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Abstract: In a previous paper we have determined a generic formula for the polynomial solu-
tion families of the well-known differential equation of hypergeometric type 
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In this paper, we give another such formula which enables us to present a generic formula for 
the values of monic classical orthogonal polynomials at their boundary points of definition. 
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1. Introduction  
In previous work [KM], we found a generic polynomial solution for the differential equation 
 

                                   ( )x y ( ) ( ) ( ) ( ) 0n n n nx x y x y xσ τ λ′′ ′+ − =                                             
(1) 
 

 where  is a polynomial of degree at most 2, cbxaxx ++= 2)(σ edxx +=)(τ is a poly-
nomial of degree at most 1 and ndannn +−= )1(λ  is the eigenvalue parameter depending on 

.  ,...2,1,0=n
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Since we will need this formula in this article, we state it here again. In the following theorem 

from [KM] ⎟⎟
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Pn denotes the monic polynomial solution of equation (1). 

 
2. Theorem: The main differential equation 
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 For 0=a these identities can be adapted by limit considerations and give (3) with 
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 which is valid for , 0, ≠dc leading to 
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In this note, we intend to obtain another representation for the polynomial solution of the 
main equation (2). To reach this goal, we use the general form of the Rodrigues representation 

of the polynomials ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
x

cba
ed

Pn .  

First, if the equation (2) is written in self-adjoint form, then a weight function W(x) will be 

derived that satisfies Pearson’s differential equation ( ) )()()()( xWxxWx
dx
d τσ = . In other 

words, we have 
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Note that in the generic case, 1θ−  and 2θ−  are the boundary points of the underlying interval 
for the corresponding orthogonal polynomials. However, if 1θ  and 2θ  are finite and equal, 
then the polynomials are of the Bessel type and if both 1θ  and 2θ  are finite but different from 
each other, then the polynomials are of the Jacobi type, whereas if one of these values tends to 

, then the polynomials are of the Laguerre type, and finally if both values are ±∞ , then 
the polynomials are of the Hermite type. 
±∞

But relation (9) implies that (8) is simplified as 
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The relation (10) follows because the logarithmic derivative of the function 
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Therefore if (10) is replaced in (13), then 
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But according to the Leibniz rule 
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The above relation is in fact another general representation for the polynomial solution of 
equation (2). Note that (17) is a universal formula. For instance, after simplification of this 
formula for n = 0,1,2,3 we get 
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Relation (17) can also be represented in hypergeometric form as    
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where 1  and  2θ θ  are defined by (9).  
This hypergeometric representation can still be simplified. For this purpose, we use the hy-
pergeometric identity 
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which was used already in [KM, formula (1.5)]. If we choose in particular 
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is valid, for 1−=λ , the relation (25) can be also brought in the following form  
 

.
42
4

442
2

2

/1
)/1()(

)
42

2
2

()4(

2

2

2
2

12

2

2

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

−

−+
+

−−

−
−

+−−

×
+−−

−

−
−−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

acb
acbb

acb
ax

acba
bdae

a
d

adnn
F

adna
acba

bdae
a

dacb
x

cba
ed

P
n

n

n
n

n

                                 (27) 

 
 

 
6



3. Values of the classical orthogonal polynomials at the boundary points 
Using our explicit representations for the monic classical orthogonal polynomials of the last 
section, we can now compute the generic value of these polynomials at their boundary points 
of definition, 1θ−  and 2θ− , respectively. 
If we set in (27) 
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Moreover, for the monic Laguerre polynomials ( ) ( )nL xα  with ( , , , , ) (0,1,0, 1, 1)a b c d e α= − +  
we have . Therefore just one root i.e. xcbxax =++2 021 == θθ  is derived. Hence by com-
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polynomials (see e.g. [AS], 22.5.40), we can also conclude that 
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Finally, for the Bessel polynomials  ( ) ( )nB xα  with ( , , , , ) (1,0,0, 2,2)a b c d e α= +  we have 
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Note that the last result follows from our formula although the Bessel polynomials are not or-
thogonal in a real interval. 
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