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Abstract

Let k be a quadratic imaginary field, p a prime which splits in k/Q and
does not divide the class number hk of k. Let L denote a finite abelian
extension of k and let K be a subextension of L/k. In this article we prove
the p-part of the Equivariant Tamagawa Number Conjecture for the pair
(h0(Spec(L)), Z[Gal(L/K)]).
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1 Introduction

The aim of this paper is to provide new evidence for the validity of the Equivari-
ant Tamagawa Number Conjectures (for short ETNC) as formulated by Burns
and Flach in [4]. We recall that these conjectures generalize and refine the Tam-
agawa Number Conjectures of Bloch, Kato, Fontaine, Perrin-Riou et al. In the
special case of the untwisted Tate motive the conjecture also refines and gener-
alizes the central conjectures of classical Galois module theory as developed by
Fröhlich, Chinburg, Taylor et al (see [2]). Moreover, in many cases it implies
refinements of Stark-type conjectures formulated by Rubin and Popescu and
the ‘refined class number formulas’ of Gross. For more details in this direction
see [3].

Let k denote a quadratic imaginary field. Let L be a finite abelian extension
of k and let K be any subfield of L/k. Let p be a prime number which does
not divide the class number hk of k and which splits in k/Q. Then we prove
the ’p-part’ of the ETNC for the pair (h0(Spec(L),Z[Gal(L/K)])) (see Theorem
4.2).

To help put the main result of this article into context we recall that so
far the ETNC for Tate motives has only been verified for abelian extensions
of the rational numbers Q and certain quaternion extensions of Q. The most
important result in this context is due to Burns and Greither [5] and establishes
the validity of the ETNC for the pair (h0(Spec(L)(r),Z[ 12 ][Gal(L/K)])), where
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L/Q is abelian, Q ⊆ K ⊆ L and r ≤ 0. The 2-part was subsequently dealt with
by Flach [7], who also gives a nice survey on the general theory of the ETNC,
including a detailed outline of the proof of Burns and Greither. Shortly after
Burns and Greither, the special case r = 0 was independently shown (up to the
2-part) by Ritter and Weiss [19] using different methods.

In order to prove our main result we follow very closely the strategy of Burns
and Greither. Roughly speaking, we will replace cyclotomic units by elliptic
units. More concretely, the ETNC for the pair (h0(Spec(L),Z[Gal(L/K)]))
conjecturally describes the leading coefficient in the Laurant series of the equiv-
ariant Dirichlet L-function at s = 0 as the determinant of a canonical complex.
By Kronecker’s limit formula we replace L-values by sums of logarithms of el-
liptic units. In this formulation we may pass to the limit along a Zp-extension
and recover (an analogue) of a conjecture which was formulated by Kato in
[11]. As in [5] we will deduce this limit conjecture from the Main Conjecture
of Iwasawa Theory and the triviality of certain Iwasawa µ-invariants (see The-
orem 5.1). Combining the validity of the limit theorem with Iwasawa-theoretic
descent considerations we then achieve the proof of our main result.

The Main Conjecture in the elliptic setting was proved by Rubin in [21], but
only in semi-simple case (i.e. p - [L : k]). Following Greither’s exposition [9] we
adapt Rubin’s proof and obtain the full Main Conjecture (see Theorem 3.1) for
ray class fields L and primes p which split in k/Q and do not divide the class
number hk of k.

The triviality of µ-invariants in the elliptic setting is known from work of
Gillard [8], but again only in the ordinary case when p is split in k/Q.

The descent considerations are particularly involved in the presence of ’trivial
zeros’ of the associated p-adic L-functions. In this case we make crucial use of
a recently published result of the author [1] concerning valuative properties of
certain elliptic p-units.

As in the cyclotomic case it is possible to use the Iwasawa-theoretic result
of Theorem 5.1 and Iwasawa descent to obtain the p-part of the ETNC for
(h0(Spec(L)(r),Z[Gal(L/K)])), r < 0. We refer to thesis of Johnson [10] who
deals with this case.

We conclude this introduction with some remarks on the non-split situation.
Generically this case is more complicated because the corresponding Iwasawa
extension is of type Z2

p. The main issue, if one tries to apply the above described
strategy in the non-split case, is to prove µ = 0. Note that we already use the
triviality of µ in our proof of the Iwasawa Main Conjecture (see Remerk 3.9).

During the preparation of this manuscript I had the pleasure to spend three
months at the department of mathematics in Besançon and three weeks at the
department of mathematics at Caltech, Pasadena. My thanks go to the algebra
and number theory teams at both places for their hospitality and the many
interesting mathematical discussions.
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2 Elliptic units

The aim of this section is to define the elliptic units that we will use in this
paper. Our main references are [17], [18] and [1].

We let L ⊆ C denote a Z-lattice of rank 2 with complex multiplication by
the ring of integers of a quadratic imaginary field k. We write N = Nk/Q for the
norm map from k to Q. For any Ok-ideal a satisfying (N(a), 6) = 1 we define a
meromorphic function

ψ(z;L, a) := F̃ (z;L, a−1L), z ∈ C,

where F̃ is defined in [17, Théorème principale, (15)]. This function ψ coincides
with the function θ(z; a) used by Rubin in [20, Appendix] and it is a canonical
12th root of the function θ(z;L, a) defined in [6, II.2].

The basic arithmetical properties of special values of ψ are summarized in
[1, §2].

We choose a Z-basis w1, w2 of the complex lattice L such that Im(w1/w2) > 0
and write η(τ), Im(τ) > 0, for the Dedekind η-function. Let η1, η2 denote the
quasi-periods of the Weierstrass ζ-function and for any z = a1w1 + a2w2 ∈
C, a1, a2 ∈ R, put z∗ = a1η1 + a2η2. Writing σ(z;L) for the Weierstrass σ-
function attached to L we define

ϕ(z;w1, w2) := 2πie−zz
∗/2σ(z;L)η2

(
w1

w2

)
w−1

2 . (1)

Note that ϕ is exactly the function defined in [17, (4)]. The function ϕ is not a
function of lattices but depends on the choice of a basis w1, w2. Its 12th power
does not depend on this choice and we will also write ϕ12(z;L). We easily
deduce from [17, Sec. 3, Lemme] and its proof that the relation between ϕ and
ψ is given by

ψ12(z;L, a) =
ϕ12N(a)(z;L)
ϕ12(z; a−1L)

. (2)

3 The Iwasawa main conjecture

For any Ok-ideal b we write k(b) for the ray class field of conductor b. In this
notation k(1) denotes the Hilbert class field. We let w(b) denote the number
of roots of unity in k which are congruent to 1 modulo b. Hence w(1) is the
number of roots of unity in k. This number will also be denoted by wk.

Let p denote an odd rational prime which splits in k/Q, and let p be a prime
ideal of k lying over p. We assume p - hk. For each n ≥ 0 we write

Gal(k(pn+1)/k) = Gal(k(pn+1)/k(p))×H,

where H is isomorphic to Gal(k(p)/k) by restriction. We set

kn := k(pn+1)H , k∞ :=
⋃
n≥0

kn,
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and note that k∞/k is a Zp-extension. More precisely, k∞/k is the unique Zp-
extension of k which is unramified outside p. The prime p is totally ramified in
k∞/k.

Let now f be any integral ideal of k such that (f, p) = 1. Let F = k(fp)
denote the ray class field of conductor fq. We set Kn := Fkn = k(fpn+1) and
K∞ := ∪n≥0Kn. Then K∞/K0 is a Zp-extension in which each prime divisor
of p is totally ramified.

For any number field L we denote the p-part of the ideal class group of L
by A(L). Set A∞ := lim

←
n

A(Kn), the inverse limit formed with respect to the

norm maps. We write En for the group of global units of Kn. For a divisor g of
f we let Cn,g denote the subgroup of primitive Robert units of conductor fpn+1,
n ≥ 0. If g 6= (1), then Cn,g is generated by all ψ(1; gpn+1, a) with (a, gp) = 1
and the roots of unity in Kn. If g = (1), then the elements ψ(1; pn+1, a) are no
longer units. By [1, Th. 2.4] a product of the form

∏
ψ(1; pn+1, a)m(a) is a unit,

if and only if
∑
m(a)(N(a) − 1) = 0. We let Cn,g denote the group generated

by all such products and the roots of unity in Kn. We let Cn be the group of
units generated by the subgroups Cn,g with g running over the divisors of f.

We let Un denote the semi-local units of Kn⊗kkp which are congruent to 1
modulo all primes above p, and let Ēn and C̄n denote the closures of En ∩ Un
and Cn ∩ Un, respectively, in Un. Finally we define

Ē∞ := lim
←
n

Ēn, C̄∞ := lim
←
n

C̄n,

both inverse limits formed with respect to the norm maps.
We let

Λ = lim
←
n

Zp[Gal(Kn/k)]

denote the completed group ring and for a finitely generated Λ-module and any
abelian character χ of ∆ := Gal(K0/k) we define the χ-quotient of M by

Mχ := M⊗Zp[∆]Zp(χ),

where Zp(χ) denotes the ring extension of Zp generated by the values of χ. For
the basic properties of the functor M 7→Mχ the reader is referred to [25, §2].

The ring Λχ is (non-canonically) isomorphic to the power series ring
Zp(χ)[[T ]]. If Mχ is a finitely generated torsion Λχ-module, then we write
char(Mχ) for the characteristic ideal.

Theorem 3.1 Let p be an odd rational prime which splits into two distinct
primes in k/Q. Then

char(A∞,χ) = char((Ē∞/C̄∞)χ).

Remark 3.2 If p - [F : k] and p does not divide the number of roots of unity
in k(1), then the result of Theorem 3.1 is already proved by Rubin, see [21,
Th. 4.1(i)].

4



The rest of this section is devoted to the proof of Theorem 3.1. Let C(f)
denote the Iwasawa module of elliptic units as defined in [6, III.1.6]. Then
C(f) ⊆ C̄∞, so that char((Ē∞/C̄∞)χ) divides char((Ē∞/C(f))χ). By [6, III.2.1,
Theorem] it suffices to show that char(A∞,χ) divides char((Ē∞/C(f))χ) for all
characters χ of ∆ = Gal(K0/k) in order to prove the equality char(A∞,χ) =
char((Ē∞/C(f))χ). Hence it is enough for us to prove

char(A∞,χ) divides char((Ē∞/C̄∞)χ) (3)

for all characters χ of ∆.
For an abelian character χ of ∆ we write

eχ :=
1
|∆|

∑
δ∈∆

Tr(χ(δ))δ−1

for the idempotent of Qp[∆] corresponding to χ with Tr denoting the trace map
from Zp(χ) to Zp.

For any Zp[∆]-module M we have an epimorphism

Mχ = M⊗Zp[∆]Zp(χ) −→ |∆|eχM, m⊗α 7→ |∆|λαeχm,

where λα ∈ Zp[∆] is an element which maps to α under Zp[∆] → Zp(χ). If Z
denotes the kernel, then it is easily seen that |∆|Z = 0.

Let now M = A∞ and χ = 1. Then

Z −→ A∞,χ −→ Tr∆A∞ −→ 0

is exact. Since Tr∆An is contained in the p-Sylow subgroup of the ideal class
group of kn, which is trivial by our assumption p - hk and [26, Th. 10.4], we
see that A∞,χ is annihilated by |∆|. By the main result of [8] the Iwasawa
µ-invariant of A∞,χ is trivial. From this we deduce char(A∞,χ) = (1), thus
establishing (3) for the trivial character.

The rest of this section is devoted to the proof of the divisibility relation
(3) for non-trivial characters χ. We will closely follow Greither’s exposition [9].
Whenever there are only minor changes we shall be very brief, but emphasize
those arguments which differ from the cyclotomic situation.

We will need some notation from Kolyvagin’s theory. Let M be a large
power of p and define L = LF,M to be the set of all primes l of k satisfying

(i) l splits completely in F/k,
(ii) Nk/Q(l) ≡ 1(mod M).

By [21, Lem. 1.1] there exists a unique extension F (l) of F of degree M
in Fk(l). Further F (l)/F is cyclic, totally ramified at all primes above l and
unramified at all other primes.

We write J = ⊕λZλ for the group of fractional ideals of F and for every
prime l of k we let Jl = ⊕λ|lZλ denote the subgroup of J generated by the prime
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divisors of l. If y ∈ F× we let (y)l ∈ Jl denote the support of the principal ideal
(y) = yOF above l. Analogously we write [y] ∈ J/MJ and [y]l ∈ Jl/MJl.

