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Zusammenfassende deutsche Darstellung der in englischer Sprache abgefassten Doktorarbeit:

Eine Computer-algebraische Methode zur

Untersuchung der Symmetrie-Eigenschaften

von Molekülen und Clustern

Ziel dieser Dissertation war, mit Hilfe computer-algebraischer Methoden ein Werkzeug zur

Untersuchung der Symmetrieeigenschaften von Molekülen und Clustern zu entwickeln. Das

Maple Paket Bethe gestattet es, gruppentheoretische Daten zu extrahieren und zu ma-

nipulieren und damit Symmetrieanwendungen zu vereinfachen (Kap. 2). Zunächst werden

die Vorteile von Bethe beim Erzeugen der gruppentheoretischen Daten gezeigt. In der ak-

tuellen Version können die Symmetriedaten für 72 häufig benutzte Punktgruppen sowie der

zugehörigen Doppelgruppen erzeugt werden. Der Schwerpunkt dieser Arbeit liegt im Bereich

der Anwendungen dieses Programmpakets in der Physik der Moleküle und Cluster (Kap. 3).

Neben der Untersuchung der optischen Eigenschaften von Molekülen in Abhängigkeit von der

jeweiligen Symmetriegruppe wird auch gezeigt, wie Bethe zum Verständnis der Feldaufspal-

tung in Kristallen beitragen kann und wie die zugehörigen Wellenfunktionen berechnet werden

können. Einige der heutigen Fähigkeiten von Bethe werden an Hand mehrerer ausgearbeit-

eten Beispielen gezeigt. Obwohl wir nicht auf alle Details ausführlich eingehen können zeigen

diese Beispiele doch die umfassenden Möglichkeiten computer-algebraischer Techniken bei der

Untersuchung symmetrieabhängiger Eigenschaften von Molekülen und Clustern.

In dieser Dissertation wurde besonderer Wert auf die Vielseitigkeit des Bethe Pakets gelegt,

damit neue Anwendungen problemlos implementiert werden können (Kap. 4). Diese Er-

weiterungen sind sinnvoll, da die schwierigsten Teile dieser künftigen Anwendungen bereits im

Bethe Paket enthalten sind. So werden zum Beispiel die Vibrationskoordinaten (Normalko-

ordinaten) als Funktion der kartesischen Einheitsvektoren, die für die Wilsonsche Methode

benötigt werden, oder auch die Clebsch-Gordan Koeffizienten, die für das Jahn-Teller-Problem

benötigt werden, bereits in der vorliegenden Programmversion erzeugt. Für das Jahn-Teller-

Problem scheint der Gebrauch des CA Werkzeugs sogar unvermeidlich zu sein, weil dieses

Problem einen analytischen Zugang zum adiabatischen Potential erfordert und deshalb durch

einen numerischen Algorithmus nicht behandelt werden kann.

Die Fähigkeiten des Bethe Pakets werden durch die oben erwähnten Anwendungen noch nicht

ausgeschöpft. Es gibt verschiedene Richtungen, in die das Bethe Programm in der Zukunft

weiterentwickelt werden kann. Beispiele hierfür sind (i) die Untersuchung magnetischer Eigen-

schaften von Festkörpern und von (ii) optischen Übergängen. Die Implementierung dieser Er-

weiterungen wird das Bethe Programm zu einem noch flexibleren und mächtigeren Werkzeug

machen.
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Chapter 1

Introduction

Since the middle of the last century the numerical computational techniques have been widely

applied in all branches of modern physics and chemistry. Even in the theoretical physics, where

the analytical approach was dominated for a very long time, the numerical computations have

become an accepted instrument. During the last decades, however, the use of computers in

science makes turn from purely numerical to the symbolic or computer-algebraic (CA) compu-

tations. The CA solutions, or combinations of the new symbolic techniques with the previously

developed numerical algorithms, are very promising. Therefore, they seem to be increased in

the nearest future. The reason for such an increase is the number of advantages of the computer

algebra in the theoretical research. These advantages are

• the reach mathematical basis, built into the CA systems, i. e. knowledge of all the

mathematical rules, which are necessary to treat the mathematical expressions;

• fast and reliable symbolic manipulation;

• interactive style of work, i. e. the possibility to work ”step-by-step” and, therefore, to

examine the computation process on different stages;

These (as well as many other) advantages have led CA to find its way to many different areas

of physics and chemistry, including the quantum chemistry, biophysics and many others. One

of the areas, in which the use of CA is highly desirable, is the treatment of many-particle

systems, such as molecules and clusters. The high complexity of these systems restricts the

use of numerical computations and requires some additional simplifications, which are easier

to realize within the CA approach.

Since most of the molecules and clusters possess a symmetry, the powerful simplification can

be followed from the symmetry consideration. Moreover, sometimes symmetry appears even

irreplaceable in order to recognize the properties and behavior of molecules and clusters. The

basic mathematical tool for dealing with symmetry is the group theory. During the last fifty

years this theory has found its way into almost all branches of modern physics and chemistry [1,

2] and has helped achieve simplifications of great power. In practice, however, the application of

the molecular symmetries in physics and chemistry may become rather cumbersome. Although,

nominally, the basic relations of group theory are widely known, there are several shortcomings
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which make the access to the group data inefficient and difficult to use. Apart from an often

very compressed compilation of the group data in some tables or appendixes of textbooks, only

parts of these data are usually displayed explicitly and without providing the user with the

additional algorithms and abbreviations. Even in Ref. [3], which is found as the most complete

tabulation of the group-theoretical data, some parameters are not easy to extract. Moreover,

the number of different notations, used in the literature for the group-theoretical parameters,

also may to make difficult the access to the group data. These reasons make the practical use

of the group theory very difficult.

An alternative and very promising route for dealing with the symmetry and the group theory

is offered by computer-algebraic systems today. Several powerful CA systems, such as Math-

ematica or Maple, are available and can be utilized to develop new algorithms and tools for

applying group–theoretical methods in physics and chemistry. A number of CA packages, which

support the definition and manipulation of the group-theoretical parameters, has been created.

For instance, Gap [4], SymmGrp.Max [5] and many others. However, most of these packages

are developed to provide the mathematical basis of the symmetry and are not appropriate to

be used in the practical research.

Nevertheless, there is a big number of physical and chemical tasks, in which the CA approach

can be very helpful. For instance,

• search for symmetries and appropriate molecular coordinates;

• derivation of the normal coordinates and modes of molecules and clusters;

• derivation of selection rules and spectral activities for the vibrational transitions of the

molecule;

• level spitting of atoms in external crystal fields;

• studying of the magnetic properties of material;

• analysis of vibronic interaction and the Jahn-Teller effect;

• construction of molecular symmetry orbitals for quantum computations;

• use of Racah’s algebra;

and many others. The features of the CA approach to some of these tasks are briefly analyzed

in Ref. [6]. In order to develop the use of computer algebra for dealing with the symmetry

application, we developed the program Bethe, which is described in this thesis work. This

program has been created within the framework of Maple. It provides the group-theoretical

data for most frequently applied point and double groups as well as the manipulation of these

data (see Chapter 2). Using the group-theoretical data, the program also supports several

applications of the symmetry. In this thesis work only three applications are considered: (i) the

generation of the molecular geometry and symmetries (Section 3.1); (ii) the vibrational analysis

of the molecule (Section 3.2), which includes the generation of the spectroscopy selection rules

for the nonfundamental vibrational transitions; and (iii) the analysis of the atomic behavior and
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splitting of atomic terms due to the external crystal field (Section 3.3). The last task includes

a big number of particular cases (one- and many-electron atom, weak and strong crystal field,

spin-orbit interaction and others).

The important feature of the Bethe program is its flexible structure, which allows to adapt

it for a wide range of applications. Therefore, some ideas for the possible future applications

are collected in Chapter 4. For instance, the program realization of the Wilson’s method

is suggested in Section 4.1. This method continues the vibrational analysis of the molecule.

It helps to define the relationship between the vibrational frequencies and molecular force

constants. Apart from the Wilson’s method, there is a well known phenomenon from molecular

physics, known as the Jahn–Teller effect. This effect consists in the spontaneous distortion of

a molecule due to its vibrational motion and depends on the interaction between the electrons

and the nuclei. The theory of this effect is based, again, upon a group–theoretical analysis of

the adiabatic potential of the (polyatomic) molecule when the electronic states become nearly

degenerated. The question about the geometrical stability of the molecule is then related to the

search of the minimum of the potential surface and can be answered by means of the Bethe

package. The theoretical background of the Jahn-Teller effect and suggestions for its program

realization are described in detail in Section 4.2. The summary of results and short outlook

can be found in Chapter 5, while the Appendix contains the description of all procedures,

implemented into the Bethe. Finally, the three papers on the development of the Bethe

package, which have been published (or accepted for publication) during the last years, are

included at the end of this thesis work.
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Chapter 2

BETHE - A computer-algebraic tool

for dealing with symmetry

The Bethe program has been developed to provide a simple and reliable access to the point

group data as required by many applications. Following a brief overview about the program,

we shall explain below how these data can be manipulated in order to solve some particular

tasks. Owing to the interactive design of Bethe, we expect this program of quite common

interest, both in teaching the basic elements of the group theory as well as for advanced research

studies. Therefore, in this chapter we explain how to use this program in order to extract and

manipulate the group data. Dealing with the Bethe is illustrated by a big number of examples.

2.1 Symmetry and the group theory

The group theory is probably one of the most powerful mathematical tools which is used in

quantum mechanics and spectroscopy. Being applied to some quantum-mechanical systems,

this theory allows to simplify the treatment of these systems. Since the group theory has been

worked out a long time ago, here we shall not to go into the mathematical details, but assume

the reader to be familiar with basic concepts of the group theory. From the large number of

available texts on this theory, we refer the reader to the classical books of Wigner [1], Heine

[2], or Elliot and Dawber [7] and many others. Therefore, in this section we give only a brief

outlook of the group theory in order to recall the terminology and notation of the following

applications.

The symmetry of a physical object is known to be determined by the set of transformations

that brings the object to a geometrical configuration, indistinguishable from the original. Such

transformations are called typically symmetry operations. In some more details, five kinds of

symmetry operations are usually distinguished, including (i) the identity operation Ê (which

leaves the object as it is), (ii) an n−fold rotation Ĉn about some axis, or (iii) the inversion î of

all coordinates at the origin. Moreover, there are (iv) reflection σ̂ at some mirror plane, or —

in a combined form — (v) n-fold rotations about some axis, followed by a reflection through a

plane which is perpendicular to this axis (Ŝn). The symmetry operations are associated with

three different types of symmetry elements, such as a line, plane, or some particular point, with
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respect to which one or several symmetry operations can be carried out. The set of symmetry

operations, inherent in some physical object, constitute a symmetry group and are known to

form (finite) subgroup of the continuous group O3 of rotations in three-dimensional space [7, 8].

Since the molecule or cluster must not be shifted in the space by carrying out these operators,

at least one point has to be fixed in space. Therefore, the groups of operators, described above,

are called point groups. These groups are of major interest in chemical sciences. The most

complete tabulation of the group data has been compiled by Altmann and Herzig [3] and has

been utilized as one of the main references in the design of the Bethe program.

While the point groups just allow the geometrical transformation of some object, it is possible

to add the concept of electron spin to these groups. These extended groups are usually called

double groups [8, 9]. They basically arise from the observation that the spin function for a

particle with spin s=1/2 is invariant only under the rotation of 4π (around any axis in the

space). This means, however, that the rotation Ê by 2π does not give rise to the identity, but

only Ê2 = Ẽ. Referring to the spin space of the particle, of course, the (new) element Ẽ com-

mutes with all rotations R̂a. Hence, for given a group G of such rotations, the corresponding

double group G̃ is generated by appending the new elements Ẽ R̂a = R̃a, a = 1, ..., g to the

group. As a consequence, the number of symmetry operations is doubled when compared to

the number of the corresponding point group, i.e. without spin. Obviously, if a group contains

the rotation Ĉn as one of the symmetry operators, then Ĉ n
n = Ẽ and Ĉ 2n

n = Ê in the case

of the double groups. Since the double group is obtained simply by ”doubling” the number of

symmetry operations (due to the non-identical rotation about 2π), all operator strings appear

basically twice for the double group, with one of them having a leading capital letter ”R”. In

the Bethe program we always support both, the point groups and the corresponding double

groups. The double groups are important in various chemical applications including, for ex-

ample, the theory of transition metal ions and in relativistic quantum chemistry. For instance,

the generation of molecular symmetry orbitals, supported by the Bethe package [10], makes

extensive use the double group parameters.

2.2 Program organization

The Bethe program, created within the framework of Maple, has been designed as an inter-

active tool to facilitate the use of the symmetry group theory in physics and chemistry. The

main emphasize was placed on providing a user-friendly tool, which requires neither a detailed

knowledges about the theoretical background, nor the abbreviations and notations, used in the

literature.

In the present version of the program, Bethe provides the group data for all finite groups

of common interest, including the cyclic and their related groups Ci, Cs, Cn, Cnh, Cnv, the

dihedral groups Dn, Dnh, Dnd, the improper cyclic groups S2n (n ≤ 10) , the cubic groups

O, T, Oh, Th, Td as well as the icosahedral groups I, Ih. The table of classification of these

groups in terms of the group families is presented in Ref. [11]. For each of the groups,

mentioned above, we provide the definition of the symmetry operators, the multiplication law,

character tables, the matrices of the irreducible representations as well as the numbers of other
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Table 2.1: Main commands of the Bethe program.

Bethe decompose representation() Determines the irreducible components of given reducible group

representation.

Bethe group() Provides the basic point group data and notations.

Bethe group chain() Displays the chain structure of the point group.

Bethe group character() Returns the character of a given irreducible representation and

symmetry operation.

Bethe group class() Returns all symmetry operations of the same class.

Bethe group direct product() Returns the direct product of two irreducible representations.

Bethe group Euler() Returns the three Euler angles (α, β, γ) for a given symmetry

operation.

Bethe group irrep() Returns the matrix representation of a given irreducible represen-

tation and symmetry operation.

Bethe group multiplication() Returns the product operation of two symmetry operations.

Bethe group parameter() Specifies the symmetry operations in different parameterizations.

Bethe group representation() Evaluates a few particular group representations as displayed in

Table 3.

Bethe group subduction() Returns the irreducible components, which appear in the decom-

position of the group Glabel to the lower-symmetry group.

Bethe group subduction O3() Returns the irreducible components, which appear in the decom-

position of the O3 group representation to the lower-symmetry

group.

Bethe group symmetry() Determines the symmetry of a given set of points.

Bethe group tabulation() Prints the group theoretical data in a table format.

parameters. As said before, all these data are supported for both, the point and double groups.

The Bethe program has been organized in a hierarchical order. It includes more than hundred

procedures which can be invoked either interactively or simply as a language elements in order

to build up commands at some higher level of the hierarchy. In practice, however, only less

than 20 procedures need to be known by the user. These procedures are briefly explained in

Table 2.1 to provide the reader with the first impression about the Bethe program. In order

to distinguish these commands from Maple’s internal functions, they all start with the prefix

Bethe . More detailed information about the arguments and the output of these procedures

can be obtained from the Appendix. Therefore, we do not explain most of the procedures in

details. Let us only make mention of the command Bethe group(). This command is one of

the most important procedures of the Bethe toolbox. It provides all the basic information

about a particular group, such as the number and names of the symmetry operations, the

number of classes, irreducible representations and many others. The group label (Glabel) is

used in this procedure (as well as in many other procedures) as a first argument in order to

specify the symmetry group. A list of all presently supported group labels is returned by calling

6



Table 2.2: Optional arguments of the command Bethe group(Glabel,...).

Keyword(s) Output of the procedure

crystallographic Boolean value true for the crystallographic groups or false.

crystal system Name of the crystallographic system.

cubic Boolean value true for the cubic groups or false.

cyclic Boolean value true for the cyclic groups or false.

dihedral Boolean value true for the dihedral groups or false.

examples Prints a few examples.

group table Prints a summary about all the presently supported point groups.

icosahedral Boolean value true for the icosahedral groups or false.

implemented Boolean value true for the implemented group or false.

irreps List of irreducible representation identifiers.

irreps, double List of irreducible representations identifiers in the double group.

No Altmann Number of the tabulation by Altmann & Herzig [3].

No class Number of classes.

No class, double Number of classes in the double group.

No irregular Number of irregular classes.

No irreps Number of irreducible representations.

No irreps, double Number of irreducible representations in the double group.

No operators Number of symmetry operations

No operators, double Number of symmetry operations in the double group.

No regular Number of regular classes.

operator details Prints a description of all symmetry operations.

operators List of symmetry operation identifiers.

operators, double List of symmetry operation identifiers in the double group.

proper Boolean value true for proper groups or false (improper groups).

spinor irreps List of spinor irreducible representation identifiers.

subgroups List of subgroup labels.

symmetry elements Prints a description of all symmetry elements.

the procedure Bethe group() without arguments. A second argument of the Bethe group()

command is the keyword, which allows to specify the type of extracted group-theoretical data.

All presently supported keywords are displayed in the Table 2.2 in alphabetic order. Of course,

the output depends on the given parameters and can be either a number, boolean value, a

string, or simply a NULL expression if the procedure just prints some information. Finally,

third argument - keyword double - may be used to obtain the corresponding double group

theoretical data, if appropriate.

Consider, for example, the symmetry group D3h which is obtained from dihedral group D3 by

adding three vertical mirror planes and one horizontal plane. The symmetry of this group is

fulfilled approximately by the eclipsed ethane molecule C2H6 (see Fig. 2.1). The symmetry

elements and operations of this group are shown below, as returned by the program.

7



x

y

z

H
H

H

H

H

H

C

C

a

b c

0

Figure 2.1: Geometry of the eclipsed ethane molecule C2H6.

• Symmetry operations of the D3h group:

> Bethe group(D3h, operators);

["E", "C3+", "C3-", "C21‘", "C22‘", "C23‘", "S3-", "S3+",

"sigma_h", "sigma_v1", "sigma_v2", "sigma_v3"]

> Bethe group(D3h, operators, double);

["E", "C3+", "C3-", "C21‘", "C22‘", "C23‘", "S3-", "S3+",

"sigma_h", "sigma_v1", "sigma_v2", "sigma_v3",

"RE", "RC3+", "RC3-", "RC21‘", "RC22‘", "RC23‘", "RS3-", "RS3+",

"Rsigma_h", "Rsigma_v1", "Rsigma_v2", "Rsigma_v3"]

• Definition of the symmetry operations.

> Bethe group(D3h, operator details);

Description of symmetry operations for the point group D3h:

------------------------------------------------------------

E Identity operation

C3+ Clockwise rotation about the z(principal)-axis by 2*Pi/3

C3- Anticlockwise rotation about the z(principal)-axis by 2*Pi/3

sigma_h Reflection through the horizontal (x-y) plane

sigma_v1 Reflection through the (sigma_v1)-plane given by the z-axis

and the azimuth angle phi = 0

.

.
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• Explanation of the symmetry elements.

> Bethe group(D3h, symmetry elements);

Symmetry elements of the point group D3h:

------------------------------------------

C_3 3-fold principal axis along the z-axis

S_3 3-fold improper axis along the z-axis

sigma_h Horizontal (x-y) reflection plane

sigma_v1 Vertical reflection plane

including the z-axis and with azimuth angle phi = 0

.

.

During the last years, the Bethe program has been published in the Computer Physics Com-

munications library in several steps [10]-[12]. The full package is distributed by a tar file of the

Bethe root directory (Bethe.tar), which contains the source code library, file .mapleinit,

guide for installation as well as the documentation for the program. The Bethe program can

be invoked like any other module of Maple. Then, by using the command with(Bethe) user

may load all procedures and initialize the internal settings of the Bethe package:

> with(Bethe);

Welcome to Bethe

version from 02 January 2006

Bethe_save_framework = nonrelativistic

[AO, Abasis, Bethe_CGC_are_orthogonal, ...

2.3 Interactive work with the group data

As shown in the previous section, the Bethe package helps to extract the group theoretical

data for particular group. However, the computer-algebraic approach, which realized within the

Bethe package, allows not only extraction, but also interactive use of these data. In this section

we demonstrate, how the symmetry operations of the group D3h, obtained by the command

Bethe group(), can be used to obtain the advanced group-theoretical information. As seen

from the output of the previous section, all symmetry operations are handled by means of

appropriate string identifiers. For each of these strings, we can determine the parameterization

of this symmetry operation in terms of Euler angles α, β, γ

> Bethe group Euler(D3h, "C3+"), Bethe group Euler(D3h, "sigma v1");

9



2 Pi

[0, 0, ----], [0, Pi, 0].

3

Apart from this (most widely applied) type of parameterization, one can determine other types

of parameterization. For instance, in terms of the angle ϕ and pole n of rotation

> Bethe group parameter(D3h, "C3+"), Bethe group parameter(D3h, "sigma v1");

2 Pi

[----, [0, 0, 1]], [Pi, [0, 1, 0]].

3

or in terms of the so-called quaternion parameters

> Bethe group parameter(D3h, "C3+",quaternion), Bethe group parameter(D3h,

"sigma v1", quaternion);

[ 1/2]

[ 3 ]

[1/2, [0, 0, ----]], [0, [0, 1, 0]]

[ 2 ]

Moreover, one of the important group properties, that the product of any two operators must

also be a member of the group, can be easily confirmed in the program

> Bethe group multiplication(D3h, "C3+", "sigma v1"),

Bethe group multiplication(D3h, "RC3+", "Rsigma v1");

"sigma_v3", "Rsigma_v3".

The whole ”multiplication table” is then simply obtained by cycling through all pairs of sym-

metry operators.

2.4 Group representations

2.4.1 Irreducible representations

The symmetry operations of the group would be of minor interest, if they would not give rise

to the so-called induced transformations in some given vector space L. The relations between

the symmetry operations and their induced transformations lead to the great simplifications in

describing the molecular systems. Typically, such induced transformations can be expressed by

the matrices and are called the representations T of the group (by assigning one matrix to each

of the symmetry operators R̂a). The representation matrices fulfill the same ’multiplication

rule’ like the symmetry operations: T (R̂a)T (R̂b) = T (R̂aR̂b) and T (Ê) = 1. The vector space

L, in which these representations are found, is then called the representation space of T and
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its dimension is the dimension of this representation [7]. In physics, we may usually restrict

ourselves to matrix representations as obtained by choosing an orthonormal basis e1, ..., en

in L: Tji (R̂a) = 〈ej |T (R̂a)|ei〉. More generally, the space L may be considered not only

as a vector space, but also as function space with the orthonormal basis ϕ1, ..., ϕn. The set

of functions ϕi, i = 1, ..n is called basis functions of the irreducible representation T . Since,

in general, we can choose the basis rather arbitrarily, the representations of a group are not

unique but depend of course on the choice of the coordinates and further parameters.

One of the great benefits of group theory arises from the fact that, for finite groups, any repre-

sentation can be decomposed into — a rather small number of — irreducible representations,

which are unique and independent of the basis up to some unitary transformation. In this

decomposition, of course, the sum of the dimensions of the involved irreducible components

must be equal to the dimension of the considered vector space L. In the Bethe program the

so-called Mullican notation is used to identify the irreducible representations. For the D3h

point group, for instance, the string identifiers of irreducible representations are

> Bethe group(D3h, irreps);

["A1‘", "A2‘", "E‘", "A1‘‘", "A2‘‘", "E‘‘"]

In this notation the one–dimensional representations are labeled by A or B in dependence

of whether the character of the rotation about the principal axis is +1 or −1, respectively.

In addition, the two–, three– and four–dimensional representations are labeled by E, T , and

F . The five– and six–dimensional representations, appearing in some high-order groups, are

denoted by H and I, respectively. Integer subscript is used to indicate the symmetry with

respect to the binary axes, perpendicular to the main rotational axis, while primes and double

primes denote the symmetry with respect to the horizontal reflection plane. First irreducible

representation in the list, returned by the procedure Bethe group(Glabel, irreps), is always

totally symmetric, that is it has the characters χ = +1 for all of the symmetry operations of

the underlying group. In addition to the point group (vector) representations, the list of the

double group irreducible representations includes also so-called spinor representations, marked

by the half-integer subscript.

> Bethe group(D3h, irreps, double);

["A1‘", "A2‘", "E‘", "A1‘‘", "A2‘‘", "E‘‘", "E1/2", "E3/2", "E5/2"]

The number of the spinor representations not exceed the number of the vector representations.

For each of these representations, the Bethe program provides either the explicit matrix

or simply the character, that means the trace of corresponding matrix. The characters are

sufficient for most practical applications. For instance, for the (two-dimensional) irreducible

representation E‘ of the group D3h the character and explicit matrix can be obtained as

> Bethe group character(D3h, "E‘","C3+"), Bethe group irrep(D3h, "E‘","C3+");

11



[ 1/2 ]

[- 1/2 - 1/2 I 3 0 ]

-1, [ ]

[ 1/2]

[ 0 - 1/2 + 1/2 I 3 ]

or, for the spinor representation E1/2

> Bethe group character(D3h,"E1/2","C3+"),Bethe group irrep(D3h,"E1/2","C3+");

[ 1/2 ]

[1/2 - 1/2 I 3 0 ]

1, [ ]

[ 1/2]

[ 0 1/2 + 1/2 I 3 ]

Moreover, the list of characters (matrices) for all operators as defined above can be obtained

> Bethe group character(D3h, "E‘"), Bethe group irrep(D3h, "E‘"):

[2, -1, -1, 0, 0, 0, -1, -1, 2, 0, 0, 0]

where the full printout of matrices is omitted here by using a double point at the end of the line.

The characters of a group representation are often denoted by χ and can be used, for instance,

to determine the number of (inequivalent) irreducible representations, which are ’involved’ in

some reducible representation (see below). From these few examples it becomes clear how the

corresponding data for other representations and symmetry operations can be extracted from

the Bethe program.

2.4.2 Reducible representations and their reduction

Equally to the irreducible representations of the symmetry group, so-called reducible repre-

sentations are of the great importance in various applications. For instance, in the vibra-

tional spectroscopy the representation, generated by a set of 3N Cartesian basis vectors (for

N -atomic molecule) is useful [13]. Another applications require to construct the reducible rep-

resentation generated not by the vectors, but by the mathematical functions [14]. A number

of reducible representations can be generated within the Bethe package by calling the proce-

dure Bethe group representation(Glabel, ...). The second argument of this procedure is

the keyword, which specifies the type of required representation. In Table 2.3 we display the

presently supported keywords of this procedure.

Let us demonstrate, how to obtain the representation, generated by the set of spherical har-

monics Ylm of rank 1. To achieve this, the keyword Ylm has to be used. Moreover, the third

argument l = 1 specifies the parameter l of the function Ylm. This reducible representation can

be obtained either in terms of characters for every symmetry operation of the group D3h

12



Table 2.3: Optional arguments of the procedure Bethe group representation(Glabel, ...).

Keyword Output of the procedure

polar vector Representation, generated by the polar vector r=(x, y, z).

axial vector Representation, generated by the axial vector R=(Rx, Ry, Rz).

Ylm Representation, generated by the spherical harmonics of rank l, i.e. of

Ylm(θ, ϕ), m = l, l − 1, ...,−l.

jm Representation, generated by the spinor function |jm〉 of half-integer rank j,

i.e. of |jm〉, m = j, j − 1, ...,−j.

cartesian tensor Representation, generated by the cartesian tensor functions of given rank.

Euler Euler representation of the group

regular Regular representation of the group

total Total matrix representation of the group for a given set of atomic displacements

vibrational Representation of the vibrational motion for a given set of atomic displace-

ments

> wa := Bethe group representation(D3h, Ylm, 1);

wa := [3, 0, 0, -1, -1, -1, -2, -2, 1, 1, 1, 1]

or in terms of explicit matrices

> wa mat := Bethe group representation(D3h, Ylm, 1, matrix);

[ 1/2 ]

[1 0 0] [- 1/2 + 1/2 I 3 0 0 ]

[ ] [ ]

wa_mat := [[0 1 0], [ 0 1 0 ], ...

[ ] [ ]

[0 0 1] [ 1/2]

[ 0 0 - 1/2 - 1/2 I 3 ]

As seen from result, the obtained representation is three-dimensional. Generally, the dimension

of reducible representations is not restricted. Some representations, especially those, which are

used in the vibrational spectroscopy, are of the very large dimension. To simplify the dealing

with such (highly-dimensional) representations, we can transform each matrix of the reducible

representation into a number of irreducible representation matrices. This can be achieved by

applying the so-called reduction formula [7, 8]

T =

.
∑

γ

mγ T
(γ) (2.1)

mγ =
1

h

∑

R

χR̂ χ
(γ)

R̂
, (2.2)
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where T is the reducible representation and T (γ) are irreducible representations of the group,

while the numbermγ indicates how many times every irreducible representation T (γ) is found in

the reducible representation T . Moreover, h denotes the order of the group, R̂ - the symmetry

operation of the group, χ - the character of the reducible representation T and χ
(γ)

R̂
- the

character of the irreducible representations T (γ). The dot over the summation sign in the

Eq. (2.1) denotes that this is not the usual matrix summation but the direct sum of matrices

[15]. This symbol for the summation means that by use of some transformation, the reducible

representation matrix T can be presented as a set of irreducible representation matrices T (γ),

arranged down the diagonal (see Ref. [12] for details). The Bethe program provides the

reduction of the reducible representation to the irreducible component, based on the reduction

formulas (2.1) and (2.2)

> Bethe decompose representation(D3h, wa);

["E‘", "A2‘‘"]

As seen from result, the three-dimensional reducible representation wa consists on the irre-

ducible components E‘ and A2“.

2.4.3 Direct product of the representation and its decomposition

In some applications of symmetry the so-called direct product of irreducible representations is

important. The direct product of irreducible representations is equivalent to the direct product

of corresponding matrices. Although the matrix direct product is widely known [16, 17], we

will briefly remind, that the direct product of a n × n matrix A and m ×m matrix B results

in the nm× nm matrix denoted by A ⊗ B. The character of direct product matrix A ⊗ B is

given by the product of the characters of matrices A and B. In the group theory the direct

product T (α) ⊗ T (β) of two irreducible representations T (α) and T (β) of the symmetry group

G is again a valid representation of the group, but generally reducible. Therefore, it can be

decomposed to the irreducible components T (γ) according to the expressions (2.1) and (2.2)

where T = T (α)⊗T (β) and the coefficients mγ are obtained from the characters of the irreducible

representations T (α), T (β) and T (γ) involved. Decomposition of the irreducible representation

direct product can be achieved in the Bethe package. For instance, for the group D3h the

program can return characters of the direct product of E‘ with A‘1 or with itself

> Bethe group direct product(D3h, "E‘", "A1‘", characters);

Bethe group direct product(D3h, "E‘", "E‘", characters);

[2, -1, -1, 0, 0, 0, -1, -1, 2, 0, 0, 0]

[4, 1, 1, 0, 0, 0, 1, 1, 4, 0, 0, 0]

Apart from the characters, the explicit matrices of the direct product representations can be

returned by use of keyword matrix. Moreover, then program can automatically produce the

decomposition of the direct product

> Bethe group direct product(D3h, "E‘", "A1‘"),

Bethe group direct product(D3h, "E‘", "E‘");
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["E‘"], ["A1‘", "A2‘", "E‘"]

As seen from result, the two-dimensional direct product E‘⊗A1‘ is irreducible (since the totally

symmetric irreducible representation A‘1 does not change any other representation), while the

four-dimensional direct product E‘ ⊗ E‘ is decomposed to the three irreducible components

A‘1, A‘2 and E‘.

The direct product of the irreducible representation with itself T (α) ⊗ T (α) can be divided on

the so-called symmetrized and antisymmetrized parts. These parts are denoted by
[

T (α) ⊗ T (α)
]

and {T (α) ⊗ T (α)} respectively; of course,
[

T (α) ⊗ T (α)
]

+ {T (α) ⊗ T (α)} = T (α) ⊗ T (α). The

meaning of the symmetrized and antisymmetrized parts of the direct product refers to the basis

functions of the direct product representation, as described in Ref. [8, 18]. Therefore, we do not

give the detailed explanation of it. Note only, that the basis functions of the symmetrized part

keep the form under the interchange of the parent irreducible representations basis functions,

while the basis functions of the antisymmetric part reverse the sign. The symmetrized and

antisymmetrized parts of the direct product can be obtained by the Bethe program using the

corresponding keywords

> Bethe group direct product(D3h, "E‘", "E‘", symmetrized);

Bethe group direct product(D3h, "E‘", "E‘", antisymmetrized);

["A1‘", "E‘"], ["A2‘"]

The totally symmetric irreducible representation of the group is always included into the sym-

metrized part.

In this Chapter the capability of the Bethe package to extract and manipulate the group

theoretical data is demonstrated. In the next Chapter we will show, how these data can be

used in different applications in physics and chemistry.
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Chapter 3

Application of BETHE on physics of

molecules and clusters

As said before, the theory of symmetry plays a very important role in modern physics and

chemistry. The symmetry consideration helps to solve a number of research problems. In

this chapter we demonstrate how the computer-algebraic approach can simplify the dealing

with particular symmetry applications. These applications include the derivation of molecular

symmetry, the interaction of molecules with the radiation field as well as behavior of atomic

energy levels in the external crystal field. The examples from the Bethe, presented in this

chapter, give the impression of what this program is able to do.

3.1 Molecular geometry and symmetries

A simple, but very frequently occurring task in physical chemistry refers to the specification

of the molecular symmetry and geometry [19, 21]. If the symmetry of a molecule or cluster is

known, for instance, we might raise the question about the atomic coordinates. Certainly, it

can be achieved if the coordinates are given for just one or few atoms from each set of equivalent

atoms under the symmetry operations of the group. Vice versa, we may wish to determine the

(highest) symmetry of a molecule if the atomic coordinates are given.

To demonstrate how to simplify this task by use the Bethe package, let us consider again

the eclipsed ethane molecule (C2H6), mentioned in the previous chapter. This molecule is

known to obey a D3h symmetry with the two carbon atoms on the central axis, ”sandwiched”

between two identical parallel H3 rings, as displayed in Fig. 2.1. Therefore, there are two sets

of equivalent atoms: two carbon atoms and six atoms of hydrogen. To define the symmetry of

every atom, we can choose one carbon atom at the position (0, 0, a) along the z-axis, while one

of the hydrogen atoms - at the position (b, 0, c) (see Fig. 2.1). Using the Bethe program, we

obtain

> w carbon := Bethe generate sites(D3h, [0,0,a]); w hydrogen :=

Bethe generate sites(D3h, [b,0,c]);

w_carbon := [[0, 0, a], [0, 0, -a]]
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1/2 1/2

b 3 b 3

w_hydrogen := [[b, 0, c], [- b/2, - ------, c], [- b/2, ------, c], [b, 0, -c],

2 2

1/2 1/2

b 3 b 3

[- b/2, - ------, -c], [- b/2, ------, -c]]

2 2

Sometimes it is useful to determine the symmetry of a molecule, if the coordinates of all the

equivalent atoms are given explicitly. For example, we may ask, whether the (two sets of the)

carbon and hydrogen atoms altogether obey a C3h symmetry

> Bethe group symmetry(C3h, w carbon, w hydrogen);

true

or even a D3d symmetry

> Bethe group symmetry(D3d, w carbon, w hydrogen);

false.

These two answers are, of course, not very surprising because C3h group is known to be a

subgroup of D3h, while the D3d group is not. Moreover, for a given set of coordinates (of

equivalent atoms), we can determine automatically the group with highest symmetry

> Bethe group symmetry(highest, w carbon, w hydrogen);

D3h

which confirms our assumption above about the symmetry of eclipsed ethane.

Of course, the examples, presented above, are trivial. However, they show how one can easily

generate the atomic coordinates and symmetries and utilize them in other applications, for

instance for determining the normal coordinates of a molecule as we consider in the [11].

3.2 Molecular vibrations and vibrational spectroscopy

Of course, in most cases the generation of the molecular geometry and symmetry is not self-

sufficient, but only intermediate problem of some more important applications. One of such

applications is the molecular vibrations and vibrational spectroscopy. Vibrational spectroscopy

is known as the experimental tool in order to resolve the structure and bonds of molecules, or

to understand their adsorption at surfaces [22, 24]. Two experimental methods of vibrational
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spectroscopy are widely used today: infrared and Raman spectroscopy which are based on quite

different physical principles. While, for instance, infrared spectroscopy concerns the absorp-

tion of (infrared) light by a molecule, owing to its vibrational frequencies, Raman spectroscopy

refers to the scattering of light. The infrared spectroscopy can therefore be taken as a direct

measurement of the vibrational frequencies whereas, in Raman spectroscopy, they just occur as

the differences in the frequencies of the incident and the Raman–scattered light, respectively.

For the interpretation of the vibrational spectra and derivation of the geometrical structure

of underlying molecule and clusters, so-called selection rules are widely used. These rules

are rather different for infrared and Raman excitations of the molecule. Whereas in infrared

spectroscopy the occurrence of a vibrational transition requires a change in the electric dipole

moment of the molecule, Raman lines go along with a change in the polarizability during the

vibration. Therefore, the selection rules for infrared and Raman transitions are widely used

to interprete the vibrational spectra and to derive the geometrical structure of the underlying

molecules and clusters.

For the treatment of the observed infrared and Raman spectra the theory of the point group

is used to extract most relevant information about the molecules. In particular, the point

group theory can define the spectral activity of polyatomic molecules or, by other words, to

answer the question, which vibrational transition is allowed in the infrared and Raman spectra

[18, 25, 27]. Therefore, in this section we demonstrate how to apply the Bethe package for

the analysis of the vibrational spectra. We start from the analysis of vibrational transitions

and their classification. Since the group-theoretical approach to the vibrational analysis was

described in Ref. [11] we will recall it very briefly just in order to demonstrate how computer

algebra may simplify the vibrational analysis, even if the complex molecule is involved in the

experiment.

3.2.1 Classification of vibrational transitions

According to the Born-Oppenheimer approximation, we can consider the molecular vibrations

independently of the states and motion of electrons. The vibrational motion of the N -atomic

molecule, in which its interatomic distances and internal angles change periodically without

producing any rotation or translation of the molecule as a whole, can be simply classified in

terms of 3N − 6 normal modes. Most easily this is seen by means of the total vibrational wave

function

Ψ(n1, n2, ..., n3N−6) =
∏

nk

ψnk
(Qk) (3.1)

which can be presented as the product of the oscillator functions ψnk
(Qk), associated with the

normal coordinates Qk, k = 1, 2, ..., 3N−6 [11]. For a wide range of temperatures and pressures

the molecule is found predominantly in the vibrational ground state, where all nk = 0. Several

types of transitions from the ground state to the excited vibrational states can be distinguished

in the molecule:

• Fundamental transitions: These transitions connect the ground level and the first excited

level with just a single quantum incorporated in one of the normal modes. For instance,
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nj = 1 while nk = 0 for k 6= j. The fundamental transitions are typically more

intense that any other kind of transition by at least one order of magnitude; their typical

frequencies are in the infrared region of about ∼ 100-5000cm−1 .

• Overtones: These transitions occur when a mode is excited beyond the first excited level

with a single quantum. It means, that nj > 1, nk = 0 for k 6= j. Since the transition

to the first excited level is fundamental, transitions from the ground level to the m-th

excited level is called (m− 1)-th overtone.

• Combination bands: These transitions are observed if more than one vibration is excited.

By other words, a molecule has acquired two or more vibrational quanta, distributed

among two or more modes (ni ≥ 1, nj ≥ 1, ..., k 6= i, j, ...)

