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Abstract. This article surveys the classical orthogonal polynomial systems of the Hahn class,
which are solutions of second-order differential, difference or q-difference equations.

Orthogonal families satisfy three-term recurrence equations. Example applications of an algo-
rithm to determine whether a three-term recurrence equation has solutions in the Hahn class—
implemented in the computer algebra system Maple—are given.

Modifications of these families, in particular associated orthogonal systems, satisfy fourth-order
operator equations. A factorization of these equations leads to a solution basis.
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1. Classical Orthogonal Polynomials. To declare families of orthogonal poly-
nomials on the real line, one uses a scalar product

〈f, g〉 :=

∫ b

a

f(x)g(x)dµ(x)

with nonnegative measure µ(x) and support in a real interval [a, b] (which can be
infinite in one or both directions).

As special cases one considers
• absolutely continuous measures dµ(x) = ρ(x)dx,
• discrete measures ρ(x) supported in

�
,

• and discrete measures ρ(x) supported in q � for some base q ∈ � .
A family Pn(x) of polynomials

Pn(x) = knxn + k′

nxn−1 + k′′

nxn−2 + k′′′

n xn−3 + · · · , kn 6= 0(1.1)

is called orthogonal w. r. t. the measure µ(x), if

〈Pm, Pn〉 =

{

0 if m 6= n
d2

n 6= 0 if m = n
.

The classical orthogonal polynomials can be defined as the common polynomial solu-
tions (1.1) of a differential equation of the type

σ(x)P ′′

n (x) + τ(x)P ′

n(x) + λnPn(x) = 0 .(1.2)

The case n = 1 shows that τ(x) must be a first order polynomial: τ(x) = dx+e, d 6= 0,
whereas because of n = 2 the function σ(x) turns out to be a polynomial of degree�

2: σ(x) = ax2 + bx + c. Considering the coefficient of xn, one finally gets λn =
−n(a(n − 1) + d).

A complete characterization of the solution families of the differential equation
(1.1) can be given and leads to the following scheme ([2], 1929):
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σ(x) = 0 powers xn

σ(x) = 1 Hermite polynomials
σ(x) = x Laguerre polynomials
σ(x) = x2 powers, Bessel polynomials
σ(x) = x2 − 1 Jacobi polynomials

All other solutions of (1.1) are translations of the above systems.1 It turns out that—
besides the powers—all these polynomial systems are orthogonal. However, the weight
function of the Bessel polynomials is not defined in a real interval but in the com-
plex plane. However, in both the Jacobi and Bessel case, for specific values of the
parameters finite real orthogonal families arise ([18, 1, 12, 13]).

The weight function ρ(x) corresponding to the system satisfies Pearson’s differ-

ential equation

d

dx

(

σ(x)ρ(x)
)

= τ(x)ρ(x)

from which it follows that

ρ(x) =
C

σ(x)
e � τ(x)

σ(x)
dx .

Further details can be found in [15].

2. Classical Discrete Families. The classical discrete orthogonal polynomials
can be defined as the polynomial solutions of the difference equation

σ(x)∆∇Pn(x) + τ(x)∆Pn(x) + λnPn(x) = 0 ,(2.1)

where ∆f(x) = f(x + 1)− f(x) and ∇f(x) = f(x)− f(x− 1) denote the forward and
backward difference operators, respectively.

Again, from (2.1) it follows that τ(x) = d x + e, d 6= 0 (using n = 1) and σ(x) =
a x2 + b x + c (using n = 2). The coefficient of xn yields also λn = −n(a(n − 1) + d).

The classical discrete systems can be classified according to the scheme ([16],
1991):

σ(x) = 0 falling factorials xn = x(x − 1) · · · (x − n + 1)
σ(x) = 1 translated Charlier polynomials
σ(x) = x falling factorials, Charlier, Meixner, Krawtchouk polynomials
deg(σ(x), x) = 2 Hahn polynomials

Again, all these families—besides the falling factorials—form orthogonal polynomial
families.

