
On the Gap-Complexity of Simple RL-Automata?

F. Mráz1, F. Otto2, and M. Plátek1

1 Charles University, Faculty of Mathematics and Physics
Department of Computer Science, Malostranské nám. 25

118 00 Praha 1, Czech Republic

mraz@ksvi.ms.mff.cuni.cz, Martin.Platek@mff.cuni.cz
2 Fachbereich Mathematik/Informatik, Universität Kassel

34109 Kassel, Germany
otto@theory.informatik.uni-kassel.de

Abstract. Analysis by reduction is a method used in linguistics for checking the
correctness of sentences of natural languages. This method is modelled by restarting
automata. Here we introduce and study a new type of restarting automaton, the so-
called t-sRL-automaton, which is an RL-automaton that is rather restricted in that it
has a window of size 1 only, and that it works under a minimal acceptance condition.
On the other hand, it is allowed to perform up to t rewrite (that is, delete) steps per
cycle. Here we study the gap-complexity of these automata. The membership problem
for a language that is accepted by a t-sRL-automaton with a bounded number of
gaps can be solved in polynomial time. On the other hand, t-sRL-automata with an
unbounded number of gaps accept NP-complete languages.

1 Introduction

The original motivation for introducing the restarting automaton was the desire to
model the so-called analysis by reduction of natural languages. Analysis by reduction
is usually presented by finite samples of sentences of a natural language and by
sequences of their correct reductions (e.g., tree-banks) (see, e.g., [7]).

From a theoretical point of view the restarting automaton can be seen as a
tool that yields a very flexible generalization of analytical grammars, that is, in
a very flexible way it introduces a basic syntactic system (an approximation to
the formalization of the analysis by reduction), which contains the full information
about the input vocabulary (set of wordforms), the categorial vocabulary, the set of
reductions (rewritings), the recognized language, the language of sentential forms,
and the categorial language. On the other hand, the restarting automaton can be
considered as a generalization and a refinement of the pushdown automaton (see,
e.g., [9]) and the contraction automaton [14].

Up to now all models of restarting automata studied in the literature accept at
least all deterministic context-free languages. Hence, they can be used to analyze
only language classes above the level of deterministic context-free languages. In
particular, regular languages or even finite languages are of too small complexity to
be studied by restarting automata. However, in (corpus) linguistics essentially finite
(though very large) approximations of infinite languages are often studied. As the
? The first and the third author were partially supported by the Grant Agency of the Czech

Republic under Grant-No. 201/04/2102 and by the program ‘Information Society’ under project
1ET100300517.

2 F. Mráz, F. Otto, M. Plátek

motivation for restarting automata is derived from linguistic considerations, this is
a shortcoming of the model.

Here we propose a way to remedy this situation. We introduce a new variant
of the restarting automaton, the so-called simple RL-automaton (sRL-automaton),
that is rather restricted in various aspects to ensure that its expressive power is
limited. However, by admitting that t (≥ 1) delete operations may be performed in
each cycle, the expressive power of the obtained model of the restarting automa-
ton is parametrized by t, and hence, we obtain an infinite hierarchy of automata
and therewith of language classes. Then we study the number of gaps generated
during a reduction as a complexity measure for t-sRL-automata that is inspired by
linguistic considerations (see, e.g., [2, 3]). This measure is related to the notion of
j-monotonicity considered in [12], and it yields an infinite hierarchy of automata and
language classes. In contrast to the situation for 2-monotone restarting automata,
which accept NP-complete languages [5], it turns out that a bounded number of
gaps implies that only feasible languages are accepted, that is, languages that are
recognizable in polynomial time. However, with an unbounded number of gaps these
automata still accept NP-complete languages.

The paper is structured as follows. After introducing the simple RL-automata in
Section 2, we will establish an infinite hierarchy based on the parameter t of delete
operations that are permitted per cycle. In Section 3 various notions of monotonic-
ity are presented for sRL-automata, and it is shown that sRL-automata can simulate
standard RL-automata, preserving the type of monotonicity. In particular, this im-
plies that t-right-left-monotone sRL-automata accept NP-complete languages. Then
in Section 4 the gap-complexity is introduced, and it is shown that with bounded
gap-complexity sRL-automata only accept feasible languages. The paper closes with
a characterization of regular languages in terms of a special type of sRL-automata.

2 t-sRL-Automata

Here we describe in short the type of restarting automaton we will be dealing with.
More details on restarting automata in general can be found in [9, 10].