• Hot bands are observed when an already excited vibration is further excited. The intensity

of the hot band is usually very weak. However, since the population of the initial state

increase with increasing the temperature, the intensity of the hot band will increase with

temperature. Hence the name ”hot band” [18].

• Occasionally so-called difference bands can be detected. These bands occur when the

molecule, which is already in a vibrationally excited state, gains another vibrational

quantum, while losing the one it possessed originally. Such bands are rare, since few

molecules exist initially in excited states except at high temperatures [14].

Before to analyze the vibrational transitions, the vibrational motion of the molecule should be

classified. This classification can be performed by the group theoretical considerations. Having

generated the reducible vibrational representation T (vib) of a molecule as described in the [13],

the normal vibrations can be obtained from the decomposition of this representation into its

irreducible components according to the expressions (2.1) and (2.2)

T (vib) =
∑

α

mαT
(α) (3.2)

From this decomposition one can define the symmetry type T (α) of every normal mode and a

number mα of modes with a particular symmetry T (α). Moreover, the degree of degeneracy

for every frequency refers to the dimension of corresponding irreducible representation T (α).

The number of vibrational modes of the molecule is given by the total number of irreducible

representations, appearing in the Eq. (3.2).

3.2.2 Selection rules for the infrared and Raman spectroscopy

The group-theoretical basis for determination the spectral activities of the vibrational modes

is described in [13, 14, 18]. The computer algebraic approach to the vibrational problem is

explained in Ref. [11]. Moreover, in the section 4.2 of this paper a number of examples how to

determine the spectral activity of fundamental transitions is presented. In this section we will
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deal only with the overtones and combination bands – most frequently occurred nonfundamen-

tal transitions. For these transitions we will apply the selection rules, which tell us whether

the particular vibrational mode is active in one or the other or both types of the spectra.

The spectral activity of the molecules can be defined by analyzing the irreducible components

which are associated with the upper and lower states of some given transition. However, in case

of the nonfundamental transitions, care has to be taken about the degeneracy of the normal

modes involved and the number of photons. Consider, for instance, overtone. In case of the

nondegenerate vibrations, the spectral activity of overtone can be defined similarly as of the

fundamentals. The only distinction occurs, if the number of photons nj is even. In this case

the final state (overtone) function is always totally symmetric. To illustrate this, we use, to

be successive, the example of M3 molecule with three identical atoms at the corners of an

equilateral triangle (for instance, the carbon atoms in cyclopropane). The classification of the

vibrational modes and selection rules for fundamental vibrational transitions of this molecule

were performed in Ref. [11]. For the first overtone (transition from the ground to the second

excited state) of this molecule in the A′
1 vibrational mode we have

> Bethe spectral activity(D3h, "A1’", infrared, 2);

false

> Bethe spectral activity(D3h, "A1’", Raman, 2);

true

where the number of photons is provided by the fourth argument. As seen from the output, the

first overtone of the A′
1 mode is forbidden in the infrared spectrum but allowed in the Raman

spectrum.

In order to determine the possible symmetries of the excited states for degenerate modes a

number of general formulas have been derived in the literature [18]. For the doubly-degenerate

vibrational mode, for example, the characters χν(R̂) of the vibrational representation of every

symmetry operation R̂ have to be calculated for the ν-th level using the recursion formula

χν(R̂) = 1/2
[

χ(R̂)χν−1(R̂) + χ(R̂ν)
]

, (3.3)

where χ(R̂ν) is the character for the operation R̂, carried out ν times. Being decomposed to the

irreducible components by the usual technique (see Eq.(2.1)and (2.2)), this representation gives

a number of irreducible components. These components define the symmetry of corresponding

level of doubly degenerate vibration. Then the spectral activity of the degenerate mode can

be determined. This quite tedious process is realized within the Bethe package. For instance,

for the doubly-degenerate E′ vibration of M3 molecule we have

> Bethe spectral activity(D3h, "E’", infrared, 2);

true

> Bethe spectral activity(D3h, "E’", Raman, 2);
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true

The first overtone of the E′ vibration is allowed in both spectra. Spectral activity of the

triply-degenerate vibrations, where the recursion formula for characters has a form Ref. [18]

χν(R̂) =
1

3

[

2χ(R̂)χν−1(R̂) +
1

2

{

χ(R̂2) − χ2(R̂)
}

χν−2(R̂) + χ(R̂ν)

]

, (3.4)

can be also defined in the Bethe package.

Combination bands are not much more complicated. As said before, the combination transition

process includes several vibrations. In this case the symmetry of excited state can be obtained

from the direct product of the symmetries of particular modes. If some of the included modes

are degenerate, one has to use the expression (3.3) or (3.4) to evaluate corresponding symmetry.

The transition moment integral, calculated with the corresponding symmetry of final state gives

the desired answer about the allowance of the combination transition. Consider the example

of combination, where the transition in the mode A′
1 to the second excited state occur together

with the transition of E′ mode to the first excited state. Using the Bethe package we obtain

> Bethe spectral activity(D3h, ["A1’, "E’"], infrared, [2,1]);

true

> Bethe spectral activity(D3h, ["A1’, "E’"], Raman, [2,1]);

true

This result shows, that the combination {A′
1 : 0 → 2;E′ : 0 → 1} will be allowed in both

spectra. It does not mean, that this combination will be strong in both spectra. It only means,

that it may have some nonzero value.

Thus, we have shown, how overtones and combination bands can be treated by the Bethe

package. Although these transitions are generally much less intense then the fundamental

transitions, they may in some cases be more pronounced than a weak fundamentals. Of course,

the presence of such intense nonfundamental transitions in the infrared and Raman spectra

can introduce complications in the vibrational analysis. Occasionally, however, they can be

useful, since totally inactive fundamentals may be active as overtones or combination bands in

the infrared or Raman spectra, and this can give approximate frequencies for such vibrations

[28, 29]. Therefore, the analysis of the nonfundamental activity, supported by the Bethe

package is very important.

3.3 Crystal field splitting

Apart from the vibrational spectroscopy, the symmetry properties of a system are reflected also

by the splitting of the ground-state levels of ions, placed into an (external) crystal field. The

behavior of the energy levels in the crystal field helps to recognize the structure of atoms and

ions and to understand the nature of the bonding in transition metal complexes [30, 31, 32]. In
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this section we explain, how Bethe package helps to analyze such systems. Since the discussion

of the energy levels in the crystal field reveals the relationship between the wavefunctions, the

energy levels of the quantum system and the irreducible representations of its symmetry group,

the use of the symmetry theory in the quantum mechanic will be briefly recalled. Some details

about group-theoretical treatment of the crystal filed splitting reader can find also in Ref. [12].

3.3.1 Use of symmetry in the quantum mechanics. Wigner theorem.

The basis functions of the irreducible representations, mentioned in the Section 2.4.1, would be

of minor interest, if they did not have the physical meaning. In quantum physics these functions

can be interpreted as a wave functions of the molecular systems and help to classify these

systems in accordance to their symmetry. Actually, the behavior of the stationary quantum

system is determined by the wave function ψ, which is solution of the Schrödinger equation

Ĥψn = Enψn, (3.5)

where Ĥ is the Hamiltonian of the system, En is the energy of n-th level (i. e. its eigenvalue) and

ψn s the corresponding eigenfunction. Let us assume the fixed positions in the space for every

nuclei in the molecule. Then the Hamiltonian contains the kinetic energy operators of all valence

electrons, the Coulomb energy of their repulsion as well as the potential energy of electron-nuclei

interaction. Obviously, the point group symmetry operations R̂ change neither the electron

kinetic energy nor the interaction between electrons. Moreover, even the potential energy of

the electron-nuclear interaction is not changed under the symmetry operations (because all

nuclei are going into the undistinguished positions). Therefore, the Hamiltonian is invariant

under the point group transformations. Mathematically, this statement can be expressed as

T (R̂) Ĥ T−1(R̂) = Ĥ for all operations R̂ of the symmetry group G. The invariance of

the Hamiltonian under a particular group of transformations means that the quantum system

”belongs to” this symmetry group. In this case each of the eigenvalues E of the Hamiltonian is

associated with a certain representation of the group G, while the corresponding eigenfunctions

ψi(r) (i = 1, .., s) form a basis of this representation. Moreover, the degeneracy of the energy

level E is equal to the dimension s of this representation. Thus, each energy level of the

system is related to a certain irreducible representation of the symmetry group. Corresponding

wavefunctions form the basis of these irreducible representations. Every of these functions

belongs to some component of an irreducible representation (or to row of corresponding matrix)

of the symmetry group. This statement is called the Wigner theorem. This theorem allows to

classify the quantum states of the symmetry system according to the irreducible representations

of its symmetry group.

3.3.2 One-electron states in a crystal field

In order to explain the qualitative behavior of an atomic levels in a crystal field, we start

from the atom, having the single electron in the valence shell of the transition metal. It is

known, that the states of this atom belong to the continuous group O3 Ref. [7, 8] and can be

described by the spherical functions Ylm(ϑ,ϕ). These functions are known to be degenerate in
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Figure 3.1: Atom in the crystal environment of an a) octahedral configuration Oh; b) tetrahe-

dral configuration D4h.

m = −l,−l + 1, ..., l for the free atom and can be presented as

Ylm(ϑ,ϕ) =
1

2π
Θlm(ϑ)eimϕ, (3.6)

(leaving out the radial and the spin part of the wave function for the present). The symmetry

of O3 group is higher then the symmetry of any finite point group. If atom is placed into the

crystal environment, its symmetry is decreased. Lowering the symmetry results in the splitting

of energy levels. Therefore, the classification of the atomic states in the crystal field is based on

the decomposition of the O3 group representation to the irreducible components of the crystal

symmetry point group, as described in section 3.4.2. In order to make this decomposition,

the representations of the crystal symmetry point group in the basis of the spherical functions

Ylm(ϑ,ϕ) have to be found. As shown in Ref. [8, 13] the matrix representation, generated by

such a function for any rotation by the angle α has a form

T (l)(R̂α) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

eilα 0 . . . 0 0

0 ei(l−1)α 0 0 0
...

...
. . .

...
...

0 0 . . . e−i(l−1)α 0

0 0 . . . 0 e−ilα

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(3.7)

In the Bethe program we can evaluate this representation for the atom in the crystal envi-

ronment. Consider, for instance, the atom, placed into the octahedral environment. It means,

that this atom is sixfold coordinated with crystal atoms, as shown on Fig. 3.1 a). Clusters of

such type are mentioned very often in the literature. For instance, the manganese oxide cluster

MnO6, which is important for the phenomenon of colossal magnetoresistance [33]; another

example - chromium bromide CrBr6, magnetic properties of which are discussed in Ref. [34].

The behavior of the atomic energy levels of the central atom in the field of crystal atoms can

help to clarify the magnetic structure of these clusters.

Let us start from the assumption, that the atom, placed into octahedral environment, has one

d-electron in the valence shell. Although the full symmetry of the octahedron is Oh, we can

23



gain all required information about the d-orbital by using only the pure rotational subgroup

O, because Oh may be obtained from O by adding the inversion operator. However, d-orbitals

are even to the inversion, so that it is only the pure rotational operators of O will bring us

new information. Thus for the point group O we obtain the representation, generated by Ylm

functions for d-electron

> Bethe group representation(O, Ylm, 2);

wa := [5, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,

-1, -1, -1, 1, 1, 1, 1, 1, 1]

where the Ylm is the keyword and the third argument l = 2 refers to a single d-electron,

Here we have restricted ourselves to the characters of the representation. The full matrix

representation would be obtained from the same command by adding the keyword matrix as

a fourth argument.

The representation, generated by Ylm(ϑ,ϕ) functions is (generally) reducible in the crystal point

group. Therefore the irreducible components of this representation can be obtained according

to the Eq. (2.1) and (2.2). These components serve to classify the one-electron states in crystal

field. In particular, the sum over γ of the integers mγ shows the number of atomic energy levels

as it will occur for the (2l+1)-fold degenerate level of the free atom. Moreover, the degeneracy

of every level is seen from the dimension of corresponding component T (γ). Decomposition of

the representation, generated by Ylm(ϑ,ϕ) functions, to the irreducible components is provided

by the program

> Bethe decompose representation(O, wa);

wb := ["E", "T2"]

i.e. the five-fold degenerate level of the d electron is split by the octahedral environment into

two levels, the doublet E and the triplet T2. This is seen from the Fig. 3.2 a) and b). This

diagram (as well as other splitting diagrams of this section) is purely qualitative and does not

demonstrate the relative energies of the levels. For other symmetries of the external crystal

field, of course, the representation T (l) in Eq. (3.6) might be irreducible, leaving the ionic level

degenerated as before.

As the result of some additional interactions and perturbations, the shape of the external

crystal can be distorted. In this case, owing to the reduction of the symmetry of the system, a

further level splitting is expected. If, for example, the octahedral symmetry of the crystal field

from above is reduced to a D4h symmetry (as shown on Fig. 3.1 b), the further level splitting

of the E and T2 levels can be obtained by carrying out a subduction of the group

> Bethe group subduction(O, "E", D4); Bethe group subduction(O, "T2", D4);

["A1", "B1"]

["B2", "E"]
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Figure 3.2: d-level splitting in the crystal field: a) d-level of free atom; b) splitting in the

octahedral environment; c) splitting in the tetragonal environment.

and which shows that each of these levels is split now into a pair of (sub-) levels with only one

(E) still being degenerate (see Fig. 3.2 c)). Here the group label D4h is changed to D4 by the

same reason as for Oh symmetry.

3.3.3 Many-electron states in a crystal fields

The method of the classification of one-electron states in crystal field, explained before, can be

quite easily generalized also to the case of the many-electron atom or ion, taking Pauili’s prin-

ciple into account. Owing to the coupling scheme and the inter-electron interaction, however,

two cases need to be distinguished: the case, when the crystal field is weak in comparison with

the electron-electron interaction within the valence shell and the case of the strong field, where

the crystal field is stronger, then the electron-electron interaction. Consider first the case of

the weak crystal field. If we neglect the spins of electrons, the splitting of a given (LS-) term

with total angular momentum L is the same as for a single l-shell electron. It arises from the

fact, that the Φ(φ) factor of the wave function for L term is eiMφ in exact analogy to the factor

eimφ in the wave function of single electron. For instance, for atoms or ions with an outer d2

configuration, we have the five LS terms 3F , 1D, 3P , 1G and 1S Ref. [13]. To get the splitting

of these terms we have to (i) generate the representation of YLM functions for every term and

(ii) decompose these representation to the irreducible components (like in previous section).

The irreducible components, obtained in this decomposition, classify the splitting of many-

electron terms. Within the Bethe program, these two steps can be done automatically by the

procedure Bethe group subduction O3(), which generate the irreducible components of the

spherical harmonic YLM representation with given L. For instance, for the terms, mentioned

above, we have

> we S:=Bethe group subduction O3(O, 0); we P:=Bethe group subduction O3(O, 1);

we D:=Bethe group subduction O3(O, 2); we F:=Bethe group subduction O3(O, 3);

we G:=Bethe group subduction O3(O, 4);
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Figure 3.3: Energy levels of d2-ion in an octahedral crystal field: (a)free atomic states; (b) a

weak crystal field; (c) a strong crystal field and weak interelectronic repulsion; (d) infinitely

strong crystal field (degeneracy of the energy levels is not shown).

we_S := ["A1"]

we_P := ["T1"]

we_D := ["E", "T2"]

we_F := ["A2", "T1", "T2"]

we_G := ["A1", "E", "T1", "T2"]

This result is demonstrated on Fig. 3.3 a) and b). Note, that the spin multiplicity of the split

terms will be the same like for the original LS terms, because the crystal field does not interact

directly with the spin of electrons.

The classification of the atomic states in the crystal filed, given before, is followed from the ap-

proach, where the crystal field is considered as a perturbation influencing the electronic states

of a free atom or ion. Such approach can be used only if the crystal field is weak in comparison

with the interelectron interaction. A rather different level splitting is found if the crystal field

becomes comparable or even stronger than the interaction among the electrons in the valence

shell. In this case the action of the crystal field on each electron should be considered first and

then the interelectron interaction is taken into account as a perturbation. According to this

scheme, in the first stage of classification, we omit the interelectron interaction. The repre-

sentations (3.6), generated by one-electron wave functions have to be found for every electron

separately, and then decomposed to the irreducible components. Consider again an atom with
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d2 configuration, placed in the strong octahedral field. Using the results from above for the

splitting of a single d-electron (see section 4.3.2), we have the one two-dimensional component

E and one three-dimensional component T2. In the strong crystal field the electrons begin to

couple in certain way, giving rise to a set of states of the entire configuration. For example, for

two d-electrons in the presence of the strong field we have three possible configurations EE,

ET2 and T2T2. To define the symmetry properties of the corresponding states, we have to take

the direct product of the representations of the single electrons. Decomposition of this direct

product classifies the term splitting in the presence of the strong crystal field. For instance, for

the configuration T2T2 we obtain

> wd := Bethe group direct product(O, "T2", "T2");

wd := ["A1", "E", "T1", "T2"].

This result shows that the degenerate level T2T2 is split in the crystal environment into four

sublevels with symmetries A1, E, T1 and T2 (see Fig. 3.3 c)-d)). Behavior of the levels in the

configurations EE and ET2 can be obtained by the same procedure. As seen from the Fig.

3.3, there exist a one-to-one correspondence between the states of the atom in the weak and in

the strong crystal field.

Similarly like above for the one-electron terms, the Bethe program help to define the splitting

of the many electron levels in the low-symmetry crystal filed, i.e. when the symmetry of the

surrounding crystal is distorted.

3.3.4 Spin-orbit interaction in a crystal field

In the previous sections we have shown how to determine the splitting of the states, character-

ized by integer values of the angular momentum quantum number l or L. There are, however,

many cases of interest in which the concept of electron spin is important and we may want to

determine the splitting of a state, characterized by its total angular momentum J . This will be

the thing of importance in the number of phenomena, such as Zeeman effect and many others

[35, 36]. Since the concept of electron spin is included, the theory of the point groups can not

be applied to analyze such splitting. Therefore, one needs to use the double symmetry groups.

Consider the spin-orbit splitting in the case of one d-electron in an O cubic field. Like before,

we should consider separately the cases of the strong and weak (in comparison with the spin-

orbit interaction) crystal fields. If the cubic field is stronger than the spin-orbit interaction, we

should neglect the spin-orbit interaction at the first stage and define how the degenerate state

of free d-electron is split in the crystal field

> Bethe group subduction O3(O, 2);

["E", "T2"]

We obtain two levels, related to the irreducible representations T2 and E. With allowance of

spin the orbital multiplet 2T2 will be not three-, but six-fold degenerate. To obtain the splitting

of this level resulting from the spin-orbit interaction, we need to take the direct product of the

irreducible representation T2 and the irreducible representation E1/2 of the double group O
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Figure 3.4: D-level splitting in the octahedral and tetrahedral fields (a) according to the scheme

free −→ O −→ Õ −→ D̃4; (b) according to the scheme free −→ O −→ D4 −→ D̃4.

> Bethe group direct product(O, "T2", "E1/2");

["E5/2", "F3/2"]

According to the Wigner theorem, each irreducible representation is related to a certain energy

level. It means that the spin-orbit interaction splits the 2T2 term into a doublet E5/2 and

quadruplet F3/2, called fine-structure levels (see Fig. 3.4 a)). Appearance of the double valued

irreducible representations for one-electron atom is reasonable: the fine structure levels in a

crystal field are enumerated either by single-valued irreducible representations (for even number

of electrons) or by double-valued irreducible representations (for odd number of electrons).

Similarly we can consider the term 2E, for which we obtain

> Bethe group direct product(O, "E", "E1/2");

["F3/2"]

The existence of one irreducible representation indicates that in the cubic field term 2E is not

split by the spin-orbit interaction.

Imagine now that the octahedral complex O is tetragonally distorted to the D4 symmetry. If

the tetragonal field is weaker than the spin-orbit interaction, we need to make the subduction

of the O group irreducible representations, obtained above, to the group D4. We obtain

> Bethe group subduction(O, "E5/2", D4);

Bethe group subduction(O, "F3/2", D4);
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[["E3/2"]], [["E1/2", "E3/2"]]

Corresponding splitting is shown on Fig. 3.4(a). The scheme, realized before is free −→ O −→
Õ −→ D̃4

Consider the case, where tetrahedral field is strong in comparison with the spin-orbit interac-

tion. In this case it seems to be reasonable to take into account the crystal field, not focusing

the attention on the spin-orbit interaction as the first consideration. In other words it is con-

venient to proceed from the tetragonal components of 2T2 and 2E following the reduction from

O to D4.

> Bethe group subduction(O, "T2", D4); Bethe group subduction(O, "E", D4);

[["B2", "E"]], [["A1", "B1"]]

and then include the spin-orbit interaction by the direct product with the double-valued irre-

ducible representation (scheme free −→ O −→ D4 −→ D̃4)

> Bethe group direct product(D4, "B2", "E1/2");

Bethe group direct product(D4, "E", "E1/2");

Bethe group direct product(D4, "A1", "E1/2");

Bethe group direct product(D4, "B1", "E1/2");

["E3/2"], ["E1/2", "E3/2"], ["E1/2"], ["E3/2"]

This result, of course, coincide (qualitatively) with the result already obtaining. The transition

from a weak to a strong spin-orbit interaction is expressed by the Fig. 3.4 b).

Of course, we can suppose already at the beginning, that in the system with one d-electron

the spin-orbit interaction is stronger, then the crystal octahedral field, or realize the scheme

free −→ Õ. According to this scheme, we should start from the total angular momentum J of

the system. For the atom with one d-electron (angular momentum of the system l = 2 and spin

s = 1/2) we have to find possible total angular momenta J = 3/2, 5/2 and make a subduction

of corresponding representation to the irreducible components of the octahedral group

> Bethe group subduction O3(O, 3/2); Bethe group subduction O3(O, 5/2);

["F3/2"], ["E5/2", "F3/2"]

This subduction demonstrate qualitatively the same splitting like in the scheme free −→ O −→
Õ.

Up to now only the spin-orbit splitting of one-electron term was described. Let us consider

briefly the spin-orbit splitting of many-electron terms. The states of many-electron atoms are

numbered by two parameters: S (total spin of the system) and T (irreducible representation

of the electron term). To classify the fine-structure levels of ST term, one has to carry out

a number of manipulations. First of all the irreducible components of the representation Ts,

generated by the spin function have to be found. Then we form the direct product T ⊗ Ts.
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The irreducible components of this direct product gives the desired answer about the splitting

of many-electron term.

Consider the 4T2 term of the d3 ion in the octahedral field. We have S =3/2, T = T2. By using

the Bethe program we can find the irreducible components of the representation, generated

by the spin

> Bethe group subduction O3(O, 3/2);

["F3/2"]

Then we take the direct product F3/2 ⊗ T2

> Bethe group direct product(O, "F3/2", "T2");

["E1/2", "E5/2", "F3/2", "F3/2"]

The result shows, that the level 4T2 will be split in the octahedral field to the two doubly

degenerate levels E1/2 and E5/2 and two four-fold degenerate levels F3/2.

3.3.5 Wave functions of split levels.

In the previous sections we described how the Maple package Bethe can be used in order to

classify the splitting of atomic energy levels in the crystal field. The emphasize was placed to

demonstrate the flexibility of the Bethe package, where user can suppose different relations

between the interactions in the crystal and classify the corresponding splitting. Apart from

the classification, the Bethe package can be used in order to generate the wave functions

of the split levels. These functions are constructed from the basis functions of the irreducible

representations by means of the Clebsch-Gordan decomposition. The concept of the irreducible

representation basis functions and the Clebsch-Gordan coefficients for the symmetry group are

described in details in Ref. [12]. Moreover, several examples, concerning the generation of

the wave function for the split levels without taking in account the spin-orbit interaction are

presented in this reference. Therefore, we will focus only on the wave functions of the fine-

structure levels (when the spin-orbit interaction is taken into account).

Knowing the irreducible representations T (γ), describing the fine structure levels, the corre-

sponding wavefunctions ψ
(γ)
m (m = 1..dim{T (γ)}) can be constructed by means of the Clebsch-

Gordan decomposition

ψ(γ)
m =

∑

ik

〈αiβk|sγm〉ψ(α)
i ψ

(β)
k (3.8)

where α labels the irreducible representations T (α) of the electron term and β labels the ir-

reducible representations T (β) of the spin function. The integer indices i and k enumerate

the corresponding basis functions of these representations and s is the index to account the

multiplicity of the irreducible representation T (γ); 〈αiβk|sγm〉 are the Clebsch-Gordan coeffi-

cients, which can be generated by the Bethe package. Consider the example of one d-electron

in the octahedral filed in the state 2T2 taking into account the spin-orbit interaction. The
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classification of states for this example was produced in section 4.3.4. Corresponding splitting

is demonstrated on Fig. 3.4 a). Since we have one d-electron, the spin part of this electron

refers to the double-valued irreducible representation E1/2. In the case under consideration th

expression (3.8) has the form

ψ(γ)
m =

∑

ik

〈T2 iE1/2 k|s γ m〉ψ(T2)
i ψ

(E1/2)

k (3.9)

where γ = {E5/2, F3/2}, i, k and m denote integer indices to enumerate the basis functions of

corresponding irreducible representations. To construct these wave functions we have to use

the Clebsch-Gordan coefficients for the direct product T2 ⊗ E1/2. Although the Bethe group

can generate every coefficient separately by the procedure Bethe CG coefficient(), it seems

beneficial to calculate the whole matrix of the Clebsch-Gordan coefficients

> CG mat := Bethe CG matrix(O, "T2", "E1/2");

[ 1/2 1/2 1/2 ]

[ 3 3 3 ]

[ 0 - ---- 0 - ---- 0 - ---- - 1/2 I ]

[ 3 3 6 ]

[ ]

[ 1/2 1/2 1/2 ]

[ 3 3 3 ]

[ ---- 0 ---- 0 ---- + 1/2 I 0 ]

[ 3 3 6 ]

[ ]

[ 1/2 1/2 1/2 ]

[ 3 3 3 ]

[ - ---- 0 ---- - 1/2 I 0 - ---- + 1/2 I 0 ]

[ 3 6 6 ]

CG_mat = [ ]

[ 1/2 1/2 1/2 ]

[ 3 3 3 ]

[ 0 ---- 0 - ---- + 1/2 I 0 ---- - 1/2 I ]

[ 3 6 6 ]

[ ]

[ 1/2 1/2 1/2 ]

[ 3 3 3 ]

[ 0 ---- 0 - ---- - 1/2 I 0 - ---- ]

[ 3 6 3 ]

[ ]

[ 1/2 1/2 1/2 ]

[ ---- 0 - ---- - 1/2 I 0 - ---- 0 ]

[ 3 6 3 ]

This array can be understood by means of Table 3.1 The left column of this table shows six basis

function of the direct product T2⊗E1/2 (α, i = {T2, 1; T2, 2; T23; }, β, k = {E1/2, 1; E1/2, 2; },
α, i, β, k = {T2, 1, E1/2, 1; T2, 1, E1/2, 2; T2, 2, E1/2, 1; ...}), while the header of this table gives

the bases of the irreducible representations γm = {E5/21, E5/22, F3/21, ...}. The main body of

the table shows corresponding Clebsch-Gordan coefficients. From these coefficients the wave
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Table 3.1: Clebsch-Gordan coefficients for the O group product T2 ⊗ E1/2 .

α : β :

T2 E1/2 γ : E5/2 E5/2 F3/2 F3/2 F3/2 F3/2

i k m : 1 2 1 2 3 4

1 1 0 −
√

3
3 0 −

√
3

3 0 −
√

3
6 − I

2

1 2
√

3
3 0

√
3

3 0
√

3
6 + I

2 0

2 1 −
√

3
3 0

√
3

6 − I
2 0 −

√
3

6 + I
2 0

2 2 0
√

3
3 0 −

√
3

6 + I
2 0

√
3

6 − I
2

3 1 0
√

3
3 0 −

√
3

6 − I
2 0 −

√
3

3

3 2
√

3
3 0 −

√
3

6 − I
2 0 −

√
3

3 0

functions of the split levels can be constructed. For instance, from first and fourth columns we

have

Ψ
E5/2

1 =

√
3

3
ΨT2

1 Ψ
E1/2

2 −
√

3

3
ΨT2

2 Ψ
E1/2

1 +

√
3

3
ΨT2

3 Ψ
E1/2

2 , (3.10)

Ψ
F3/2

2 = −
√

3

3
ΨT2

1 Ψ
E1/2

1 + (−
√

3

6
+
I

2
)ΨT2

2 Ψ
E1/2

2 + (−
√

3

6
− I

2
)ΨT2

3 Ψ
E1/2

1 , (3.11)

Using same procedure we can construct the wave functions of the split levels for any type of

splitting, described in this section. Thus we have shown, that the Bethe package can be very

useful in analyzing of the term splitting in the crystal field and construction of corresponding

wave functions.
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Chapter 4

Possible future applications

From the examples, presented in the previous Chapter, the present capabilities of the Bethe

program can be seen for determining the crystal field splitting or the generation of the molecular

spectroscopic activities. However, there are several other applications, which would make

Bethe a much more powerful tool. In this section we would like to describe several future

applications, which could be easily developed on the basis Bethe package.

4.1 Frequencies of the molecular vibrations: Wilson‘s method

Although the group theory is quite powerful tool for the analysis of the vibrational spectra,

it suggests only qualitative way for analyzing the problems of molecular vibrations. Indeed,

the group theoretical approach provides the methods how to determine the number and the

symmetry type of molecular normal modes, the vibrational coordinates of the molecule as well

as the molecular spectral activity (see Sections 3.2 and [11]). Nevertheless, the group theory

can not tell us anything about the expected frequency of a particular vibration. However,

there is also a quantitative way to solve the vibrational problem which makes use of symmetry

considerations. This way help to recognize how the frequencies of the vibrations, which can

be obtained from the experiment, are related to the masses of the atoms, the bond angles and

bond lengths and most particularly to the force constants of the individual bonds and interbond

angles [37]. To describe the relationship between he vibrational frequencies and force constants,

the so-called Wilson’s method of F and G matrices is used [13, 38, 39]. In this section we briefly

describe this method. To illustrate the realization of Wilson’s method, we present the example

how to generate the relationship between the frequencies and force constants for particular

molecule. In the end of current section the approximate design of Maple procedures, which

are necessary in order to realize the Wilson’s method within the Bethe package, is presented.

Note, that the realization of the Wilson’s method requires the generation of the vibrational

normal coordinates Qi in terms of the internal displacement vectors of the molecule. Generation

of these coordinates is supported by the Bethe package and was described in detail in Ref. [11].

Therefore, we suppose reader to be familiar with the principles of these coordinates generation.
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4.1.1 Vibrational secular equation

Let us analyze the molecular vibrational process by setting up the expressions for the kinetic

and potential energies of the molecule. We will employ the classical mechanics because it yields

a solution of the vibrational problem, which is easier to visualize than the quantum-mechanical

solution. Using a system of coordinates moving with the N -atomic molecule, we can present

the kinetic energy of this molecule as

2T =
N
∑

α=1

mα

[

(

d△xα

dt

)2

+

(

d△yα

dt

)2

+

(

d△zα
dt

)2

+

]

. (4.1)

The coordinates △x1, ...,△zN can be replaced by a new set of coordinates q1, ..., q3N , defined

as follows

q1 =
√
m1△x1, q2 =

√
m1△y1, q3 =

√
m1△z1, q4 =

√
m2△x2, etc. (4.2)

In fact they are the mass-weighted cartesian displacement coordinates. In terms of the time

derivatives of these coordinates, the kinetic energy is

2T =
3N
∑

i=1

q̇2i . (4.3)

The potential energy will be some function of coordinates q’s. Suppose, that in the equilibrium

position the potential energy must to have a minimum and, therefore, the first derivatives
∂V
∂qi

= 0. Then, for sufficiently small amplitudes of vibration (when higher terms are neglected)

the potential energy can be expressed as

2V =

3N
∑

i,j=1

fijqiqj, (4.4)

in which the fij’s are constants, given by

fij =

(

∂2V

∂qi∂qj

)

0

(4.5)

with fij = fji.

Since kinetic energy T is a function of velocities only and potential energy V is a function of

the coordinates only, the Newton’s equation of motion can be written in the form

d

dt

∂T

∂q̇j
+
∂V

∂qj
= 0, j = 1, 2, ..., 3N. (4.6)

Substitution of the expressions for T and V given above then yields the equations

q̈j +

3N
∑

i=1

fijqi = 0, j = 1, 2, ..., 3N (4.7)

This is a set of 3N simultaneous second-order linear differential equations. Possible solutions

of these equations are

qi = Ai cos
√
λt+ ǫ, (4.8)

34



where Ai, λ and ǫ are properly chosen constants. If this expression is substituted in the

differential equations (4.7), a set of algebraic equations results:

3N
∑

i=1

(fij − δijλ)Ai = 0, j = 1, 2, ..., 3N, (4.9)

in which δij is the Kronecker delta symbol. The (4.9) is the set of the linear algebraic equations

in the 3N unknown amplitudes Ai. The nonvanishing solution of the system (4.9) exists only

for very special values of λ, which satisfy the so-called secular equation

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

f11 − λ f12 f13 ... f1,3N

f21 f22 − λ f23 ... f2,3N

... ... ... ... ...

f3N,1 f3N,2 f3N,3 ... f3N,3N − λ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0 (4.10)

The elements of this determinant are the coefficients of the unknown amplitudes Ai in the set

of equations (4.9). Generally it consist of 3N rows and columns (since there are 3N unknowns

Ai). Each root λk corresponds to a set of amplitudes Aik and consequently to one of the

solutions (4.8) of the original equations of motion.

For the construction of the secular equation it is not necessary to use the cartesian coordinates

qi. One can use another coordinates, in terms of which the kinetic and potential energies are,

respectively, quadratic forms in the velocities and coordinates respectively. For instance, we can

use the internal coordinates of the molecule si, given by changes of the interatomic distances

and interbond angles. These coordinates describe only the internal vibrational motion, without

taking into account the rotational and translational motion of a hole molecule in the space. In

terms of the (3N −6) internal coordinates the kinetic energy of vibration can be written in the

form

2T =
∑

ij

(g−1)ij ṡiṡj (4.11)

where the coefficients (g−1)ij are the elements of inverted matrix g (see below), which involves

the masses and certain spatial relationship of the atoms. The potential energy, expressed in

the same internal coordinates can be presented as

2V =
∑

ij

fijsisj (4.12)

where fij are corresponding force constants. A term such as fiis
2
i represents the potential

energy of stretching a given bond or bending a given angle, while the cross terms represent

the energies of interaction between such motions. Therefore, the vibrational problem leads to

a secular equation
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

f11 − (g−1)11λ f12 − (g−1)12 ... f1n − (g−1)1n

f21 − (g−1)21 f22 − (g−1)22λ ... f2n − (g−1)2n

... ... ... ...

fn1 − (g−1)n1 fn2 − (g−1)n2 ... fnn − (g−1)nnλ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0 (4.13)
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where n = 3N − 6.

The secular equation (4.13) is of the fundamental importance in the study of vibration. How-

ever, in most cases this equation is of a high degree. Therefore, the method how to simplify

this equation is needed. This methods is provided by the symmetry consideration and is called

symmetry factorization of the secular equation. To perform this factorization, we need to use

the so-called symmetry coordinates or vibrational normal coordinates Qi, expressed in terms

of the internal coordinates of the molecule [11]. The kinetic energy T of the molecule can be

expressed in terms of the vibrational coordinates Qi as

2T =
∑

jl

(G−1)jlQ̇jQ̇l, (4.14)

while the potential energy as

2V =
∑

jl

FjlQjQl (4.15)

Here the Fjl are again force constants, but pertain to vibrations described by the symmetry

coordinates QjQl and matrix G represents the kinetic energy of a molecule in terms of the

normal coordinates Qi. In these coordinates the secular equation (4.13) will have a form

|F −G−1λ| = 0 (4.16)

or

|FG− Eλ| = 0 (4.17)

in which F , G and E are matrices and the entire left-hand side of the equation is a determinant.

F is a matrix of force constants, which brings the potential energies of the vibrations into the

equation, G is a matrix that brings the kinetic energies into the equation and E is a unit

matrix. Every parameters λ depend on the particular vibrational frequencies ν and are defined

by λ = 4π2c2ν2.

4.1.2 Generation of the secular equation

The relationship between the frequencies of particular vibrations and the force constants can

be obtained from the master equation (4.17), introduced in the previous section. To generate

this secular equation for a particular molecule, we should start from the matrices f and g.

Then, by use the symmetry consideration, we obtain the matrices F and G in the symmetry

factorized form. Finally, the secular equation in form (4.17) can be obtained. Solution of

this equation gives us the relationship between the force constants fik and the frequencies of

particular vibrations.

The F matrix

Consider again an example of M3 molecule (symmetry group D3h). The vibrational analysis of

this molecule is produced in Section 3.2 and Ref. [11]. The 3N − 6 = 3 internal displacements
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si of this molecule are presented by three interatomic distances r1 and r2 and r3 as shown on

Fig. 4.1. The set of force constants for the M3 molecule can be expressed as a square array,

where the rows and columns are labeled by the internal displacements. Thus we have the f

matrix, or matrix of the fik

r1 r2 r3

r1 f11 f12 f13

r2 f12 f22 f23

r3 f13 f23 f33

In this matrix the element f21 is replaced by f12, f31 by f13 and f32 by f23 because of the

general requirement that the matrix be symmetrical about its diagonal. Moreover, since all

three internal displacements are equivalent (that is, they can be transformed to each other by

the symmetry operations of the D3h group), we can also make the substitution f11 = f22 = f33

and f12 = f13 = f23. Finally, we have only two force constants f11 and f12. This result is

not unexpected: although the M3 molecule has three vibrational modes, two of them belong

to one doubly degenerate irreducible representation E′ (see Ref. [11]). Therefore, these modes

have the same frequency. It means that only two frequencies are inherent in this molecule

and therefore, as a minimum two force constants should be found. Generally, the number

of force constants for polyatomic molecule can be determined from the vibrational reducible

representation of the molecule T (vib) (see Ref. [11]). If mγ specifies how many times every

irreducible representation T (γ) appears in the T (vib), then the number of the force constants

nf is defined as

nf =
∑

γ

mγ(mγ + 1)/2 (4.18)

As determined in the [11], the vibrational representation for theM3 molecule is T (vib) = A′
1+E

′.

Therefore, mA′

1
= 1, mE′ = 1 and nf = 1 × 2

2 + 1 × 2
2 = 2, as obtained before.