For l ∈ L we let

ϕl :
(OF /lOF )×(

(OF /lOF )×
)M −→ Jl/MJl

denote the Gal(F/k)-equivariant isomorphism defined by [21, Prop. 2.3]. For
every l ∈ L we also write ϕl for the induced map

ϕl : {y ∈ F×/
(
F×
)M : [y]l = 0} −→ Jl/MJl, y 7→ ϕl(u),

where y = zMu, z ∈ F×, u a unit at all places above l.
We write S = SF,M for the set of squarefree integral ideals of k which are

only divisible by primes l ∈ L. If a ∈ S, a =
∏k
i=1 li, we write F (a) for the

compositum F (l1) · · ·F (lk) and F (Ok) = F . For every ideal g ofOk let S(g) ⊆ S
be the subset {a ∈ S : (a, g) = 1}. We write F̄ for the algebraic closure of F
and let U(g) denote the set of all functions

α : S(g) −→ F̄×

satisfying the properties (1a)-(1d) of [21]. Any such function will be called an
Euler system. Define UF = UF,M =

∐
U(g). For α ∈ UF we write S(α) for the

domain of α, i.e. S(α) = S(g) if α ∈ U(g).
Given any Euler system α ∈ UF , we let κ = κα : S(α) −→ F×/ (F×)M be

the map defined in [21, Prop. 2.2].
Then we have:

Proposition 3.3 Let α ∈ UF , κ = κα, a ∈ S(α), a 6= 1, and l a prime of k. If
a = l we also assume that α(1) satisfies vλ(α(1)) ≡ 0(mod M) for all λ | l in
F/k. Then:

If l - a, then [κ(a)]l = 0.
If l | a, then [κ(a)]l = ϕl(κ(a/l)).

Proof See [21, Prop. 2.4]. Note that the additional assumption in the case
a = l is needed in (ii), both for its statement (ϕl(κ(1)) may not be defined in
general) and for its proof.

We now come to the technical heart of Kolyvagin’s induction procedure, the
application of Chebotarev’s theorem.

Theorem 3.4 Let K/k be an abelian extension, G = Gal(K/k). Let M denote
a (large enough) power of p. Assume that we are given an ideal class c ∈ A(K),
a finite Z[G]-module W ⊆ K×/ (K×)M , and a G-homomorphism

ψ : W −→ (Z/MZ) [G].

Let p̄c be the precise power of p̄ which divides the conductor f of K. Then there
are infinitely many primes λ of K such that
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(1) [λ] = p3c+3c in A(K).

(2) If l = k ∩ λ, then N l ≡ 1(mod M), and l splits completely in K.

(3) For all w ∈ W one has [w]l = 0 in Jl/MJl and there exists a unit u ∈
(Z/MZ)× such that

ϕl(w) = p3c+3uψ(w)λ.

Proof We follow the strategy of Greither’s proof of [9, Th. 3.7], but have to
change some technical details. Let H denote the Hilbert p-class field of K. For
a natural number n we write µn for the nth roots of unity in an algebraic closure
of K. We consider the following diagram of fields

K ′′ = K(µM ,W 1/M )

K ′ = K(µM ) H

mmmmmmmmmmmmmmmm

K
Claim (a) [H ∩K ′ : K] ≤ pc

Proof: The situation is clarified by the following diagram

K ′

ssssssssss

K ′ ∩H

xxxxxxxxx
k(µM )

uuuuuuuuuuuuuuuuuuuuuuuu

K Q(µM )

wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww

•

}}
}}

}}
}}

k

Q
We write ϕZ (resp. ϕOk

) for the Euler function in Z (resp. Ok). Obviously
p̄ is totally ramified in k(µM )/k. Hence p̄ ramifies in K ′/k of exponent at
least ϕZ(M). On the other hand, p̄ is ramified in K/k of exponent at most
ϕOk

(p̄c). Therefore any prime divisor of p̄ ramifies in K ′/K of degree at least
ϕZ(M)/ϕOk

(p̄c). Since K ′ ∩ H/K is unramified and [K ′ : K] ≤ ϕZ(M), we
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derive [K ′ ∩ H : K] ≤ ϕOk
(p̄c). Since p is split in k/Q we obtain ϕOk

(p̄c) =
(p− 1)pc−1 < pc, so that the claim is shown.

In order to follow Greither’s core argument for the proof of Theorem 3.4 we
establish the following two claims.
Claim (b) Gal(H ∩K ′′/K) is annihilated by p2c+1.
Claim (c) The cokernel of the canonical map from Kummer theory

Gal(K ′′/K ′) ↪→ Hom(W,µM )

is annihilated by pc+2.
We write M = pm. Since divisors of p̄ are totally ramified in k(µM )/k of

degree ϕZ(M) and at most ramified in K/k of degree ϕOk
(p̄c), one has

[k(µM ) : K ∩ k(µM )] ≥ ϕZ(M)
ϕOk

(p̄c)
=

{
pm−c, if c ≥ 1,
(p− 1)pm−1, if c = 0.

Since k(µM )/k is cyclic, there exists an element j ∈ Gal(k(µM )/K ∩ k(µM ))
of exact order a = pm−c−1. Let r ∈ Z such that j(ζM ) = ζrM . Then ra ≡
1(mod M) and rb 6≡ 1(mod M) for all 0 < b < a. We also write j ∈ Gal(K ′/K)
for the unique extension of j to K ′ with j|K = id. Let σ ∈ Gal(K ′′/K ′) and
α ∈ K ′′ such that αM = w ∈ W . Then there exists an integer tw such that
σ(α) = ζtwM α. Since W ⊆ K×/ (K×)M , there is an extension of j to K ′′/K such
that j(α) = α for all α ∈ K ′′ such that αM ∈W . Therefore, for any such α,

jσj−1(α) = jσ(α) = j(ζtwM α) = ζrtwM α.

Hence j acts as σ 7→ σr on Gal(K ′′/K ′). Since Gal(K ′/K) acts trivially on
Gal(K ′′ ∩ K ′H/K ′) this implies that r − 1 annihilates Gal(K ′′ ∩ K ′H/K ′).
On the other hand Gal(K ′′ ∩K ′H/K ′) is an abelian group of exponent M , so
that also gcd(M, r − 1) annihilates. Suppose that pd divides r − 1 with d ≥ 1.
By induction one easily shows that rp

m−d ≡ 1(mod pm). Hence a = pm−c−1

divides pm−d, which implies d ≤ c + 1. As a consequence, pc+1 annihilates
Gal(K ′′ ∩ K ′H/K ′) ' Gal(K ′′ ∩ H/K ′ ∩ H). Together with claim (a) this
proves (b).

We now proceed to demonstrate claim (c). Let W ′ ⊆ K ′×/ (K ′×)M denote
the image of W under the homomorphism

K×/
(
K×)M −→ K ′×/

(
K ′×)M . (4)

Since Gal(K ′′/K ′) ' Hom(W ′, µM ), it suffices to show that the kernel U of
the map in (4) is annihilated by pc+2. By Kummer theory U is isomorphic to
H1(K ′/K, µM ).

The extension K ′/K is cyclic and a Herbrand quotient argument shows

#H1(K ′/K, µM ) = #H0(K ′/K, µM ) = #
µM (K)

NK′/K(µM )
.
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From [17, Lem. 7] we deduce that #µM (K) divides pc+2. Hence U is annihilated
by pc+2.

Now that claim (b) and (c) are proved, the core argument runs precisely
as in [9, pg.473/474] (using Greiter’s notation the proof has to be adapted in
the following way: pc+2ιψ has preimage γ ∈ Gal(K ′′/K ′); γ1 = pc+2

(
c

H/K

)
∈

Gal(H/K); δ ∈ Gal(K ′′H/K) with δ|H = p2c+1γ1, δ|K′′ = p2c+1γ.)

Recall the notation introduced at the beginning of this section. In ad-
dition, we let ∆ = Gal(K0/k), Gn = Gal(Kn/k), G∞ = Gal(K∞/k) and
Γn = Gal(Kn/K0). We fix a topological generator γ of Γ = Gal(K∞/K0),
and abbreviate the pnth power of γ by γn.

For any abelian character χ of ∆ we write Λχ = Zp(χ)[[T ]] for the usual
Iwasawa algebra. Note that Λ⊗Zp[∆]Zp(χ) ' Zp(χ)[[T ]], so that our notation is
consistent. We choose a generator hχ ∈ Λχ of char

(
(Ē∞/C̄∞)χ

)
. By the general

theory of finitely generated Λχ-modules there is a quasi-isomorphism

τ : A∞,χ −→
k⊕
i=1

Λχ/(gi)

with gi ∈ Λχ, and by definition, char(A∞,χ) = (g) with g := g1 · · · gk.
As in [9] we need the following lemmas providing the link to finite levels.

Lemma 3.5 Let χ 6= 1 be an abelian character of ∆. Then there exist constants
n0 = n0(F ), ci = ci(F ), i = 1, 2, a divisor h′χ of hχ (all independent of n) and
Gn-homomorphisms

ϑn : Ēn,χ −→ Λn,χ := Λχ/(1− γn)Λχ

such that

(i) h′χ is relatively prime to γn − 1 for all n

(ii) (γn0 − 1)c1pc2h′χΛn,χ ⊆ ϑn(im(C̄n,χ))

where here im(C̄n,χ) denotes the image of C̄n,χ in Ēn,χ.

Proof We mainly follow Greither’s proof of [9, Lem. 3.9].
We let

πn : Ē∞/(1− γn)Ē∞ −→ Ēn
denote the canonical map and first prove
Claim 1: There exists an integer κ (independent of n) such that

(γ − 1)pκ ker(πn) = 0 and (γ − 1)pκcok(πn) = 0

This is shown as in Greither’s proof of [9, Lem. 3.9]. He uses [22, Lem. 1.2],
which is stated under the additional assumption p - |∆|. As already remarked
by Greither, this hypothesis is not necessary.
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Next we define U∞ := lim
←
n

Un and proceed to prove

Claim 2 Qp⊗ZpU∞ ' Qp⊗ZpΛ = Λ[ 1p ].
This can be proved similarly as [15, Th. 11.2.5]. The assumption p - |∆| of

loc.cit. is not needed, since we invert p. Alternatively, Claim 2 follows from [6,
Prop. III.1.3], together with Exercise (iii) of [6, III.1.1].

It follows that Qp⊗ZpU∞,χ is free cyclic over Qp⊗ZpΛχ = Λχ[ 1p ]. Since Λχ[ 1p ]
is a principal ideal domain, the submodule Qp⊗Zp Ē∞,χ is also free cyclic over
Λχ[ 1p ]. It follows that there exists a pseudo-isomorphism

f : Ē∞,χ −→ C :=
⊕
i

Λχ/pniΛχ ⊕ Λχ.

If we apply the snake lemma to the diagram

0 Ē∞,χ
= Ē∞,χ 0

f pr ◦ f =: α

0 ⊕Λχ/pniΛχ C
pr Λχ 0

we see that ker(α) is annihilated by some power of p and cok(α) is finite.
We note that for any G∞-module X one has

(X/(1− γn)X)χ ' Xχ/(1− γn)Xχ.

Let Wn denote the image of πn and set T := TorZp[∆](cok(πn),Zp(χ)). Then
we have a commutative diagram (with exact lines)

T
ϕ

Wn,χ Ēn,χ cok(πn)χ 0

=

ker(πn)χ τ Ē∞,χ

(1−γn)Ē∞,χ

πn Wn,χ 0

We write πn,χ for the composite map and obtain the exact sequence

0 −→ ker(πn,χ) −→ Ē∞,χ

(1− γn)Ē∞,χ

πn,χ−→ Ēn,χ −→ cok(πn)χ −→ 0

We claim that ker(πn,χ) is annihilated by (γ − 1)2p2κ: Let e ∈ ker(πn,χ).
Then

πn(e) = ϕ(t) for some t ∈ TorZp[∆](cok(πn),Zp(χ))
=⇒ πn((γ − 1)pκe) = ϕ((γ − 1)pκt) = 0
=⇒ τ(c) = (γ − 1)pκe for some c ∈ ker(πn)χ
=⇒ 0 = τ((γ − 1)pκc) = (γ − 1)2p2κe
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So both ker(πn,χ) and cok(πn,χ) are annihilated by (γ − 1)2p2κ.
Consider now the following commutative diagram

Ē∞,χ
(γ − 1)4p4κα Λχ

πn,χ

Ēn,χ ϑn Λn,χ = Λχ/(1− γn)Λχ

where we define ϑn in the following manner: for e ∈ Ēn,χ there exists z ∈ Ē∞,χ

such that πn,χ(z) = (γ − 1)2p2κe. We then set

ϑn(e) := (γ − 1)2p2κα(z)(mod (1− γn)Λχ).

On the other hand, we have the exact sequence

C̄∞,χ −→ Ē∞,χ −→
(
Ē∞/C̄∞

)
χ
−→ 0

so that
Ē∞,χ/im(C̄∞,χ) ↪→

(
Ē∞/C̄∞

)
χ
.

