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Abstract

Artificial boundary conditions are presented to approximate solutions to Stokes- and
Navier-Stokes problems in domains that are layer-like at infinity. Based on results about
existence and asymptotics of the solutions v∞, p∞ to the problems in the unbounded domain
Ω the error v∞−vR, p∞−pR is estimated in H1(ΩR) and L2(ΩR), respectively. Here vR, pR

are the approximating solutions on the truncated domain ΩR, the parameter R controls the
exhausting of Ω. The artificial boundary conditions involve the Steklov-Poincaré operator on
a circle together with its inverse and thus turn out to be a combination of local and nonlocal
boundary operators. Depending on the asymptotic decay of the data of the problems, in the
linear case the error vanishes of order O(R−N ), where N can be arbitrarily large.
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1 Introduction

Layer-like domains appear in many topics of mathematical physics, related to film flows,
lubrication patterns, plates etc. In the present paper a layer like domain is a domain Ω ⊂ R3

with a smooth boundary ∂Ω, and Ω coincides with the layer

Λ = {x = (y, z) : y = (y1, y2) ∈ R2, |z| < 1/2} (1.1)

outside the ball BR0 = {x ∈ R3 : |x| < R0} of radius R0 > 1. We consider the Stokes equations
– and further Navier-Stokes equations – with Dirichlet boundary conditions

−ν∆v∞ +∇p∞ = f in Ω,

∇ · v∞ = 0 in Ω,

v∞ = 0 on ∂Ω.

(1.2)

The vector v∞ = (v∞1 , v∞2 , v∞3 ) stands for the velocity and the scalar p∞ for the pressure in a fluid
with constant viscosity ν > 0. In domains of type (1.1) besides the question of uniqueness and
existence of solutions also the asymptotic behavior of v, p at infinity is important in dependance
of the decay properties of f for various reasons. One context is the following:

∗This research was supported by RFFI (Grant 04-01-00567) and the DAAD

1



Computational schemes for boundary value problems in unbounded domains require the re-
duction to a problem in a bounded region. A very common practice is to cut the unbounded
domain by taking the intersection with a bounded one and prescribe an artificial boundary
condition (ABC) on the truncation surface. The choice of the truncation surfaces is usually
governed by the geometry of the domains, the choice of the ABCs by the structure of differ-
ential operators. An opportune ABC should lead to a well posed problem which is accessible
for numerics and leaves a minimal truncation error. The latter feature leads to non reflecting
(absorbing, exact) ABC, they produce the restriction of the original solution to the truncated
domain. However, with the exception of trivial examples they are nonlocal and require informa-
tion like the structure of a Fourier expansion for the solution, e.g., information which usually
exists only for homogeneous linear systems and simple geometries (see [3, 6, 8, 31,35], e.g.)

Local ABC normally leave a truncation error but can mostly be handled with finite element
methods and are available for inhomogeneous systems as well as for nonlinear problems, e.g.,
the Navier-Stokes system. Their choice is based on the asymptotic behavior of solutions at
infinity. In particular, for elliptic boundary value problems in exterior domains and domains
with cylindrical or conical outlets to infinity, ABCs in differential form were systematically
developed during the last decades (see e.g., [1, 2, 4, 5, 7, 9, 10, 14, 23, 24, 32, 34]) and the papers
quoted there.) The common feature of local ABCs are estimates for the truncation error of the
form ‖u∞−uR‖ = O(R−γ) as R tends to infinity, with some γ > 0. Here R is a parameter which
controls the size of the truncated domain (usually the radius of a ball), u∞ is the solution to the
original problem, and uR the approximating solution. The order γ of the error is limited by the
asymptotic decay of the problem’s data and the choice of the boundary operator. This means
even if the right hand sides of the boundary value problem have compact support, the choice of
a an ABC in differential form fixes a γmax, and of course the aim is then to obtain γmax as large
as possible. Usually the estimates of the truncation error require a careful analysis for various
boundary value problems in weighted Sobolev spaces.

These questions were barely investigated up to now in layer like domains, although they
represent a class of domains with noncompact boundaries that are important for applications.
However, to the best of our knowledge, there exists only one paper [25] where ABC were con-
structed in a layer-like domain for the Neumann problem for the Poisson equation without
assuming axial symmetry which turns the three-dimensional problem into a two-dimensional
one.

Our results are based on asymptotic expansions at infinity of solutions to the Stokes problem
(1.2) and to the Navier-Stokes problem

−ν∆v∞ +
(
v∞ · ∇)

v∞ +∇p∞ = f in Ω,

∇ · v∞ = 0 in Ω,

v∞ = 0 on ∂Ω.

(1.3)

These asymptotic expansions (see formulae (2.2)-(2.5)) were obtained in [20] with the help of a
method developed in [15–18], they contain the plane harmonics PN .

The approximation problem in the bounded domain ΩR is composed from the Stokes (or
Navier-Stokes) equations, the Dirichlet conditions restricted to ΣR = {x ∈ ∂Ω : r < R}, and the
ABC on the truncation boundary ΓR = {x : r = R, |z| < 1/2}, in the linear case this means

−ν∆vR +∇pR = f in ΩR,

∇ · vR = 0 in ΩR,

vR = 0 on ΣR,

MR(vR, pR) = 0 on ΓR,

(1.4)

where the operator MR has to be chosen properly. ”Properly” means here that the problem
(1.4) is well posed and the operator MR vanishes on the main asymptotic terms of (v∞, p∞) –
the latter feature arises from the experiences with ABC in other situations.
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We describe the boundary operator MR briefly: Let vr, vϕ and vz denote the components of
a vector field v related to cylindrical coordinates (r, ϕ, z). Any smooth function F (y, z) on ΓR

can be written as

F (y, z) =: (z2 − 1/4)F (y) + F#(y, z) with F (y) = 30
∫ 1/2

−1/2
(z2 − 1/4)F (y, z)dz.

Further let ΠR denote the external Steklov-Poincaré operator (or Dirichlet-to-Neumann opera-
tor, see formulae (3.8) - (3.12) for more details) on the circle SR = {y : r = |y| = R}, and finally
F (y)• = F (y) − (2πR)−1

∫
SR

F (y)ds the projection of F onto the mean value free functions.
Then the operator MR is defined by

MR(v, p) =




v#
r

v#
ϕ

vz

ν
∂

∂r
vr − p + ν

{
ΠRvr +

1
R

vr + 10 Π−1
R

(
vr

)
•

}

ν
∂

∂r
vϕ + ν

{
ΠRvϕ +

1
R

vϕ

}




on ΓR. (1.5)

Why it should have this particular form, is explained in Section 3.
The boundary operator here is a combination of of local and nonlocal operators. In Section

4 we prove existence of a unique solution to problem (1.4) with MR as in (1.5) (Theorem 4.5)
and an error estimate of the form (see formula (4.33) in Theorem 4.7)

‖v∞|ΩR
− vR; H1(ΩR)3‖+ R−1‖p∞|ΩR

− pR; L2(ΩR)‖ ≤ CN R−N ‖f‖(N) (1.6)

where the constant CN does not depend on the radius R ≥ R0 and an appropriate weighted
norm ‖f‖(N) of the right-hand side in the original problem. We emphasize that, for the linear
problem, the exponent N can be made arbitrary large by assuming a fast decay of the right-
hand side f , i.e., by making the weighted norm harder. This is due to the fact that here the
features of asymptotic ABC and non-reflecting ABC are combined, moreover, this result cannot
be achieved without knowing the asymptotic form of the solution.

Let us also give a short guide through the other sections of the paper. The results on
existence, uniqueness and the asymptotics of the solutions to (1.2) are outlined in Sections 2.
As already mentioned, the ABC for the linear problem are derived in Section 3. The well-
posedness of the approximation problem and error estimates are proved in Section 4. The most
tricky point is here to find a solution to the continuity equation together with an estimate that
controls the behavior of H1(ΩR)-norm with respect to R (Lemma 4.3).

The last two sections are devoted to the Navier-Stokes problem (1.3). Under suitable restric-
tions for the data it is possible to obtain solutions to the nonlinear problem with the same ABC
as for the linear problem together with error estimates of type (1.6) (see Theorem 6.2). However,
by using existence results of [21] and the results on the asymptotic behavior of the solutions to
(1.2) (see [20,27]) and (1.3) it becomes clear how the nonlinearity influences the asymptotics at
infinity of suitable strong solutions to (1.3) – these results are explained in Section 5. Thus for
the nonlinear problem the order of convergence is limited by N ≤ 3 in (1.6), even if the right
hand side f is infinitely smooth with compact support.

