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Abstract

We give a proof of litaka’s conjecture C; using only elementary methods from
algebraic geometry.

1 INTRODUCTION

We consider the following situation. Let X be a smooth projective surface and let B be a
smooth projective curve, defined over an algebraically closed field k of characteristic zero.
Let f : X — B be a surjective morphism and let wx,/p denote the relatively canonical
sheaf of differentials. Let us assume that the generic fibre is smooth of genus ¢g and let us
denote by § the number of singular points in the fibres. We write A,, for the determinant of
fsw 5 and A, for the degree of A,. Finally, let us assume that f is a relatively minimal
mode{, which means that there are no exceptional curves among the fibres.

In this situation, litaka’s conjecture Cs 1 is well-known:

Theorem 1.1 If, in the situation above, Xy denotes a general fibre, we have the subaddi-
tivity
r(X) > K(B) + K(Xp)

of the Kodaira dimensions.

We immediately notice that, in order to give a proof for this, we may assume both B and
X3 to have genus greater than zero.

The result 1.1 contributes to the Enriques-Kodaira classification of surfaces, as it is pre-
sented in [1], VI., for example. A proof for 1.1 is given in [1], ITI. 18.4, and as it is worked
out there, Iitaka’s conjecture C5 1 basically follows from:

Theorem 1.2 Keeping the assumptions made above and assuming in addition that f is
non-isotrivial, we have A1 > 0.

There have been several kinds of proof for 1.2, but most of them used analytic methods.
In [1], IT1.17, for example, a proof is given by considering the period map. In case this map
is not constant, 1.2 follows from constructing a section of A,,, which locally arises from
modular forms. For the constant case, the image of the period map is exactly the period
point of all the smooth fibres. After excluding the existence of singular fibres, 1.2 then
follows from Torelli’s theorem. Other proofs used analytic methods in order to achieve the
weak positivity of fuwy/p (see 2.2) like Fujita ([3]), Kawamata ([5]) or Viehweg ([8]). In
case algebraic methods were used, those were developed in a more general set up in order
to apply for higher dimensions, too.

But in the special case of a familiy of curves over a curve, one can give both an elementary
and a purely algebraic proof of 1.2 based on positivity methods. The aim of this paper is
to present this proof, which exclusively uses methods from algebraic geometry and hence
yields an algebraic proof for 1.1.



2 PosiTivity

First we want to recall the following positivity notations and give some properties, which
we shall need below. We refer to [2], 5., for example. A curve is always assumed to be
irreducible.

Definition and Lemma 2.1 Let £ be an invertible sheaf on a smooth projective variety
Y. We call £ big if its Kodaira dimension is maximal or, equivalently, some power of £
contains an ample subsheaf. We call £ nef (numerically free) if for every curve C' on X
one has deg £, > 0 or, equivalently, if for every v > 0 and for every ample invertible sheaf
H one has that £ @ H is ample. (Sometimes the notion numerically effective is used as
well.) This property implies that the self intersection number of £ is not negative and that
it is positive if and only if £ is big. Moreover, a locally free sheaf G on Y is called weakly
positive if every quotient sheaf of G has non-negative degree, even after a finite covering.

The following theorem is well known:
Theorem 2.2 The direct image sheaf f.wx/p is weakly positive.

There have been proofs by Fujita ([3]) and Kawamata ([5]), using analytic methods, and
there have been several generalizations. By means of Kollar’s vanishing theorem one
obtains a proof ([6], see also [10], Theorem 2.41), which is based on methods from algebraic
geometry.

Corollary 2.3 The relatively canonical sheaf wx/p is nef and hence for the self inter-
section number we have c1(wx/p)* > 0.

PROOF: Let C be an irreducible curve on X. Since f is assumed to be a relatively
minimal model, we have c1(wx/p).C' > 0 in case C is a fibre. If not, then the natural
map f*fiwx/p — wx/p restricted to C' is surjective, and

deg wx/B e = ci(wx/p).C >0,

since fiwx/p is weakly positive. Thus wx/p is nefand by 2.1 we obtain that c1(wx/p )2 >
0. O

We should remark here that, in case g > 1, one even obtains strict positivity for ¢; (wx /B )2.
We will, however, not need this in the sequel.

3 REDUCTIONS

In order to show 1.2 we may, without loss of generality, make some reductions, which we
shall deduce in the following.

