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Abstract

Let k be a quadratic imaginary field, p a prime which splits in k/Q and
does not divide the class number hi of k. Let L denote a finite abelian
extension of k and let K be a subextension of L/k. In this article we prove
the p-part of the Equivariant Tamagawa Number Conjecture for the pair
(h°(Spec(L)), Z[Gal(L/K))).
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1 Introduction

The aim of this paper is to provide new evidence for the validity of the Equivari-
ant Tamagawa Number Conjectures (for short ETNC) as formulated by Burns
and Flach in [4]. We recall that these conjectures generalize and refine the Tam-
agawa Number Conjectures of Bloch, Kato, Fontaine, Perrin-Riou et al. In the
special case of the untwisted Tate motive the conjecture also refines and gener-
alizes the central conjectures of classical Galois module theory as developed by
Frohlich, Chinburg, Taylor et al (see [2]). Moreover, in many cases it implies
refinements of Stark-type conjectures formulated by Rubin and Popescu and
the ‘refined class number formulas’ of Gross. For more details in this direction
see [3].

Let k denote a quadratic imaginary field. Let L be a finite abelian extension
of k and let K be any subfield of L/k. Let p be a prime number which does
not divide the class number hy of k and which splits in k/Q. Then we prove
the "p-part’ of the ETNC for the pair (h°(Spec(L), Z|Gal(L/K)])) (see Theorem
4.2).

To help put the main result of this article into context we recall that so
far the ETNC for Tate motives has only been verified for abelian extensions
of the rational numbers QQ and certain quaternion extensions of Q. The most
important result in this context is due to Burns and Greither [5] and establishes
the validity of the ETNC for the pair (h°(Spec(L)(r), Z[$][Gal(L/K)])), where



L/Q is abelian, Q C K C L and r < 0. The 2-part was subsequently dealt with
by Flach [7], who also gives a nice survey on the general theory of the ETNC,
including a detailed outline of the proof of Burns and Greither. Shortly after
Burns and Greither, the special case r = 0 was independently shown (up to the
2-part) by Ritter and Weiss [19] using different methods.

In order to prove our main result we follow very closely the strategy of Burns
and Greither. Roughly speaking, we will replace cyclotomic units by elliptic
units. More concretely, the ETNC for the pair (h°(Spec(L),Z[Gal(L/K)]))
conjecturally describes the leading coefficient in the Laurant series of the equiv-
ariant Dirichlet L-function at s = 0 as the determinant of a canonical complex.
By Kronecker’s limit formula we replace L-values by sums of logarithms of el-
liptic units. In this formulation we may pass to the limit along a Z,-extension
and recover (an analogue) of a conjecture which was formulated by Kato in
[11]. As in [5] we will deduce this limit conjecture from the Main Conjecture
of Iwasawa Theory and the triviality of certain Iwasawa p-invariants (see The-
orem 5.1). Combining the validity of the limit theorem with Iwasawa-theoretic
descent considerations we then achieve the proof of our main result.

The Main Conjecture in the elliptic setting was proved by Rubin in [21], but
only in semi-simple case (i.e. p1[L : k]). Following Greither’s exposition [9] we
adapt Rubin’s proof and obtain the full Main Conjecture (see Theorem 3.1) for
ray class fields L and primes p which split in £/Q and do not divide the class
number hy, of k.

The triviality of p-invariants in the elliptic setting is known from work of
Gillard [8], but again only in the ordinary case when p is split in k/Q.

The descent considerations are particularly involved in the presence of "trivial
zeros’ of the associated p-adic L-functions. In this case we make crucial use of
a recently published result of the author [1] concerning valuative properties of
certain elliptic p-units.

As in the cyclotomic case it is possible to use the Iwasawa-theoretic result
of Theorem 5.1 and Iwasawa descent to obtain the p-part of the ETNC for
(h°(Spec(L)(r), Z|Gal(L/K)])), r < 0. We refer to thesis of Johnson [10] who
deals with this case.

We conclude this introduction with some remarks on the non-split situation.
Generically this case is more complicated because the corresponding Iwasawa
extension is of type Zi. The main issue, if one tries to apply the above described
strategy in the non-split case, is to prove p = 0. Note that we already use the
triviality of p in our proof of the Iwasawa Main Conjecture (see Remerk 3.9).

During the preparation of this manuscript I had the pleasure to spend three
months at the department of mathematics in Besancon and three weeks at the
department of mathematics at Caltech, Pasadena. My thanks go to the algebra
and number theory teams at both places for their hospitality and the many
interesting mathematical discussions.



2 Elliptic units

The aim of this section is to define the elliptic units that we will use in this
paper. Our main references are [17], [18] and [1].

We let L C C denote a Z-lattice of rank 2 with complex multiplication by
the ring of integers of a quadratic imaginary field k. We write N = Ny q for the
norm map from k to Q. For any Ok-ideal a satisfying (N(a),6) = 1 we define a
meromorphic function

Y(z;L,a) := F(z;L,a"'L), zeC,

where F is defined in [17, Théoréme principale, (15)]. This function ¢ coincides
with the function 6(z; a) used by Rubin in [20, Appendix] and it is a canonical
12th root of the function 6(z; L, a) defined in [6, II.2].

The basic arithmetical properties of special values of ¢ are summarized in
1, §2].

We choose a Z-basis w1, ws of the complex lattice L such that Im(w; /wse) > 0
and write n(7), Im(7) > 0, for the Dedekind n-function. Let 71,72 denote the
quasi-periods of the Weierstrass (-function and for any z = ajw; + asws €
C,a1,a2 € R, put z* = a1m + asne. Writing o(z; L) for the Weierstrass o-
function attached to L we define

o(z;w1,ws) = 2mie”** /20 (z; L)n? (?) wy b (1)
2

Note that ¢ is exactly the function defined in [17, (4)]. The function ¢ is not a
function of lattices but depends on the choice of a basis wy,ws. Its 12th power
does not depend on this choice and we will also write ¢'?(z;L). We easily
deduce from [17, Sec. 3, Lemme] and its proof that the relation between ¢ and
1 is given by
Q!N (@) (2 L)

12 - L r \=ma
d) (Zv ) a) S0]_2(2:; U.ilL)

(2)

3 The Iwasawa main conjecture

For any Og-ideal b we write k(b) for the ray class field of conductor b. In this
notation k(1) denotes the Hilbert class field. We let w(b) denote the number
of roots of unity in k& which are congruent to 1 modulo b. Hence w(1) is the
number of roots of unity in k. This number will also be denoted by wy.

Let p denote an odd rational prime which splits in k£/Q, and let p be a prime
ideal of k lying over p. We assume p 1 hy. For each n > 0 we write

Gal(k(p"™")/k) = Gal(k(p™*")/k(p)) x H,

where H is isomorphic to Gal(k(p)/k) by restriction. We set

ky = k(pn+1)H7 koo = U kn,

n>0



and note that ko /k is a Zy-extension. More precisely, koo /k is the unique Z,-
extension of k which is unramified outside p. The prime p is totally ramified in
koo /k.

Let now f be any integral ideal of k such that (f,p) = 1. Let F = k(fp)
denote the ray class field of conductor fq. We set K,, := Fk, = k(jp"*!) and
Ko = Up>0K,. Then Ko /Ky is a Zy-extension in which each prime divisor
of p is totally ramified.

For any number field L we denote the p-part of the ideal class group of L
by A(L). Set Ao := lim A(Ky), the inverse limit formed with respect to the

norm maps. We write &, for the group of global units of K. For a divisor g of
§ we let C,, 4 denote the subgroup of primitive Robert units of conductor fp™*!,
n > 0. If g # (1), then C, 4 is generated by all ¢(1;gp™ !, a) with (a,gp) = 1
and the roots of unity in K,. If g = (1), then the elements t(1;p"*! a) are no
longer units. By [1, Th. 2.4] a product of the form [+ (1;p"*!, @)™ is a unit,
if and only if Y~ m(a)(N(a) — 1) = 0. We let C,, 4 denote the group generated
by all such products and the roots of unity in K,,. We let C,, be the group of
units generated by the subgroups C,, ¢ with g running over the divisors of f.

We let U,, denote the semi-local units of K, ®k, which are congruent to 1
modulo all primes above p, and let &, and C, denote the closures of &, N U,
and C,, N U,, respectively, in U,,. Finally we define

€ :=1imé&,, Cs :=lLmC,,

both inverse limits formed with respect to the norm maps.
We let
A =lim Z,|Gal(K,/k)]

denote the completed group ring and for a finitely generated A-module and any
abelian character x of A := Gal(K(/k) we define the x-quotient of M by

MX = M®ZP[A}ZP(X)7

where Z,(x) denotes the ring extension of Z, generated by the values of x. For
the basic properties of the functor M +— M, the reader is referred to [25, §2].

The ring A, is (non-canonically) isomorphic to the power series ring
Zp(X)|[T)). If M, is a finitely generated torsion A,-module, then we write
char(M, ) for the characteristic ideal.

Theorem 3.1 Let p be an odd rational prime which splits into two distinct
primes in k/Q. Then

char(As ) = char((Eae/Coo )y )-

Remark 3.2 If p 1 [F : k] and p does not divide the number of roots of unity
in k(1), then the result of Theorem 3.1 is already proved by Rubin, see [21,
Th. 4.1(1)].



The rest of this section is devoted to the proof of Theorem 3.1. Let C(f)
denote the Iwasawa module of elliptic units as defined in [6, IIL.1.6]. Then
C(f) C Cuo, so that char((Ex/Coo)y) divides char((£x/C(f))y). By [6, 111.2.1,
Theorem] it suffices to show that char(As ) divides char((Ex/C(f))y) for all
characters x of A = Gal(K(/k) in order to prove the equality char(As ) =
char((€x/C(f))y). Hence it is enough for us to prove

char(As ) divides char((€Eso/Coo)y) (3)

for all characters x of A.
For an abelian character x of A we write

1 —1
RN gmmw

for the idempotent of Q,[A] corresponding to x with Tr denoting the trace map
from Z,(x) to Z,.
For any Z,[A]-module M we have an epimorphism

My = M®z,(7)Zp(X) — |Alex M, m®a = |AlAgeym,

where A\, € Z,[A] is an element which maps to o under Z,[A] — Z,(x). If Z
denotes the kernel, then it is easily seen that |A|Z = 0.
Let now M = A, and x = 1. Then

Z — Ax — TraAse — 0

is exact. Since Tra A, is contained in the p-Sylow subgroup of the ideal class
group of k,, which is trivial by our assumption p { hy and [26, Th. 10.4], we
see that A, is annihilated by |A|. By the main result of [8] the Iwasawa
p-invariant of A is trivial. From this we deduce char(A ) = (1), thus
establishing (3) for the trivial character.

