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Zusammenfassende deutsche Darstellung der in englischer Sprache abgefassten Doktorarbeit:

Eine Computer-algebraische Methode zur
Untersuchung der Symmetrie-Eigenschaften

von Molekiulen und Clustern

Ziel dieser Dissertation war, mit Hilfe computer-algebraischer Methoden ein Werkzeug zur
Untersuchung der Symmetrieeigenschaften von Molekiilen und Clustern zu entwickeln. Das
MAPLE Paket BETHE gestattet es, gruppentheoretische Daten zu extrahieren und zu ma-
nipulieren und damit Symmetrieanwendungen zu vereinfachen (Kap. 2). Zuné&chst werden
die Vorteile von BETHE beim Erzeugen der gruppentheoretischen Daten gezeigt. In der ak-
tuellen Version kénnen die Symmetriedaten fiir 72 haufig benutzte Punktgruppen sowie der
zugehorigen Doppelgruppen erzeugt werden. Der Schwerpunkt dieser Arbeit liegt im Bereich
der Anwendungen dieses Programmpakets in der Physik der Molekiile und Cluster (Kap. 3).
Neben der Untersuchung der optischen Eigenschaften von Molekiilen in Abhéngigkeit von der
jeweiligen Symmetriegruppe wird auch gezeigt, wie BETHE zum Verstandnis der Feldaufspal-
tung in Kristallen beitragen kann und wie die zugehorigen Wellenfunktionen berechnet werden
konnen. Einige der heutigen Fahigkeiten von BETHE werden an Hand mehrerer ausgearbeit-
eten Beispielen gezeigt. Obwohl wir nicht auf alle Details ausfiihrlich eingehen koénnen zeigen
diese Beispiele doch die umfassenden Moglichkeiten computer-algebraischer Techniken bei der

Untersuchung symmetrieabhéngiger Eigenschaften von Molekiilen und Clustern.

In dieser Dissertation wurde besonderer Wert auf die Vielseitigkeit des BETHE Pakets gelegt,
damit neue Anwendungen problemlos implementiert werden kénnen (Kap. 4). Diese Er-
weiterungen sind sinnvoll, da die schwierigsten Teile dieser kiinftigen Anwendungen bereits im
BETHE Paket enthalten sind. So werden zum Beispiel die Vibrationskoordinaten (Normalko-
ordinaten) als Funktion der kartesischen Einheitsvektoren, die fiir die Wilsonsche Methode
bendtigt werden, oder auch die Clebsch-Gordan Koeffizienten, die fiir das Jahn-Teller-Problem
benotigt werden, bereits in der vorliegenden Programmversion erzeugt. Filr das Jahn-Teller-
Problem scheint der Gebrauch des CA Werkzeugs sogar unvermeidlich zu sein, weil dieses
Problem einen analytischen Zugang zum adiabatischen Potential erfordert und deshalb durch

einen numerischen Algorithmus nicht behandelt werden kann.

Die Féhigkeiten des BETHE Pakets werden durch die oben erwdhnten Anwendungen noch nicht
ausgeschopft. Es gibt verschiedene Richtungen, in die das BETHE Programm in der Zukunft
weiterentwickelt werden kann. Beispiele hierfiir sind (i) die Untersuchung magnetischer Eigen-
schaften von Festkorpern und von (ii) optischen Ubergéingen. Die Implementierung dieser Er-
weiterungen wird das BETHE Programm zu einem noch flexibleren und méachtigeren Werkzeug

machen.
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Chapter 1

Introduction

Since the middle of the last century the numerical computational techniques have been widely
applied in all branches of modern physics and chemistry. Even in the theoretical physics, where
the analytical approach was dominated for a very long time, the numerical computations have
become an accepted instrument. During the last decades, however, the use of computers in
science makes turn from purely numerical to the symbolic or computer-algebraic (CA) compu-
tations. The CA solutions, or combinations of the new symbolic techniques with the previously
developed numerical algorithms, are very promising. Therefore, they seem to be increased in
the nearest future. The reason for such an increase is the number of advantages of the computer

algebra in the theoretical research. These advantages are

e the reach mathematical basis, built into the CA systems, i. e. knowledge of all the

mathematical rules, which are necessary to treat the mathematical expressions;
e fast and reliable symbolic manipulation;

e interactive style of work, i. e. the possibility to work ”step-by-step” and, therefore, to

examine the computation process on different stages;

These (as well as many other) advantages have led CA to find its way to many different areas
of physics and chemistry, including the quantum chemistry, biophysics and many others. One
of the areas, in which the use of CA is highly desirable, is the treatment of many-particle
systems, such as molecules and clusters. The high complexity of these systems restricts the
use of numerical computations and requires some additional simplifications, which are easier

to realize within the CA approach.