First of all, we may assume f to be a semi-stable model, which means that all the fibres are
reduced normal crossing divisors. For if this is not the case, then for some finite covering



7 : B' — B, for the fibre product X’ = X xpg B’ with projections f’ : X’ — B’ and
7'+ X! - X and for a desingularization d : X" — X’ the induced map f” : X" — B’ will
be semi-stable. Considering the trace map d.wx» — wxr, which induces an injective map
dwwxn /g — wxi /g = ™ w x/B > and applying flat base change we obtain an injective map
flwxn g = fidwxnp = fiT”" wx/p = 7 fuwx/p. Comparing degrees, we notice that
if 1.2 holds for the semi-stable model f”, it will hold for f as well.

Our next reduction is based on the following lemma which is due to Mumford ([7], 5.10)
and follows from an easy calculation of the Riemann Roch formulae on X and on B.

Lemma 3.1 For every n € N we have

An = (Z> ' (12A1 - 5) A= (Z> ~a(wx/p)’ + M

in case g > 1 and 12\, = nd = 12n\1 in case g = 1.

In case g > 1 the above formula tells us that 121 > 4 (since by 2.3 we have ¢1 (wx/ 5 )* > 0)
and, moreover, A\; = 0 implies A, < 0 for all n € N. In case g = 1 we have 12)\; = § and
An = n - A1. Hence in both cases, in order to show A; > 0, we may assume from now on
that all the fibres are smooth and, moreover, it suffices to show A,, > 0 for some n € N.

More reductions can be made considering the genus g of the fibres. We can immediately
exclude the case g = 1, for if all the fibres are smooth elliptic curves, then associating to
each b the j-invariant of the corresponding fibre gives a morphism j : B — A!, which has
to be constant and thereby forces f to be isotrivial.

Moreover, we may assume that all the fibres are smooth non-hyperelliptic curves of genus
g > 2, as we shall prove now. To this end, we have to distinguish two cases. First, let us
assume that all the fibres are smooth and hyperelliptic curves. Then f again turns out to be
isotrivial. To see this, let us consider the projective bundle 7 : P( f,w X/B ) — B associated
to fiwx/p and let us denote by P the image of the morphism ¢ : X — P( fuwx/p ), which
corresponds to the surjective map f* fuwx/p — wx/p - Since all the fibres are assumed to
be hyperelliptic and thus ¢ is given fibrewise by double coverings of P!, P turns out to be
a ruled suface. Denoting by A the discriminant, the branched covering trick ([1], 1.18.2)
implies that there exists an étale covering v : B’ — B such that the pull back of A to I
has 2g + 2 disjoint components, where P’ denotes the fibre product. These components
correspond to 2g + 2 disjoint sections of the bundle 7’ : ' — B’, forcing it to be trivial,
since g > 1. Hence the corresponding morphism f’: X’ — B’ is isotrivial, and by property
of the fibre product, so is f.

For the second case we need the following
Lemma 3.2 For n € N sufficiently large, the multiplication map
Hn : Sn(f*wX/B> — f*w?(/B

is surjective outside hyperelliptic fibres.

PROOF: Let Xj be a non-hyperelliptic fibre of f, thus wx, is very ample and we consider
the embedding X; — lP’g_1 given by the global sections of wx,. We may identify those
sections with H? (]P’z_l, Opg-1(1)) which implies an isomorphism

k

S (HO(Xp,wx,)) = HY(BE™, Opgr(n)
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for every n € N. Considering the long exact cohomology sequence corresponding to the
ideal sheaf of X; and twisting by n, Serre’s Vanishing Theorem implies a surjective map

HOPL !, Opy-1(n) — HO(Xp0%,),
if we choose n to be sufficiently large. Thus we obtain a surjective map
S™(H®(Xp, wx,)) = H*(Xp, w%,),
and by base change we are done. O

Now in case some of the fibres are hyperelliptic, we consider the factorization of u, over
its image sheaf. Since symmetric products of weakly positive sheaves are again weakly
positive (see for example [10], 2.20), S™( fswx,p ) is weakly positive by 2.2, and we obtain
by definition of weak positivity that the image sheaf has non-negative degree, hence A\, > 0
and by 3.1 we are done.

Putting all this together, it remains, in order to prove 1.2, to show the following

Theorem 3.3 Keeping the assumptions from 1.2 and assuming in addition that f is semi-
stable and all the fibres are smooth and non-hyperelliptic curves, we have A\, > 0 for some
n €N

4 'THE PROOF OF 3.3

In this section we prove 3.3. Since we know that f.wx/p is weakly positive, the idea is to
consider a certain tensor sheaf of f.wx/p and find a quotient, which is a proper subsheaf
of some power of A,. This is achieved by the method of the universal basis as it was used
by Viehweg in [9]. We shall briefly recall this method, referring to the starting point of
the proof of [10], 4.33 and 4.34, respectively.

