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Abstract

In his 1984 proof of the Bieberbach and Milin conjectures de Branges used a positivity
result of special functions which follows from an identity about Jacobi polynomial sums that
was published by Askey and Gasper in 1976.

The de Branges functions τ
n
k (t) are defined as the solutions of a system of differential

recurrence equations with suitably given initial values. The essential fact used in the proof of
the Bieberbach and Milin conjectures is the statement τ̇

n
k (t)

�
0.

In 1991 Weinstein presented another proof of the Bieberbach and Milin conjectures, also
using a special function system Λn

k(t) which (by Todorov and Wilf) was realized to be di-
rectly connected with de Branges’, τ̇

n
k (t) = −kΛn

k(t), and the positivity results in both proofs
τ̇

n
k (t)

�
0 are essentially the same.

In this paper we study differential recurrence equations equivalent to de Branges’ original
ones and show that many solutions of these differential recurrence equations don’t change sign
so that the above inequality is not as surprising as expected.

Furthermore, we present a multiparameterized hypergeometric family of solutions of the
de Branges differential recurrence equations showing that solutions are not rare at all.

1 Introduction

Let S denote the family of analytic and univalent functions f(z) = z+a2z
2+. . . of the unit disk � .

S is compact with respect to the topology of locally uniform convergence so that kn := max
f∈S

|an(f)|
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exists. In 1916 Bieberbach [4] proved that k2 = 2, with equality if and only if f is a rotation of the
Koebe function

K(z) :=
z

(1 − z)2
=

1

4

((
1 + z

1 − z

)2

− 1

)
=

∞∑

n=1

nzn , (1)

and in a footnote he mentioned “Vielleicht ist überhaupt kn = n.”. This statement is known as the
Bieberbach conjecture.

In 1923 Löwner [13] proved the Bieberbach conjecture for n = 3. His method was to embed a
univalent function f(z) into a Löwner chain, i.e. a family {f(z, t) | t � 0} of univalent functions
of the form

f(z, t) = etz +
∞∑

n=2

an(t)zn, (z ∈ � , t � 0, an(t) ∈ � (n � 2))

which start with f
f(z, 0) = f(z) ,

and for which the relation

Re p(z, t) = Re

(
ḟ(z, t)

zf ′(z, t)

)
> 0 (z ∈ � ) (2)

is satisfied. Here ′ and ˙ denote the partial derivatives with respect to z and t, respectively. Equa-
tion (2) is referred to as the Löwner differential equation, and geometrically it states that the image
domains of ft expand as t increases.

The history of the Bieberbach conjecture showed that it was easier to obtain results about the
logarithmic coefficients of a univalent function f , i.e. the coefficients dn of the expansion

ϕ(z) = ln
f(z)

z
=:

∞∑

n=1

dnz
n

rather than for the coefficients an of f itself. So Lebedev and Milin [12] in the mid sixties devel-
oped methods to exponentiate such information. They proved that if for f ∈ S the Milin conjecture

n∑

k=1

(n + 1 − k)

(
k|dk|

2 −
4

k

) �
0

on its logarithmic coefficients is satisfied for some n ∈ � , then the Bieberbach conjecture for the
index n + 1 follows.

In 1984 de Branges [5] verified the Milin, and therefore the Bieberbach conjecture and in 1991,
Weinstein [16] gave a different proof. Both proofs use the positivity of special function systems,
and independently Todorov [15] and Wilf [17] showed that (the t-derivatives of the) de Branges
functions and Weinstein’s functions essentially are the same (see also [8]),

τ̇n
k (t) = −kΛn

k(t) ,
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τn
k (t) denoting the de Branges functions and Λn

k(t) denoting the Weinstein functions, respectively.
Whereas de Branges applied an identity of Askey and Gasper [2] to his function system, Weinstein
applied an addition theorem for Legendre polynomials [11] to his function system to deduce the
positivity result needed.

2 The de Branges and Weinstein functions

In [5] de Branges showed that the Milin conjecture is valid if for all n ≥ 1 the de Branges functions
τn
k : ��� 0 → � (k = 1, . . . , n) defined by the system of differential recurrence equations

τn
k+1(t) − τn

k (t) =
τ̇n
k (t)

k
+

τ̇n
k+1(t)

k + 1
(k = 1, . . . , n) (3)

τn
n+1 ≡ 0 (4)

with the initial values
τn
k (0) = n + 1 − k (5)

have the properties
lim
t→∞

τn
k (t) = 0 , (6)

and
τ̇n
k (t) ≤ 0 (t ∈ � � 0) . (7)

The relation (6) is easily checked using standard methods for ordinary differential equations,
whereas (7) is a deep result.