The rest of this section is devoted to the proof of the divisibility relation
(3) for non-trivial characters xy. We will closely follow Greither’s exposition [9].
Whenever there are only minor changes we shall be very brief, but emphasize
those arguments which differ from the cyclotomic situation.

We will need some notation from Kolyvagin’s theory. Let M be a large
power of p and define £ = L s to be the set of all primes [ of k satisfying

(4) [ splits completely in F/k,
(i) Ny o(l) = 1(mod M).

By [21, Lem. 1.1] there exists a unique extension F(I) of F' of degree M
in Fk(l). Further F(l)/F is cyclic, totally ramified at all primes above [ and
unramified at all other primes.

We write J = @,ZA for the group of fractional ideals of F' and for every
prime [ of k we let Jy = @, Z\ denote the subgroup of J generated by the prime



divisors of [. If y € F* we let (y); € Ji denote the support of the principal ideal
(y) = yOp above [. Analogously we write [y] € J/MJ and [y]; € Ji/M J;.
For [ € L we let

. (Or/10F)"
(©r/108)")

denote the Gal(F/k)-equivariant isomorphism defined by [21, Prop. 2.3]. For
every [ € L we also write ¢ for the induced map

Wi — J[/MJ[

o {y e X/ (PO iyl =0} — J/MJ,  y— ei(u),

where y = zMu, z € F*, u a unit at all places above L.

We write S = Sp s for the set of squarefree integral ideals of k£ which are
only divisible by primes [ € L. Ifa € S, a = Hf:l l;, we write F'(a) for the
compositum F(ly) - - - F(I) and F(O) = F. For every ideal g of Oy let S(g) C S
be the subset {a € S : (a,g) = 1}. We write F for the algebraic closure of F
and let U(g) denote the set of all functions

a:8(g) — F*

satisfying the properties (1a)-(1d) of [21]. Any such function will be called an
Euler system. Define Up = Up s = [[U(g). For o € Uy we write S(«) for the
domain of o, i.e. S(a) = S(g) if « € U(g).

Given any Euler system a € Up, we let k = ko @ S(a) — F*/ (FX)M be
the map defined in [21, Prop. 2.2].

Then we have:

Proposition 3.3 Let « € Up, k = Kq, 0 € S(a),a # 1, and [ a prime of k. If
a = [ we also assume that «(1) satisfies vy(a(1)) = 0(mod M) for all A | [ in
F/k. Then:

If (fa, then [k(a)]; = 0.
If (] a, then [k(a)] = wi(k(a/T)).
Proof See [21, Prop. 2.4]. Note that the additional assumption in the case

a = [ is needed in (ii), both for its statement (¢((k(1)) may not be defined in
general) and for its proof. U

We now come to the technical heart of Kolyvagin’s induction procedure, the
application of Chebotarev’s theorem.

Theorem 3.4 Let K/k be an abelian extension, G = Gal(K/k). Let M denote
a (large enough) power of p. Assume that we are given an ideal class ¢ € A(K),

a finite Z|G]-module W C K*/ (KX)M, and a G-homomorphism
v W — (Z/MZ)|G].

Let p¢ be the precise power of p which divides the conductor f of K. Then there
are infinitely many primes A of K such that



(1) [\ = p**3cin A(K).
(2) If L=k N\, then NI = 1(mod M), and [ splits completely in K.

(3) For all w € W one has [w]; = 0 in Ji/MJ; and there exists a unit u €
(Z/MZ)™ such that
pi(w) = P> FPup(w)\.

Proof We follow the strategy of Greither’s proof of [9, Th. 3.7], but have to
change some technical details. Let H denote the Hilbert p-class field of K. For
a natural number n we write u,, for the nth roots of unity in an algebraic closure
of K. We consider the following diagram of fields

K" = K (g, W/M)

K'=K(pm) H

/

K
Claim (a) [HNK': K] <p°
Proof: The situation is clarified by the following diagram

1%
K'N H/k(ﬂM)
K/ Q)

/

k

Q
We write ¢z (resp. pe,) for the Euler function in Z (resp. Oy). Obviously
p is totally ramified in k(par)/k. Hence p ramifies in K'/k of exponent at
least @z(M). On the other hand, p is ramified in K/k of exponent at most
vo, (P°). Therefore any prime divisor of p ramifies in K'/K of degree at least
wz(M)/po, (p°). Since K' N H/K is unramified and [K' : K] < @z(M), we



derive [K' N H : K| < ¢, (p°). Since p is split in k/Q we obtain ¢p, (p¢) =
(p— 1)p~! < p, so that the claim is shown.

In order to follow Greither’s core argument for the proof of Theorem 3.4 we
establish the following two claims.
Claim (b) Gal(H N K”/K) is annihilated by p?¢*1.
Claim (c) The cokernel of the canonical map from Kummer theory

Gal(K"/K'") < Hom(W, par)
is annihilated by p°*2.

We write M = p™. Since divisors of p are totally ramified in k(uar)/k of
degree wz(M) and at most ramified in K/k of degree ¢p, (p°), one has

[k(par) « K N k(par)] > pz(M) _ {Pmc, ife>1,

o, (P°) (p—1)p™t, ife=0.

Since k(upr)/k is cyclic, there exists an element j € Gal(k(upr)/K N k(par))
of exact order a = p™~¢~!. Let r € Z such that j(Cy) = ¢§;. Then r¢ =
I(mod M) and r® # 1(mod M) for all 0 < b < a. We also write j € Gal(K'/K)
for the unique extension of j to K’ with j|x = id. Let 0 € Gal(K"/K') and
a € K" such that o™ = w € W. Then there exists an integer t,, such that
o(a) = ¢lra. Since W C K*/ (KX)M, there is an extension of j to K" /K such
that j(a) = « for all o € K" such that o™ € W. Therefore, for any such a,

joi N e) = jo(a) = j(Chye) = (e a.

Hence j acts as o — o” on Gal(K"”/K'). Since Gal(K'/K) acts trivially on
Gal(K” N K'H/K') this implies that » — 1 annihilates Gal(K” N K'H/K').
On the other hand Gal(K"” N K'H/K') is an abelian group of exponent M, so
that also ged(M,r — 1) annihilates. Suppose that p? divides » — 1 with d > 1.
By induction one easily shows that o 1(mod p™). Hence a = pm ¢!
divides p™~¢, which implies d < ¢ + 1. As a consequence, p°T! annihilates
Gal(K" N K'H/K') ~ Gal(K” N H/K' N H). Together with claim (a) this
proves (b).

We now proceed to demonstrate claim (¢). Let W' C K'*/ (K’ X)M denote
the image of W under the homomorphism

KX/(KX)M_>K/></(KI><)M. (4)

Since Gal(K"/K') ~ Hom(W’, ups), it suffices to show that the kernel U of
the map in (4) is annihilated by p“*2. By Kummer theory U is isomorphic to
HY(K' /K, pag).

The extension K'/K is cyclic and a Herbrand quotient argument shows

pnr (K)

1 gt - 0K’ =N
A (KK juar) = #HO (KK o) = #3200



From [17, Lem. 7] we deduce that #p(K) divides p¢™2. Hence U is annihilated
by p°t2.

Now that claim (b) and (c) are proved, the core argument runs precisely
as in [9, pg.473/474] (using Greiter’s notation the proof has to be adapted in

the following way: p°*211) has preimage v € Gal(K"/K'); y1 = p°+2 (H;K) €
Gal(H/K); § € Gal(K"H/K) with 6|y = p*Tly1, 0|k = p*Tly)

O

Recall the notation introduced at the beginning of this section. In ad-
dition, we let A = Gal(Ky/k), G, = Gal(K,/k), G = Gal(K/k) and
I, = Gal(K,/Ky). We fix a topological generator v of I' = Gal(K/K)),
and abbreviate the p”th power of v by ~,,.

For any abelian character x of A we write A, = Z,(x)[[T]] for the usual
Iwasawa algebra. Note that A®yz [a)Zp(x) =~ Z,(x)[[T]], so that our notation is
consistent. We choose a generator hy € Ay of char ((€x/Cso)y ). By the general
theory of finitely generated A,-modules there is a quasi-isomorphism

k
7 Acex — D A/ (91)
i=1

with g; € A, and by definition, char(As ) = (g) with g := g1 -- - g&.
As in [9] we need the following lemmas providing the link to finite levels.

Lemma 3.5 Let x # 1 be an abelian character of A. Then there exist constants
ng = no(F),c; = ¢i(F),i = 1,2, a divisor b} of hy (all independent of n) and
G,-homomorphisms

Un 1€y — My = Ay /(1 —m)Ay
such that

(i) S, is relatively prime to v, — 1 for all n

(i) (Vg = PRy A © 0n(im(Cny))
where here im(C,, ,) denotes the image of C, . in &, .

Proof We mainly follow Greither’s proof of [9, Lem. 3.9].
We let - - -
Tn  Eoo /(1 — )00 — En
denote the canonical map and first prove
Claim 1: There exists an integer x (independent of n) such that

(v — 1)p"ker(m,) =0 and (y — 1)p~cok(m,) =0

This is shown as in Greither’s proof of [9, Lem. 3.9]. He uses [22, Lem. 1.2],
which is stated under the additional assumption p { |A|. As already remarked
by Greither, this hypothesis is not necessary.



Next we define Uy, := lim Uy, and proceed to prove

Claim 2 Q,®z, Uy ~ Q,®z, A = A[%}.

This can be proved similarly as [15, Th. 11.2.5]. The assumption p 1 |A| of
loc.cit. is not needed, since we invert p. Alternatively, Claim 2 follows from [6,
Prop. II1.1.3], together with Exercise (iii) of [6, ITI.1.1].