2 Basic function spaces and asymptotics of solutions to the Stokes equations

As shown in [16, 18–20], the following anisotropic weighted Sobolev norms (2.1) are especially
adapted to a wide class of elliptic boundary value problems in layer-like domains. We recall
that x = (y, z) and r = |y|, similarly derivatives ∂β = ∂β

x can be split into ∂β
x = ∂α

y ∂j
z , with
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|α| + j = |β|, using the common multi-index terminology. By L2
β(Ω), we understand the space

of all locally square summable functions with finite norm

‖w;L2
β(Ω)‖ = ‖(1 + r)βw;L2(Ω)‖.

We also introduce the space W l
β(Ω) as the completion of C∞

0 (Ω) (infinitely smooth functions
with compact supports) with respect to the anisotropic weighted norm

‖w;W l
β(Ω)‖ =

{ ∑

|α|+j≤ l

‖∂α
y ∂j

zw; L2
β−l+|α|(Ω)‖2

}1/2
. (2.1)

We emphasize that each differentiation in y1 and y2 enlarges the weight exponent in (2.1) by 1,
while differentiation in z does not. That is why the weighted norm (2.1) is called “anisotropic”
[18] in contrast to the usual ”isotropic” Kondratiev norm (see, e.g., [11, 22]) where derivatives
in any direction are provided with the same exponent in the weight function.

We recall some standard notations: For an arbitrary domain G ⊂ Rn (here only n = 2, 3),
the notation C∞

0 (G) indicates the set of all smooth functions with compact support in G, the
symbol Hm(G), m ∈ N, stands for the Sobolev space containing all all functions w ∈ L2(G),
such that all derivatives ∂αw ∈ L2(G) up to |α| = m, by

o

Hm(G) we indicate the closure of
C∞

0 (G) in Hm(Ω).
The following lemma on the weak solution of problem (1.2) can be found, e.g., in [21].

Lemma 2.1 Let f ∈ L2(Ω)3 and β < −1. There exist v∞ ∈ o

H1(Ω)3 and p∞ ∈ L2
β(Ω) which

satisfy relations (1.2)2,3 and the integral identity

ν
(∇v∞,∇w

)
Ω

=
(
p∞,∇ · w)

Ω
+

(
f, w

)
Ω

∀w ∈ C∞
0 (Ω)3.

The solution (v∞, p∞) is determined up to an additive constant in its pressure component. How-
ever, the solution becomes unique with a suitable normalization condition for the pressure p∞

as, e.g.,
∫
ΩR0

p∞ = 0. In this case the estimate

‖v∞;H1(Ω)‖+ ‖p∞; L2
β(Ω)‖ ≤ cβ ‖f ; L2(Ω)‖,

is valid where the constant cβ depends on ν, β, and Ω, but is independent of f .

Note that the assumption on f used in Lemma 2.1 can be weakened (cf . [21]). An additive
constant in pressure appears because a constant function p belongs to the space L2

β(Ω) if β < −1.
If the right-hand side f of problem (1.2) decays sufficiently fast, the condition β < −1 in

Lemma 2.1 can be replaced by −1 < β < 0, and then also p∞ is uniquely determined. The
solution (v∞, p∞) gets a special asymptotic form, as it was shown in [20]. We distinguish between
the longitudinal components, v∞′, and the transversal component v∞z of the vector v∞, then

p∞(y, z) = P∞(y, z) + p̃∞(y, z), (2.2)
v∞(y, z) = V ∞(y, z) + ṽ∞(y, z) (2.3)

with

P∞(y, z) =
(
1− χR0

)
PN (y),

V ∞′(y, z) =
(
1− χR0

) 1
2ν

(
z2 − 1

4

)
∇yPN (y)), (2.4)

V ∞
z (y, z) = 0.
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Here χ ∈ C∞
0 (R) is a cut-off function such that χ(t) = 0 as t ≥ 2 and χ(t) = 1 as t ≤ 1, the

function PN is harmonic, namely

PN (y) =
N∑

j=1

r−j
(
aj cos(jϕ) + bj sin(jϕ)

)
, (2.5)

To justify formula (2.4), we present simplified results of [20] which are sufficient for the
further use in this paper: In the following theorem, the estimates of the remainders in (2.4)
are not optimal with respect to the smoothness properties of the data and the solutions, in
particular, the assumptions on the right-hand side f are too restrictive. Nevertheless, in the
case f ∈ C∞

0 (Ω)3 the indices l and N can be taken arbitrary and then Theorem 2.2 provides an
explicit information on the power-law asymptotic behavior of the solution.

Theorem 2.2 Let l ∈ N0 := {0, 1, 2, . . . }, N ∈ N := {1, 2, 3, . . . } and

f ∈ W l+2
γ (Ω)3, γ > N + l + 3. (2.6)

Then the asymptotic representation (2.4) is valid for the solution (v∞, p∞) while the remainders
satisfy the inclusions

ṽ∞′ ∈ W l+2
γ−1(Ω)2, ṽ∞z ∈ W l+2

γ (Ω),
p̃∞ ∈ W l+3

γ−1(Ω), ∂z p̃
∞ ∈ W l+2

γ (Ω).
(2.7)

Moreover, these remainders and the coefficients aj and bj fulfil the estimate

‖ṽ∞′;W l+2
γ−1(Ω)‖+ ‖ṽ∞z ;W l+2

γ (Ω)‖+ ‖p̃∞;W l+3
γ−1(Ω)‖

+‖∂z p̃
∞;W l+2

γ (Ω)‖+
N∑

j=1

(
|aj |+ |bj |

)
≤ cl,γ ‖f ;W l+2

γ (Ω)‖ (2.8)

with a constant cl,γ, independent of the right-hand side f .

We emphasize that different weight indices in (2.7) and (2.8) reflect the different asymptotic
behavior at infinity of v∞′, p∞ and v∞z . If the right hand side f has a compact support, then
formally there appear series for V ∞, P∞, we emphasize, that the series do not converge in
general. It can be easily verified that the detached terms V ∞, P∞ in (2.4) do not belong to the
spaces indicated in (2.7). However, in the case γ ∈ (N + l + 3, N + l + 4), the next asymptotic
terms, which appear if we replace the term PN in (2.4) by

PN+1(y)− PN (y) = r−N−1
(
aN+1 cos((N + 1)ϕ) + bN+1 sin((N + 1)ϕ)

)
,

belong to those spaces.

3 Formal construction of ABC

Our objective is to find the ABC operator MR together with a weak formulation of problem
(1.4) in an appropriate Hilbert space contained in H1(ΩR). We introduce the notations S, for
the unit circle in R2, and SR = {y ∈ R2 : |y| = R}. Watching the geometry of our problem
it is convenient to use cylindrical coordinates in R3, i.e. x = (y, z) ∈ R3 matches (r, ϕ, z). If
er, eϕ, ez denote the corresponding unit vectors, then a vector field v can be decomposed as
follows v = vrer + vϕeϕ + vzez. We indicate the L2(Ξ)-scalar product by

(· , ·)
Ξ

– without
distinguishing between scalar functions and vector fields.
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Suppose (vR, pR) is a sufficiently smooth solution to problem (1.4)1,2,3, and w is a sufficiently
smooth divergence free vector field with w = 0 on ΣR (the ”top” and the ”bottom” faces of
ΩR). By partial integration we have the following Green’s formula

(
f, w

)
ΩR

= ν
(∇vR,∇w

)
ΩR
− (

ν∂rv
R − erp

R, w
)
ΓR

(3.1)

Keeping in mind the two requirements for a good ABC, condition (1.4)4 together with the stable∗

part of these conditions for the test function w should reduce the remaining surface integral in
(3.1), written as

I(vR, pR; w) = −
∫

SR

1/2∫

−1/2

{(
ν∂rv

R
r − pR

)
wr + ν(∂rv

R
ϕ )wϕ + ν(∂rv

R
z )wz

}
dz dl, (3.2)

to a nonnegative quadratic form. Moreover, the operator must “swallow” the asymptotic terms
detached from the solution (v∞, p∞) in Section 2, which means that finally the quadratic term
I(v∞ − vR, p∞ − pR; v∞ − vR) decays fast as R tends to infinity. If we plug the asymptotic
representation (v∞, p∞) = (V ∞, P∞) + (ṽ∞, p̃∞) into the representation (3.2) for I, we find

I(v∞ − vR, p∞ − pR; v∞ − vR) = I(V ∞ − vR, P∞ − pR;V ∞ − vR) + . . . , (3.3)

and all other summands hidden in the dots contain at least one term of the rapidly decaying
remainders, hence our ABC should remove as much as possible of the term on the right-hand
side of (3.3). Therefore with V ∞

z = 0 in mind, our first artificial boundary condition is but

vR
z = 0 on ΓR. (3.4)

This is a stable and local ABC, which kills the term related to V ∞
z − vR

z in (3.3). The other
components of the velocity field and the pressure contain harmonic functions only.

