,1) is a finite subset of LC;. Further,
Lsr(M,2) is an infinite subset of LC; that cannot be accepted by 1-constrained
computations, while Lgr(M,3) cannot be accepted by 2-constrained computa-
tions. Also LCy4 cannot be accepted by 3-constrained computations. Thus, LC3
is 3-scalable, and LC} is 4-scalable.

For j > 5, the language LC; belongs to the class Lsr(j, FRR) (see Exam-
ple 4), but it is not j-scalable. Indeed, if M is an FRR-automaton such that
LC; = Lsp(M), then Lgp(M,q) is finite for all 1 < ¢ < [5/2]. Thus, for all
1<i<[j/2] -1, Lep(M,i+ 1) € Lgr(i, FRR), which implies that M is not
j-scalable for j > 5.

Finally we turn to the family of languages LE; (j > 1).
Proposition 2. For j > 2, LE; is (j — 1)-scalable, but it is not j-scalable.

Proof. Let j > 2, and let M; be the (deterministic) MRR-automaton with tape
alphabet A; = {ay,...,a;} that is defined by the following meta-instructions,
where 7 ranges over the set of permutations of the index set {1,2,...,5}, and i
ranges over the set of indices 3,...,7 — 1:

(171') ((E . a:r(l)7aﬂ'(1)aﬂ'(2) - )‘7 {aﬂ(l)aaw(Z)}*aaﬂ(S) — )‘5
R (AJ N {aﬂ'(j)})*7a7r(j) - A7 A; : $)a
(2.7) (¢-a3,a2a01 = N\ af,a3 = A\, a} -af,as = A, aj - af,
coaf - al,aipr - a5 = A (@it - .oa5)* - 8);
(3) (c-$,Accept).

Claim 1. Lsp(M;) = LE;, and every computation of M; is (j — 1)-constrained.

Proof. If the tape content is of the form

w(i) := abal™afaay} ...alai" " (aiy1 ... a;)"
for some integers n,mq,..., m;—1 > 0, then meta-instruction (2.7) is applicable.
It leads to acceptance if and only if w(i) € LE;, and the corresponding accepting
computation is obviously i-constrained. If the tape content is not of the form
above, then M; can only apply the meta-instructions (1.7), and hence, in each
cycle M; executes exactly j — 1 delete operations. If we arrange the rewrite
(delete) configurations of a computation of M; into j — 1 subsequences in such
a way that the i-th delete configuration of each cycle is put into the i-th subse-
quence for all ¢ =1,...,j — 1, then it can be verified that the j — 1 subsequences
obtained are all monotone. It is not hard to see that M; recognizes LE;. ]

It is easily seen that M is reduction-preserving. On the other hand, we have
the following result, which completes the proof of Proposition 2.

Claim 2. For all i € {2, cey) — ].}, LSF(Mj,i) ¢ LSF(i -1, FRR)
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Proof. Consider an input of the form w(%) above such that n = m +...+m;_1,

and all integers my,...,m;—1 are sufficiently large. In order to transform w(i)
into a shorter sentence also belonging to Lgr(Mj, 1), at least one occurrence of
each letter ay, as,...,a; must be deleted. If the integers ms, ..., m;_; are larger

than the size of the window of the automaton considered, then in order to delete
at least one occurrence of each letter, the automaton must perform at least ¢
delete operations. O

The next theorem, which is a consequence of the above proposition, shows
that there exists an infinite sequence of classes of languages with an increasing
degree of word-order freedom and word-order complexity as well.

Theorem 3. For alli,j € Ny ,i <7,

(a) Lsr((j + 1)-scal-FRR) € LgsF(j-scal-FRR).
(b) Lsr(i,j-scal-FRR) C Lsr(i + 1, j-scal-FRR).

Proof. The inclusions in (a) follows from Proposition 1, while Proposition 2
shows that these inclusions are proper. As each (i + 1)-constrained computation
is also i-constrained, we obtain the inclusions in (b). Here Claim 2 of the proof
of Proposition 2 implies that these inclusions are proper. O

4 Conclusions

We consider the notion of j-constrainability as a measure for the complexity of
the word-order of (individual syntactic phenomena of) natural languages, while
the notion of j-scalability serves as a measure for the magnitude of the word-
order freedom of languages. We have seen that the word-order complexity can
serve as a parameter for restarting automata. This fact is valuable particularly
for the construction of syntactic analyzers for (complex) free word-order lan-
guages. Moreover, we have seen that the word-order complexity can be caused
by phenomena that are based on fixed syntactic positions as well as by phenom-
ena that are based on flexible (free) syntactic positions.

We have seen that each context-free language is the input language of a 1-
constrained FRR-automaton, while the languages of sentential forms accepted by
1-constrained FRR-automata form a proper subclass of CFL (Theorem 1). On the
other hand, we have seen that the classes of languages of sentential forms that
are accepted by i-constrained FRR-automata form an infinite strict hierarchy
with respect to the parameter ¢ (Corollary 2). Do we obtain a corresponding
hierarchy within CFL? Or is there an upper limit on the degree of constrainability
for context-free languages of sentential forms of FRR-automata?

For example, consider the context-free language Lpa = {ww® | w €
{a,b}* }. It is easily seen that this language is accepted by a 2-constrained FRR-
automaton that, in each cycle, simply compares and removes the first symbol and
the last symbol of the actual tape content. On the other hand, it appears highly
unlikely that the language Ly, coincides with the language of sentential forms of
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any 1-constrained FRR-automaton. Hence, we see that there seems to be context-
free languages that belong to the difference set Lsr(2, FRR) N\ Lsr(1,FRR). Are
there also context-free languages in the set Lsr(i + 1,FRR) \ Lgr (i, FRR) for
larger values of i? Are there actually context-free languages that are not accepted
as languages of sentential forms by any FRR-automaton at all?

For the future we also plan to characterize the basic syntactic power of tree-
adjoining grammars [10] using techniques from [2], various types of categorial
grammars (see, e.g., [1]) and of other tools [5, 6] based on the notions outlined
in this paper. This seems to be promising, in particular for grammars based on
topological constraints [5], because of the similar (in fact topological) type of
constraints studied here.
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