Since most of the molecules and clusters possess a symmetry, the powerful simplification can
be followed from the symmetry consideration. Moreover, sometimes symmetry appears even
irreplaceable in order to recognize the properties and behavior of molecules and clusters. The
basic mathematical tool for dealing with symmetry is the group theory. During the last fifty
years this theory has found its way into almost all branches of modern physics and chemistry [1,
2] and has helped achieve simplifications of great power. In practice, however, the application of
the molecular symmetries in physics and chemistry may become rather cumbersome. Although,

nominally, the basic relations of group theory are widely known, there are several shortcomings



which make the access to the group data inefficient and difficult to use. Apart from an often
very compressed compilation of the group data in some tables or appendixes of textbooks, only
parts of these data are usually displayed explicitly and without providing the user with the
additional algorithms and abbreviations. Even in Ref. [3], which is found as the most complete
tabulation of the group-theoretical data, some parameters are not easy to extract. Moreover,
the number of different notations, used in the literature for the group-theoretical parameters,
also may to make difficult the access to the group data. These reasons make the practical use

of the group theory very difficult.

An alternative and very promising route for dealing with the symmetry and the group theory
is offered by computer-algebraic systems today. Several powerful CA systems, such as MATH-
EMATICA or MAPLE, are available and can be utilized to develop new algorithms and tools for
applying group—theoretical methods in physics and chemistry. A number of CA packages, which
support the definition and manipulation of the group-theoretical parameters, has been created.
For instance, GAP [4], SYMMGRP.MAX [5] and many others. However, most of these packages
are developed to provide the mathematical basis of the symmetry and are not appropriate to

be used in the practical research.

Nevertheless, there is a big number of physical and chemical tasks, in which the CA approach

can be very helpful. For instance,
e search for symmetries and appropriate molecular coordinates;
e derivation of the normal coordinates and modes of molecules and clusters;

e derivation of selection rules and spectral activities for the vibrational transitions of the

molecule;
e level spitting of atoms in external crystal fields;
e studying of the magnetic properties of material;
e analysis of vibronic interaction and the Jahn-Teller effect;
e construction of molecular symmetry orbitals for quantum computations;
e use of Racah’s algebra;

and many others. The features of the CA approach to some of these tasks are briefly analyzed
in Ref. [6]. In order to develop the use of computer algebra for dealing with the symmetry
application, we developed the program BETHE, which is described in this thesis work. This
program has been created within the framework of MAPLE. It provides the group-theoretical
data for most frequently applied point and double groups as well as the manipulation of these
data (see Chapter 2). Using the group-theoretical data, the program also supports several
applications of the symmetry. In this thesis work only three applications are considered: (i) the
generation of the molecular geometry and symmetries (Section 3.1); (ii) the vibrational analysis
of the molecule (Section 3.2), which includes the generation of the spectroscopy selection rules

for the nonfundamental vibrational transitions; and (iii) the analysis of the atomic behavior and



splitting of atomic terms due to the external crystal field (Section 3.3). The last task includes
a big number of particular cases (one- and many-electron atom, weak and strong crystal field,

spin-orbit interaction and others).

The important feature of the BETHE program is its flexible structure, which allows to adapt
it for a wide range of applications. Therefore, some ideas for the possible future applications
are collected in Chapter 4. For instance, the program realization of the Wilson’s method
is suggested in Section 4.1. This method continues the vibrational analysis of the molecule.
It helps to define the relationship between the vibrational frequencies and molecular force
constants. Apart from the Wilson’s method, there is a well known phenomenon from molecular
physics, known as the Jahn—Teller effect. This effect consists in the spontaneous distortion of
a molecule due to its vibrational motion and depends on the interaction between the electrons
and the nuclei. The theory of this effect is based, again, upon a group—theoretical analysis of
the adiabatic potential of the (polyatomic) molecule when the electronic states become nearly
degenerated. The question about the geometrical stability of the molecule is then related to the
search of the minimum of the potential surface and can be answered by means of the BETHE
package. The theoretical background of the Jahn-Teller effect and suggestions for its program
realization are described in detail in Section 4.2. The summary of results and short outlook
can be found in Chapter 5, while the Appendix contains the description of all procedures,
implemented into the BETHE. Finally, the three papers on the development of the BETHE
package, which have been published (or accepted for publication) during the last years, are
included at the end of this thesis work.



Chapter 2

BETHE - A computer-algebraic tool

for dealing with symmetry

The BETHE program has been developed to provide a simple and reliable access to the point
group data as required by many applications. Following a brief overview about the program,
we shall explain below how these data can be manipulated in order to solve some particular
tasks. Owing to the interactive design of BETHE, we expect this program of quite common
interest, both in teaching the basic elements of the group theory as well as for advanced research
studies. Therefore, in this chapter we explain how to use this program in order to extract and

manipulate the group data. Dealing with the BETHE is illustrated by a big number of examples.