Furthermore, the number of detached terms in (2.4)2, 1 increases if the decay properties of f
are strengthened. This observation motivates us to search for nonlocal ABCs for the remaining
parts vR

r , vR
ϕ and pR. With Υ = [−1/2, 1/2], and watching the special form of v∞′ in (2.4), we

introduce a convenient orthogonal decomposition of L2(Υ): Namely we have

L2(Υ) = {αψ : α ∈ R} ⊕ {ψ}⊥, with ψ(z) = z2 − 1/4,

the index ⊥ indicates the space of all functions ϕ ∈ L2(Υ) that are orthogonal to ψ. If F is a
sufficiently smooth function on the layer Λ, we obtain F (y, z) = F (y)ψ(z) + F#(y, z). An easy
calculation shows ‖ψ, L2(Υ)‖2 = 1/30, hence we have

F (y) = 30 (ψ, F (y, · ))Υ, (ψ, F#(y, · ))Υ = 0 for y ∈ R2. (3.5)

Recalling the asymptotic representation (2.4)2, it is obvious that

(V ∞′)# =
(
(2ν)−1ψ∇yPN (y)

)# = 0

for any N , so that we can choose the next conditions as follows

(vR
r )# = (vR

ϕ )# = 0 on ΓR. (3.6)

Now in I(V ∞−vR, P∞−pR; V ∞−vR) only the projections along the function ψ are left. Before
discussing this in more detail we mention two simple, but useful identities, namely

(Fψ,Gψ)ΓR
= (F ,G)SR

‖ψ; L2(Υ)‖2, ∂rF = ∂rF , ∂ϕF = ∂ϕF . (3.7)
∗According to [13], all kind of homogeneous Dirichlet boundary conditions are called stable, since they are

realized for the weak solution uR by the choice of the Hilbert space which is in turn determined by a dense subset
of test functions.
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Next we allude to some basic facts about the (exterior) Steklov-Poincaré operator on the circles
S and SR and its inverse, which is also called Poincaré-Steklov operator (see [30], e.g.). Any
function g ∈ L2(S) can be represented as the Fourier series

g(y) = a0 +
∞∑

j=1

{aj cos(jϕ) + bj sin(jϕ)} . (3.8)

On L2(S), we define the operator Π with the domain H1(S) by

Πg(y) =
∞∑

j=1

j {aj cos(jϕ) + bj sin(jϕ)} . (3.9)

If g ∈ H1(S) and h ∈ L2(S) with Fourier coefficients aj1, bj1 and aj2, bj2, respectively, then

(Πg, h)S = π
∞∑

j=1

j(aj1aj2 + bj1bj2), (3.10)

Now let s ∈ R be arbitrary. We recall that via Fourier series the Sobolev-Slobodetskii space
Hs(S) can be identified with the sequences of Fourier coefficients (aj , bj) such that |a0|2 +∑

j2s(|aj |2 + |bj |2) < ∞. Thus, (3.10) defines a symmetric nonnegative quadratic form on
H1/2(S), and we can extend the operator defined in (3.9) to the mapping Π : H1/2(S) →
H−1/2(S). Thereby kerΠ = {const} and the range of Π consists of all h ∈ H−1/2(S) with
〈h, 1〉 = 0 (the brackets 〈 · , · 〉 denote the duality between H−1/2 and H1/2). The inverse
operator Π−1, restricted to the subspace

H
1/2
• (S) :=

{
h ∈ H1/2(S) :

∫

S
hdl = 0

}
,

induces an isomorphism

Π−1 : H
1/2
• (S) → H

3/2
• (S). (3.11)

Furthermore, if H is the unique bounded harmonic extension of h ∈ H3/2(S) to the domain
{y ∈ R2 : |y| > 1}, then Πh = −∂rH|S. Therefore, Π realizes the Steklov-Poincaré operator on
unit circle (see [30], e.g.)

If ΠR denotes the Steklov-Poincaré operator on the circle SR, by a scaling argument it
inherits from Π all the properties mentioned above. Namely, if h ∈ L2(SR), then h(R · ) ∈ L2(S)
and

ΠRh = R−1 Πh(R · ), Π−1
R h = R Π−1h(R · ). (3.12)

Indeed, the Fourier expansion for h(R · ) implies

h(R cosϕ,R sinϕ) = a0 +
∞∑

j=1

R−j {aj cos(jϕ) + bj sin(jϕ)} ,

hence

ΠRh(R cosϕ,R sinϕ) =
∞∑

j=1

jR−1−j {aj cos(jϕ) + bj sin(jϕ)} , (3.13)

the second formula in (3.12) becomes obvious.
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Now we return to the terms ν∂rV ∞′ and P ∞. Let us for a moment assume that N = ∞
in (2.5) (recall that the series do not converge in general). Based on (2.4)2, 1 and (3.7)2, we
formally write for y ∈ SR

V ∞
r (y) = − 1

2ν
R−1

∞∑

j=1

jR−j
(
aj cos(jϕ)) + bj sin(jϕ)

)
,

ν
∂

∂r
V ∞

r (y)− P∞(y) =
∞∑

j=1

{1
2
j(j + 1)R−2−j + 5R−j

}(
aj cos(jϕ) + bj sin(jϕ)

)
=

= −ν

{
ΠRV ∞

r (y) +
1
R

V ∞
r (y) + 10Π−1

R

(
V ∞

r

)
•

}
(3.14)

where “•” stands for the projection on the space of mean-value free functions on SR,

w•(y) = w(y)− 1
2πR

∫

SR

w(y) dsy. (3.15)

We point out that
(
V ∞

r

)
• belongs to the domain of the inverse operator Π−1

R (see (3.11)).
In accordance with (3.14), we now impose the following ABC:

ν
∂

∂r
vR
r − pR = −ν

{
ΠRvR

r +
1
R

vR
r + 10 Π−1

R

(
vR
r

)
•

}
on ΓR. (3.16)

In a similar but simpler way, we formulate the remaining ABC for the the component vR
ϕ :

ν
∂

∂r
vR
ϕ = −ν

{
ΠRvR

ϕ +
1
R

vR
ϕ

}
on ΓR. (3.17)

Hence, if w = (w′, wz) ∈ H1(ΩR)3 fulfils the (stable) conditions

w = 0 on ΣR, wz = 0, w′# = 0 on ΓR (3.18)

then with the ABCs (3.4), (3.6), (3.16) and (3.17) and identities (3.7), the integral (3.2) reduces
to

I(vR, pR; w) = − 1
30

{(
ν∂rvR

r − pR, wr

)
SR

+
(
ν∂rvϕ, wϕ

)
SR

}

=
ν

30

{(
ΠRvR

r , wr

)
SR

+
(
ΠRvR

ϕ , wϕ

)
SR

+
1
R

(
vR
r , wr

)
SR

+
1
R

(
vR
ϕ , wϕ

)
SR

+ 10
(
Π−1

R

(
vR
r

)
•,

(
wr

)
•

)
SR

}

:= qR(vR, w). (3.19)

Clearly, the right-hand-side of (3.19) defines a positive quadratic form on H1/2(SR)2 × {0}.

4 Solution of the linear approximation problem

After the formal derivation of the ABC we establish the weak approximation problem and show
the existence of weak solutions. Summarizing the result of the previous section, we obtain that
for a sufficiently smooth vector field (v, p), the boundary operator MR on ΓR in (1.4) is defined
by (1.5). We introduce the domains

ΛR = {(y, z) ∈ Λ : r = |y| < R},
AR = {y ∈ R2 : R/2 < r < R},
ΞR = {x = (y, z) ∈ Λ : R/2 < r < R},

(4.1)
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obviously we have ΞR ⊂ ΩR ∩ ΛR, if R is large enough. If v ∈ H1(ΩR)R, and R ≥ 2R0, we can
extend the decomposition v(x) = v ′(y)ψ(z) + v#(x) (see formula (3.5)) on ΞR, and clearly

‖v ′; H1(AR)‖+ ‖v#;H1(ΞR)‖ ≤ C‖v; H1(ΩR)‖ (4.2)

with a constant independent on R. Thus, the space

H(ΩR) = {w ∈ H1(ΩR)3 : w = 0 on ΣR, and w fulfils (3.18)},
is a closed subspace of H1(ΩR)3.