Thus, we have obtained the f matrix in the form

f =

∣

∣

∣

∣

∣

∣

∣

f11 f12 f12

f12 f11 f12

f12 f12 f11

∣

∣

∣

∣

∣

∣

∣

(4.19)

This is the force constants matrix for the M3 molecule. To provide the easiest route for dealing

with this matrix, we can make the symmetry factorization of this matrix. As said before, this

factorization can be achieved by use the vibrational normal coordinates Qi. These coordinates,

associated with three vibrational modes of M3 molecule, have been generated in Ref. [11] in

terms of the internal displacements as

Q1(A
′
1) = 1√

3
r1 + 1√

3
r2 + 1√

3
r3

Q2(E
′) = 1√

2
r1 − 1√

2
r3

Q3(E
′) = − 1√

6
r1 + 2√

6
r2 − 1√

6
r3

(4.20)

and are shown graphically on Fig. 4.1. In order to simplify the matrix f , we need to express
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Figure 4.1: Vibrational modes of M3 complex in terms of the internal displacement vectors:

a)Q1(A
′
1), b)Q2(E

′), c)Q3(E
′).

each of the two equations of the potential energy (4.12) and (4.15) in matrix notation:

2V = s′fs (4.21)

2V = Q′FQ (4.22)

by writing the si as a column matrix s and the Qj as a column matrix Q, and taking s′ and Q′

as the corresponding row matrices. Moreover, the relationship between the internal coordinates

and the symmetry coordinates can be written in matrix form:

Q = Us (4.23)

where (for the M3 molecule) matrix U is

r1 r2 r3

Q1
1√
3

1√
3

1√
3

Q2
1√
2

0 - 1√
2

Q3 - 1√
6

2√
6

- 1√
6

Since matrix U describes a linear orthogonal transformation between the coordinates Qi and

ri, the inverse of the matrix U its simply its transpose U′. Thus, (4.23) may be rewritten as

s = U−1Q′Q (4.24)

and we have

s′ = (U′Q)′ = Q′U. (4.25)

We can now equate the right-hand sides of two equations(4.21), and employ relations (4.23)

and (4.25). Finally, we obtain

UfU′ = F (4.26)

We thus obtain a simple matrix equation for transforming the f matrix into the F matrix. For

the M3 molecule this can be presented as

F = Uf ′U =

∣

∣

∣

∣

∣

∣

∣

∣

1√
3

1√
3

1√
3

1√
2

0 − 1√
2

− 1√
6

2√
6

− 1√
6

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

f11 f12 f12

f12 f11 f12

f12 f12 f11

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1√
3

1√
2

− 1√
6

1√
3

0 2√
6

1√
3

− 1√
2

− 1√
6

∣

∣

∣

∣

∣

∣

∣

∣

(4.27)
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Thus, we obtain the F matrix in the symmetry factorized form.

F =

∣

∣

∣

∣

∣

∣

∣

f11 + 2f12 0 0

0 f11 − f12 0

0 0 f11 − f12

∣

∣

∣

∣

∣

∣

∣

(4.28)

The G matrix

The generation of G matrix can be produced similarly as for the F matrix. As before, we start

from the constructing of g matrix, which was introduced in Eq. (4.11)). For the M3 molecule

this matrix generally has a form

g =

∣

∣

∣

∣

∣

∣

∣

g11 g12 g13

g12 g22 g23

g13 g23 g33

∣

∣

∣

∣

∣

∣

∣

(4.29)

where the requirement that the matrix should be symmetrical about its diagonal is taking

into account. Elements of g matrix can be expressed in terms of the atomic masses and the

dimensions of the molecule. Commonly used matrix elements gij are tabulated in the form of

general expressions for different types of internal coordinates si and sj involved. The specific

parameters of any molecule should be inserted into these expressions. Such a tabulation and

direction for its use is given, for instance, in Ref. [13, 38]. For the M3 molecule it is found

that g11 = µ1 + µ2, g12 = µ2 cos(θ12), g13 = µ1 cos(θ13), g22 = µ2 + µ3, g23 = µ3 cos(θ23) and

g33 = µ1 + µ3, where µi is the reciprocal mass of i atom and θij is the angle between i-th and

j-th bonds. Since the three atoms of M3 molecule are identical and placed in the corners of

equilateral triangle, we have µ1 = µ2 = µ3 = µ, θ12 = θ12 = θ23 = 2π/3. Therefore, for the M3

molecule g matrix has the form

g =

∣

∣

∣

∣

∣

∣

∣

2µ −µ/2 −µ/2
−µ/2 2µ −µ/2
−µ/2 −µ/2 2µ

∣

∣

∣

∣

∣

∣

∣

(4.30)

The (symmetry factorized) G matrix may be constructed by the procedure analogous to that

used for the F matrix (see Eq. (4.27))

G = UgU′ =

∣

∣

∣

∣

∣

∣

∣

µ 0 0

0 5/2µ 0

0 0 5/2µ

∣

∣

∣

∣

∣

∣

∣

(4.31)

Now the relationship between the frequencies of the fundamental modes and a set of force

constants can be recognized from the explicit form of the secular equation (4.17).

∣

∣

∣

∣

∣

∣

∣

f11 + 2f12 0 0

0 f11 − f12 0

0 0 f11 − f12

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

µ 0 0

0 5/2µ 0

0 0 5/2µ

∣

∣

∣

∣

∣

∣

∣

−

∣

∣

∣

∣

∣

∣

∣

λ1 0 0

0 λ2 0

0 0 λ2

∣

∣

∣

∣

∣

∣

∣

= 0 (4.32)

The root λ2 of the secular equation occurs twice, because one of the normal modes is doubly

degenerate and there are two independent normal modes of vibration with the same frequency.
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This is the end of the symmetry analysis. From here the problem of generation the relationship

between the vibrational frequencies and force constants is a purely computational one.

Note, that after the symmetry factorization, the secular equation not always takes on such a

simple diagonal form like Eq. (4.32). For instance, the three-dimensional secular equation for

the molecule of water, constructed in Ref. [13], is symmetry factorized into one 2×2 block and

a one 1×1 block. Moreover, for most molecules – in contrast to the M3 molecule – the number

of the force constants exceeds the number of molecular vibrational modes. The most generally

applicable procedure for dealing with this problem is to measure the frequencies of isotopically

substituted molecules (for instance, involving the deuterium). Such molecules provide new sets

of equations involving different frequencies , but give rise to the same force constants.

4.1.3 Realization of the Wilson’s method within the Bethe framework.

The Wilson’s method, described above, makes extensive use of the symmetry. Therefore, it can

be easily realized by means of the Bethe program. Having specified the atomic coordinates

of particular molecule as the input of the problem, the user can obtain from the Bethe the

expressions for the force constants in terms of the vibrational frequencies (or vice versa) (see Eq.

4.32) for this molecule. The most difficult problem, which arises at the program realization

of Wilson’s method, is the generation of the g matrix. As said before, the elements of this

matrix are tabulated in form of the general expressions for different types of molecular bonds.

Therefore, the storage procedure for keeping the gij elements need to be created. Remaining

parameters, such as internal coordinates and the vibrational normal coordinates, which are

necessary for the Wilson’s method, are already available by the Bethe package.

If the number and the symmetry types of the vibrational modes and the symmetry coordinates

for these modes are supposed to be known, the following steps should be done to generate the

relationship between the frequencies and force constants:

• Generation of the U -matrix (4.23), which express the transformation between the internal

displacement vectors and the vibrational normal coordinates;

• Generation of the f -matrix (4.19), taking into account the symmetry of this matrix about

the diagonal and equivalency of some internal displacements;

• Generation of the F -matrix in the symmetry-factored form (4.28);

• Tabulation of the elements of g-matrix for different types of internal coordinates si and

sj ;

• Generation of the g-matrix in the general form (4.29) and in the explicit form (4.30);

• Generation of the G-matrix in the symmetry-factored form (4.31);

• Construction of the secular equations FG− Eλ = 0 (4.32);

• Generation of the relationships Fij(λk);
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Table 4.1: Commands of the Bethe program, to realize the Wilson-method

Bethe generate U matrix() Generates the transformation matrix between the internal s and

symmetry S vibrational coordinates.

Bethe generate f matrix() Generates the force constants matrix f .

Bethe generate F matrix() Generates the (symmetry factored) force constants matrix F .

Bethe generate g matrix() Generates the matrix g.

Bethe g matrix elements() Returns the elements of the matrix g.

Bethe generate G matrix() Generates the (symmetry factored) matrix G.

Bethe generate secular equation() Generates the secular equation FG − Eλ = 0.

All of these steps can be realized on the basis of the package Bethe. In Table 4.1 the ap-

proximate list of procedures (without specification of the input-output parameters) is shown.

Apart from these ”working” procedures, the ”testing” procedures for confirmation of some

results can be provided. For instance, the number of independent force constants in the f

matrix can be compared with the number nf of the force constants, calculated from the vi-

brational reducible representation of the molecule (see Eq. (4.18)). Therefore, the procedure

Bethe test force constants number(), returning the boolean variables true or false, is rec-

ommended to create.

4.2 Vibrational-electronic coupling and the Jahn-Teller effect

In the previous section the Wilson’s method for determining the relationship between the

vibrational frequencies and force constants has been suggested to realize within the Bethe

package. Another application of symmetry, which could be implemented into the Bethe, is

the problem of spontaneous distortion of the molecular symmetry, known as the Jahn-Teller

distortion or Jahn-Teller effect. This effect consists in the instability and spontaneous distortion

of the nuclei configuration of a molecule in degenerate electronic state. The presence of the

Jahn-Teller (JT) effect was supposed by Landau in the year 1934. Later it was verified by Jahn

and Teller and shown [40] to be true for all nonlinear molecular systems.

The theoretical treatment of the JT effect makes use of the symmetry and of the group theory.

This theory helps not only to predict the distortions of the molecular symmetry, but also to

find the final - stable - configuration of the molecule. Use of the CA approach to analyze the JT

distortion seems to be very effective. Therefore, we suggest to implement the also the JT effect

into the Bethe package. This section provides a brief explanation of the (quite complicated)

theoretical background of this effect. The details about the JT effect can be found in Refs.

[41, 45]. We start from the short outlook of the adiabatic approximation. Then the JT effect

is introduced as the deviation from this approximation. In the next sections the JT theorem is

provided, which allows to deduce a number of qualitative results without performing specific

calculations. Moreover, the methods how to construct and analyze the adiabatic potential

of the molecule are also presented. Finally, in section 5.2.5 we make the suggestions for the

41



extension of the Bethe package.

4.2.1 Adiabatic approximation and vibronic interaction

It is known, that the structure and properties of a molecular system are determined by the

motion of its electrons and by their interaction. The motion and interaction of electrons are

governed by the quantum mechanical laws. However, because of the mathematical difficulties,

the quantum mechanical treatment of the molecular structure in most cases can be carried

out only if some simplifying approximations are introduced. Let us start from the adiabatic

or Born-Oppenheimer approximation, which is one of the most important simplifications in

quantum mechanics. This approximation is based on the fundamental inequality of the masses

and velocities of electrons and nuclei. Since the nuclei mass is about 2000 times that of the

electron, the velocity of the latter is much greater than that of the former. Therefore, it

can be assumed that every fixed position of the nuclei corresponds to a stationary electronic

state and that the motions of the nuclei are governed by the average field of the electrons.

This assumption enables us to ignore at the beginning the nuclei motions when solving the

electronic part of the problem, and then to use the mean electronic energy as the potential for

the nuclear motion.

To illustrate these stages, let us divide the total Hamiltonian of the Schrödinger equation into

three components:

H = Hr +HQ + V (r,Q) (4.33)

where Hr is the electronic component, including the kinetic energy of the electrons and the

interelectronic electrostatic interaction, HQ is the kinetic energy of the nuclei and V (r,Q) is

the energy due to interaction of the electrons with the nuclei and internuclear repulsion (r

and Q denote the whole set of coordinates of the electrons ri, i = 1, 2, ..., n and nuclei Qα,

α = 1, 2, ..., N , respectively). The operator V (r,Q) can be expanded as a series of small

displacements of the nuclei about the point Qα = Qα0 = 0 (chosen as origin):

V (r,Q) = V (r, 0) +
∑

α

(

∂V

∂Q

)

0

Qα +
1

2

∑

α,β

(

∂2V

∂Qα∂Qβ

)

0

QαQβ + ... (4.34)

If the first term of this expansion is regarded as the potential energy of the electrons in the

fixed nuclei, one can solve the electronic part of the Schrödinger equation

[

Hr + V (r, 0) − ε′k
]

ϕk(r) = 0 (4.35)

and obtain a set of energies ε′k and wave functions ϕk(r) for the given nuclear configuration

corresponding to the point Qα0. In order to see how these solutions vary under nuclear dis-

placements, the full Schrödinger equation

(H − E)Ψ(r,Q) = 0 (4.36)

must be solved. According to the adiabatic approximation, the solution Ψ(r,Q) of the Eq.

(4.36) can be expanded in terms of electronic functions ϕk(r),

Ψ(r,Q) =
∑

k

χk(Q)ϕk(r) (4.37)
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where the expansion coefficients χk(Q) are functions of the nuclear coordinates. Substituting

equation (4.37) into equation (4.36), after some transformations one obtains the following

system of coupled equations for the functions χk(Q):

[HQ + εk(Q) − E]χk(Q) +
∑

m6=k

Wkm(Q)χm(Q) = 0 (4.38)

In this system Wkm(Q) denotes the electronic matrix element of the so-called vibronic inter-

action. This VIBRONIC interaction arises when the VIBRations of the nuclei generate the

mixing of the electrONIC states and can be expressed as that part of the electron-nuclear

interaction V (r,Q), which depends on Q,

W (r,Q) = V (r,Q) − V (r, 0) =
∑

α

(

∂V

∂Q

)

0

Qα +
1

2

∑

α,β

(

∂2V

∂Qα∂Qβ

)

0

QαQβ + ... (4.39)

The vibronic interaction is especially strong in the case of the electronic degeneracy. The

member

εk(Q) = ε′k +Wkk(Q) (4.40)

of the system (4.38) is the potential energy of the nuclei in the mean field of the electrons in

state ϕk(r). It is seen from the coupled system of equations (4.38) that if vibronic mixing of

different electronic states can be ignored (Wkm(Q) = 0 for k 6= m), the coupling between these

states vanishes and the system (4.38) decomposes into a set of simple equations:

[HQ + εk(Q) − E]χk(Q) = 0 (4.41)

each of which, for given k, represents the Schrödinger equation for the nuclei moving in the

mean field of the electrons in state ϕk(r).

In other words, if the motions of the nuclei and electrons are separated, the problem as a whole

can be solved in two stages. In the first stage, the electronic states ϕk(r) are determined as

solutions of equation (4.35) and used to calculate the potential energy of the nuclei εk(Q) by

equation (4.41). In the second stage the wave functions χk(Q) and energies E of the nuclei are

determined by the equation (4.41), the total wave function being Ψ(r,Q) = ϕk(r)χk(Q). This

is the simple adiabatic approximation. Criterion for this approximation is that terms of the

vibronic mixing Wkm(Q) of different electronic states in equation (4.38) can be ignored, or

h̄ω ≪ |ε′m − ε′k| (4.42)

where h̄ω is the energy quantum of vibrations in the electronic state k or m and ε′m and ε′k
are electronic states. By other words, the adiabatic approximation can be used, only if the

electronic states of the system are not degenerate.

4.2.2 Deviation from the adiabatic approximation. Vibronic constants.

The adiabatic approximation, described above, is very important for number of applications.

However, in some systems the electrons do not follow the motion of nuclei, while the nuclear
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states are determined not only by the average field of the electrons. The resulting coupling

between the electronic and nuclear motions is the essential deviation from the adiabatic ap-

proximation.

Consider a molecular system in which the electronic states are degenerate or there are near-

lying electronic states. For these electronic states criterion (4.42) is not satisfied and vibronic

interaction plays a significant role in determining the molecular properties. This interaction

Wkm(Q) is given by the equation (4.39) and contains linear, quadratic, cubic, etc., terms. In

most cases it is enough to take into account the linear and quadratic terms. To simplify the

further analysis of the vibronic interaction, we will use the symmetry approach. Within this

approach, the nuclei coordinates Qα can be specified as the normal vibrational coordinates

in terms of the Cartesian displacement vectors (see Ref. [11]). In order to determine these

coordinates, first of all the initial configuration of the molecule should be defined. Of course,

in a number of cases this configuration can be taken from the experiment. However, it is not

always possible to determine the initial configuration exactly. Therefore, the initial nuclear

configuration must be chosen at the point, where the electronic states are degenerate. Since

the electronic degeneracy is related to the symmetry of molecular system, the initial configu-

ration is one of highest symmetry. As described in Ref. [11], the normal coordinates Qα can

be classified in terms of the irreducible representations T of the molecular symmetry group

and their components γ. Therefore, in the normal coordinates QTγ the operator of vibronic

interaction (4.39) may be written in the form

W (r,Q) =
∑

Tγ

(

∂V

∂QTγ

)

0

QTγ +
1

2

∑

T (1)γ1

∑

T (2)γ2

(

∂2V

∂QT (1)γ1
∂QT (2)γ2

)

0

QT (1)γ1
QT (2)γ2

(4.43)

Coefficients of this expansion are the derivatives of the electron-nuclear interaction. The matrix

elements of these coefficients are the constants of vibronic coupling or vibronic constants. These

constants are of fundamental importance in the analysis of vibronic interaction effect. They

characterize the measure of coupling between the electronic structure and nuclear displace-

ments, i.e. the measure of influence of the nuclear displacements on the electron distribution.

If we denote the electronic states by appropriate irreducible representations T, T ′, ... of the

molecular symmetry group and suppose, that the states T and T ′ are not degenerate, then the

matrix element

F TT ′

T̄ =

〈

T

∣

∣

∣

∣

(

∂V

∂QT̄

)
∣

∣

∣

∣

T ′
〉

(4.44)

is called the linear vibronic constant. Following the rules of group theory, F TT ′

T̄
is nonzero if and

only if the direct product T ⊗ T ′ contains the irreducible representation T̄ . If T or T ′ or both

are degenerate, a set of linear vibronic constants F TγT ′γ′

T̄ γ̄
must be introduced instead F TT ′

T̄
.

However, according to the Wigner-Eckart theorem [8, 46], we can obtain following relation

between different components of the linear vibronic constants:

F TγT ′γ′

T̄ γ̄
= F TT ′

T̄

〈

T̄ γ̄T ′γ′|Tγ
〉

, (4.45)

where
〈

T̄ γ̄T ′γ′|Tγ
〉

are the Clebsch-Gordan coefficients for the symmetry group (see Ref. [3]).

Therefore, if one knows at least one vibronic constant of certain symmetry, all the others can be
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easily calculated by (4.45) using the Clebsch-Gordan coefficients. Some of the linear vibronic

constants have a clear physical meaning. For instance, the diagonal vibronic constant F TT
T̄

has

the sense of the force, with which the electrons in state T affect the nuclei in the direction of

the normal coordinate QT̄ . According to the group theoretical condition, the constant F TT
T̄

is nonzero if the symmetrized(!) part [T ⊗ T ] of the direct product T ⊗ T contains T̄ (see

Section 2.4.3). For nondegenerate T the direct product [T ⊗ T ] always results in the totally

symmetric irreducible representation. Therefore, the nuclei configuration can be distorted only

in the direction of totally symmetric displacement, which does not change the symmetry of

the system. If the electronic state T is degenerate, the symmetrized part of the direct product

[T ⊗ T ] contains nontotally symmetric representations. Therefore, the molecular symmetry

can be distorted nonsymmetrically. These nonsymmetrical distortions are essential in the JT

effect.

Similarly to the linear vibronic constants, the quadratic (or second-order) vibronic constants

can be introduced as

K
(TT ′)

T̄ γ̄
=

1

2

〈

T

[(

∂2V

∂QT (1)γ1
∂QT (2)γ2

)

0

]

T ′
〉

(4.46)

The totally symmetric part of the diagonal matrix element (4.46) forms the curvature of the

adiabatic potential and appears as its essential component 1
2

∑

Tγ K
T
T̄
Q2

T̄ γ̄
. Corresponding

constant KT
T̄

is called force constant. The remaining terms and the nondiagonal matrix elements

contain the quadratic vibronic constant GTT ′

T̄
, which must be distinguished from the force

constant (see Refs. [41, 43] for details).

4.2.3 Jahn-Teller theorem

The vibronic constants, introduced in the previous section, allow to formulate the so-called

Jahn-Teller theorem, which predicts the nonsymmetrical molecular distortions. This theorem

is based on the group-theoretical analysis of the behavior of the adiabatic potential of a molecule

near the point of electronic degeneracy. Suppose, that by solving the electronic Schrödinger

equation (4.35) for the nuclei fixed at the point QT̄ γ̄ = 0 we obtain an f -fold degenerate

electronic term, i. e. f states ϕk(r), k = 1, 2, ..., f with identical energies ε′k = ε0. To answer

the question how these energy levels vary under nuclear displacements QT̄ γ̄ 6= 0, the adiabatic

potential near the point of degeneracy must be determined. It can be done by estimating the

effect of the vibronic interaction terms W (r,Q) on the energy level ε′k. For sufficiently small

nuclear displacement QT̄ γ̄ the AP εk(Q) can be obtained as a solution of the secular equation

|Wij − ε| = 0 (4.47)

where Wij are the matrix elements of the vibronic interaction operator (4.39) calculated with

the wave functions of the degenerate term. The presence of this term is assumed because of

the high symmetry of the system. Note, that since the totally symmetric displacements do not

change the symmetry of the system, we will omit these displacements. Moreover, the second

order terms of vibronic interaction operator may also be omitted due to the assumed small
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values of QT̄ γ̄ . Therefore, matrix elements of the vibronic interaction operator are

WTγTγ′ =
∑

T̄ γ̄

F TγTγ′

T̄ γ̄
QT̄ γ̄ =

∑

T̄ γ̄

F T
T̄ QT̄ γ̄

〈

T̄ γ̄Tγ′|Tγ
〉

(4.48)

where F T
T̄

are the linear vibronic constants (4.44). If at least one of these constants s nonzero,

then at least one of the roots ε of the equation (4.47) contains not only quadratic, but also

linear terms in appropriate displacement QT̄ γ̄ and, therefore, the adiabatic potential εk(Q) has

no minimum at the point QT̄ γ̄ = 0 with respect to this displacement. The question whether

the vibronic constant F T
T̄

is zero or not may be answered by means group-theoretical rule,

mentioned in previous section. Examining all types of the degenerate terms of all symmetry

point groups, Jahn and Teller showed, that for any orbital degenerate term T of any molecular

system there are nontotally symmetric displacements T̄ with respect to which at least one of

the vibronic constants is nonzero, F T
T̄

6= 0. Therefore, the adiabatic potential of this term has

no minimum in the point QT̄ γ̄ = 0. This statement is just the JT theorem. The proof of this

theorem by means of an examination of all types of degenerate terms in all symmetry point

groups allows to reveal the JT active modes. These modes are the nuclei displacements QT̄ γ̄

for which the vibronic constant F T
T̄

is nonzero and which remove the electron degeneracy of

the electronic term T .

4.2.4 Adiabatic potential and stability of the molecular configuration

As follows from the the JT theorem, at the point of the nuclei configuration, where the electronic

state is degenerate, the surface of the potential energy of the nuclei in the mean field of electrons

has no minimum. The question arises whether this surface possesses any minimum and where

this minimum is situated. Or, more generally, what is the stable configuration of the nuclei

in the presence of the JT effect. To answer this question the shape of the adiabatic potential

ε(QT̄ γ̄) in the space of all nuclear displacements QT̄ γ̄ must be determined. For the f -fold

degenerate electronic state T the adiabatic potential has f sheets εk(Q) k = 1, 2, ..., f , which

intersect at the point of degeneracy. To determine εk(QT̄ γ̄) we should first separate the totally

symmetric part of the diagonal matrix elements of the vibronic interactions, which give rise to

the constant KT
T̄

(see Eq. (4.46)). Then the f sheets of the adiabatic potential of an f -fold

degenerate electronic term are given by the following expressions

εk(QT̄ γ̄) =
1

2

∑

T̄ γ̄

KT
T̄ Q

2
T̄ γ̄ + ενk(QT̄ γ̄), k = 1, 2, ..., f (4.49)

where ενk(QT̄ γ̄) are the roots of the secular equation

|W ν
γγ′(QT̄ γ̄) − εν | = 0; γ, γ′ ∈ T (γ, γ′ = 1, 2, ..., f) (4.50)

in which the diagonal matrix elements W ν
γγ′(QT̄ γ̄) do not contain the totally symmetric part

of the quadratic terms used in the force constant formation.

Here we illustrate, how to construct and analyze the adiabatic potential for a particular

molecule. Then we consider the octahedral molecule of type ML6 (symmetry group Oh).

The JT distortion of such molecule is discussed very often in the literature [47, 48]. The shape
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of this molecule is shown on Fig. 4.2 a). By calling the irreducible representation of the group

Oh

> Bethe group(Oh, irreps);

["A1g", "A2g", "Eg", "T1g", "T2g", "A1u", "A2u", "Eu", "T1u", "T2u"]

we define, which electronic states are presented in the ML6 molecule. Consider the doubly

degenerate electronic state Eg (so-called Eg-term). The systems with Eg- or Eu-term are very

widely spread, but in the same time quite simple to illustrate the JT effect. First of all we

need to define the JT active vibrational (or normal) modes of this molecule. To achieve this,

we need to specify the molecule ML6 as a collection of individual atoms, situated as shown on

the Fig. 4.2 a).

> ML6 := molecule(atom( M, [ 0, 0, 0]),

atom(L1, [ 0, 0, a]),

atom(L2, [ 0, 0, -a]),

atom(L3, [ 0, a, 0]),

atom(L4, [ 0, -a, 0]),

atom(L5, [ a, 0, 0]),

atom(L6, [ -a, 0, 0]));

ML6 := molecule(atom( M, [0, 0, 0]), atom(L1, [0, 0, a]),

atom(L2, [0, 0, -a]), atom(L3, [0, a, 0]),

atom(L4, [0, -a, 0]), atom(L5, [a, 0, 0]),

atom(L6, [-a, 0, 0]))

The vibrational modes of this molecule can be found as described in Ref. [11]:

> VR := Bethe group representation(Oh, vibrational, ML6);

Bethe decompose representation(Oh, VR);

VR := [15, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, -3, 5, 5, 5, 0, 0, 0, 0,

0, 0, 0, 0, -1, -1, -1, -1, -1, -1, 3, 3, 3, 3, 3, 3]

["A1g", "Eg", "T2g", "T1u", "T1u", "T2u"]

Then we need to define, which of these vibrational modes will be JT active in the Eg state (i.e.

will destroy the octahedral symmetry in this state). According to the JT theorem we should

find the symmetrized part of the direct product Eg ⊗ Eg

> Bethe group direct product(Oh, "Eg", "Eg", symmetrized);

["A1g", "Eg"]
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Figure 4.2: Shape of octahedral ML6 molecule (a) and its normal displacements Qv (b) and

Qu (c).

The result shows, that nonzero parts of the vibronic interaction operator W ν
γγ′(QT̄ γ̄) for Eg

term contain only type Eg nontotally symmetric displacements QT̄ γ̄ (the totally symmetric

displacement is not taken into account). Let us take the symbol eg for this representation, in

order to distinguish it from the state of the molecule. Therefore, we specify corresponding JT

problem as the Eg −eg problem. It means, that the octahedral molecule in degenerate state Eg

will be distorted in the direction of two normal coordinates Qegu and Qegv of the irreducible

representation eg. Since both included irreducible representations have the subscript g, we can

omit this subscript. Then the corresponding JT problem will be considered as E − e problem.

The two components Qeu and Qev of the normal displacements e (later we denote them Qu

and Qv) can be defined in the Bethe package as two sublists of the list Q

> Q := Bethe normal coordinates(Oh, ML6, "Eg", Cartesian);

1/2 1/2 1/2 1/2

3 3 3 3

Q:=[[0, 0, 0, 0, 0, 0, 0, 0, 0, 0,- ---, 0, 0,---, 0,---, 0, 0,- ---, 0, 0],

12 12 12 12

1 1 -1 1 -1 1

[0, 0, 0, 0, 0, --, 0, 0, ---, 0, --, 0, 0, --, 0, --, 0, 0, --, 0, 0]]

6 6 12 12 12 12

These sublists define the displacements of cartesian coordinates (x, y, z) of every atom, in the

same sequence as specified in the variable ML6. These coordinates are shown graphically on

Fig. 4.2 b)-c). Taking into account the Eq. (4.45), and retaining only the linear order vibronic

interaction terms, we can write the explicit form of the secular equation (4.50) for the E − e
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problem as (see [43])

[

FE
e Qu − εν −FE

e Qv

−FE
e Qv −FE

e Qu − εν

]

= 0 (4.51)

where

FE
e =

〈

U

∣

∣

∣

∣

(

∂V

∂Qu

)

0

∣

∣

∣

∣

U

〉

. (4.52)

This equation can be solved directly for εν .

εν±(Qu, Qv) = ±FE
e

√

Q2
u +Q2

v

εk(Qu, Qv) = 1
2K

E
e (Q2

u +Q2
v) ± FE

e

√

Q2
u +Q2

v

(4.53)

or, if to use the polar coordinates Qu = ρ cos(φ), Qv = ρ sin(φ),

εν±(ρ, φ) = ±FE
e ρ

εk(ρ, φ) = 1
2K

E
e ρ

2 ± FE
e ρ

(4.54)

The surface of this adiabatic potential has the form of the rotation surface, called the ”Mex-

ican hut” and shown on the Fig. 4.3. As seen from this figure, the octahedral system ML6

will be distorted along the bottom of the surface to the tetrahedral symmetries and various

continuously from one configuration to another (points a, b, c, d, e).

If in the equation (4.50) the second order terms are taken into account, the adiabatic potential

is defined in polar coordinates as

εk(ρ, φ) =
1

2
KE

e ρ
2 ± ρ

√

F 2
e +G2

eρ
2 + 2FeGeρ cos(3φ) (4.55)

where Ge is the quadratic vibronic constant. The surface of this adiabatic potential is more

complicated and shown on Fig. 4.4. Three minima (points 1, 3 and 5) of the AP correspond

to the three distortions of the ML6 molecule, as shown on the Fig. 4.5. .

4.2.5 Determining of the stable molecular configuration.

In the previous section we demonstrate, how to construct the adiabatic potential for the ML6

molecule. The points (or curves) of minimum of this potential correspond to the stable con-

figuration of the molecule. The question arises, how to find these configurations, knowing the

values of the Qv and Qu at the minima points. Consider, for instance, the extremal point 3 in

Fig. 4.4. This point is defined by to the polar angle ϕ = 2π/3. Therefore, in this point

Qu = −ρ
2
, Qv =

√
3ρ

2
(4.56)

where the constant ρ can be expressed by means the constants FE
e , GE

e and KE
e . To find a new

atomic coordinates of the ML6 we need to know the amplitudes of the Qu and Qv vibrations.

However, the label of the symmetry group of the distorted molecule can be found qualitatively.

To achieve this, we need to add every cartesian coordinate of ML6 by the small increment

according to the normal coordinates in point 3. It can be illustrated by the Table 4.2. The first
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Figure 4.3: Adiabatic potential of the octahedral molecule neglecting quadratic terms of vi-

bronic interaction (from www.mi.infm.it).
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taking into account quadratic terms of vibronic interaction.
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Table 4.2: Determining of the atomic coordinates in the distorted ML6 molecule.

Atom Initial Displacement Displacement Displacement Distorted

coordinate Qu Qv -Qu/2 +
√

3Qv/2 configuration

x: 0 0 0 0 0

M y: 0 0 0 0 0

z: 0 0 0 0 0

x: 0 0 0 0 0

L1 y: 0 0 0 0 0

z: a 1
6 0 − 1

12 a− 1
12

x: 0 0 0 0 0

L2 y: 0 0 0 0 0

z: −a −1
6 0 1

12 −a+ 1
12

x: 0 0 0 0 0

L3 y: a − 1
12 −

√
3

12 − 1
12 a− 1

12

z: 0 0 0 0 0

x: 0 0 0 0 0

L4 y: −a 1
12

√
3

12
1
12 −a+ 1

12

z: 0 0 0 0 0

x: a − 1
12

√
3

12
1
6 a+ 1

6

L5 y: 0 0 0 0 0

z: 0 0 0 0 0

x: −a 1
12 −

√
3

12 −1
6 −a− 1

6

L6 y: 0 0 0 0 0

z: 0 0 0 0 0

column of this table contents the names of the ML6 atoms. The second column gives the initial

atomic coordinates of ML6 as defined in the variable ML6. The third and fourth columns show

the displacements of these coordinates Qu and Qv. The fifth column defines the displacement

of every coordinate in the point 3 of Fig. 4.5 according to the (4.56). Finally, sixth column

is obtained by the summation of the initial coordinates (second column) and displacement in

point 3 (fifth column). By other words, this column contains the qualitatively coordinates of

every atom in the distorted configuration of ML6 molecule. Taking these coordinates from the

last column, we can define the (highest) symmetry of the molecule in the point 3

> ML6new := [[0,0,0],[0,0,a-1/12],[0,0,-a+1/12], [0,a-1/12,0],[0,-a+1/12,0],

[a-1/6,0,0],[-a-1/6,0,0]]:

Bethe group symmetry(highest, ML6new);

D2h

where the printout of variable ML6new is omitted due to the double point at the end. As

expected, the symmetry of the distorted molecule is D2h. The same technique can be used to
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define the symmetry of the molecule in any other minimal point of the adiabatic potential.

4.2.6 Realization of the Jahn-Teller problem within the Bethe framework.

The determination of the JT active displacements, the adiabatic potential and the stable con-

figuration of the symmetry molecules can be performed by the Bethe package. To achieve

this, following steps should be done:

• Determination of the degenerate states of the molecule;

• Generation of the vibrational modes and the normal coordinates of the molecule in terms

of the Cartesian displacements;

• Determination of the Jahn-Teller active vibrational modes;

• Construction of the secular equation (4.51) taking into account the Clebsch-Gordan co-

efficients. The vibronic constants are presented in this equation as the parameters;

• Generation of the adiabatic potential (4.54) or (4.55) in terms of the normal coordinates

Qi where the force constants are presented as the parameters;

• Determination the minimum point of the adiabatic potential;

• Determination of the molecular configuration in the points of minimum;

The first and second steps are already supported by the Bethe package and have been presented

in the previous sections. The third step - determination of the Jahn-Teller active displace-

ments - also can be done by using the procedure Bethe group direct product(). However,

it looks reasonable to organize the special procedure Bethe JT activity(), which will define

the JT active modes automatically (similar to the procedure Bethe spectral activity() of

the vibrational analysis). Then the procedures for the remaining steps, in which the adiabatic

potential of the molecule should be constructed and analyzed, should be created. Note, that

the Clebsch-Gordan coefficients, which are necessary for the adiabatic potential, are generated

by the procedure Bethe CG coefficient(). It should be emphasized, that the vibronic con-

stants are not defined directly. They are used as the parameters and the points of minimum of

the adiabatic potential will be defined in terms of these constants. In the last step the stable

configuration of the molecule should be defined, as described above. The approximate list of

procedures, which need to be created in order to realize the JT problem within the Bethe

package is presented in Table 4.3.
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Table 4.3: Commands of the Bethe program, to realize the Jahn-Teller problem

Bethe JT activity() Defines, whether the given vibrational mode is JT active.

Bethe secular equation() Returns a secular equation in terms of the normal coordinates Qi

and vibronic constants KT
T̄ , GT

T̄ , F T
T̄ and adiabatic potential ε.

Bethe secular equation(..., solution) Returns a solution of secular equation in terms of the normal co-

ordinates Qi and vibronic constants KT
T̄ , GT

T̄ , F T
T̄ and adiabatic

potential ε.

Bethe adiabatic potential() Returns the adiabatic potential ε as a function of the normal co-

ordinates Qi and vibronic constants KT
T̄ , GT

T̄ , F T
T̄

Bethe adiabatic potential(..., min) Returns the minima points of adiabatic potential in terms the

vibronic constants KT
T̄ , GT

T̄ , F T
T̄

Bethe JT distortion() Returns the stable configuration of molecule either in terms of the

atomic coordinates or as a name of corresponding symmetry group
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Chapter 5

Summary and Outlook

This thesis work was dedicated to use the CA approach for dealing with the group symmetries

and studying the symmetry properties of molecules and clusters. The Maple package Bethe,

created to extract and manipulate the group-theoretical data and to simplify some of the

symmetry applications, was introduced in Chapter 2. First of all the advantages of using

Bethe to generate the group theoretical data was demonstrated. In the current version, the

data of 72 frequently applied point groups can be used, together with the data for all of the

corresponding double groups. The emphasize of this work was placed to the applications of

this package in physics of molecules and clusters (Chapter 3). Apart from the analysis of the

spectral activity of molecules with point-group symmetry, it was demonstrated how Bethe

can be used to understand the field splitting in crystals or to construct the corresponding

wave functions. Several examples are worked out in Chapter 3 to display (some of) the present

features of the Bethe program. While we cannot show all the details explicitly, these examples

certainly demonstrate the great potential in applying computer algebraic techniques to study

the symmetry properties of molecules and clusters.

A special attention was placed in this thesis work on the flexibility of the Bethe package,

which makes it possible to implement another applications, as described in Chapter 4. This

implementation is very reasonable, because some of the most complicated steps of the possible

future applications are already realized within the Bethe. For instance, the vibrational coor-

dinates in terms of the internal displacement vectors for the Wilson’s method (Section 4.1) and

the same coordinates in terms of cartesian displacement vectors as well as the Clebsch-Gordan

coefficients for the Jahn-Teller problem (Section 4.2) are generated in the present version of

the program. For the Jahn-Teller problem, moreover, use of the CA tool seems to be even

inevitable, because this problem demands an analytical access to the adiabatic potential and,

therefore, can not be realized by the numerical algorithm.

However, the ability of the Bethe package is not exhausted by applications, mentioned in this

thesis work. There are various directions in which the Bethe program could be developed in

the future. Apart from (i) studying of the magnetic properties of materials [49, 51] and (ii)

optical transitions [8], interest can be pointed out for (iii) the vibronic spectroscopy [41, 42],

and many others. Implementation of these applications into the package can make Bethe a

much more powerful tool.
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Appendix: Description of

procedures and global variables of

the BETHE package.

Global variables of the BETHE program

The following global variable is initialized by (first) invoking the Bethe program and can be

re–defined by means of the procedure Bethe set().

• Bethe save framework = nonrelativistic

Procedures for the BETHE program

Auxiliary procedures

• Abasis(stringatom, [a1,a2,a3],[n1,l1],[n2,l2],...)
bethe a

Auxiliary procedure to represent an atomic basis set {〈r | a n1l1m〉 , 〈r | a n2l2m〉 , . . .}
which is centered at the position a = (a1, a2, a3) and which is characterized by means of

stringatom.

Output: An unevaluated call to Abasis() is returned.

Argument options: (stringatom,[a1,a2,a3],[n1,kappa1],[n2,kappa2],...) to represent a rel-

ativistic orbital basis {〈r | a n1κ1m〉 , 〈r | a n2κ2m〉 , . . .} if a relativistic framework is

used.

Additional information: A few minor tests are made on the parameters list with regard

to the number and type of the arguments. ♣ If the quantum numbers ni and li are

given numerically, they must be integers and must fulfill the relation ni ≥ li + 1. ♣ The

last parameter stringatom can be used to characterize either the sort of the atom or the

one–particle basis to which the orbital belongs.

See also: AO(), SO(), Bethe set().

• AO([a1,a2,a3],n,l,m,stringatom) bethe a
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Auxiliary procedure to represent a (nonrelativistic) atomic orbital 〈r | a nlm〉 which

is centered at the position a = (a1, a2, a3) and which is characterized by means of

stringatom.

Output: An unevaluated call to AO([a1,a2,a3],n,l,m,stringatom) is returned.

Argument options: ([a1,a2,a3],n,kappa,m,stringatom) to represent a relativistic atomic

Dirac orbital 〈r | a nκm〉 if a relativistic framework is used.