An sRL-automaton (simple RL-automaton) M is a (in general) nondeterministic
machine with a finite-state control Q, a finite input alphabet Σ, and a head (window
of size 1) that works on a flexible tape delimited by the left sentinel c and the right
sentinel $. For an input w ∈ Σ∗, the initial tape inscription is cw$. To process
this input M starts in its initial state q0 with its window over the left end of the
tape, scanning the left sentinel c. According to its transition relation, M performs
move-right steps which shift the window one position to the right, thereby possibly
changing the state of M , move-left steps which shift the window one position to
the left, thereby possibly changing the state of M , and delete steps, which delete
the content of the window, thus shortening the tape, change the state, and shift
the window to the right neighbour of the symbol deleted. Of course, neither the left
sentinel c nor the right sentinel $ must be deleted. At the right end of the tape M
either halts and accepts, or it halts and rejects, or it restarts, that is, it places its
window over the left end of the tape and reenters the initial state. It is required that

Gap-Complexity of sRL-Automata 3

before the first restart step and also between any two restart steps, M executes at
least one delete operation.

We say that M is an sRR-automaton if M does not use any move-left steps.
By sRL (sRR) we denote the class of all sRL-automata (sRR-automata). A t-sRL-
automaton (t ≥ 1) is an sRL-automaton which uses at most t delete operations in a
cycle, and similarly we obtain the t-sRR-automaton.

A configuration of M is a string αqβ where q ∈ Q, and either α = λ and
β ∈ {c} · Σ∗ · {$} or α ∈ {c} · Σ∗ and β ∈ Σ∗ · {$}; here q represents the current
state, αβ is the current content of the tape, and it is understood that the window
contains the first symbol of β. A restarting configuration is of the form q0cw$, where
w ∈ Σ∗.

We observe that any finite computation of an sRL-automaton M consists of cer-
tain phases. A phase, called a cycle, starts in a restarting configuration, the window
is moved along the tape by performing move-right, move-left, and (at least one)
delete operations until a restart operation is performed and thus a new restarting
configuration is reached. If no further restart operation is performed, each finite
computation necessarily finishes in a halting configuration – such a phase is called
a tail. We assume that no delete operation is executed in a tail computation.

We use the notation u `c
M v to denote a cycle of M that begins with the restarting

configuration q0cu$ and ends with the restarting configuration q0cv$; the relation
`c∗

M is the reflexive and transitive closure of `c
M .

An input w ∈ Σ∗ is accepted by M , if there is an accepting computation
which starts with the (initial) configuration q0cw$. By L(M) we denote the lan-
guage consisting of all words accepted by M ; we say that M recognizes (accepts)
the language L(M). By S(M) we denote the simple language accepted by M ,
which consists of all words that M accepts by tail computations. Obviously, S(M)
is a regular sublanguage of L(M). By RS(M) we denote the reduction system
RS(M) := (Σ∗,`c

M , S(M)) that is induced by M . Observe that, for each w ∈ Σ∗,
we have w ∈ L(M) if and only if w `c∗

M v holds for some word v ∈ S(M).
By L(A) we denote the class of languages that are accepted by automata of

type A (A-automata), and by L≤n(A) we denote the class of finite languages that
are accepted by automata of type A and that do not contain any words of length
exceeding the number n.

On the set of input words Σ∗, we define a partial ordering ≤ as follows:

u ≤ v if and only if u is a scattered subword of v.

By < we denote the proper part of ≤. Obviously, ≤ is well-founded, that is, there
do not exist infinite descending sequences with respect to < .

For L ⊆ Σ∗, let Lmin := {w ∈ L | u < w does not hold for any u ∈ L }, that
is, Lmin is the set of minimal words of L. It is well-known that Lmin is finite for
each language L (see, e.g., [8]). We say that an sRL-automaton M accepting the
language L works with minimal acceptance if it accepts in tail computations exactly
the words of the language Lmin, that is, S(M) = Lmin. Thus, each word w ∈ LrLmin

is reduced to a word w′ ∈ Lmin by a sequence of cycles of M . We will use the prefix
min- to denote sRL-automata that work with minimal acceptance.

4 F. Mráz, F. Otto, M. Plátek

Here we will mainly be interested in t-sRL-automata with minimal acceptance.
In this way we will achieve similarities between certain classes of finite and infinite
languages recognized by sRL-automata, as an sRL-automaton with minimal accep-
tance is forced to perform sequences of cycles even for accepting a regular language.
In fact, this is even true for most finite languages.

Example 1. Let t ≥ 1, and let L<t> := {at, λ}. Then L<t>
min = {λ}. Hence, an sRL-

automaton for the language L<t> that works with minimal acceptance must execute
the cycle at `c λ, which means that it must execute t delete operations during this
cycle. Hence, it is a t-sRL-automaton.

Concerning the relationship between sRR- and sRL-automata, we have the follow-
ing important result which generalizes a corresponding result for RLWW-automata
from [11].

Theorem 1. For each integer t ≥ 1 and each t-sRL-automaton M , there exists a
t-sRR-automaton M ′ such that the reduction systems RS(M) and RS(M ′) coincide.

Observe that, in each cycle, M ′ executes its up to t delete operations strictly
from left to right, while M may execute them in arbitrary order.