Definition 4.1 (Weak solution of the approximation problem) We put

Hσ(ΩR) = {w ∈ H(ΩR) : ∇ · w = 0},
H′(ΩR) the dual space of H(ΩR).

Let F ∈ L2(ΩR) be fixed and qR defined by (3.19). We call V ∈ Hσ(ΩR), P ∈ L2(ΩR) a weak
solution to the problem

−ν∆V +∇P = F ∇ · V = 0 in ΩR,

V = 0 on ΣR, , MR(V, P ) = 0 on ΓR,
(4.3)

if the integral identity

(F,w)ΩR
= ν(∇V,∇w)ΩR

− (P,∇ · w)ΩR
+ qR(V, w) (4.4)

is valid for all w ∈ H(ΩR).
If Φ is a linear functional on H(ΩR), continuous with respect to the H1(ΩR)-norm, we call a
pair V, P as above a weak solution to the general approximation problem, provided

Φ(w) = ν(∇V,∇w)ΩR
− (P,∇ · w)ΩR

+ qR(V, w), (4.5)

where Φ(w) indicates the value of the functional Φ at the test function w.

A weak solution to the approximation problem (1.4) is a pair (vR, pR) which satisfies the def-
inition above with Φ(w) = (f, w)ΩR

. Furthermore we observe, that due to the construction in
Section 3, the restriction of (v∞, p∞) to ΩR fulfils

ν(∇v∞,∇w)ΩR
− (p∞,∇ · w)ΩR

+ qR(v∞, w) =
(f, w)ΩR

+ qR(ṽ∞, w) + (ν∂rṽ
∞ − p̃∞er, w)ΓR

(4.6)

thus Definition 4.1 with Φ(w) = (f, w)ΩR
+ qR(ṽ∞, w) + (ν∂rṽ

∞ − p̃∞er, w)ΓR
.

As usual, the existence of a weak solution to Problem (4.3) is reduced to prove the existence
of vR ∈ Hσ(ΩR) by means of the Lax-Milgram lemma, and then recover the pressure while
treating the problem ∇ · w = g. We start with the auxiliary result on the solution of the
divergence equation. To this end we recall a well known result on this problem.

Proposition 4.2 ( [12], see also [33, Lemma 2.1.1]) Let ω ⊂ Rn be a bounded domain with
Lipschitz boundary, and G ∈ L2•(ω) (i.e.

∫
ω Gdx = 0). Then there exists W ∈ o

H1(ω)3 with
∇ ·W = G and

‖W ; H1(ω)‖ ≤ C(ω)‖G; L2(ω)‖. (4.7)

Lemma 4.3 (Solution of the continuity equation) For any g ∈ L2(ΩR) there exists a
w ∈ H(ΩR)3 with ∇ · w = g and

‖w;H1(ΩR)‖+ R3/2‖w′; L2(ΓR)‖ ≤ CR‖g;L2(ΩR)‖, (4.8)

where C is independent of g and R.
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Proof. The basic idea is the following: We split the problem on ΩR into a problem on the fixed
domain Ω3R0 , which contains the perturbed part of the boundary, and a problem on the domain
ΩR \ ΩR0 , which can be considered as part of the cylinder ΛR. On ΛR the dependence on R of
the norms is controlled by a scaling argument. In both parts we use Proposition 4.2, thus we
have to juggle a bit with mean values.

To fill in the details, we define a flux driver by the vector field W T (x) by

W T ′(x) =
(

z2 − 1
4

)
∇y

(
(1− χ(T−1r)) ln r

)
, W T

z (x) = 0,

where χ is the same cut-off function as in (2.4). For R ≥ 2T ≥ 2R0, it is obvious that W T |ΩR
∈

H(ΩR), and since ln r is harmonic, we have

∇ ·W T (x) = 0 for r < T and r > 2T. (4.9)

Integration by parts gives for any R ≥ T

∫

ΩR

∇ ·W T (x)dx =
∫

ΓR

W T
r (x)ds =

∫

ΓR

(
z2 − 1

4

)
∂r ln rdx = −π

3
. (4.10)

We put G3R0 =
∫
Ω3R0

g(x) dx, then clearly

|G3R0 | ≤ C‖g;L2(ΩR)‖. (4.11)

Now we look for the solution w to the continuity equation as

w(x) = w∗(x)− 3
π

G3R0W
R0(x).

Then w∗ has to solve

∇ · w∗ = g + G3R0∇ ·W R0 =: g1 + g2,

g1 = XΩ3R0

(
g + G3R0∇ ·W R0

)
, g2 = XΩR\Ω3R0

(
g + G3R0∇ ·W R0

)
= XΩR\Ω3R0

g

where Xω is the indicator function of the set ω, for the representation of g2 we used (4.9). By
construction, we have

∫
Ω3R0

g1 = 0, hence by Proposition 4.2, we find w1 ∈ o

H1(Ω3R0) which,

after extension with zero, fulfils ∇ · w1 = g1 on ΩR, and by (4.7) and (4.11),

‖w1;H1(ΩR)‖ = ‖w1; H1(Ω3R0)‖ ≤ C‖g1; L2(Ω3R0)‖ ≤ C‖g; L2(ΩR)‖. (4.12)

It remains to find w2 ∈ H1(ΩR\ΩR0) with ∇·w2 = g2 on ΩR\ΩR0 , w2 = 0 on ΣR ∪ΓR0 , and w2

fulfils (3.18). Then the extension with zero on ΩR0 leads to an element in H(ΩR) which solves
∇ · w2 = g2.
To construct w2 together with the desired estimates we first extend g2 with zero to the whole
cylinder ΛR and use a scaling argument. With

y =
y

R
, x = (y, z), g2(x) = g2(Ry, z) and v(x) =

(
1
R

v′(Ry, z), vz(Ry, z)
)

(4.13)

we get: The problem ∇ · v = g2 in ΛR is equivalent to ∇x · v = g2 in Λ1. Moreover, we have

‖g2; L2(Λ1)‖ = CR−1‖g2;L2(ΛR)‖. (4.14)

Now we use a similar trick as above. We put G =
∫
Λ1

g2(x)dx, then

|G| ≤ C‖g2;L2(Λ1)‖, (4.15)
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and we look for v as

v(x) = v∗(x)− 3
π
GW 1/2(x) with ∇x · v∗(x) = g2(x) +

3
π
G∇x ·W 1/2(x).

Since the right-hand side of the divergence equation is now mean value free, Proposition 4.2
gives v∗ ∈ o

H1(Λ1) and the estimate

‖∇xv∗;L2(Λ1)‖ ≤ C(Λ1)‖g2 +
3
π
G∇x ·W 1/2; L2(Λ1)‖ ≤ C(Λ1)‖g2; L2(Λ1)‖. (4.16)

With (4.15), we also have

‖∇v;H1(Λ1)‖ ≤ C‖g2; L2(Λ1)‖. (4.17)

If we apply the relations (4.13) to obtain v with ∇ · v = g2 on ΛR, we see

‖∇yv
′; L2(ΛR)‖ = R‖∇yv′;L2(Λ1)‖,

‖∇zv
′; L2(ΛR)‖ = R2‖∇zv′; L2(Λ1)‖,

‖∇yvz; L2(ΛR)‖ = ‖∇yvz; L2(Λ1)‖,
‖∇zvz; L2(ΛR)‖ = R‖∇zvz;L2(Λ1)‖.

(4.18)

Together with (4.14) and Poincaré’s inequality this leads to

‖v; H1(ΛR)‖ ≤ CR‖g2; L2(ΛR)‖ = CR‖g2;L2(ΩR)‖. (4.19)

Although the support of g2 is contained in ΩR \ Ω3R0 , the support of v may be larger. Thus
we cut v again, using the same function χ as in formulae (2.2). Put χR0(x) = χ(R−1

0 (r)), then
clearly the vector field (1− χR0)v, extended by zero, belongs to H(ΩR), moreover,

‖(1− χR0)v;H1(ΩR)‖ ≤ C(R0, χ)‖v; H1(ΛR)‖ (4.20)

and

∇ · ((1− χR0)v
)

=
(
1− χR0

)
g2 − (∇(1− χR0)

) · v = g2 − (∇χR0
) · v.