Let £ be a locally free sheaf on B of rank m and let 7 : P — B denote the projective bundle
associated to @™ €Y. From the construction of the projective bundle (see for example [4],
I1.7.12) we obtain a surjective map

m
Py — 0p(1)
and by dualizing we obtain an injective map

Op(-1) — ™ P¢,
sending a local section [ of Op(—1) to an m-tuplet (s1,..., Sy). This induces a map
m
S @0]}»(—1) — €,
injective, too, sending (fil,..., fm!) to the sum of the f;s;. We call s the universal basis

associated to & and we observe that, fibrewise, the locus where s is an isomorphism is
isomorphic to PGL(m, k). We call s the universal basis associated to £.
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We apply this method to & = f,wx/p. Taking for n € N the symmetric product of the
corresponding universal basis s and composing with the multiplication map, we obtain a
map

5@ 0r(1)) = (" Fansa ) = 7S frnyi) > 7 Ly

which by 3.2 is surjective outside the zero divisor D of det s, provided we have chosen n
to be sufficiently large. We denote the image sheaf of this morphism by B.

Next we consider a blowing up 7 : P — P with center in D such that B’ = 7*8 modulo
torsion is locally free. For v € Z let us write Opr(v) for the sheaf 7*Op(r) and let
7' : P — B denote the composed map. We obtain a surjection

S”(éop(—n) 8.

Let us now consider the Grassmannian manifold G parametrizing the r-dimensional quo-
tients of the linear space S™(k™). For r = rk f.w% /B> let us moreover denote by V the
linear space A" S™(k™). By [4], I1.7.12, the induced quotient map

r

V © Opr = /r\s”(éop,) = A\ (8@ 0z(n)) = det B' @ Ops(nr)

corresponds to a morphism
P — G -SP(V).

Whereas everything described above holds for a more general situation, too (see [10], 4.),
the proof of the following lemma essentially uses the fact that we are in the case of a
family of curves over a curve.

Lemma 4.1 The morphism ® constructed above is generically finite.

PRrROOF: We start with the following observation. A point p € P — 7*D corresponds to
a fibre X} of the family f together with a basis of H%(X}, wx, ), up to multiplication with
a constant. In particular it gives an isomorphism between Piil and P(H%(X,,wx,)) and,
since X is assumed to be smooth and non-hyperelliptic, this induces an embedding of X}
in Py
The point ®'(p) € G is then given by the quotient yu,, : S"(H°(Xp,wx,)) — HO(Xb,wS‘(b),
where i, is the multiplication map on the fibre. So for n sufficiently large the kernel of
Un determines both X; and its embedding in projective space.

Now the curve X} has a finite automorphism group, hence the subgroup of PGL(m, k)
which leaves X; C ]P)i*1 invariant has to be finite. So if C is a curve in I’ — 7* D, mapping
to a point in G, we obtain that C' can not be contained in a fibre of 7’/ : P/ — B. Hence
C has to map surjectively to B. But on the other hand, as we have seen, for every point
in C the kernel of the associated multiplication map is the same. So in this case X xg C
turns out to be trivial which contradicts the non-isotriviality of the family f. Hence we
obtain that there are no curves contained in the fibres of ®'|pr_«p. O

As an immediate consequence, " Op(y)(1) = det B’ ® Op/(nr) is ample, and hence the
inclusion
q),*OIP’(V)(l) =det B'® Opi(nr) = L := 7TI*An ® Opi(nr)



implies that £ is big on .
For a general fibre F' of 7’ and for every v € N we have the long exact cohomology sequence
0— HYP',L"(~F)) » H(P, L") — H*(F, L) — ...
Since L is big, for v sufficiently large £”(—F’) is going to have a non-trivial section
Opr — LY(—F).

For a point P in general position the projection formula implies

Op — Ay (—P) ®@ 7,0pi(vnr) = Ay (—-P) @ S @D fuwx/s ",

where the last equality holds by definition of the projective bundle. Dualizing again, we
obtain a non-trivial map

m
Sum@ fewx/p — Ap(=P).

Since f.wx/p is weakly positive by 2.2, we obtain by definition deg A} (—P) > 0, hence
An > 0, which completes the proof of 3.3.
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