Proof. Each cycle of a computation of M consists of (up to) 2t + 2 phases. In
phases 1, 3, . . . , 2i + 1, . . . , 2t + 1, M shifts its window across the tape by executing
move-left and move-right steps, in phases 2, 4, . . . , 2i, . . . , 2t, M executes a delete
operation, and in phase 2t+2, M performs a restart step. Thus, the sRR-automaton
M ′ must guess the positions of the delete steps and the crossing sequences of M
corresponding to the move-phases. As within a move-phase M need not visit the
same tape cell twice while being in the same state, we see that the corresponding
crossing sequence is bounded in length. Hence, M ′ can indeed guess the (up to) t+1
crossing sequences and verify that they are consistent with each other and with the
chosen delete operations. ut

Based on Theorem 1 we can describe a t-sRL-automaton by meta-instructions of
the form

(c · E0, a1, E1, a2, E2, . . . , Es−1, as, Es · $),

where 1 ≤ s ≤ t, E0, E1, . . . , Es are regular languages (often represented by regular
expressions), called the regular constraints of this instruction, and a1, a2, . . . , as ∈ Σ
correspond to letters that are deleted by M during one cycle. On trying to execute
this meta-instruction starting from a configuration q0cw$, M will get stuck (and so
reject), if w does not admit a factorization of the form w = v0a1v1a2 . . . vs−1asvs

such that vi ∈ Ei for all i = 0, . . . , s. On the other hand, if w admits factorizations of
this form, then one of them is chosen nondeterministically, and q0cw$ is transformed
into q0cv0v1 . . . vs−1vs$. In order to also describe the tails of accepting computations,
we use accepting meta-instructions of the form (c · E · $,Accept), where E is a
regular language. Actually we can require that there is only a single accepting meta-
instruction for M . If M works with minimal acceptance, then this accepting meta-
instruction is of the form (c · L(M)min · $,Accept).

Gap-Complexity of sRL-Automata 5

Example 2. Let t ≥ 1, and let LRt := { c0wc1wc2 . . . ct−1w | w ∈ {a, b}∗ }, where
Σ0 := {a, b} and Σt := {c0, c1, . . . , ct−1} ∪Σ0. We obtain a t-sRR-automaton Mt for
the language LRt through the following sequence of meta-instructions:

(1) (cc0, a,Σ∗
0 · c1, a,Σ∗

0 · c2, . . . , Σ
∗
0 · ct−1, a,Σ∗

0 · $),
(2) (cc0, b, Σ

∗
0 · c1, b, Σ

∗
0 · c2, . . . , Σ

∗
0 · ct−1, b, Σ

∗
0 · $),

(3) (cc0c1 . . . ct−1$,Accept).

It follows easily that L(Mt) = LRt holds, and that Mt works with minimal accep-
tance. Actually, the automaton Mt is even deterministic.

We emphasize the following properties of restarting automata, which are used im-
plicitly in proofs. They play an important role in linguistic applications of restarting
automata (e.g., for the analysis by reduction, grammar-checking, and morphological
disambiguation).

Definition 1. (Correctness Preserving Property)
A t-sRL-automaton M is (strongly) correctness preserving if u ∈ L(M) and u `c∗

M v
imply that v ∈ L(M).

Definition 2. (Error Preserving Property)
A t-sRL-automaton M is error preserving if u 6∈ L(M) and u `c∗

M v imply that
v 6∈ L(M).

The following facts are easily verified.

Fact 3 1. Each t-sRL-automaton is error preserving.
2. Each deterministic t-sRL-automaton is correctness preserving.
3. There exist nondeterministic t-sRL-automata which are not correctness preserv-

ing.

Observe, using Fact 3 (3), that the language LRt cannot be accepted by an
r-sRL-automaton for any r < t.

From the witness languages L〈t〉 of Example 1 and LRt of Example 2 we obtain
the following hierarchy results. Here the prefix det- is used to denote deterministic
automata.

Corollary 1. For each suffix Y ∈ {sRR, sRL}, and each integer t ≥ 2,
(a) L(det-(t− 1)-Y) ⊂ L(det-t-Y) and

L((t− 1)-Y) ⊂ L(t-Y).
(b) L(min-det-(t− 1)-Y) ⊂ L(min-det-t-Y) and

L(min-(t− 1)-Y) ⊂ L(min-t-Y).
(c) L≤n(min-det-(t− 1)-Y) ⊂ L≤n(min-det-t-Y) and

L≤n(min-(t− 1)-Y) ⊂ L≤n(min-t-Y) for each n > t.

Example 3. There exists a 1-sRR-automaton Mcopy that accepts the language

LR′
2 := LR2 · {a, b, λ} = { c0wc1wx | w ∈ {a, b}∗, x ∈ {a, b, λ} }.