The support of (∇χR0) · v is contained in the annular domain Ξ2R0 = Ω2R0 \ ΩR0 , we calculate
the mean-value over Ξ2R0 :

∫

ΞR0

(∇χR0) · v dx =
∫

∂Ξ2R0

χR0v · n do−
∫

Ξ2R0

χR0(∇ · v) dx. (4.21)

The last integral vanishes, since ∇ · v = 0 on Ξ2R0 . The boundary integral splits into integrals
over ∂ΞR0 ∩ ΣR, where v = 0, and integrals over the lateral surfaces ΓR0 ∪ Γ2R0 . On Γ2R0 we
have χR0 = 0, while χR0 = 1 on ΓR0 . Here we use ∇ · v = 0 in ΛR0 and v(y, z) = 0 for |z| = 1/2
to see that

∫
ΓR0

v · ndo = 0. Hence with Proposition 4.2 again, we find ṽ ∈ o

H1(ΞR0)
3 solving

∇ · ṽ =
(∇χR0

) · v and

‖ṽ; H1(ΞR0)‖ ≤ C‖ (∇χR0
) · v;L2(ΞR0)‖ ≤ ‖v; L2(ΞR0)‖ ≤ ‖v; H1(ΛR)‖. (4.22)

We extend ṽ by zero and put w2 = (1−χR0)v + ṽ, then w2 ∈ H(ΩR), ∇·w2 = g2, and estimates
(4.19), (4.20) and (4.22) lead to

‖w2;H1(ΩR)‖ ≤ C R‖g2; L2(ΩR)‖. (4.23)

The final representation of w reads

w(x) = w1(x) + w2(x)− 3
π

G3R0W
R0(x),
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and due to the construction we have

w′i(x)|ΓR
= (G3R0 + G)

(
z2 − 1

4

)
1

R2
xi, i = 1, 2,

which implies

‖w′; L2(ΓR)‖ ≤ C(G3R0 + G)R−1/2.

From here the estimate (4.8) follows with (4.11), (4.12), (4.15) and (4.23) if we observe that
‖W R0 ; H1(ΩR)‖ remains bounded independent of R ≥ R0. 2

In the next step we derive estimates for the bilinear form qR.

Proposition 4.4 The bilinear form qR is symmetric and nonnegative, and for v, w ∈ H(ΩR),
the following inequality is valid with a constant C independent of R ≥ R0:

|qR(v, w)| ≤ C
(
‖v′; H1(ΞR)‖+ R1/2‖v ′; L2(SR)‖

)(
‖w′; H1(ΞR)‖+ R1/2‖w ′; L2(SR)‖

)
,

and the operator · is defined as in (3.5).

Proof: The symmetry follows immediately from the symmetry properties of ΠR and Π−1
R .

Furthermore, only v′, w′ are involved the definition of qR. Using the notation (4.1) and formula
(3.5) again, we define v, w on the two-dimensional annulus AR, and clearly

‖v ′; H1(AR)‖ ≤ C‖v′; H1(ΞR)‖,

with a constant independent of R. Similar as in (4.13), we put

y =
y

R
, v ′(y) = v ′(Ry), w ′(y) = w ′(Ry).

Formula (3.12)1 leads to

|(ΠRvr, wr)SR
| = |(Πvr,wr)S| ≤ C‖vr; H

1(A1)‖ ‖wr; H
1(A1)‖

≤ C
(
R−1‖v ′; L2(AR)‖+ ‖∇yv

′; L2(AR)‖
)(

R−1‖w ′; L2(AR)‖+ ‖∇yw
′; L2(AR)‖

)
,

To obtain the last inequality we used similar reasonings as in (4.14) and (4.18). By (3.12)2, we
get

|(Π−1
R (vr)•, (wr)•)SR

| = R2|(Π−1(vr)•, (wr)•)S| ≤ C R2 ‖vr;L
2(S)‖ ‖wr; L

2(S)‖
= C R ‖vr; L

2(SR)‖ ‖wr; L
2(SR)‖,

while the estimate of the term R−1|(vϕ, wϕ)SR
| is obvious. Collecting all the inequalities gives

the estimate. Since

(ΠRvr, vr)SR
= ‖vr; H

1/2(S)‖2, (Π−1
R (vr)•, (vr)•)SR

= R2‖(vr)•; H
−1/2(S)‖2,

we obtain also qR(v, v) ≥ 0 for all v ∈ H(ΩR). 2

With the previous estimate in mind, we define the following R-dependent norms on H(ΩR) and
its dual space H′(ΩR):

‖v;H(ΩR)‖2 = ‖v;H1(ΩR)‖2 + qR(v, v) for v ∈ H(ΩR),
‖Φ;H′(ΩR)‖ = sup{|Φ(v)| : ‖v;H(ΩR)‖ ≤ 1} for Φ ∈ H′(ΩR).

(4.24)
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Theorem 4.5 For any Φ ∈ H′(ΩR), there exists a unique weak solution U = (V, P ) ∈ Hσ(ΩR)×
L2(ΩR) to problem (4.5), and the following estimate is valid with a constant independent of
R > R0 and Φ

‖V ;H(ΩR)‖+ R−1‖P ; L2(ΩR)‖ ≤ C ‖Φ;H′(ΩR)‖. (4.25)

In particular, we obtain for the solution (vR, pR) to the approximation problem (1.4) that

‖vR;H1(ΩR)‖+ R−1‖pR;L2(ΩR)‖ ≤ C ‖f ; L2(ΩR)‖. (4.26)

Proof: On Hσ(ΩR), we consider the bilinear form

〈〈v, w〉〉 = ν(∇v,∇w)ΩR
+ qR(v, w).

Since Poincaré’s inequality, ‖v; L2(ΩR)‖ ≤ c ‖∇v;L2(ΩR)‖, is valid for v ∈ H(ΩR) with a con-
stant c independent of R on ΩR, it is clear that 〈〈 · · 〉〉 is coercive and continuous. By means of
the Lax Milgram lemma, we find a unique V ∈ Hσ(ΩR) such that

Φ(w) = 〈〈V,w〉〉 for any w ∈ Hσ(ΩR). (4.27)

The identity (4.27) applied to w = V , together with Poincaré’s inequality, leads to

‖V ; H1(ΩR)‖+ qR(V, V )1/2 ≤ C‖Φ;H′(ΩR)‖,
where C is independent of R and Φ.

The pressure P is obtained by the following well known argument: From Lemma 4.3 we
conclude that for any g ∈ L2(ΩR) there exists a solution Dg ∈ H(ΩR) to the problem ∇·Dg = g,
while inequality (4.8) together with Proposition 4.4 applied to v = w = Dg lead to the estimate

‖Dg;H(ΩR)‖ ≤ C R‖g; L2(ΩR)‖
Thus we obtain a continuous linear functional F on L2(ΩR) by

F (g) = Φ(Dg)− (∇V,∇Dg)ΩR
− qR(V,Dg), g ∈ L2(ΩR). (4.28)

Moreover, we have

|F (g)| ≤
(
‖Φ;H′(ΩR)‖ ‖Dg;H(ΩR)‖+ ‖∇V ; L2(ΩR)‖ ‖∇Dg; L2(ΩR)‖

+qR(V, V )1/2qR(Dg,Dg)1/2
)

≤ C R ‖Φ,H′(ΩR)‖ ‖g; L2(ΩR)‖
with a constant C independent on R. By the Riesz representation theorem there exists a unique
P ∈ L2(ΩR) with F (g) = (P, g)ΩR

and

‖P ; L2(ΩR)‖ ≤ C R ‖Φ;H′(ΩR)‖
with the same constant C as above. Now, if w ∈ H(ΩR) is arbitrary, then w = D∇ · w + w0,
where w0 ∈ Hσ(ΩR), and from (4.27) and (4.28) we obtain