The weight function ρ(x) corresponding to the system satisfies Pearson’s difference
equation

∆
(

σ(x)ρ(x)
)

= τ(x)ρ(x)

from which it follows that

ρ(x + 1)

ρ(x)
=

σ(x) + τ(x)

σ(x + 1)
.

1If σ(x) is constant, one gets translated Hermite polynomials, if σ(x) has degree 1, then trans-
lated Laguerre polynomials result, and if the degree of σ(x) is 2, then Jacobi polynomials or Bessel
polynomials follow depending on whether or not σ(x) has two different zeros (giving the interval
bounds a and b if they are real) or one double zero.



ORTHOGONAL POLYNOMIALS, RECURRENCE EQUATIONS AND FACTORIZATION 3

3. Hypergeometric Functions. The power series

pFq

(

a1, . . . , ap

b1, . . . , bq

∣

∣

∣

∣

∣

z

)

=

∞
∑

k=0

Ak zk ,

whose coefficients ak = Akzk have rational term ratio

ak+1

ak
=

Ak+1 zk+1

Ak zk
=

(k + a1) · · · (k + ap)

(k + b1) · · · (k + bq)

z

(k + 1)

is called the generalized hypergeometric function. The summand ak = Akzk is called
a hypergeometric term w. r. t. k.

Hence, because of

ρ(x + 1)

ρ(x)
=

σ(x) + τ(x)

σ(x + 1)
,

and since σ(x) and τ(x) are polynomials, the weight functions ρ(x) of the classical
discrete orthogonal polynomials form hypergeometric terms w. r. t. the variable x.

For the coefficients of the generalized hypergeometric function one obtains the
formula

pFq

(

a1, . . . , ap

b1, . . . , bq

∣

∣

∣

∣

∣

z

)

=

∞
∑

k=0

(a1)k · · · (ap)k

(b1)k · · · (bq)k

zk

k!
,

where (a)k = a(a + 1) · · · (a + k − 1) denotes the Pochhammer symbol or shifted

factorial.

Simple examples of hypergeometric functions are the exponential function

ez = 0F0(z) ,

the sine function

sin z = z · 0F1

(

−

3/2

∣

∣

∣

∣

∣

−
z2

4

)

as well as cos(z), arcsin(z), arctan(z), ln(1 + z), erf(z), L
(α)
n (z), . . . , but for example

not tan(z).

From the difference equation, one can determine a hypergeometric representation
(s. [9], [16]). As an example, the Hahn polynomials are given by2

Qn(x; α, β, N) = 3F2

(

−n,−x, n + 1 + α + β

α + 1,−N

∣

∣

∣

∣

∣

1

)

.

2In the Russian literature the parameters α and β are interchanged, N is replaced by N − 1,
and the standardization is different, see [16], p. 54. The given definition is the one of the American
school, s. [7].



4 W. KOEPF

4. q-Orthogonal Polynomials. To define orthogonal polynomials on the lat-
tice q � , we need some more notation.

The operator ([6], 1949)

Dq f(x) =
f(x) − f(qx)

(1 − q)x

is called Hahn’s q-difference operator, and the q-brackets are defined by

[k]q =
1 − qk

1 − q
= 1 + q + · · · + qk−1 .

Since

lim
q→1

Dq f(x) = f ′(x)

by de l’Hospital’s rule, the limit q → 1 yields the continuous case. The q-brackets are
the q-equivalent of the term k since

lim
q→1

[k]q = k .

The q-orthogonal polynomials of the Hahn class can be defined as the polynomial
solutions of the q-difference equation

σ(x)Dq D1/q Pn(x) + τ(x)Dq Pn(x) + λnPn(x) = 0 .

Analogously to the classical case, one gets τ(x) = dx + e, d 6= 0, σ(x) = ax2 + bx + c
and λn = −a[n]1/q[n − 1]q − d[n]q .