Additional information: A few minor tests are made on the input parameters with

regard to the number and type of the arguments. ♣ If the quantum numbers n, l and/or

m are given numerically, they must be integers and must fulfill the relations n ≥ l + 1

and |m| ≤ l. ♣ The last parameter stringatom can be used to characterize either the sort

of the atom or the one–particle basis to which the orbital belongs.

See also: SO(), Bethe set().

• atom(string Sy)
bethe a

Auxiliary procedure to represent an atom with symbol Sy in the Periodic Table of Ele-

ments.

Output: An unevaluated call to atom(stringSy) is returned.

Argument options: (stringSy,[a1,a2,a3]) to represent an atom with symbol Sy at the

atomic site a = (a1, a2, a3). An unevaluated call to atom(stringSy,[a1,a2,a3]) is returned.

♣ (stringSy,mass = m) to represent an atom with symbol Sy and atomic weight m.

Additional information: A few minor checks are made on the parameter list which

concern (i) the proper type of arguments. ♣ Usually, stringSy represents an atom in

terms of it symbol in the Periodic Table of Elements; a few examples are ”H”, ”He”, or

”Li”. The use of such predefined symbols is however not necessary. ♣ Atomic coordinates

are usually treated in Å units; 1 Å = 10−10 m. ♣ Further properties of the atom can

be added to the parameter list if they are given in terms of equations, i.e. in the form

keyword = value.

See also: Bethe set(), SO().

• molecule(atom1, atom2, ...) bethe a

Auxiliary procedure to represent an molecule in terms of its individual atoms.

Output: An unevaluated call to molecule(atom1,atom2,...) is returned.

Argument options: (atom1,atom2,distance = d) to represent a diatomic molecule at the

equilibrium distance d.

Additional information: A few minor checks are made on the parameter list that all

arguments represent either (i) atoms or (ii) describe further properties in terms of equa-

tions. ♣ Further properties of the atom can be added to the parameter list if they are

given in terms of equations keyword = value.
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See also: Bethe molecule().

• SO(Glabel,[a1,a2,a3],n,l,m,stringIR,mu,nu,stringatom) bethe a

Auxiliary procedure to represent a symmetry orbital
〈

r | (Ga) nlm; T (α)µν
〉

of the

irreducible representation T (α) of the group G (with label Glabel) which is characterized

by means of stringatom.

Output: An unevaluated call to SO(Glabel,[a1,a2,a3],n,l,m,stringIR,mu,nu,stringatom) is

returned.

Argument options: (Glabel,[a1,a2,a3],n,kappa,m,stringIR,mu,nu,stringatom) to represent

a relativistic symmetry orbital
〈

r | (Ga) nκm; T (α)µν
〉

if a relativistic framework is

used.

Additional information: A few minor tests are made on the parameters list with regard

to the number and type of the arguments. ♣ If the quantum numbers n, l and/or m are

given numerically, they must be integers and must fulfill the relations n ≥ l + 1 and

|m| ≤ l. ♣ The last parameter stringatom can be used to characterize either the sort of

the atom or the one–particle basis to which the orbital belongs.

See also: AO(), Bethe set().

Main procedures

• Bethe angular j(kappa) bethe b

Return the total angular momentum j for a given relativistic angular momentum quantum

number κ.

Output: A half–integer is returned.

See also: AO(), SO().

• Bethe angular l(kappa) bethe b

Return the (orbital) angular momentum quantum number l = abs(κ) − 1 for κ < 0 or

l = κ for κ > 0 for a given κ.

Output: An integer is returned.

See also: AO(), SO().

• Bethe CG coefficient(Glabel, string IRα , i, string IRβ
, s, k, string IRγ ,m) bethe b

Calculates the Clebsch–Gordan (or Wigner) coefficient 〈αi, βk | sγm〉 for the three

irreducible representations α, β, and γ of the group with label Glabel with the string

identifiers string IRα , string IRβ
and string IRγ .

Output: A number is returned.
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Additional information: The irreducible representation γ with the string identifier

string IRγ has to be ’part of’ the direct product T (α⊗ β), i.e. T (α⊗ β) = . . . ⊕ T (γ) ⊕ . . . .

The procedure terminates with a proper error message if this is not fulfilled. To deter-

mine the irreducible representations, which are contained in the direct product above, the

procedure Bethe group direct product() can be invoked. ♣ The indices i, k, and l enumer-

ate the basis functions of corresponding irreducible representations and, therefore, have

to be less or equal the irreducible representation dimensions. To determine the dimen-

sion of an irreducible representation of a given group, the procedure Bethe group irrep(...,

dimension) can be utilized.The parameter s enumerates the multiplicity of the irreducible

representation γ and differs from 1 only if the representation γ is contained in the direct

product α× β more then 1 time. The procedure terminates with an ERROR message if

the parameters i, k, l and s are typed wrong.

See also: Bethe group direct product(), Bethe CG matrix().

• Bethe CG matrix(Glabel, string IRα , string IRβ
) bethe b

Generates the matrix of the (non–vanishing) Clebsch–Gordan (or Wigner) coefficient for

the two irreducible representations α, β with the string identifiers string IRα and string IRβ
.

Output: A unitary matrix is returned.

Additional information: Elements of this matrix 〈αi, βk | sγm〉 appears in the inter-

section of the αi, βk rows with the sγm columns. ♣ The irreducible representation γ are

the irreducible components of the direct product α×β. These components are calculated

automatically. ♣ The dimension of the returned matrix is the mn×mn, where m and n

are the dimensions of the irreducible representations stringIR1 and stringIR2

See also: Bethe group direct product(), Bethe CGC are orthogonal().

• Bethe CGC are orthogonal(mat) bethe b

Tests whether the CG coefficients, which form the matrix mat, are orthogonal each other.

Output: A boolean variable true or false is returned.

Additional information: The CG coefficients are orthogonal each other if the conditions

∑

ik

〈

αiβk | s′γ′l′
〉∗ 〈αiβk | sγl〉 = δγγ′δss′δll′ (5.1)

∑

γsl

〈αiβk | sγl〉
〈

αi′βk′ | sγl
〉∗

= δii′δkk′ (5.2)

are fulfilled.

See also: Bethe CG coefficient().

• Bethe chains relations(invariant) bethe−pg−data

Return a list of subchains from which all the invariant group chains can derived.
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Output: A list is returned.

Argument options: (subduction) to return a list of subchains from which all the subduc-

tions can derived.

Additional information: The list of subchains are generated from the graphs 1–12 as dis-

played by Altmann & Herzig (1994, paragraph 9). ♣ All subchains are listed in alphabet-

ical order and in the form [Glabel up, Glabel low] where the orders of the corresponding

group labels fulfill the relation h up ≥ h low.

See also: Bethe group chain().

• Bethe cos(m, n) bethe−pg−data

Calculates the value of cos(m/n)*Pi.

Output: A number is returned.

• Bethe decompose representation(Glabel, [chi1, chi2, ..., chik], [string SO1,

stringSO2, ..., string SOk
]) bethe b

Determines how many times each irreducible representation of the group G with label

Glabel is contained in a reducible representation with characters [chi1,chi2,...chik] where

k is the number of the symmetry operations [stringSO1 ,stringSO2 , ...,stringSOk
] of the

group Glabel.

Output: A list of irreducible representation identifiers [string IR1 ,string IR2 ,...] of the

given group is returned.

Argument options: (Glabel,[chi1,chi2,...,chik]) to return the same result if the characters

are given in the internal standard order, i.e. as obtained by a call to the procedure

Bethe group(Glabel,symmetry operations).

♣ (Glabel,[chi1,chi2,...,chik ], spin reps) to return the same result for the list of the spinor

representations of the group Glabel.

♣ (Glabel,[matrix1,matrix2,...,matrixk],[stringSO1 ,stringSO2 ,...,stringSOk
]) to return the

same result if the reducible matrix representation is given explicitly.

♣ (Glabel,[matrix1,matrix2,...,matrixk]) to return the same result if the reducible matrix

representation is given explicitly and if they are given in the internal standard order.

♣ (Glabel, string IRa , string IRb
,...) to return the same decomposition for the product

representation associated to string IRa × string IRb
× ...

♣ (Glabel, polar vector) to return a list of irreducible representation names [string IRa ,

string IRb
, ...] of group Glabel, which describe the transformation of the polar vector r =

(x, y, z);

♣ (Glabel, axial vector) to return the list of irreducible representation names which de-

scribe the transformation of the axial vector R = (Rx, Ry, Rz);

♣ (Glabel, cartesian tensor, rank) to return the same for the representation of a cartesian

tensor function of rank rank.
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Additional information: At the output, an irreducible string identifier string IR appears

as many times as it arises in the given reducible representation. The order of the irre-

ducible string identifiers is undetermined. ♣ The internal standard order of the symmetry

operations is those as obtained by a call to Bethe group(Glabel, operators). ♣ Decompo-

sition of the double group representations is also supported by the program. In this case

k is considered as a number of the symmetry operations of corresponding double group.

See also: Bethe group representation().

• Bethe Djmm(j, m, mp, alpha, beta, gamma) bethe b

Returns a Wigner D-function if j,m,mp are given numerically. Formula 4.3(1) from Var-

shalovich et al. (1988) is used.

Output: A number or an unevaluated function call is returned.

• Bethe djmm(j, m, mp, beta) bethe b

Returns a Wigner d-function if j,m,mp are given numerically. Formula 4.3(2) from Var-

shalovich et al. (1988) is used.

Output: A number or an unevaluated function call is returned.

• Bethe direct product(M1, M2) bethe b

Calculates the direct (Kronecker) product of matrix M1 and matrix M2.

Output: A n1n2 × n1n2 matrix is returned where n1, n2 are dimensions of the matrices

M1 and M2 respectively.

Additional information: The matrices M1 and M2 have to be square.

• Bethe function return(m, listmol, listvib) bethe b

Return a list of numbers for drawing the atoms molecule with coordinates listmol in the

different positions of vibration like defined by the list listvib for m oscillations.

Output: A list is returned.

Additional information: A normal coordinate in terms of the cartesian displacement

vectors should be used.

See also: molecule(), Bethe function display().

• Bethe generate AO(stringatom, [a1,a2,a3,[n1,l1],[n2,l2],...)
bethe b

Generates a list of atomic orbitals (including all possible m’s) at the position a =

(a1, a2, a3) and for an atom with the identifier stringatom.

Output: A list of (unevaluated) calls to AO() with proper quantum numbers is returned.

Argument options: (stringatom,[a1,a2,a3],[n1,kappa1], [n2,kappa2],...) to generate a list

of relativistic orbitals (including all possible m’s) if a relativistic framework is used.
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Additional information: All atomic orbitals are located at the same site

a = (a1, a2, a3). ♣ All principal quantum numbers ni and (orbital) angular momentum

numbers li or κi must be of type integer.

See also: AO().

• Bethe generate AO basis(Glabel,AO1,AO2,...)
bethe b

Generates an atomic basis by applying all symmetry operations of the point group G with

label Glabel to the atomic orbitals AO1, AO2, ... .

Output: A list of (unevaluated) calls to AO() with proper quantum numbers and with

positions of all equivalent atomic sites a is returned.

Additional information: To generate an atomic basis, it is typically enough to provide the

corresponding orbitals at one of the equivalent sites, i.e. atomic sites which are equivalent

under the symmetry operations of the group G. ♣ Although returned in a list structure,

it is ensured that each atomic orbital only occurs once in the list.

See also: Bethe generate AO().

• Bethe generate sites(Glabel,[ax,ay,az])
bethe b

Generates all equivalent sites of the point a = (ax, ay, az) under the symmetry operations

of the point group G with label Glabel.

Output: A list of sites [ [a
(1)
x ,a

(1)
y ,a

(1)
z ], [a

(2)
x ,a

(2)
y ,a

(2)
z ], [a

(3)
x ,a

(3)
y ,a

(3)
z ], ...] is returned.

Argument options: (Glabel,[ax,ay,az ], [bx,by,bz], ...) to generate the same but for dif-

ferent sites a = (ax, ay, az), b = (bx, by, bz), ...; a list of lists is returned. ♣ The input

a = (a1, a2, a3) is always returned as first operand [[a
(1)
1 ,a

(1)
2 ,a

(1)
3 ], ...] of the output. ♣

The present version only supports cartesian coordinates.

See also: Bethe group().

• Bethe generate SO(SO(Glabel, [a1,a2,a3], n, l, m, stringIR, mu, nu, stringatom))
bethe b

Expands a given symmetry orbital
〈

r | (Ga) nlm; T (α)µν
〉

of the group G and with one

of the atoms centered at position a = (a1, a2, a3) in terms of the atomic orbitals with

quantum numbers n and l, centered at all equivalent sites.

Output: A list [[c1, AO1],[c2, AO2], ...] is returned where ci are the mixing coefficients

and where AOi describes an atomic orbital at one of the equivalent sites of the molecule.

Argument options: (SO,print) to print the expansion in terms of atomic orbitals in a

line mode which is much simpler to read. A null expression is returned in this case.

Additional information: If the keyword print is used, one line ci × AOi() is printed for

each atomic orbital involved in the expansion. ♣ The expansion coefficients are normalized

due to
∑

i c
2
i = 1

See also: Bethe generate AO().
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• Bethe generate SO basis(Glabel,Abasis1, Abasis2,...)
bethe b

Generates a complete but linear independent set of symmetry orbitals for the point group

G with label Glabel from the set of atomic orbitals as given by the basis sets Abasis1,

Abasis2, ... .

Output: A list of unevaluated calls to SO() is returned.

Argument options: (Glabel,Abasis1,Abasis2,...,explicit) to generate an explicit represen-

tation of the (set of) symmetry orbitals in terms of the corresponding atomic orbitals, [

[[c1, AO1],[c2, AO2], ...], ...].

♣ (Glabel,Abasis1,Abasis2,...,print) to print the complete but linear independent basis of

symmetry orbitals in line mode. A null expression is returned in this case.

♣ (Glabel,Abasis1,Abasis2,...,explicit,print) to generate and print an explicit representa-

tion of all symmetry orbitals in terms of atomic orbitals. A null expression is returned

in this case.

Additional information: To generate a symmetry orbital basis, it is typically enough

to provide the corresponding orbitals in the atomic basis set Abasis for just one of the

equivalent sites, i.e. for one of the atomic sites which are equivalent under the symmetry

operations of the group G.

See also: Bethe generate AO basis().

• Bethe group() bethe b

Returns a list of all point groups (labels) which are presently supported by the Bethe

package.

Output: A list of Glabel’s is returned.

Argument options: (Glabel,implemented) to return true if the point groups G with label

Glabel is supported by the Bethe program and false otherwise. ♣ (Glabel,No class) or

(Glabel,No class,double) to return the number of classes in the group or the or the corre-

sponding double group. ♣ (Glabel,No regular) to return the number of regular classes in

the group. ♣ (Glabel,No irregular) to return the number of irregular classes in the group.

♣ (Glabel,No irreps) or (Glabel,No irreps,double)to return the number of irreducible rep-

resentations of the group or the corresponding double group. ♣ (Glabel,No operators) or

(Glabel,No operators, double)to return the number of symmetry operations of the group

or the corresponding double group. ♣ (Glabel,No Altmann) to return the number of the

table in the main reference book by Altmann & Herzig (1994). ♣ (Glabel,crystallographic)

to return true if the group label indicates a crystallographic point group and false other-

wise. ♣ (Glabel,crystal system) to return, if Glabel denotes a crystallographic group, the

name of of the crystallographic system (such as triclinic, rhombic, ...) and FAIL other-

wise. ♣ (Glabel,cubic) to return true if the Glabel indicates a cubic point group and false

otherwise. ♣ (Glabel,cyclic) to return true if the Glabel indicates a cyclic point group and

false otherwise. ♣ (Glabel,dihedral) to return true if the Glabel indicates a dihedral point

group and false otherwise. ♣ (Glabel,icosahedral) to return true if the Glabel indicates
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a icosahedral point group and false otherwise. ♣ (Glabel,proper) to return true if the

Glabel indicates a proper point group and false otherwise. ♣ (Glabel,subgroup) to return

a list of the subgroups for the group Glabel. ♣ (Glabel,irreps) or (Glabel,irreps,double)

to return a detailed list of all irreducible representations of the group or the correspond-

ing double group. ♣ (Glabel,operators) or (Glabel,operators, double) to return a de-

tailed list of all symmetry operations of the group or the corresponding double group. ♣
(group table) to print a detailed tabulation about all presently supported point groups

including the international (short and long) notation of the group as well as the notation

due to Schönfliess. ♣ (Glabel,operator details) to print a detailed list about all symmetry

operations of the group or the corresponding double group. ♣ (Glabel,spinor irreps) to

return a list of the spinor (double valued) irreducible representations of the group Glabel.

♣ (Glabel,symmetry elements) to print a detailed list about all symmetry elements (with

respect to space fixed coordinates) of the group, i,.e. the choice of principal axis, the

center of symmetry, the reflection planes, etc. ♣ (Glabel,examples) to print a table with

a number of molecules which obey this group.
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Short description of all keywords

crystallographic Boolean value true or false

crystall system Prints a name of the crystal system

cubic Boolean value true or false

cyclic Boolean value true or false

dihedral Boolean value true or false

examples Prints a few examples

group table Prints a summary about all presently supported

point groups

icosahedral Boolean value true or false

implemented Boolean value true or false

irreps List of irreducible representation identifiers

irreps, double List of irreducible representations identifiers in the

double group

No Altmann Number of the tabulation by Altmann & Herzig

(1994)

No class Number of classes

No class, double Number of classes in the double group

No irregular Number of irregular classes

No irreps Number of irreducible representations

No irreps, double Number of irreducible representations in the double

group

No operators Number of symmetry operations

No operators, double Number of symmetry operations in the double

group

No regular Number of regular classes

operator details Prints a description of all symmetry operations

operators List of symmetry operation identifiers

operators, double List of symmetry operation identifiers in the double

group

proper Boolean value true or false

spinor irreps List of spinor irreducible representation identifiers

subgroup List of the subgroups

symmetry elements Prints a description of all symmetry elements

Additional information: Each irreducible representation of the group is described by an

individual string identifier which is used in the input and output of many commands.

♣ The irreducible representations of the standard and the double groups have different
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string identifiers. ♣ For the optional argument (Glabel,operator details), the procedure

prints a short description of all the symmetry operations of the point group G:

Description of symmetry operations for the point group C2v:

------------------------------------------------------------

E Identity operation

C2 Clockwise rotation about the z(principal)-axis by Pi

sigma_x Reflection through the (y-z) plane

sigma_y Reflection through the (x-z) plane

♣ For the optional argument (group table), the procedure prints a list of all presently

supported groups in the form:

Notation

Glabel Schoenfliess Full Short Group description

--------------------------------------------------------------------

Cs C_s m m Group of horizontal reflection

CI C_i ^1 ^1 Imroper cyclic group

C2 C_2 2 2 Proper cyclic group

C3 C_3 3 3 Proper cyclic group

...

♣ For the optional argument (Glabel,symmetry elements), the procedure prints a short

description of all the symmetry elements of the point group G:

Symmetry elements of the point group C2v:

------------------------------------------

C_2 2-fold principal axis along the z-axis

sigma_y Vertical (x-z) reflection plane

sigma_x Vertical (y-z) reflection plane

• Bethe group chain(Glabel) bethe b

Returns a list of invariant group chains which contain the group with label Glabel.

Output: A list of lists is returned.

Argument options: (Glabel1,Glabel2,...) to return a list of invariant group chains which

contain all the given group labels. ♣ (Glabel1,...,down) to return the invariant group

chains which start with Glabel1. ♣ (Glabel1,...,up) to return the invariant group chains

which terminate with Glabel1. ♣ (Glabel1,...,subduction) to return the subduction group

chains which include the given Glabels.
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Additional information: The group chains are given as a list of group labels in descending

order of the group order, i.e. by starting with the group of highest symmetry. ♣ The

subduction group chains are defined independently from the invariant group chains.

See also: Bethe group().

• Bethe group character(Glabel, string IR,stringSO) bethe b

Returns the character χ for the irreducible representation string IR and the symmetry

operation stringSO for the point group G with label Glabel.

Output: A number is returned.

Argument options: (Glabel, string IR) to return the characters for all the symmetry oper-

ations χ1, χ2, ... of the point group. A list of numbers is returned which refer to the sym-

metry operations of the group in the same sequence as obtained by Bethe group(Glabel,

operators). ♣ (Glabel, string IR,double) to return the same for the corresponding double

group.

See also: Bethe group().

• Bethe group class(Glabel, string SO) bethe b

Returns a list of all symmetry operation identifiers, i.e. [stringSO1, stringSO2, ... ] which

belong to the same class as stringSO for the point group with label Glabel. StringSO is

also included in this list so that the list contains at least one element.

Output: A list is returned.

Argument options: (Glabel, stringSO,order) to return the order of this class. A number

is returned in this case. ♣ (Glabel, stringSO,double) to return the list of all symmetry

operation identifiers, i.e. which belong to the same class as stringSO for the double group

with label Glabel. ♣ (Glabel, stringSO, double,order) to return the order of double group

class.

See also: Bethe group().

• Bethe group direct product(Glabel, string IRa ,string IRb
,...) bethe b

Returns the direct product of the irreducible representations string IRa ⊗ string IRb
⊗ ...

in terms of such irreducible representation identifiers

Output: A list of irreducible representation identifiers [string IR1 , string IR2 , ...] is re-

turned.

Argument options: (Glabel, string IRa , string IRa ,..., symmetrized) to return the sym-

metrized part of the direct product of the irreducible representation string IRa with itself.

♣ (Glabel, string IRa, string IRa ,..., antisymmetrized) to return the antisymmetrized part

of the direct product of the irreducible representation string IRa with itself. ♣ (Glabel,

rep lista, rep listb, ...) to calculate the direct product of the two or more (reducible or
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irreducible) representations, rep list IRa ⊗ rep list IRb
⊗ ..., if these representations are

given explicitly. ♣ (Glabel, rep lista, rep lista, ..., symmetrized) to calculate the sym-

metrized part of the direct product of the representation rep lista with itself. ♣ (Glabel,

rep lista, rep lista, ..., antisymmetrized) to calculate the antisymmetrized part of the di-

rect product of the representation rep lista with itself. ♣ (Glabel, string IRa , rep listb) to

calculate the direct product of the irreducible representation string IRa and the explicitly

given representation rep listb. ♣ (Glabel, ..., matrices) to return the matrix representa-

tion of the direct product explicitly within a list structure; a list of matrices is returned.

♣ (Glabel, ..., characters) to return the characters of the direct product representation;

a list of numbers is returned.

Additional information: The result of this procedures is similar as obtained by Altmann

& Herzig (1994), tables Tn.8. ♣ Since the irreducible components in the direct product

are the same for the point and double groups (as far as the irreducible representations

are the same), no distinction need to be made for these two groups with the same label

Glabel. ♣ A representation can be given explicitly within a list of matrices structure,

where every matrix is assigned to each symmetry operator of the group Glabel. Of course,

all these matrices must have the same dimension and their sequence must agree with the

sequence of symmetrized operators as obtained from Bethe group(Glabel, operators) or

Bethe group(Glabel, operators, double), respectively. ♣ If a group representation is given

explicitly, the number of list elements must agree with the number of symmetry operators

in either the vector or the double group with label Glabel, from which the kind of the

group is derived (if necessary).

See also: Bethe group(), Bethe group irrep manifold().

• Bethe group Euler(Glabel, string SO) bethe b

Returns the three Euler angles α, β, γ for the symmetry operation stringSO of the point

group G with label Glabel.

Output: A list of three angles [alpha, beta, gamma] is returned.

Argument options: (Glabel, stringSO,matrix) to return the rotation matrix due to the

symmetry operator stringSO.

Additional information: The values of the Euler angles are taken from Altmann &

Herzig (1994), table Tn.1. ♣ The Euler angles only specify ’pure’ rotations; additional

informations about the reflection planes, the center of inversion, or whether the symmetry

operation belongs to the point or double group may be required in order to characterize

the symmetry operations in general. ♣ The Euler angles of the point group operation are

returned even if the symmetry operation belongs to the corresponding double group. ♣ If

a third argument matrix is given, the 3×3 rotation matrix is returned including a proper

inversion at the origin of the coordinates, if necessary for this operation; note, however,

that a 3 × 3 rotation matrix is not sufficient to specify the symmetry operations of the

double group uniquely.
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See also: Bethe group(), Bethe group character().

• Bethe group inverse(Glabel, stringSO) bethe b

Returns the inverse symmetry operation to the operation stringSO for the point group

with label Glabel.

Output: A string is returned.

Argument options: (Glabel, stringSO1 ,stringSO2,...) to return the inverse symmetry

operation to the product operation stringSO1 ⊗ stringSO2 ⊗ ...

Additional information: In the present version, the inverse is found for symmetry oper-

ations from the point and double group.

See also: Bethe group().

• Bethe group irrep(Glabel, string IR,stringSO) bethe b

Returns the matrix of the irreducible representation string IR for the symmetry operation

stringSO of the point group with label Glabel.

Output: A matrix is returned.

Argument options: (Glabel, string IR, stringSO,mu,nu) to return the matrix element

[mu, nu]. A number is returned in this case. ♣ (Glabel, string IR, dimension) to return

the dimension of the irreducible representation with string identifier string IR. ♣ (Glabel,

string IR) to return the matrix representation for all the symmetry operations of the point

group. A list of matrices is returned which refer to the symmetry operations of the group

in the same sequence as obtained by Bethe group(Glabel,operators). ♣ (Glabel, stringIR,

stringSO,mu, nu, real) to calculate a real matrix element for the multidimensional irre-

ducible representations. A real number is returned in this case.

Additional information: To get a real matrix element for the multidimensional irre-

ducible representations, the pair of imaginary elements need to be transformed into pair

of real elements. It can be done by adding and subtracting the two matrix elements

for each representation and dividing the resulting characters by the greatest common

denominator.

See also: Bethe group().

• Bethe group irrep manifold(Glabel, string IRα , string IRβ
, string IRγ)

bethe b

Returns the coefficient mγ in the expansion of the direct product

T (α) × T (β) =

.
∑

γ

mγ T
(γ)

where T (α), T (β), and T (γ) refer to three irreducible representations of the point group

Glabel, denoted as string IRα , string IRβ
, string IRγ .
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Output: A number is returned.

Additional information: Even if T (α) and T (β) are irreducible, the representation T (α) ×
T (β) is generally not irreducible but can be decomposed due to the relation above where

the weights are given by

mγ =
1

h

∑

γ

cp χ
(γ)
p χ(α)

p χ(β)
p .

Here, h denotes the order of the group, cp the order of the class, and χ is the character of

the corresponding irreducible representation (Elliot & Dawber 1979). ♣ The irreducible

representations of corresponding double groups are also supported by the program.

See also: Bethe group(), Bethe symmetry operations().

• Bethe group multiplication(Glabel, string SOa,stringSOb
) bethe b

Returns the product operation of the two symmetry operations stringSOa and stringSOb

of the point group G with label Glabel as defined by Altmann & Herzig (1994) Tn.2-3.

Output: A stringSO is returned.

Argument options: (Glabel, stringSOa ,stringSOb
,double) to returns the product operation

of the two symmetry operation stringSOa and stringSOb
for the corresponding double

group of G.

Additional information: If A, B are the symmetry operations associated to the symme-

try operation strings stringSOa and stringSOb
, the results is the stringSO identifier which

belong to the product operation AB.

See also: Bethe group().

• Bethe group parameter(Glabel, string SO) bethe b

Returns the rotation angle and the unit vector which define the symmetry operation

stringSO of the point group G with label Glabel as defined by Altmann & Herzig (1994)

Tn.1.

Output: A list [φ, [n1, n2, n3]] is returned.

Argument options: (Glabel, stringSO,U rotation) to return the set of angles (φ,Θ,Φ) of

the symmetry operation stringSO. ♣ (Glabel, stringSO,quaternion) to return the quater-

nion parameters λ and Λ of the same symmetry operation as defined by Altmann &

Herzig (1994).

Additional information: A parameterization of the symmetry operations in terms of φ

and the unit vector (n1, n2, n3) is equivalent to the (more common) Euler angles.

See also: Bethe group Euler().
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• Bethe group representation(Glabel, polar vector) bethe b

Calculates the characters for the representation which describes the transformation of a

polar vector r = (x, y, z) as induced by the group (elements) with label Glabel.

Output: A list of numbers is returned which describe the characters of the symmetry

operations in the same sequence as obtained from Bethe group(Glabel,operators).

Argument options: (Glabel, polar vector,double) to calculate the same list of opera-

tors but for the double group. ♣ (Glabel, polar vector, matrix ) or (Glabel, polar vector,

matrix, double) to calculate an explicit matrix representation; a list of matrices is re-

turned. ♣ (Glabel, axial vector) to calculate the characters for the representation which

describes the transformation of a axial vector R = (Rx, Ry, Rz) as induced by the

group. ♣ (Glabel, axial vector,double) to calculate the same list of operators but for

the double group. ♣ (Glabel, axial vector, matrix ) or (Glabel, axial vector, matrix, dou-

ble) to calculate an explicit matrix representation; a list of matrices is returned. ♣
(Glabel, Ylm,l) to calculate the characters for the transformation of the spherical har-

monics of (spherical tensor) rank l, i.e. of Ylm(θ, φ), m = l, l − 1, ...,−l as induced

by the point group. ♣ (Glabel, Ylm,l,matrix ) to calculate the explicit matrix repre-

sentation; a list of (2l + 1) × (2l + 1) matrices is returned. ♣ (Glabel, jm,j) to calcu-

late the characters for the transformation of the spinor functions |jm〉 of half–integer

(spherical tensor) rank j, i.e. of |jm〉 m = j, j − 1, ...,−j as induced by the point

group. ♣ (Glabel, total,[[a1x,a1y,a1z ],[a2x,a2y,a2z ],...]) to calculate the characters for a

set of ’atomic displacements’, centered at a1 = (a1x, a1y, a1z), a2 = .... ♣ (Glabel,

total,[[a1x,a1y ,a1z ],[a2x,a2y,a2z ],...], matrix ) to return the total matrix representation for

the same set of atomic displacements explicitly. ♣ (Glabel, total, molecule) to calculate

the characters for the atoms of molecule, defined by the procedure molecule(). ♣ (Glabel,

total, molecule, matrix ) to return the total explicit matrix representation for the atoms

of molecule, defined by the procedure molecule(). ♣ (Glabel, regular) to calculate the

characters of the regular representation of the group.

♣ (Glabel, regular, matrix ) to calculate the explicit matrix representation of the regular

representation. ♣ (Glabel, regular, double) to calculate the characters of the regular rep-

resentation of the double group. ♣ (Glabel, vibrational,[[a1x,a1y ,a1z ],[a2x,a2y,a2z ],...]) to

calculate the characters of the vibrational representation for the set of atoms centered at

a1 = (a1x, a1y , a1z), a2 = .... ♣ (Glabel, vibrational, molecule) to calculate the charac-

ters of the vibrational representation for the atoms of molecule, defined by the procedure

molecule(). ♣ (Glabel, Euler) to return the Euler representation. A list of matrices is

returned. ♣ (Glabel, vibrational, [[a1x, a1y, a1z ], [a2x, a2y , a2z],..]) to calculate the charac-

ters of representation which describe the transformation of the vibrational vectors. A list

of characters is returned. ♣ (Glabel, cartesian tensor, rank, matrix ) to return an explicit

matrix representation of the group as generated by a set of cartesian tensor functions of

the given rank. A list of matrices is returned. ♣ (Glabel, cartesian tensor, rank) to return

the characters of the representation as generated by a set of cartesian tensor functions of

the given rank.
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Additional information: In the output, the sequence of characters and matrices al-

ways refer to the standard sequence of the symmetry operations as obtained by a call to

Bethe group(Glabel, operators).

See also: Bethe group(), molecule().

• Bethe group subduction(Glabel, string IR, Glabelsub)
bethe b

Returns the irreducible components, which appear in the decomposition of the Glabel

group representation string IR to the group Glabelsub as defined by Altmann & Herzig

(1994) Tn.9.

Output: A list of strings is returned.

Additional information: The representation string IR should be irreducible in the group

Glabel. Since the group Glabelsub is the subgroup of group Glabel, this representation is

(generally!) reducible in the group Glabelsub. ♣ The procedure terminates with proper

ERROR message, if the string IR is not irreducible representation of the group Glabel. ♣
If group Glabelsub is not a subgroup of the group Glabel, the FAIL is returned.

See also: Bethe decompose representation().

• Bethe group subduction O3(Glabel, l) bethe b

Returns the irreducible components, which appear in the decomposition of the 03 group

representation, generated by the spherical functions Ylm(ϑ,ϕ) for given l, to the group

Glabel as defined by Altmann & Herzig (1994) Tn.10.

Output: A list of strings is returned.

Additional information: The parameter l has to be either integer or half-integer. If

this condition is not fulfilled, the procedure terminates with proper ERROR message. ♣
03 group representation is constructed as a set of (2l + 1-dimensional) matrices, which

are necessary in order to generate the group symmetry transformations of the spherical

functions Ylm(ϑ,ϕ).

See also: Bethe decompose representation(), Bethe group representation().

• Bethe group symmetry(Glabel, [[a1,a2,a3], [b1,b2,b3],...])
bethe b

Defines, whether the (atomic) sites a,b, ... are equivalent under the point group Glabel

transformations.

Output: A boolean variable true or false is returned.

Argument options: (which, [[a1,a2,a3], [b1,b2,b3],...]) to return a list of group labels,

under which the atomic sites a,b, ... are equivalent. A list is returned. ♣ (highest,

[[a1,a2,a3], [b1,b2,b3],...]) to return a group label of highest order group, under which the

atomic sites a,b, ... are equivalent.
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Additional information: To determine the point symmetry, it is enough to determine all

the equivalent sites of the atom at site a under the symmetry operations of every point

group and to compare these sites with the given list of atomic sites a,b, ....

See also: Bethe generate sites().

• Bethe group tabulation(Glabel) bethe b

Prints the group theoretical data in a neat format as appropriate, for instance, for a quick

comparison with the tables of Altmann & Herzig(1994).

Output: A NULL expression is returned.

Argument options: (Glabel, Cartesian tensor) to print, in addition, the cartesian tensor

table for given group (Tn.5), ♣ (Glabel, characters) to print, in addition, the character

table for given group (Tn.4), ♣ (Glabel, direct product) to print, in addition, the direct

product table for given group (Tn.8), ♣ (Glabel, multiplication) to print, in addition, the

multiplication table for given group (Tn.2), ♣ (Glabel, parameters) to print, in addition,

the parameters table for given group, i. e. the Euler angles (α, β, γ), the angle and axis of

the rotation (φ, n), and the quaternion parameters (λ,Λ) (Tn.1), ♣ (Glabel, subduction)

to print, in addition, the subduction table for given group (Tn.9), ♣ (Glabel, subduc-

tion O3 ) to print, in addition, the subduction from O3 table for given group (Tn.10).

Additional information: The standard printout of this procedure includes (i) the dif-

ferent notations and short description of the given group, (ii) the order of the group,

(iii) the numbers of point and double point group classes, (iv) the number of the corre-

sponding tabulation of the given group by Altmann & Herzig(1994), (v) an indicator of

crystallographic point group, (vi) the lists of the point and double point group operators

enclosing in brackets all operators of the same class, (vii) the numbers of regular and ir-

regular classes, (viii) the number of irreducible representation for point and double point

groups, (ix) a number of examples molecules for this symmetry, (x) a list of invariant

group chains, and (xi) a list of subduction group chains.

See also: Bethe group().

• Bethe group tabulation cartesian tensor(Glabel) bethe b

Prints a cartesian tensor table of the given group in a neat format as appropriate, for

instance, for a quick comparison with the tables Tn.5 of Altmann & Herzig(1994).

Output: A NULL expression is returned.

See also: Bethe group tabulation(), Bethe group tensor().

• Bethe group tabulation characters(Glabel) bethe b

Prints a character table of the given group in a neat format as appropriate, for instance,

for a quick comparison with the tables Tn.4 of Altmann & Herzig(1994).

Output: A NULL expression is returned.

See also: Bethe group tabulation(), Bethe group characters().
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• Bethe group tabulation direct product(Glabel) bethe b

Prints a direct product table of the given group in a neat format as appropriate, for

instance, for a quick comparison with the tables Tn.8 of Altmann & Herzig(1994).

Output: A NULL expression is returned.

See also: Bethe group tabulation(), Bethe group direct product().

• Bethe group tabulation multiplication(Glabel) bethe b

Prints a multiplication table of the given group in a neat format as appropriate, for

instance, for a quick comparison with the tables Tn.2 of Altmann & Herzig(1994).

Output: A NULL expression is returned.

See also: Bethe group tabulation(), Bethe group multiplication().

• Bethe group tabulation parameters(Glabel) bethe b

Prints a table of parameters (Euler angles (α, β, γ), angle and pole of rotation (φ, n) and

the quaternion parameters (λ,Λ) of the given group in a neat format as appropriate, for

instance, for a quick comparison with the tables Tn.1 of Altmann & Herzig(1994).

Output: A NULL expression is returned.

See also: Bethe group tabulation(), Bethe group parameters().

• Bethe group tabulation subduction(Glabel) bethe b

Prints a subduction table of the given group in a neat format as appropriate, for instance,

for a quick comparison with the tables Tn.9 of Altmann & Herzig(1994).

Output: A NULL expression is returned.

See also: Bethe group tabulation(), Bethe group subduction().

• Bethe group tabulation subduction O3(Glabel) bethe b

Prints a subduction from O3 table of the given group in a neat format as appropriate,

for instance, for a quick comparison with the tables Tn.10 of Altmann & Herzig.

Output: A NULL expression is returned.

See also: Bethe group tabulation(), Bethe group subduction O3().

• Bethe group tensor(Glabel, string fun)
bethe b

Returns the list [rank, string IR]. which shows a rank of the symmetry function, decoded

by string fun and corresponding irreducible representation string IR (or list of representa-

tions) as defined by Altmann & Herzig (Tn.5).

Output: A list is returned.

Argument options: (Glabel, string IR, rank) to return a list of the basis functions of the

irreducible representation string IR with corresponding rank.
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Additional information: Only rank 1, 2 or 3 is available.

See also: Bethe symmetry tensors().

• Bethe group test(Glabel) bethe b

Carries out and reports about a number of tests on the group Glabel.

Output: A NULL expression is returned.

Argument options: (Glabel, characters) to test only the orthogonality relation for irre-

ducible representation characters as provided by the procedure Bethe group test charac-

ters() ♣ (Glabel, direct product) to test only the property, that the direct product of two

representations is the sun of the symmetrized direct product and antisymmetrized direct

product, as provided by the procedure Bethe group test direct product()♣ (Glabel, irreps)

to test only orthogonality relations for the irreducible representations of the group Glabel

as provided by the procedure Bethe group test irreps() ♣ (Glabel, multiplication) to test

only the multiplication rules for the symmetry operations of the group Glabel as provided

by the procedure Bethe group test multiplication() ♣ (Glabel, simple) to make a number

of simple tests of the group Glabel as provided by the procedure Bethe group test simple()

• Bethe group test characters(Glabel) bethe b

Test the implementation of the character table for given point group due to the required

orthogonality
∑

a

χ (α)(Ga)χ
(β)∗(Ga) = g δαβ .

Output: A NULL expression is returned.

Additional information: The procedure prints the proper message if the condition of

characters orthogonality is not fulfilled.

See also: Bethe group test(), Bethe group characters().