L. de Branges gave the explicit representation

τn
k (t) = e−kt

(
n + k + 1

2k + 1

)
4F3

(
k + 1/2, n + k + 2, k, k − n

k + 1, 2k + 1, k + 3/2

∣∣∣∣∣ e
−t

)
(8)

([5], [6], [14]), with which the proof of the de Branges theorem was completed as soon as de
Branges realized that (7) was a theorem previously proved by Askey and Gasper [2].

Note that the function

pFq

(
a1, . . . , ap

b1, . . . , bq

∣∣∣∣∣x
)

:=
∞∑

k=0

Ak xk =
∞∑

k=0

(a1)k · · · (ap)k

(b1)k · · · (bq)k

xk

k!

where (a)k = a(a + 1) · · · (a + k − 1) denotes the Pochhammer symbol, is called the generalized
hypergeometric series. Its coefficient term ratio

Ak+1 xk+1

Ak xk
=

(k + a1) · · · (k + ap)

(k + b1) · · · (k + bq)

x

(k + 1)
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is a general rational function, in factorized form. More informations about generalized hypergeo-
metric functions can be found in [3] or [7].

In [16] Weinstein used the Löwner chain

w(z, t) := K−1
(
e−tK(z)

)
(z ∈ � , t ≥ 0)

of bounded univalent functions in the unit disk � which is defined in terms of the Koebe function
(1), and showed the validity of Milin’s conjecture if for all n ≥ 1 the Weinstein functions Λn

k :
� � 0 → � (k = 1, . . . , n) defined by

etw(z, t)k+1

1 − w2(z, t)
=:

∞∑

n=k

Λn
k(t)z

n+1 (9)

satisfy the relations
Λn

k(t) ≥ 0 (t ∈ ��� 0 , k, n ∈ � ) . (10)

Weinstein did not identify the functions Λn
k(t), but by applying the addition theorem for Legendre

polynomials [11] to his function system he deduced (10) without an explicit representation.
Independently, both Todorov [15] and Wilf [17] proved—using the explicit representation (8)

of the de Branges functions—that
τ̇n
k (t) = −kΛn

k(t) , (11)

i.e. the (t-derivatives of the) de Branges functions and the Weinstein functions essentially are the
same, and the main inequalities (7) and (10) are identical. In [8] another proof of (11) was given
that does not use the explicit representation of the de Branges functions. Note furthermore that
in [9] we deduced the result (10) using a version of the addition theorem for the Gegenbauer
polynomials whose simple proof is contained in the same article.

In this article we study differential recurrence equations equivalent to de Branges’ original ones
and show that many solutions of these differential recurrence equations don’t change sign so that
the inequalities (7) and (10), as well as τn

k � 0 are not as surprising as expected.
Furthermore, we present a multiparameterized hypergeometric family of solutions of the de

Branges differential recurrence equations showing that solutions are not rare at all.

3 Nonnegative solutions of the de Branges differential recur-
rence equation

In this section, we will deal with the following functions

δkn(y) = δkn(e−t) :=
1

k
ekt τn

k (t) (12)

and
δ̃kn(y) = δ̃kn(e−t) := ekt Λn

k(t) (13)
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instead of τn
k (t) and Λn

k(t), where we use the variable y = e−t ∈ [0, 1] instead of t � 0. Note
that our interest to consider δkn(y) comes from the fact that this function is decreasing in [0, 1] (see
[10], Theorem 7(a)).

As boundary values we have

δkn(0) =
1

k

(
n + k + 1

2k + 1

)
and δkn(1) =

1

k
(n − k + 1)

and

δ̃kn(0) =

(
n + k + 1

2k + 1

)
and δ̃kn(1) =

{
1 if n − k is even
0 otherwise

,

respectively. Of course the relation τn
k (t) � 0 (t � 0) is equivalent to δkn(y) � 0 (y ∈ [0, 1]) and

the relation Λn
k(t) � 0 (t � 0) is equivalent to δ̃kn(y) � 0 (y ∈ [0, 1]).
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Figure 1: The decreasing functions δkn(y)
δkn(0)

for
k = 3 and n = 4, . . . , 15
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Figure 2: The functions 	δkn(y)

	δkn(0)
for k = 3 and

n = 4, . . . , 15

Note that although at first sight (Figure 2) it seems that δ̃kn(y) are also decreasing functions,
this is not the case in a left neighborhood of y = 1. Using mathematical induction and (14) one
can show that