It follows that Q,®z,Us,y is free cyclic over Q,®z, A, = AX[%}. Since Ax[%]
is a principal ideal domain, the submodule Qp®ngoo,x is also free cyclic over
Ax[%]- It follows that there exists a pseudo-isomorphism

fiéox — C=EPA/P A @A,

If we apply the snake lemma to the diagram

0 Eoo,x ——Eoo x 0
! prof=ia
0 ——®A /P Ay C e Ay 0

we see that ker(«) is annihilated by some power of p and cok(«) is finite.
We note that for any G-module X one has

(X/(1 = 7m) X)), = Xy /(1 =) Xy

Let W, denote the image of 7, and set T := Torg, a}(cok(my), Zy(x)). Then
we have a commutative diagram (with exact lines)

T bl Wi x Enx cok(m,)y—— 0

Eoo,x n
ker(ﬂ-n)xL (17,yn)’g Lk Wn’X 0

00, X

We write 7, , for the composite map and obtain the exact sequence
Eoo.x
(1= 7)€ x

We claim that ker(m, ) is annihilated by (v — 1)?p?*: Let e € ker(m, ).
Then

0 — ker(my, ) — X &,y — cok(my)y — 0

mn(e) = p(t) for some ¢ € Torg, (a)(cok(mn), Zy(x))

(
(v = Dp"e) = (v = Dp"t) =0
(¢) = (v — 1)p~e for some c € ker(m,),

0="7((y—1)p’c) = (v — 1)*p*"e

Ll

10



So both ker(m,, ,) and cok(m,, ) are annihilated by (y — 1)2p?*.
Consider now the following commutative diagram
44K

goo’x (v = Dp*a

T, x

&

U
nx Ay = A/ (1 —n)Ay
where we define ¥,, in the following manner: for e € &, , there exists z € £
such that m, ,(2) = (v — 1)?p**e. We then set

Ba(e) = (v — 1)*p*a(z)(mod (1 - 7,)A,).

On the other hand, we have the exact sequence

Cooy — Ecoxy — (goo/éoo)x —0

so that - - o
Eoo /M (Coo ) — (5OO/COO)X.

The structure theorem of A,-torsion modules implies that h, (c‘:'oo /é“)x is fi-

nite. Since @(Ex,y)/a(imCo,y) is a quotient of sy /im(Cos,y), the module
hy ((Eso,x)/a(imCss ) is also finite. Since cok(a) is finite, there exists a

power p® such that p* € a(€c,y) and p*hya(Esoy) € a(im(Coo,y))). Therefore
p**hy € a(im(Cx,y)) and we conclude further:

p* 4 (y = 1)*hy = p*" (v — 1)*a(z) for some z € im(Coo )
= Un(2n) = p* T (v — 1)*hy with 2, = 7, (2) € im(Cpy)
= P = DAy C On(im(Cay)) ()

Since 7y, — 1 divides 7,41 — 1 for all n there exists a positive integer ng and a
divisor k) of h, such that h, divides (v, — 1)h and such that h} is relatively
prime with 7, — 1 for all n. The assertions of the lemma are now immediate
from (5).

0

Lemma 3.6 Let x # 1 be a character of A. Then there exists a constant
cs = c3(F') (independent of n) and G,-homomorphisms

k
Tn i Anyx — @Amx/(gi)
i=1

such that p®cokr, = 0 for all n > 0. Here g; denotes the image of g; € A, in
A

n,x -

11



Proof The proof is identical to Greither’s proof of [9, Lem. 3.10]. It is based
on the following sublemma which will be used again at the end of the section.

O

Lemma 3.7 For n > 0 the kernel and cokernel of multiplication with v, — 1
on A, are finite.

Proof See [22, pg. 705]. It is remarkable that one uses the known validity of
Leopoldt’s conjecture in this proof.

The following technical lemma is the analogue of [9, Lem. 3.12].

Lemma 3.8 Let K/k be an abelian extension, G = Gal(K/k) and A a sub-
group of G. Let x denote a character of A, M a power of p,a=1;---[; € Sy k.
Let I = 1; and let A be a fixed prime divisor of [ in K. We write ¢ for the class
of \ and assume that ¢ € A = A(K), where as usual A(K) denotes the p-Sylow
subgroup of the ideal class group of K.

Let B C A denote the subgroup generated by classes of prime divisors of
l,...,li—1. Letx € K*/ (K>)™ such that [x]q = O for all primes q not dividing
a, and let W C K*/ (KX)M denote the Z,|G]-span of x. Assume that there

exist elements
E,g,n€Z,]G]

satisfying

(i) E-anneg,(q), () € g (Zp|G]),, where ¢y is the image of ¢ under A —
A/B — (A/B),.

(ii) # ((Z,]G]), /9 (Z,[G)),) < o0

Jo/MJ
77( [[W][ [)X

generated by elements [w];,w € W.

(iii) M > |Ay] , where [W]; denotes the subgroup of Jy/M.J

Then there exists a G-homomorphism

¥ Wy — (2/MZ)[G])

X
such that
g@)Ay = (E - nlz]o),
in (J[/MJ[)X
Proof Completely analoguous to the proof of [9, Lem. 3.12]. U

We will now sketch the main argument of the proof of Theorem 3.1. We fix
a natural number n > 1 and let K = K,, = F'k,,. We view A as a subgroup of
G = Gal(K/k).
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We let M denote a large power of p which we will specify in course of the
proof.
By Lemma 3.6 there exists for each ¢ = 1,...,k an ideal class ¢; € A, such
that
Tn(c;) = (0,...,0,p%,0,...,0)

in @le Ay /(G;) with p at the ith position. Choose c¢y1 arbitrary. By

Lemma 3.5 there exists an element & € im(C, ) such that 9,,(¢") = (vn, —
Dp®h) in A, . It is now easy to show that there exists an actual elliptic
unit £ € C,, such that

In(§) = (Yn, — D' hi (mod MAy ). (6)

By [21, Prop. 1.2] there exists an Euler system « € Uy p such that a(1) = &.

Set d := 3¢+ 3, where ¢ was defined in Theorem 3.4. Following Greither we
will use Theorem 3.4 to construct inductively prime ideals A\; of K, 1 <17 < k+1,
such that

(@) [Aiy =pe
(b) L=XiNk CSnx
(c) one has the equalities
(ox, ((1))), = w|Al(yn, — 1 pTeRl,
(9o (R 0))y = wl Ay =15 pH (or, ({0 6im)))
for 2 < i < k+ 1. These are equalities in A, ,/MA, . The elements

u; are units in Z/MZ and vy (z) € (Z/MZ) [G] =~ A,/MA,, is defined by
un(@)A = [z]yin J/MJ, if =X Nk € Ly k.

X

We briefly descibe this induction process. For i = 1 we let ¢ € A be a preimage
of ¢; under the canonical epimorphism A — A,. We apply Theorem 3.4 with
the data ¢, W = £/EM (with € := O}) and

bW s & JEM T A, M A, 25 (Z/MT)[G)

where v € (Z/MZ)™ is such that each unit z € K®k, satisfies ¥ = 1 modulo
all primes above p. The map ¢, is defined in [9, Lemma 3.13]. Theorem 3.4
provides a prime ideal A = A; which obviously satisfies (a) and (b) and, in
addition,

oi(w) = pluh(w)\ for all w € £/EM.

From this equality we conclude further

oA = k(D] = pi(r(1) = ¢i(§)
= plup(§A = (pTuv(ey 0 0n)(€)) A

13



in Ji/MJ; = (Z/MZ) [G]\. Projecting the equality vy (k(1)) = pluv(e, 0 ¥,,)(€)
to (Z/MZ)[G])yx = Apx/MA, and using [9, Lemma 3.13] together with (6)
we obtain equality (c) for i = 1.

For the induction step i — 1 — ¢ we set a;_1 :=[;---[;_1. Using (¢) induc-
tively we obtain

. . i—2
(07,0 (hlai1)))  divides | [ 1p0 e tten o gDl ey

=:D;

X

Without loss of generality we may assume that ¢; > 2. Then one has ¢; +
ST2es < 7Y so that (v,\t_l(n(ai_l)))x also divides D;(vn, — 1)% Al with

t; := ¢i™'. The module

N = (Pyno - 1)ti (J[ifl/ (M7 [K(aifl)][ifl))x

is a cyclic as a A, y,-module and annihilated by Dih;. Consequently
[N < [Anx /(D) - [Ap e/ (R )]-

Note that by the definition of A} the quotient A, ,/(h}) is finite. If we
choose M such that

M > max (|AX‘ : |An,x/(Dk+1)‘ : |An7x/(h;<)|,p”)

then one has [N| < M|A, |~

We now apply Lemma 3.8 with a = a,_1,9 = ¢i—1,¢ = k(a;—1), E = p
and = (yn, — 1)¥. Following Greither it is straight forward to check the
hypothesis (a), (b) and (c) of Lemma 3.8. Note that for (b) one has to use
the fact that char(A. ) is relatively prime to 7, — 1 for all n, which is an
immediate consequence of Lemma 3.5. We let W denote the Z,[G]-span of

k(a;—1) in K~/ (KX)M and obtain a homomorphism
Vi Wy — (Z/MZ)[G]),,

such that g;—19;(k(a;—1)) = (p° (Yny — l)tiv)\i_l(n(ai_l)))x. We let ¢ denote a
preimage of ¢; and consider the homomorphism

G W — Wy 25 Ay /M A, =5 (Z/MZ) (G
We again apply Theorem 3.4 and obtain A; satifying (a), (b) and also
e ((aim1) = plugp(r(ai—1))As.

As in the case ¢ = 1 one now establishes equality (c). This concludes the
inductive construction of Ay,..., Agy1.

14



Using (c) successively we obtain (suppressing units in Z/MZ)

(91 groaes, (R -+ eg1))) = nhl

(as an equality in A, . /MA,, ) with
n= <|A|k+lpk(d+03)+d+02 (7710 o 1)61+Zf:1 cf) )
X

Therefore g = g1 - - - gi. divides nh) in A,, \ /MA,, 5, and since p" | M we also see
that g divides nh} in Ap \/p™"An . Asin [26, page 371, last but one paragraph]
we deduce that g divides nh) in A,.