The structure theorem of Λχ-torsion modules implies that hχ
(
Ē∞/C̄∞

)
χ

is fi-
nite. Since α(Ē∞,χ)/α(imC̄∞,χ) is a quotient of Ē∞,χ/im(C̄∞,χ), the module
hχ
(
α(Ē∞,χ)/α(imC̄∞,χ)

)
is also finite. Since cok(α) is finite, there exists a

power ps such that ps ∈ α(Ē∞,χ) and pshχα(Ē∞,χ) ⊆ α(im(C̄∞,χ))). Therefore
p2shχ ∈ α(im(C̄∞,χ)) and we conclude further:

p2s+4κ(γ − 1)4hχ = p4κ(γ − 1)4α(z) for some z ∈ im(C̄∞,χ)
=⇒ ϑn(zn) = p2s+4κ(γ − 1)4hχ with zn = πn,χ(z) ∈ im(C̄n,χ)
=⇒ p2s+4κ(γ − 1)4hχΛn,χ ⊆ ϑn(im(C̄n,χ)) (5)

Since γn − 1 divides γn+1 − 1 for all n there exists a positive integer n0 and a
divisor h′χ of hχ such that hχ divides (γn0 − 1)h′χ and such that h′χ is relatively
prime with γn − 1 for all n. The assertions of the lemma are now immediate
from (5).

Lemma 3.6 Let χ 6= 1 be a character of ∆. Then there exists a constant
c3 = c3(F ) (independent of n) and Gn-homomorphisms

τn : An,χ −→
k⊕
i=1

Λn,χ/(ḡi)

such that pc3cokτn = 0 for all n ≥ 0. Here ḡi denotes the image of gi ∈ Λχ in
Λn,χ.
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Proof The proof is identical to Greither’s proof of [9, Lem. 3.10]. It is based
on the following sublemma which will be used again at the end of the section.

Lemma 3.7 For n ≥ 0 the kernel and cokernel of multiplication with γn − 1
on A∞ are finite.

Proof See [22, pg. 705]. It is remarkable that one uses the known validity of
Leopoldt’s conjecture in this proof.

The following technical lemma is the analogue of [9, Lem. 3.12].

Lemma 3.8 Let K/k be an abelian extension, G = Gal(K/k) and ∆ a sub-
group of G. Let χ denote a character of ∆, M a power of p, a = l1 · · · li ∈ SM,K .
Let l = li and let λ be a fixed prime divisor of l in K. We write c for the class
of λ and assume that c ∈ A = A(K), where as usual A(K) denotes the p-Sylow
subgroup of the ideal class group of K.

Let B ⊆ A denote the subgroup generated by classes of prime divisors of

l1, . . . , li−1. Let x ∈ K×/ (K×)M such that [x]q = 0 for all primes q not dividing

a, and let W ⊆ K×/ (K×)M denote the Zp[G]-span of x. Assume that there
exist elements

E, g, η ∈ Zp[G]

satisfying

(i) E · ann(Zp[G])χ
(c̄χ) ⊆ g · (Zp[G])χ, where c̄χ is the image of c under A →

A/B → (A/B)χ.

(ii) #
(
(Zp[G])χ /g (Zp[G])χ

)
<∞

(iii) M ≥ |Aχ|
∣∣∣∣η (Jl/MJl

[W ]l

)
χ

∣∣∣∣, where [W ]l denotes the subgroup of Jl/MJl

generated by elements [w]l, w ∈W .

Then there exists a G-homomorphism

ψ : Wχ −→ ((Z/MZ) [G])χ

such that
gψ(x)λχ = (E · η[x]l)χ

in (Jl/MJl)χ.

Proof Completely analoguous to the proof of [9, Lem. 3.12].

We will now sketch the main argument of the proof of Theorem 3.1. We fix
a natural number n ≥ 1 and let K = Kn = Fkn. We view ∆ as a subgroup of
G = Gal(K/k).
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We let M denote a large power of p which we will specify in course of the
proof.

By Lemma 3.6 there exists for each i = 1, . . . , k an ideal class ci ∈ Aχ such
that

τn(ci) = (0, . . . , 0, pc3 , 0, . . . , 0)

in
⊕k

i=1 Λn,χ/(ḡi) with pc3 at the ith position. Choose ck+1 arbitrary. By
Lemma 3.5 there exists an element ξ′ ∈ im(C̄n,χ) such that ϑn(ξ′) = (γn0 −
1)c1pc2h′χ in Λn,χ. It is now easy to show that there exists an actual elliptic
unit ξ ∈ Cn such that

ϑn(ξ) = (γn0 − 1)c1pc2h′χ(mod MΛn,χ). (6)

By [21, Prop. 1.2] there exists an Euler system α ∈ UK,M such that α(1) = ξ.
Set d := 3c+ 3, where c was defined in Theorem 3.4. Following Greither we

will use Theorem 3.4 to construct inductively prime ideals λi of K, 1 ≤ i ≤ k+1,
such that

(a) [λi]χ = pdci

(b) li = λi ∩ k ⊆ SM,K

(c) one has the equalities

(vλ1(κ(l1)))χ = u1|∆|(γn0 − 1)c1pd+c2h′χ,

(gi−1vλi(κ(l1 · · · li)))χ = ui|∆|(γn0 − 1)c
i−1
1 pd+c3

(
vλi−1(κ(l1 · · · li−1))

)
χ

for 2 ≤ i ≤ k + 1. These are equalities in Λn,χ/MΛn,χ. The elements
ui are units in Z/MZ and vλ(x) ∈ (Z/MZ) [G] ' Λn/MΛn is defined by
vλ(x)λ = [x]l in Jl/MJl, if l = λ ∩ k ∈ LM,K .

We briefly descibe this induction process. For i = 1 we let c ∈ A be a preimage
of c1 under the canonical epimorphism A → Aχ. We apply Theorem 3.4 with
the data c, W = E/EM (with E := O×

K) and

ψ : W v−→ Ēn,χ/ĒMn,χ
ϑn−→ Λn,χ/MΛn,χ

εχ−→ (Z/MZ) [G]

where v ∈ (Z/MZ)× is such that each unit x ∈ K⊗kp satisfies xv ≡ 1 modulo
all primes above p. The map εχ is defined in [9, Lemma 3.13]. Theorem 3.4
provides a prime ideal λ = λ1 which obviously satisfies (a) and (b) and, in
addition,

ϕl(w) = pduψ(w)λ for all w ∈ E/EM .

From this equality we conclude further

vλ(κ(l))λ = [κ(l)]l = ϕl(κ(1)) = ϕl(ξ)
= pduψ(ξ)λ =

(
pduv(εχ ◦ ϑn)(ξ)

)
λ
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in Jl/MJl = (Z/MZ) [G]λ. Projecting the equality vλ(κ(l)) = pduv(εχ ◦ ϑn)(ξ)
to ((Z/MZ) [G])χ = Λn,χ/MΛn,χ and using [9, Lemma 3.13] together with (6)
we obtain equality (c) for i = 1.

For the induction step i − 1 7→ i we set ai−1 := l1 · · · li−1. Using (c) induc-
tively we obtain

(
vλi−1(κ(ai−1))

)
χ

divides

|∆|i−1p(i−2)(d+c3)+(d+c2)︸ ︷︷ ︸
=:Di

(γn0 − 1)c1+
∑i−2

s=1
cs
1h′χ


χ

Without loss of generality we may assume that c1 ≥ 2. Then one has c1 +∑i−2
i=1 c

s
1 ≤ ci−1

1 , so that
(
vλi−1(κ(ai−1))

)
χ

also divides Di(γn0 − 1)tih′χ with

ti := ci−1
1 . The module

N = (γn0 − 1)ti
(
Jli−1/

(
M, [κ(ai−1)]li−1

))
χ

is a cyclic as a Λn,χ-module and annihilated by Dih
′
χ. Consequently

|N | ≤ |Λn,χ/(Di)| · |Λn,χ/(h′χ)|.

Note that by the definition of h′χ the quotient Λn,χ/(h′χ) is finite. If we
choose M such that

M ≥ max
(
|Aχ| · |Λn,χ/(Dk+1)| · |Λn,χ/(h′χ)|, pn

)
then one has |N | ≤M |Aχ|−1.

We now apply Lemma 3.8 with a = ai−1, g = gi−1, x = κ(ai−1), E = pc3

and η = (γn0 − 1)ti . Following Greither it is straight forward to check the
hypothesis (a), (b) and (c) of Lemma 3.8. Note that for (b) one has to use
the fact that char(A∞,χ) is relatively prime to γn − 1 for all n, which is an
immediate consequence of Lemma 3.5. We let W denote the Zp[G]-span of
κ(ai−1) in K×/ (K×)M and obtain a homomorphism

ψi : Wχ −→ ((Z/MZ) [G])χ

such that gi−1ψi(κ(ai−1)) =
(
pc3(γn0 − 1)tivλi−1(κ(ai−1))

)
χ
. We let c denote a

preimage of ci and consider the homomorphism

ψ : W −→Wχ
ψi−→ Λn,χ/MΛn,χ

εχ−→ (Z/MZ) [G]

We again apply Theorem 3.4 and obtain λi satifying (a), (b) and also

ϕli(κ(ai−1)) = pduψ(κ(ai−1))λi.

As in the case i = 1 one now establishes equality (c). This concludes the
inductive construction of λ1, . . . , λk+1.
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Using (c) successively we obtain (suppressing units in Z/MZ)(
g1 · · · gkvλk+1(κ(l1 · · · lk+1))

)
= ηh′χ

(as an equality in Λn,χ/MΛn,χ) with

η =
(
|∆|k+1pk(d+c3)+d+c2(γn0 − 1)c1+

∑k

s=1
cs
1

)
χ

.

Therefore g = g1 · · · gk divides ηh′χ in Λn,χ/MΛn,χ, and since pn |M we also see
that g divides ηh′χ in Λn,χ/pnΛn,χ. As in [26, page 371, last but one paragraph]
we deduce that g divides ηh′χ in Λχ.

By [6, III.2.1, Theorem] (together with [6, III.1.7, (13)]) we know that the
µ-invariant of A∞,χ is trivial. Hence g = char(A∞,χ) is coprime with p. By
Lemma 3.5 it is also coprime with γn0 − 1, and consequently |Λχ/(g, η)| < ∞.
Therefore there exist α, β ∈ Λχ and N ∈ N such that pN = αg + βη and we see
that g divides pNh′χ. Since g is prime to p we obtain g | h′χ.

Remark 3.9 There are several steps in the proof where we use the assumption
that p splits in k/Q. Among these the vanishing of µ(A∞,χ) is most important.
The proof of this uses an important result of Gillard [8]. If p is not split in k/Q
our knowledge about µ(A∞,χ) seems to be quite poor.

4 The conjecture

In this section we fix an integral Ok-ideal f such that w(f) = 1 and write

M = h0(Spec(k(f)), A = Q[Gf], A = Z[Gf],

where for any Ok-ideal m we let Gm denote the Galois group Gal(k(m)/k).
For any commutative ring R we write D(R) for the derived category of

the homotopy category of bounded complexes of R-modules and Dp(R) for the
full triangulated subcategory of perfect complexes of R-modules. We write
Dpis(R) for the subcategory of Dp(R) in which the objects are the same, but
the morphisms are restricted to quasi-isomorphisms.

We let P(R) denote the category of graded invertible R-modules. If R is
reduced, we write DetR for the functor from Dpis(R) to P(R) introduced by
Knudsen and Mumford [12]. To be more precise, we define

DetR(P ) :=

rkR(P )∧
R

P, rkR(P )

 ∈ Ob(P(R))

for any finitely generated projective R-module P and for a bounded complex
P • of such modules we set

DetR(P •) :=
⊗
i∈Z

Det(−1)i

R (P i).
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If R is reduced, then this functor extends to a functor from Dpis(R) to P(R).
For more information and relevant properties the reader is refered to [5, §2], or
the original papers [12] and [13].

For any finite set S of places of k we define YS = YS(k(f)) = ⊕w∈S(k(f))Zw.
Here S(k(f)) denotes the set of places of k(f) lying above places in S. We let
XS = XS(k(f)) denote the kernel of the augmentation map YS → Z, w 7→ 1.