2.1 Symmetry and the group theory

The group theory is probably one of the most powerful mathematical tools which is used in
quantum mechanics and spectroscopy. Being applied to some quantum-mechanical systems,
this theory allows to simplify the treatment of these systems. Since the group theory has been
worked out a long time ago, here we shall not to go into the mathematical details, but assume
the reader to be familiar with basic concepts of the group theory. From the large number of
available texts on this theory, we refer the reader to the classical books of Wigner [1], Heine
[2], or Elliot and Dawber [7] and many others. Therefore, in this section we give only a brief
outlook of the group theory in order to recall the terminology and notation of the following

applications.

The symmetry of a physical object is known to be determined by the set of transformations
that brings the object to a geometrical configuration, indistinguishable from the original. Such
transformations are called typically symmetry operations. In some more details, five kinds of
symmetry operations are usually distinguished, including (i) the identity operation E (which
leaves the object as it is), (ii) an n—fold rotation C,, about some axis, or (iii) the inversion 7 of
all coordinates at the origin. Moreover, there are (iv) reflection & at some mirror plane, or —
in a combined form — (v) n-fold rotations about some axis, followed by a reflection through a
plane which is perpendicular to this axis (S’n) The symmetry operations are associated with

three different types of symmetry elements, such as a line, plane, or some particular point, with



respect to which one or several symmetry operations can be carried out. The set of symmetry
operations, inherent in some physical object, constitute a symmetry group and are known to
form (finite) subgroup of the continuous group O3 of rotations in three-dimensional space [7, 8].
Since the molecule or cluster must not be shifted in the space by carrying out these operators,
at least one point has to be fixed in space. Therefore, the groups of operators, described above,
are called point groups. These groups are of major interest in chemical sciences. The most
complete tabulation of the group data has been compiled by Altmann and Herzig [3] and has

been utilized as one of the main references in the design of the BETHE program.

While the point groups just allow the geometrical transformation of some object, it is possible
to add the concept of electron spin to these groups. These extended groups are usually called
double groups [8, 9]. They basically arise from the observation that the spin function for a
particle with spin s=1/2 is invariant only under the rotation of 47 (around any axis in the
space). This means, however, that the rotation E by 27 does not give rise to the identity, but
only F?=F. Referring to the spin space of the particle, of course, the (new) element FE com-
mutes with all rotations R,. Hence, for given a group G of such rotations, the corresponding
double group G is generated by appending the new elements E R, = Ry, a = 1,...,g to the
group. As a consequence, the number of symmetry operations is doubled when compared to
the number of the corresponding point group, i.e. without spin. Obviously, if a group contains
the rotation C,, as one of the symmetry operators, then é,? — E and (A)',?" = E in the case
of the double groups. Since the double group is obtained simply by ”doubling” the number of
symmetry operations (due to the non-identical rotation about 27), all operator strings appear
basically twice for the double group, with one of them having a leading capital letter "R”. In
the BETHE program we always support both, the point groups and the corresponding double
groups. The double groups are important in various chemical applications including, for ex-
ample, the theory of transition metal ions and in relativistic quantum chemistry. For instance,
the generation of molecular symmetry orbitals, supported by the BETHE package [10], makes

extensive use the double group parameters.

2.2 Program organization

The BETHE program, created within the framework of MAPLE, has been designed as an inter-
active tool to facilitate the use of the symmetry group theory in physics and chemistry. The
main emphasize was placed on providing a user-friendly tool, which requires neither a detailed
knowledges about the theoretical background, nor the abbreviations and notations, used in the

literature.

In the present version of the program, BETHE provides the group data for all finite groups
of common interest, including the cyclic and their related groups Cj, Cs, Cy, Cpp, Chy, the
dihedral groups D,,, Dpp, Dpg, the improper cyclic groups Sa, (n < 10), the cubic groups
O, T, Oy, Ty, Ty as well as the icosahedral groups I, I;,. The table of classification of these
groups in terms of the group families is presented in Ref. [11]. For each of the groups,
mentioned above, we provide the definition of the symmetry operators, the multiplication law,

character tables, the matrices of the irreducible representations as well as the numbers of other



Table 2.1: Main commands of the BETHE program.

Bethe_decompose_representation()

Bethe_group()
Bethe_group_chain()

Bethe_group_character()

Bethe_group_class()
Bethe_group_direct_product()
Bethe_group_Euler()

Bethe_group_irrep()

Bethe_group_multiplication()
Bethe_group_parameter()

Bethe_group_representation ()

Bethe_group_subduction()

Bethe_group_subduction_O3()

Bethe_group_symmetry|()
Bethe_group_tabulation()

Determines the irreducible components of given reducible group

representation.
Provides the basic point group data and notations.
Displays the chain structure of the point group.