• Bethe group test direct product(Glabel) bethe b

Carries out and reports about whether the squared direct product of every irreducible rep-

resentation of group Glabel is equal to the sum of the symmetrized and antisymmetrized

parts of direct product.

Output: A NULL expression is returned.

Additional information: The procedure prints the proper message if the condition of

direct products equality is not fulfilled. ♣ Test is carried for both of point and double

point group representations.

See also: Bethe group test(), Bethe group direct product().

• Bethe group test irreps(Glabel) bethe b

78



Carries out and reports about the test of orthogonality of the irreducible representations

of the point and the double group
∑

a

T
(α)

ip (Ga)T
(β)∗

jq (Ga) =
g

sα
δαβ δij δpq .

Output: A NULL expression is returned.

Additional information: The procedure prints the proper message if the condition of

irreps orthogonality is not fulfilled.

See also: Bethe group test(), Bethe group irreps().

• Bethe group test multiplication(Glabel) bethe b

Carries out and reports about the test the ’multiplication table’ of the group. For each

element Ga, test that GaGb, b = 1, ..., g generates again all symmetry operations.

Output: A NULL expression is returned.

Additional information: The procedure prints the proper message if the condition of

symmetry operation multiplication is not fulfilled.

See also: Bethe group test(), Bethe group multiplication().

• Bethe group test simple(Glabel) bethe b

Carries out and reports about a number of simple tests: (i) number of classes = number

of irreps for both point and double cases; (ii) order of group divided by the order to

subgroups must be an integer; (iii) number of symmetry operators = group order for

both point and double cases; (iv) class order must be integral divisor of a group order;

(v) class criterium Ga = GnGbG
−1
n of all symmetry operators of the same class;

Output: A NULL expression is returned.

Additional information: The procedure prints the proper message if the conditions of

(i) - (v) are not fulfilled.

See also: Bethe group test(), Bethe group().

• Bethe group time reversal(Glabel, string IR) bethe b

Returns the symmetry behavior of the irreducible representation string IR under time

reversal.

Output: A string with the time reversal classification is returned.

Additional information: Addition of time-reversal operator (which is symmetry operator

for the Hamiltonian of many physical systems) to an existing symmetry group can lead

to increased degeneracy of wave functions of system. Irreducible representations of group

with time reversal can be classified by (i) equivalent to a real representations, (ii) not

equivalent to their complex conjugate representations, (iii) equivalent to their complex

conjugate representations, but not to a real representations.

Notation for time reversal classification (I is the representation string IR, I∗ - its complex

conjugate):
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I, I∗ Vector representation Spinor representation

a Real and equal No extra degeneracy Doubled degeneracy

b Complex and inequivalent Doubled degeneracy Doubled degeneracy

c Complex and equivalent Doubled degeneracy No extra degeneracy

See also: Bethe symmetry characters().

• Bethe implemented() bethe−pg−data

Returns a list of a currently implemented point groups.

Output: A list is returned.

Additional information: Point group identifiers are returned in terms of their group

labels [Glabel1, Glabel2, ...]. ♣ Corresponding double groups are also supported by the

program.

See also: Bethe group().

• Bethe internal coordinates(Glabel, mol) bethe b

To specify the internal coordinates of the molecule mol.

Output: A list of lists [[[aix, aiy, aiz], [ajx, ajy, ajz]], [[alx, aly, alz], [amx, amy, amz ],

[anx, any, anz]], [[ ], [ ]], ...] is returned.

Argument options: (Glabel, mol, stretching) to return the stretching vibrational vectors.

A list of lists [[[aix, aiy, aiz], [ajx, ajy, ajz]], [[ ], [ ]], ...] is returned in this case. ♣ (Glabel,

mol, bending) to return the same for the bending vibrational vectors. A list of lists

[[[aix, aiy, aiz], [ajx, ajy, ajz], [akx, aky, akz]], [[ ], [ ], [ ]], ...] is returned in this case.

Additional information: The molecule is defined by the procedure molecule(). ♣ The

stretching internal coordinate can be specified as a vector between two different atoms i

and j, having the coordinates [aix, aiy, aiz], [ajx, ajy, ajz], while bending internal coordi-

nates can be specified as an angle between three atoms i, j and k, having the coordinates

[aix, aiy, aiz], [ajx, ajy, ajz], [akx, aky, akz]. ♣ The number of output list member depends

of the molecule. ♣ If the number of internal coordinates exceeds the number of normal

vibrations, the list of the internal coordinates contains so-called redundant coordinates,

which are not independent of other internal coordinates.

• Bethe Kronecker(a, b) bethe b

Returns 1, if a = b and 0 otherwise.

Output: A number is returned.

• Bethe linearly independent([[a1, a2, a3,...], [b1, b2, b3,...], ...]) bethe b

Extracts the linearly independent sublists from the list [[a1, a2, a3,...], [b1, b2, b3,...], ...].

Output: A list of lists is returned.
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Additional information: In the output the members of sublists are linearly independent

to each other.

See also: .

• Bethe matrices are equal(M1, M2, dim) bethe b

Returns true if the matrices M1 and M2, which must have both the dimension dim are

equal to each other and false otherwise.

Output: A boolean value of true or false is returned.

Additional information: Matrices are considered to be equal if they have the same

dimension dim and module of the difference between each pair of corresponding matrix

elements ≤ 0.001.

• Bethe nonequivalent angles(Glabel, mol) bethe b

Generates the list of NONEQUIVALENT interbond angles of the molecule mol in terms

of the atomic coordinates.

Output: A list of lists [ [a
(1)
x ,a

(1)
y ,a

(1)
z ], [a

(2)
x ,a

(2)
y ,a

(2)
z ], [a

(3)
x ,a

(3)
y ,a

(3)
z ]], [[], [], []], ...] is

returned.

Argument options:

Additional information: To define a molecule, the procedure molecule() can be used. ♣
Angles, which are nonequivalent, can not be transformed into each other by the symmetry

operations of the group Glabel.

See also: Bethe nonequivalent atoms(), Bethe nonequivalent distances().

• Bethe nonequivalent atoms(Glabel, mol) bethe b

Generates the list of NONEQUIVALENT atoms of the molecule mol in terms of the

atomic coordinates.

Output: A list of lists [ [a
(1)
x ,a

(1)
y ,a

(1)
z ], [],...] is returned.

Argument options:

Additional information: To define a molecule, the procedure molecule() can be used. ♣
Atoms, which are nonequivalent, can not be transformed into each other by the symmetry

operations of the group Glabel.

See also: Bethe nonequivalent angles(), Bethe nonequivalent distances().

• Bethe nonequivalent distances(Glabel, mol) bethe b

Generates the list of NONEQUIVALENT interatomic distances of the molecule mol in

terms of the atomic coordinates.

Output: A list of lists [ [a
(1)
x ,a

(1)
y ,a

(1)
z ], [a

(2)
x ,a

(2)
y ,a

(2)
z ]], [[], []], ...] is returned.

Argument options:
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Additional information: To define a molecule, the procedure molecule() can be used.

♣ Interatomic, which are nonequivalent, can not be transformed into each other by the

symmetry operations of the group Glabel.

See also: Bethe nonequivalent atoms(), Bethe nonequivalent angles().

• Bethe normal coordinates(Glabel, mol, string IR, Cartesian) bethe b

Calculates the vibrational coordinates of a molecule mol according with the irreducible

representation string IR in terms of its 3N Cartesian atomic coordinates.

Output: A list of lists [[c
(1)
1x , c

(1)
1y , ..., c

(1)
Nz ], [c

(2)
1x , c

(2)
1y , ..., c

(2)
Nz ], ...] is returned.

Argument options: (Glabel, mol, string IR, stretching) to calculate the stretching normal

coordinates of a molecule according with the irreducible representation string IR in terms

of stretching internal coordinates of a molecule, defined in the procedure Bethe inter-

nal coordinates(..., stretching). A list of lists [[c
(1)
1 , c

(1)
2 , c

(1)
3 , ...], [c

(2)
1 , c

(2)
2 , c

(2)
3 ,

...], ...] is returned in this case. ♣ (Glabel, mol, string IR, stretching, listint str) to cal-

culate the stretching normal coordinates of a molecule mol according with the irre-

ducible representation string IR in terms of stretching internal coordinates of a molecule,

defined by the user as a listint str = [[[aix, aiy, aiz], [ajx, ajy, ajz]], [[ ], [ ]], ...]. A list of

lists [[c
(1)
1 , c

(1)
2 , c

(1)
3 , ...], [c

(2)
1 , c

(2)
2 , c

(2)
3 , ...], ...] is returned in this case. ♣ (Glabel, molecule,

string IR, bending) to calculate the bending normal coordinates of a molecule accord-

ing with the irreducible representation string IR in terms of bending internal coordi-

nates of a molecule, defined in the procedure Bethe internal coordinates(..., bending). A

list [[c
(1)
1 , c

(1)
2 , c

(1)
3 , ...], [c

(2)
1 , c

(2)
2 , c

(2)
3 , ...], ...] is returned in this case. ♣ (Glabel, molecule,

string IR, bending, listintbnd) to calculate the bending normal coordinates of a molecule

according with the irreducible representation string IR in terms of bending internal coor-

dinates of a molecule, defined by the user as a listintbnd = [[[aix, aiy, aiz], [ajx, ajy, ajz],

[akx, aky, akz]], [[ ], [ ], [ ]], ...]. A list [[c
(1)
1 , c

(1)
2 , c

(1)
3 , ...], [c

(2)
1 , c

(2)
2 , c

(2)
3 , ...], ...] is returned in

this case.

Additional information: To define a molecule, the procedure molecule() can be used.

♣ For a given molecule, all the atomic coordinates must be specified explicitly, and

these coordinates must obey the symmetry of the point group Glabel. The procedure

terminates with a proper ERROR message if these conditions are not fulfilled. ♣ The

set of internal coordinates, specified by the user should be complete, that is all of the

internal coordinates have to go each other under the symmetry operations of a group.

The procedure terminates with a proper ERROR message if these conditions are not

fulfilled. ♣ The normal coordinates Qi, calculated in terms of the Cartesian coordinates,

are defined as a coordinate transformation in the form

Qi = Qi(x1, y1, z1, x2, y2, z2, ..., x3N , y3N , z3N ) =

c
(i)
1xx1 + c

(i)
1y y1 + c

(i)
1z z1 + c

(i)
2xx2 + c

(i)
2yy2 + c

(i)
2z z2 + ...

This list can contain also the coordinates of the translational and rotational motion, if

corresponding modes are inherent in given irreducible representation string IR. ♣ The
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internal coordinates Qi are defined as a coordinate transformation

Qi = Qi(r1, r2, r3, ...) = c
(i)
1 r1 + c

(i)
2 r2 + c

(i)
3 r3 + ...

where every member c
(i)
j defines the increment of a proper internal coordinate as ob-

tained from the procedure Bethe internal coordinates(). ♣ Sequence of atomic Cartesian

coordinates x1, y1, z1, x2, y2, z2, ..., x3N , y3N , z3N is defined by a molecule, while sequence

of internal (stretching or bending) coordinates r1, r2, r3, ... is defined by a procedure

Bethe internal coordinates(). ♣ List of the normal coordinates can contain the equivalent

normal coordinates, obtained from the equivalent internal (or cartesian) coordinates.

See also: Bethe internal coordinates().

• Bethe normal coordinates bending(Glabel, mol, listintbnd, string IR, ldim) bethe b

Calculates the normal coordinates of a molecule mol in terms of its internal (bending)

displacements vectors, defined by the variable listintbnd according to the ldim component

of the irreducible representation string IR.

Output: A list of lists [[c
(1)
1x , c

(1)
1y , ..., c

(1)
Nz ], [c

(2)
1x , c

(2)
1y , ..., c

(2)
Nz ], ...] is returned.

Argument options:

Additional information: To define a molecule, the procedure molecule() can be used.

♣ For a given molecule, all the atomic coordinates must be specified explicitly, and

these coordinates must obey the symmetry of the point group Glabel. The procedure

terminates with a proper ERROR message if these conditions are not fulfilled. ♣ The

set of internal coordinates, defined by the variable listintbnd should be complete, that is

all of the internal coordinates have to go each other under the symmetry operations of

a group. The procedure terminates with a proper ERROR message if these conditions

are not fulfilled. ♣ The internal bending coordinates Qi are defined as a coordinate

transformation

Qi = Qi(α1, α2, α3, ...) = c
(i)
1 α1 + c

(i)
2 α2 + c

(i)
3 α3 + ...

where every member c
(i)
j defines the increment of a proper internal coordinate as ob-

tained from the procedure Bethe internal coordinates(). ♣ List of the normal coordinates

can contain the equivalent normal coordinates, obtained from the equivalent internal co-

ordinates.

See also: Bethe internal coordinates(), Bethe normal coordinates().

• Bethe normal coordinates cartesian(Glabel, molecule, string IR, ldim) bethe b

Calculates the normal coordinates of a molecule mol in terms of its cartesian displace-

ments vectors, defined automatically by the procedure, according to the ldim component

of the irreducible representation string IR.

Output: A list of lists [[c
(1)
1x , c

(1)
1y , ..., c

(1)
Nz ], [c

(2)
1x , c

(2)
1y , ..., c

(2)
Nz ], ...] is returned.
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Argument options:

Additional information: To define a molecule, the procedure molecule() can be used.

♣ For a given molecule, all the atomic coordinates must be specified explicitly, and

these coordinates must obey the symmetry of the point group Glabel. The procedure

terminates with a proper ERROR message if these conditions are not fulfilled. ♣ The

normal coordinates Qi, calculated in terms of the Cartesian coordinates, are defined as a

coordinate transformation in the form

Qi = Qi(x1, y1, z1, x2, y2, z2, ..., x3N , y3N , z3N )

= c
(i)
1xx1 + c

(i)
1y y1 + c

(i)
1z z1 + c

(i)
2xx2 + c

(i)
2yy2 + c

(i)
2z z2 + ...

This list can contain also the coordinates of the translational and rotational motion, if

corresponding modes are inherent in given irreducible representation string IR.

♣ Sequence of atomic Cartesian coordinates x1, y1, z1, x2, y2, z2, ..., x3N , y3N , z3N is defined

by the molecule. ♣ List of the normal coordinates can contain the equivalent normal

coordinates, obtained from the equivalent cartesian coordinates.

See also: Bethe normal coordinates().

• Bethe normal coordinates stretching(Glabel, mol, listint str, string IR, ldim) bethe b

Calculates the normal coordinates of a molecule mol in terms of its internal (stretching)

displacements vectors, defined by the variable listint str according to the ldim component

of the irreducible representation string IR.

Output: A list of lists [[c
(1)
1x , c

(1)
1y , ..., c

(1)
Nz ], [c

(2)
1x , c

(2)
1y , ..., c

(2)
Nz ], ...] is returned.

Argument options:

Additional information: To define a molecule, the procedure molecule() can be used.

♣ For a given molecule, all the atomic coordinates must be specified explicitly, and

these coordinates must obey the symmetry of the point group Glabel. The procedure

terminates with a proper ERROR message if these conditions are not fulfilled. ♣ The

set of internal coordinates, defined by the variable listint str should be complete, that is

all of the internal coordinates have to go each other under the symmetry operations of

a group. The procedure terminates with a proper ERROR message if these conditions

are not fulfilled. ♣ The internal stretching coordinates Qi are defined as a coordinate

transformation

Qi = Qi(r1, r2, r3, ...) = c
(i)
1 r1 + c

(i)
2 r2 + c

(i)
3 r3 + ...

where every member c
(i)
j defines the increment of a proper internal coordinate as ob-

tained from the procedure Bethe internal coordinates(). ♣ List of the normal coordinates

can contain the equivalent normal coordinates, obtained from the equivalent internal co-

ordinates.

See also: Bethe internal coordinates(), Bethe normal coordinates().
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• Bethe normal display(mol, norm coord) bethe b

Displays the vibrational motion, defined by the normal coordinate norm coord of a

molecule mol graphically.

Output: A NULL is returned.

Additional information: A normal coordinate in terms of the cartesian displacement

vectors should be used. ♣ To define a molecule, the procedure molecule() can be used. ♣
Up to now only a two-dimensional animation is available.

See also: molecule(), Bethe normal coordinates().

• Bethe normalize SO(SO) bethe b

Makes the coefficients of AOs normalized to unity.

Output: A symmetry orbital in terms of atomic orbitals with normalized coefficients is

returned.

Additional information:

See also: .

• Bethe number SO(Glabel, stringIR, stringatom, [a1,a2,a3],[n,l] bethe b

Generates a number of symmetry orbitals, which have to be selected to obtain a linearly

independent set of orbitals.

Output: A number is returned.

Additional information: If the number of equivalent atoms is equal to the order of the

group, then the symmetry orbitals are linearly independent automatically and selection

is not necessary.

See also: .

• Bethe print orbital(AO) bethe b

Returns the string ”| stringatom: (a1,a2,a3) n=no, l=lo, m=mo >” within the nonrela-

tivistic framework in order to facilitate the printout of atomic orbitals in the line mode.

Output: A string is returned.

Argument options: (SO) to return the string ”| stringatom: Glabel, (a1,a2,a3) n=no, l=lo,

m=mo; stringIR(mu,nu) >” within the nonrelativistic framework in order to facilitate the

printout of symmetry orbitals in the line mode.

Additional information: If a relativistic framework is set, either the string

”| stringatom: (a1,a2,a3) n=no, kappa=kappao, m=mo >” or

”| stringatom: Glabel, (a1,a2,a3) n=no, kappa=kappao, m=mo; stringIR(mu,nu) >” is

returned in this case.

See also: AO(), SO().
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• Bethe product contains totally symmetric(Glabel, stringIR, listdipmom) bethe b

Defines whether the direct product of the irreducible representation stringIR and one of

the irreducible representations from the list ”listdipmom” contains the totally symmetric

irreducible representation of the group Glabel.

Output: A boolean variable true or false is returned.

Argument options:

Additional information: The list ”listdipmom” has to contain the irreducible representa-

tions of the permanent dipole moment (for the infrared absorption) or the induced dipole

moment (for the Raman scattering).

See also: Bethe spectral activity(), Bethe group representation().

• Bethe set(framework = nonrelativistic) bethe b

Defines a nonrelativistic framework and notation for the use of the atomic orbitals, i.e.

〈r | a nlm〉 .

Output: A null expression is returned.

Argument options: (framework = relativistic) to define a relativistic framework and

notation for the atomic orbitals, i.e. 〈r | a nκm〉 where κ is the relativistic angular

momentum quantum number.

Additional information: The information about the framework of the atomic orbitals

is kept in the global variable Bethe save framework; its default is Bethe save framework

= nonrelativistic. ♣ While, in the nonrelativistic framework, the group labels refer to

the point groups, they refer (automatically) to the double groups of the corresponding

symmetry in the relativistic case.

• Bethe SO are linearly independent(list1, list2) bethe b

Defines, whether two symmetry orbitals list1 and list2 are linearly independent each

other.

Output: A boolean variable true or false is returned.

See also: Bethe generate SO basis().

• Bethe SO are orthogonal(listLCAO) bethe b

Defines, whether the symmetry orbitals from the listLCAO are mutually orthogonal. An

explicit representation of the symmetry orbitals in terms of the atomic orbital has to be

given.

Output: A boolean variable true or false is returned.

Additional information: A proper message is printed if two of the symmetry orbitals

from the list are not orthogonal to each other.

See also: Bethe generate SO basis().
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• Bethe spectral activity(Glabel, stringIR, infrared) bethe b

Defines, whether the normal vibration having the symmetry type stringIR is infrared

active.

Output: A boolean values true or false is returned.

Argument options: (Glabel, stringIR, Raman) to return the boolean value true if the

normal vibration having the symmetry type stringIR is Raman active and false otherwise.

♣ (Glabel, [stringIR1, stringIR2, ...], infrared) to extract a list of the infrared active modes.

A list of strings is returned. ♣ (Glabel, [stringIR1, stringIR2, ...], Raman) to extract

a list of the Raman active modes. A list of strings is returned. ♣ (Glabel, stringIR,

Raman, n) to return the boolean value true if (n-1)-th overtone in the normal vibration

having the symmetry type stringIR is Raman active and false otherwise. ♣ (Glabel,

stringIR, infrared, n) to return the boolean value true if (n-1)-th overtone in the normal

vibration having the symmetry type stringIR is infrared active and false otherwise. ♣
(Glabel, [stringIR1, stringIR2, ...], infrared, [n1, n2, ...]) to return the boolean value

true if combination of the transitions in the normal vibration having the symmetry type

stringIRi from the fundamental to the ni excited level is infrared active and false otherwise

♣ (Glabel, [stringIR1, stringIR2, ...], Raman, [n1, n2, ...]) to return the boolean value

true if combination of the transitions in the normal vibration having the symmetry type

stringIRi from the fundamental to the ni excited level is Raman active and false otherwise

See also: Bethe normal coordinates().

• Bethe symmetry characters(Glabel) bethe−pg−data

Return the character table of the point group with label Glabel in an internal list format.

Output: A list is returned.

Additional information: The character tables are provided explicitly for each point group

in a list with the format: [m, n, matrix(m,n), raw labels, traw labels, column labels, dou-

ble column labels] where m,n denotes the dimension of the matrix, raw labels is a list of

irreducible representations [stringIR1 , ..., stringIRm], traw labels is a list of time-reversal

classifications of irreducible representations, column labels is a list of classes with list of

symmetry operations [[stringSO11 , ..., stringSO1n ], [stringSO21 , ..., stringSO2n ],...] inside of

each class of the corresponding point group and column labels is a list of classes with list

of symmetry operations [[stringSO11 , ..., stringSO1n ], [stringSO21, ..., stringSO2n ],...] inside

of each class of the corresponding double group. From this information, the characters

can be derived for all combinations (stringIR, stringSO). Procedure is organized as a list

of references to a set of subprocedures, appropriate of the families of groups (see table).
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Bethe symmetry characters Cis() Cis: (Ci, Cs)

Bethe symmetry characters Cn() Cn: (C2, ..., C10)

Bethe symmetry characters Cnv() Cnv: (C2v, ..., C10v)

Bethe symmetry characters Cnh() Cnh: (C2h, ..., C10h)

Bethe symmetry characters Dn() Dn: (D2, ..., D10)

Bethe symmetry characters Dnd() Dnd: (D2d, ..., D10d)

Bethe symmetry characters Dnh() Dnh: (D2h, ..., D10h)

Bethe symmetry characters Sn() Sn: (S4, ..., S20)

Bethe symmetry characters O() O: (O, Oh, T, Th, Td)

Bethe symmetry characters I() I: (Ic, Ich)

See also: Bethe group character(), Bethe group class().

• Bethe symmetry description(Glabel, stringSO) bethe−pg−data

Returns a text string which describes the symmetry operation stringSO for a point group

with label Glabel.

Output: A text string is returned.

Additional information: The identifier stringSO is usually enough to characterize the

symmetry operation; the group label Glabel is used only if the string identifier itself is

not unique. ♣ The procedure stores the description of all known symmetry operations in

a list [[stringSO1 , Glabel/”all”, ”description text”], [stringSO2 , Glabel/”all”, ”description

text”],...] where the second entry ”all” is used if the corresponding string identifier

represents the same symmetry operations for all groups (which contain this operation

string).

See also: Bethe group(), , Bethe symmetry elements(), Bethe symmetry operations().

• Bethe symmetry elements(Glabel) bethe−pg−data

Return a list of strings which describes all symmetry elements of of the point group with

label Glabel.

Output: A list of strings is returned.

Additional information: Position of the vertical reflection planes is described by an-

gle ”phi”, which is azimuth angle of anticlockwise rotation of this plane around Z-axis

respecting the ZX-plane. Procedure is organized as a list of references to a set of subpro-

cedures, appropriate of the families of groups (see table).
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Bethe symmetry elements Cis() Cis: (Ci, Cs)

Bethe symmetry elements Cn() Cn: (C2, ..., C10)

Bethe symmetry elements Cnv() Cnv: (C2v, ..., C10v)

Bethe symmetry elements Cnh() Cnh: (C2h, ..., C10h)

Bethe symmetry elements Dn() Dn: (D2, ..., D10)

Bethe symmetry elements Dnd() Dnd: (D2d, ..., D10d)

Bethe symmetry elements Dnh() Dnh: (D2h, ..., D10h)

Bethe symmetry elements Sn() Sn: (S4, ..., S20)

Bethe symmetry elements O() O: (O, Oh, T, Th, Td)

Bethe symmetry elements I() I: (Ic, Ich)

See also: Bethe symmetry operations().

• Bethe symmetry is fulfilled(Glabel, mol) bethe b

Defines, whether the molecule mol fulfills the symmetry of the group Glabel.

Output: A boolean variable true or false is returned.

Argument options:

Additional information: The molecule is defined by the procedure molecule()

See also: .

• Bethe symmetry matrices(Glabel) bethe−pg−data

Return the table of irreducible matrix representations for the point group with label

Glabel in an internal list format.

Output: A list is returned.

Additional information: The tables of irreducible matrix representations are provided

explicitly for point groups, which have the irreducible representation with dimension

≥ 2, in a list with the format: [m, n, matrix(m,n), raw labels, column labels] where

m,n denotes the dimension of the matrix, raw labels is a list of matrix representations

dimension ≥ 2 [stringIR1 , ..., stringIRm ], and column labels is a list of symmetry operations

[stringSO1 , ..., stringSOn ] of the corresponding point group. From this information, the

matrices can be derived for all combinations (stringIR, stringSO). Procedure is organized

as a list of references to a set of subprocedures, appropriate of the families of groups (see

table).
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Bethe symmetry matrices Cis() Cis: (Ci, Cs)

Bethe symmetry matrices Cn() Cn: (C2, ..., C10)

Bethe symmetry matrices Cnv() Cnv: (C2v, ..., C10v)

Bethe symmetry matrices Cnh() Cnh: (C2h, ..., C10h)

Bethe symmetry matrices Dn() Dn: (D2, ..., D10)

Bethe symmetry matrices Dnd() Dnd: (D2d, ..., D10d)

Bethe symmetry matrices Dnh() Dnh: (D2h, ..., D10h)

Bethe symmetry matrices Sn() Sn: (S4, ..., S20)

Bethe symmetry matrices O() O: (O, Oh, T, Th, Td)

Bethe symmetry matrices I() I: (Ic, Ich)

See also: Bethe group irrep().

• Bethe symmetry operations(Glabel) bethe−pg−data

Return a list of all symmetry operations of the point group with label Glabel: [[stringSO1 ,

[Euler alpha, beta, gamma], inversion], [stringSO2 , [Euler alpha, beta, gamma], inversion],

[stringSO3 , [Euler alpha, beta, gamma], inversion],...].

Output: A list of lists is returned.

Argument options: (Glabel,double group) to return the symmetry operation for the

corresponding double group.

Additional information: stringSO is a name of the symmetry operation oh the point

group with label Glabel, [Euler alpha, beta, gamma] - list of three Euler angles for opera-

tion stringSO and inversion is ‘true‘, if the symmetry operation stringSO is a combination

of rotation and spatial inversion and ‘false‘, if strongSO is a pure rotation.

Procedure is organized as a list of references to a set of subprocedures, appropriate of the

families of groups (see table).

Bethe symmetry operations Cis() Cis: (Ci, Cs)

Bethe symmetry operations Cn() Cn: (C2, ..., C10)

Bethe symmetry operations Cnv() Cnv: (C2v, ..., C10v)

Bethe symmetry operations Cnh() Cnh: (C2h, ..., C10h)

Bethe symmetry operations Dn() Dn: (D2, ..., D10)

Bethe symmetry operations Dnd() Dnd: (D2d, ..., D10d)

Bethe symmetry operations Dnh() Dnh: (D2h, ..., D10h)

Bethe symmetry operations Sn() Sn: (S4, ..., S20)

Bethe symmetry operations O() O: (O, Oh, T, Th, Td)

Bethe symmetry operations I() I: (Ic, Ich)

See also: Bethe symmetry elements().

• Bethe symmetry properties(Glabel) bethe−pg−data
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Returns the list of properties of the point group with label Glabel: [”Description of the

group”, [group order, No. of reg. classes, No. of irreg. classes, Table-No by Altmann,

crystallographic, crystall system, proper], [list of subgroups], [list of suboperators], [list

of stringIR (standard)], [list of spinor stringIR], [list of examples] ]

Output: A list is returned.

Additional information:

Short description of all properties

group order Number of the symmetry operations of the point group

No. of reg. classes Number of regular classes

No. of irreg. classes Number of irregular classes

Table-No by Altmann Number of the tabulation by Altmann and Herzig (1994).

crystallographic ‘true‘ or ‘false‘ in dependence whether Glabel is a

crystallographic group or not

crystall system Name of the crystal system (rhombic, triclinic,...) for the

crystallographic groups

proper ‘true‘ or ‘false‘ in dependence whether Glabel is a

proper symmetry group or not

list of stringIR List of all irreducible representations string

identifiers for the point group

list of spinor stringIR List of spinor irreducible representations string

identifiers for corresponding double group

list of examples Examples of molecules of given point group

Procedure is organized as a list of references to a set of subprocedures, appropriate of the

families of groups (see table).

Bethe symmetry properties Cis() Cis: (Ci, Cs)

Bethe symmetry properties Cn() Cn: (C2, ..., C10)

Bethe symmetry properties Cnv() Cnv: (C2v, ..., C10v)

Bethe symmetry properties Cnh() Cnh: (C2h, ..., C10h)

Bethe symmetry properties Dn() Dn: (D2, ..., D10)

Bethe symmetry properties Dnd() Dnd: (D2d, ..., D10d)

Bethe symmetry properties Dnh() Dnh: (D2h, ..., D10h)

Bethe symmetry properties Sn() Sn: (S4, ..., S20)

Bethe symmetry properties O() O: (O, Oh, T, Th, Td)

Bethe symmetry properties I() I: (Ic, Ich)

See also: Bethe group().

• Bethe symmetry tensors(Glabel) bethe−pg−data

Output: A list of lists is returned.

91



Additional information: Returns the list of lists: [ [list of irreps or products of irreps],

[list of rank-1 functions], [list of rank-2 functions], [list of rank-3 functions]], which is

information about the transformation behavior of the p, d, and f functions as well as the

standard rotations.All symmetry functions are decoded by strings; the following strings

are allowed (”no” ... no function) rank-1: ”x”, ”y”, ”z”, ”Rx”, ”Ry”, ”Rz”. rank-2:

”xx”, ”xy”, ”xz”, ”yy”, ”yz”, ”zz”, ”xx-yy”, ”xx+yy”. rank-3: ”xxx”, ”xxy”, ”xxz”,

”xyy”, ”xyz”, ”xzz”, ”yyy”, ”yyz”, ”yzz”, ”zzz”, ”xxx+xyy”, ”xxy+yyy”, ”xxz+yyz”,

”xxx-xyy”, ”xxy-yyy”, ”xxz-yyz”. Procedure is organized as a list of references to a set

of subprocedures, appropriate of the families of groups (see table).

Bethe symmetry tensors Cis() Cis: (Ci, Cs)

Bethe symmetry tensors Cn() Cn: (C2, ..., C10)

Bethe symmetry tensors Cnv() Cnv: (C2v, ..., C10v)

Bethe symmetry tensors Cnh() Cnh: (C2h, ..., C10h)

Bethe symmetry tensors Dn() Dn: (D2, ..., D10)

Bethe symmetry tensors Dnd() Dnd: (D2d, ..., D10d)

Bethe symmetry tensors Dnh() Dnh: (D2h, ..., D10h)

Bethe symmetry tensors Sn() Sn: (S4, ..., S20)

Bethe symmetry tensors O() O: (O, Oh, T, Th, Td)

Bethe symmetry tensors I() I: (Ic, Ich)

See also: Bethe group tensors().

• Bethe tabulate(AO) bethe b

Returns a table of all the quantum numbers and string identifiers of the atomic orbital

AO.

Output: A table T is returned.

Argument options: (SO) to return a table of all the quantum numbers and string iden-

tifiers of the symmetry orbital SO.

Additional information: For an atomic orbital AO, T has the entries T[a], T[n],

T[l], T[m], T[symbol] in the nonrelativistic case and

T[a], T[n], T[kappa], T[m], T[symbol] in the relativistic case. ♣ For a symmetry

orbital SO, T has the entries T[label], T[a], T[n], T[l], T[m], T[IR],

T[mu], T[nu], T[symbol] in the nonrelativistic case and T[label], T[a], T[n],

T[kappa], T[m], T[IR], T[mu], T[nu], T[symbol] in the relativistic case. ♣ The

entry T[a] returns a list of the three coordinates [a1,a2,a3] which have to be interpreted

in line with the predefined coordinates, see Bethe set().

See also: AO(), SO().

• Bethe transform vector(Glabel, stringSO, [a1,a2,a3])
bethe b

Transforms the components (a1,a2,a3) of a given position vector a under the symmetry

operation stringSO of the point group G with label Glabel.
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Output: The three new components of the vector [a1new,a2new,a3new] are returned in

a list.

Additional information: To transform the components of vector, it is enough to multi-

ply its components with the rotation matrix of the corresponding symmetry operation

stringSO, obtained by the procedure Bethe group Euler(..., matrix).

See also: Bethe group Euler().
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Abstract

To facilitate the use of group theory in the analysis of vibrational spectra, a set of Maple procedures is provided ge
the normal coordinates and determining the spectral activities of polyatomic molecules. Our program, called BETHE, is based
on the frequently applied point groups and provides an interactive access to the group data as needed in physical che
elsewhere. Owing to the demand of the users the normal coordinates of the molecules are provided either in terms of Carte
or internal coordinates.

Program summary

Title of program: BETHE

Catalogue number:ADUH
Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADUH
Program obtainable from:CPC Program Library, Queen’s University of Belfast, N. Ireland
Licensing provisions:None
Computers for which the program is designed:All computers with a license of the computer algebra package MAPLE1

Installations:University of Kassel (Germany)
Operating systems under which the program has been tested:Linux 8.1+ and Windows 2000
Program language used:MAPLE 7 and 8
Memory required to execute with typical data:10–30 MB
No. of lines in distributed program including test data, etc.:11 859
No. of bytes in distributed program including test data, etc.:312 229
Distribution format:tar.gz
Nature of the physical problem:Interaction of the infrared light with the molecule can lead to the excitation of the mole
vibrations [1]. Analysis of such vibrations is performed by the point group theory and helps to interpret the molecular s

✩ This paper and its associated computer program are available viathe Computer Physics Communications homepage on ScienceDire
(http://www.sciencedirect.com/science/journal/00104655).

* Corresponding author.
E-mail address:rykhli@physik.uni-kassel.de(K. Rykhlinskaya).

1 Maple is a registered trademark of Waterloo Maple Inc.
0010-4655/$ – see front matter 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.cpc.2004.06.088
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Method of solution:Point group theory is applied to determine the normal coordinates of symmetric molecules and to c
a spectroscopic analysis of their vibrational modes. The direct product of the irreducible representations is utilized to obtain t
selection rules for infrared and Raman spectroscopy.
Restrictions onto the complexity of the problem:The computation of the normal coordinates is supported for rather a
number of symmetries; in the present version the group data are provided for the cyclic and related groupsCi , Cs , Cn, Cnh,
Cnv , the dihedral groupsDn, Dnh, Dnd , the improper cyclic groupsS2n (n � 10), the cubic groupsO, T , Oh, Th, Td and the
icosahedral groupsI , Ih.
Unusual features of the program:All commands of the BETHE program are available for interactive work. Apart from t
analysis of the vibrational motion of molecules, we also provide the group theoretical data of all the presently imple
point and double groups. The notation of the symmetry operations and the irreducible representations follows the co
by Altmann and Herzig [2]. For reference to the program, a brief description of all the available commands is given in
manualBethe-commands.ps and is distributed together with the code.
Typical running time: Although the program replies ‘promptly’ on most requests, the running time depends strongly
particular task.
References:

[1] E.B. Wilson, J.C. Decius, P.C. Cross, Molecular Vibrations, McGraw-Hill, New York, 1955.
[2] S. Altmann, P. Herzig, Point-Group Theory Tables, Clarendon Press, Oxford, 1994.

 2004 Elsevier B.V. All rights reserved.

PACS:02.20.-a; 33.20.Tp; 33.20.Ea; 33.20.Fb

Keywords:Fundamental transition; Infrared absorption; Irreducible representation; Normal coordinates; Point group; Raman scattering;
Vibrational modes; Vibrational spectroscopy

1. Introduction

During the last decade, a large number of experiments have been carried out for studying the properties
molecules and clusters[1–3]. In order to first resolve the structure and the bonds of the molecules, the tech
of vibrational spectroscopy have often been applied. In these techniques the incident radiation is used to excite
vibrations of molecules, that is to promote a molecule to a state of higher energy, in which its vibrational am
is increased. Treatment of the obtained spectra can give us the information about the structure of (pol
molecules.

To investigate the observed (vibrational) spectra, twoexperimental methods are widely used today: infra
and Raman spectroscopy[4] which are based on quite different physical principles. While, for instance, infr
spectroscopy concerns the absorption of (infrared) lightby a molecule, owing to its vibrational frequencies, R
man spectroscopy refers to the scattering of light. Theinfrared spectroscopy can therefore be taken as a d
measurement of the vibrational frequencies whereas, in Raman spectroscopy, they justoccur as the differences i
the frequencies of the incident and the Raman-scattered light, respectively. However, not only the mechan
rather different for infrared and Raman excitations of the molecule but also the selection rules for such vibratio
transitions. While, in infrared spectroscopy, the occurrence of a vibrational transition requires a change in
tric dipole moment of the molecule, Raman lines go along with a change in the polarizability during the vib
Therefore, the selection rules for infrared and Raman transitions are widely used to interpret the vibrational spec
and to derive the geometrical structure of the underlying molecules and clusters.

The studying of vibrational spectroscopy and, in particular, evaluation of the selection rules, makes e
use of the molecular symmetry. The symmetry considerations are known to be an inevitable tool for s
the behavior of physical systems in many branches of modern physics. In molecular physics, for insta
point-group theory (and symmetries) provides the mathematical basis for interpretation of the spectra of m
and crystals. In practice, however, the application of the molecular symmetries to spectroscopy problems
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become rather cumbersome. Although, nominally, the basic relations of group theory are known, there ar
shortcomings which make the access to the group data inefficient and difficult to use. Apart from an often ve
compressed compilation of the group data in some tables or appendices of textbooks, only parts of these
usually displayed explicitly and without providing the user with the exact definition of the symmetry operatio
the matrices of the irreducible representations and further data.

Today, an alternative and promising route for dealing with group theory is offered by computer algeb
make use of this line and in order to support the application of the point groups in molecular spectrosco
we present the BETHE program which helps determine the normal coordinates of symmetric molecules as w
their (spectroscopic) activities in infrared and Raman spectroscopy. Developed within the framework of MAPLE,
the BETHE program provides, in addition, also the most basic group data for a number ofpoint-group families
including the cyclic and their related groupsCi , Cs , Cn, Cnv andCnh, the dihedral groupsDn,Dnd andDnh, the
improper cyclic groupsS2n (n = 2, . . . ,10), the cubic groupsO,T ,Oh,Th,Td as well as the icosahedral grou
I, Ih.

In the next section, we start with recalling some of thebasic elements from the theory of the point groups
well as from the normal coordinates analysis and vibrational spectroscopy. However, no attempt will be mad
explain neither the vibrational phenomena nor the experiments in detail for which we must refer to the lite
Section3, later, provides a short description of the BETHE program and how it is implemented within the MAPLE

environment. The main emphasis is of course placed on a few examples in Section4 which illustrates the use o
the program and how BETHE can be used in daily research work. Finally, a short outlook onto future exten
and applications of this package is given in Section5.