δ̃′n−2q,n(1) = 2q(n − q + 1) > 0 and δ̃′n−2q+1,n(1) = −2q(n − q + 1) < 0 for q = 0, 1, . . . ,

see Figure 4:
The de Branges differential recurrence equation (3) can now be restated in terms of the new

functions and give the differential recurrence equations

−δ′k−1,n(y) = 2k δkn(y) + y δ′kn(y) (14)

and
−δ̃′k−1,n(y) = 2k δ̃kn(y) + y δ̃′kn(y)

for δkn(y) and δ̃kn(y), respectively, hence we see that both δkn(y) as well as δ̃kn(y) are solutions of
(14).
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Figure 3: The decreasing functions δkn(y)
near y = 1 for k = 3 and n = 4, . . . , 15
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Figure 4: The functions δ̃kn(y) near y = 1
for k = 3 and n = 4, . . . , 15

Rewriting the Todorov-Wilf identity (11) in terms of the functions δkn and δ̃kn, we get

δ̃kn(y) = k δkn(y) + y δ′kn(y) . (15)

Combining (14) and (15), we get

−δ′k−1,n(y) = δ̃kn(y) + k δkn(y) . (16)

Since both δ̃kn(y) and δkn(y) are nonnegative in [0, 1] and every k = 1, . . . , n, this immediately
yields that δk,n decreases in [0, 1] for k = 1, . . . , n − 1. This statement was first given in [10].

We would like to notice that the solutions of recurrence equation (14) must be polynomials of
degree

�
n − k as soon as we start with constant initial values δnn(y) = δnn(0). This is easily

seen by induction. We will now show that the degree of these polynomials is exactly n− k. By the
above observation, we can set

δkn(y) =
n−k∑

j=0

an
jk yj (an

0k = δkn(0)) .

Substituting this into (14), one gets

−

n−k∑

j=0

(j + 1)an
j+1,k−1 yj = 2k an

0k +

n−k∑

j=1

(2k + j) an
jk yj .

Comparing the coefficients, we therefore get

−(j + 1)an
j+1,k−1 = (2k + j) an

jk (j = 0, 1, . . . , n − k) ,

and in particular for j = n − k

−(n − k + 1)an
n−k+1,k−1 = (k + n) an

n−k,k 6= 0 .
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Note that this finishes our proof that the degree of these polynomials is always exactly n − k.
From the above recurrence we can furthermore deduce that, given the initial value an

0n, the highest
coefficient of δkn(y) is given by the hypergeometric term

an
n−k,k = (−1)n−k

(
2n

n + k

)
an

0n .

Since both solution families of (14) that we know are nonnegative in [0, 1], the question arises
to study the sign of a general solution of (14).

For this purpose, we integrate (14) from 0 to y and get

δk−1,n(0) − δk−1,n(y) = 2k

y∫

0

δkn(z)dz +

y∫

0

z δ′kn(z)dz .

Partial integration gives

δk−1,n(0) = δk−1,n(y) + y δkn(y) + (2k − 1)

y∫

0

δkn(z)dz . (17)

From (17), we immediately see that δk−1,n(y0) = 0 is equivalent to

δk−1,n(0) = y0 δkn(y0) + (2k − 1)

y0∫

0

δkn(z)dz .

With the notation

Rkn :=




y δkn(y) + (2k − 1)

y∫

0

δkn(z)dz

∣∣∣∣∣∣
0

�
y

�
1






we therefore learn that if δk−1,n(0) 6∈ Rkn then the function δk−1,n(y) does not have a zero in the
interval [0, 1] and vice versa.

If we set Mkn := max Rkn, then obviously Mkn � 0 since 0 ∈ Rkn (set y = 0). Now if
one chooses δk−1,n(0) > Mkn, then the function δk−1,n(y) must be positive throughout the interval
[0, 1]. Hence if we initialize the recurrence equation (14) with a positive continuously differentiable
function δnn(y), and choose δk−1,n(0) > Mkn for every k = 1, . . . , n−1, then the resulting function
system δkn(y) is positive for all y ∈ [0, 1] and all k = 1, . . . , n.

Hence, as a consequence, positive solution families of the de Branges differential recurrence
equation are not rare at all.

Since both δkn(y) and δ̃kn(y) are solutions of (14) and since δ̃kn(y) is rather oscillating, see
Figure 4, it is clear that the positivity of δkn(y) cannot imply the positivity of δ′kn(y). It is interesting
that nevertheless a similar statement is true, where an integration is involved, however.
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Multiplying (14) by y2k−1 and replacing y by z yields

−z2k−1 δ′k−1,n(z) =
(
z2k δkn(z)

)′
.

Integration from 0 to y gives

−

y∫

0

z2k−1 δ′k−1,n(z) dz = y2k δkn(y) .