Returns the character of a given irreducible representation and

symmetry operation.
Returns all symmetry operations of the same class.
Returns the direct product of two irreducible representations.

Returns the three Euler angles (o, 3, v) for a given symmetry

operation.

Returns the matrix representation of a given irreducible represen-

tation and symmetry operation.
Returns the product operation of two symmetry operations.
Specifies the symmetry operations in different parameterizations.

Evaluates a few particular group representations as displayed in
Table 3.

Returns the irreducible components, which appear in the decom-

position of the group Glabel to the lower-symmetry group.

Returns the irreducible components, which appear in the decom-

position of the Oz group representation to the lower-symmetry
group.
Determines the symmetry of a given set of points.

Prints the group theoretical data in a table format.

parameters. As said before, all these data are supported for both, the point and double groups.

The BETHE program has been organized in a hierarchical order. It includes more than hundred
procedures which can be invoked either interactively or simply as a language elements in order
to build up commands at some higher level of the hierarchy. In practice, however, only less
than 20 procedures need to be known by the user. These procedures are briefly explained in
Table 2.1 to provide the reader with the first impression about the BETHE program. In order
to distinguish these commands from MAPLE’s internal functions, they all start with the prefix
Bethe_. More detailed information about the arguments and the output of these procedures
can be obtained from the Appendix. Therefore, we do not explain most of the procedures in
details. Let us only make mention of the command Bethe_group(). This command is one of
the most important procedures of the BETHE toolbox. It provides all the basic information
about a particular group, such as the number and names of the symmetry operations, the
number of classes, irreducible representations and many others. The group label (Glabel) is
used in this procedure (as well as in many other procedures) as a first argument in order to

specify the symmetry group. A list of all presently supported group labels is returned by calling



Table 2.2: Optional arguments of the command Bethe_group(Glabel,...).

Keyword(s) Output of the procedure

crystallographic Boolean value true for the crystallographic groups or false.
crystal_system Name of the crystallographic system.

cubic Boolean value true for the cubic groups or false.

cyclic Boolean value true for the cyclic groups or false.

dihedral Boolean value true for the dihedral groups or false.
examples Prints a few examples.

group_table
icosahedral
implemented
irreps

irreps, double
No_Altmann
No_class
No_class, double
No_irregular
No_irreps
No_irreps, double
No_operators
No_operators, double
No_regular
operator_details
operators
operators, double
proper
SpInoT_irreps
subgroups

symmetry_elements

Prints a summary about all the presently supported point groups.
Boolean value true for the icosahedral groups or false.

Boolean value true for the implemented group or false.

List of irreducible representation identifiers.

List of irreducible representations identifiers in the double group.
Number of the tabulation by Altmann & Herzig [3].

Number of classes.

Number of classes in the double group.

Number of irregular classes.

Number of irreducible representations.

Number of irreducible representations in the double group.
Number of symmetry operations

Number of symmetry operations in the double group.

Number of regular classes.

Prints a description of all symmetry operations.

List of symmetry operation identifiers.

List of symmetry operation identifiers in the double group.
Boolean value true for proper groups or false (improper groups).
List of spinor irreducible representation identifiers.

List of subgroup labels.

Prints a description of all symmetry elements.

the procedure Bethe_group() without arguments. A second argument of the Bethe_group ()
command is the keyword, which allows to specify the type of extracted group-theoretical data.
All presently supported keywords are displayed in the Table 2.2 in alphabetic order. Of course,
the output depends on the given parameters and can be either a number, boolean value, a
string, or simply a NULL expression if the procedure just prints some information. Finally,
third argument - keyword double - may be used to obtain the corresponding double group

theoretical data, if appropriate.

Consider, for example, the symmetry group Ds;, which is obtained from dihedral group Ds by
adding three vertical mirror planes and one horizontal plane. The symmetry of this group is
fulfilled approximately by the eclipsed ethane molecule CoHg (see Fig. 2.1). The symmetry

elements and operations of this group are shown below, as returned by the program.
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Figure 2.1: Geometry of the eclipsed ethane molecule CoHg.

e Symmetry operations of the D3 group:

> Bethe_group(D3h, operators) ;

I:IIEII, IIC3+II, IIC3_II’ IIC21‘II’ IIC22(II, IIC23(II, IISB_II, IISB+II,

"sigma_h", "sigma_v1", "sigma_v2", "sigma_v3"]
> Bethe_group(D3h, operators, double);
I:IIEII, IIC3+II, IIC3_II, IIC21(II, IIC22(II, IIC23(II, IISB_II, IISB+II,
"sigma_h", "sigma_v1", "sigma_v2", "sigma_v3",
IIREII , IIRC3+II , IIRCB_II , IIRC21 “n , IIRC22 “n , IIRC23 «n s IIRSS_II s IIRSS+II s
"Rsigma_h", "Rsigma_v1", "Rsigma_v2", "Rsigma_v3"]
e Definition of the symmetry operations.