F (∇ · w) = (f, w)ΩR
− (∇V,∇w)ΩR

− qR(V, w),

which means that (V, P ) is a weak solution to (4.3). 2

Theorem 4.5 also gives the clue to the error estimate. Keeping (4.6) in mind we see that the
pair of errors

ver = v∞|ΩR
− vR, per = p∞|ΩR

− pR, (4.29)

is a weak solution to the problem (4.3) with Φ = Φer and

Φer(w) = qR(ṽ∞, w) + (ν∂rṽ
∞ − p̃∞er, w)ΓR

(4.30)

for any w ∈ H(ΩR).
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Proposition 4.6 For v ∈ Hσ(ΩR) ∩ H2(ΩR), p ∈ H1(ΩR) and w ∈ H(ΩR), the following
estimates hold true with constants independent of R:

|qR(v, w)| ≤ C
( ‖v; L2(ΞR)‖+ R‖∇yv;L2(ΞR)‖ ) ‖w;H(ΩR)‖ (4.31)

|(ν∂rv − per, w)ΓR
| ≤ C

(
‖∇yv;L2(ΞR)‖+ R‖∇2

yv; L2(ΞR)‖

+R−1‖p; L2(ΞR)‖+ ‖∇yp; L2(ΞR)‖
)
‖w,H(ΩR)‖ (4.32)

Proof: Clearly,

|qR(v, w)| ≤ qR(v, v)1/2qR(w,w)1/2 ≤ CqR(v, v)1/2‖w;H(ΩR)‖.
Now Formula (3.19) gives

qR(v, v) =
ν

30

{(
ΠRvr, vr

)
SR

+
(
ΠRvϕ, vϕ

)
SR

+
1
R

(
vr, vr

)
SR

+
1
R

(
vϕ, vϕ

)
SR

+ 10
(
Π−1

R

(
vr

)
•,

(
vr

)
•

)
SR

}
.

The last term is the critical one with respect to R. Using the notations of Proposition 4.4, we
find

(Π−1
R (vr)•, (vr)•)SR

= R2(Π−1(vr)•, (vr)•)S

≤ R2‖(vr)•; L
2(S)‖2 ≤ CR2

(
‖vr; L

2(A1)‖2 + ‖∇yvr; L
2(A1)‖2

)

= C
(
‖vr; L

2(AR)‖2 + R2‖∇yvr; L
2(AR)‖2

)
.

Together with the arguments used in Proposition 4.4 to estimate the other terms, we arrive at
the estimate (4.31).
The same scaling argument leads to

|(∂rv, w)ΓR
| = |(∂rv,w)Γ1 | ≤ ‖∂rv; L2(Γ1)‖ ‖w; L2(Γ1)‖

≤ C
( ‖∇yv;L2(Ξ1)‖+ ‖∇2

yv; L2(Ξ1)‖
)( ‖w; L2(Ξ1)‖+ ‖∇yw; L2(Ξ1)‖

)

= C
( ‖∇yv; L2(ΞR)‖+ R‖∇2

yv;L2(ΞR)‖ )(
R−1‖w; L2(ΞR)‖+ ‖∇yw; L2(ΞR)‖ )

.

The last terms are majorized by the right hand side of (4.32), observe that the derivatives in z
are not needed to estimate the L2-norm of the traces on Γ1. The scaling argument applied to
the term containing p gives

|(p er, w)ΓR
| = |R(per,w)Γ1 | ≤ ‖p;L2(Γ1)‖ ‖w; L2(Γ1)‖

≤ C
( ‖p;L2(Ξ1)‖+ ‖∇yp; L2(Ξ1)‖

)( ‖w; L2(Ξ1)‖+ ‖∇yw; L2(Ξ1)‖
)

= C
(

R−1‖p;L2(ΞR)‖+ ‖∇yp; L2(ΞR)‖ )(
R−1‖w;L2(ΞR)‖+ ‖∇yw;L2(ΞR)‖ )

.

Here p(y) = p(Ry
¯
), er is the unit vector in r-direction. Again this can be estimated by the right

hand side of (4.32). 2

Now we can formulate the main result for the linear problem.

Theorem 4.7 Under hypothesis (2.6) of Theorem 2.2, the approximation problem problem (1.4)
with the ABC constructed in Section 3 admits a unique solution (vR, pR) ∈ H1(ΩR)3 ×L2(ΩR).
This solution and the solution (v∞, p∞) of the original problem (1.2), given by Lemma 2.1,
satisfy the following error estimate

‖v∞|ΩR
− vR; H1(ΩR)‖+ R−1 ‖p∞|ΩR

− pR; L2(ΩR)‖
≤ C R3+l−γ ‖f ;W l+2

γ (Ω)‖ ≤ C R−N ‖f ;W l+2
γ (Ω)‖ (4.33)

where the constant C is independent of R ≥ R0 and f ∈ W l+2
γ (Ω)3 (see (2.1) for the definition

of the norm).
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Proof Recalling (4.29) and (4.30), Proposition 4.6 leads to

‖Φer;H′(ΩR)‖ ≤ C
(
‖ṽ∞; L2(ΞR)‖+ R‖∇yṽ

∞;L2(ΞR)‖+ R‖∇2
yṽ
∞; L2(ΞR)‖

+R−1‖p̃∞; L2(ΞR)‖+ ‖∇yp̃
∞; L2(ΞR)‖

)

≤ CR3+l−γ
(

Rγ−3−l‖ṽ∞; L2(ΞR)‖+ Rγ−2−l‖∇yṽ
∞; L2(ΞR)‖

+Rγ−1−l‖∇2
yṽ
∞;L2(ΞR)‖+ Rγ−4−l‖p̃∞;L2(ΞR)‖+ Rγ−3−l‖∇yp̃

∞;L2(ΞR)‖
)
(4.34)

On ΞR we have R/2 ≤ r ≤ R, thus with definition (2.1), the right hand side of (4.34) can be
estimated by

C
(
‖ṽ∞′;W l+2

γ−1(Ω)‖+ ‖ṽ∞z ;W l+2
γ (Ω)‖+ ‖p̃∞;W l+3

γ−1(Ω)‖
)
,

from which estimate (4.33) follows by means of (2.8) and (4.25). 2

5 Strong solutions to the Navier–Stokes problem and their asymptotic prop-
erties

Let us consider the Navier-Stokes problem (1.3). The proof for the existence of weak solutions to
the Navier-Stokes problem (1.3) is standard using solutions on a sequence of expanding domains
(see [33, p.169 ff], e.g.). Strong solutions with special decay properties are usually obtained by
means of the Banach fixed point theorem, in this case one has to require smallness conditions
for the data. The following assertion is a consequence of results proved in [20,27].

Theorem 5.1 Let l ∈ N0, N ≤ 3, and f ∈ W l+2
γ (Ω)3 with γ ∈ (l+3+N, l+4+N). There exists

ε0 > 0 such that in the case ‖f ;L2(Ω)‖ ≤ ε0 the Navier-Stokes problem (1.3) admits a weak
solution (v∞, p∞) ∈ H1(Ω)3 × L2

β(Ω), where −1 < β < 0. This solution is unique and takes the
asymptotic form (2.4). The remainders (ṽ∞, p̃∞) accomplish again the inclusions (2.7), while
(ṽ∞, p̃∞) and the coefficients aj , bj of representation (2.4) comply with estimate (2.8) as long
as the indices l, γ and N satisfy the restriction indicated above.

Proof. The existence of a weak solution for f ∈ L2(Ω) is well known. The proof of the
asymptotic properties uses a bootstrap argument similar to the proof of regularity results for
solutions to the Navier-Stokes system. With suitable estimates for the the nonlinear term at
hand one can shift it to the right-hand side of (1.3) and use results for the linear system, thus
successively improve the properties of the solutions to the nonlinear problem. Since γ−l−N−2 ∈
(1, 2), we have

‖f ; L2(Ω)‖ ≤ ‖f ; L2
γ−l−N−2(Ω)‖ ≤ ‖f ; L2

γ−l−2(Ω)‖ ≤ ‖f ;W l+2
γ (Ω)‖.