The fundamental line Ξ(AM) is given by

Ξ(AM)# = Det−1
A

(
O×
k(f)⊗ZQ

)
⊗ADetA

(
X{v|∞}⊗ZQ

)
,

where the superscript # means twisting the action of Gf by g 7→ g−1. We let

R = Rk(f) : O×
k(f)⊗ZR −→ X{v|∞}⊗ZR,

u 7→ −
∑
v|∞

log |u|v · v

denote the Dirichlet regulator map. Let

Aϑ∞ : R[Gf] −→ Ξ(AM)#⊗QR

be the inverse of the canonical isomorphism

Det−1
R[Gf]

(
O×
k(f)⊗ZR

)
⊗R[Gf]DetR[Gf]

(
X{v|∞}⊗ZR

)
det(R)⊗1−→ Det−1

R[Gf]

(
X{v|∞}⊗ZR

)
⊗R[Gf]DetR[Gf]

(
X{v|∞}⊗ZR

)
eval−→ (R[Gf], 0) .

Following [16] we define for integral Ok-ideals g, g1 with g | g1 and each
abelian character η of Gg ' cl(g) (cl(g) denoting the ray class group modulo g)

Sg(η, g1) =
∑

c∈cl(g1)

η(c−1) log |ϕg(c)|,

where η is regarded as a character of cl(g1) via inflation. For the definition of
the ray class invariants ϕg(c) we choose an integral ideal c in the class c and set

ϕg(c) = ϕg(c) =

{
ϕ12N(g)(1; gc−1), if g 6= 1,∣∣∣N(c−1)6∆(c−1)

(2π)12

∣∣∣ , if g = 1,

where ϕ was defined in (1). Note that this definition does not depend on the
choice of the ideal c (see [17, pp. 15/16]).

For an abelian character η of cl(g) we write fη for its conductor. We write
L∗(η) for the leading term of the Taylor expansion of the Dirichlet L-function
L(s, η) at s = 0.
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From [17, Th. 3] and the functional equation satisfied by Dirichlet L-
functions we deduce

L∗(η−1) = −
Sfη (η, fη)

6N(fη)w(fη)
. (7)

We denote by ĜQ
f the set of Q-rational characters associated with the Q-

irreducible representations of Gf. For χ ∈ ĜQ
f we set eχ =

∑
η∈χ eη ∈ A,

where we view χ as an Gal(Qc/Q)-orbit of absolutely irreducible characters of
Gf. Then the Wedderburn decompostion of A is given by

A '
∏
χ∈ĜQ

f

Q(χ).

Here, by a slight abuse of notation, Q(χ) denotes the extension generated by
the values of η for any η ∈ χ. For any character χ ∈ ĜQ

f the conductor fχ,
defined by fχ := fη for any η ∈ χ, is well defined.

We put L∗(χ) :=
∑
η∈χ L

∗(η)eη and note that L∗(χ)# :=
∑
η∈χ L

∗(η−1)eη.
The statement L∗(χ)# ∈ Aeχ (compare to [7, page 8]) is not obvious, but needs
to be proved. This is essentially Stark’s conjecture.

We fix a prime ideal p of Ok and also choose an auxiliary ideal a of Ok such
that (a, 6fp) = 1. For each η 6= 1 we define elements

ξη :=

{
ψ(1; fη, a), if fη 6= 1,
δ(Ok,a

−1)
δ(p,pa−1) , if fη = 1, η 6= 1,

(8)

where δ denotes the function of lattices defined in [18, Th. 1]. We set ξχ := ξη
for any η ∈ χ.

We fix an embedding σ : Qc ↪→ C and write w∞ = σ|k(f). A standard
computation leads to

R(eηξη)

=

{
(Na− η(a))w(fη)[k(f) : k(fη)]L∗(η−1)eηw∞, fη 6= 1,
(1− η(p)−1)(Na− η(a))w(1)[k(f) : k(1)]L∗(η−1)eηw∞, fη = 1, η 6= 1.

(9)

For the reader’s convenience we briefly sketch the computation for characters
η 6= 1 with fη = 1. By definition of the Dirichlet regulator map and [18, Cor. 2]
we obtain

R(eηξη) = −1
6
[k(f) : k(1)]

∑
c∈cl(1)

log
∣∣∣∣∆(c)Na∆(a−1cp)
∆(a−1c)∆(cp)Na

∣∣∣∣ η(c)eηw∞. (10)
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Since
∑

c∈cl(1) Cη(c) = 0 for any constant C we compute further

∑
c∈cl(1)

log
∣∣∣∣∆(c)Na∆(a−1cp)
∆(a−1c)∆(cp)Na

∣∣∣∣ η(c)
=

∑
c∈cl(1)

log

∣∣∣∣∣
(

(Nc)6∆(c)
(2π)12

)Na
∣∣∣∣∣ η(c) +

∑
c∈cl(1)

log
∣∣∣∣ (Na−1cp)6∆(a−1cp)

(2π)12

∣∣∣∣ η(c)−
−
∑

c∈cl(1)

log

∣∣∣∣∣
(

(Ncp)6∆(cp)
(2π)12

)Na
∣∣∣∣∣ η(c)− ∑

c∈cl(1)

log
∣∣∣∣ (Na−1c)6∆(a−1c)

(2π)12

∣∣∣∣ η(c)
= Na

∑
c∈cl(1)

log
∣∣ϕ1(c−1)

∣∣ η(c) +
∑

c∈cl(1)

log
∣∣ϕ1(ac−1p−1)

∣∣ η(c)−
−Na

∑
c∈cl(1)

log
∣∣ϕ1(p−1c−1)

∣∣ η(c)− ∑
c∈cl(1)

log
∣∣ϕ1(ac−1)

∣∣ η(c).
Recalling that ϕg(c) is a class invariant we obtain

∑
c∈cl(1)

log
∣∣∣∣∆(c)Na∆(a−1cp)
∆(a−1c)∆(cp)Na

∣∣∣∣ η(c) = (Na− η(a))(1− η(p)−1)S1(η, 1)eηw∞,

so that (9) is an immediate consequence of (7) and (10).
As in the cyclotomic case we have a canonical isomorphism

Ξ(AM)# −→

∏
χ6=1

(
Det−1

Q(χ)(O
×
k(f)⊗AQ(χ))⊗Q(χ)DetQ(χ)(Xv|∞⊗AQ(χ))

)×Q

=

∏
χ6=1

(
(O×

k(f)⊗AQ(χ))(−1)⊗Q(χ)(Xv|∞⊗AQ(χ))
)×Q

From (9) we deduce(
Aϑ∞(L∗(AM, 0)−1)

)
χ

=


w(fχ)[k(f) : k(fχ)](Na− σ(a))eχξ−1

χ ⊗w∞, fχ 6= 1,
w(1)[k(f) : k(1)](1− σ(p)−1)(Na− σ(a))eχξ−1

χ ⊗w∞, fχ = 1, χ 6= 1
L(χ, 0)−1, χ = 1.

In particular, this proves the equivariant version of [7, Conjecture 2].
We fix a prime p and put Ap := A⊗QQp = Qp[Gf], Ap := A⊗ZZp = Zp[Gf].

Let S = Sram ∪ S∞ be the union of the set of ramified places and the set of
archimedian places of k. Let Sp = S ∪ {p | p} and put

∆(k(f)) := RHomZp(RΓc(Ok(f),Sp
,Zp),Zp)[−3]
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Then ∆(k(f)) can be represented by a perfect complex of Ap-modules whose
cohomology groups Hi(∆(k(f)) are trivial for i 6= 1, 2. For i = 1 one finds

H1(∆(k(f)) ' O×
k(f),Sp

⊗ZZp,

and H2 fits into an short exact sequence

0 −→ Pic(Ok(f),Sp
)⊗ZZp −→ H2(∆(k(f))) −→ X{w|fp∞}⊗ZZp −→ 0

We have an isomorphism

Aϑp : Ξ(AM)#⊗QQp −→ DetAp

(
∆(k(f))⊗ZpQp

)
given by the composite

Det−1
Ap

(O×
k(f)⊗ZQp)⊗ApDetAp(X{v|∞}⊗ZQp)

ϕ1−→ Det−1
Ap

(O×
k(f),Sp

⊗ZQp)⊗ApDetAp(X{v|fp∞}⊗ZQp)
ϕ2−→ Det−1

Ap
(O×

k(f),Sp
⊗ZQp)⊗ApDetAp(X{v|fp∞}⊗ZQp)

ϕ3−→ DetAp

(
∆(k(f))⊗ZpQp

)
.

Here ϕ1 is induced by the split short exact sequences

0 −→ O×
k(f)⊗ZQp −→ O×

k(f),Sp
⊗ZQp −→ Y{w|fp}⊗ZQp −→ 0 (11)

0 −→ X{w|∞}⊗ZQp −→ X{w|fp∞}⊗ZQp −→ Y{w|fp}⊗ZQp −→ 0 (12)

The isomorphism ϕ2 is multiplication with the Euler factor
∏
v∈Sp

E#
v ∈ A×

where Ev is defined by

Ev =
∑

η|Dv =1

|Dv/Iv| eη +
∑

η|Dv 6=1

(1− η(fv))
−1
eη, (13)

where fv ∈ Dv denotes a lift of the Frobenius element in Dv/Iv and Iv ⊆
Dv ⊆ Gf are the inertia and decomposition subgroups for a place w | v in
k(f)/k. Finally ϕ3 arises from the explicit description of the cohomology groups
Hi(∆(k(f))), i = 1, 2, and the canonical isomorphism

DetAp(∆(k(f))⊗ApQp) '
⊗
i∈Z

Det(−1)i

Ap

(
Hi(∆(k(f))⊗ApQp)

)
(14)

([12, Rem. b) following Th. 2]).
We are now in position to give a very explicit description of the equivariant

version of [7, Conjecture 3].

Conjecture 4.1 Aϑp
(
Aϑ∞(L∗(AM, 0)−1)

)
Ap = DetAp(∆(k(f))).

The main result of this article reads:
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Theorem 4.2 Let k denote a quadratic imaginary field and let p be an odd
prime which splits in k/Q and which does not divide the class number hk of k.
Then Conjecture 4.1 holds.

Corollary 4.3 Let k denote a quadratic imaginary field and let p be an odd
prime which splits in k/Q and which does not divide the class number hk of k.
Let L be a finite abelian extension of k and k ⊆ K ⊆ L. Then the p-part of the
ETNC holds for the pair (h0(Spec(L),Z[Gal(L/K)])).

Proof This is implied by well known functorial properties of the ETNC.

5 The limit theorem

Following [7] or [5] we will deduce Theorem 4.2 from an Iwasawa theoretic
result which we will describe next. Let now p = pp̄ denote a split rational
prime and f an integral Ok-ideal such that w(f) = 1. In addition, we assume
that p̄ divides f whenever p divides f. We write f = f0p

ν , p - f0. We put
∆ := Gal(k(f0p)/k) = Gf0p and let

Λ = lim
←
n

Zp[Gfpn ] ' Zp[∆][[T ]]

denote the completed group ring. The element T = γ−1 depends on the choice
of a topological generator γ of Γ := Gal(k(f0p∞)/k(f0p)) ' Zp.

We will work in the derived category Dp(Λ) and define

∆∞ := lim
←
n

∆(k(f0pn)).

Then ∆∞ can be represented by a perfect complex of Λ-modules. For its coho-
mology groups one obtains Hi(∆∞) = 0 for i 6= 1, 2,

H1(∆∞) ' U∞Sp
:= lim

←
n

(
O×
k(f0pn),Sp

⊗ZZp
)

and H2(∆∞) fits into the short exact sequence

0 −→ P∞Sp
−→ H2(∆∞) −→ X∞

{w|f0p∞} −→ 0,

where

P∞Sp
:= lim

←
n

(
Pic(Ok(f0pn),Sp

)⊗ZZp
)
,

X∞
{w|f0p∞} := lim

←
n

(
X{w|f0p∞}(k(f0pn))⊗ZZp

)
.

The limits over the unit and Picard groups are taken with respect to the
norm maps; the transition maps for the definition of X∞

{w|f0p∞} are defined by
sending each place to its restriction.
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For g | f0 we put

ηg :=
{
ψ(1; gpn+1, a)

}
n≥0

∈ U∞Sp
,

σ∞ :=
{
σ|k(f0pn+1)

}
n≥0

∈ Y∞{w|fp∞},

where σ is our fixed embedding Qc ↪→ C.
For any commutative ring R we write Q(R) for its total ring of fractions.

Then Q(Λ) is a finite product of fields,

Q(Λ) '
∏

ψ∈∆̂Qp

Q(ψ), (15)

where ∆̂Qp denotes the set of Qp-rational characters of ∆ which are associated
with the set of Qp-irreducible representations of ∆. For each ψ ∈ ∆̂Qp one has

Q(ψ) = Q

(
Zl(ψ)[[T ]][

1
p
]
)
.