2. Theoretical background

Let us start with some of the basic principles which are necessary to understand the BETHE program. Of course
not much need to be said here about the theory of the point groups since this theory has been presented
number of monographs and texts[5,6]. In this paper, moreover, we assume that the reader is familiar with the
concepts of the (point) group theory and the analysis of vibrational spectra.

2.1. Molecular and point group symmetries

The symmetries of molecules and clusters may help simplify many of the problems which are concern
their structure. To make the idea of molecular symmetries quantitative, of course, we must first classi
symmetry properties. As known for a long time, such a classification is achieved in terms ofsymmetry operations,
which can be found for a given symmetry and which transform the molecule into anequivalent configuration,
i.e., into one which is geometrically indistinguishable from the original configuration. For a molecule with a
number of atoms, these symmetry operations describe rotations about a certain axis and angle, reflections thro
a mirror plane, inversion through a point (usually taken as the origin of the coordinates) as well as the iden
operations which leaves the molecule unchanged. The combination of a rotationand (a successive) reflection
called an improper rotation and may also form a symmetry operation of the molecule. In the literature, d
notations are found to express the symmetry operations of the point groups; in the BETHE program, we use a
notation of the symmetry operations (andirreducible representations, see below) which is similar to the notatio
Altmann and Herzig[6].

Mathematically speaking, the set of symmetry operations of a molecule or cluster forms agroup and, hence
can be treated by means of group theory. Because the molecule must not be shifted in space by carrying out th
operations, at least one point has to be fixed in space (and gave originally rise to the notion of thepoint groups).

Owing to the set of symmetry operations, the point groups can be arranged in terms ofgroup familiesas shown
in Table 1. Such families are formed, for instance, by the cyclic groupsCn and the symmetry groupsSn, where all
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Table 1
Classification of the point groups in terms ofgroup families. All these group have been
implemented already into the BETHE program

Ci Cs

C2 C3 C4 C5 C6 C7 C8 C9 C10
C2v C3v C4v C5v C6v C7v C8v C9v C10v
C2h C3h C4h C5h C6h C7h C8h C9h C10h
D2 D3 D4 D5 D6 D7 D8 D9 D10
D2d D3d D4d D5d D6d D7d D8d D9d D10d
D2h D3h D4h D5h D6h D7h D8h D9h D10h
S4 S6 S8 S10 S12 S14 S16 S18 S20

O T Oh Th Td I Ih

symmetry operations denote proper (or improper) rotations around one or another (symmetry) axis of the molec
Further groups with a cyclic rotation axis are the families of theCnh andCnv groups which, in addition, posse
either ahorizontalor vertical plane of reflection respectively. Further families—often with a rapidly increa
number of symmetry operations—are the dihedral groupsDn, Dnh andDnd , the cubic groupsO,T ,Oh,Td and
Th as well as the icosahedral groupsI andIh. In the BETHE program, we utilize this concept of group famili
for the implementation of the group data; all groups, which are printed inTable 1, are already supported by th
program. In general, the symmetry of a molecule can be classified uniquely by using a systematic procedu
the molecule for special classes of symmetry operations[5].

To take advantage of group theory, one has to deal withrepresentationsof the group, i.e., with (various sets o
transformations as induced by the symmetry operations in some given vector spaceL. In physics, we may usuall
restrict ourselves to matrix representations which refer to some orthonormal basis, taken inL. Obviously, however
these representations of a group are notuniquebut may depend on the basis, i.e., the choice of the coordin
as well as on further parameters. The great benefit of group theory is that any representation can be decompose
into—a rather small number of—irreducible representationswhose characters are unique and independent o
basis. In this decomposition, the sum of the dimensions of the involved irreducible components is equa
dimension of the reducible representation and, thus, equal to the dimension of the considered vector spaL. For
an irreducible representation, in contrast, no further decomposition of the vector space into invariant subsp
be obtained. Again, several notations can be found for theirreducible representations of the point groups, kno
also as Mulliken symbols, in dependence on the dimension and the ‘physical origin’ of some given representatio
As mentioned before, we follow the notation from Ref.[6] in the BETHE program.

For a given reducible representation, the irreducible components of this representation can be obtained by s
dard techniques[5]. For most practical applications it is not necessary to know the explicit matrices of (ir-)red
representations, but only thecharacters, that means the traces of the corresponding matrices. The characte
representation are often denoted byχ and can be used, for instance, to determine the number of (inequiv
irreducible representations, which are ‘involved’ in some reducible representation by using the great orth
ity theorem[7], they are the characters of the irreducible representations are already known for the grou
consideration.

2.2. Molecular vibrations

2.2.1. Normal modes of vibrations
Many problems of physics and chemistry require the theoretical analysis of the vibrational spectra of th

cule to determine, for instance, its spectral activity in the interaction with the radiation field or the distor
molecular configuration under an external field. Group-theoretical arguments can be used to provide this
without that quantum chemical computations.

Our attention will be placed on the vibrational motion of molecules, in which its interatomic distances an
internal angles change periodically without producing any translation or rotation of the molecule as a
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The overall vibrations of a molecule, of course, result from the superposition of a number of relatively
vibrational motions which are known as thenormal vibrationsor normal modes of vibrationof a molecule. The
number of these modes is defined by the number of the atoms in the molecule and assumes a value of 3N − 6 for
the case of nonlinear molecules. Eachof these vibrations has its characteristic frequency but—if many of them
superposed—the periods of the vibrations are difficult to discern and so it may look rather aperiodical.

To determine the normal modes of a molecule, a so-calledharmonic approximationneed to be considered fo
its vibrational motion[9]. Within this approximation, we start by assuming an equilibrium position for the a
in a molecule around which they vibrate with a small amplitude. Of course, any displacements of a particular a
from this equilibrium position can be described in terms of three components along thex-, y-, andz-axes. For
a whole molecule withN atoms, therefore, 3N components(x1, y1, z1, x2, y2, z2, . . . , xN, yN , zN) to specify the
total displacement. Below, we denote these components byq1, q2, . . . , q3N , whereq1, q2 andq3 refers to thex1, y1
andz1 components of atom 1,q4, q5 andq6 to those of atom 2, and so on. At equilibrium this position is associ
with the minimum of the potential energy. Expanding this potential in a Taylor series in the coordinatesqi and
by ignoring terms of order higher than the quadratic terms, we can write the Hamiltonian for the molecule in the
harmonic approximation

(1)H = 1

2

3N∑
i=1

miq̇
2
i + 1

2

∑
ij

kij qiqj

wheremi the masses andkij the force constants.
For the sake of simplicity, instead of the treatment of the vibrational problem in the representa

the 3N coordinatesq1, q2, . . . , q3N , it is more convenient to operate directly with the vibrational coordin
Q1,Q2, . . . ,Q3N−6 which correspond to the 3N −6 vibrational degrees of freedom of the molecule. These no
coordinates can be defined by a linear transformation of the coordinatesqi :

(2)qi =
∑

k

aikQk

which allows one to write the Hamiltonian(1) in the form:

(3)H = 1

2

∑
k

Q̇2
k + 1

2

∑
k

ω2
kQ

2
k.

TheQk are called thenormal coordinatesof the system along which the normal vibrations proceed andωk are the
corresponding frequencies. In terms of the normal coordinates, therefore, the total HamiltonianH of the molecule
scan be presented just as a sum of simple harmonic oscillators with the HamiltonianHk , while the total wave
function Ψ of the (vibrational) motion may be expressed as a product of the well-known (harmonic oscillato
wave functionsψnk (Qk), one for each normal coordinate. The total vibrational energy is the sum of the energ
of 3N − 6 harmonic oscillators.

The great advantage of the normal coordinates is that they have to possess a certain symmetry. In oth
the normal coordinates which are related to the vibrational modes with the same frequency, form a basis
it is sometimes briefly said, ‘belong to’) an irreducible representationT (α) of the molecular symmetry group. Th
property allow us to apply the point group theory for the classification of the normal modes according to irreduc
representations of the symmetry group. A proof of this theorem about the normal modes is described in
many textbooks[10,11].

2.2.2. Classification of the normal vibrations
The knowledge of the symmetry type of the normal coordinates of a molecule allow us to simplify the vibration

analysis and derive its spectral properties. At the beginning of our analysis, however, we neither know th
of the irreducible representations, which correspond to the normal coordinates of the considered molec
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how often these representations occur in the decomposition. Nevertheless, the symmetry properties of th
modes as described above makes it possible to obtain the set of irreducible representations without that th
coordinates being known explicitly.

To obtain this set or, in other words, to classify the normal vibrations, several steps have to be carried
First of all we need to construct a(3N − 6)-dimensional reducible representation of the symmetry group o
molecule, related to its vibrational motion. To achieve this, we have to return to the set of 3N atomic coordinates
(or displacements) of theN atoms of the molecule. If all atoms are found in an equilibrium configuration, the s
of the 3N displacements forms a basis of a 3N -dimensional (reducible) representation of the group which is
as thetotal representationT (tot). In order to find this representation, we may attach local Cartesian coordina
each of the atom and may choose that all thex axes are in parallel, and similar also for they andz axes. Moreover
the orientation of thexj , yj andzj axes must agree for all atomic coordinates with the orientation of the mole
coordinates in which the symmetry operations are expressed. For the molecule of water such an arrangem
of the coordinates are shown onFig. 1a). Then, the total representationT (tot) is just given by a matrix which
represent a transformation of the 3N -dimensional displacement vector(x1, y1, z1, x2, y2, z2, . . . , xN , yN, zN), as
induced by the group; see Ref.[5] for further details on the constructing of the total representation. Since the
representation refers to all 3N coordinates of the molecule, it still contains—apart from the vibrational mo
of the molecule—also its translational and rotational motion. Therefore, to get the (vibrational) represe
T (vib) which is related only to the vibrational modes of molecule, the translational and rotational representati
need to be ‘separated’ from the total representationT (tot). For most cases, however, we need not to know theN -
dimensional matrices of the irreducible representation but may restrict ourselves just to the characters of th
representation. Then, the characters of vibrational representationχ(vib) are simply obtained by subtracting th
characters for an overall translation or rotation of the molecule from the charactersχ(tot) of the total representation
separately for each of the symmetry operations of the group.

Having ones obtained the vibrational representationT (vib) of a molecule, its reducible in most cases and, he
has to be reduced into which is irreducible componentsT (α) before the number of equivalent representations
be determined. For the reduction

(4)T (vib) =
∑
α

mαT (α)

we follow standard techniques and obtain the weightsmα in the decomposition simply from the characters (i
without knowing the matrices explicitly) due to

(5)mα = 1

g

∑
p

Cpχ(vib)
p χ(α)∗

p ,

whereg is the order of the point group andCp the number of group elements in the class to which also
symmetry operationp belongs. Of course, the set of irreducible representationsT (α) together with their weights
mα provides us with all the information about the number of vibrational modes of the molecule, the degenerac

Fig. 1. Set of the basis vectors for H2O molecule: a) Cartesian displacement vectors; b) internal displacement vectors.
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the frequencies as well as the symmetry type of all the vibrational modes. While the number of vibrational mod
is equal to the number of irreducible representations in the set, the dimension of the irreducible representation w
refer to the degeneracy of the corresponding frequencies.

Although the Cartesian displacements are known as apopular basis for determining the symmetries of
vibrational modes and for classifying the vibrational motion of a molecule, they are not always that easy t
in practice. In many applications in physical chemistry use is instead made of (so-called)internal coordinates
which refer either to the interatomic distances or the bond angles at the equilibrium positions of the atom
a displacement of the atoms occurs, these internal coordinates are then associated with the so-calledstretching
vectorsand thebond-angle deformation vectors. However, there is no common agreement about how the inte
coordinates have to be chosen. As a rule, however, one often starts with a number of stretching vectors
some bonded atoms and then adds as many bond-angle deformation vectors as needed in order to obt
set of 3N − 6 internal displacements (displacement vectors). In the H2O molecule, for example, we need thr
internal displacement vectors in orderto represent the three normal modes; here, a convenient way is to use t
stretching vectorsr1 andr2, and the bond–angle deformation vectorα as shown inFig. 1b). The use of these intern
coordinates then enables us to classify the stretching andbending modes separately, i.e., we obtain the two diffe
reducible representationsT (str) andT (bend), for which the stretching vectors or, respectively, the bond angles
a basis. Having these representations, they can be decomposed in a similar manner as shown in Eq.(5). Sometimes
the irreducible components of the bending and stretching modes do not agree with the irreducible component
the complete vibrational representation. In this case there is so calledredundant coordinate. Such a coordinate ca
be ignored, since it does not correspond to a physically possible vibrations[9].

2.2.3. Construction of normal coordinates
As discussed above, the classification of the normal vibrations provides us with very useful information ab

molecular vibrations. Beside of this classification, however, we usually need to construct the normal coo
also explicitly, where we can start from either the Cartesian displacements or the internal displacements of
molecule. In practice, the normal coordinates, taken as abasis functions of the irreducible representations of
group, are most easily obtained by means of theprojection operator method. In this method the property of thi
operator to generate the functions of the desired symmetry are utilized. In general, any projector of a irre
representation leaves all those functions unaffected, which belong to the basis of that representation, w
function (components) of other representations are projected out. The (generalized) point group projection oper
has a form

(6)P̂
(α)
i = sα

g

∑
a

T
(α)∗
ii (Ga)T (Ga),

whereg is the order of the group,sα is the dimension of the irreducible representationT (α) and whereGa refers to
the set of symmetry operations of the group. Moreover,T (Ga) denotes the induced matrix operation which may
in space of displacements, whileT (α)

ii (Ga) is one of the diagonal element of the irreducible representation m
If applied to the set of atomic (Cartesian) displacement vectorsxj , yj , andzj , the projection operator(6) gives rise
to the normal displacementQαi of the molecule

(7)P̂ α
i xj = Qαi = cx1x1 + cy1y1 + · · · + czN zN .

The application of̂Pα
i on xj may give zero, of course, which means that this particular displacement is not co

tained in the normal coordinateQαi ; to obtain this coordinate, one has to cycle through all the displacements[7].
If, instead of the Cartesian coordinates, use is made of the internal coordinates we may follow a simila
dure by applying the projection operators(6) to the sets of the stretching vectorsr1, r2, . . . and bending angle
α1, α2, . . . . As a result we will have so calledsymmetry-adapted linear combination(SALC) of the basis vec
tors [5]. Projection operator, taken in the form(6) allows to construct the SALC for multi degenerate irreducibl
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representations[8]. Of course, the SALC must be normalized, which means that the sum of squares of th
ficients in the SALC must be equal one. Vibrational coordinates, constructed using this method are called usu
symmetry coordinates. These coordinates generally are representations of the normal modes of vibration. Event
ally, the symmetry coordinates can be defined separatelyfor both, the stretching as well as the bending mode
the vibrations.

2.3. Molecular spectroscopy

2.3.1. Vibrational transitions
In the last subsections, we saw how to classify the vibrational motion of a molecule to obtain its norm

brational) coordinates. In the following, we shall therefore show how the information about the structure of
polyatomic molecules can be obtained from the vibrational spectrum.

As said before, we are mainly concerned with two kinds ofvibrational spectroscopy, namely infrared and Ram
spectroscopy. In contrast to other branches of modern spectroscopy such as (photo-)electron spectroscopy
infrared and Raman spectra refer both to transitions betweenthe vibrational states of the molecule, in the electro
ground or some particular excited state of the molecule. For a given electronic configuration, of course, each o
the vibrational states can be characterized in terms of a (vibrational) wave functionΨ and can be labeled b
some set of quantum numbersnk which just denote the absorbed quanta in the various normal modes. For f
discussion, it appears useful to distinguish now between several vibrational states of a molecule. The vib
groundstate refers to no quanta of excitations, i.e.,nk = 0 for all k, and hence to the wave functionΨ (0,0, . . . ,0)

must be invariant under all the symmetry operations of the group. For this reason, the vibrational grou
must always be transform according to thetotally symmetricirreducible representation which has the charac
χ = +1 for all of the symmetry operations of the underlying point group. Above this ground state, there are
low-excited states with just a single quantum incorporated in one of the normal modes, for instance,nk = 1 while
all other quantum numbernm = 0 for m �= k. This set of low-excited levels are usually called thefundamental
(vibrational) levels of the molecule. Apart from the fundamental levels, there are further so-calledcombination
levelsin which two or several normal modes are excited but with just a single quantum each. Finally, all the
states with more than one quantum absorbed in a particular normal mode are known as theovertonelevels or briefly
overtones. Those of the vibrational transitions, which connect the ground and fundamental levels are usually ca
fundamentaltransitions. Such a transitions generally give rise to infrared bands and Raman lines which a
intense by at least an order of magnitude than any other kinds of transitions. Therefore, we will deal on
the fundamentals here. For these transitions, typical frequencies of the absorbed light are in the infrared region o
about∼ 100–5000 cm−1. Such infrared radiation, or course, generally excites not only molecular vibration
also rotations of the molecule as a whole. The rotational structure of the bands can be observed, in particu
spectra of a gaseous molecules[4]. However, in most cases the separation of vibrational energy levels is greater a
the transitions occur at higher frequencies than do the rotational transitions. Therefore, here the rotational struc
of the vibrational bands will be neglected.

2.3.2. Infrared and Raman spectra
At this stage of our discussion, it might be necessary to give a brief account on the methods which are a

in order to observe ‘vibrational spectra’ and to obtain the sort of information that one usually wishes to extra
their analysis. Further details on this subject can be found of course in most textbooks on molecular spec
Refs.[4,12]. As mentioned before, vibrational spectra are obtained by two rather different techniques. In i
spectroscopy, light with a broad frequency distribution is passed through some sample and the intensi
transmitted light is observed as function of the frequency. The vibrational transitions are then obtained as
in the absorption spectra. In Raman spectroscopy, in contrast, its not the transmitted but the scattered lig
is of interest and which can be observed in (almost) any direction with respect to the incident radiation. In
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extract the information about the scattering by the molecules, obviously, a monochromatic light source sh
used.

Let us now try to understand the phenomena of vibrational transitions from a microscopic viewpoint. Both, an
infrared and a Raman transitions may occur only if a change is caused in thedipole momentof the molecule. In
particular, an infrared transition take place if a permanent dipole moment of molecule vibrates at a certa
frequency around some equilibrium value. Hence, an excitation of the molecule can only occur if the frequen
of the incident radiation is approximately equal to the frequency of the internal moment or, respectively, th
frequency of the corresponding vibrational mode. In Raman spectroscopy, in contrast, we have to consider a dip
moment which isinducedby the external light field. If, for example, we assume the molecule to be placed in so
electric fieldε, this induced dipole moment is given by

(8)µind = εα,

whereα denotes thepolarizability of the molecule, the measure for how easily the electronic configuration
be distorted by the field. Polarizability is a molecular property whose magnitude varies with the frequencν0 as
a molecule oscillates. If a molecule is irradiated by monochromatic light of frequencyν, then light of frequency
ν as well asν ± ν0 is emitted by a molecule. Thus the vibrational frequencies are observed asRaman shiftsfrom
the incident frequencyν in the visible region. Detailed explanation of this process can be found in Ref.[13]. In
general, of course, the polarizability is a 3× 3 Cartesian symmetry tensor with the nine componentsαjk = αkj ,
j, k = {x, y, z}, which refer to the various directions in space.

2.3.3. Symmetry selection rules for infrared and Raman spectra
With this microscopic view in mind for a vibrational excitation of a molecule, we may now return to the so-

symmetry selection ruleswhich apply in infrared and Raman spectroscopy. In fact, these rules determine wh
the transitions, as possible due to the Ritz’ combination principle, will be actually observed in the spectr
in a more spectroscopic terminology, they should tell us which of the vibrational modes are active in one
other or both types of the spectra. As discussed before, a wave functionψnk is assigned to each of these mod
If, in the following, we denote the total wave functions for the initial and final (vibrational) states byΨi andΨf ,
respectively, a transition from the ground to any of the fundamental levels with, say, an excitation of thej th normal
mode can be written as

(9)Ψi =
∏
k

ψnk → ψnj

∏
k �=j

ψnk = Ψf .

In infrared spectroscopy, of course, this change of the wave functions must arise from the interaction of a chang
the dipole momentµ with the incident radiation. Since, for such a transition, the probability is directly proportiona
to the (square of the)transition moment

(10)Mif =
∫

dτ Ψ ∗
f µΨi,

an excitation of the modej is forbiddenin the infrared spectrum if this integral vanishes. Therefore, in o
to analyze the infrared activity of a given (fundamental) transition, we have to consider the three componen
the dipole moment vectorµx,µy,µz and of the transition integral(10), respectively. In practice, however, w
need not deal with the wave functions in(10) explicitly, since we know from group theory that all these integ
become zero unless the direct product of the irreducible representations, associated with the integral
Γ (Ψi),Γ (µx,y,z),Γ (Ψf ), contains also thetotally symmetricirreducible representation[13]. This follows from the
fact that if the this direct product does not contain the totally symmetric irreducible representation, all comp
of the integrand are nonsymmetric with respect to one or more symmetry and the integral over all space v
To construct this direct product, we have to define thesymmetries of the three components of the integral(10).
Of course, the ground-state wave functionΨi always forms a basis for the totally symmetric representation o
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group, while the wave functions of final statesΨf are the same as those of the vector that describes the vibra
modes. Finally, the symmetry properties of the dipole moment componentsµx , µy andµz are the same as those
a translational vector(x, y, z) along the same axis. Therefore, in order to decide whether the transition mome(10)
vanishes, we need to form the (three) direct products

(11)Γ (Ψi) ×
{

Γ (x)

Γ (y)

Γ (z)

}
× Γ (Ψf )

which arises from the totally symmetric representation of the vibrational ground state, the irreducible rep
tions of any of the translational vector componentsx, y, or z, and the irreducible representation of the vibratio
modej . If any of these products will by itself contain the totally symmetric irreducible representation o
molecular point group, the corresponding fundamental transition is said to be infrared active.

The selection rules for Raman spectroscopy can be derived along similar lines. Since a vibrational trans
occur only if the polarizabilityα changes in course of the vibration, a Raman transition requires a nonvan
transition moment of the type

(12)Mif =
∫

dτ Ψ ∗
f αΨi .

Its again possible to analyze this expression by group-theoretical arguments and by making use of the
the componentsαjk of the polarizability tensor obeys the same symmetries like the product of the correspon
coordinates. To find the selection rules for a Raman activity of some transitions, therefore, we just need to
the direct products of three irreducible representations with the second one being replaced by those ofx2, y2, z2,
xy, yz, or zx, respectively.

3. Outline to the BETHE program

The BETHE program has been designed as an interactive tool in order to facilitate the application of
group techniques in physics and chemistry. In the present version, we support the group data for
ber of point-group families, including the cyclic and their related groupsCn, Cnv and Cnh, the symmetry
groups S2n, the dihedral groupsDn, Dnd and Dnh (n = 2, . . . ,10), the cubic groupsO,T ,Oh,Th,Td as
well as the icosahedral groupsI, Ih (seeTable 1). For these groups, the BETHE program provides the de
finition of the symmetry operators (within various types of parameterization), the character tables, t
tation and matrices of the irreducible representations as well as the decomposition of different type
rect products into their irreducible components. Both, thepoint and thedoublegroups are equally well sup
ported by the program. Owing to the simple and interactive but still quite general access to the grou
this program might be helpful not only for occasional use but also for more advanced research work
this first version of BETHE, emphasis is placed on the determination of the normal coordinates of the vibrat-
ing molecules and clusters with internal symmetry and totheir spectroscopic activity. The graphical pres
tation of the molecule and animation of the molecular vibration process is also available in the BETHE pro-
gram.

Following MAPLE’s philosophy, the BETHE program has been organized in a hierarchical order. It pres
includes about 70 procedures which can be either invoked interactively or simplyusedas a language element
order to built up commands at some higher level of the hierarchy. In practice, however, only about 10
procedures need to be known by the user; they are listed and briefly explained inTable 2for a first impression
about the BETHE program. More detailed information about their arguments and the output of these com
can be obtained from a user manual which is distributed with the code. In addition, a few examples are d
below to illustrate some of the basic features of the program.
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Table 2
Main commands of the BETHE program

molecule( ) Represent a molecule in terms of its individual atoms.
Bethe_decompose_representation( ) Returns the irreducible representations, which are contained in the in the (reducible) representation.
Bethe_group( ) Provides the basicpoint group data and notations.
Bethe_group_character( ) Provides the character of a given irreducible representation and symmetry operation.
Bethe_group_direct_product( ) Returns thedirect productof the irreducible representations.
Bethe_group_irrep( ) Provides the matrixrepresentation of a given irreducible representation and symmetry operation.
Bethe_group_representation( ) Calculates therepresentation which describes the transformation of a vibrational vector as induced b

the symmetry group.
Bethe_group_projector( ) Evaluates the generalized projection operator which projects vector from the spaceL into the subspace

Lα of the irreducible representationT (α).
Bethe_normal_coordinates( ) Calculates thenormal coordinatesof a molecule in terms of its Cartesian displacement vectors or

internal displacement vectors.
Bethe_normal_display( ) Displays the vibrational motion of a molecule graphically.
Bethe_spectral_activity( ) Determines, whether the vibrational mode of molecule is infrared or Raman active.

As known from MAPLE’s recent upgrades, most of its internal commands make use of rather short
and often of some abbreviations to a given mathematical context. Although this convention might be fa
for a frequent application of the commands, it has the disadvantage that these names are usually not that ea
remember. In the BETHE program, therefore, we follow a slightly different concept by introducing names
which the purpose of the procedure can be derived (or, at least, be kept in mind). This concept sometime
in rather long names but may simplify the application and design (or readability) of new code which still n
be implemented. Moreover, all the commands of the BETHE program begin with the additional prefixBethe_ to
distinguish them from MAPLE’s internal functionality.

In the future, we intent to develop BETHE along several lines. For several applications additional group
such as the Clebsch–Gordon coefficients or symmetrized basis functions are needed and could be derive
data which are available. The access to such data however will require the implementation of additional (
algorithms and, possibly, new data structures. Last but not least we intend, of course, to provide further applicati
in physics and chemistry, i.e., further tasks which could be solved interactively by means of the BETHE program
and in a similar manner as shown for the normal coordinates below.

4. Examples

In order to demonstrate the capabilities of the BETHE program, we shall collect and display here several ex
ples. They describe the specification of a molecules in the BETHE program as well as the derivation of its norm
coordinates and its spectral activity. These examples may give the reader also a first glimpse on the interactive
of the program.

4.1. Determination of the normal coordinates of a molecule

The normal coordinates of a molecule are known to provide a basis in terms of which the vibrations
molecule can be classified. To demonstrate the basic steps in the derivation of the normal coordinates of a m
let us consider the (very simple) example of aM3 complex, i.e., of a plain tri-atomic molecule with equal distanc
Obviously, such a molecule has a 3× 3 − 6 = 3 normal coordinates. The symmetry of this molecule is given
D3h and, if we assume that one of the equivalent atoms has the coordinates(0,1,0), we can immediately genera
the full set of atomic coordinates by typing

> set_M3 := Bethe_generate_sites(D3h,[1, 0, 0]);
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set_M3 := [[ 1, 0, 0],
1/2

[-1/2, - 1/2 3 , 0],
1/2

[-1/2, 1/2 3 , 0]]

Alternatively, we may also consider theM3 molecule just as a collection of (individual) atoms and may treat i
the variable

> M3 := molecule(atom(A1,[ 1, 0, 0]),
atom(A2,[-1/2, -sqrt(3)/2, 0]),
atom(A3,[-1/2, sqrt(3)/2, 0]) );

M3 := molecule(atom(A1, [ 1, 0, 0]),
1/2

atom(A2, [-1/2, - 1/2 3 , 0]),
1/2

atom(A3, [-1/2, 1/2 3 , 0]))

below, where the two (auxiliary) proceduresatom() andmolecule() have been introduced in order to ke
the relevant information about either a single atom or molecule closely together. To derive the normal coor
of course, we need first to determine the 3N × 3N total representation of the group. As described above,
representation is associated with the Cartesian displacements of all the atoms and accounts for the translationa
rotational, and vibrational motion of the molecule. In fact, however, we need not to generate this repres
here explicitly but may restrict ourselves to the characters of that part of the total representation which refe
vibrations of the molecule. By means of the BETHE program, these characters are simply obtained by

> VR := Bethe_group_representation(D3h, vibrational, M3);

VR := [3, 0, 0, 1, 1, 1, 3, 0, 0, 1, 1, 1]

By use the keyword ‘vibrational’ the translational and rotational components of the representation are taken
In this example the symmetry elements are not arranged to a classes in order to simplify the summation
symmetry operations. From the list of charactersVR we can derive the irreducible representations by carrying
the decomposition ofVR into its irreducible components

> Bethe_decompose_representation(D3h, VR);

["A1’", "E’"]

with which the normal modes are associated. The dimensions of these (irreducible) representations give
for each component directly the number of—energetically degenerate—vibrational modes. Having once th
representations, moreover, we can also obtain the normal coordinates in terms of the Cartesian displa
ments[[c(1)

1x , c
(1)
1y , . . . , c

(1)
Nz], [c(2)

1x , c
(2)
1y , . . . , c

(2)
Nz], . . . , [c(3N−6)

1x , c
(3N−6)
1y , . . . , c

(3N−6)
Nz ]]. In the BETHE program, this

is achieved by

> Q_"A1’" := Bethe_normal_coordinates(D3h, M3, "A1’", Cartesian);
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Q_"A1’" := [[ 1, 0, 0,
1/2

-1/2, - 1/2 3 , 0,
1/2

-1/2, 1/2 3 , 0]

where the second and third parameter,M3 and"A1’", here describe the molecule and respectively the particula
irreducible component as found in the decomposition of total vibrational representation.In addition, the last para
meter ‘Cartesian’ is used as akeywordin order to specify that the normal coordinates are to be returned in ter
the Cartesian displacements.

Similarly, we may obtain also the other two normal coordinates which are associated with the irreducibl
sentation"E’"

> Q_"E’" := Bethe_normal_coordinates(D3h, M3, "E’", Cartesian);

Q_"E’" := [[ 0, -1, 0,
1/2 1/2

[ 1/2 3 , 1/2 , 0, -1/2 3 , 1/2, 0],
[ 1, 0, 0,

1/2 1/2
-1/2, 1/2 3 , 0, -1/2, -1/2 3 , 0]]

Fig. 2. Vibrational modes of theM3 complex.

Fig. 3. Graphical presentation of theV2“E′” vibrational mode of theM3 complex (two frames).
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where each sublists of the listQ_"E’" defines one of the allowed normal coordinates of irreducible represen
"E’". As expected, these three coordinates are of course the same as shown inFig. 2, up to an (unimportant
unitary transformation ofV2("E’") and V3("E’"), respectively. In order to get a quick impression about
molecular vibrations of the considered structure, the normal coordinates of the molecule can be displa
graphically.

> Bethe_normal_display(M3, Q_"E’"[1]);

Two frames from the animated picture of theV2("E’") mode are shown inFig. 3. Fig. 3a) shows the initia
configuration of the molecule, while inFig. 3b) the vibrationally distorted molecule is depicted.

4.2. Infrared and Raman activity of vibrational modes

The classification of the normal vibrations has provided us with the information about the number of norm
modes and their symmetry type. We may utilize this information in order to derive the spectroscopic infra
Raman activities of the molecular vibrations (and could do it even if we would not know the normal coordin
these vibrations explicity). From Section2, we know that the moleculeM3 has one vibration which is associat
with the irreducible representation"A1’" and a (two-dimensional) vibration associated with the represent
"E’". We can ask about the infrared activity of these vibrations by typing

> IR_active_"A1’" := Bethe_spectral_activity(D3h, M3, "A1’", infrared);

IR_active_"A1’" := false

and

> IR_active_"E’" := Bethe_spectral_activity(D3h, M3, "E’", infrared);

IR_active_"E’" := true

Here, again, the second and third arguments describe the molecule and the symmetry of vibrational mode
tively, while the fourth argumentinfrared serves as a keyword in order to specify the kind of the spectrosc
activity.

Of course, the activity of a vibrational modes in Raman spectroscopy can be obtained along the sam
the keywordRamanis used

> Raman_active_"A1’" := Bethe_spectral_activity(D3h, M3, "A1’", Raman);

Raman_active_"A1’" := true

> Raman_active_"E’" := Bethe_spectral_activity(D3h, M3, "E’", Raman);

Raman_active_"E’" := true

To conclude this section, the example of theM3 molecule shows us that only the"A1’" mode is active in the
infrared spectrum but that the two"E’" modes can be found in both, the infrared and Raman spectra.

4.3. Normal coordinates in terms of internal displacement vectors

As it was mentioned already, for some physical and chemical applications the treatment of the vibration
the framework of the Cartesian displacement vectors is notvery convenient. In these cases one has to use the
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Fig. 4. Vibrational modes ofM3 complex in terms of the internal displacement vectors.

nal displacements vectors of the molecule (stretching vectors and bond angle deformation vectors). This examp
illustrates how to obtain the normal coordinates of theM3 molecule in terms of the internal displacement vector
In order to achieve this, first of all we need to specify the internal displacement vectors in terms of the name
individual atoms:

> M3_stretching := Bethe_internal(D3h, M3, stretching);

M3_stretching := [[ A1, A2], [ A2, A3], [ A3, A1]]

Since theM3 complex must have 3· 3 − 6 = 3 internal coordinates, then set of three stretching vectors is en
to describe the vibrational process (in general case we could specify also the bond angle deformation
The irreducible representations names, which refer to the vibrational modes of theM3 molecule, was found in
Section4.1. Therefore, we can immediately obtain the list of the vibrational coordinates in terms of the in
displacements[[c(1)

1 , c
(1)
1 , . . . , c

(1)
n ], [c(2)

1 , c
(2)
1 , . . . , c

(2)
n ], . . . : Now we can find the stretching vibrational coord

nates ofM3 molecule:

> Q_str := Bethe_normal_coordinates(D3h, M3, stretching);

-1/2 -1/2 -1/2
Q_str := [[ 3 , 3 , 3 ],

-1/2 -1/2
[ 2 , 0, -2 ],

-1/2 -1/2 -1/2
[ -6 , 2 6 , -6 ]]

Every sublist ofQ_str defines the displacement of three vectorsM3_stretching. The vibrations of theM3
molecule, defined byQ_str are shown inFig. 4.

4.4. Geometrical structure and the spectral properties of the H2B–O–BH2 molecule

The moleculeM3, whose vibrational and spectral properties was discussed in the previous subsection
trivial sample of the polyatomic molecule. Of course, the BETHE package may be applied for studies on m
complicated molecules. In this subsection, for example, we will consider thediboroxanemolecule H2B–O–BH2,
which have been discussed frequently in the literature[14–16]. This molecule can obey different symmetries
dependence on the chemical environment and the process of its formation. Ab initio calculations of the
rical structure of the diboroxane molecule, using the potential energy surface, have been performed by usi
GAUSSIAN program[14]. Several experiments, based on the X-ray diffraction method as well as on the sp
scopic data was carried out to clarify this structure, however, results of these experiments was not consistent
other, Refs.[16,17]. Therefore, the further analysis of this molecule still highly desired.
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Fig. 5. Possible symmetries of the diboroxane molecule: a)D2d symmetry, b)D2h symmetry, c)C2v symmetry.

In this contribution, we will apply the BETHE package to interpretation of the vibrational spectra of the dibo
ane molecule. Of course, the types of the vibrational modes and the spectral activities of these modes wi
in dependence on the two geometrical characteristics:

(i) the B–O–B linkage is linear or bend,
(ii) the BH2 groups are coplanar or perpendicular to each other.

Therefore, we will analyze the spectral activities of the vibrational modes for three different geometries
diboroxane moleculeD2d , D2h andC2v , which are shown inFig. 5. First, theD2d configuration will be considered
In order to specify this molecule, we need to know coordinates of at least one atom from each set of equiva
atoms, that is O, B and H atoms. Once we make the qualitative analysis, we can specify the coordinates
rather arbitrarily, keeping, the molecular symmetry. Further we will specify the hole molecule in terms of ind
atoms.

Apparently, the diboroxane molecule fromFig. 5a) fulfills theD2d symmetry only if the O atom is at the orig
of the coordinates and if the B–O–B bond is alongz-axis. Let us start with specification of the atomic coordina

> coord_O := [0, 0, 0]; coord_B := [0, 0, 1]; coord_H := [0.5, 0.5, 1.5];

coord_O := [ 0, 0, 0]
coord_B := [ 0, 0, 1]
coord_H := [ 0.5, 0.5, 1.5]

and use this input to generate the coordinates of the other atoms from the three sets of equivalent atoms

> set_O := Bethe_generate_sites(D2d, coord_O);
> set_B := Bethe_generate_sites(D2d, coord_B);
> set_H := Bethe_generate_sites(D2d, coord_H);

set_O := [[ 0, 0, 0]]
set_B := [[ 0, 0, 1], [ 0, 0, -1]]
set_H := [[ 0.5, 0.5, 1.5], [ -0.5, -0.5, 1.5],

[ 0.5, -0.5, -1.5], [ -0.5, 0.5, -1.5]]

To obtain the complete set of atomic coordinates we may simply type

> set_all_D2d := [op(set_O), op(set_B), op(set_H)];

set_all_D2d := [[ 0, 0, 0], [ 0, 0, 1],
[ 0, 0, -1], [ 0.5, 0.5, 1.5],
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[-0.5, -0.5, 1.5], [ 0.5, -0.5, -1.5],
[-0.5, 0.5, -1.5]]

This set may be utilized now in order to find the number and the symmetry types of the vibrational modes.

> VR_D2d := Bethe_group_representation(D2d, vibrational, set_all_D2d);
> VI_D2d := Bethe_decompose_representation(D2d, VR_D2d);

VR_D2d := [15, -1, 1, 1, -1, -1, 5, 5]

VI_D2d := ["A1", "A1", "A1", "B1", "B2", "B2", "B2",
"E", "E", "E", "E"]

As seen from the output of the program, theD2d configuration of the diboroxane molecule has 11 vibratio
modes, four of which"E" are doubly degenerate (number of vibrational degrees of freedom for this molec
3× 7− 6 = 15).

Let us define now those of vibrational modes, which are infrared and Raman active

> IR_active := Bethe_spectral_activity(D2d, VI_D2d, infrared);
> Raman_active := Bethe_spectral_activity(D2d, VI_D2d, Raman);

IR_active := [ "B2", "B2", "B2", "E", "E", "E", "E"]

Raman_active := [ "A1", "A1", "A1", "B1", "B2", "B2", "B2",
"E", "E", "E", "E"].

Thus, seven bands are common for both spectra and the Raman spectrum has four bands not found in th
Similarly to theD2d configuration case we may proceed the vibrational analysis of theD2h configuration (see

Fig. 5b)). The complete set of coordinatesset_all_D2h can be found by the same way. To define the symm
of the vibrational modes, we need to specify the characters as well as the irreducible components of theD2h group
vibrational representation:

> VR_D2h := Bethe_group_representation(D2h, vibrational, set_all_D2h);
> VI_D2h := Bethe_decompose_representation(D2h, VR_D2h);

VR_D2h := [15, -1, -1, -1, -3, 1, 9, 5]

VI_D2h := [ "Ag", "Ag", "Ag", "B2g", "B3g",
"B3g", "B1u", "B1u", "B1u", "B1u",
"B2u", "B2u", "B2u", "B3u", "B3u"]

ThereforeD2h configuration of the diboroxane molecule has 15 nondegenerate normal modes of vibrations.
lists of the infrared and Raman active vibrational modes may be found then by typing

> IR_active := Bethe_spectral_activity(D2h, VI_D2h, infrared);
> Raman_active := Bethe_spectral_activity(D2h, VI_D2h, Raman);

IR_active := ["B1u", "B1u", "B1u", "B1u", "B2u", "B2u",
"B2u", "B3u", "B3u"]
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Raman_active := [ "Ag", "Ag", "Ag", "B2g", "B3g", "B3g"].