If ‖f ;L2(Ω)‖ is small enough, the weak solution to (1.3) is uniquely determined (see [21, Section
4.2]). From Theorem 4.2 in [27] we obtain improved decay properties for v∞ at infinity, namely,
if N ≥ 1, for any µ < 0, we have

v∞ ∈ W l+3
µ+l+4(Ω), vz ∈ W l+2

µ+l+4(Ω),
p∞ ∈ W l+3

µ+l+3(Ω), ∂zp ∈ W l+2
µ+l+4(Ω),

(5.1)

in particular v∞,′ ∈ L2
µ+1(Ω), v∞z ∈ L2

µ+2(Ω), analogous conclusions follow for the derivatives
and for p∞. Lemma 3.4 in [27] supplies us also with estimates for the nonlinear term (v∞ ·∇)v∞

from which we gain

(v∞ · ∇)v∞ ∈ W l+2
2µ+4+l+2(Ω). (5.2)
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Since µ can be arbitrarily close to zero, this implies f − (v∞ · ∇)v∞ ∈ W l+2
γ̃ (Ω) where γ̃ = γ, if

N = 1, 2; for N = 3, the expression γ̃ − l can be any number in the interval (5, 6) (in particular
it can be arbitrarily close to 6). Now Theorem 5.3 in [20], also in its simplified formulation as
in Theorem 2.2, implies the asymptotic representation v∞(y, z) = V ∞(y, z) + ṽ∞(y, z), where
V ∞ has the form (2.4) with N = 2. Now we repeat the argument. Since

|∂j
z∂

α
y V ∞(y, z)| = O(r−2−|α|), as r →∞,

elementary, but lengthy calculations show that indeed (v∞ · ∇)v∞ ∈ W l+2
γ (Ω) is valid, even if

γ−l ∈ (N +3, N +4) for N = 3 – here one has to apply [27, Lemma 3-4] again. Now Theorem 2.2
leads to the asymptotic representation (2.2)-(2.5) up to N = 3, a suitable decay of f provided.
The estimate (2.8) for the solutions to the nonlinear problem follows from the quoted results
of [20,21,27] and Theorem 2.2. 2

Comparing this result with those of Theorem 2.2 on the Stokes problem we see that in addition
to the smallness condition for the data, the decay rate of the remainder ṽ∞, p̃∞ is limited in
representation (2.4). To understand this fact let us have a closer look on how the nonlinearity
influences the asymptotic. According to the Theorem 5.1 we have for r > 2R0

v∞ =
3∑

j=1

vj + ṽ∞′, p∞ =
3∑

j=1

pj + p̃∞′, with

vj′(y, z) =
1
2ν

(
z2 − 1

4

)
∇yp

j(y), vj
z = 0, pj(y) = r−j(aj cos(jϕ) + bj sin(jϕ)).

(5.3)

In view of the asymptotic procedure developed in [15, 18, 20] this solution of the Navier-Stokes
problem (1.3) can be decomposed further into a formal series in powers of r. Let us show that, in
contrast to (2.4), in this series there appear functions in y which are not harmonic. By a proper
choice of the angular variable ϕ, the main asymptotic term in (5.3) can be always reduced to
the expression

v1,′(r, φ) = c1
1
2ν

(
z2 − 1

4

)
∇y

(
r−1 sinϕ

)
= c1

1
2ν

(
z2 − 1

4

)
r−2

(− sin 2ϕ, cos 2ϕ
)

(5.4)

where c1 = (a2
1 + b2

1)
1/2, the index y indicates the derivatives with respect to the cartesian

coordinates (y1, y2). The convective term
(
v1′ · ∇y

)
v1′ calculated for the vector function (5.4)

takes the form

(
v1′ · ∇y

)
v1′ = c2

1

1
2ν2

(
z2 − 1

4

)2

r−5 (− cosϕ,− sinϕ) . (5.5)

In finding the next summands in (5.3) this expression (5.5) has to be compensated by the
particular power-law solution

V ′(y, z) = Z(z) r−5 (cosϕ, sinϕ) +
1
2ν

(
z2 − 1

4

)
∇y r−4 P(ϕ),

Vz(y, z) = r−6 W (ϕ, z),
P (y, z) = r−4 P(ϕ) + r−6 Q(ϕ, z).

(5.6)

Inserting (5.6) into the Stokes problem with the right-hand side (5.5) in the layer (1.1) and
collecting coefficients at same powers r5, we first arrive to the Dirichlet problem on the interval
Υ = (−1/2, 1/2):

−ν
d2

dz2
Z(z) = c2

1

1
2ν2

(
z2 − 1

4

)2

, z ∈ Υ, Z
(
± 1

2

)
= 0.
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Thus, we obtain the coefficient in (5.6)1

Z(z) = −c2
1

1
2ν3

{
z6

30
− z4

24
+

z2

32
− 2−7 11

15

}
. (5.7)

The mean value of solution (5.7) can be easily computed as follows:

1/2∫

−1/2

Z(z)dz =
1
2

1/2∫

−1/2

(
z2− 1

4

) d2

d z2
Z(z) dz = −c2

1

1
4ν3

1/2∫

−1/2

(
z2− 1

4

)3
dz = c2

1

1
ν3

1
24

1
35

. (5.8)

Collecting the coefficients at the powers r6, there appears the one-dimensional Stokes problem
with the parameter ϕ ∈ [0, 2π)

−ν
d2

dz2
W (ϕ, z) +

d

dz
Q(ϕ, z) = 0, z ∈ Υ,

− d

dz
W (ϕ, z) = r6∇y · V ′(y, z), z ∈ Υ,

W
(
ϕ,±1/2

)
= 0.

(5.9)

By virtue of (5.6)1 and (5.8), the compatibility condition for problem (5.9),
∫ 1/2
−1/2∇y·V ′(y, z) dz =

0, turns into the Poisson equation

− 1
12ν

∆y

(
r−4 P(ϕ)

)
= −

1/2∫

−1/2

Z(z) dz ∇y ·
(
r−5(cosϕ, sinϕ)

)
=

=
1

140
c2

ν3r6
, r 6= 0.

(5.10)

Note that the factor at the Laplacian is but the integral of (2ν)−1(z2 − 1/4) over Υ. Since we
are looking for P decaying at infinity, we obtain:

P(ϕ) = − 3 c2
1

560 ν2
.

Since the compatibility condition is fulfilled, problem (5.9) admits the solution

W (ϕ, z) = − c2
1

6720 ν3
(64 z7 − 112 z5 + 44 z3 − 5 z),

Q(ϕ, z) = − c2
1

6720 ν2
(448 z6 − 560 z4 + 132 z2 − 5).

We see that already the next power law term for p∞ cannot be harmonic unless c1 = 0, and
therefore in the case of the nonlinear problem, the structure of the representation (2.2)-(2.5) is
valid only only up to N = 3 in general.

6 Error estimates for the Navier–Stokes problem with ABC

Although Theorem 5.1 does not provide the whole asymptotic series in harmonics for the
solution (v∞, p∞) of the Navier-Stokes problem (1.3), we use the same operator MR constructed
in Section 3 as for the linear problem and formulate the nonlinear problem in the truncated
domain ΩR as follows :

−ν∆vR + (vR · ∇)vR +∇pR = f in ΩR,

∇ · vR = 0 in ΩR,

vR = 0 on ΣR,

MR(vR, pR) = 0 on ΓR. (6.1)
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Let us briefly recall how the Banach fixed point principle can be applied to solve Navier-Stokes
problems. Problem (6.1) can we written in an abstract way

Su + N(u,u) = f , (6.2)

where S : X → Y is a linear operator between two Banach-spaces X = Hσ(ΩR) × L2(ΩR),
and Y = H′(ΩR), while N : X × X → Y is bilinear. Further u = (v, p), Su = −∆v + ∇p,
N(u, u) = ((v · ∇)v, 0). Since S is invertible, equation (6.2) is equivalent to the fix point
equation

u = S−1(f −N(u,u)), (6.3)

and we end up with the following assertion: Suppose S−1 and N are continuous with ‖S−1‖ ≤ CS

and ‖N(u,v);Y ‖ ≤ CN‖u; X‖ ‖v;X‖, then for any f with ‖f ; Y ‖ ≤ (4C2
SCN)−1 there exists a

unique solution u to (6.3) in the ball ‖u; X‖ < (2CSCN)−1, and this solution fulfils ‖u; X‖ ≤
2CS‖f ; Y ‖ (see, e.g. [26, Lemma 5.1] for more details). Theorem 4.5 ensures that the inverse
S−1 of the linear part has a norm bounded independent of R. To control the nonlinearity we
have to watch carefully the embedding constants of some Sobolev embeddings.