As in [7] one shows that for each ψ ∈ ∆̂Qp one has

dimQ(ψ)

(
U∞Sp

⊗ΛQ(ψ)
)

= dimQ(ψ)

(
Y∞{w|fp∞}⊗ΛQ(ψ)

)
= 1

It follows that the element eψ(η−1
f0
⊗σ∞) is a Q(ψ)-basis of

DetQ(ψ)(∆∞⊗ΛQ(ψ)) ' Det−1
Q(ψ)(U

∞
Sp
⊗ΛQ(ψ))⊗DetQ(ψ)(X∞

{w|fp∞}⊗ΛQ(ψ)).

Theorem 5.1 Λ · L = DetΛ(∆∞) with L = (Na− σ(a))
(
η−1

f0
⊗σ∞

)
.

Proof By [7, Lem. 5.3] it suffices to show that the equality

Λq · L = DetΛq(∆∞⊗ΛΛq) (16)

holds for all height 1 prime ideals of Λ. Such a height 1 prime is called regular
(resp. singular) if p 6∈ q (resp. p ∈ q).

We first assume that q is a regular prime. Then Λq is a discrete valuation
ring, in particular, a regular ring. Hence we can work with the cohomology
groups of ∆∞, and in this way, the equality Λq · L = DetΛq(∆∞⊗ΛΛq) is
equivalent to

(Na− σ(a))FittΛq (Zp,q) FittΛq

(
U∞Sp,q/ηf0Λq

)
= FittΛq

(
P∞Sp,q

)
FittΛq

(
Y∞{w|f0p∞},q/Λqσ∞

)
. (17)

Attached to each regular prime q there is a unique character ψ = ψq ∈ ∆̂Qp . To
understand this notion we recall that

Λ[
1
p
] '

∏
ψ∈∆̂Qp

(Zp(ψ)[[T ]]) [
1
p
].
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If p 6∈ q, then Λq is just a further localisation of Λ[ 1p ], so that exactly one of the
above components survives the localization process.

We set

U∞ := lim
←
n

(
O×
k(f0pn)⊗ZZp

)
,

P∞ := lim
←
n

(
Pic(Ok(f0pn))⊗ZZp

)
.

Remark 5.2 Note that, using the notation of Section 3, one has P∞ = A∞.
We put Kn := k(f0pn+1). Mimicking the proof of Leopoldt’s conjecture, one can
show that for each n ≥ 0 the natural map O×

Kn
⊗ZZp → Un (semi-local units

in Kn⊗kkp which are congruent to 1 mod p) is an injection. It follows that
U∞ = Ē∞, where Ē∞ is, as in Section 3, the projective limit over the closures
of the global units.

There is an exact sequence of Λ-modules

0 −→ U∞ −→ U∞Sp
−→ Y∞{w|f0p},β −→ P∞ −→ P∞Sp

−→ 0, (18)

where
Y∞{w|f0p},β = lim

←
n

(
Y{w|f0p}(k(f0pn))⊗Zp

)
with respect to the transition maps

Y{w|f0p}(k(f0pn+1)
βn+1/n−→ Y{w|f0p}(k(f0pn))

induced by w 7→ fw|vv, if v denotes the restriction of w and fw|v the residue
degree.

If now b is a prime divisor of f0 and n0 ∈ N such that there is no further split-
ting of primes above b in k(f0p∞)/k(f0pn0), then βm|n(w) = pm−nw|k(f0pn+1) for
all m ≥ n ≥ n0. Letting m tend to infinity this shows that Y∞{w|b},β = 0. Hence
we have an exact sequence of Λ-modules

0 −→ U∞ −→ U∞Sp
−→ Y∞{w|p},β −→ P∞ −→ P∞Sp

−→ 0. (19)

In addition, one has the exact sequence

0 −→ X∞
{w|f0} −→ X∞

{w|f0p∞} −→ Y∞{w|p} ⊕ Y∞{w|∞} −→ 0. (20)

Remark 5.3 Note that the transition maps in the first two limits are induced
by restriction, which coincides with βn+1|n for the places above p and ∞. Hence
Y{w|∞} = Y{w|∞},β and Y{w|p} = Y{w|p},β .

We observe that Y∞{w|∞},q = Λq · σ∞. Putting together (19) and (20) we
therefore deduce that (17) is equivalent to

(Na− σ(a))FittΛq

(
U∞q /ηf0Λq

)
= FittΛq

(
P∞q

)
FittΛq

(
X{w|f0},q

)
. (21)
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Let d be a divisor of f0 such that ψq has conductor d or dp. For any prime divisor
l | f0 we write Il ⊆ Dl ⊆ Gf0p∞ for the inertia and decomposition subgroups
at l. Let Frl denote a lift of the Frobenius element in Dl/Il. We view ψ as a
character of Gf0p∞ via inflation and note that if l - d (i.e. ψ|Il

= 1), then Frl is
a well defined element in Λq.

Lemma 5.4 Let

ε =

{
0, ψ 6= 1,
1, ψ = 1.

Then:

FittΛq(ΛqT
εηd/Λqηf0) = T−ε

∏
l|f0,l-d

(1− Fr−1
l )Λq = FittΛq(X∞

{w|f0},q).

Lemma 5.5

FittΛq(U∞q /ΛqT
εηd) = (Na− σ(a))FittΛq(P∞q )

Proof of Lemma 5.5: Let ψ = ψq. By the Iwasawa main conjecture (Theorem
3.1) and Remark 5.2 we have

char(P∞ψ ) = char
(
(U∞/C̄∞)ψ

)
,

where (again by a slight abuse of notation) for a Λ-module M we set Mψ := Mη

for any η ∈ ψ.
The corollary to [14, App. Prop. 2] implies that

FittΛq(P∞q ) = FittΛq

(
(U∞/C̄∞)q

)
.

Hence it suffices to show that

C̄∞(a)q = Λq · T εηd, (22)
FittΛq(C̄∞,q/C̄∞(a)q) = (Na− σ(a))Λq. (23)

Here C̄∞(a) is the projective limit over

C̄n(a) = closure of 〈ψ(1; gpn+1, a) : g | f0〉Z[Gal(k(f0pn+1)/k)] ∩ En.

(Note that Λqηd is for ψ 6= 1 a group of units. This is true even for d = 1,
because Λqη1 = Λqeψη1 and eψ has augmentation 0.)

In order to prove (22) we set

ψn := ψ(1; dpn+1, a), Gn := Gal(k(f0pn+1)/k), Λn := Zp[Gn].

If bn denotes the annihilator of ψn in Λn, then we have the following exact
sequence of inverse systems of finitely generated Zp-modules

0 −→ (Λn/bn)n −→
(
C̄n(a)

)
n
−→

(
C̄n(a)/Λnψn

)
n
−→ 0.
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The topology of Zp induces on each of these modules the structure of a compact
topological group, so that [23, Prop. B.1.1] implies that lim

←
n

is exact. Hence we

obtain the short exact sequence of Λ-modules

0 −→ lim
←
n

(Λn/bn) −→ C̄∞(a) −→ lim
←
n

(
C̄n(a)/Λnψn

)
−→ 0.

Again by [23, Prop. B.1.1] we obtain

lim
←
n

(Λn/bn) ' Λ/ lim
←
n

bn ' Ληd,

so that
C̄∞(a)/Ληd ' lim

←
n

(C̄n(a)/Λψn). (24)

For d | f0 we identify Gal(k(f0pn+1)/k(dpn+1)) and Gal(k(f0p)/k(dp)). Then
one has (in additive notation) for any g with d | g | f0 the distribution relation

Nk(f0p)/k(dp)

(
ψ(1; gpn+1, a)

)
= [k(f0p) : k(gp)]

 ∏
l|g,l-d

(1− Fr−1
l )

ψ(1; dpn+1, a). (25)

In addition, one obviously has

[k(f0p) : k(gp)]ψ(1; gpn+1, a) = Nk(f0p)/k(gp)

(
ψ(1; gpn+1, a)

)
. (26)

Note that for ψ 6= 1 and d - g one has ψ(Nk(f0p)/k(gp)) = 0. Hence, if ψ 6= 1,
then (25), (26) and (24) show that

A :=

 ∏
g|f0,d-g

[k(f0p) : k(gp)]

 ·Nk(f0p)/k(dp)

annihilates C̄∞(a)/Ληd. Since ψ(A) ∈ Zp is non-trivial and p is invertible in Λq,
the element A is a actually a unit in Λq, which implies C̄∞(a)q = Λqηd.

If ψ = 1 we proceed in almost the same way, but now set ψn :=
ψ(1; pn+1, a)γ−1. In this case we have d = 1.

Sublemma: Let {Cn, fn}n≥0 be a projective system of finitely generated
Zp[Gn]-modules and set C∞ = lim

←
n

Cn. Let q denote a regular prime and let

ψ = ψq. Then:
C∞,q ' (lim

←
n

Cn,ψ)q.

Proof of Sublemma: The natural map Cn −→ ⊕χ∈∆̂QpCn,χ has kernel and
cokernel annihilated by |∆|. Passing to the limit we obtain (again by [23, B.1.1])
an exact sequence of Λ-modules

0 −→W∞ −→ C∞ −→
⊕
χ∈∆̂Qp

lim
←
n

Cn,χ −→ X∞ −→ 0,
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where W∞ and X∞ are annihilated by |∆|. Since |∆| ∈ Λ×q we obtain

C∞,q '

 ⊕
χ∈∆̂Qp

lim
←
n

Cn,χ


q

=

(
lim
←
n

Cn,ψ

)
q

.

Arguing as in the case ψ 6= 1 and applying the Sublemma we obtain

(
C̄∞(a)/ΛTηd

)
q
'

(
lim
←
n

(C̄n(a)/Λnψn)

)
q

'

(
lim
←
n

(C̄n(a)/Λnψn)ψ

)
q

.

Hence it suffices to show that each of the modules (C̄n(a)/Λnψn)ψ is annihilated
by the unit Nk(f0p)/k(p). If∏

g 6=1

ψ(1; gpn+1, a)αg · ψ(1; pn+1, a)α1 with α1, αg ∈ Zp[Gn]

is a unit in Kn = k(f0pn+1), then the prime ideal factorization of the singular
values ψ(1; gpn+1, a) (see [1, Th. 2.4]) implies that α1 has augmentation 0. It
follows that ψ(α1) ∈ Zp[Gal(Kn/K0)] is divisible by γ−1. For any element σ ∈
Gn we write σ = γ(σ)δ(σ) according to the decomposition Gn = Gal(Kn/K0)×
∆. If g 6= 1 each of the factors ψ(1 − Fr−1

l ) = 1 − γ(Frl)−1 in (25) is divisible
by γ − 1.

Altogether this implies that Nk(f0p)/k(p) annihilates
(
C̄∞(a)/ΛTηd

)
q
, hence

C̄∞(a)q = ΛqTηd.
It finally remains to prove (23). For any integral ideal m and any two integral

ideals a and b such that (ab, 6m) = 1 one has the relation

ψ(1;m, a)Nb−σ(b) = ψ(1;m, b)Na−σ(a). (27)

This is a straightforward consequence of [1, Prop. 2.2] and the definition of ψ,
see in particular [17, Théorème principal (b) and Remarque 1 (g)]. Equality
(27) shows that Na−σ(a) annihilates C̄∞,q/C̄∞(a)q. Using the same arguments
as in the proof of Lemma 3.5 (see that paragraph following Claim 2), one shows
that this module is generated by one element. By [14, App. 3 and 8 ] it therefore
suffices to show that (Na− σ(a))Λq is the exact annihilator. From Lemma 5.6
below we obtain finitely many ideals a1, . . . , as and n1, . . . , ns ∈ Λq such that

1 =
s∑
i=1

ni(Nai − σ(ai)).

Consider the element η := T ε
∏s
i=1 ηd(ai)ni , where ηd(ai) :=

{ψ(1; dpn+1, ai)}∞n=0. One has

ηNa−σ(a) = T εηd.
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As a consequence of Lemma 3.5, Claim 2, the module C̄∞(a)q = ΛqT
εηd

is Λq-free. It follows that no divisor of Na − σ(a) annihilates the quotient
C̄∞,q/C̄∞(a)q.

To complete the proof for the localization at regular primes q we add the
following

Lemma 5.6 Let ψ ∈ ∆̂Qp , η ∈ ψ and write R = Zl(ψ) = Zl(η). Let I denote
the ideal of Λψ = R[[Γ]] generated by the elements Na−σ(a) = Na− η(a)γ(a),
where a runs through the integral ideals of Ok such that (a, 6fp) = 1. Then
IΛψ[ 1p ] = Λψ[ 1p ].

Proof As usual we identify R[[Γ]] with R[[T ]] by identifying γ with 1 + T . We
note that Λψ[ 1p ] is a principal ideal domain whose irreducible elements are given
by the irreducible distinguished polynomials f ∈ R[T ]. We fix such f and write

f(T ) = γs + as−1γ
s−1 + . . .+ a1γ + a0, ai ∈ R.