The classical q-systems can be classified according to the scheme ([17], 1993)3

σ(x) = 0 powers and q-Pochhammer symbols (5.1)
σ(x) = 1 discrete q-Hermite II polynomials
σ(x) = x q-Charlier-, q-Laguerre-, q-Meixner polynomials
deg(σ(x), x) = 2 q-Hahn polynomials, Big q-Jacobi polynomials

The weight function ρ(x) corresponding to the system satisfies the q-Pearson difference
equation

Dq

(

σ(x)ρ(x)
)

= τ(x)ρ(x) .

Hence we have

ρ(qx)

ρ(x)
=

σ(x) + (q − 1)xτ(x)

σ(qx)
.

5. Basic Hypergeometric Series. Instead of considering series whose coeffi-
cients Ak have rational term ratio Ak+1/Ak ∈ � (k), we can also consider such series
whose coefficients Ak have term ratio Ak+1/Ak ∈ � (qk ) w. r. t. some base q ∈ � .

This leads to the q-hypergeometric (or basic hypergeometric) series

rϕs

(

a1, . . . , ar

b1, . . . , bs

∣

∣

∣

∣

∣

q ; x

)

=

∞
∑

k=0

Ak xk .

3Historically many more systems were introduced that fit in this list. A complete classification
that boils down to essentially seven different types can be found in [11], see also [14].
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Now the coefficients—that are called q-hypergeometric terms—are given by the for-
mula

Ak =
(a1; q)k · · · (ar; q)k

(b1; q)k · · · (bs; q)k

xk

(q; q)k

(

(−1)k q(
k

2)
)1+s−r

,

where

(a; q)k =

k−1
∏

j=0

(1 − aqj)(5.1)

denotes the q-Pochhammer symbol. Since

ρ(qx)

ρ(x)
=

σ(x) + (q − 1)xτ(x)

σ(qx)

is rational, the weight ρ(x) of a q-orthogonal system of the Hahn tableau is a q-
hypergeometric term w. r. t. x = qk.

Classical orthogonal systems have (generally several) q-hypergeometric equiva-
lents. For example, the Big q-Jacobi polynomials are q-equivalents of the Jacobi
polynomials and are given by

Pn(x; a, b, c; q) = 3ϕ2

(

q−n, a, b, qn+1, x

aq, cq

∣

∣

∣

∣

∣

q ; q

)

.

The families of the Hahn class that we considered in this article—with absolutely con-
tinuous, arithmetically discrete and geometrically discrete weights—can be generated
by suitable limit procedures from the Big q-Jacobi polynomials.

6. Computing the Difference Equation from a Recurrence Equation.

From the differential or (q)-difference equation one can determine the three-term
recurrence equation for Pn(x) in terms of the coefficients of σ(x) and τ(x). Using
a computer algebra system like Maple one can easily compute how the three-term
recurrence equation corresponding to a given system can be expressed by the five
parameters a, b, c, d and e.

As an example case, we consider the discrete situation.

This defines the forward and backward difference operators

> Delta:=(f,x)->subs(x=x+1,f)-f:

> nabla:=(f,x)->f-subs(x=x-1,f):

We consider the three highest coefficients of the orthogonal polynomial

> p:=k[n]*x^n+kprime[n]*x^(n-1)+kprimeprime[n]*x^(n-2);

p := kn xn + kprimen x(n−1) + kprimeprimen x(n−2)

and we define the polynomials σ(x) and τ(x) with symbolically given coefficients
a, b, c, d, e:

> sigma:=a*x^2+b*x+c:
> tau:=d*x+e:

The polynomial Pn(x) satisfies the difference equation DE = 0 with:

> DE:=sigma*Delta(nabla(p,x),x)+tau*Delta(p,x)+lambda[n]*p;
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DE := (a x2 + b x + c)(kn (x + 1)n + kprimen (x + 1)(n−1) + kprimeprimen (x + 1)(n−2) − 2 kn xn

− 2 kprimen x(n−1) − 2 kprimeprimen x(n−2) + kn (x − 1)n + kprimen (x − 1)(n−1)