By [6, I11.2.1, Theorem] (together with [6, II.1.7, (13)]) we know that the
p-invariant of A, , is trivial. Hence g = char(As ) is coprime with p. By
Lemma 3.5 it is also coprime with 7, — 1, and consequently |A, /(g,7)| < oo.
Therefore there exist o, 5 € A, and N € N such that pV = ag + n and we see
that ¢ divides pNh;(. Since g is prime to p we obtain g | A .

Remark 3.9 There are several steps in the proof where we use the assumption
that p splits in k£/Q. Among these the vanishing of y(As ) is most important.
The proof of this uses an important result of Gillard [8]. If p is not split in k/Q
our knowledge about p(As, ) seems to be quite poor.

4 The conjecture
In this section we fix an integral O-ideal f such that w(f) = 1 and write
M = h°(Spec(k(f)), A=QlGy], A=Z[Gy],

where for any Oy-ideal m we let Gy, denote the Galois group Gal(k(m)/k).

For any commutative ring R we write D(R) for the derived category of
the homotopy category of bounded complexes of R-modules and DP(R) for the
full triangulated subcategory of perfect complexes of R-modules. We write
DPis(R) for the subcategory of DP(R) in which the objects are the same, but
the morphisms are restricted to quasi-isomorphisms.

We let P(R) denote the category of graded invertible R-modules. If R is
reduced, we write Dety for the functor from DP¥*(R) to P(R) introduced by
Knudsen and Mumford [12]. To be more precise, we define

rkr(P)
Detp(P):= | [\ Prkg(P) € Ob(P(R))
R

for any finitely generated projective R-module P and for a bounded complex
P* of such modules we set

Detr(P*) := Q) Detly ' (P).
1E€EZ
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If R is reduced, then this functor extends to a functor from DP¥*(R) to P(R).
For more information and relevant properties the reader is refered to [5, §2], or
the original papers [12] and [13].

For any finite set S of places of k we define Y5 = Ys(k(f)) = ©uwes(s)Zw-
Here S(k(f)) denotes the set of places of k(f) lying above places in S. We let
Xs = Xs(k(f)) denote the kernel of the augmentation map Ys — Z,w +— 1.

The fundamental line =(4 M) is given by

E(AM)# = Det;l (O:(f)@)z@) ®4Det 4 (X{v‘oo}®z@) ,
where the superscript # means twisting the action of G by g — g~ We let

R = Rk(f) : O]:(f)®ZR — X{U|oo}®ZRa
U —Zlog|u|v ‘v

v|oco
denote the Dirichlet regulator map. Let
Voo : R[Gf] — E(aM)# @R
be the inverse of the canonical isomorphism

—1
Detyg,) (Olj(f)@)ZR) Br(cy Detr(g] (X (v]o} DzR)

det(R)®1 _
" Detge | (X{v]oc} ®2zR) @r[a; Detr(g,) (X(vloo) ©2R)

w2 (R[GY],0).

Following [16] we define for integral Og-ideals g,g; with g | g1 and each
abelian character n of G4 ~ cl(g) (cl(g) denoting the ray class group modulo g)

Sa(m.g1) = Y nlc")logleg(c),

cecl(gr)

where 7 is regarded as a character of cl(g;) via inflation. For the definition of
the ray class invariants ¢g4(c) we choose an integral ideal ¢ in the class ¢ and set

(plQN(E)(l;gc_l)’ lflg?é 1,
pg(c) = @q4(c) = ‘w ifg=1,

(271.)12 I

where ¢ was defined in (1). Note that this definition does not depend on the
choice of the ideal ¢ (see [17, pp. 15/16]).

For an abelian character 7 of cl(g) we write f, for its conductor. We write
L*(n) for the leading term of the Taylor expansion of the Dirichlet L-function
L(s,n) at s = 0.

16



From [17, Th. 3] and the functional equation satisfied by Dirichlet L-
functions we deduce
an (van)

GN(fn)w(fn).

We denote by G’? the set of Q-rational characters associated with the Q-

irreducible representations of Gj. For x € G‘? we set e, = Znex e, € A,
where we view x as an Gal(Q¢/Q)-orbit of absolutely irreducible characters of
Gs. Then the Wedderburn decompostion of A is given by

A~ ] Q)

xEG?

L) = - (7)

Here, by a slight abuse of notation, Q(x) denotes the extension generated by
the values of n for any n € x. For any character xy € G’? the conductor f,,
defined by f, := f, for any 7 € x, is well defined.

We put L*(x) := >, c, L*(n)e;, and note that L*(x)* = D nex L*(n™Ye,.
The statement L*(x)# € Ae, (compare to [7, page 8]) is not obvious, but needs
to be proved. This is essentially Stark’s conjecture.

We fix a prime ideal p of Oy and also choose an auxiliary ideal a of Oy such
that (a,6fp) = 1. For each n # 1 we define elements

{wrm,» if f,, # 1,
& =

9 ! .
Somed iff, =1 #1,

(8)

where § denotes the function of lattices defined in [18, Th. 1]. We set &, =&,
for any n € x.

We fix an embedding ¢ : Q¢ — C and write we, = 0|ks). A standard
computation leads to

R(engn)

_ {(Na n(@))w(fy)[E(F) : k(fy)] L (7 eqwoo, fn # 1, (9)
(1 =n(p)" ") (Na—n(@)wD)[k(F) : kOIL* (17 eqwee, fy =1m# 1L

For the reader’s convenience we briefly sketch the computation for characters
n # 1 with f, = 1. By definition of the Dirichlet regulator map and [18, Cor. 2]
we obtain

Rleqty) = —gb(f) - k()] 3 log

cecl(1)

‘A(c)N“A(alcp)

A(Q_IC)A(Cp)Na n(c)enwoo- (10)
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Since 3 cq(1) On(c) = 0 for any constant C' we compute further

A(c)N*A(a"tep)
CECZl(l)lOg‘Am—lc)A(cp)Nﬂ "o
A Na GA
- 3 | (BER) o 3 e[ q;;)l; ot -
cecl(1) cl(1)
Nep)®A(ep) Ne “)%A(alo)
S ‘ WA ™ ) - 3 1og| DA,
cecl(1) ( (2m)2 > cecl(1) ( )"
= Na Z log |1 (™) n(c) + Z log |1 (ac™'p™ )| n(c) —
cecl(l) cecl(1)
Na Y loglerto e 0 - Y toglpa(ac ) n(o)
cecl(1) cecl(1)

Recalling that ¢g4(c) is a class invariant we obtain

A(c)NeA(a"tep)
2 log‘Aw—lc)A(cp)M

n(e) = (Na —n(@)(1 = n(p)~")S1(n, 1)eqwe,

cecl(1)

so that (9) is an immediate consequence of (7) and (10).
As in the cyclotomic case we have a canonical isomorphism

E(uaM)* — (H (Det&x)(O,j(f)®AQ(X))®<@<X)Det@(X>(Xvoo®A@(x)))> xQ
x#1

= (H ((O;:(f)(@AQ(X))(_l)@Q(X)(Xvoo®AQ(X))>) xQ

x#1

From (9) we deduce

(40se(L* (4 M,0) )
w(f)[k(F) : k(F)(Na — o(a))eyéy t Owe, fx # 1L,
= Qw@)k(F) : kD)1 = o(p) ) (Na—o(a))exéy ' @wos, fy =1,x# 1
(X,O) ! x =1

In particular, this proves the equivariant version of 7, Conjecture 2].

We fix a prime p and put A, := A®qQ, = Q,[Gy], Ap := ARzZ, = Z,|Gy].
Let S = Siam U Ss be the union of the set of ramified places and the set of
archimedian places of k. Let S, =S U {p | p} and put

A(k(f)) := RHomg, (RTc(Ok(y),s, Zp), Zp)[=3]

18



Then A(k(f)) can be represented by a perfect complex of A,-modules whose
cohomology groups H(A(k(f)) are trivial for i # 1,2. For i = 1 one finds

HY(AK() = 07y, 5, 2Ly,
and H? fits into an short exact sequence
0 — Pic(Op(y),s,)®2Zp — H*(AK(F))) — X{w|fpoo} ®2Zp — 0
We have an isomorphism
a0y E(aM)*®qQ, — Deta, (Ak(f))®z,Qp)
given by the composite
Detz:}(OZ(ﬂ@ZQ}J)@ApDetAP(X{v\oo}®ZQp)
-5 Dety) (OF g 5, ©2Qp)®a,Deta, (X (vlpoo) ©2Qp)
- Det;i (O,Ij(f),sp ®2Qp)®a,Det, (X{u|fpoc} @2Qp)
+% Deta, (Ak(F)®z,Qy) -
Here ¢, is induced by the split short exact sequences

0 — Opy®2Qp — Ofy) 5,92Qp — Yiw)ip}®2Qp — 0 (11)
0 — X{uw|oo}®2Qp — X{w|fpoc}®zQp — Y{w|ip}®2zQp — 0 (12)

The isomorphism ¢, is multiplication with the Euler factor J],. s, EF € AX
where &, is defined by
&= 3 IDu/Lley+ 3 (—n(f) e, (13)

nlp,=1 nlp, #1

where f, € D, denotes a lift of the Frobenius element in D, /I, and I, C
D, C Gj are the inertia and decomposition subgroups for a place w | v in
k(f)/k. Finally o3 arises from the explicit description of the cohomology groups
H(A(K(f))), i = 1,2, and the canonical isomorphism

Det, (Ak(§)®4,Qp) ~ () Det'y VY (H (AR()@.4,Qp)) (14)

iE€EZ

([12, Rem. b) following Th. 2]).
We are now in position to give a very explicit description of the equivariant
version of [7, Conjecture 3].

Conjecture 4.1 40, (a¥o0(L*(4M,0)71)) A, = Deta, (A(K(F))).

The main result of this article reads:
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Theorem 4.2 Let k denote a quadratic imaginary field and let p be an odd
prime which splits in k/Q and which does not divide the class number hy, of k.
Then Conjecture 4.1 holds.

Corollary 4.3 Let k denote a quadratic imaginary field and let p be an odd
prime which splits in k/Q and which does not divide the class number hy, of k.
Let L be a finite abelian extension of k and k C K C L. Then the p-part of the
ETNC holds for the pair (h°(Spec(L), Z[Gal(L/K)])).