This result illustrates the so calledmutual exclusion rule. According to this rule, in a molecule with the center
symmetry onlyu (ungerade) modes can be infrared active and onlyg (gerade) modes can be Raman active (
mode can be both infrared and Raman active).

Spectral activity of theC2v configuration of the diboroxane molecule (seeFig. 5c)) is obtained by the simila
way:

> VR_C2v := Bethe_group_representation(C2v, vibrational, set_all_C2v);
> VI_C2v := Bethe_decompose_representation(C2v, VR_C2v);
> IR_active := Bethe_spectral_activity(C2v, VI_C2v,infrared);
> Raman_active := Bethe_spectral_activity(C2v, VI_C2v, Raman);

VR_C2v := [15, 1, 1, 7]

VI_C2v := ["A1", "A1", "A1", "A1", "A1", "A1", "A2", "A2",
"B1", "B1", "B1", "B1", "B1", "B2", "B2"]

IR_active := ["A1", "A1", "A1", "A1", "A1", "A1", "B1", "B1",
"B1", "B1", "B1", "B2", "B2"]

Raman_active := ["A1", "A1", "A1", "A1", "A1", "A1", "A2", "A2",
"B1", "B1", "B1", "B1", "B1", "B2", "B2"]

This result tells us that in theC2v configuration all 15 vibrational modes are active in the Raman spectrum and
13 modes are infrared active.

We found, that the symmetry types of the vibrational modes as well as their spectral activity are d
depending on the mutual orientation of the BH2 groups. Therefore, the use of the presented package helps
the spectral active modes of vibration and can be used for their interpretation of the spectra and the stu
geometrical structure of the diboroxane molecule and others.

5. Outlook

From our examples in Section4, the present capabilities of the BETHE program can be seen for generati
the normal coordinates and the spectroscopic activities of molecules. In the future, we will enlarge the
of applications of the program by following various lines. For more complete analysis of the vibrational s
it would be highly desirable if the problem of molecular vibrations could be solved also quantitatively b
typing a few lines interactively. This means, that we need to address the frequencies of the particular vib
These frequencies are determined by the potential energy of the system and are related to the masses of
the bond angles and bond lengths. The potential energy arises from the interaction between the individu
and can be described in terms of the force constants. Therefore, the relationship between the frequenc
vibrations and force constants need to be expressed. For this purpose, the use of the internal coordinates
for the normal coordinates is more suitable, since the force constants, expressed in terms of the internal coordin
have a clearer physical meaning then those, expressed in terms of Cartesian coordinates. The method oF andG

matrices, developed in Ref.[9] can be used. In addition, the selection rules for the other types of the vibra
transitions, such as overtones and the combination bands, will be included into the BETHE package.
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Apart from the analysis of the vibrational spectra, there are several other extensions which would makeETHE

a much more powerful tool. A well known phenomenon from molecular interactions with light is the sponta
distortion of a molecule due to its vibrational motion. This phenomenon is known as theJahn–Teller effectand
depends on the interaction between the electrons and the nuclei. The theory of this effect is based, ag
a group–theoretical analysis of the adiabatic potential of the (polyatomic) molecule when the electroni
become nearly degenerated. The question about thegeometrical stabilityof the molecule is then related to search
for minimum of the potential surface. The program realization of the group theory applications, mentioned abov
will certainly make BETHE attractive to a wider class of users.
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Abstract

Symmetry-adapted molecular basis functions are widely applied for the electronic structure computations of molec
clusters. These functions are obtained by exploiting the symmetry of the system and often help to simplify the comp
considerably. In order to facilitate their use in algebraic and numerical computations, here we provide a set of MAPLE procedures
which generates these functions by means of projection operators, both within the nonrelativistic and relativistic the
commonly applied point and double groups are supported by the program including, in addition, the access to the
theoretical data such as the symmetry operators, characters, or irreducible representations.

Program summary

Title of program:BETHE

Catalogue identifier:ADVU
Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADVU
Program obtainable from:CPC Program Library, Queen’s University of Belfast, N. Ireland
Licensing provisions:none
Computer for which the program is designed:All computers with a license of the computer algebra package MAPLE (Maple is
a registered trademark of Waterloo Maple Inc.)
Installations:University of Kassel (Germany)
Operating systems or monitors under which the program has been tested:Linux 8.1+ and Windows2000
Programming language used:MAPLE 7 and 8
Memory required to execute with typical data:10–30 MB
No. of lines in distributed program, including test data, etc.:14 190
No. of bytes in distributed program, including test data, etc.:370 795

✩ This paper and its associated computer program are available via the Computer Physics Communications homepage on Sc
(http://www.sciencedirect.com/science/journal/00104655).
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Distribution format:tar.gz
Nature of the physical problem:Molecular and solid-state quantum computations can be simplified considerably if the sym
of the systems with respect to the rotation and inversion of the coordinates is taken into account. To exploit such sym
however, symmetry-adapted basis functions need to be constructed instead of using—as usual—the atomic orbitals a
particle) basis. These so-calledsymmetry orbitalsare invariant with respect to the symmetry operations of the group an
different for the point and double groups, i.e. for nonrelativistic and relativistic computations.
Method of solution:Projection operator techniques are applied to generate the symmetry-adapted orbital functions as
combinations of atomic orbitals.
Restrictions onto the complexity of the problem:The generation of the symmetry orbitals is supported for the cyclic and re
groupsCi , Cs , Cn, Cnh, Cnv , the dihedral groupsDn, Dnh, Dnd , the improper cyclic groupsS2n (n � 10), the cubic groups
O, T , Oh, Th, Td as well as the icosahedral groupsI andIh. In all these cases, the symmetry orbitals can be obtained for e
the point or double groups by using anonrelativisticor, respectively,relativistic framework for the computations.
Unusual features of the program:All commands of the BETHE program are available for interactive work. Apart from the sy
metry orbitals generation, the program also provides a simple access to the group theoretical data for the presently im
groups from above. The notation of the symmetry operations and the irreducible representations follows the compi
Altmann and Herzig [Point-Group Theory Tables, Clarendon Press, Oxford, 1994]. For a quick reference to the pro
description of all user-relevant commands is given in the (user) manualBethe-commands.ps and is distributed togethe
with the code.
Typical running time:Although the program replies ‘promptly’ on most requests, the running time depends strongly
particular task.
 2005 Elsevier B.V. All rights reserved.

PACS:02.20.-a; 31.15.Hz

Keywords:Atomic and molecular orbital; Double group; Point group; Projection operator; Symmetry orbital

1. Introduction

Symmetry considerations are known to play a crucial role in (almost) all branches of modern physics, in
elementary particle physics in quite a similar manner as the physics of atoms and molecules, or of the so
Utilizing the symmetry of a system often help simplify its theoretical description and to obtain insight in
behavior. Apart from the group-theoretical analysis of the system, however, computational tools are also
to make fully use of the symmetries. Therefore, in order to facilitate, for instance, the vibrational analysis o
atomic molecules, we recently developed the BETHE program[1] which help determine their normal coordinat
and spectral activities. In this program, the group data were implemented (or derived) for all the frequently
point groups including the cyclic and related groupsCi , Cs , Cn, Cnh, Cnv , the dihedral groupsDn, Dnh, Dnd ,
the improper cyclic groupsS2n (n � 10), the cubic groupsO, T , Oh, Th, Td as well as the icosahedral groupsI

andIh.
Apart from the vibrational analysis of molecules, the generation of theirsymmetry-adapted basis functionsor,

briefly, symmetry orbitalsis also of quite general interest. In particular, in a recent years a large number
vestigations was carried out to study the electronic structure of molecules[2–4]. In order to resolve this structur
the (experimental) techniques of the X-ray diffraction and absorption, photoelectron spectroscopy and oth
been applied. The theoretical interpretation of such experimental data requires the generation of the m
wave functions. The symmetry orbitals can be used in order to reduce the size of the (position) space
the molecular wave functions need to be treated explicitly. Therefore, with this paper we present the exte
the BETHE package, which provides the construction of symmetry-adapted basis functions for polyatomic
cules.

The BETHE package generates the symmetry orbitals from the set of atomic orbitals according to the
method[5] by means of the group theory techniques. This method, based on the molecular symmetry prop
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very well known in quantum chemistry. Several computer programs have been developed nowadays to con
symmetry orbitals for selected applications (for instance,[6,7]). However, being implemented within the tradition
computer languages (such as Fortran), these programs are not flexible enough to work with the algebraic p
of groups. Moreover, most of such programs support a very restricted set of either a point[6] or double[7] groups.
The BETHE package is applicable for most common groups mentioned above (single and double).

In the next section, therefore, let us start with recalling some of the basic concepts in using symmetry
for molecular computations. Apart from the classification of the finite groups and a brief note on the diffe
between the point and corresponding double groups, this includes the explicit construction of the symmetry
by means of projection operators. Some general properties of the symmetry orbitals are also summarize
section. This is followed in Section3 by a short description of the BETHE program and how it can be used with
a MAPLE environment. The examples in Section4 later display the capabilities of the program with emphasis
the generation of the symmetry orbitals within both, a nonrelativistic and relativistic framework. A brief ou
on possible extensions of the BETHE program is finally given in Section5.

2. Theoretical background

Since the theoretical background of thefinite groupshas been worked out long time ago, here we assume
reader to be familiar with its basic features as well as with the concept of using symmetry orbitals in mo
computations. Today, there are many texts available on this topic including, for example, the books by Ell
Dawber[8] and Balasubramanian[9]. In the following, therefore, we restrict ourselves to rather a short accou
the theory and with emphasis on thedoublegroups, just enough in order to understand the implementation an
use of the program below.

2.1. Point and double group symmetries

In group theory, the symmetry of a physical object is determined by the set of transformations which lea
geometrically indistinguishable configuration of the object. For a finite (non-spherical) system such as a m
these transformations are known to be the proper and improper rotations, i.e. pure rotations around som
rotations with an additional inversion at the origin, and are called the symmetry operations of the group. Th
the (finite) subgroups of the groupO3 of orthogonal transformations in 3-dimensional space. In practice, five t
of symmetry operations are usually distinguished, including (i) the identity operationÊ (which leaves the object a
it is), (ii) an n-fold rotationĈn about some axis, and (iii) the inversionî of all coordinates at the origin. Moreove
there are (iv) reflectionŝσ at some mirror plane, or—in a combined form—(v) rotations by 360◦/n about some
axis followed by a reflection through a plane which is perpendicular to it (Ŝn; rotoreflection). The complete set
theh symmetry operations is said to form asymmetry groupG and is treated by means ofgroup theory. Of course,
the occurrence of the various types of symmetry operations can be used also to distinguish between differegroup
familiesas recently discussed in Ref.[1].

All the types (i)–(v) of symmetry operation, as mentioned above, refer to ageometricaltransformation of the
object. To ‘add’ the concept of the electron spin to the point groups, one has first to recognize that the wave
of a particle with spins = 1/2 changes its sign under the rotation of 2π and is invariant only under a rotation̂E
by 4π (around any axis in space). A rotation̂E′ by 2π , in contrast, does not give rise to the identity (Ê′2 = Ê).
Since the element̂E′ commutes however with all the operationsŜ of the point group, it can be used to generate
h additional symmetry elements of the double groupĜ′ by takingÊ′Ŝ = Ŝ′, with the consequence that the numb
of symmetry operations of the group is simplydoubledwhen compared to the number of the corresponding p
group, i.e. without the spin. If a group contains the rotationĈn as one of the symmetry operators, moreover,
haveĈn

n = Ê′ for the point group and̂C2n
n = Ê for the corresponding double group. Using the similar rule as

the point groups[5,8], the double group operators can be collected into thegroup classes.
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The symmetry operations of an object (or its symmetry group) would be of minor interest perhaps,
would not give rise toinduced transformationsand to a great simplification in describing the system by us
group theory. In fact, the relation between the symmetry operations and their induced transformations is t
of therepresentation theoryof the groups and one of the main reasons for studying symmetries in Nature (m
apart from their beauty). Often, such induced transformation can be expressed by matrices and are c
representationsof the group (assigning one matrix to each of the symmetry operators). Since, in general, w
choose the basis for a representation (in some given vector spaceL) rather freely, the matrix representations o
group are not unique and will usually depend on the choice of the coordinates as well as on some further pa
The great advantage in using group theory is, however, that any (reducible) representationD(Ŝ) can be decompose
into—a rather small number of—irreducible representationsD(i)(Ŝ), which are unique and independent of t
basis up to a unitary transformation. Irreducible representations of the point groups are called usuallysingle-valued
or vectorrepresentations. In the BETHE program, the chemical (Mulliken) notation is used to denote and ide
the irreducible representations, analogy to Ref.[10].

Several standard techniques exist today for determining the irreducible components of a given reducib
sentation[5]. Instead of an explicit matrix representation, hereby it is often sufficient to know thecharactersof the
irreducible representations, i.e. the traces of the corresponding matrices. Moreover, as the number of the s
operations is (two times) larger for the double than for the corresponding point group, the number of the irre
representation also increases in the case of the double groups although typically not by a factor of 2. That
from the (single-valued) representations of the corresponding point group, the double group has a numb
so-calleddouble-valuedor spinorrepresentations. In the literature these (additional) representations are mar
some half-integer superscriptj , showing its dimension to be 2j + 1. The irreducible representations for the po
and double groups are shown explicitly in Ref.[10], using the well-known symmetryD(i)(Ŝ′) = ±D(i)(Ŝ) with
the sign in dependence of the class to which the symmetry operationŜ′ belongs.

The double groups are important for a number of applications in chemistry including, for example, the
of the transition metal ions and relativistic molecular structure calculations based on Dirac’s Hamiltonian
BETHE program, therefore, special attention has been paid to support the point and double groups equally

2.2. Construction of symmetry orbitals

For symmetric molecules, the computational costs in the electronic structure calculations can be reduce
icantly if asymmetrizedone-particle basis or, briefly, the concept of ‘symmetry orbitals’ is applied. In practice
concept allows to reduce the (size of the) position space in which the molecular orbital functions need to be
explicitly. Moreover, since the construction of the symmetry orbitals is a purelygeometricaltask (independent o
the details of the electronic structure), it can be carried out algebraically for any given symmetry group and
before the quantum-chemical computations start.

To construct the molecular orbital functions, let us begin with the atomic orbitals

(1)|anlm〉 = Pnl(ra)

ra
Ylm(θa,φa)

which are given in spherical coordinates(ra, θa,φa) and which are centered at the positiona of the atoms. Using
the LCAO method (i.e. the linear combination of atomic orbitals), the molecular orbitals can be constructe
the orbital functions(1) either immediately

(2)ψη =
∑
anlm

Cη,anlm|anlm〉

or by first making use of an expansion in terms of symmetry orbitals

(3)ψη =
∑

Bη,τ iµ|τ iµ〉

τ iµ
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which are sought to be invariant under the (symmetry) operations of the group and are characterized by t
indicesi, τ , andµ, referring to one of the irreducible representations of the group. Of course, the symmetry o
are found again as linear combinations of atomic orbitals

(4)|τ iµ〉 =
∑
am

Aτiµ,am|anlm〉

with coefficientsAτiµ,am determined by the symmetry and the number of the (equivalent) atoms. In mol
computations, the coefficientsCη,anlm andBη,τ iµ are often obtained variationally and, hence, are utilized to
scribe the detailed bond of the molecule apart from its symmetry.

The symmetry orbital|τ iµ〉 with index τ = (ãnlm̃ν) can be generated using group theory. In the BETHE

program, the construction of this function is based on thegroup projection operatortechnique. To this end, th
projection operator

(5)P̂ (i)
µν = ni

h

∑
Ŝ

D(i)∗
µν (Ŝ)Ŝ

is used in order to compute a bases for all the (involved) irreducible representations of the group, whereh denotes
the order of the group and̂S the symmetry operations. In this expression, moreover, the matricesD(i)(Ŝ) refer to
theith irreducible representation of the group with dimensionni and with matrix elementsD(i)

µν(Ŝ).
The projection operators(5) have to be applied to an (atomic) basis which includes the orbital functions of a

atoms involved in the molecule. To generate this basis, therefore, we first need to apply the symmetry oper
the group to the atomic orbitals|anlm〉 from at least one of theequivalentatoms in the molecule. Since, howev
any spatial symmetry operation̂S can be presented either as a pure rotationŜ = R̂, given by the Euler anglesα, β

andγ , or improper rotation̂S = Î R̂, we may write

(6)Ŝ|anlm〉 = (−1)lτs

l∑
m′=−l

Rl
m′m(α,β, γ )

∣∣(Ŝa)nlm′〉,
where(Ŝa) now refers to an equivalent site of the atom which was at the positiona originally. The factor(−1)lτs ,
moreover, accounts for the parity of the atomic orbitals in case of an inversion, namely

τs =
{

1 if Ŝ contains an inversion,

0 otherwise.

As usual, the rotation matrix̂R(α,β, γ ) is parameterized in terms of the Euler anglesα,β, andγ and can be
calculated, for instance, by using Wigner’s formula[11]. For a given symmetry, therefore, all theequivalentsites
of an atom are visited if the summation in Eq.(5) includes all the symmetry operators of the group. Combin
Eqs.(5) and (6), the symmetry orbitals can be expressed explicitly in terms of the atomic basis by

(7)|ãnlm̃νiµ〉 =
∑
am

C
nlνiµ

ãm̃,am
|anlm〉

with the symmetry coefficients

(8)C
nlνiµ

ãm̃,am
=

∑
Ŝ

δ
a,Ŝã

D(i)∗
µν (Ŝ)(−1)lτs Rl

mm̃(α,β, γ )

and wherea refers to one of the equivalent atoms for the atom at positionã. Moreover, since the generation of t
nonrelativistic symmetry orbitals is associated to the point group symmetry, the projection operator(5) has to run
through all the symmetry operators of the group.
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Instead of the—nonrelativistic—atomic orbitals(1), we may start equivalently from a relativistic description
the atoms, based on Dirac’s Hamiltonian[12]. In this case, the atomic orbitals (for an electron with spins = 1/2)
are given by the Dirac spinors

(9)|anκm〉 =
( Pnκ (ra)

ra
Ωκm(θa,φa)

i
Qnκ (ra)

ra
Ω−κm(θa,φa)

)
,

whereκ is the relativistic angular momentum quantum number and where, again, spherical coordinates
and centered at the positiona of the atom. The Dirac spinors consists out of the two (upper and lower) Pauli sp
with the(s = 1/2) spinor spherical harmonics

(10)Ωκm(θa,φa) =
∑
ms

〈lm − mssms |jm〉Yl,m−ms (θa,φa)χsms

for the spin-angular part of the atomic orbitals, sometimes known also as the spherical (or Dirac) spin-o
When compared with Eq.(1), the relativistic quantum number

(11)κ =
{−(j + 1/2) = −(l + 1) for j = l + 1/2,

j + 1/2= l for j = l − 1/2

replaces the orbital angular momentum quantum numberl, but now contains information about the total angu
momentumj and again the parity (l) of the atomic orbital.

Since the relativistic orbitals|anκm〉 in Eq. (9) always refer to a half-integer total angular momentumj , the
double-valuedirreducible representations (with the corresponding superscriptj ) need to be taken into account
this case in the definition of the projection operators(5). However, the summation over the symmetry operators
still be restricted to those of the corresponding point group because the contributions from the two (double
operationsŜ andŜ′ are equal. If this observation is used, the orderh in Eq. (5) must refer also to the order of th
point group and not to the order of the double group as it appears in the formal definition.

2.3. Linear independence of the symmetry orbitals

As seen from Eq.(3), the symmetry orbitals from the last subsection are used as a basis for the mo
computations. These functions should be therefore linear independent and complete (with respect to th
one-particle symmetry) in order to avoid technical difficulties. In general, however, the straightforward app
of the projection operators(5) leads to a number of symmetry orbitals which is larger than the number o
(underlying) atomic orbitals and, hence, to linearly-dependent orbitals. For instance, if there areA equivalent
atoms (a = 1, . . . ,A) in the molecule and if we consider the atomic orbitals|anlm〉 with fixed quantum number
n and l, there areA(2l + 1) atomic orbitals in total butN = Ah(2l + 1) symmetry orbitals whereh is the order
of the point group. As shown in Ref.[13], it is sufficient to apply the projection operators only to one from thA

equivalent atoms, reducing the number toN = h(2l + 1) symmetry orbitals. A linear-independent set of symme
orbitals is therefore obtained automatically if the number of (equivalent) atoms and the order of the group ar
A = h, while it is linear-dependent forA < h.

To derive a linear-independent set of symmetry orbitals, we shall first determine their numberNi for each
irreducible representationD(i)(Ŝ) of the group which is given by Ref.[14]

(12)Ni = 1

h

∑
Ŝ

χ(i)∗(Ŝ)χ(Ŝ),

whereχ(i)(Ŝ) denotes the character of the representation, corresponding to the transformation of the atomic
|anlm〉. Since the matrix elements of the latter representation are
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(13)Dãm̃,am(Ŝ) = (−1)lτs Rl
mm̃(Ŝ)δ

a,Ŝã
,

the numberNi can be written

(14)Ni = ni

h

∑
Ŝ

(−1)lτs χ(i)∗(Ŝ)
∑
am

Rl
mm(Ŝ)δ

a,Ŝa

if Eq. (6) is taken into account. Further,Ni linearly independent basis functions|anlmνiµ〉 have to be found. The
symmetry-adapted basis functions, constructed by this way are linearly independent.

3. Outline to the BETHE program

The BETHE program has been designed as an interactive tool for applications in chemistry and physics w
based on the point and double group symmetries. Hereby, the main emphasis is placed on providing a use
tool which requires neither much knowledge about the group theoretical background nor about the—ve
number of—names and abbreviations as used in the literature. Owing to its special design, we therefor
the BETHE program of interest in both the teaching of the basic elements of group theory by means of th
groups as well as in more advanced research studies. In the present version of BETHE, we support all finite group
of common interest including the cyclic and their related groupsCn, Cnv andCnh, the symmetry groupsS2n, the
dihedral groupsDn, Dnd andDnh (n = 2, . . . ,10), the cubic groupsO, T , Oh, Th, Td as well as the icosahedr
groupsI andIh, respectively. While the attention in the present development of the BETHE program was mainly
focused on the generation and the use of the symmetry orbitals for molecular computations, the simpl
to a great deal of group-theoretical data for the point and double groups is certainly also worthwhile to m
In the generation and expansion of the symmetry orbitals (in terms of the atomic orbitals of equivalent
both, nonrelativistic and relativistic computations are equally supported. The procedures, which are nece
generate the symmetry orbitals are listed briefly inTable 1.

The full package is distributed by a tar file of the BETHE root directory (Bethe.tar), which contains the
source code library, file.mapleinit, guide for installation as well as the documentation for the program. Ha
adapted the.mapleinit file in the home directory of the user (as briefly explained in aRead.me file of the

Table 1
Main commands of the BETHE program. A more detailed description of these procedures is given in the user-manualBethe-commands.ps
which is distributed with the code

AO() Auxiliary procedure to represent an atomic orbital〈r | anlm〉 which is centered at the position
a = (a1, a2, a3).

SO() Auxiliary procedure to represent a symmetry orbital〈r | (Ga) nlm; T (α)µν〉.
Abasis() Auxiliary procedure to represent an atomic basis set{〈r | anlm〉} which is centered at the position

a = (a1, a2, a3).
Bethe_generate_AO() Generates a list of atomic orbitals (including allm’s) at the sitea = (a1, a2, a3) and for an atom with

the identifier stringatom.
Bethe_generate_AO_basis() Generates an atomic basis by applying all symmetry operations of the point groupG with labelGlabel

to the atomic orbitals AO1, AO2, . . . of a given orbital basis.
Bethe_generate_SO() Expands a symmetry orbital〈r | (Ga)nlm; T (α)µν〉 in terms of the atomic orbitals of a set of equivalen

atoms.
Bethe_generate_SO_basis() Generates a complete, but linear independent basis of symmetry orbitals for the point groupG with label

Glabel from the set of atomic orbitals as described by the atomic basis sets Abasis1, Abasis2, . . ..
Bethe_group() Provides the basic group data and notations.
Bethe_set() Defines either a relativistic or nonrelativistic framework for the generation of the atomic orbitals an

the internal interpretation of the quantum numbers.
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program), the BETHE program can be invoked like any other module of MAPLE. Then, by using the comman
with(Bethe) user may load all procedures and initialize the internal settings of the BETHE package:

> with(Bethe);

Welcome to Bethe!

Bethe_save_framework := nonrelativistic

At any (re-) start of the program, the internal framework, as defined by the global variableBethe_save_
framework, is set tononrelativistic as the default of the program. This initial setting of the framew
which influences the internal interpretation of the quantum numbers (see below), however, can be ‘over
easily by means of the commandBethe_set(). Details about the use this global definition will become obvi
in our examples in Section4.2.

Apart from the generation of the symmetry orbitals, the BETHE program also facilitates the access to ba
data of the point and double groups, following in its notation mainly thePoint-Group Theory Tablesby Altmann
and Herzig[10]. It provides, for instance, the number and a detailed definition of the symmetry operation
characters, irreducible representations, and further information by using the commandBethe_group() with
a proper set of keywords; cf. the manual inBethe-commands.pdf. In order to keep the notations as sim
ilar as they appear in the literature, we often use string identifiers for the communication with and with
program, i.e. in the input and output of many procedures and for the internal identification of the symme
erations and irreducible representation of a particular group. A notation like stringSO or stringIR, for instance,
refers to the name of one of the symmetry operations or irreducible representations of the group, resp
The list of all possible string identifiers for a given group (with labelGlabel) is obtained by typing in the
commandsBethe_group(Glabel,operators) andBethe_group(Glabel,irreps), and with an
additional keyworddouble if the symmetry operations and representations of the corresponding double
are requested. Since the double group is obtained simply by ‘doubling’ the number of symmetry operation
the (non-identical) rotation about 2π , all operator strings appear basically twice for the double group, with on
them having a leading capital letter “R”.

4. Examples

To illustrate the use of the BETHE program, below we display and explain a few examples. They show
simple (and fast) access to the symmetry operations, irreducible representations, and to other group-th
data as well as the generation of symmetry orbitals for a molecule, if its symmetry and the coordinates of (
one atom for each sort ofequivalentatoms are known. In all examples below we used accuracyDigits= 6 in order
to make the output of the program more compact.

4.1. Access and use double-group data

For the sake of simplicity, let us start with the point groupC3v which is obtained from the cyclic groupC3
by adding three vertical mirror planes. The symmetry of this group is fulfilled approximately, for instan
the chlorometane molecule CH3Cl. With the BETHE program, we may first ask for the number and type of
symmetry operators which, of course, are different for the point groupC3v and the corresponding double gro
and assign them to some working variables

> wn := Bethe_group(C3v, No_operators);
wa := Bethe_group(C3v, operators);
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wn_dbl := Bethe_group(C3v, No_operators, double);
wa_dbl := Bethe_group(C3v, operators, double);

wn := 6

wa := ["E", "C3+", "C3-", "sigma_v1", "sigma_v2", "sigma_v3"]

wn_dbl := 12

wa_dbl := [ "E", "C3+", "C3-", "sigma_v1", "sigma_v2", "sigma_v3",
"RE", "RC3+", "RC3-", "Rsigma_v1", "Rsigma_v2", "Rsigma_v3"]

As mentioned before, the group data for the double groups are usually obtained by adding the keyworddouble
to the list of parameters. To derive, in addition, the characters and the matrices of the irreducible represe
for theC3v symmetry, we first determine again the corresponding (string) identifiers which are used intern
distinguish between the different irreducible representations of the group

> wb := Bethe_group(C3v, irreps);
wb_dbl := Bethe_group(C3v, irreps, double);

wb := ["A1", "A2", "E"]

wb_dbl := ["A1", "A2", "E", "E1/2", "E3/2^1", "E3/2^2"]

For both cases, the point and the double group, we can also determine the characters and the explic
representation for either a single symmetry operation

> wc := Bethe_group_character(C3v, "E1/2", "RC3+");
wd := Bethe_group_irrep(C3v, "E1/2", "RC3+");

wc := 1

[ 1/2 ]
[ 1/2 - 1/2 I 3 0 ]

wd := [ ]
[ 1/2]
[ 0 1/2 + 1/2 I 3 ]

or for all the symmetry operators as define in the listswa andwa_dbl above

> we := Bethe_group_character(C3v,"E1/2");
we_dbl := Bethe_group_character(C3v,"E1/2", double);

we := [2, 1, 1, 0, 0, 0]

we_dbl := [2, 1, 1, 0, 0, 0, -2, -1, -1, 0, 0, 0]

In a similar way, we may determine the explicit (irreducible) matrix representations

> wg := Bethe_group_irrep(C3v, "E1/2");
wh := Bethe\_group\_irrep(C3v, "E1/2", double):
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[ 1/2 ]
[1 0] [1/2 - 1/2 I 3 0 ]

wg := [[ ], [ ],...]
[0 1] [ 1/2]

[ 0 1/2 + 1/2 I 3 ]

where, for the sake of brevity, we only show the first two matrices and also suppress the printout for the
group by using a colon at the end of the line.

The symmetry groupC3v is quite simple and, perhaps, no computational tools are required to derive the
acters and irreducible matrix representations for this group. In practice, however, much more complicated
are often needed in molecular computations, for which these data are difficult or at least tedious to collec
following, for instance, we look at the less trivial case of a molecule withdihedralsymmetry and demonstrate ho
its symmetry adapted basis functions can be derived.

4.2. Generation of the symmetry orbitals

Let us consider theferrocenemolecule Fe(C5H5)2 for which the electronic and magnetic properties have b
discussed recently in the literature[15,16]. It has been found of interest, in particular, for studying the trans
metal complexes and the nanostructured materials. This molecule consists of an iron atom “sandwiched”
two identical parallel C5H5 rings. Although ferrocene is known to exist also inD5d symmetry (staggered fe
rocene), here we consider the symmetryD5h (eclipsed ferrocene) as displayed inFig. 1. As seen from the figure
there are three sorts of atoms which transform equivalently under the action of the symmetry operation
group. They are formed by (i) the central iron atom, (ii) the ten carbon atoms and (iii) the ten hydrogen ato
low, we generate the symmetry orbitals for the carbon atoms within both, the nonrelativistic and relativistic
work, while the symmetry orbitals for the central Fe atom and hydrogen atoms follow from using very simila

We start with anonrelativistic framework for the atomic and symmetry orbitals as this is thedefaultof
the BETHE program. As usual, there is associated an atomic basis with each set of equivalent atoms which
be sufficient for the description of the molecule. However, in order to keep the output of the following (inter
commands at a feasible size, let us just consider the 2p orbitals (n = 2, l = 1) as a part of the basis for the carb

Fig. 1. Geometry of the ferrocene molecule Fe(C5H5)2.
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atoms. By adopting the distance between thez-axis and (any of) carbon atom asa and the distance from the iro
atom to the plane of C5H5 asb (cf. Fig. 1), this basis is defined in BETHE simply by typing

> basis_C := Abasis(atom_C, [a,0,b], [2,1]);

basis_C := Abasis(atom_C,[a,0,b],[2,1])

where the first list,[a,0,b], from the parameters above refers to the position of one of the (equivalent) c
atoms and the second list,[2,1], to the principal and orbital angular momentum quantum numbers of thp

orbital. The commandAbasis() is an auxiliary procedure which returns its inputunevaluatedand which simply
serves for keeping the relevant information together. Instead of asingleorbital list([2,1]) any number of such
lists for specifying the orbitals could be followed as additional parameters in order to enlarge the atom
for this sort of atoms. By giving the principal and orbital angular quantum momentum numbers, however,
magnetic substates|nlm〉 are then taken into account automatically.

To specify the orbital basis for one of the equivalent sites is sufficient to generate a list of symmetry o
associated with this sort of atoms and the given symmetry

> Bethe_generate_SO_basis(D5h, basis_C, print);

1) D5h | atom_C [a, 0, b], n=2, l=1, m= 1; A1‘(1, 1) >
2) D5h | atom_C [a, 0, b], n=2, l=1, m= 0; A1‘(1, 1) >
3) D5h | atom_C [a, 0, b], n=2, l=1, m= 1; A2‘(1, 1) >
4) D5h | atom_C [a, 0, b], n=2, l=1, m= 1; E1‘(1, 1) >
5) D5h | atom_C [a, 0, b], n=2, l=1, m= 0; E1‘(1, 1) >
6) D5h | atom_C [a, 0, b], n=2, l=1, m=-1; E1‘(1, 1) >
7) D5h | atom_C [a, 0, b], n=2, l=1, m= 1; E1‘(2, 1) >
8) D5h | atom_C [a, 0, b], n=2, l=1, m= 0; E1‘(2, 1) >
.
.

29) D5h | atom_C [a, 0, b], n=2, l=1, m= 0; E2‘‘(2, 1) >
30) D5h | atom_C [a, 0, b], n=2, l=1, m=-1; E2‘‘(2, 1) >

where the third argument,print, has been used to force the program to print the symmetry orbitals in a
mode; aNULL expression is returned in this case. As seen from the output, each line represents one of t
metry orbitals in a notation similar to Eq.(7). The last column in this output clearly indicates the irreduc
representation of the groupD5h, including the indices of the matrix elements in the matrix representation
course, this is still a rather formal classification of the symmetry orbitals without knowing their expans
terms of the atomic orbitals at the different (but equivalent) sites of the molecule. The same command
invoked in order to obtain such an explicit expansion by adding the keywordexplicit as one of the last argu
ments:

> Bethe_generate_SO_basis(D5h, basis_C, explicit, print);

1. SO: D5h | atom_C [a, 0, b], n=2, l=1, m= 1; A1‘(1, 1) >
------------------------------------------------------

1) -.223606+0.*I, |[ a, 0, b], n=2, l=1, m=-1>
2)-.0690983+.212662*I, |[ a*cos(2/5*Pi), -a*sin(2/5*Pi), b], n=2, l=1, m=-1>
3)-.0690983-.212662*I, |[ a*cos(2/5*Pi), a*sin(2/5*Pi), b], n=2, l=1, m=-1>
4) .180901+.131432*I, |[-a*cos(1/5*Pi), -a*sin(1/5*Pi), b], n=2, l=1, m=-1>
5) .180901-.131432*I, |[-a*cos(1/5*Pi), a*sin(1/5*Pi), b], n=2, l=1, m=-1>
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28) .0690983+.212662*I, |[ a*cos(2/5*Pi), -a*sin(2/5*Pi), -b], n=2, l=1, m= 1>
29) .0690983-.212662*I, |[ a*cos(2/5*Pi), a*sin(2/5*Pi), -b], n=2, l=1, m= 1>
30) -.180901+.131432*I, |[-a*cos(1/5*Pi), -a*sin(1/5*Pi), -b], n=2, l=1, m= 1>

2. SO: D5h | atom_C [a, 0, b], n=2, l=1, m= 0; A1‘(1, 1) >
------------------------------------------------------

1) 0., |[ a, 0, b], n=2, l=1, m=-1>
2) 0., |[ a*cos(2/5*Pi), -a*sin(2/5*Pi), b], n=2, l=1, m=-1>
3) 0., |[ a*cos(2/5*Pi), a*sin(2/5*Pi), b], n=2, l=1, m=-1>
4) 0., |[-a*cos(1/5*Pi), -a*sin(1/5*Pi), b], n=2, l=1, m=-1>
.
.

Again, the line mode (keywordprint) is used to list the contributions from the atomic orbitals at differ
sites and with differentm-quantum numbers. For each symmetry orbital, the expansion coefficients are norm
to

∑
i c

2
i = 1. Without the optional argumentprint, the expansion of the symmetry orbitals are returned in a

structure [SO1, SO2, . . .] which can be processed further, cf. the manual fileBethe-commands.pdf. A similar
but slightly more sophisticated list structure is also returned for anexplicit expansion of the symmetry orbital
allowing to make use of the output for other computations.

The last paragraphs clearly showed how easily we may generate the symmetry-adapted basis if a
tivistic notation (framework) is assumed for the atomic orbitals. In fact, the program supports the gen
of these symmetry orbitals for the 72 most common finite point groups. In relativistic computations, th
tivistic angular momentum quantum numberκ ‘replaces’ the orbital momentuml and provides the informatio
about the parity and total angular momentum of the orbitals. To generate the symmetry orbitals withinrela-
tivistic framework, we may follow very similar lines as before by first ‘re-defining’ the framework torelativis-
tic

> Bethe_set(framework = relativistic);

Framework is changed to relativistic

To keep the output of the BETHE commands feasible for displaying it within this work, again, let us res
ourselves to the 2p1/2 relativistic orbital (n = 2, κ = 1) as the atomic basis for the carbon atoms

> basis_C := Abasis(atom_C, [a,0,b], [2,1]);

basis_C := Abasis(atom_C, [a,0,b], [2,1])

where the second list in the input,[κ,m] = [2,1], now automatically refers to the relativistic quantum numb
Again, either aformal list of all symmetry orbitals

> Bethe_generate_SO_basis(D5h, basis_C, print);

1) D5h | atom_C [a, 0, b], n=2, kappa=1, m=-1/2; E1/2(1, 1) >
2) D5h | atom_C [a, 0, b], n=2, kappa=1, m= 1/2; E1/2(1, 1) >
3) D5h | atom_C [a, 0, b], n=2, kappa=1, m=-1/2; E1/2(2, 2) >
4) D5h | atom_C [a, 0, b], n=2, kappa=1, m= 1/2; E1/2(2, 2) >
5) D5h | atom_C [a, 0, b], n=2, kappa=1, m=-1/2; E3/2(1, 1) >
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19) D5h | atom_C [a, 0, b], n=2, kappa=1, m=-1/2; E9/2(2, 2) >
20) D5h | atom_C [a, 0, b], n=2, kappa=1, m= 1/2; E9/2(2, 2) >

or their explicit expansion in terms of the (relativistic) atomic orbitals are obtained by typing the same com
as before at MAPLE’s prompt

> Bethe_generate_SO_basis(D5h, basis_C, explicit, print);

1. SO: D5h | atom_C [a, 0, b], n=2, kappa=1, m=-1/2; E1/2(1, 1) >
-----------------------------------------------------------

1) .316227+0.*I, |[ a, 0, b], n=2, kappa=1, m=-1/2>
2) .0977197-.300750*I, |[ a*cos(2/5*Pi), -a*sin(2/5*Pi), b], n=2, kappa=1, m=-1/2>
3) .0977197+.300750*I, |[ a*cos(2/5*Pi), a*sin(2/5*Pi), b], n=2, kappa=1, m=-1/2>
4) -.255833-.185874*I, |[-a*cos(1/5*Pi), -a*sin(1/5*Pi), b], n=2, kappa=1, m=-1/2>
.
.