+ kprimeprimen (x − 1)(n−2)) + (d x + e)(kn (x + 1)n + kprimen (x + 1)(n−1)

+ kprimeprimen (x + 1)(n−2) − kn xn − kprimen x(n−1) − kprimeprimen x(n−2))

+ λn (kn xn + kprimen x(n−1) + kprimeprimen x(n−2))

We replace the powers (x + 1)n and (x − 1)n by the binomial theorem

> DE:=subs(
> {(x+1)^n=x^n+n*x^(n-1)+n*(n-1)/2*x^(n-2),
> (x+1)^(n-1)=subs(n=n-1,x^n+n*x^(n-1)+n*(n-1)/2*x^(n-2)),
> (x+1)^(n-2)=subs(n=n-2,x^n+n*x^(n-1)+n*(n-1)/2*x^(n-2)),
> (x-1)^n=x^n-n*x^(n-1)+n*(n-1)/2*x^(n-2),
> (x-1)^(n-1)=subs(n=n-1,x^n-n*x^(n-1)+n*(n-1)/2*x^(n-2)),
> (x-1)^(n-2)=subs(n=n-2,x^n-n*x^(n-1)+n*(n-1)/2*x^(n-2))},DE):

and collect coefficients:

> de:=collect(simplify(DE/x^(n-4)),x);

de := (d kn n − a kn n + a kn n2 + λn kn) x4 + (−d kprimen +
1

2
d kn n2 + λn kprimen + b kn n2

− 3 a kprimen n + d kprimen n + a kprimen n2 + 2 a kprimen −
1

2
d kn n − b kn n

+ e kn n)x3 + (
1

2
e kn n2 +

1

2
d kprimen n2 + d kprimeprimen n − e kprimen

+ d kprimen − 2 d kprimeprimen + e kprimen n − 3 b kprimen n − 5 a kprimeprimen n

−
1

2
e kn n + c kn n2 + a kprimeprimen n2 − c kn n + λn kprimeprimen + 2 b kprimen

+ b kprimen n2 −
3

2
d kprimen n + 6 a kprimeprimen)x2 + (

1

2
e kprimen n2

− 5 b kprimeprimen n −
3

2
e kprimen n +

1

2
d kprimeprimen n2 −

5

2
d kprimeprimen n

− 3 c kprimen n + e kprimeprimen n + e kprimen + 3 d kprimeprimen

+ 6 b kprimeprimen + b kprimeprimen n2 + c kprimen n2 + 2 c kprimen

− 2 e kprimeprimen)x − 5 c kprimeprimen n + 6 c kprimeprimen

+
1

2
e kprimeprimen n2 −

5

2
e kprimeprimen n + 3 e kprimeprimen

+ c kprimeprimen n2

Equating the highest coefficient gives the already mentioned identity for λn:

> rule1:=lambda[n]=solve(coeff(de,x,4),lambda[n]);

rule1 := λn = −n (d − a + a n)

This result can be substituted into the differential equation:

> de:=expand(subs(rule1,de)):

Equating the second highest coefficient gives k′

n as rational multiple of kn

> rule2:=kprime[n]=solve(coeff(de,x,3),kprime[n]);

rule2 := kprimen =
1

2

kn n (d n − 2 b + 2 b n− d + 2 e)

d − 2 a + 2 a n
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and equating the third highest coefficient gives k′′

n as rational multiple of kn:4

> rule3:=kprimeprime[n]=solve(coeff(subs(rule2,de),x,2),
> kprimeprime[n]);

rule3 := kprimeprimen =
1

8
kn n(d2 n3 − 16 b2 n2 + 5 d2 n + 8 c n2 a + 4 c n d− 16 c n a

+ 4 b n3 d − 16 b n2 d + 8 b n2 e + 20 b d n + 4 e n2 a − 8 e n d− 8 e n a + 4 e n2 d