Proof This is implied by well known functorial properties of the ETNC. U

5 The limit theorem

Following [7] or [5] we will deduce Theorem 4.2 from an Iwasawa theoretic
result which we will describe next. Let now p = pp denote a split rational
prime and f an integral Og-ideal such that w(f) = 1. In addition, we assume
that p divides §f whenever p divides f. We write f = fop¥,p 1 fo. We put
A = Gal(k(fop)/k) = Gjs,p and let

A = Tim Zp[Grpn] = Z,) [A[[T]]
denote the completed group ring. The element T' = v — 1 depends on the choice

of a topological generator v of I' := Gal(k(fop>)/k(fop)) =~ Z,.
We will work in the derived category DP(A) and define

A% = Tim A(k(op™)).

Then A, can be represented by a perfect complex of A-modules. For its coho-
mology groups one obtains H{(A>) =0 for i # 1,2,

H'(A®) ~Ug = lim (o,j(fopn)ﬁsp@gzzp)
and H?(A) fits into the short exact sequence
0 PE e H(A%) — X[y — 0.
where
Pg; i=1im (Pic(Ox(jopn),s,)@2Zp) ;
n

Xf{)g)\fopoo} = lim (X{wlfopoo}(k(fopn»@ZZp) .

The limits over the unit and Picard groups are taken with respect to the
norm maps; the transition maps for the definition of Xf;‘ fopoc) AT€ defined by
sending each place to its restriction.
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For g | fo we put

g {vLap" ™ )}, o, € U,
Oco = {Ulk(fop"“)}nzo € Y{Omiﬁpoo}v

where o is our fixed embedding Q¢ — C.
For any commutative ring R we write Q(R) for its total ring of fractions.
Then Q(A) is a finite product of fields,

QM ~ [ Qw), (15)

YeAw

where A% denotes the set of Q,-rational characters of A which are associated
with the set of Qp-irreducible representations of A. For each ¢ € A% one has

W) = Q (zlmem;]) |

As in [7] one shows that for each ¢ € A% one has
dimQ(w) (U§E®AQ(¢)) = dimQ(w) (Y{ﬁ‘fpoo}(@AQ(w)) =1
It follows that the element ew(n;ol@(roo) is a Q(¢)-basis of
Det ) (AX@rQ (1)) = Dety( (UF©AQ (1)) @Det g (X oo} @A Q())-
Theorem 5.1 A - L = Dety(A®) with L = (Na — o(a)) (17;01@)000).
Proof By [7, Lem. 5.3] it suffices to show that the equality
Ag- L= DetAq (AOO®AAq) (16)
holds for all height 1 prime ideals of A. Such a height 1 prime is called regular
(resp. singular) if p € q (resp. p € q).
We first assume that g is a regular prime. Then A, is a discrete valuation
ring, in particular, a regular ring. Hence we can work with the cohomology

groups of A, and in this way, the equality Aq - £ = Detp, (A®®aA ) is
equivalent to

(Na— (@) Fitta, (Zp.q) Fitta, (U q/m5014 )
= Fitty, (ng)q) Fitt (Y{ij‘fopoo}’q/Aqaoo). (17)

Attached to each regular prime g there is a unique character ¢ = 1, € A% To
understand this notion we recall that

heAl
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If p € q, then Aq is just a further localisation of A[%], so that exactly one of the
above components survives the localization process.

We set
U= = lim (Off(fom@ﬂp) )
P = hln (PiC(Ok(fopn))(@Zzp) .

Remark 5.2 Note that, using the notation of Section 3, one has P> = A.
We put K,, := k(fop™™!). Mimicking the proof of Leopoldt’s conjecture, one can
show that for each n > 0 the natural map O ®zZ, — U, (semi-local units
in K,®gk, which are congruent to 1 mod p) is an injection. It follows that
U>® = &, where £ is, as in Section 3, the projective limit over the closures
of the global units.

There is an exact sequence of A-modules
0—U* —Us — Yijjprs — P — Ps — 0, (18)
where

Yirops = W (Yewlsopy (K(fop™))©7Zy)

with respect to the transition maps

n Bnti/n n
Yiwliory R(Fop™ ) "4 Yiipopy (K(fob™))

induced by w — f,,v, if v denotes the restriction of w and f,, the residue
degree.

If now b is a prime divisor of fy and ng € N such that there is no further split-
ting of primes above b in k(fop)/k(fop™°), then By, (w) = p™ " w|i(5,pn+1) for
all m > n > ng. Letting m tend to infinity this shows that Y{ﬁb},ﬁ = 0. Hence
we have an exact sequence of A-modules

0—U* —Us —Yums — P~ — FPs —0. (19)
In addition, one has the exact sequence
0 — XTuisoy = X{wlfopoe) — Yiulpy @ Y{wjooy — 0. (20)

oo}

Remark 5.3 Note that the transition maps in the first two limits are induced
by restriction, which coincides with 3,1 1},, for the places above p and co. Hence

Yiwoot = Y{w|oo},s a0d Yiwjp} = Y{wp},s-

We observe that Y0 ) . = Aq - 0sc. Putting together (19) and (20) we
therefore deduce that (17) is equivalent to

(Na—o(a))Fitta, (U /n5,Aq) = Fitta, (P°) Fitta, (X{wijo}.q) - (21)
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Let 9 be a divisor of fo such that 14 has conductor 0 or 0p. For any prime divisor
[ fo we write Iy C Dy C Gjyp for the inertia and decomposition subgroups
at [. Let Fr( denote a lift of the Frobenius element in D(/I;. We view ¢ as a
character of G,y via inflation and note that if [{d (i.e. ¥|;, = 1), then Fr( is
a well defined element in A,.

Lemma 5.4 Let
__fo v
1, w=1.

Then:

Fitta, (AqTn0/Aqny,) = T7° H (1= Fri")Aq = Fitta, (X{oi01.0)-
[|fo,lt0

Lemma 5.5
Fitta, (Ug°/AqT m0) = (Na — o(a))Fitta, (Py°)

Proof of Lemma 5.5: Let ¢y = ;. By the Iwasawa main conjecture (Theorem
3.1) and Remark 5.2 we have

char(Py°) = char (U™ /Ceo)y) »

where (again by a slight abuse of notation) for a A-module M we set My, := M,
for any n € 1.
The corollary to [14, App. Prop. 2] implies that

Fitty, (Ps°) = Fitta, (U*/Coo)q) -
Hence it suffices to show that

Cola)g = Aq-Tcnp, (22)
Fitta, (Coo,q/Coc(a)q) = (Na—o(a))Aq. (23)

Here Cy (a) is the projective limit over

Cn(a) = closure of (¢(1;gp" ", a): g | fodziGal(k(rop=+1)/4) N En-

(Note that Agmy is for ¢ # 1 a group of units. This is true even for d = 1,
because Aqm = Aqeym and ey has augmentation 0.)
In order to prove (22) we set

Vo = P(Lop" T a), Gy oi= Gal(k(fop™ ) /k), A = Z,[Gh).

If b, denotes the annihilator of v, in A,, then we have the following exact
sequence of inverse systems of finitely generated Z,-modules

0 — (An/bn), — (Cula)), — (Cula)/Anthn), — 0.
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The topology of Z,, induces on each of these modules the structure of a compact
topological group, so that [23, Prop. B.1.1] implies that lim is exact. Hence we

n
obtain the short exact sequence of A-modules

0 — lim (A, /by) — Cool(a) — lim (Cn(a)/Aptrn) — 0.

n

Again by [23, Prop. B.1.1] we obtain

so that - -
Ceol®)/ Ay = Tim(C(a)/ A, (24

n

For ? | fo we identify Gal(k(fop™*t)/k(dp™*1)) and Gal(k(fop)/k(dp)). Then
one has (in additive notation) for any g with 9 | g | fo the distribution relation

Ni(rop)/kcop) (¥ (180", 0))

= [k(fop) : k(gp)] | [T @ =Fr7") | w1509, ). (25)

llg,lo

In addition, one obviously has

[k(Fop) : k(gp)](L; g™, @) = Ni(rop)/nar) (V(1;ap™ ", a)) . (26)

Note that for ¢» # 1 and ? { g one has ¥(Ny(sop)/k(ap)) = 0. Hence, if o # 1,
then (25), (26) and (24) show that

A= T [EGop) : K@0)] | - Nucop)/nop)
glfo,01g

annihilates Coo (@) /Anp. Since ¢(A) € Z, is non-trivial and p is invertible in A,
the element A is a actually a unit in A4, which implies Coo(a)q = Aq7o-

If v+ = 1 we proceed in almost the same way, but now set v, :=
¥(1;p™ 1 a)7~L In this case we have 0 = 1.

Sublemma: Let {C,, fn,}n>0 be a projective system of finitely generated
Zp|Gypl-modules and set Coo = lim C,,. Let q denote a regular prime and let

Y = 1pq. Then:
Coo,q >~ (li£11G,L,¢)q.

n
Proof of Sublemma: The natural map C,, — D, caer On,x has kernel and
cokernel annihilated by |A|. Passing to the limit we obtain (again by [23, B.1.1])

an exact sequence of A-modules

00— Wy — Csp — @ lilnCnVX—>Xoo—>O,

xe€AZ ™
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where W, and X, are annihilated by |A[. Since |A| € A we obtain

Cooq > | P lImCp, | = (1@07“/,) :
" q

AQ, N
xE€A™P q

Arguing as in the case 1 # 1 and applying the Sublemma we obtain

n

3

((foo(a)/ATna)q o~ <1i£n(Cn(a)/Anwn)> o~ <li£n(Cn(a)/Anwn)¢> .
q q

Hence it suffices to show that each of the modules (Cy,(a)/A,4y, )y is annihilated
by the unit Nk(fop)/k(p)- If

[T osapmt " a)e - gp(15p™F @)™ with as, aq € Z,[Gy]
971

is a unit in K,, = k(fop™*!), then the prime ideal factorization of the singular
values 1(1;gp"*1,a) (see [1, Th. 2.4]) implies that «; has augmentation 0. It
follows that ¢ (aq) € Z,[Gal(K,,/Ky)] is divisible by v — 1. For any element o €
G, we write 0 = vy(0)d(0) according to the decomposition G,, = Gal(K,,/Kj) x
A. If g # 1 each of the factors ¢)(1 — Fr; ') = 1 — y(Fr)~! in (25) is divisible
by v — 1.
) Altogether this implies that Nj(s,p)/k(p) annihilates (éoo(a)/ATna)q, hence
Cool(t)qg = AgTs.