Hence, if δkn(y) is positive on [0, 1], then
∫ y

0
z2k−1 δ′k−1,n(z) dz is negative on (0, 1], independent

of the choice of the value of δk−1,n(0).

4 Hypergeometric solution families of the de Branges differen-
tial recurrence equation

The hypergeometric representation (8) leads to the explicit repesentations

δkn(y) =
1

k

(
n + k + 1

2k + 1

)
4F3

(
k − n, k + 1/2, n + k + 2, k

2k + 1, k + 1, k + 3/2

∣∣∣∣∣ y
)

of δkn(y) and

δ̃kn(y) =

(
n + k + 1

2k + 1

)
3F2

(
k − n, k + 1/2, n + k + 2

2k + 1, k + 3/2

∣∣∣∣∣ y
)

of δ̃kn(y). In this section we will show that many more structurally similar hypergeometric func-
tions are solutions of the recurrence equation (14).

The above two representations suggest to consider the general hypergeometric functions

δkn(y) = δkn(0) pFq

(
k − n, αk

2, . . . , α
k
p

2k + 1, βk
2 , . . . , βk

q

∣∣∣∣∣ y
)

.

By the hypergeometric derivative rule (see e.g. [7], p. 27, Exercise 2.4), we get

2k pFq

(
k − n, αk

2, . . . , α
k
p

2k + 1, βk
2 , . . . , βk

q

∣∣∣∣∣ y
)

+y
d

dy
pFq

(
k − n, αk

2, . . . , α
k
p

2k + 1, βk
2 , . . . , βk

q

∣∣∣∣∣ y
)

= 2k pFq

(
k − n, αk

2 , . . . , α
k
p

2k, βk
2 , . . . , βk

q

∣∣∣∣∣ y
)

,

and differentiating term-wise one has

d

dy
pFq

(
k − 1 − n, αk−1

2 , . . . , αk−1
p

2k − 1, βk−1
2 , . . . , βk−1

q

∣∣∣∣∣ y
)

=
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(k − 1 − n) αk−1
2 · · ·αk−1

p

(2k − 1) βk−1
2 · · ·βk−1

q

· pFq

(
k − n, αk−1

2 + 1, . . . , αk−1
p + 1

2k, βk−1
2 + 1, . . . , βk−1

q + 1

∣∣∣∣∣ y
)

.

Substituting the above equations in (14) and dividing by δk−1,n(0), we arrive at

(n + 1 − k) αk−1
2 · · ·αk−1

p

(2k − 1) βk−1
2 · · ·βk−1

q

· pFq

(
k − n, αk−1

2 + 1, . . . , αk−1
p + 1

2k, βk−1
2 + 1, . . . , βk−1

q + 1

∣∣∣∣∣ y
)

= 2k
δkn(0)

δk−1,n(0)
pFq

(
k − n, αk

2, . . . , α
k
p

2k, βk
2 , . . . , βk

q

∣∣∣∣∣ y
)

.

For y = 0 this yields
(n + 1 − k) αk−1

2 · · ·αk−1
p

(2k − 1) βk−1
2 · · ·βk−1

q

= 2k
δkn(0)

δk−1,n(0)
, (18)

and therefore

pFq

(
k − n, αk−1

2 + 1, . . . , αk−1
p + 1

2k, βk−1
2 + 1, . . . , βk−1

q + 1

∣∣∣∣∣ y
)

= pFq

(
k − n, αk

2, . . . , α
k
p

2k, βk
2 , . . . , βk

q

∣∣∣∣∣ y
)

.

This equation is an identity if we set

αk−1
m + 1 = αk

m for m = 2, . . . , p and βk−1
r + 1 = βk

r for r = 2, . . . , q .

Solving these simple recurrences for αk
m and βk

r , we therefore get

δkn(y) = δkn(0) pFq

(
k − n, k + c2, . . . , k + cp

2k + 1, k + d2, . . . , k + dq

∣∣∣∣∣ y
)

with constants cm (m = 2, . . . , p) and dr (r = 2, . . . , q).
With the aid of (18), we finally compute the initial values

δkn(0) = δnn(0)
(2n)!

(2k)! (n − k)!

∏q

r=2(k + dr)n−k∏p

m=2(k + cm)n−k

by induction. Therefore we have computed the following solution δkn(y) (k = 1, . . . , n) of (14)

δkn(y) = δnn(0)
(2n)!

(2k)! (n − k)!

∏q

r=2(k + dr)n−k∏p

m=2(k + cm)n−k
pFq

(
k − n, k + c2, . . . , k + cp

2k + 1, k + d2, . . . , k + dq

∣∣∣∣∣ y
)

showing that hypergeometric solutions of the de Branges differential recurrence equation are not
rare at all.
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