> Bethe_group(D3h, operator._details);

Description of symmetry operations for the point group D3h:

E Identity operation
C3+ Clockwise rotation about the z(principal)-axis by 2*Pi/3
C3- Anticlockwise rotation about the z(principal)-axis by 2%Pi/3

sigma_h  Reflection through the horizontal (x-y) plane
sigma_vl Reflection through the (sigma_vl)-plane given by the z-axis
and the azimuth angle phi = 0



e Explanation of the symmetry elements.
> Bethe_group(D3h, symmetry_elements);

Symmetry elements of the point group D3h:

Cc_3 3-fold principal axis along the z-axis
S5_3 3-fold improper axis along the z-axis
sigma_h  Horizontal (x-y) reflection plane
sigma_vl Vertical reflection plane

including the z-axis and with azimuth angle phi = 0

During the last years, the BETHE program has been published in the Computer Physics Com-
munications library in several steps [10]-[12]. The full package is distributed by a tar file of the
BETHE root directory (Bethe.tar), which contains the source code library, file .mapleinit,
guide for installation as well as the documentation for the program. The BETHE program can
be invoked like any other module of MAPLE. Then, by using the command with(Bethe) user
may load all procedures and initialize the internal settings of the BETHE package:

> with(Bethe);

Welcome to Bethe

version from 02 January 2006
Bethe_save_framework = nonrelativistic

[AD, Abasis, Bethe_CGC_are_orthogonal,

2.3 Interactive work with the group data

As shown in the previous section, the BETHE package helps to extract the group theoretical
data for particular group. However, the computer-algebraic approach, which realized within the
BETHE package, allows not only extraction, but also interactive use of these data. In this section
we demonstrate, how the symmetry operations of the group Dgy, obtained by the command
Bethe_group(), can be used to obtain the advanced group-theoretical information. As seen
from the output of the previous section, all symmetry operations are handled by means of
appropriate string identifiers. For each of these strings, we can determine the parameterization

of this symmetry operation in terms of Euler angles «, 3, v

> Bethe_group_Euler(D3h, "C3+"), Bethe_group Euler(D3h, "sigma v1");



2 Pi
(o, o, ----1, [0, Pi, O].
3

Apart from this (most widely applied) type of parameterization, one can determine other types

of parameterization. For instance, in terms of the angle ¢ and pole n of rotation

> Bethe_group_parameter (D3h, "C3+"), Bethe_group_parameter(D3h, "sigma v1");

2 Pi
(----, [0, O, 111, [Pi, [0, 1, O]].
3

or in terms of the so-called quaternion parameters

> Bethe_group_parameter (D3h, "C3+",quaternion), Bethe group parameter(D3h,

"sigma v1", quaternion);

L 1/2]
[ 3 ]

(t/2, o, o, ----11, f[o, [0, 1, 0]]
[ 2 1]

Moreover, one of the important group properties, that the product of any two operators must

also be a member of the group, can be easily confirmed in the program

> Bethe_groupmultiplication(D3h, "C3+", "sigma_vi"),
Bethe_group multiplication(D3h, "RC3+", "Rsigma_vl");

"sigma_v3", "Rsigma_v3".

The whole "multiplication table” is then simply obtained by cycling through all pairs of sym-

metry operators.

2.4 Group representations

2.4.1 Irreducible representations

The symmetry operations of the group would be of minor interest, if they would not give rise
to the so-called induced transformations in some given vector space L. The relations between
the symmetry operations and their induced transformations lead to the great simplifications in
describing the molecular systems. Typically, such induced transformations can be expressed by
the matrices and are called the representations T of the group (by assigning one matrix to each
of the symmetry operators Ra) The representation matrices fulfill the same 'multiplication
rule’ like the symmetry operations: T(R,) T(Ry) = T(R,R) and T(E) = 1. The vector space

L, in which these representations are found, is then called the representation space of T and

10



its dimension is the dimension of this representation [7]. In physics, we may usually restrict
ourselves to matrix representations as obtained by choosing an orthonormal basis e, ..., e,
in L: Ty (Ry) = <ej|T(I:2a)|eZ->. More generally, the space L may be considered not only
as a vector space, but also as function space with the orthonormal basis ¢, ..., . The set
of functions y;, ¢ = 1,..n is called basis functions of the irreducible representation T'. Since,
in general, we can choose the basis rather arbitrarily, the representations of a group are not

unique but depend of course on the choice of the coordinates and further parameters.