For any n there exist ideals a0, . . . , as (depending on n) such that (ai, 6fp) = 1
and σ(ai)|Kn = γi|Kn . In particular, this implies η(ai) = γi and

s∑
i=0

ai(Nai − σ(ai)) ≡
s∑
i=0

aiNai − f(T )(mod (γp
n

− 1)Λψ).

Inverting p we derive

s∑
i=0

a′i(Nai − σ(ai)) ≡ 1− cf(T )(mod (γp
n

− 1)Λψ[
1
p
])

with a′1, . . . , a
′
s, c ∈ Qp(ψ) = Qp(η). Therefore

1 ∈ IΛψ[
1
p
] + fΛψ[

1
p
] +
⋂
n

(γp
n

− 1)Λψ[
1
p
].

Since (γp
n−1)Λψ[ 1p ] is a strictly decreasing sequence of ideals in a principal ideal

domain we obtain
⋂
n(γ

pn − 1)Λψ[ 1p ] = (0). Consequently, IΛψ[ 1p ] + fΛψ[ 1p ] =
Λψ[ 1p ] for every irreducible distinguished polynomial f and the lemma is proved.

We now assume that q is a singular prime. We write ∆ = ∆′ × P with
p - |∆′| and note that the singular primes q are in one-to-one correspondence
with the Qp-rational irreducible characters of ∆′ ([5, Lem. 6.2(i)]). Assume that
in this way q is associated with ψ ∈ ∆̂′Qp and set χ = ψ × η, where η ∈ P̂ is
arbitrarily chosen. From [6, III,2.1 Theorem] and [6, III,1.7 (13)] we know that
the µ-invariant of P∞χ := P∞⊗Zp[∆]Zp(χ) vanishes. By [7, Lem. 5.6] it follows
that P∞q = 0. The module X∞

{w|f0p} is Zp[[T ]]-torsion and free over Zp, hence
has vanishing µ-invariant (as Zp[[T ]]-module). Again by [7, Lem. 5.6] we derive
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X∞
{w|f0p},q = 0. Since P∞Sp

is an epimorphic image of P∞ and because of the
exactness of

0 −→ X∞
{w|f0p} −→ X∞

{w|f0p∞} −→ Y∞{w|∞} −→ 0

we derive
H2(∆∞)q = Y∞{w|∞},q ' Λqσ∞.

We now compute H1(∆∞)q. Consider the filtration

Λ · ηf0 ⊆ C̄∞(a) ⊆ C̄∞ ⊆ U∞ ⊆ U∞Sp
= H1(∆∞).

By (19) the quotient U∞Sp
/U∞ injects into Y∞{w|p}. This module is a finite free

Zp-module and hence has vanishing µ-invariant. The module U∞/C̄∞ (or rather
any of its χ-components) also has vanishing µ-invariant by [6, III, 2.1 Theorem
and 1.7 (13)]. As shown above, the graded piece C̄∞/C̄∞(a) is annihilated by
Na − σ(a). We claim that Na − σ(a) ∈ Λ×q . In order to prove the claim we
note that Na − σ(a) = Na − δ(a)(1 + T )w with w ∈ Zp and w 6= 0 (since σ(a)
has infinite order in Gf0p∞). Let π denote a prime element in Zp(ψ). Then the
explicit description of q given in [5, Lem. 6.2] easily implies q = (π,∆P )[[T ]],
where ∆P is the kernel of the augmentation map Zp(ψ)[P ] → Zp(ψ). Therefore
Λ/q ' (Zp(ψ)/π))[[T ]]. Hence it suffices to show that the image of Na − σ(a)
under

Λ −→ Zp(ψ)[[T ]] −→ (Zp(ψ)/π) [[T ]] = Λ/q

given by Na − ψ(a)(1 + T )w is non-trivial. This, in turn, is an easy exercise.
Finally we will use the distribution relation

Nk(f0pn+1)/k(frgpn+1)ψ(1; f0pn+1, a) =

 ∏
l|f0,l-frg

(1− Fr−1
l )

ψ(1; frgpn+1, a)

(28)
to show that C̄∞(a)q/Λqηf0 is trivial. Indeed, a statement similar to (24) shows
that this quotient is annihilated by

∏
l|f0(1−Fr−1

l ), which is a unit in Λq (same
argument as with Na− σ(a) as above).

In conclusion, we have now shown that ∆∞
q has perfect cohomology, so that

again (16) is equivalent to (17), which is trivially valid because all modules
involved have trivial µ-invariants.

In the following we want to deduce Conjecture 4.1 from Theorem 5.1. Again
we can almost word by word rely on Flach’s exposition [7].

We have a ring homomorphism

Λ −→ Zp[Gf] = Ap ⊆ Ap =
∏

χ∈ĜQp
f

Qp(χ),

a canonical isomorphism of complexes

∆∞⊗L
ΛAp ' ∆(k(f)), (29)
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and a canonical isomorphism of determinants

(DetΛ∆∞)⊗ΛAp ' DetAp (∆(k(f)))

It remains to verify that the image of the element L⊗1 in DetAp (∆(k(f))) ⊆
DetAp

(
∆(k(f))⊗ZpQp

)
agrees with Aϑp

(
Aϑ∞(L∗(AM, 0)−1)

)
. Let δ denote the

morphism such that the following diagram commutes

DetQ(Λ)(∆∞⊗ΛQ(Λ))⊗Q(Λ)Ap
' //

'
��

DetQ(Λ)(H•(∆∞⊗ΛQ(Λ)))⊗Q(Λ)Ap

δ

��
DetAp(∆(k(f))⊗ZpQp)

' // DetAp(H•(∆(k(f))⊗ZpQp))

We let

φ : DetQp(χ)

(
∆(k(f))⊗ApQp(χ)

)
'

{
Det−1

Qp(χ)(O
×
k(f)⊗ApQp(χ))⊗Qp(χ)DetQp(χ)(X{v|∞}⊗ApQp(χ)), χ 6= 1,

Q, χ = 1

denote the isomorphism induced by ϕ−1
1 and ϕ−1

3 (see (11), (12) and (14)). Note
that φ is defined in terms of cohomology. Then we have to show that∏

v∈Sp

(
E#
v

)−1

φ(δ(L⊗1)) (30)

=


w(fχ)[k(f) : k(fχ)](Na− χ(a))eχξ−1

χ ⊗w∞, fχ 6= 1,
w(1)[k(f) : k(1)](1− χ(p)−1)(Na− χ(a))eχξ−1

χ ⊗w∞, fχ = 1, χ 6= 1
L(χ, 0)−1, χ = 1.

By abuse of notation we also write χ for the composite ring homomorphism
Λ → Qp(χ) and denote its kernel by qχ. Then qχ is a regular prime of Λ and
Λqχ is a discrete valuation ring with residue field Qp(χ). We consider χ as a
character of Gal(k(f0p∞)/k). If χ = ψ × η with ψ ∈ ∆̂ and η a character of
Gal(k(f0p∞)/k(f0p)), then the quotient field of Λqχ is given by Q(ψ) (notation
as in (15)). We set

f1 =

{
f, if p | f,
fp, if p - f.

Let pn be the degree of k(f1)/k(f0p).

Lemma 5.7 The element ω̄ := 1− γp
n

is a uniformizing element for Λqχ .
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Proof We have to show that after localisation at qχ the kernel of χ is generated
by ω̄. Since the idempotents eψ and eη associated with ψ and η, respectively,

are units in Λqχ , one has
(
Λ[ 1p ]

)
qχ

=
(
(Zp(ψ)[[T ]][ 1p ]

)
qχ

and (Qp(ψ)][Γn])qχ
=

Qp(χ). This immediately implies the result.

We apply [7, Lem. 5.7] to

R = Λqχ , ∆ = ∆∞
qχ
, ω̄ = 1− γp

n

.

For a R-module M we put Mω̄ := {m ∈ M | ω̄m = 0} and M/ω̄ := M/ω̄M .
As we already know, the cohomology of ∆ is concentrated in degrees 1 and 2.
We will see that the R-torsion subgroup of Hi(∆), i = 1, 2, is annihilated by
ω̄, hence Hi(∆)tors = Hi(∆)ω̄. We define free R-modules M i, i = 1, 2, by the
short exact sequences

0 −→ Hi(∆)ω̄ −→ Hi(∆) −→M i −→ 0,

and consider the exact sequences of Qp(χ)-vector spaces

0 −→ Hi(∆)/ω̄ −→ Hi(∆⊗L
RQp(χ)) −→ Hi+1(∆)ω̄ −→ 0

induced by the distinguished triangle

∆ ω̄−→ ∆ −→ ∆⊗L
RQp(χ) −→ ∆[1].

Then the map φω̄ of [7, Lem. 5.7] is induced by the exact sequence of Qp(χ)-
vector spaces

0 −→M1/ω̄ −→ H1(∆⊗L
RQp(χ))

βω̄−→ H2(∆⊗L
RQp(χ)) −→M2/ω̄ −→ 0, (31)

where the Bockstein map βω̄ is given by the composite

H1(∆⊗L
RQp(χ)) −→ H2(∆)ω̄ −→ H2(∆)/ω̄ −→ H2(∆⊗L

RQp(χ)).

Note that for the exactness of (31) on the left we need to show that H1(∆) is
torsion-free.

We recall that Gal(k(f0pn+1)/k(f0p)) = Gal(Kn/K0) is isomorphic to (1 +
f0p)/(1 + f0p

n+1) ' (1 + pZp)/(1 + pn+1Zp) via the Artin map. As before we
denote this isomorphism by σ : (1+pZp)/(1+pn+1Zp) → Gal(Kn/K0) and also
write σ : 1 + pZp → Γ. Passing to the limit we obtain a character

χell : Γ −→ 1 + pZp

uniquely defined by σ(χell(τ) mod (1 + pn+1Zp)) = τ |Kn for all τ ∈ Γ. Note
that one has

ψ(1; f0pn+1, a)τ = ψ(χell(τ); f0pn+1, a)

for all n ≥ 0 and τ ∈ Γ.
For a place w | p in k(f)/k and u ∈ k(f) we write uw = σw(u), where

σw : Qc → Qc
p defines w.
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Lemma 5.8 Define for l | f0 the element cl ∈ Zp by γclp
n

= Fr−fl

l , where fl ∈ Z
is the residue degree at l of k(f)/k. Put cp = logp(χell(γp

n

))−1 ∈ Qp. Then βω̄
is induced by the map

H1(∆(k(f)))⊗Qp = O×
k(f),Sp

⊗Qp −→ X{w|fp∞}⊗Qp = H2(∆(k(f)))⊗Qp

given by

u 7→
∑
l|f0

cl
∑
w|l

ordw(u) · w + cp
∑
w|p

Trk(f)w/Qp

(
logp(uw)

)
· w.

Proof As in [7, Lem. 5.8].

Let a1, a2 denote integral Ok-ideals and set b = lcm(a1, a2), c = gcd(a1, a2).
In the following we will frequently apply the formulas

[k(b) : k(a1)k(a2)] =
w(b)w(c)
w(a1)w(a2)

, k(a1) ∩ k(a2) = k(c),

which follow easily from [24, (15)]. Without loss of generality we may assume
that w(f0) = 1. We also note that w(p) = 1, because p - 2 and p 6= p̄. This
implies w(g) = 1 for any multiple g of f0 or p.

The case of no trivial zeros We let χ ∈ ĜQp

f be a non-trivial character such
that χ|Dp 6= 1. We first show that P∞qχ

= 0. From Lemma 3.7 we know that
multiplication by γp

n − 1 on P∞ has finite kernel and cokernel. It follows that
the characteristic power series h ∈ Zp[[Γ]] of P∞ (considered as a module over
Zp[[Γ]]) is coprime with γp

n −1. Hence h is a unit in Λqχ which annihilates P∞qχ
.

From (19) and Remark 5.3 we obtain the short exact sequence

0 −→ U∞qχ
−→ U∞Sp,qχ

−→ Y∞{w|p},qχ
−→ 0

Moreover, Y∞{w|p} = Zp[G∞/Dp], so that χ|Dp 6= 1 implies Y∞{w|p},qχ
= 0. It

follows that H1(∆) = U∞Sp,qχ
' U∞qχ

and Lemma 5.5 implies

U∞qχ
= (Na− σ(a))(1− γ)εηfχ,0 · Λqχ ,

where fχ,0 is the divisor of f0 such that ψ has conductor fχ,0 or fχ,0p. Recall
also that

ε =

{
0, ψ 6= 1,
1, ψ = 1.