− 20 e n b− 4 c d + 8 c a + 4 b2 n3 − 8 b2 + 20 b2 n − 8 b d + 12 b e + 4 e d + 4 e a

+ 4 e2 n − 2 d2 − 4 e2 − 4 d2 n2)/((d − 2 a + 2 a n) (−3 a + d + 2 a n))
We consider the monic case, hence

> k[n]:=1;

kn := 1

and therefore

> rule2;

kprimen =
n (d n − 2 b + 2 b n− d + 2 e)

2 (d − 2 a + 2 a n)
> rule3;

kprimeprimen = n(d2 n3 − 16 b2 n2 + 5 d2 n + 8 c n2 a + 4 c n d− 16 c n a + 4 b n3 d

− 16 b n2 d + 8 b n2 e + 20 b d n + 4 e n2 a − 8 e n d− 8 e n a + 4 e n2 d − 20 e n b

− 4 c d + 8 c a + 4 b2 n3 − 8 b2 + 20 b2 n − 8 b d + 12 b e + 4 e d + 4 e a + 4 e2 n

− 2 d2 − 4 e2 − 4 d2 n2)/(8 (d − 2 a + 2 a n) (−3 a + d + 2 a n))
Now we would like to find the coefficients βn and γn in the recurrence equation
RE = 0 (see (7.1)):

> RE:=P(n+1)-(x-beta[n])*P(n)+gamma[n]*P(n-1);

RE := P(n + 1) − (x − βn) P(n) + γn P(n − 1)

> RE:=subs(
> {P(n)=p,P(n+1)=subs(n=n+1,p),P(n-1)=subs(n=n-1,p)},RE);

RE := x(n+1) + kprimen+1 xn + kprimeprimen+1 x(n−1)

− (x − βn) (xn + kprimen x(n−1) + kprimeprimen x(n−2))

+ γn (x(n−1) + kprimen−1 x(n−2) + kprimeprimen−1 x(n−3))

We substitute the already known formulas:
> RE:=subs(
> {rule2,subs(n=n+1,rule2),subs(n=n-1,rule2),
> rule3,subs(n=n+1,rule3),subs(n=n-1,rule3)},RE):

and get a highly complicated expansion

> re:=simplify(numer(normal(RE))/x^(n-3)):

Equating the highest coefficient gives βn as rational function of a, b, c, d, e and n:
> rule4:=beta[n]=
> factor(solve(coeff(re,x,3),beta[n]));

rule4 := βn = −
d n2 a + 2 b n2 a − d a n − 2 b a n− 2 e a + d2 n + 2 b d n + e d

(d − 2 a + 2 a n) (d + 2 a n)
and equating the second highest coefficient yields finally γn as rational function, too:

4Of course, taking into consideration the fourth highest coefficients yields k′′′

n
as rational multiple

of kn, and so forth.
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> rule5:=gamma[n]=factor(subs(rule4,solve(coeff(re,x,2),gamma[n])));

rule5 := γn = −(d + a n − 2 a)(−16 c d a + 8 b a n d− d3 n − 4 b n2 a d + 8 e n a d + 2 d2 a n

− d2 a + d3 − d2 n2 a − 16 e n a2 + 8 e n2 a2 − 4 b d2 n − 8 e a d + 8 e a2 + 16 c n2 a2

− 32 c n a2 − 4 b2 n2 a − 4 b2 n d + 8 b2 n a − 4 b e d + 16 c n d a + 4 c d2 + 4 e2 a

+ 4 b d2 + 4 b2 d − 4 a b d + 16 a2 c − 4 a b2)n/(4 (−3 a + d + 2 a n) (−a + d + 2 a n)

(d − 2 a + 2 a n)2)
Starting from a given three-term recurrence equation, one can use these identi-

ties in the opposite direction to find the corresponding differential or (q)-difference
equation by solving a quadratic system of equations, s. [10].
Example 1: Let the recurrence equation

Pn+2(x) − (x − n − 1) Pn+1(x) + α(n + 1)2Pn(x) = 0(6.1)

be given. The computations

> read "hsum6.mpl";