One of the great benefits of group theory arises from the fact that, for finite groups, any repre-
sentation can be decomposed into — a rather small number of — irreducible representations,
which are unique and independent of the basis up to some unitary transformation. In this
decomposition, of course, the sum of the dimensions of the involved irreducible components
must be equal to the dimension of the considered vector space L. In the BETHE program the
so-called Mullican notation is used to identify the irreducible representations. For the Dgy,

point group, for instance, the string identifiers of irreducible representations are

> Bethe_group(D3h, irreps);
["Al(", "AQ(", "E(", "Al“", "AQ((", "E(("]

In this notation the one-dimensional representations are labeled by A or B in dependence
of whether the character of the rotation about the principal axis is +1 or —1, respectively.
In addition, the two—, three— and four—dimensional representations are labeled by E, T', and
F. The five- and six—dimensional representations, appearing in some high-order groups, are
denoted by H and I, respectively. Integer subscript is used to indicate the symmetry with
respect to the binary axes, perpendicular to the main rotational axis, while primes and double
primes denote the symmetry with respect to the horizontal reflection plane. First irreducible
representation in the list, returned by the procedure Bethe _group(Glabel, irreps), is always
totally symmetric, that is it has the characters x = +1 for all of the symmetry operations of
the underlying group. In addition to the point group (vector) representations, the list of the
double group irreducible representations includes also so-called spinor representations, marked

by the half-integer subscript.

> Bethe_group(D3h, irreps, double);
["Ai‘", nA2tn’ nEtn’ "Ai“", nA2ttn, nEttn’ "E1/2", HE3/2H’ "E5/2"]

The number of the spinor representations not exceed the number of the vector representations.
For each of these representations, the BETHE program provides either the explicit matrix
or simply the character, that means the trace of corresponding matrix. The characters are
sufficient for most practical applications. For instance, for the (two-dimensional) irreducible

representation E* of the group D3, the character and explicit matrix can be obtained as

> Bethe _group_character(D3h, "E‘","C3+"), Bethe group_irrep(D3h, "E‘","C3+");
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L 1/2 ]

[-1/2-1/213 0 ]
-1, [ ]
L 1/2]
[ 0 -1/2+1/213 1]

or, for the spinor representation F /;

> Bethe _group_character(D3h,"E1/2","C3+") ,Bethe group_irrep(D3h,"E1/2","C3+");

[ 1/2 ]
[1/2 - 1/2 1 3 0 ]
1, [ ]
[ 1/2]
[ 0 1/2 +1/2 13 ]

Moreover, the list of characters (matrices) for all operators as defined above can be obtained

> Bethe_group_character(D3h, "E‘"), Bethe_group_irrep(D3h, "E‘"):
[2’ _1’ _1’ O’ o’ O’ _1’ _1’ 2’ o’ O, o]

where the full printout of matrices is omitted here by using a double point at the end of the line.
The characters of a group representation are often denoted by x and can be used, for instance,
to determine the number of (inequivalent) irreducible representations, which are ’involved’ in
some reducible representation (see below). From these few examples it becomes clear how the
corresponding data for other representations and symmetry operations can be extracted from
the BETHE program.

2.4.2 Reducible representations and their reduction

Equally to the irreducible representations of the symmetry group, so-called reducible repre-
sentations are of the great importance in various applications. For instance, in the vibra-
tional spectroscopy the representation, generated by a set of 3N Cartesian basis vectors (for
N-atomic molecule) is useful [13]. Another applications require to construct the reducible rep-
resentation generated not by the vectors, but by the mathematical functions [14]. A number
of reducible representations can be generated within the BETHE package by calling the proce-
dure Bethe_group_representation(Glabel, ...). The second argument of this procedure is
the keyword, which specifies the type of required representation. In Table 2.3 we display the
presently supported keywords of this procedure.

Let us demonstrate, how to obtain the representation, generated by the set of spherical har-
monics Y}, of rank 1. To achieve this, the keyword Y1lm has to be used. Moreover, the third
argument [ = 1 specifies the parameter [ of the function Yj,,. This reducible representation can

be obtained either in terms of characters for every symmetry operation of the group Dsp
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Table 2.3: Optional arguments of the procedure Bethe_group_representation(Glabel,

Keyword

Output of the procedure

polar_vector
azial_vector

Representation, generated by the polar vector r=(z,y, z).
Representation, generated by the axial vector R=(Rgz, Ry, R-).

Yim Representation, generated by the spherical harmonics of rank I, ie. of
Sflm(97 @)7 m = lvl - 17 R —l.
Jm Representation, generated by the spinor function |jm) of half-integer rank j,

cartesian_tensor
Fuler

ie. of [ym), m=34,7—1,...,—].
Representation, generated by the cartesian tensor functions of given rank.