Lemma 6.1 For any v, V, w ∈ H the following inequalities hold with constants independent of
R ≥ R0:

‖v;L4(ΩR)‖2 ≤ ‖v;L2(ΩR)‖ ‖v; L6(ΩR)‖ ≤ c ‖∇v;L2(ΩR)‖2 (6.4)∣∣∣
(
(v · ∇)V, w

)
ΩR

∣∣∣ ≤ c ‖v; L4(ΩR)‖ ‖∇V ;L2(ΩR)‖ ‖w; L4(ΩR)‖
≤ CN ‖∇v; L2(ΩR)‖ ‖∇V ;L2(ΩR)‖ ‖∇w; L2(ΩR)‖. (6.5)

Proof. The first relation in (6.4) follows from the Hölder inequality while the second one needs
the Poincaré’s inequality and the inequality

‖w;L6(ΩR)‖ ≤ c ‖∇w; L2(ΩR)‖ ∀ w ∈ H (6.6)

with a constant independent of w and R > R0. Formula (6.6) can be verified by extending
v by zero on the cylinder CR =

{
x = (y, z) : |y| < R, |z| < R

}
and then again by a scaling

argument. We change the variables x 7→ x = R−1x. Sobolev embedding theorems give (6.6) on
the cylinder C1 with diameter and height 2, and the factors R−3/6 and R1R−3/2, appearing due
to the inverse change of variables in the left- and right-hand sides, can be readily cancelled. The
second estimate, (6.5), immediately follows from (6.4). 2

The inequality (6.5) shows that the operator (v, V ) 7→ (v · ∇)V is continuous and bilinear from
Hσ(ΩR)×Hσ(ΩR) into H′(ΩR), and the constant CN is independent of R. Since for f ∈ L2(Ω)
we always have ‖f ;H′(ΩR)‖ ≤ ‖f ; L2(ΩR) ≤ ‖f ;L2(Ω)‖, the scheme described above leads to
the existence of a unique small solution to Problem (6.1) (independent of R) provided f is small
enough. To obtain an error estimate for the differences ver = vR − v∞, per = pR − p∞ the
existence of unique solutions in a ball around (v∞, p∞)|ΩR

(for small f)) can be proved using
exactly the same modification of the abstract scheme above as in [26], thus we repeat only the
main ideas. The error fulfils the system

−ν∆ver +∇per + (v∞ · ∇)ver + (ver · ∇)v∞ = −(ver · ∇)ver

∇ · ver = 0 in ΩR,
ver = 0 on ΣR,

MR(ver, per) = MR(ṽ∞, p̃∞) on ΓR,





(6.7)

Again this system has the structure (6.2), where now the linear part is of the form S(v∞) =
S0 + K(v∞). Here S0 assigns to v ∈ Hσ(ΩR) and p ∈ L2(ΩR) the continuous linear functional

(S0(v, p))(w) = (∇v,∇w)ΩR
− (p,∇ · w)ΩR

+ qR(v, w).
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According to Theorem 4.5, S0 defines an isomorphism from X = Hσ(ΩR) × L2(ΩR) onto Y =
H′(ΩR). The operator K(v∞) defined by

〈K(v∞)(v), w〉 = ((v∞ · ∇)v + (v · ∇)v∞, w)ΩR
, v, w ∈ H(ΩR),

is a compact perturbation (since ΩR is bounded for each fixed R), here we used the notation
〈 , 〉 to indicate the value of the functional K(v∞)(v) at w. Thus S0 + K(v∞) remains an
isomorphism, as long as the kernel is trivial. To this end, let V ∈ Hσ(ΩR), P ∈ L2(ΩR) be fixed
such that

(∇V,∇w)ΩR
− (P,∇ · w)ΩR

+ qR(V,w) + ((v∞ · ∇)V + (V · ∇)v∞, w)ΩR
= 0 (6.8)

for any w ∈ H(ΩR). We apply this identity to w = V , then the term with P cancels, and
inequality (6.5) gives

‖∇V ; L2(ΩR)‖2 + qR(V, V ) ≤ CN‖∇v∞;L2(ΩR)‖ ‖∇V ;L2(ΩR)‖2.

Thus V = 0 as long as

‖∇v∞;L2(Ω)‖ < C−1
N . (6.9)

Then (6.8) together with Lemma 4.3 implies (P, g)ΩR
= 0 for any g ∈ L2(ΩR), hence it follows

also P = 0. Now we fix v∞ with a norm small enough, furthermore, Φ ∈ H′(ΩR) and a weak
solution to the linearized error system, i.e.

(∇V,∇w)ΩR
− (P,∇ · w)ΩR

+ qR(V,w) + ((v∞ · ∇)V + (V · ∇)v∞, w)ΩR
= 〈Φ, w〉. (6.10)

Then similar arguments as above together with the arguments in the proof of Theorem 4.5 to
estimate P lead to estimate (4.25) again, where now the constant depends on v∞, but neither
on R nor on Φ, this means the operator norm of S(v∞)−1 is bounded independent of R. Finally
everything is prepared to apply the scheme described above to generalize Theorem 4.7 to the
nonlinear problem.

Theorem 6.2 Let l ∈ N0, N ≤ 3, and f ∈ W l+2
γ (Ω)3 with γ ∈ (l + 3 + N, l + 4 + N) as in

Theorem 5.1, moreover, let (v∞, p∞) be the solution of the original problem (1.3). There exist
ε1 ∈ (0, ε0] , c > 0 and R1 ≥ R0 such that, under the restrictions ‖f ; L2(Ω)‖ ≤ ε1 and R ≥ R1,
problem (6.1) with the ABC constructed in Section 3 admits a unique solution in the ball

‖vR − v∞;H(ΩR)‖+ ‖pR − p∞; L2(ΩR)‖ ≤ c. (6.11)

The differences vR− v∞|ΩR
and pR− p∞|ΩR

fulfill again the error estimate (4.33), if the indices
l and γ satisfy the restriction above.

Proof. Since ‖∇v∞;L2(ΩR) ≤ C‖f ;L2(ΩR)‖, there exists ε1 where ‖f ; L2(ΩR)‖ ≤ ε1

implies the smallness condition (6.9). With (6.7) in mind we see that the differences ver, per

must solve

S(v∞)(ver, per) + N((ver, 0), ver, 0)) = Φer

with

〈N((ver, 0), ver, 0)), w〉 = ((ver · ∇)ver, w)ΩR
,

and Φer has the same form as in (4.30). The same arguments as in (4.34) and the results of
Theorem 5.1 lead to

‖Φer;H′(ΩR)‖ ≤ CR3+l−γ‖f ;W l+2
γ (Ω)‖,
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where of course l and γ are restricted. Thus there exists a R1 such that ‖Φer;H′(ΩR)‖ is small
enough to fulfill the smallness condition mentioned after (6.3) for all R ≥ R1, and as explained
there, the result follows now from the Banach fixed point theorem. 2

Although only three (N = 3) terms in asymptotics (2.4) of the solution (v∞, p∞) to the
Navier-Stokes problem (1.3) are generated by harmonics (2.5), we used the whole Steklov-
Poincaré operator (3.13) in the ABC (3.16) and (3.17) though. One, of course, can replace
the integral (pseudodifferential) operators ΠR and Π−1

R by their finite-dimensional approxima-
tions. Moreover, one can search for local (differential) ABC for the components vR

r , pR and vR
ϕ .

The simplest ABC of this type are of the form

ν
∂

∂r
vR
r − pR = −2ν(R−1 + 5R) vR

r , ν
∂

∂r
vR
ϕ = −2νR−1 vR

ϕ on ΓR. (6.12)

The coefficients at vR
r and vR

ϕ are chosen such that the main (N = 1 in (2.5)) asymptotic terms
of the asymptotic representation (2.4) satisfy (6.12). Together with the stable ABC (3.4), (3.6),
the ABC (6.12) turn the integral I(vR, pR; w) from (3.2) into non-negative quadratic form (cf.
(3.19)). Thus, Theorems 4.7 and 6.2 remains valid with N=1.

At the same time, employing an approach [14] to improve the ABC (6.12) and defining
the coefficients Ai and Bi so that two (N = 2 in (2.5)) asymptotic terms of the asymptotic
representation (2.4) satisfy the boundary conditions

ν
∂

∂r
vR
r − pR = −A1vR

r + B1∂
2
ϕvR

r , ν
∂

∂r
vR
ϕ = −A2vR

ϕ + B1∂
2
ϕvR

ϕ on ΓR

does not convert I(vR, pR; w) into a non-negative quadratic form because B1 = (3ν)−1
(
R−1−5R

)
is negative for a large R. We emphasize that, in principle, it happens only by chance that
quadratic forms due to the ABC (3.16), (3.17) and (6.12) stay nonnegative : from one side there
is no a priori reason for keeping this property and from the other side there is no free constant
to fulfill it artificially !
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