6 F. Mráz, F. Otto, M. Plátek

Mcopy is given through the following sequence of meta-instructions:

(1) (cc0c1$,Accept),
(2) (cc0 · ({a, b}2)∗, a, c1 · ({a, b}2)∗ · a$),
(3) (cc0 · ({a, b}2)∗, b, c1 · ({a, b}2)∗ · b$),
(4) (cc0 · ({a, b}2)∗ · c1 · ({a, b}2)∗, a, $),
(5) (cc0 · ({a, b}2)∗ · c1 · ({a, b}2)∗, b, $),
(6) (cc0 · ({a, b}2)∗ · {a, b}, a, c1 · ({a, b}2)∗ · {a, b} · a$),
(7) (cc0 · ({a, b}2)∗ · {a, b}, b, c1 · ({a, b}2)∗ · {a, b} · b$),
(8) (cc0 · ({a, b}2)∗ · {a, b} · c1 · ({a, b}2)∗ · {a, b}, a, $),
(9) (cc0 · ({a, b}2)∗ · {a, b} · c1 · ({a, b}2)∗ · {a, b}, b, $).

It is easily seen that Mcopy accepts the language LR′
2 working with minimal

acceptance. On the other hand, the language LR′
2 is not even growing context-

sensitive. Assume to the contrary that this language is growing context-sensitive.
Then there exists a nondeterministic shrinking two-pushdown automaton A that
accepts this language [1]. Consider the language Lcopy := {ww | w ∈ {a, b}∗ }.
Given an input x ∈ {a, b}∗, a shrinking two-pushdown automaton B can simply
insert c0 at the beginning and c1 somewhere inside the word x, producing the word
c0x1c1x2, where the position for the latter insertion is chosen nondeterministically.
While doing so the automaton verifies whether x is of even length. In the negative
it will reject x, in the positive case it will simulate A for the input c0x1c1x2. This
will lead to acceptance if and only if x1 = x2. Thus, the shrinking two-pushdown
automaton B accepts the language Lcopy. This, however, contradicts the fact that
Lcopy is not growing context-sensitive (see, e.g., [1]).

As a consequence we obtain the following incomparability results.

Theorem 2. The language classes
⋃

t∈N+
L(min-t-sRL) and

⋃
t∈N+

L(t-sRL) are in-
comparable under inclusion to the class CFL of context-free languages and to the
class GCSL of growing context-sensitive languages.

Proof. Already the class L(min-1-sRR) contains a language that is not growing
context-sensitive, as shown by the example above. On the other hand, it is shown
in [4] that the context-free language L2 := { anbn | n ≥ 0 } ∪ { anbm | m > 2n ≥ 0 }
is not accepted by any RRW-automaton. The argument is based on the observation
that in each cycle an RRW-automaton M for L2 would have to guess whether to
remove a factor of the form aibi or a factor of the form aib2i for some integer i > 0.
Using pumping techniques it can then be shown that M violates the error preserv-
ing property. The same argument also works for t-sRL-automata, that is, L2 is not
accepted by any t-sRL-automaton. ut

As we have seen above, t-sRL-automata accept some languages that are quite
complicated in comparison to the context-free languages. However, we do not yet
have a characterization for the expressive power of t-sRL-automata in general. The
following result shows that this question has been solved at least for the special case
of a single-letter alphabet.

Gap-Complexity of sRL-Automata 7

Theorem 3. Let M be a t-sRL-automaton. If L(M) ⊆ {a}∗, then L(M) is regular.

Proof. By Theorem 1 we can assume that M is a t-sRR-automaton. Further, as M
does not accept any word containing a letter other than a, we can assume that the
tape alphabet of M consists of the letter a only.

Assume that M is defined by the meta-instructions

Ii := (c · E(i)
0 , a, E

(i)
1 , a, E

(i)
2 , . . . , E

(i)
si−1, a, E(i)

si
· $) (1 ≤ i ≤ r)

and I0 := (c · S0 · $,Accept), where all E
(i)
j and S0 are regular expressions. We

now define another t-sRR-automaton M ′ through the meta-instruction I0 and the
meta-instructions I ′i, 1 ≤ i ≤ r, where I ′i is defined as

I ′i := (c · E(i)
0 · E(i)

1 · E(i)
2 · · ·E(i)

si−1 · E
(i)
si

, asi → λ, $).

Here asi → λ is used as a shorthand for the fact that si copies of the symbol a are
deleted that are next to each other.

To complete the proof we establish the following two claims.

Claim 1. L(M ′) = L(M).

Proof. Obviously, M ′ and M accept the same words in tail computations. Thus, it
suffices to show that M ′ and M execute the same cycles. Assume that u `c

M v is
a possible cycle of M . Then there exists an index i ∈ {1, . . . , r} such that the tape
content c · u · $ is transformed into c · v · $ by meta-instruction Ii. Hence, u can be
factored as u = u0au1au2 . . . usi−1ausi such that uj ∈ E

(i)
j for all 1 ≤ j ≤ si and

v = u0u1u2 . . . usi−1usi . It is now immediate that by applying meta-instruction I ′i,
M ′ can execute the cycle u `c

M ′ v. Analogously, if u `c
M ′ v by meta-instruction I ′i,

then also u `c
M v by meta-instruction Ii. Thus, the languages L(M) and L(M ′)

coincide. ut

Claim 2. L(M ′) = L(A) for a nondeterministic finite-state acceptor A.