Package “Hypergeometric Summation“, Maple V − Maple 8

Copyright 2002 , Wolfram Koepf , University of Kassel

> read "retode.mpl";

Package “REtoDE“, Maple V − Maple 8

Copyright 2002 , Wolfram Koepf , University of Kassel

> RE:=P(n+2)-(x-n-1)*P(n+1)+alpha*(n+1)^2*P(n)=0;

RE := P(n + 2) − (x − n − 1) P(n + 1) + α (n + 1)2 P(n) = 0

> REtoDE(RE,P(n),x);

Warning : parameters have the values , {a = 0, e = 0, b = 2 c, c = c, α =
1

4
, d = −4 c}

[
1

2
(2 x + 1) ( ∂2

∂x2 P(n, x)) − 2 x ( ∂
∂x P(n, x)) + 2 n P(n, x) = 0, [I = [

−1

2
, ∞], ρ(x) = 2 e(−2x)],

kn+1

kn
= 1]

> REtodiscreteDE(RE,P(n),x);

Warning : parameters have the values , {a = 0, e = −g d, c =
1

2
g d f +

1

2
g d +

1

4
d −

1

4
f2 d,

b = −
1

2
f d −

1

2
d, f = f, d = d, α =

f2 − 1

4 f2
, g = g}

[
1

2

(f − 1 + 2 f x) (Nabla(P(n, f x + f + g), x + 1) − Nabla(P(n, f x + g), x))

f

+
2 x (−P(n, f x + f + g) + P(n, f x + g))

1 + f
+

2 n P(n, f x + g)

(1 + f) f
= 0,

[σ(x) =
f

2
−

1

2
+ x − g, σ(x) + τ(x) =

(f − 1) (f + 2 x + 1 − 2 g)

2 (1 + f)
], ρ(x) = (

f − 1

1 + f
)x,

kn+1

kn
=

1

f
]

show that for α = 1/4 translated Laguerre polynomials and for α < 1/4 Meixner and
Krawtchouk polynomials are solutions of (6.1).5

5The parameters f and g that appear in Maple’s output correspond to the translation x 7→ fx+g.
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Example 2: Let the recurrence equation

Pn+2(x) − xPn+1(x) + α qn(qn+1 − 1)Pn(x) = 0(6.2)

be given. The computations

> RE:=P(n+2)-x*P(n+1)+alpha*q^n*(q^(n+1)-1)*P(n)=0;

RE := P(n + 2) − P(n + 1) x + α qn (q(n+1) − 1) P(n) = 0

> REtoqDE(RE,P(n),q,x);

Warning : parameters have the values ,

{e = 0, d = d, c = −α d q + α d, a = −d q + d, b = 0}

[(x2 + α) Dq(Dq(P(n, x),
1

q
, x), q, x) −

x Dq(P(n, x), q, x)

q − 1
+

q (−1 + qn) P(n, x)

(q − 1)2 qn
= 0,

ρ(q x)

ρ(x)
=

α

q2 x2 + α
,

kn+1

kn
= 1]

show that for every α ∈ � there are q-orthogonal polynomial solutions of (6.2).

7. Associated Orthogonal Polynomials. A monic orthogonal system

Pn(x) = xn + k′

nxn−1 + k′′

nxn−2 + · · ·

satisfies a recurrence equation of the form (see e. g. [3])

Pn+1(x) = (x − βn) Pn(x) − γn Pn−1(x) .(7.1)

The polynomials defined by

P
(r)
n+1(x) = (x − βn+r) P (r)

n (x) − γn+r P
(r)
n−1(x) ,

called the rth associated orthogonal polynomials, are also orthogonal by Favards
Theorem (s. [3]).

It turns out that the associated polynomials can be represented as linear combi-
nations

P (r)
n (x) =

Pr−1(x)

Γr−1
P

(1)
n+r−1(x) −

P
(1)
r−2(x)

Γr−1
Pn+r(x)

where Γn =
∏n

k=1 γk (see [4]).