If ψ = 1, then η 6= 1 and 1 − χ(γ) = 1 − η(γ) 6= 0, so that 1 − γ is a unit in
Λqχ . Since also Na − σ(a) ∈ Λ×qχ

, we may choose β1 = ηfχ,0 as Λqχ-basis of
M1 = U∞qχ

.
Since P∞{w|fp} is a quotient of P∞ we obtain P∞{w|fp},qχ

= 0. Therefore
H2(∆) = X∞

{w|f0p∞},qχ
. From the short exact sequence

0 −→ X∞
{w|f0p} −→ X∞

{w|f0p∞} −→ Y∞{w|∞} −→ 0
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together with the fact that X∞
{w|f0p} is Λ-torsion, we derive

M2 = Y∞{w|∞} = Λqχ · β2 with β2 = σ∞.

We now apply [7, Lem. 5.7] with ω̄ = 1 − γp
n

. Recall that H2(∆)tors =
X∞
{w|f0p},qχ

and this module is annihilated by ω̄. Indeed, ω̄ ∼ 1 − γp
m

for
m ≥ n. For large m one has γp

m ∈ Dl for each l | f0p. It follows that 1 − γp
m

annihilates X∞
{w|f0p}, so that the assumptions of [7, Lem. 5.7] are satisfied. The

element β̄1 ∈M1/ω̄ is the image of the norm-compatible system

ηfχ,0 =
{
ψ(1; fχ,0pn+1, a)

}
n≥0

in M1/ω̄ ⊆ O×
k(f),Sp

⊗Zp[Gf]Qp(χ). We write

f = f0p
ν , fχ = fχ,0p

ν′ .

and recall the definition of ξχ in (8). We will show that

β̄1 = Tχξχ⊗[k(f) : k(f0pν
′
)]−1

with

Tχ =

{
(1− χ−1(p)), if fχ 6= 1,
1, if fχ = 1.

If ν = 0, then f1 = fp, fχ,0 = fχ and we have the following diagram of fields

k(f1)
w(fχ)

ttttttttt

k(f)k(fχp)

tttttttttt

k(f) k(fχp)

ttttttttt

k(fχ)

Hence we obtain from[1, Th. 2.3]

β̄1 = Nk(f1)/k(f)ψ(1; fχp, a)⊗1 = Tχξχ⊗1.

Note that in this case [k(f) : k(f0pν
′
)] = 1.

If ν > 0 and ν′ = 0 we obtain the diagram
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k(f0pν) = k(f)
w(fχ)

w(fχpν )

nnnnnnnnnnnn

k(f0)k(fχpν)

nnnnnnnnnnnnn

k(f0) k(fχpν)

nnnnnnnnnnnn

k(fχ,0) = k(fχ)

Writing |Gf|eχ = tχ and t̄χ for the image of tχ in Z[Gal(k(fχ)/k)] we therefore
have

β̄1 = ψ(1; fχpν , a)⊗1
= tχψ(1; fχpν , a)⊗1/|Gf|

= t̄χTχξχ⊗
w(fχpν)
w(fχ)

1
[k(fχpν) : k]

= Tχξχ⊗
w(fχpν)
w(fχ)

1
[k(fχpν) : k(fχ)]

= Tχξχ⊗[k(f) : k(f0)]−1.

The case ν, ν′ > 0 is similar. Note that in this case χ(p) = 0.
For each l | f0 we choose a place wl above l in k(f)/k. It is easy to see that

Y{w|l}⊗AQp(χ) =

{
0, χ|Dl

6= 1,
Qp(χ) · wl, χ|Dl

= 1.

We choose for each l | f0 with χ|Dl
= 1 an element xl ∈ k(f)× such that

ordwl
(xl) 6= 0

ordw(xl) = 0 for all w 6= wl.

Then Qp(χ)xl
val−→ Y{w|l}⊗Zp[Gf]Qp(χ) = Qp(χ)wl is an isomorphism. We set

J = {l | f0 : χ|Dl
= 1}, xJ :=

∧
l∈J

xl, wJ :=
∧
l∈J

wl and cχ :=
∏
l∈J

cl.

Since O×
k(f)⊗AQp(χ) is a Qp(χ)-vector space of of dimension 1, the element β̄1

is necessarily a generator. Therefore {β̄1} ∪ {xl : l ∈ J} is a Qp(χ)-basis of
H1(∆⊗L

RQp(χ)) = O×
k(f),Sp

⊗AQp(χ). Moreover, {β̄2} ∪ {wl : l ∈ J} is a Qp(χ)-
basis of Y{w|f0p∞}⊗AQp(χ). Finally note that β̄2 = σ|k(f). From (31) we deduce

(φ ◦ φ−1
ω̄ )(β̄−1

1 ⊗β̄2) = φ(β̄−1
1 ∧ x−1

J ⊗βω̄(xJ) ∧ β̄2)
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Applying Lemma 5.8 we obtain further

(φ ◦ φ−1
ω̄ )(β̄−1

1 ⊗β̄2) = cχφ(β̄−1
1 ∧ x−1

J ⊗val(xJ) ∧ β̄2)
= cχ(β̄−1

1 ⊗β̄2) (32)

= cχ[k(f) : k(f0pν
′
)]T−1

χ ξ−1
χ ⊗σ|k(f)︸ ︷︷ ︸

=:A

.

In order to apply [7, Lem. 5.7] we compute the exponent e such that ω̄eβ−1
1 ⊗β2

is a Λqχ-basis of DetΛqχ
(∆∞

qχ
). By the proof of [7, Lem. 5.7] one has

e =
∑
i∈Z

(−1)i+1 dimQp(χ)

(
Hi(∆)ω̄

)
= −dimQp(χ)

(
X∞
{w|f0p}⊗AQp(χ)

)
χ6=1
= −dimQp(χ)

⊕
l|f0p

Zp[G∞/Dl]⊗AQp(χ)


= −|J |.

As elements of (DetΛ(∆∞))qχ
we have

L = (Na−σ(a))η−1
f0
⊗σ∞ = (Na−σ(a))[k(f0p) : k(fχ,0p)][Trk(f0p)/k(fχ,0p)ηf0 ]

−1⊗σ∞,

because Trk(f0p)/k(fχ,0p) = [k(f0p) : k(fχ,0p)] as elements of Λqχ (multiply both
sides with eχ). From the distribution relation we derive further

L = (Na− σ(a))[k(f0p) : k(fχ,0p)]
∏

l|f0,l-fχ,0

1
1− Fr−1

l

η−1
fχ,0

⊗σ∞

= (Na− σ(a))[k(f0p) : k(fχ,0p)]
∏

l|f0,l-fχ,0
χ(l) 6=1

1
1− Fr−1

l

∏
l∈J

ω̄

1− Fr−1
l︸ ︷︷ ︸

=:B

(
ω̄eβ−1

1 ⊗β2

)
.

Now [7, Lem. 5.7] implies

φω̄(B−1(L⊗1)) = β̄−1
1 ⊗β̄2,

which in conjunction with (32) shows that φ(B−1(L⊗1)) = A or φ(L⊗1) = AB.
For l ∈ J we have by definition of cl the equality Fr−fl

l = γclp
n

and therefore

χ

(
ω̄

1− Fr−1
l

)
= χ

(
(1− γp

n

)(1 + Fr−1
l + . . .+ Fr−fl+1

l )
1− γclpn

)
=
fl

cl
. (33)
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Using [k(f) : k(f0pν
′
)][k(f0p) : k(fχ,0p)] = w(fχ)[k(f) : k(fχ)] it follows that

AB =

(Na− σ(a))w(fχ)[k(f) : k(fχ)]

 ∏
l|f0,l-fχ,0
χ(l) 6=1

1
1− Fr−1

l


(∏

l∈J

fl

)
T−1
χ ξ−1

χ ⊗σ|k(f).

Recalling the definition of the elements Ev from (13) we observe that this is
exactly the equality (30).

The case of trivial zeros We let χ ∈ ĜQp

f be a non-trivial character such that
χ|Dp = 1. Note that in this case p - fχ, i.e. fχ,0 = fχ. For any subgroup H of G∞
we define JH to be the kernel of the canonical map Zp[[G∞]] → Zp[[G∞/H]].

As in the case of no trivial zeros we can show that P∞qχ
= 0. From (19) we

obtain the short exact sequence

0 −→ U∞qχ
−→ U∞Sp,qχ

−→ Y∞{w|p},qχ
−→ 0 (34)

where now Y∞{w|p},qχ
' Zp[G∞/Dp]⊗ΛΛqχ ' Λ/JDp⊗ΛΛqχ ' Λqχ/JDpΛqχ .

Since Γ ⊆ Dp one has γp
n − 1 ∼ γ − 1. It follows that Y∞{w|p},qχ

' Qp(χ), and
in addition, the structure theorem for modules over principal ideal rings implies
(γ − 1)U∞Sp,qχ

= U∞qχ
.

For a finite set S of places of k we set U∞k(fχ),S = lim
←
n

(
O×
k(fχpn+1),S⊗ZZp

)
.

Lemma 5.9 a) The sequence

0 −→ U∞k(fχ),Sp

γ−1−→ U∞k(fχ),Sp
−→ U∞k(fχ),Sp,Γ

−→ 0

is exact.
b) The canonical map U∞k(fχ),Sp,Γ

−→ O×
k(fχ,0p),Sp

⊗ZZp is injective.

Proof One has
(
U∞k(fχ),Sp

)Γ

= lim
←
n

(
O×
k(fχp),Sp

⊗ZZp
)

= 0. Hence a) is imme-

diate. For b) one has to prove

(γ − 1)U∞k(fχ),Sp
= {u ∈ U∞k(fχ),Sp

| u0 = 1}.

The inclusion ”⊆” is obvious. Suppose that u0 = 1. Then for each n Hilbert’s
Theorem 90 provides an element βn ∈ k(fχpn+1)×/k(fχp)× such that

βγ−1
n = un and Nk(fχpn+2)/k(fχpn+1)(βn+1) ≡ βn(mod k(fχp)×).

Let S be a finite set of places of k containing Sp and such that Pic(Ok(fχp),S) = 0.
Then we may assume that

βn ∈ O×
k(fχpn+1),S/O

×
k(fχp),S .
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In the following diagram all vertical maps are induced by the norm,

0 // O×
k(fχp),S⊗Zp //

��

O×
k(fχpn+2),S⊗Zp //

��

O×
k(fχpn+2),S

⊗Zp

O×
k(fχp),S

⊗Zp

//

��

0

0 // O×
k(fχp),S⊗Zp // O×

k(fχpn+1),S⊗Zp //
O×

k(fχpn+1),S
⊗Zp

O×
k(fχp),S

⊗Zp

// 0

Since all involved modules are finitely generated Zp-modules, the functor
lim
←
n

is exact. In addition, the projective limit on the left hand side is obviously

trivial and therefore

U∞k(fχ),S ' lim
←
n

O×
k(fχpn+1),S⊗Zp
Ok(fχp),S⊗Zp

.

Moreover, the argument used to prove (19) also shows that U∞k(fχ),S '
U∞k(fχ),Sp

' U∞k(fχ),{w|p∞} for any set S ⊇ Sp, so that the inclusion ”⊇” fol-
lows.

We now choose an auxiliary prime ideal b of Ok such that

(b, fp) = 1, w(b) = 1, χ(b) 6= 1.

In order to be able to deal also with the case fχ = 1 we introduce the element

η = {ψ(1; fχbpn+1, a)}∞n=0 ∈ lim
←
n

O×
k(fχbpn+1).

With respect to the injection U∞k(fχ),Sp,Γ
−→ O×

k(fχp),Sp
⊗Zp the element

Nk(fχbp)/F (η) maps to Nk(fχbp)/F (η0), where here F denotes the decomposi-
tion subfield at p in k(fχ)/k. One has the following diagram of fields

k(f)

ww
ww

ww
ww

w

•

ssssssssss

k(f)Dp k(fχ)

tttttttttt

F

k(f)ker(χ)
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Since by definition of F one has σ(p)|F = id, we derive from the distribution
relation

Nk(fχbp)/F (η0) = (1− σ(p)−1)Nk(fχb)/Fψ(1; fχb, a) = 1,

so that Lemma 5.9 yields a unique element z∞ ∈ U∞k(fχ),Sp
⊗ZpQp such that

(γ − 1)z∞ =
1

[k(fχbp) : F ]
Nk(fχbp)/F (η). (35)

From Lemma 5.5 and Na− σ(a) ∼ 1 we deduce U∞qχ
= Λqχ

ηfχ
. Again from the

distribution relations [1, Th. 2.3] we deduce

Nk(fχbp)/F η = (1− Fr−1
b )Nk(fχp)/F ηfχ .

Combining (34) and (35) we see that

H1(∆) = U∞Sp,qχ
= Λqχ · β1 with β1 = z∞.