Euler representation of the group

.

regular Regular representation of the group
total Total matrix representation of the group for a given set of atomic displacements
vibrational Representation of the vibrational motion for a given set of atomic displace-

ments

> wa := Bethe_group representation(D3h, Ylm, 1);
wa := [3, 0, O, -1, -1, -1, -2, -2, 1, 1, 1, 1]

or in terms of explicit matrices

> wamat := Bethe group representation(D3h, Ylm, 1, matrix);
[ 1/2 ]
[1 0 0] [-1/2+1/213 0 0 ]
[ 1 [ ]
wa_mat := [[O 1 0l, [ 0 1 0 1,
[ 1 [ ]
[0 0 11 [ 1/2]
[ 0 0 -1/2-1/2 13 ]

As seen from result, the obtained representation is three-dimensional. Generally, the dimension
of reducible representations is not restricted. Some representations, especially those, which are
used in the vibrational spectroscopy, are of the very large dimension. To simplify the dealing
with such (highly-dimensional) representations, we can transform each matrix of the reducible
representation into a number of irreducible representation matrices. This can be achieved by

applying the so-called reduction formula [7, 8]

T o= > m,TY (2.1)
Y
1
my = = > XaXg s (2:2)
R
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where T is the reducible representation and T() are irreducible representations of the group,
while the number m., indicates how many times every irreducible representation T®) is found in
the reducible representation T'. Moreover, h denotes the order of the group, R - the symmetry
operation of the group, x - the character of the reducible representation 7" and Xg) - the
character of the irreducible representations 7). The dot over the summation sign in the
Eq. (2.1) denotes that this is not the usual matrix summation but the direct sum of matrices
[15]. This symbol for the summation means that by use of some transformation, the reducible
representation matrix 7' can be presented as a set of irreducible representation matrices 70,
arranged down the diagonal (see Ref. [12] for details). The BETHE program provides the
reduction of the reducible representation to the irreducible component, based on the reduction
formulas (2.1) and (2.2)

> Bethe_decompose _representation(D3h, wa);
[uEt " s IIA2( 4 n]

As seen from result, the three-dimensional reducible representation wa consists on the irre-

ducible components E‘ and As“.

2.4.3 Direct product of the representation and its decomposition

In some applications of symmetry the so-called direct product of irreducible representations is
important. The direct product of irreducible representations is equivalent to the direct product
of corresponding matrices. Although the matrix direct product is widely known [16, 17], we
will briefly remind, that the direct product of a n x n matrix A and m x m matrix B results
in the nm X nm matrix denoted by A ® B. The character of direct product matrix A ® B is
given by the product of the characters of matrices A and B. In the group theory the direct
product T(® @ T3 of two irreducible representations T(® and T(?) of the symmetry group
G is again a valid representation of the group, but generally reducible. Therefore, it can be
decomposed to the irreducible components T(?) according to the expressions (2.1) and (2.2)
where T = T @T®) and the coefficients m., are obtained from the characters of the irreducible
representations 7@, T and TO) involved. Decomposition of the irreducible representation
direct product can be achieved in the BETHE package. For instance, for the group Ds; the

program can return characters of the direct product of E‘ with A‘; or with itself

> Bethe group_direct_product(D3h, "E¢", "A1¢", characters);
Bethe group_direct_product(D3h, "E‘", "E¢", characters);

2, -1, -1, 0, 0, 0, -1, -1, 2, 0, 0, O]
4, ¢, 1,0,0,0, 1, 1, 4, 0, 0, O]

Apart from the characters, the explicit matrices of the direct product representations can be
returned by use of keyword matriz. Moreover, then program can automatically produce the

decomposition of the direct product

> Bethe_group.direct_product(D3h, "E¢", "A1‘"),
Bethe group direct_product(D3h, "E‘", "E‘");
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As seen from result, the two-dimensional direct product E‘® A1 is irreducible (since the totally
symmetric irreducible representation A‘; does not change any other representation), while the
four-dimensional direct product E‘ ® E‘ is decomposed to the three irreducible components
A, A’y and E-.

The direct product of the irreducible representation with itself 7(® @ 7@ can be divided on
the so-called symmetrized and antisymmetrized parts. These parts are denoted by [T(O‘) ® T(a)]
and {T(®) @ T(®)} respectively; of course, [T(o‘) ® T(a)] +{T® @ T} = 7@ @ T(®), The
meaning of the symmetrized and antisymmetrized parts of the direct product refers to the basis
functions of the direct product representation, as described in Ref. [8, 18]. Therefore, we do not
give the detailed explanation of it. Note only, that the basis functions of the symmetrized part
keep the form under the interchange of the parent irreducible representations basis functions,
while the basis functions of the antisymmetric part reverse the sign. The symmetrized and
antisymmetrized parts of the direct product can be obtained by the BETHE program using the

corresponding keywords

> Bethe_group.direct_product(D3h, "E¢", "E‘", symmetrized);
Bethe_group_direct_product(D3h, "E‘", "E‘", antisymmetrized);

["Al(", llE(ll], ["AQ("]

The totally symmetric irreducible representation of the group is always included into the sym-

metrized part.