As examples, we consider the classical discrete polynomials. Then it turns out

that the associated polynomials y(x) = P
(r)
n (x) satisfy a fourth order recurrence

equation of the form

R(r)
n y(x) =

4
∑

k=0

Jk(x, n)Sk y(x) =

4
∑

k=0

Jk(x, n) y(x + k) = 0

with polynomials Jk(x, n) ∈ � [x, n], where S denotes the shift operator.
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8. Factorization of Fourth Order Difference Equations. By linear algebra,

one can prove that a certain multiple of the difference operator R
(r)
n can be factorized

as product of two difference operators of second order [5]

X(σ, τ, Pr−1) R(r)
n = S(r)

n T (r)
n

for some function X(σ, τ, Pr−1). Using computer algebra, in each specific case this
factorization can be computed explicitly.

For example, let’s consider the Charlier polynomials and their associated. The
monic Charlier polynomials are given by

Pn(x) = (−a)n c(a)
n (x) = (−a)n

2F0

(

−n,−x

−

∣

∣

∣

∣

∣

−
1

a

)

.

The fourth order difference operator of the rth associated Charlier polynomials is
given by

R(r)
n = a (n + 2 ζ) (x + 4)S4

+ (−2 a x − 4 ζ − 2 ζ3 + 2 n2 − 6 a + 6 ζ2 − 3 n ζ2 − n2 ζ + 7 n ζ − 2 n)S3

+ (2 a x − 5 a n + 2 ζ + 4 ζ3 − n2 − 4 ζ a x − 10 ζ a + n3 + 4 a − 6 ζ2 + 6 n ζ2 + 4 n2 ζ − 4 n ζ

− 2 a x n)S2 + (2 a x + 2 ζ − 2 ζ3 + 4 a − 3 n ζ2 − n2 ζ + n ζ)S + a (n − 2 + 2 ζ) (x + 1),

where ζ = r − x − a − 2. The factorization yields the second order right factor6

T (r)
n = Pr−1(x + 1) Pr−1(x) (x + 2)2 aS2

+ (−(x + 1) (n + ζ + 1) (x + 2) Pr−1(x)2 − ζ (n + ζ + 1) (x + 2) Pr−1(x + 1) Pr−1(x))S

+ (−a (x + 1) (x + 2) Pr−1(x + 1) Pr−1(x) − ζ a (x + 2) Pr−1(x + 1)2),

Pn(x) still denoting the monic Charlier polynomial. The function X as well as the
left factor Sn(r) turn out to be rather complicated.

One main advantage of the factorization is the following: In the general case,

using the right factor T
(r)
n , one can find a solution basis for the fourth order difference

equation of the rth associated polynomials (for arbitrary r) consisting of the four
linearly independent functions

A(r)
n (x) = ρ(x) Pr−1(x) Pn+r(x),

B(r)
n (x) = ρ(x) Pr−1(x) Qn+r(x),

C(r)
n (x) = ρ(x) Qr−1(x) Pn+r(x),

D(r)
n (x) = ρ(x) Qr−1(x) Qn+r(x).

In a similar manner, the fourth order difference equations and their factorizations of
differently modified polynomials like the generalized co-recursive and the generalized
co-dilated polynomials can be detected [5].

9. Conclusion. The software used was written in connection with my book
[8] and is available from my home page http://www.mathematik.uni-kassel.de/

~koepf.

6which doesn’t necessarily look simpler but is of second instead of fourth order
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I hope to have shown that new and interesting research results in the classical
topic of orthogonal polynomials can be obtained using computer algebra algorithms.

The most important computer algebra algorithms utilized are the algorithms of
linear algebra, polynomial factorization and the solution of polynomial systems, e. g.
by Gröbner bases.

Software development is a time consuming activity! Software developers love
when their software is used. But they need your support. Hence my suggestion: If
you use a computer algebra package for your research, please cite its use!
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