Proof. We present a nondeterministic finite-state acceptor A that, given a word
w = an as input, accepts if and only if there exists a sequence of cycles

w = wm `c
M ′ wm−1 `c

M ′ · · · `c
M ′ w1 `c

M ′ w0 ∈ S(M ′).

For each i = 1, . . . ,m, there exists a meta-instruction I ′ji
= (c · E′

ji
, asji → λ, $) of

M ′ such that wi = wi−1 ·asji and wi−1 ∈ E′
ji
. Thus, scanning its input tape from left

to right, A will simultaneously simulate finite-state acceptors for the languages E′
i,

1 ≤ i ≤ r, and S(M ′). When it recognizes a prefix that belongs to S(M ′), then
it decides nondeterministically whether this is the string w0. In the affirmative it
aborts the simulation of the finite-state acceptor for S(M ′), and guesses an index
k ∈ {1, . . . , r}. Then it continues with simulating the finite-state acceptors for the
languages E′

i (1 ≤ i ≤ r) for sk steps. In case the finite-state acceptor for E′
k is now

in a final state, A again guesses an index k′ ∈ {1, . . . , r} and continues, otherwise,
it halts and rejects. This process continues until A either rejects, or until the input
has been read completely. If ` is the latest index guessed, then A accepts if, since
passing through a final state of the finite-state acceptor for the language E′

`, exactly
s` copies of letter a have been read. It is now immediate that L(A) = L(M ′). ut

8 F. Mráz, F. Otto, M. Plátek

Thus, the language L(M) is regular. ut

Further, we have at least the following inclusion results.

Theorem 4. DCFL ⊂
⋃

t∈N+
L(min-det-t-sRL) ⊂

⋃
t∈N+

L(min-t-sRL).

Proof. Each deterministic context-free language L is accepted by some right-
monotone deterministic RR-automaton M [4]. If M has a window of size k, then
it can be simulated by a deterministic k-sRL-automaton M ′. M ′ scans its tape from
left to right until it detects a factor that is to be rewritten by M . Then it moves
its window back by k− 1 positions, and deletes the up to k symbols that M deletes
in this cycle. By some additional cycles each word from the regular language S(M)
can then be reduced to a minimal word. Thus, DCFL ⊆

⋃
t∈N+

L(min-det-t-sRL).
The language L := { anbnc, anb2nd | n ≥ 0 }, which is not deterministic context-

free, is easily seen to be accepted by a deterministic 3-sRL-automaton that works
with minimal acceptance. Thus, it follows that DCFL ⊂

⋃
t∈N+

L(min-det-t-sRL).

The language L := { anbm | 0 ≤ n ≤ m ≤ 2n } is accepted by the 3-sRL-
automaton M that is given through the following meta-instructions:

(c · a∗, a, {λ}, b, b∗ · $), (c · a∗, a, {λ}, b, {λ}, b, b∗ · $), (c · $,Accept).

However, L is not accepted by any deterministic t-sRL-automaton. Assume to the
contrary that L is accepted by a deterministic t-sRL-automaton M ′. For each integer
n ≥ 1, M ′ must accept the input anb2n. However, if n is sufficiently large, then M ′

cannot do this in a tail computation, that is, the accepting computation of M ′ on
input anb2n begins with a cycle of the form anb2n `c

M ′ u. This is in particular the
case if n = 2t · |Q| !, where Q is the set of states of M ′. By the correctness preserving
property u ∈ L, that is, u = an−ib2n−j for some values of i, j satisfying i ≥ 0, j ≥ 1,
i + j ≤ t, and j ≥ 2i.

Now consider the input of the form anbn, on which M ′ will execute the cy-
cle anbn `c

M ′ an−ibn−j , as it cannot distinguish between the two inputs anb2n and
anbn. While anbn ∈ L, we see that an−ibn−j 6∈ L, as n− j < n− i holds, which vio-
lates the correctness preserving property. This shows that

⋃
t∈N+

L(min-det-t-sRL) ⊂⋃
t∈N+

L(min-t-sRL). ut

3 Monotonicity

Finally we turn to the notion of monotonicity for t-sRL-automata. Let M be a
t-sRL-automaton. A configuration C = αqβ of M in which a delete operation is
to be applied is called a delete configuration of M . The number |β| is called the
right distance of C, denoted by Dr(C), and the number |α| is the left distance of C,
denoted by Dl(C).