It finally remains to prove (23). For any integral ideal m and any two integral
ideals a and b such that (ab,6m) =1 one has the relation

P(Lm, @)V = (1;m, ) Voo, (27)

This is a straightforward consequence of [1, Prop. 2.2] and the definition of v,
see in particular [17, Théoréme principal (b) and Remarque 1 (g)]. Equality
(27) shows that Na—o(a) annihilates Coo q/Coo(@)q. Using the same arguments
as in the proof of Lemma 3.5 (see that paragraph following Claim 2), one shows
that this module is generated by one element. By [14, App. 3 and 8 ] it therefore
suffices to show that (Na — o(a))A4 is the exact annihilator. From Lemma 5.6
below we obtain finitely many ideals a1,...,a, and nq,...,n, € Aq such that

1= ni(Na; — o(ay)).
i=1

Consider the element 7 = T°[[]_;no(a;)™, where mnp(a;) =
{(1;0p" 1 a;)}22 . One has

nNafcr(a) — Ts,rla )
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As a consequence of Lemma 3.5, Claim 2, the module (foo(a)q = AT%n0
is Ag-free. It follows that no divisor of Na — o(a) annihilates the quotient
Coo,q/Coc(at)q-

To complete the proof for the localization at regular primes q we add the
following

Lemma 5.6 Let 1) € A%, 5 € ¢ and write R = Z;(¢)) = Zi(n). Let I denote
the ideal of Ay = R[[I']] generated by the elements Na—o(a) = Na—n(a)y(a),
where a runs through the integral ideals of Oy such that (a,6fp) = 1. Then
IAy[3] = Ay[3]-

Proof As usual we identify R[[I']] with R[[T]] by identifying v with 1+ 7. We
note that Aw[%} is a principal ideal domain whose irreducible elements are given
by the irreducible distinguished polynomials f € R[T]. We fix such f and write

f(T) :,ys+a571,ys—l+‘..+al,y+a0’ a; € R.

For any n there exist ideals ay, ..., as (depending on n) such that (a;,6fp) =1
and o(a;) . In particular, this implies n(a;) = +* and

Z (Na; —o(a;)) ZalNal T)(mod (77" — 1)Ay).
=0

Inverting p we derive

S

S dl(Na — o(as) = 1 — ef(T)(mod (7" - 1)%%})

=0

with af,...,al,c € Qy(¢p) = Qu(n). Therefore

le IAw[ + wa ﬂ p]

Since (y7" —1)Ay [%] is a strictly decreasing sequence of ideals in a principal ideal
domain we obtain (1, (7*" — 1)A¢,[1] = (0). Consequently, IAw[l] wa[l] =
Aw[ ] for every irreducible distinguished polynomial f and the lemma is proved.

O

We now assume that g is a singular prime. We write A = A’ x P with
p 1 |A’| and note that the singular primes g are in one-to-one correspondence
with the Q,-rational irreducible characters of A’ ([5, Lem. 6.2(i)]). Assume that
in this way q is associated with @ € A'@ and set y = ¢ x 1, where n € Pis
arbitrarily chosen. From [6, II1,2.1 Theorem]| and [6, III,1.7 (13)] we know that
the p-invariant of P := P>®yz [A]Z (x) vanishes. By [7, Lem. 5.6] it follows
that P;° = 0. The module X{w|f py 18 Zp|[T]]-torsion and free over Z,, hence
has vanlshlng p-invariant (as Z,[[T]]-module). Again by [7, Lem. 5.6] we derive
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X?’ZHOP} g =0 Since Pg: is an epimorphic image of P> and because of the
exactness of

0 — Xluirory = X{wlfopoo} ™ Y{wloo} — 0

we derive

We now compute H!(A>),. Consider the filtration
A -1, € Coola) € Coo CUX C UG = H'(A™).

By (19) the quotient Ug® /U injects into Y7, . This module is a finite free

Z,-module and hence has vanishing p-invariant. The module U> /Co, (or rather
any of its y-components) also has vanishing p-invariant by [6, ITI, 2.1 Theorem
and 1.7 (13)]. As shown above, the graded piece Co./Coo(a) is annihilated by
Na — o(a). We claim that Na — o(a) € Af. In order to prove the claim we
note that Na — o(a) = Na — d6(a)(1 +T)* with w € Z, and w # 0 (since o(a)
has infinite order in Gj,p~). Let ™ denote a prime element in Z,(¢). Then the
explicit description of q given in [5, Lem. 6.2] easily implies q = (7, AP)[[T]],
where AP is the kernel of the augmentation map Z,(¢)[P] — Z,(¢). Therefore
A/q ~ (Z,(¢)/m))[[T]]. Hence it suffices to show that the image of Na — o(a)
under

A — Zp(D)[TN] — (Zp(v)/m) [[T]] = A/q

given by Na — ¢(a)(1 + T)* is non-trivial. This, in turn, is an easy exercise.
Finally we will use the distribution relation

Ni(jopn+1)/k(frapn+ny ¥ (1 fop" T, a) = H (1—=FrY) | (L frgp™', a)
(Ifo.tfrg

(28)

to show that Coo(a)q/Aqnj, is trivial. Indeed, a statement similar to (24) shows

that this quotient is annihilated by [];; (1— Fr; '), which is a unit in A, (same
argument as with Na — o(a) as above).

In conclusion, we have now shown that AZ® has perfect cohomology, so that

again (16) is equivalent to (17), which is trivially valid because all modules

involved have trivial p-invariants. U

In the following we want to deduce Conjecture 4.1 from Theorem 5.1. Again
we can almost word by word rely on Flach’s exposition [7].
We have a ring homomorphism

A — Zp[Gf] == Ap g Ap = H QP(X)7

xe@?p
a canonical isomorphism of complexes

AX@KA, =~ A(k(f)), (29)
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and a canonical isomorphism of determinants
(DetpaA™) ®@pAp >~ Det g, (A(K(F)))
It remains to verify that the image of the element £L&1 in Det 4, (A(k(f))) €

Deta, (A(k(f))®z,Qp) agrees with 40, (4¥oe(L*(4M,0)71)). Let § denote the
morphism such that the following diagram commutes

Detg(a) (A®®AQ(A))@q(a)Ap — Detga) (H* (A®@4Q(A)))®0(a)Ap

Nl la

Det o, (A(k(f))@z,Qp) ———— Deta, (H*(A(k(f))2z,Qp))

We let

¢+ Detg, ) (AK(F)2.4,Qp(X))

~ {Deth(X) (O,Ij(f)®APQP(X))®QP(X)DetQp(X) (X{v|oo}®Apr(X))7 X # 1,
Q x=1

denote the isomorphism induced by ¢ ' and 3! (see (11), (12) and (14)). Note
that ¢ is defined in terms of cohomology. Then we have to show that

( 11 (6#)1) $(5(L21)) (30)

vES)y
w(f)[E() : k() (Na — x(a))exsy  @weo, fx # 1,
= Q) DI —xp) ) (Na—x(a)exéy ' @wos, fr =1, x #1
L(X7 ) 1 X:1.

By abuse of notation we also write x for the composite ring homomorphism
A — Q,(x) and denote its kernel by g,. Then q, is a regular prime of A and
A4, is a discrete valuation ring with residue field Q,(x). We consider x as a

character of Gal(k(fop™)/k). If x = ¢ x n with ) € A and 7 a character of
Gal(k(fop)/k(fop)), then the quotient field of Aq is given by Q(+) (notation

as in (15)). We set
b el
fp, i p .

Let p™ be the degree of k(f1)/k(fop).

Lemma 5.7 The element @ := 1 —~P" is a uniformizing element for Aq,
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Proof We have to show that after localisation at g, the kernel of  is generated
by @. Since the idempotents ey, and e, associated with ¢ and 7, respectively,

are units in A, , one has (A[%])q = ((zp(w)[m][%])q and (Q,())[T4)), =
Qp(x). This immediately implies the result. U
We apply [7, Lem. 5.7] to

R=A,, A=AF, w=1-9",

x>

For a R-module M we put Mg := {m € M | wm = 0} and M/w := M/oM.
As we already know, the cohomology of A is concentrated in degrees 1 and 2.
We will see that the R-torsion subgroup of H(A),i = 1,2, is annihilated by
@, hence H*(A)ors = H'(A)y. We define free R-modules M, i = 1,2, by the
short exact sequences

0 — H'(A)y — HY(A) — M" — 0,
and consider the exact sequences of Q,(x)-vector spaces
0 — H'(A)/o — H'(ARREQy(x)) — H'(A)g — 0
induced by the distinguished triangle
A5 A — ASRQ,(x) — Al

Then the map ¢y of [7, Lem. 5.7] is induced by the exact sequence of Q,(x)-
vector spaces

0— M'/o — H'(A2%Q,(x) = HA(ASKQ, (X)) — M?/@ — 0, (31)
where the Bockstein map (5 is given by the composite
HY (A®RQy(x)) — H?*(A)e — H*(A)/o — H*(AREQ,(X))-

Note that for the exactness of (31) on the left we need to show that H(A) is
torsion-free.