19) 0.+0.*I, |[ a*cos(2/5*Pi), a*sin(2/5*Pi),-b], n=2, kappa=1, m= 1/2>
20) 0.+0.*I, |[-a*cos(1/5*Pi), -a*sin(1/5*Pi),-b], n=2, kappa=1, m= 1/2>

2. SO: D5h | atom_C [a, 0, b], n=2, kappa=1, m= 1/2; E1/2(1, 1) >
-----------------------------------------------------------
.
.

In comparison to the nonrelativistic case from above, the last column now displays thespinor representation
of the symmetry orbitals by using the group-theoretical data for the corresponding double group. Of
this is in close relation and agreement with the half-integer total angular momenta of the relativistic o
s1/2,p1/2,p3/2, d3/2, . . . .

For practical computations, obviously the symmetry orbitals should be orthogonal and complete (for th
one-particle symmetry), by removing all the linear-dependent symmetry orbitals. In the BETHE program, this
orthogonalization is carried out internally during the execution of the program and can be tested simply
starts from the explicit expansion of these symmetry orbitals in terms of the atomic orbitals as explained ab
test for this orthogonality, the procedureBethe_SO_are_orthogonal() is provided

> list_SO := Bethe_generate_SO_basis(D5h, basis_C, explicit):
Bethe_SO_are_orthogonal(list_SO);

true

and confirms the expected result. In the first line, now the list structure returned for the expansion coefficie
atomic orbitals is utilized to perform this test in detail.

5. Outlook

The examples in Section4 display (some of) the present features of the BETHE program and clearly demonstra
how computer-algebra can be used today for applying group theory in chemistry and physics. In the presen
of the BETHE program, the data of the 72 most frequently applied point groups can be utilized, not count
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corresponding double groups. Of course, there are a number of different directions, in which the BETHE program
could be developed in the future, including (a) the vibrational analysis of molecules as an extension of R[1];
(b) tools for investigating the level splitting of atoms in external crystal fields (ligand field theory); (c) the stu
magnetic properties of materials if the point and double groups are combined with the time reversion (op
in order to generate the magnetic point or the color groups, respectively. For the analysis of molecular
moreover, (d) the spontaneous distortion of the symmetry of molecules due to the electronic-vibrational c
in the molecular motion, which is known as theJahn–Teller effectfrom the literature, might be also interestin
Related or additional suggestions from the site of the users are therefore very welcome. Other group-th
data such as various commonly applied regular and irregular representations of the finite groups, their C
Gordan coefficients, and others are perhaps of more mathematical interest but could be derived, if a few a
algorithms are designed and implemented.
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Abstract

The theory of the point and double groups has been widely used in quantum physics to understand the structure and dynamical properties of
molecules and solids. In order to construct wave functions for such systems, one often needs the Clebsch–Gordan coefficients for the symmetry
groups. Here, we present an extension of the BETHE program to support the calculation of the Clebsch–Gordan coefficients as applied, for
instance, in crystal field theory. Apart from the generation of the Clebsch–Gordan coefficients, the program also provides a simple access to the
group theoretical data for all frequently applied point and double groups.

Program summary

Title of program: BETHE

Catalogue number: ADUH_v3_0
Program summary URL: http://cpc.cs.qub.ac.uk/summaries/ADUH_v3_0
Program obtainable from: CPC Program Library, Queen’s University of Belfast, N. Ireland
Reference in CPC to previous versions: Comput. Phys. Comm. 162 (2004) 124–142; Comput. Phys. Comm. 171 (2005) 119–132
Catalog identifiers of previous versions: ADUH, ADVU
Does the new version supersede the old version?: Yes
Licensing provisions: None
Computers for which the program is designed: All computers with a license of the computer algebra package MAPLE [Maple is a registered
trademark of Waterloo Maple Inc.]
Installations: University of Kassel (Germany)
Operating systems under which the program has been tested: Linux 8.1+ and Windows 2000
Programming language used: MAPLE 7 and 8
Memory required to execute with typical data: 10–30 MB
No. of lines in distributed program, including test data, etc.: 11 024
No. of bytes in distributed program, including test data, etc.: 210 244
Distribution format: tar.gz
Nature of the physical problem: The energy levels of atoms, placed into a crystal environment, can be classified by using group theory. In order to
represent, for instance, the wave functions, which are associated with these atomic levels, one often requires the Clebsch–Gordan coefficients of
the underlying symmetry group of the overall system. These coefficients arise in the coupling of the electronic wave functions (subsystems) and
therefore help investigate the interaction between the many-electron atom and the external field of the crystal.
Method of solution: In the framework of the BETHE program [K. Rykhlinskaya, S. Fritzsche, Comput. Phys Comm. 162 (2004) 124–142;
K. Rykhlinskaya, S. Fritzsche, Comput. Phys Comm. (2005), in press], we previously defined data structures to deal with a large number of
group parameters of the point and double groups. Among other parameters, here we also implemented the irreducible (matrix) representations

✩ This paper and its associated computer program are available via the Computer Physics Communications homepage on ScienceDirect (http://www.sciencedirect.
com/science/journal/00104655).
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of these groups which are utilized in the present extension of the program in order to generate the Clebsch–Gordan coefficients for the point and
double groups. In practice, of course, these coefficients are obtained by means of a proper summation over the matrix elements of the irreducible
representations of the group.
Reasons for the new version: Extension of the program.
Summary of revision: A number additional procedure have been created to generate the Clebsch–Gordan coefficients for the symmetry groups
(Bethe_CG_matrix(), Bethe_CG_coefficient(), Bethe_group_direct_product(), etc.)
Restrictions onto the complexity of the problem: The generation of the Clebsch–Gordan coefficients is supported for the cyclic and related groups
Ci , Cs , Cn, Cnh, Cnv , the dihedral groups Dn, Dnh, Dnd , the improper cyclic groups S2n (n � 10), the cubic groups O, T , Oh, Th, Td as well as
the icosahedral groups I and Ih. Both the point and the double groups are supported.
Unusual features of the program: All commands of the BETHE program are available for interactive work. Apart from the generation of the
Clebsch–Gordan coefficients, the program also provides a simple access to the group theoretical data for all the groups specified above. The
notation of the symmetry operations and of the irreducible representations follows the compilation by Altmann and Herzig [S. Altmann, P. Herzig,
Point-Group Theory Tables, Clarendon Press, Oxford, 1994]. For a quick reference to the program, a description of all user-relevant commands is
given in the (user) manual Bethe-commands.pdf which is distributed together with the code.
Typical running time: Although the program replies ‘promptly’ on most requests, the running time depends strongly on the particular task.
© 2006 Elsevier B.V. All rights reserved.

PACS: 02.20.-a; 71.70.-d

Keywords: Clebsch–Gordan coefficients; Coupling of subsystems; Crystal field theory; Direct product; Double group; Molecular physics; Physical chemistry;
Point group

1. Introduction

In recent years, a large number of studies have been carried out to understand the spectra of atoms which are placed in a potential
of lower than spherical symmetry [1–3]. Such a potential occurs for instance for atoms in a crystal field. In order to explore the
structure of atoms, incorporated into a crystal, the experimental techniques of magnetic resonance [1] and optical absorption [3]
have been applied. These techniques demonstrate the splitting of some of the degeneracies, inherent in the energy levels of the free
atom. The details of this splitting depend on the symmetry of the crystal field (potential) and, therefore, can be analyzed by means
of group theory. To simplify this analysis, the theory of so-called Clebsch–Gordan (CG) coefficients has been developed earlier,
which help describe the interelectronic interaction of the atoms in the crystal field and which facilitate the construction of the wave
functions of the individual levels. Apart from the crystal field theory, the CG coefficients are used also in other applications of group
theory, such as the study of vibronic effects [4] or magnetic circular dichroism [5].

The CG coefficients of any (finite) group are obtained from group theory by analyzing the direct products of the irreducible
representations of the group. In physics, they are best known for the SO3 rotation group, associated with the coupling of angular
momenta. For the point and double groups, however, the generation of the CG coefficients often becomes rather cumbersome as it
requires not only the knowledge of group theory but also the—fast and reliable—access to the parameters and representations of the
group. In contrast to other group data for the point and double groups, which have been tabulated in a large number of monographs
and texts [cf. Refs. [6,7]], the CG coefficients are less often available; they are given, for instance, in the compilation by Altmann
and Herzig [6] but are not so simple to use because of the great number of abbreviations and conventions which had to be made in
this tabulation.

An alternative route for generating the CG coefficients for the point and double groups is offered by computer algebra today.
In order to utilize this route, we have recently developed the BETHE program [8,9], a set of MAPLE procedures which provide a
simple and interactive access to the group data for the 72 most frequently applied point groups (and the associated double groups). In
addition to the group data, this program also facilitates a number of standard tasks from physical chemistry, including the generation
of the symmetry orbitals, normal coordinates, or the analysis of the vibrational spectra. Since the BETHE program has been found
useful in various applications of group theory, here we present an extension of this code which allows the computation and the use
of the CG coefficients for both the point and double groups specified above.

In the next section we briefly recall the theoretical background and the definition of the CG coefficients as well as a few
of their properties. Section 3 provides a short description of the BETHE program, while a few simple examples are shown in
Section 4. In Section 5, we describe the level splitting of a (two-electron) molecular ion in a tetrahedral environment including the
construction of the two-particle wave functions. Finally, a short outlook onto the future development of the program is given in
Section 6.

2. Theoretical background

The generation and use of the CG coefficients is based on group theory. However, since the theory of the finite groups has been
discussed in a large number of texts (see, for instance, Refs. [6,7,10]), not much needs to be said here again about the definition of
the point and double groups. Instead, we shall restrict ourselves to a few selected topics from the representation theory of groups,
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just enough in order to understand the implementation and the use of the BETHE program. We shall also explain how the CG
coefficients of the point or double groups can be generated by starting from the irreducible representations of the corresponding
group.

2.1. Concept of group representations. Direct products

One of the great benefits of group theory is that it helps to classify the molecular states and properties of symmetric molecules
by using the symmetry operations of the underlying point group. Therefore, understanding the symmetry operations of a molecule
allows one to obtain the molecular geometry, i.e. the relative distances and angles of all the atoms and nuclei in the equilibrium
configuration. Perhaps an even greater simplification in the description of molecules and solids can be achieved, however, by
utilizing the representations of the group, i.e. the induced transformation (of the elements of some vector spaces L) as obtained, for
instance, in classical or quantum mechanics. Usually, a representation of a group is generated by analyzing the behavior of some
vector quantity in a vector space L under the symmetry operations of the group. In quantum physics, for example, the representation
theory helps classify the molecular states. Below, we shall restrict ourselves to matrix representations which are associated with an
orthonormal basis e1, . . . , en in L. For such a basis, the transformation of the vectors ej is given by

(1)e′
j = Ŝej =

n∑
i=1

eiTij (Ŝ)

for each symmetry operation Ŝ of the group, i.e. by the set of n2 coefficients {Tij (Ŝ), i, j = 1, . . . , n}. Of course, such a vector
space L need not refer (necessarily) to the position vectors or, more generally, vectors in Rn but may denote also some function
space with the (orthonormal) basis {ψi(r), i = 1, . . . , n}. Similarly to Eq. (1), the transformations of these basis functions are then
given by

(2)ψ ′
j (r) = Ŝψj (r) =

n∑
i=1

ψi(r)Tij (Ŝ),

where, for a given j , the expansion coefficients refer to the j th column of the matrix T (Ŝ). Since, in general, we can choose the
basis rather arbitrarily within the vector space L, the representations of a group are not defined uniquely but usually depend on
the basis, i.e. the particular choice of the coordinates and further parameters. The great benefit of group theory is that, for finite
groups, any representation can be decomposed into (a rather small number of) irreducible representations which, up to a unitary
transformation, are unique and independent of the basis.

The irreducible representations of a group are of fundamental importance and useful for many practical applications. Most of the
properties of these representations can be derived from the so-called great orthogonality theorem [7,11] which refer to the matrix
elements (or characters, i.e. the traces of the corresponding matrices). One particular property of the irreducible representations
concerns the ‘orthogonality relation’

(3)
∑
Ŝ

T
(α)
ip (Ŝ)T

(β)∗
jq (Ŝ) = gδαβδij δpq/nα

which is important for the generation of the CG coefficients. In this relation, T (α)
ip and T

(β)
jq are the matrix elements of the irreducible

representations T (α) and T (β); g is the order of the symmetry group G (i.e. the number of symmetry operations); nα is the dimension
of the irreducible representation T (α). The relation (3) can also be used to show that the basis functions, which belong to different
irreducible representations, are orthogonal to each other.

To take advantage of the representation theory, one has to deal with the direct product of representations which appears frequently
in quantum mechanical applications of groups. From a mathematical viewpoint, the direct product of two or more irreducible
representations is equivalent to the direct products of the associated matrices and has been considered in many textbooks [7,11].
Therefore, let us remind the reader only that the direct product of a n×n matrix A and m×m matrix B results in the nm×nm matrix
denoted by A ⊗ B . In group theory, the direct products of two irreducible representations T (α) and T (β) of the symmetry group G

is again a valid representation of the group, but generally reducible. Therefore, the representation T (α⊗β) can be decomposed into
its irreducible components T (γ )

(4)T (α⊗β) =
∑̇
γ

aγ T (γ ),

where the coefficients aγ are obtained from the characters of the irreducible representations T (α), T (β) and T (γ ) involved [7,10].
The dot over the summation sign in Eq. (4) denotes that this is not the usual matrix summation but direct sum of matrices, which
are usually not all of the same dimension. This symbol for the summation means that every matrix of the product representation
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T (α⊗β) can be composed from the square matrices T (γ ), arranged down the diagonal with zeros elsewhere. The decomposition of
the direct product matrices into their block-diagonal form is achieved by means of a non-singular unitary matrix C(αβ)

(5)(C(αβ))−1T (α⊗β)C(αβ) =

⎧⎪⎪⎨⎪⎪⎩
T (γ,1)

. . .

T (γ,aγ )

. . .

⎫⎪⎪⎬⎪⎪⎭
whose matrix elements are denoted by 〈αiβk|sγm〉 and are known as the Clebsch–Gordan coefficients of the symmetry group
G. In this notation α, β and γ denotes the irreducible representations T (α), T (β) and T (γ ), while i, k and m denotes integer
indices to enumerate the corresponding basis functions of these representations. Parameter s refers to the multiple occurrence of
the irreducible representation γ in the direct product of α and β .

2.2. Derivation and properties of the Clebsch–Gordan coefficients

As mentioned above, the CG coefficients are the elements of the unitary matrix C(αβ) which enables one to transform the
(matrices of the) direct product into its block-diagonal form (5). In order to derive the elements of this matrix, we can write the
expansion (4) also in the form

(6)T (α⊗β) =
∑̇
γ s

T (γ,s),

where s ∈ {1..aγ } denotes an index that accounts for the multiplicity of the irreducible representation T (γ ). To obtain the CG
coefficients 〈αiβk|sγm〉 explicitly, we have to insert T (γ ), obtained from the transformation (5), into the expansion (6):

(7)T (α⊗β) = C(αβ)
∑̇
γ

aγ T (γ )(C(αβ))−1 = C(αβ)
∑̇
γ s

T (γ,s)(C(αβ))−1.

From this expression, we may find for the symmetry operation Ŝ the matrix elements of the matrix T (α⊗β):

(8)T
(α⊗β)
ik,j l (Ŝ) = T

(α)
ij (Ŝ)T

(β)
kl (Ŝ) =

∑
γ smn

〈αiβk|sγm〉T (γ,s)
mn (Ŝ)〈αjβl|sγ n〉∗.

Multiplying (8) by T
(γ ′)∗
m′n′ (Ŝ) and by performing the summation over all symmetry operations Ŝ of the group G, we find

(9)
∑
Ŝ

T
(α)
ij (Ŝ)T

(β)
kl (Ŝ)T

(γ ′)∗
m′n′ (Ŝ) =

∑
Ŝ

∑
γ smn

〈αiβk|sγm〉T (γ,s)
mn (Ŝ)T

(γ ′,s)∗
m′n′ (Ŝ)〈αjβl|sγ n〉∗

from which, taking into account the orthogonality property for the irreducible representations (3), we finally obtain

(10)
∑

s

〈αiβk|sγm〉〈αjβl|sγ n〉∗ = nγ

g

∑
Ŝ

T
(α)
ij (Ŝ)T

(β)
kl (Ŝ)T

(γ )∗
mn (Ŝ).

Eq. (10) can be utilized to derive all or individual CG coefficients which are associated with the three irreducible representations
T (α), T (β) and T (γ ), respectively. This is achieved by applying the following scheme, for instance. If we consider first i = j , k = l

and m = n, at least one non-zero coefficient can be calculated up to its phase. From this coefficient, others are obtained, including
the relative phase, by keeping the parameters i, k and m fixed and varying only the indices j , l and n. In the BETHE program, we
follow the phase convention by Altmann and Herzig [6]. Using such a step-wise variation of the indices j, l, . . . it is clear, of course,
that the individual CG coefficients are obtained only after the whole matrix of CG coefficients has been constructed before.

In general, the CG coefficients arise whenever a symmetry-adapted basis is needed for the (direct) product representation of
two or more irreducible representations. Let us suppose that the functions {ψ(α)

i , i = 1, . . . , nα} and {ψ(β)
k , k = 1, . . . , nβ} form

orthogonal bases of the irreducible representations T (α) and T (β), respectively. Then, we may construct a set of product functions
{ψ(γ )

m , m = 1, . . . , nγ }
(11)ψ

(γ )
m =

∑
ik

〈αiβk|sγm〉ψ(α)
i ψ

(β)
k

which transform according to the irreducible representation T (γ ), i.e. form a basis for this representation. From the linear combi-
nation (11), a number of important properties can be seen for the CG coefficients. Since the product functions ψ

(α)
i ψ

(β)
k form an

orthogonal set (due to construction), the function ψ
(γ )
m can also be orthonormalized. Therefore, the CG coefficients obey the two
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Table 1
Main commands of the BETHE program. A more detailed description of these procedures is given in the user-manual Bethe-commands.pdfwhich is distributed
with the code

Bethe_decompose_representation() Returns the irreducible representations which are contained in some given (reducible) representation of the group.
Bethe_group() Provides the basic group data and notations.
Bethe_group_direct_product() Returns the direct product of two or more irreducible representations.
Bethe_group_irrep() Returns the matrices of the irreducible representations.
Bethe_group_representation() Calculates different types of representations of a group as they occur frequently in the literature.
Bethe_CG_coefficient() Generates the CG coefficient 〈αiβk|sγm〉 if all the representations and indices are given explicitly.
Bethe_CG_matrix() Generates a whole array of CG coefficients {〈αiβk|sγm〉} for the three irreducible representation α,β, and γ ,

respectively.
Bethe_CGC_are_orthogonal() Tests whether the CG coefficients satisfy the orthogonality relations (12), (13).

orthogonality relations

(12)
∑
ik

〈αiβk|s′γ ′m′〉∗〈αiβk|sγm〉 = δγ γ ′δss′δmm′,

(13)
∑
γ sm

〈αiβk|sγm〉〈αi′βk′|sγm〉∗ = δii′δkk′ .

Moreover, by applying these orthogonality relations, we also obtain the transformation

(14)ψ
(α)
i ψ

(β)
k =

∑
sm

〈αiβk|sγm〉∗ψ(γ )
m ,

which is the inverse to Eq. (11) from above and refers to a ‘de-coupling’ of the subsystems in a quantum mechanical treatment.

3. Extension of the BETHE program

The general setup of the BETHE program need not to be explained here in much detail as it has been described in two previous
papers [8,9]. Instead, we shall mainly discuss those features of the program which are required in order to make use of the code.
Originally, BETHE was designed with the intention to provide a computer algebraic tool which facilitates the use of the point group
symmetry (and theory) in chemistry and physics. This program is based on a set of MAPLE procedures which are available for
interactive work and for constructing new commands at some higher level of the hierarchy.

In order to support the generation of CG coefficients for the point and double groups, a number of new procedures have been
developed recently. The procedure Bethe_CG_matrix(), for instance, supports the generation of a whole matrix array of
CG coefficients, while the procedure Bethe_CG_coefficient() just provides some individual coefficient. The procedures
Bethe_CGC_are_orthogonal(), moreover, enables one to perform a quick test of whether the calculated CG coefficients sat-
isfy the orthogonality properties as described above. Table 1 lists all important procedures of the BETHE program which are needed
for the generation of CG coefficients. A more detailed description of these procedures is given in the file Bethe-commands.pdf
which contains a quick reference of all user-relevant commands and which is provided together with the code.

As before, the program is distributed as a single Bethe.tar file of the BETHE root directory which contains the source code
library, the file .mapleinit and a short guide for the installation. Having adapted the .mapleinit file in the home directory
of the user (as briefly explained in a Read.me file of the program), the BETHE program can be invoked like any other module of
MAPLE. By using the command with(Bethe), the user may load all procedures and initialize the internal settings of the BETHE

program:

> with(Bethe);

Welcome to Bethe!

4. Examples: Generation of the CG coefficients

To demonstrate the capabilities of the BETHE program, let us briefly demonstrate the computation of CG coefficients as it
appears in practice. These examples describe the generation of two individual CG coefficients as well as of a whole matrix of these
coefficients. In order to obtain these coefficients, of course, some group data are required and it is shown how to derive them from
the program.

Let us consider the tetrahedral point group Td . The symmetry of this group is approximately fulfilled, for instance, by the
methane molecule (CH4), carbon tetrachloride (CCl4) as well as by a few others. To generate the CG coefficients for the group
Td , we first need to know the irreducible representations of the group. In the BETHE program, these irreducible representations are
denoted by some string identifiers and are obtained simply by
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> wa := Bethe_group(Td, irreps);

wa := ["A1", "A2", "E", "T1", "T2"]

In the output above, the first two strings "A1" and "A2" refer to one-dimensional irreducible representations, "E" to a two-
dimensional one, while "T1" and "T2" are three-dimensional irreducible representations. From these irreducible representations,
for example, we may consider the direct product A1 ⊗ E and ask for its irreducible components

> wb := Bethe_group_direct_product(Td, "A1", "E");

wb := ["E"]

which shows that this product is irreducible by itself as easily seen from the character of the individual representations. Since A1
is the totally symmetric representation, it does not change the character of any other representation. Therefore, to generate the CG
coefficients 〈αiβk|sγm〉 of Td only the dimension of the representations need to be taken into account in order to specify the indices
i, k and m, respectively. The dimension of an irreducible representation can be obtained by using Bethe_group_irrep()
with the keyword dimension; moreover, the parameter s enumerates the multiplicity of the irreducible representation T (γ ) and
refers to the integers 1, 2, aγ , where aγ was defined above. if the representation T (γ ) is contained more than once in the direct
product T (α) ⊗ T (β). With these restrictions in mind, we can calculate for instance the two CG coefficients 〈A11E1|1E1〉 and
〈A11E1|1E2〉 by

> wc_1 := Bethe_CG_coefficient(Td, "A1", 1, "E", 1, 1, "E", 1);
wc_2 := Bethe_CG_coefficient(Td, "A1", 1, "E", 1, 1, "E", 2);

wc_1 := 1

wc_2 := 0

and similarly for the second dimension of the representation E with m = 2, i.e. the CG coefficients 〈A11E2|1E1〉 and
〈A11E2|1E2〉, respectively. Of course, the procedure would terminate with a proper ERROR message if either one of the irre-
ducible representations or the corresponding indices is not allowed for the group given.

The choice of the irreducible representation A1 and E in the direct product above is very simple and, perhaps, no explicit
computations are needed in this case. A less trivial case concerns the direct product E ⊗ E which gives rise to a 4-dimensional
representation and which must be reducible due to the output above. Indeed, the irreducible components of this product are given
by

> wd := Bethe_group_direct_product(Td, "E", "E");

wd := ["A1", "A2", "E"]

or, symbolically, E ⊗ E = A1 ⊕ A2 ⊕ E. Using the conventions from above, we can calculate the CG coefficients 〈E2E1|1A21〉
and 〈E2E1|1E1〉
> we_1 := Bethe_CG_coefficient(Td, "E", 2, "E", 1, 1, "A2", 1);
we_2 := Bethe_CG_coefficient(Td, "E", 2, "E", 1, 1, "E", 1);

1/2
2

we_1 := - ----
2

we_2 := 0

and could apply them in further computations.
As mentioned earlier, however, the algorithm for calculating the CG coefficients implies that one first obtains the ‘whole array’ of

CG coefficients for the given combinations of irreducible representations α, β , and γ of the group before the individual coefficient
can be extracted. In many applications, therefore, it seems beneficial to calculate (and obtain) all the corresponding CG coefficients
together prior to other calculations. This option is supported by the command Bethe_CG_matrix() which returns the array of CG
coefficients as associated with the product representation. For the direct product E ⊗ E, for instance, we obtain

> wf := Bethe_CG_matrix(Td, "E", "E");
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Table 2
Clebsch–Gordan coefficients for the Td group product E ⊗ E

α: β:
E E γ : A1 A2 E

i k m: 1 1 1 2

1 1 0 0 0 1
1 2

√
2/2

√
2/2 0 0

2 1
√

2/2 −√
2/2 0 0

2 2 0 0 1 0

[ 0 0 0 1]
[ ]
[ 1/2 1/2 ]
[2 2 ]
[---- ---- 0 0]
[ 2 2 ]

wf := [ ]
[ 1/2 1/2 ]
[2 2 ]
[---- - ---- 0 0]
[ 2 2 ]
[ ]
[ 0 0 1 0]

an array of CG coefficients. The columns of this array can be labeled by the basis functions of the direct product in the same
sequence as obtained by the procedure Bethe_group_direct_ product(). The rows of this array refer to the basis func-
tions of the irreducible representations, specified in the input of the procedure Bethe_CG_matrix(). It can be understood by
means of Table 2. As seen from this table, the left column of the table shows four basis functions of the direct product E ⊗ E

(αi = {E1,E2}, βk = {E1,E2}, αiβk = {E1E1,E1E2,E2E1,E2E2}), while the header of the table gives the bases of the irre-
ducible representations γm = {A11,A21,E1,E2}. The main body of the table then shows the CG coefficients 〈E1E1|E1〉 = 0,
〈E1E1|E2〉 = 1, 〈E1E2|A11〉 = √

2/2, etc. From this table, therefore, all the basis functions of the direct product E ⊗ E can be
obtained. For instance, the second and third columns of the body of Table 2 gives us the wave functions ψ

A2
1 and ψE

1 .

ψ
A2
1 =

√
2

2
ψE

1 ψE
2 −

√
2

2
ψE

2 ψE
1 ,

ψE
1 = ψE

2 ψE
2

etc. In addition, we can test the orthogonality (relations) of the CG coefficients by calling the procedure

> Bethe_CGC_are_orthogonal(wf);

true

on the output from above, i.e. on the array of CG coefficients.
Up to the present, we have restricted our examples on the (vector) point groups and, in particular, the group Td . Instead of

the vector groups, the CG coefficients are sometimes needed also for the double groups and the irreducible representations which
are associated to these groups. A more detailed discussion of the representations of the double groups can be found in Ref. [12].
Similarly as before, we can obtain the string identifiers of the irreducible representations of the double groups by using the keyword
double

> wa_dbl := Bethe_group(Td, irreps, double);

wa_dbl := ["A1", "A2", "E", "T1", "T2", "E1/2", "E5/2", "F3/2"]

and can use these string identifiers to calculate the CG coefficients for the direct product E1/2 ⊗E5/2 which contains the irreducible
representations A2 and T2. For the irreducible representations E1/2 ⊗ E5/2, the array of CG coefficients is given by
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> wf_dbl := Bethe_CG_matrix(Td, "E1/2", "E5/2");

[ 1/2 1/2 ]
[ 2 2 ]
[ 0 ---- 0 ---- ]
[ 2 2 ]
[ ]
[ 1/2 1/2 ]
[ 2 2 ]
[ ---- 0 ---- 0 ]
[ 2 2 ]

wf_dbl := [ ]
[ 1/2 1/2 ]
[ 2 2 ]
[- ---- 0 ---- 0 ]
[ 2 2 ]
[ ]
[ 1/2 1/2]
[ 2 2 ]
[ 0 ---- 0 - ----]
[ 2 2 ]

Rows of the array wf_dbl can be marked by the basis functions of the direct product E1/2 ⊗ E5/2 (αiβk = {E1/21E5/21,

E1/21E5/22,E1/22E5/21,E1/22E5/22}) and the columns correspond to the basis functions γm = {A21, T21, T22, T23}. Again,
the individual CG coefficient can be obtained for the double group similarly like above by using the procedure Bethe_CG_
coefficient().

5. Physical applications of the Clebsch–Gordan coefficients

In the examples above, we have shown how the CG coefficients can be generated by means of the BETHE program. However,
these coefficients would probably be of little interest without their ‘physical meaning’ in the description of many-particle quantum
systems and, in particular, for many-electron atoms (or ions) which are embedded in some crystal field. For such atoms, the level
splitting and observed spectra can be characterized by means of the irreducible representations of the symmetry group of the crystal.
Moreover, the CG coefficients of this group help to construct the wave functions of the embedded atom. In this section, therefore, we
shall demonstrate how BETHE can be used to analyze the level splitting of atoms in a tetrahedral crystal environment. To facilitate
the description let us briefly recall, however, how group theory occurs in the quantum mechanical treatment of atoms embedded
into a crystal field.

5.1. Symmetry in quantum mechanics

Many important problems concerning the electronic structure of atoms, molecules and solids are described by starting from the
Schrödinger equation Ĥψi(r) = Eiψi(r). The eigenfunctions ψi(r) of the Hamiltonian Ĥ are known as the wave functions of the
quantum system considered and contain the whole quantum mechanical knowledge about the system and its behavior. If it has
symmetry, however, group theory may help in the treatment by analyzing the properties of Hamiltonian and its invariance under
certain group transformation. Here, the invariance of a Hamiltonian with regard to a particular symmetry group means that the states
of the quantum system must “belong” to this group and that the eigenvalues Ei are associated with a certain representation of the
group, while the corresponding eigenfunctions ψi(r) form a basis of this representation. Hence, the wave functions of a symmetric
quantum system are the basis functions of the irreducible representations of the corresponding symmetry group.

Now, let us consider two subsystems with coordinates r1 and r2, respectively, whose wave functions transform under the group
G, i.e. that the (one-particle) functions ψ

(α)
j (r1) and ψ

(β)
l (r2) form bases for irreducible representations T (α) and T (β). Of course,

the combined system with the (antisymmetrized) product functions ψ
(α)
j (r1)ψ

(β)
l (r2) is then described by the reducible represen-

tation T (α⊗β) and remains degenerate in this subspace (of the overall Hilbert space) if the two subsystems do not interact with
one another. An interaction of the subsystems, in contrast, usually leads to a level splitting of the energies of the total system and
to a ‘reduced’ degeneracy which can be obtained from Eq. (4). Since, in general, the direct product T (α⊗β) is reducible into the
irreducible components T (γ ) [cf. Section 2.1], the wave functions ψ

(γ )
m (r1, r2) of the total system (i.e. the basis functions of T (γ ))

can be obtained as linear combinations of ψ
(α)
i (r1)ψ

(β)
k (r2) by using the CG coefficients

(15)ψ
(γ )
m (r1, r2) =

∑
〈αiβk|sγm〉ψ(α)

i (r1)ψ
(β)
k (r2).
ik
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Physically, the parameters |〈αiβk|sγm〉|2 gives the probability to find each of the subsystems in the one-particle states ψ
(α)
i (r1)

and ψ
(β)
k (r2), while the total system is described by the wave function ψ

(γ )
m (r1, r2). Therefore, the CG coefficients have to be

normalized by the relation

(16)
∑
ik

∣∣〈αiβk|sγm〉∣∣2 = 1.

The proper normalization of the CG coefficients ensures that, if the product functions form an orthonormal set themselves, the
functions ψ

(γ )
m (r1, r2) are also normalized.

5.2. Group-theoretical classification of levels in crystal fields

As discussed above, the level splitting of an atom embedded in a crystal field can be analyzed by means of the point group
symmetry of the surrounding crystal. In fact, the atom-crystal interaction usually results into an additional level splitting of the
atomic energy levels whose details can be found by using the (irreducible) representations and CG coefficients of the underlying
symmetry group. Although, of course, we do not know the irreducible representations from the very beginning, we may use them
to classify the split atomic levels in terms of the irreducible representations of the symmetry group of the crystal.

To lay down the grounds for further discussions, let us start here from the case of (effective) one-electron atom embedded in a
crystal. If we omit the spin of the electron here, the (one-electron) angular states of the free atom

(17)Ylm(ϑ,ϕ) = 1

2π
Θlm(ϑ)eimϕ

belong to the group R3 (the continuous group of rotations of the sphere with fixed center) and, hence, are (2l + 1) times degenerate
due to the orbital angular momentum l of the electron [11]. Of course, the symmetry of the R3 rotation group is higher then the
symmetry of any finite point group. The decrease in symmetry, when the atom is introduced into a crystal, then leads to the splitting
of the atomic energy levels. The classification of the atomic states in the crystal field is based on the decomposition of the R3 group
representation T as generated by the functions Ylm(ϑ,ϕ) into its irreducible components T (γ ) of the crystal symmetry point group.
This gives rise to the decomposition

(18)T =
.∑
γ

aγ T (γ ),

analogous to Eq. (4) and where aγ denotes how often the irreducible representation T (γ ) occurs in the representation T . An explicit
formula for the coefficient aγ as well for the construction of the R3 group representation T can be found in many textbooks [7,
10,11]. The irreducible components as obtained by the decomposition (18) serve to classify the one-electron states in the crystal
field. In particular, the sum over γ of the integers aγ shows the number of atomic energy levels as it will occur for the (2l + 1)-fold
degenerate level of the free atom. Moreover, the degeneracy of every level is seen from the dimension of corresponding component
T (γ ).

For atoms in a crystal field, the classification of the atomic levels discussed above can be generalized to the case of many-
electron atoms and ions. In this case, however, the interelectron interaction has usually to be taken into account as well. Depending
on the strength of the crystal field with respect to the interelectron interaction, three cases of weak, intermediate and strong crystal
fields are often distinguished. In the following, we will restrict our discussion to a strong crystal field. In this case, the influence
of the crystal field should be considered separately for each electron before the interelectron interaction is taken into account as
an additional perturbation. According to our discussion above, therefore, we should construct the R3 group representation for the
angular part Ylm of each electron independently of the occupation of the other electrons. To account for several electrons in the
atom, we then take the direct product of these representations and decompose it for the symmetry group of the crystal in order
to obtain information about the number and degeneracy of many-electron states in a strong crystal field. When the states of the
electrons in the crystal field are classified in terms of the irreducible representations, the wave functions of these states can be
constructed by use the CG coefficients (see Eq. (15)).

5.3. Example: Two-electron ions in a crystal environment

In order to demonstrate how the classification of the level splitting and the construction of the wave functions can be performed
by the BETHE program, let us consider the (MnO4)3− molecular ion. For this ion, the optical and magnetic properties have been
discussed rather often in the literature [3,13]. Scott and coworkers [3], for instance, measured the optical absorption spectra of the
(MnO4)3− molecular ion in a strong tetrahedral crystal field; their spectra show a number of bands which are clearly related to the
level splitting in such a crystal environment. Different theoretical methods have been applied to obtain a theoretical interpretation
of these measurements, including the molecular orbital approach by Deghoul et al. [13] based upon the density-functional theory,
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Fig. 1. Tetrahedral configuration of the molecular ion (MnO4)3−.

in order to calculate the parameters of the terms. To understand such spectra, a group theoretical classification of the terms and the
construction of the wave function can be performed using the CG coefficients as defined above.

In the (MnO4)3− molecular ion, the 3d2 configuration ion of Mn5+ is fourfold coordinated with O2− ions (see Fig. 1). As seen
from the figure, therefore, the O2−-environment obeys a tetrahedral Td symmetry. In accordance to the strong-field regime, the
interelectronic interaction can be omitted and (the characters of) the representation, generated by the Ylm part of the single electron
wave function, have to be found

> wa := Bethe_group_representation(Td, Ylm, 2);

wa := [5, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1]

Here, Td is the label of the symmetry group of the surrounding crystal, Ylm a keyword which defines the kind of representa-
tion, and the third argument 2 determines the orbital quantum number l of the d-electron. The list of numbers wa stands for the
characters of the representation which refer to the symmetry operations of the group Td in the same sequence as obtained by the
procedure Bethe_group(Td, operators). The corresponding list of the explicitly calculated (five-dimensional) matrices
of this representation could be obtained also by adding the keyword matrix to the list of parameters,

> wa_m := Bethe_group_representation(Td, Ylm, 2, matrix):

but are omitted here as they are not required for the further analysis. Using the (list of) characters wa from above, we find the
irreducible components of this induced representation by

> wb := Bethe_decompose_representation(Td, wa);

wb := ["E", "T2"]

a result which shows immediately that the five-fold degenerate level of a single d-electron is split within a tetrahedral environment
into the two-fold degenerate level E and the three-fold level T2. In the strong field regime, these single-electron states give rise
to the three two-electron configurations T2T2, ET2 and EE. Let us restrict here to the latter case with the two electron belonging
each to the irreducible representation E, i.e. to the product space E ⊗ E for the two-electron ion. Since the wave functions of the
two-electron states must transform as the irreducible components of this direct product E ⊗ E = A1 ⊕ A2 ⊕ E [cf. Section 4], we
see that the 4-fold degenerate level E ⊗ E will be split in a strong-field tetrahedral environment into the two nondegenerate levels
A1 and A2 as well as a doubly degenerate level E (of the two-electron system). In order to construct also the wave functions which
correspond to these levels, the matrix wf of the CG coefficients from Section 4 can be utilized immediately. For instance, the wave
functions of the levels A1 and A2 can be expressed from the product functions of two (one-electron) E states by

ψ
A1
1 (r1, r2) =

√
2

2
ψE

1 (r1)ψ
E
2 (r2) +

√
2

2
ψE

2 (r1)ψ
E
1 (r2),

ψ
A2
1 (r1, r2) =

√
2

2
ψE

1 (r1)ψ
E
2 (r2) −

√
2

2
ψE

2 (r1)ψ
E
1 (r2).

Similarly, we could construct as well the wave functions for the degenerated two-particle level E.
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6. Summary and outlook

The BETHE program has been grown in several directions during the last few years. It presently supports the 72 most widely
applied point (and corresponding double) symmetry groups and can be used to solve a number of the quantum physical problems
related to the symmetry of molecules, clusters and solids. With the present extension of the program, we provide a number of
procedures to calculate the CG coefficients for point and double groups. These coefficients help to analyze the splitting of the
atomic energy levels in the crystal field. The interactive design of program presented may help the user in following the literature
and in daily research work.

Since the BETHE program has been found useful for practical applications, it will be developed in the future. There are several
extensions, which would make BETHE a much more powerful tool. In particular the problem of molecular symmetry distortion,
known also as Jahn–Teller effect, is intended to be implemented into the BETHE package. In this problem, a theoretical analysis of
the molecular adiabatic potential has to be performed by using symmetry considerations about the molecules. In addition, a more
detailed treatment of the atomic energy levels into the crystal field (taking in account also the spin–orbit interaction) would be
useful for studying the magnetic properties of materials. Finally, the further development of the vibrational analysis of the molecule
(namely, the treatment of the nonfundamental vibrational transitions as well as of related problems, such as resonance Raman
spectroscopy or the polarization of the vibrational modes and many others), which was started originally in Ref. [8], would be
certainly desirable. Besides this short list of topics, there are further extensions which would make the BETHE program a more
attractive tool and for which suggestions from the users are very welcome.
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