We say that a sequence of delete configurations S = (C1, C2, · · · , Cn) is right-
monotone if Dr(C1) ≥ Dr(C2) ≥ . . . ≥ Dr(Cn), that it is left-monotone if
Dl(C1) ≥ Dl(C2) ≥ . . . ≥ Dl(Cn), and that it is right-left-monotone if it is simul-
taneously right- and left-monotone. It is called j-right-monotone, j-left-monotone
or j-right-left-monotone for some integer j ≥ 1, if it can be partitioned into at

Gap-Complexity of sRL-Automata 9

most j subsequences S1, S2, . . . , Sj such that each of these subsequences is right-
monotone, left-monotone or right-left-monotone, respectively. A computation of M
is called j-right-monotone, j-left-monotone or j-right-left-monotone if the corre-
sponding sequence of delete configurations is j-right-monotone, j-left-monotone or
j-right-left-monotone, respectively.

An sRL-automaton M is called t-right-monotone (t-left-monotone, t-right-left-
monotone) if it is a t-sRL-automaton and each of its computations is t-right-mono-
tone (t-left-monotone, t-right-left-monotone). We will use the prefixes t-right-mon-,
t-left-mon-, and t-right-left-mon- to denote the classes of t-right-monotone, t-left-
monotone and t-right-left-monotone sRL-automata, respectively.

For example, the deterministic t-sRR-automaton Mt of Example 2 is t-right-
left-monotone. Concerning the j-right-, j-left-, and j-right-left-monotone (standard)
RL-automata considered in [12] we have the following result.

Theorem 5. For each prefix Y ∈ {right-left-mon, right-mon, left-mon} and all inte-
gers j, k ≥ 1, if M is a j-Y-RL-automaton with a window of size k, then there exists
a (j ·k)-Y-sRL-automaton M ′ such that L(M) = L(M ′) and RS(M) = RS(M ′) hold.

Proof. Let M be a j-Y-RL-automaton over Σ with a window of size k. Then the
sequence of cycles of each computation of M can be divided into j interleaved sub-
sequences that are all Y-monotone. We describe an sRL-automaton M ′ that simulates
the computations of M cycle by cycle. Within its finite-state control M ′ realizes a
buffer of size k that it will use to store the content of the window of M . When M
performs a rewrite step u → v, then |u| ≤ k, and v is obtained from u by deleting
up to k symbols of u. Hence, M ′ can simulate this rewrite step by executing up to k
delete steps, each deleting a single symbol. It follows that M ′ is a k-sRL-automaton,
and that RS(M ′) = RS(M). Further, if M is j-Y-monotone, then we consider M ′ as
a (j · k)-sRL-automaton, and it is obvious that as such M ′ is (j · k)-Y-monotone. ut

From the proof above we see that a (standard) RL-automaton with a window of
size k can be simulated by a k-sRL-automaton.

It is known that, for all three types of monotonicity, the language classes
(L(j-Y-RL))j≥1 form a strict hierarchy (see [13] Theorem 7 (a)). In fact, this re-
mains true when we restrict our attention to RL-automata with read/write windows
of size two. Further, it is shown in [5] that already 2-right-monotone R-automata
accept NP-complete languages. In fact, this result extends to right-left-monotonicity,
as there are even 2-right-left-monotone R-automata that accept NP-complete lan-
guages [6]. However, neither the proof in [5] and nor the proof in [6] gives the size
of the window of the R-automaton constructed explicitly (it is rather large due to
the encoding used). Hence, we only obtain the following complexity result for sRL-
automata.

Corollary 2. There exists an integer t ≥ 1 such that L(t-right-left-mon-sRL) con-
tains NP-complete languages.

4 The Gap-Complexity

Let M be a t-sRL-automaton, let w ∈ Σ∗ be an input word, and let w `c
M w1 `c

M

· · · `c
M wn be an initial part of a computation of M on input w. In each cycle M

10 F. Mráz, F. Otto, M. Plátek

deletes up to t symbols from the tape content of the current restarting configuration.
Instead of deleting symbols we can replace them by a special symbol �, thus obtain-
ing a word w′

i for each i = 1, . . . , n. The word wi is obtained from w′
i by deleting

all �-symbols. The gap-number of wi denotes the number of factors from �+ that
occur in w′

i. The gap-number of the above computation of M is the maximum of
the gap-numbers of w1, . . . , wn. The gap-complexity of M on input w ∈ L(M) is
the minimal gap-number of M over all accepting computations of M on input w.
Finally, the gap-complexity of M is the maximal gap-complexity of M on input w
over all words w ∈ L(M).

The 1-sRR-automaton Mcopy for the language LR′
2 of Example 3 has gap-

complexity 2, while the deterministic t-sRR-automaton Mt of Example 2 has gap-
complexity t. Indeed, the accepting computation of Mt on the input word w =
c0abac1abac2 . . . ct−1aba can be described by the following sequence of words with
�-symbols:

c0�bac1�bac2 . . . ct−1�ba, c0��ac1��ac2 . . . ct−1��a, c0���c1���c2 . . . ct−1���.

If a t-sRL-automaton M has gap-complexity c, then each word w of L(M) ad-
mits an accepting computation that is c-right-left-monotone. In this way the gap-
complexity can be seen as a restriction of the notion of j-right-left-monotonicity.
From the examples above we obtain the following hierarchy result.