We recall that Gal(k(fop™ 1) /k(fop)) = Gal(K,/Kp) is isomorphic to (1 +
fop)/(1 + fop™ ™) ~ (1 + pZ,)/(1 + p"*'Z,) via the Artin map. As before we
denote this isomorphism by o : (1+pZ,)/(1+p" 1 Z,) — Gal(K,/Ko) and also
write o : 14 pZ, — I'. Passing to the limit we obtain a character

Xel: I' — 1+ pZ,

uniquely defined by o(xen(7) mod (1 + p"™'Z,)) = 7|k, for all 7 € T'. Note
that one has

1/1(1? fopn+17 a)T = ’@[J(Xell(T); fopn—&-l’ Cl)

foralln>0and 7 €.
For a place w | p in k(f)/k and v € k(f) we write u,, = 04 (u), where
oy 1 Q¢ — Q) defines w.
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Lemma 5.8 Define for || fo the element ¢; € Z, by e = Frff‘, where fi € Z
is the residue degree at | of k(f)/k. Put ¢, = logp(xen(vpn))_l € Qp. Then (3
is induced by the map

H (ARD)SQy = 055, 8Q — Xulipe) 8Qp = HXAK())SQ,

given by

U — Z c Z ordy (u) - w + ¢ Z Tri(s). /0, (logp(uw)) Sw.

lffo  wlt wlp

Proof Asin [7, Lem. 5.8]. U

Let aj, as denote integral O-ideals and set b = lem(ay, a2), ¢ = ged(aq, az).
In the following we will frequently apply the formulas

w(b)w(c)

[k(b) : k(a1)k(az)] = m7

k(a1) N k(az) = k(c),

which follow easily from [24, (15)]. Without loss of generality we may assume
that w(fop) = 1. We also note that w(p) = 1, because p 1 2 and p # p. This
implies w(g) = 1 for any multiple g of fo or p.

The case of no trivial zeros We let x € é?" be a non-trivial character such
that x|p, # 1. We first show that Pge = 0. From Lemma 3.7 we know that

multiplication by 47" — 1 on P> has finite kernel and cokernel. It follows that

the characteristic power series h € Z,[[I']] of P> (considered as a module over

Z,[[I]) is coprime with v7" —1. Hence h is a unit in Aq_ which annihilates P
From (19) and Remark 5.3 we obtain the short exact sequence

0— U‘(;z - Ugjaqx - Y{Oﬁilp}vqx —0

Moreover, Y0y = Zy[Goo/Dyp], so that x|p, # 1 implies Yiopra, = 0 It
follows that H'(A) = Ug® , =~ Ug® and Lemma 5.5 implies
Ugl = (Na—o(a)) (1 —=7)n50 - Aqys

where fy, is the divisor of fo such that ¢ has conductor fy o or fyop. Recall

also that
I v #1,
1, v =1.
Ify =1,thenn # 1and 1 — x(y) = 1 —n(y) # 0, so that 1 —~ is a unit in
Aq,. Since also Na —o(a) € Ay , we may choose 1 = nj, , as Aq -basis of
M, =Uge.
Since P{O;\fp} is a quotient of P°° we obtain P{O;Hp} o = 0. Therefore
H%(A) = X o lfopoc}.a, - From the short exact sequence

0 — XCiifory — X{ulfopce} — Y{wloo} — 0
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together with the fact that Xf{’;l fop? is A-torsion, we derive
M2 = Y{ibo} = AqX . /82 with 52 = O0co-

We now apply [7, Lem. 5.7] with @ = 1 —4?". Recall that H?(A)iors =

m

sz)\fop} . and this module is annihilated by w. Indeed, @ ~ 1 — AP for

m > n. For large m one has v*" € Dy for each [ | fop. It follows that 1 —~?"
annihilates X770 ¢y, so that the assumptions of [7, Lem. 5.7] are satisfied. The

element 3; € M!/w is the image of the norm-compatible system

fo,u = {"/)(17 fx,Opn+17 a)}nZO

in M'/w C 0.5, 2,161 Qu(x). We write

f = fOPV7 fx = fx,OpV/~

and recall the definition of &, in (8). We will show that

B1 = Ty & @[k (F) = k(fop” )]

with
- {(1 — MR, R AL
X .
1, if f, = 1.

If v = 0, then f1 = fp, fy,0 = fy and we have the following diagram of fields

k(f1)
e
k(f)E(Fxp)

k(f) k(fxp)

k(fx)
Hence we obtain from[1, Th. 2.3]

Bi = Neqmpv(ifxp )@l = T4 @1
Note that in this case [k(f) : k(fop*')] = 1.

If v > 0 and = 0 we obtain the diagram
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k(fop”) = k(f)

w(fy)

k(fo)k(fxp”)

k(fO) k(fxpu)

"

k(fx,O) = k(fx)

Writing |Gjle, = t, and t, for the image of ¢, in Z[Gal(k(f,)/k)] we therefore
have

b= P(Lifw”, a)el
= (1 §,p", a)@1/|Gf|

7 w(fxpy) 1
= NBEET G ) F
w(fyp”)

= T&®

w(fy) [k(fxp”) : k(fy)]
= T&®Ik(F) : k(fo)] ™

The case v, v’ > 0 is similar. Note that in this case x(p) = 0.
For each ['] fo we choose a place w; above [ in k(f)/k. It is easy to see that

Oa X|D[ # 17

Yiwy®aQp(x) = {@p(x) ‘i xlp, = 1.

We choose for each [ | fo with x|p, = 1 an element z; € k(f)* such that

ordy, (z) # 0
ord, (z;) = 0 for all w # wy.

Then Q,(x)x: el Yiw3®z,16,1Qp(X) = Qp(x)wr is an isomorphism. We set

J=Al]fo: x|p, =1}, x,]::/\x[, w,]::/\w[ and ¢, ::HC[.

leJ leJ leJ

Since O:(f)®,4@p(x) is a Q,(x)-vector space of of dimension 1, the element 3

is necessarily a generator. Therefore {3} U {ze: L€ J} is a Qp(x)-basis of
H'(A2%Q,(x)) = 0.5, ©4Qp(x). Moreover, {2} U{wi: [ € J} is a Qp(x)-
basis of Yy |fopoo} @4Qp(X). Finally note that B2 = k(). From (31) we deduce

($0 5" )(Br ' ®B2) = d(Br ' Ay ' ®Bu(ws) A B2)
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Applying Lemma 5.8 we obtain further
(Podz ) (B '®F) = cyd(By " Axyteval(zy) A Ba)
= CX(Bl_1®B2) (32)
exlk() = k(Gop” )T 6 @0y -

=:A

In order to apply [7, Lem. 5.7] we compute the exponent e such that (Deﬂfl@)ﬁg
is a Aq -basis of Dety, (AF). By the proof of [7, Lem. 5.7] one has

e = Z(—l)”ldim@p(x) (H'(A)o)
1€ZL

= - diInQp(X) (Xa\fop}(gAQp(X))

= - dime(X) @ Zy, [Goo/D[](X)AQp(X)
lfop
—)

As elements of (DetA(A‘X’))qX we have

L= (Na—o(a)n;,' @00 = (Na—c(a))[k(fop) : k(Fx,00)] [ Trkiop) /k (1,00 o]~ @oc,

because Try(sop)/k(5,.0p) = [F(foP) : k(fx.0p)] as elements of Ay~ (multiply both
sides with e, ). From the distribution relation we derive further

L = (Na—o(a))lk(fop) : k(fx,0p)] H an:i)@aoo
o, Ufx,0 .
_ _ . 1 w —en—1
= (Na—o(a)lk(fop) : k(fx,op>1[fogxo Toho Lo @e).
x(D#1

Now [7, Lem. 5.7] implies
$o(B~H(LR1)) = 7' ®P,

which in conjunction with (32) shows that ¢(B~!(L®1)) = A or ¢(L®1) = AB.
For [ € J we have by definition of ¢; the equality Fr,_f ¢ = 4" and therefore

w —AP" 4 oA
X<1_ >X<(1 A" )14 Frit 4.+ Fr )) L s

FI‘Fl 1— 70[1’" cr
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Using [k(f) : k(fop NIk(fo) : k(Fx.om)] = w(f ) [k(F) : k()] it follows that
AB =

(Vo= o@)u) k@) bl | T 5= (Hf[>T;1§;1®a|km.
170, Hfx,0 [ eJ

x(N#1

Recalling the definition of the elements &, from (13) we observe that this is
exactly the equality (30).

The case of trivial zeros We let x € G’?I’ be a non-trivial character such that
x|p, = 1. Note that in this case p 1 fy, i.e. fy,0 = fy. For any subgroup H of G
we define Jy to be the kernel of the canonical map Z,[[Gx]] — Z,[[Goo/H]]

As in the case of no trivial zeros we can show that Py° = 0. From (19) we
obtain the short exact sequence

00— U‘;}z — Ug:’qx — Y{Olilp},qx —0 (34)

where now Y0, -~ Zp|Goo/Dpl@nNg, ~ A/Jp,@aNq, =~ Aq /Jp, A,
Since T' C D,, one has v*" — 1 ~ v — 1. It follows that Yioha = Qp(x), and
in addition, the structure theorem for modules over principal ideal rings implies
(v - l)Ugj’qX =Ugy.

For a finite set S of places of k we set Uk(fx),S = liln (O:(fxpnﬂ) S®ZZP)'

Lemma 5.9 a) The sequence

~y—1
0 — Uk, — U105, — Uklr).8,r — 0

is exact.

b) The canonical map U, | ¢ r — O

(Fx.08):5p ®zZy Is injective.

k(fx):Sp

diate. For b) one has to prove

r
Proof One has (U°° ) = lim (O’:(fxp) SP®ZZP) = 0. Hence a) is imme-

(v = DUG,).s, = tu € Uiy s, [ uo =1}

The inclusion ”C” is obvious. Suppose that ug = 1. Then for each n Hilbert’s
Theorem 90 provides an element 3, € k(f,p™ 1) /k(f,p)* such that

Bt =u, and Ni(iyp+2) /k(ixpn+1) (Bnt1) = Bn(mod k(fyp) ™).

Let S be a finite set of places of k containing .S, and such that Pic(Opj, p),5) = 0.
Then we may assume that

X X
B € Ois pniny.s/ Ok
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In the following diagram all vertical maps are induced by the norm,

ox ®Z
X X k(fypnt2),s 7P
00— Ok(50),5%%p —> Op(s pn+2) s®Lp 7 0
k(fxp),S P
O Z, — > O z Ol oty s
o),
0 k(G p).s ©%p k(prt1),s 8% X .50 0
o).

Since all involved modules are finitely generated Z,-modules, the functor
lim is exact. In addition, the projective limit on the left hand side is obviously

n
trivial and therefore

o - Ofpm),s 9%
D
X0 w Ok(iyp),s®Zyp

Moreover, the argument used to prove (19) also shows that U,;’ofx) g =

U,SZ}X)’SP ~ Ul??fx),{wlpoo} for any set S O S,, so that the inclusion ”2” fol-
lows. U

We now choose an auxiliary prime ideal b of Oy such that

(b,fp) =1, w(b)=1, x(b)#1.