Note that

β̄1 =

{
zµ, if p | f, f = f0p

µ+1, µ ≥ 0,
Nk(fp)/k(f)(z0), if p - f,

when we regard β̄1 as an element in O×
k(f),Sp

⊗Zp.
Let v denote a place of k(f) above w, where w | p in F/k. Using the above

diagram we compute

Trk(f)v/Qp

(
logp

(
Nk(fχb)/k(fχ) (ψ(1; fχb, a))

))
=

|Dp|
[k(fχ) : F ]

logp
(
Nk(fχb)/F (ψ(1; fχb, a))

)
=

|Dp|
[k(fχ) : F ]

logp(χell(γ))
1

logp(χell(γ))
logp

(
Nk(fχb)/F (ψ(1; fχb, a))

)
︸ ︷︷ ︸

=:B

By the main result of [1] the quantity B is well known. We briefly recall the
construction of [1]. Let k∞ denote the unique Zp-extension of k which is un-
ramified outside p. Let kn ⊆ k∞ denote the extension of degree pn above k. We
put Fn := Fkn and consider the diagram of fields

k(fχbpn+1)

rrrrrrrrrr

k(fχbp) •

qqqqqqqqqqqq

k(fχb) Fn

qqqqqqqqqqqq

F = F0
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For each n Hilbert’s Theorem 90 provides an element βn ∈ F×n /F
× such

that
βγ−1
n = Nk(fχbpn+1)/Fn

(
ψ(1; fχbpn+1, a)

)
.

If we put κn := NFn/F (βn) ∈ F×/ (F×)p
n

and κ∞ := {κn}∞n=0 ∈
limF×/ (F×)p

n

, then the main result of [1] says

B = ordw(κ∞).

From the construction of z∞ it is clear that one has

βn = Nk(fχbpn+1)/Fn
(zn) in F×n /F

×,

and consequently,
κ∞ = {Nk(fχbp)/F (z0)}∞n=0.

We let w′ | w denote the place in k(fχ)/F defined by v and set cp(γ) :=
logp(χell(γ))−1. Then

Trk(f)v/Qp

(
logp

(
Nk(fχb)/k(fχ) (ψ(1; fχb, a))

))
=

|Dp|
[k(fχ) : F ]

cp(γ)−1ordw(Nk(fχbp)/F z0)

=
|Dp|cp(γ)−1

[k(fχ) : F ]
ordw(Nk(fχp)/FNk(fχbp)/k(fχp)z0)

=
|Dp|cp(γ)−1[k(fχbp) : k(fχp)]

[k(fχ) : F ]
ordw(Nk(fχp)/F z0)

=
|Dp|cp(γ)−1w(1)[k(b) : k(1)]

[k(fχ) : F ]
ordw(Nk(fχ)/F (Nk(fχp)/k(fχ)z0))

=
|Dp|cp(γ)−1w(1)[k(b) : k(1)]

[k(fχ) : F ]
fw′/wordw′(Nk(fχp)/k(fχ)z0)

= |Dp|cp(γ)−1w(1)[k(b) : k(1)]e−1
v/w′ordv(Nk(fχp)/k(fχ)z0)

= fpcp(γ)−1w(1)[k(b) : k(1)]ordv(Nk(fχp)/k(fχ)z0)

We now apply Lemma 5.8. The congruence in the following computation is
modulo Y{w|f0}⊗ZpQp.
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βω̄
(
Nk(fχb)/k(fχ)(ψ(1; fχb, a))

)
≡ cp

∑
v|p

Trk(f)v/Qp

(
logp(Nk(fχb)/k(fχ)(ψ(1; fχb, a)))

)
· v

=
cp

cp(γ)
fpw(1)[k(b) : k(1)]

∑
v|p

ordv
(
Nk(fχp)/k(fχ)(z0)

)
· v

=

{
fp

pn [k(b) : k(1)] w(1)
w(fχ)

∑
v|p ordv(Nk(f0p)/k(f0)z0) · v, if p - f,

fp

pnw(1)[k(b) : k(1)][k(fχp) : k(fχ)]
∑
v|p ordv (z0) · v, if p | f

=

{
fp

pn [k(b) : k(1)] w(1)
w(fχ)

∑
v|p ordv(Nk(f0p)/k(f0)z0) · v, if p - f,

fp

pnw(1)[k(b) : k(1)][k(fχp) : k(fχ)][k(fχpµ+1) : k(fχp)]
∑
v|p ordv (zµ) · v, if p | f

=

{
fp

pn [k(b) : k(1)] w(1)
w(fχ)

∑
v|p ordv(Nk(f0p)/k(f0)z0) · v, if p - f,

fp

pnw(1)[k(b) : k(1)][k(fχpµ+1) : k(fχ)]
∑
v|p ordv

(
β̄1

)
· v, if p | f

=

{
fp

pn

w(1)
w(fχ) [k(b) : k(1)]

∑
v|p ordv(β̄1) · v, if p - f,

fp

pnw(1)[k(b) : k(1)][k(fχpν) : k(fχ)]
∑
v|p ordv

(
β̄1

)
· v, if p | f

We first assume that p | f and use this data to compute

(φ ◦ φ−1
ω̄ )(β̄−1

1 ⊗β̄2)
= φ

(
β̄−1

1 ∧ [Nk(fχb)/k(fχ)ψ(1; fχb, a)]−1 ∧ x−1
J ⊗βω̄(xJ) ∧ βω̄(Nk(fχb)/k(fχ)(ψ(1; fχb, a))) ∧ β̄2

)
= cχ

fp

pn
w(1)[k(b) : k(1)][k(fχpν) : k(fχ)]×

φ
(
β̄−1

1 ∧ [Nk(fχb)/k(fχ)(ψ(1; fχb, a))]−1 ∧ x−1
J ⊗val(xJ) ∧ val(β̄1) ∧ β̄2

)
= −cχ

fp

pn
w(1)[k(b) : k(1)][k(fχpν) : k(fχ)][Nk(fχb)/k(fχ)(ψ(1; fχb, a))]−1⊗σ∞|k(f)︸ ︷︷ ︸

=:A

.

On the other hand we note that fχ = fχ,0 and compute

L = (Na− σ(a))[k(f0p) : k(fχp)]
∏

l|f0,l-fχ

1
1− Fr−1

l

η−1
fχ
⊗σ∞.

In addition, one has

(γ − 1)β1 = (γ − 1)z∞ =
1

[k(fχbp) : F ]
Nk(fχbp)/F (η)

and
ω̄

1− γ
= T := 1 + γ + . . .+ γp

n−1.
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This implies the equality

ω̄β1 = (1− γ)Tβ1 = −T 1
[k(fχbp) : k(fχp)]

Nk(fχbp)/k(fχp)(η)

= −T 1
[k(fχbp) : k(fχp)]

(1− σ(b)−1)ηfχ

= −T 1
w(1)[k(b) : k(1)]

(1− σ(b)−1)ηfχ

in U∞Sp,qχ
. Since e = −(|J |+ 1) we obtain L = Bω̄e(β−1

1 ⊗β2) with

B = −T (Na− σ(a))[k(f0p) : k(fχp)](w(1)[k(b) : k(1)])−1 ×

(1− σ(b)−1)
∏

l|f0,l-fχ

χ(l) 6=1

1
1− Fr−1

l

∏
l∈J

ω̄

1− Fr−1
l

.

Again we deduce from [7, Lem. 5.7] that φ(L⊗1) = AB. From

[k(fχpν) : k(fχ)][k(f0p : k(fχp)] = [k(f) : k(fχ)]

(recall again that w(p) = w(f) = 1) and

Nk(fχb)/k(fχ)(ψ(1; fχb, a)w(fχ)) =

{
(1− σ(b)−1)ψ(1; fχ, a), if fχ 6= 1,
δ(Ok,a

−1)
δ(b,a−1b) , if fχ = 1,

we compute

AB =

= w(fχ)[k(f) : k(fχ)](Na− σ(a))
∏
l|f0

χ(l) 6=1

1
1− Fr−1

l

∏
l∈J∪{p}

fl ×

{
ψ(1; fχ, a)−1⊗σ∞|k(f), if fχ 6= 1,

(1− σ(b)−1) δ(Ok,a
−1)

δ(b,a−1b)⊗σ∞|k(f), if fχ = 1.

Finally we use in the case fχ = 1 the relation(
δ(Ok, a−1)
δ(b, a−1b)

)1−σ(p)−1

=
(
δ(Ok, a−1)
δ(p, a−1p)

)1−σ(b)−1

and recover the equation (30). The case p - f is completely analogous.

The case of the trivial character In this case β1 = η1 and we first have to
compute β̄1. If p - f, the β̄1 = Nk(fp)/k(f)(ψ(1; q, a)) and the distribution relation
[1, Th. 2.3 b)] implies

β̄1 = Nk(q)/k(1)(ψ(1; q, a)w(1)) =
δ(Ok, a−1)
δ(p, pa−1)

,
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where δ denotes the function of lattices defined in [18, Th. 1]. We recall that

δ(L,L)12 =
∆(L)[L:L]

∆(L)
.

If p | f, then β̄1 = ψ(1; pν , a), where again f = f0p
ν .

We now want to compute (φ ◦ φ−1
ω̄ )(β̄−1

1 ⊗β̄2). Since χ is now trivial we no
longer have X{w|∞}⊗AQp(χ) = Y{w|∞}⊗AQp(χ), and therefore have to take
into account the short exact sequence

0 −→ X∞
{w|f0p} −→ X∞

{w|f0p∞} −→ Y∞{w|∞} −→ 0 (36)

in the definition of φω̄. Recall here that H2(∆) = X∞
{w|f0p∞} and Y∞{w|∞} = M2.

A lift of σ|k(f) ∈ M2/ω̄ = Y{w|∞} is given by σ|k(f) − wp, where wp denotes a
fixed place of k(f) above p. We obtain

(φ ◦ φ−1
ω̄ )(β̄−1

1 ⊗β̄2) = φ(β̄−1
1 ∧ x−1

J ⊗βω̄(xJ) ∧ (σ|k(f) − wp))

= cχφ(β̄−1
1 ∧ x−1

J ⊗val(xJ) ∧ (σ|k(f) − wp))

Next, we compute val(β̄1) and express the result in terms of σ|k(f)−wp. If p - f,
then

val(β̄1) =
1
12

(Na− 1)val
(

∆(Ok)
∆(p)

)
.

We use ∆(Ok)/∆(p) ∼ p12 and obtain in Y{w|f0p}⊗AQp(χ)

val(β̄1) = (Na− 1)
∑
w|p

ordw(p) · w

= (Na− 1)|Ip|
∑
w|p

w

= (Na− 1)|Ip|
|Gf|
|Dp|

wp

= (Na− 1)
[k(f) : k]

fp
wp

An explicit splitting of the short exact sequence (12) is given by

w 7→ w − 1
[k(f) : k]

Trk(f)/kσ|k(f).

Under this map val(β̄1) maps to −(Na − 1) [k(f):k]
fp

(σ|k(f) − wp) in
X{w|fp∞}⊗AQp(χ).

Recall that ϕOk
denotes the Euler function attached to the ring Ok. In the

case p | f we compute from [1, Th. 2.4]

val(β̄1) =
Na− 1
ϕOk

(pν)

∑
w|p

ordw(p) · w

=
Na− 1
ϕOk

(pν)
[k(f) : k]

fp
wp
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So we derive the closed formula

val(β̄1) = − Na− 1
ϕOk

(pν)
[k(f) : k]

fp
(σ|k(f) − wp)

as elements of X{w|fp∞}⊗AQp(χ).
This implies

(φ ◦ φ−1
ω̄ )(β̄−1

1 ) = −cχ
ϕOk

(pν)
Na− 1

fp

[k(f) : k]︸ ︷︷ ︸
=:A

On the other hand we compute for L⊗1

L⊗1 = (Na− σ(a))η−1
f0
⊗σ

= (Na− σ(a)) [k(f0) : k(1)]
w(1)
w(f0)

[
Trk(f0pn+1)/k(pn+1)η

−1
f0

]−1

⊗σ

= (Na− σ(a)) [k(f0) : k(1)]
w(1)
w(f0)

∏
l|f0

1
1− Fr−1

l

η−1
1 ⊗σ

= (Na− σ(a)) [k(f0) : k(1)]
w(1)
w(f0)

∏
l|f0

ω̄

1− Fr−1
l︸ ︷︷ ︸

=:B

ω̄e(β−1
1 ⊗β̄2).

It follows from (33) together with

[k(f) : k] = hk
w(f)
w(1)

ϕOk
(f), [k(f0) : k(1)] =

w(f0)
w(1)

ϕOk
(f0)

that φ(L⊗1) = AB = −fp

(∏
l|f0 fl

)
w(1)
hk

. Since ζ∗k(0) = − hk

w(1) this concludes
the proof.
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