Proposition 1. For all c ∈ N+, the class of languages accepted by sRL-automata
with gap-complexity c is properly contained in the class of languages accepted by
sRL-automata with gap-complexity c + 1.

On the other hand, the t-sRL-automaton of Corollary 2, although being t-
right-left-monotone, has unbounded gap-complexity. Thus, having bounded gap-
complexity is a much stronger restriction than a bounded degree of monotonicity.

In fact, we have the following positive result on the complexity of languages that
are accepted by t-sRL-automata with a bounded gap-complexity.

Theorem 6. If M is a t-sRL-automaton with gap-complexity c ∈ N, then the mem-
bership problem for the language L(M) can be solved in time O(n2c+1).

Proof. Let w ∈ Σ∗ be an input word of length n. With M and w we associate a
graph GM (w) = (V,E) as follows. The set V of vertices corresponds to the set of all
words over Σ ∪ {�} of length n that can be obtained from w by replacing symbols
from Σ by �-symbols, and that have gap-number at most c. Within a word of length
n there are

(
n+1
2c

)
positions to place c gaps. Hence, we see that the number of vertices

V is bounded from above by the number n2c. The vertex w is called the initial vertex
of GM (w), and a vertex v′ ∈ V is a final vertex if the word v := ΠΣ(v′) (that is, the
projection onto Σ∗) belongs to the set S(M).

Now a directed edge leads from a vertex u′ ∈ V to a vertex v′ ∈ V , if M can
execute the cycle u `c

M v, where u and v are obtained from u′ and v′, respectively, by
deleting the �-symbols. As the gap-complexity of M is bounded by the constant c,
each of the up to t delete operations of M starting from the configuration q0cu$
has to be applied at either the left or the right border of one of the c gaps in u′.

Gap-Complexity of sRL-Automata 11

It follows that the outdegree of each vertex is bounded from above by the number
(2c)t, that is, GM (w) contains O(n2c) many edges. Thus, the graph GM (w) can be
computed from w in time O(n2c+1).

Now w ∈ L(M) if and only if a final vertex v′ can be reached from the initial
vertex w in the graph GM (w). This can be checked in time O(|V |+ |E|), that is, in
time O(n2c). ut

Thus, for t-sRL-automata, bounded gap-complexity separates those automata
that accept feasible languages from those that accept NP-complete languages.

Corollary 3. It is decidable in polynomial time whether a t-sRL-automaton M ac-
cepts a given word w with gap-complexity at most c.

Proof. As in the proof of Theorem 6 we can associate a graph GM (w, c) with a
t-sRL-automaton M , a positive integer c, and a word w. Now M has an accepting
computation for input w with gap-complexity at most c if and only if a final vertex
v′ can be reached from the initial vertex w in the graph GM (w, c). As this can be
checked in polynomial time, this proves our result. ut

For a t-sRL-automaton M and an integer c ≥ 1 we can thus define the lan-
guage Lgap(M, c) := {w ∈ L(M) | M accepts w with gap-complexity at most c }.
From Corollary 3 we see that the membership problem for languages of this form is
decidable in polynomial time.

5 Analyzing Regular Languages

It is straightforward to see that each finite language is accepted by some t-sRL-
automaton working with minimal acceptance. However, as seen in Example 1 the
value of t depends on the particular language considered. Also all regular languages
are accepted by t-sRL-automata. In fact, we have the following result, where an sRL-
automaton M is said to have the mr(k)-property if it executes at most k right-move
operations in any cycle or tail.

Theorem 7. A language L is regular if and only if there exists an integer t ≥ 1 and
a deterministic t-sRL-automaton M with the mr(t)-property such that M accepts L
working with minimal acceptance.

Proof. For each regular language L ⊆ Σ∗, there exists a finite-state acceptor A =
(Q,Σ, q0, F, δ) that recognizes L. Let n be the number of states of A. Reading a prefix
of a word from Σ∗ of length at least n, the automaton A must pass some state at
least twice. Hence, for each word z of length n, there exist words u, v, w ∈ Σ∗ such
that z = uvw, v 6= λ, and the automaton A is in the same state after reading both
prefixes u and uv. Hence, for each word x ∈ Σ∗, uvwx ∈ L if and only if uwx ∈ L.
Now a word v ∈ Σ≤n−1 is called cycle-free if δ(q0, x) 6= δ(q0, xy) holds for all prefixes
x and xy of v satisfying y 6= λ.