In order to be able to deal also with the case f,, = 1 we introduce the element

n= {1 bp" ! a)}02, € lim Oks opnty

With respect to the injection Ulj?fx) s,r ka(f p),S ®Zy the element
El ) X =P

Ni(s,6p)/F (1) maps to Nk(fxbp)/F(nO), where here F' denotes the decomposi-
tion subfield at p in k(f,)/k. One has the following diagram of fields

k(f)

e

e

k()P k(fy)

7

F

k()
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Since by definition of F one has o(p)|r = id, we derive from the distribution
relation

Nieiop)/F(n°) = (L= 0 (p) ") Ny o)/ p(L; b, a) = 1,
so that Lemma 5.9 yields a unique element 2> € U’?E)fx) s, ®z,Qp such that

1
(y—1)z> = WNk(fxbp)/F(n)- (35)

From Lemma 5.5 and Na — o(a) ~ 1 we deduce Ug? = Aq 75, . Again from the
distribution relations [1, Th. 2.3] we deduce

Niryopy/p1 = (1= Frg ) Nigs,p) £
Combining (34) and (35) we see that
HY (A) =UZ ;. = Aq, - 1 with 5y = 2.
Note that
Blz{zm i p | f,§ = fop" > 0,
Ni(p)/i(p) (70), i p 1,

when we regard (3; as an element in OkX(f) g QLy.
sOp

Let v denote a place of k(f) above w, where w | p in F/k. Using the above
diagram we compute

Tryy), /0, (108, (Nigr, o)k, V(L5 xb,a))))

D
— U{(L{)’“Jﬂlogp (Nk(fxb)/F(w(l;be7a)))

Dy

[k(Fy) : F] log,, (Ni(,0)/r (¥ (13 b, a)))

log,, (Xen (7)) log, (xen (7))

=:B

By the main result of [1] the quantity B is well known. We briefly recall the
construction of [1]. Let ko denote the unique Zj-extension of k which is un-
ramified outside p. Let k,, C ko denote the extension of degree p™ above k. We
put F, := Fk, and consider the diagram of fields

k.(fxbpn+1)
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For each n Hilbert’s Theorem 90 provides an element (8, € F.*/F* such
that
Byt = Nisopnry/r, (01 Fbp™ a))

If we put s, := Np,/r(B.) € FX/(FX)pn and k> = {k,}0l, €
lim F*/ (Fx)pn7 then the main result of [1] says

B = ord,, (k™).
From the construction of z°° it is clear that one has

/Bn = Nk(fxbp"‘*'l)/Fn(Zn) in FJ/FX,

and consequently,

£ = {Ni(5,6p)/F(20) } meo-
We let w’ | w denote the place in k(f,)/F defined by v and set cp(y) :=
logp(xeu('y))_l. Then

Triy), /0, (108, (Nigr o) /k(r,) (V(15xb,a))))

D
T 760 1) ordu (i o)
ST

D —1

- mOrdw(Nkmp)/FNk(fxbp)/k(fxp)zo)
D k(5 bp) - k

_ ple(v)[k [fx()fflf]) (fxp)]ordw(Nkﬁxp)/FZO)

[Dylep(y) 1w 1)[k](b) : k(l)]Ordw(Nk(fx)/F(Nk(fxp)/k(fx)zo))

k(1))
] Juw jworduw (Nig(s p) k(5 %0)

= |Dylep(7) " w(1)[k(b) : k(1)]e, ), 0rdy (Nt p) k(i) 20)
/
! ) : k(D)]ordy (N5, p) /() 20)

We now apply Lemma 5.8. The congruence in the following computation is
modulo ¥{uj,) ®z, Qp-
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Ba (N 0)/k(r) ((1; b, a)))
& Y Trres), /0, (108, (Vi) k() (0 (13 156, @)))) - v

vlp
= oGy reIRE) B Y ordy (Ni o (20)) -
P vlp
_ {ﬁ[k(b):k<1>1;;”(§3Zvpordekoop)/k(fo)zo)'u it p1f,
Lew(D)(6) k(D] (fyp) : k(F)] Xy 0rde (20) v, if p |
_ {,{z[k(w ()] 24 0rdy (Niiop) k(o) 20) - ¥, ifpif,
Low(D)[k(0) « kDIE(Gyp) = FOIFEDP ) k()] Xy orde () v, if p | f
_ {;fi[k(b) : k(l)]% 2 ufp 07 (Nk(jop) /(50 20) * V5 if ptf,
Lew(D)[k(6) : k(][R +L) : B(R)] X, ordy (Br) -v, if p | f
_ {;‘zﬁ(&gw(m:k<1>]zvpordv<m>-v, ) ifpt,
Lew(1)[k(b) : k(D)][k(fyp”) : k(fx)] Xy ordy (Br) -v,  if p | f

We first assume that p | f and use this data to compute

(6005 ")(By ' ©Bs)
= ¢ (B ANieo)mi0?(LiFxb, )] Az @86 () A Bo (N o)k (0 (13 Fx b, a))) A B2)
= k) ROIRG) k()

& (B A [Nigreoy/n(,0 (0 (1 F b, )] ™H Az @val( ) A val(Br) A Ba)
= —Cx]%w(l)[k’(b) RDEGP”) =BG Nk(5,00) /5,0 (0 (13 73, 0))] 7 @00 () -

=:A

On the other hand we note that f, = f, 0 and compute

L= (Na—o(@)lkGop): kG0 [] ——p=r ®om.
[[fo, Hfx t

In addition, one has
1
(V=D =(y—1)> = WNk(fxbp)/F(m

and

(.:} n
—— =T:=1+7vy+...+797 L.
L—=n
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This implies the equality

o = Q1—7TH = T[k(bep)l ) Ni(5y0p)/k(p) (1)
1 —
= T Gen wy )
= —T;(l _ 0(5)_1)77fx

w(1)[k(b) : k(1)]
in Ug® ; . Since e = —(|J| + 1) we obtain £ = Bo® (B ®F;) with

B = —T(Na-—o(a))k(fop) : (fxp)]( (D[E(b) : k()] x
(1—0o(b)™h) = =
”}’_[[m 1—Fr, 1 [1;[]1—1:‘1“ L
x(N#1

Again we deduce from [7, Lem. 5.7] that ¢(L®1) = AB. From
[E(fxp”) + k(FONEFop : k(fxp)] = [K(F) : k(fy)]
(recall again that w(p) = w(f) = 1) and

{uw@*wmmw,ﬁn¢L

5(Op,a"?t . .
5((b,ku51b))7 if f =1,

Nis(to0) /005 (W (L5 F b, ) (x)) =

we compute

AB =
= wf) k) : k(f)I(Na—o(a)) [] N F*l II #x
0o — TN 1egU{p)
x([‘)f;él
w(l;fxa a)71®000|k7(];)a if Fx #1,
(1—o(b) ) St @0 iy, if fy = 1.

Finally we use in the case f, = 1 the relation

5((’)k,a_1) 1*0(13)_1_ 5(0]“(1—1) 1—o(b)~"
6(b,a=1b) ~ \d(p,a~1p)

and recover the equation (30). The case p 1 f is completely analogous.

The case of the trivia} character In this case 5; = 77 and we first have to
compute F1. If p 1 f, the 81 = Ni(sp) k() (¥(1; 9, a)) and the distribution relation
[1, Th. 2.3 b)] implies

$1 = N /k(l)(d)(l;qaa)w(l)) =
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where ¢ denotes the function of lattices defined in [18, Th. 1]. We recall that

A(L)E]
A(L)

If p | f, then By = 1 (1;p”, a), where again § = fop”.

We now want to compute (¢ o ¢5*) (5, *®F2). Since x is now trivial we no
longer have X {00} ®@4Qp(X) = Yiuw|oc}®4Qp(X), and therefore have to take
into account the short exact sequence

S(L,L)*? =

0 — Xlulrory = X{wlfopoo} — Y{wloo} — 0 (36)

in the definition of ¢5. Recall here that H?(A) = Xaliopooy A0d Y0 oy = M?2.
A lift of oy € M?/@ = Yiy|s0) is given by o) — wy, where wy, denotes a
fixed place of k(f) above p. We obtain

(oo )(Br'®Ba) = ¢(Br' Aa ' '®Bs(xs) A (olkg) — wp))
= (B Ayt @val(zs) A (o) — wy))

Next, we compute val((3;) and express the result in terms of ol —wy. I p i,

then
val(fBy) = 1—12(Na — 1)val (AA%)) :

We use A(Oy)/A(p) ~ p'? and obtain in Yi,(5,p3©.4Qp(x)

val(1) = (Na—1)> ordy(p)-w

|oco

wlp
= (Na- D)LY w
wlp
|Gyl
= (Na-D|L|—=-w
T

k(f) : k

(Va1 lEO)
fe

An explicit splitting of the short exact sequence (12) is given by

Wy

1
W= W — ———Tr5) /60| k(5 -
Uf(f) . k] H/ ()

Under this map val(3;) maps to —(Na — 1)7[]“(}2:]“] (olk) — wp) in
Xtwlipoct ®AQp(X)-

Recall that ¢, denotes the Euler function attached to the ring O. In the
case p | f we compute from [1, Th. 2.4]

~ Na-1
val(f;) = 2o P) wzlpordw(p) “w
Na—1 [k(f) : k]

B POy (py) fp o
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So we derive the closed formula

2y Na—1[k(f): k] ol —w
val(3,) = o ) (@ k() — wp)

as elements of X y1p00}®4Qp(X)-
This implies

i po)
(pooz )(Br ) = —cx Na—1 [k(f)p k]

=:A

On the other hand we compute for L&1
Ll = (Na-— a(a))n{()l@a

= (Na—o(a))[k(fo) : K(1)]

= (Na—o(@) k(fo) : b)) 2 ] it

= (Na—a(@) k(o) : KU 2 [T 2 o5 o)

It follows from (33) together with

k() < k= e W oo, k(o) : k(1) = 2 (o)

w(1) w(1)
that ¢(L®1) = AB = —f, (H[\fo f[) w}f’j)_ Since ¢;(0) fwh("i) this concludes
the proof.
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