Take t := n. We construct a t-sRL-automaton M for L as follows. M will have
the single accepting meta-instruction (c · Lmin · $,Accept). Each word z ∈ Σn has a

12 F. Mráz, F. Otto, M. Plátek

unique factorization of the form z = uvaw such that uv is cycle-free, a ∈ Σ, and
δ(q0, u) = δ(q0, uva). If z ·Σ∗ ∩ L 6= ∅, then we introduce the meta-instruction

(c · u, b1, {λ}, b2, {λ}, . . . , {λ}, br, Σ
∗ · $),

where va = b1b2 . . . br (b1, . . . , br ∈ Σ). Finally, for z ∈ L∩Σ≤n−1, if z is not minimal
in L, then we introduce a meta-instruction of the form

(c · z1, a1, z2, a2, z2, . . . , zr, ar, zr+1 · $),

where z = z1a1z2a2z2 . . . zrarzr+1, z1z2 . . . zrzr+1 ∈ Lmin, and a1, a2, . . . , ar ∈ Σ. It
can be verified that

– if |z| ≤ n− 1, then z ∈ L if and only if z ∈ L(M),
– if |z| ≥ n, then there exists a word z′ ∈ Σ∗, |z′| < |z|, such that z ` c

M z′ and
z ∈ L if and only if z′ ∈ L.

From this it follows that L(M) = L. Further, it is easily seen that M is deterministic,
and that in any cycle or tail it executes at most t move-right steps.

Conversely, let M be a deterministic t-sRL-automaton with the mr(t)-property
working with minimal acceptance. We need to show that L(M) is a regular language.
It is not hard to see that a finite automaton Mf with a buffer of the size 2t can
simulate the computations of M . The buffer serves as a storage for the prefix of the
tape content of M during the simulation of the individual cycles of M . ut

The above result implies in particular that all regular languages are accepted
by sRL-automata with bounded gap-complexity. It should be interesting to classify
regular languages with respect to the smallest value t for which they are accepted
in this way, and with respect to the size of the description of these automata.

Acknowledgement. The authors wish to thank Hartmut Messerschmidt for many
valuable discussions concerning the notions and results of this paper.

References

1. G. Buntrock, F. Otto. Growing context-sensitive languages and Church-Rosser languages.
Information and Computation 141 (1998) 1–36.

2. T. Holan. Dependency analyser configurable by measures. In: P. Sojka, I. Kopeček, K. Pala
(eds.), TSD 2002, Proc., LNCS 2448, Springer, Berlin, 2002, 81–88.

3. T. Holan, V. Kuboň, K. Oliva, M. Plátek. Two Useful Measures of Word Order Complexity.
In: A. Polguere, S. Kahane (eds.), Workshop ‘Processing of Dependency-Based Grammars,’
COLING’98, Proc., University of Montreal, 1998, 21–28.

4. P. Jančar, F. Mráz, M. Plátek, J. Vogel. On monotonic automata with a restart operation.
Journal of Automata, Languages and Combinatorics 4 (1999) 287–311.

5. T. Jurdziński, F. Otto, F. Mráz, M. Plátek. On the complexity of 2-monotone restarting
automata. In: C.S. Calude, E. Calude, M.J. Dinneen (eds.), DLT 2004, Proc., LNCS 3340,
Springer, Berlin, 2004, 237–248.

6. T. Jurdziński, F. Otto, F. Mráz, M. Plátek. On the complexity of 2-monotone restarting
automata. Mathematische Schriften Kassel 4/04, Universität Kassel, 2004.

7. M. Lopatková, M. Plátek, V. Kuboň. Modeling syntax of free word-order languages: Depen-
dency analysis by reduction. In: V. Matoušek, P. Mautner, T. Pavelka (eds.), TSD 2005, Proc.,
LNCS 3658, Springer, Berlin, 2005, 140–147.

Gap-Complexity of sRL-Automata 13

8. M. Lothaire. Combinatorics on Words. Encyclopedia of Mathematics, Vol. 17, Addison-Wesley,
Reading, 1983.

9. F. Otto. Restarting automata and their relations to the Chomsky hierarchy. In: Z. Esik,
Z. Fülöp (eds.), DLT 2003, Proc., LNCS 2710, Springer, Berlin, 2003, 55–74.

10. F. Otto. Restarting Automata - Notes for a Course at the 3rd International PhD School in
Formal Languages and Applications. Mathematische Schriften Kassel 6/04, Universität Kassel,
2004.

11. M. Plátek. Two-way restarting automata and j-monotonicity. In: L. Pacholski, P. Ružička
(eds.), SOFSEM 2001, Proc., LNCS 2234, Springer, Berlin, 2001, 316–325.

12. M. Plátek, F. Otto, F. Mráz. Restarting automata and variants of j-monotonicity. In: E. Csuhaj-
Varjú, C. Kintala, D. Wotschke, G. Vaszil (eds.), DCFS 2003, Proc., MTA SZTAKI, Budapest,
2003, 303–312.

13. M. Plátek, F. Otto, F. Mráz, T. Jurdziński. Restarting automata and variants of j-monotonicity.
Mathematische Schriften Kassel 9/03, Universität Kassel, 2003.

14. S. H. von Solms. The characterization by automata of certain classes of languages in the context
sensitive area. Information and Control 27 (1975) 262–271.