In this Chapter the capability of the BETHE package to extract and manipulate the group
theoretical data is demonstrated. In the next Chapter we will show, how these data can be

used in different applications in physics and chemistry.

15



Chapter 3

Application of BETHE on physics of

molecules and clusters

As said before, the theory of symmetry plays a very important role in modern physics and
chemistry. The symmetry consideration helps to solve a number of research problems. In
this chapter we demonstrate how the computer-algebraic approach can simplify the dealing
with particular symmetry applications. These applications include the derivation of molecular
symmetry, the interaction of molecules with the radiation field as well as behavior of atomic
energy levels in the external crystal field. The examples from the BETHE, presented in this

chapter, give the impression of what this program is able to do.

3.1 Molecular geometry and symmetries

A simple, but very frequently occurring task in physical chemistry refers to the specification
of the molecular symmetry and geometry [19, 21]. If the symmetry of a molecule or cluster is
known, for instance, we might raise the question about the atomic coordinates. Certainly, it
can be achieved if the coordinates are given for just one or few atoms from each set of equivalent
atoms under the symmetry operations of the group. Vice versa, we may wish to determine the

(highest) symmetry of a molecule if the atomic coordinates are given.

To demonstrate how to simplify this task by use the BETHE package, let us consider again
the eclipsed ethane molecule (CyHg), mentioned in the previous chapter. This molecule is
known to obey a Ds;, symmetry with the two carbon atoms on the central axis, ”sandwiched”
between two identical parallel Hs rings, as displayed in Fig. 2.1. Therefore, there are two sets
of equivalent atoms: two carbon atoms and six atoms of hydrogen. To define the symmetry of
every atom, we can choose one carbon atom at the position (0,0, a) along the z-axis, while one
of the hydrogen atoms - at the position (b,0,c) (see Fig. 2.1). Using the BETHE program, we

obtain

> w_carbon := Bethe generate_sites(D3h, [0,0,a]); w hydrogen :=
Bethe generate _sites(D3h, [b,0,c]);

w_carbon := [[0, O, al, [0, O, -a]l
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b 3 b 3
w_hydrogen := [[b, 0, <], [- b/2, - —————- , cl, [-b/2, —————- , cl, [b, 0, -c],
2 2
1/2 1/2
b 3 b 3
[- b/2, - ————- , —c], [- b/2, —————- , —cll
2 2

Sometimes it is useful to determine the symmetry of a molecule, if the coordinates of all the
equivalent atoms are given explicitly. For example, we may ask, whether the (two sets of the)

carbon and hydrogen atoms altogether obey a Cs; symmetry

> Bethe_group_symmetry(C3h, w_carbon, w_hydrogen) ;
true

or even a Dsy symmetry

> Bethe_group_symmetry(D3d, w_carbon, w_hydrogen) ;
false.

These two answers are, of course, not very surprising because Cs;, group is known to be a
subgroup of Dsp, while the Dsg group is not. Moreover, for a given set of coordinates (of

equivalent atoms), we can determine automatically the group with highest symmetry

> Bethe_group_symmetry(highest, w_carbon, w_hydrogen) ;
D3h

which confirms our assumption above about the symmetry of eclipsed ethane.

Of course, the examples, presented above, are trivial. However, they show how one can easily
generate the atomic coordinates and symmetries and utilize them in other applications, for

instance for determining the normal coordinates of a molecule as we consider in the [11].

3.2 Molecular vibrations and vibrational spectroscopy

Of course, in most cases the generation of the molecular geometry and symmetry is not self-
sufficient, but only intermediate problem of some more important applications. One of such
applications is the molecular vibrations and vibrational spectroscopy. Vibrational spectroscopy
is known as the experimental tool in order to resolve the structure and bonds of molecules, or

to understand their adsorption at surfaces [22, 24]. Two experimental methods of vibrational
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spectroscopy are widely used today: infrared and Raman spectroscopy which are based on quite
different physical principles. While, for instance, infrared spectroscopy concerns the absorp-
tion of (infrared) light by a molecule, owing to its vibrational frequencies, Raman spectroscopy
refers to the scattering of light. The infrared spectroscopy can therefore be taken as a direct
measurement of the vibrational frequencies whereas, in Raman spectroscopy, they just occur as
the differences in the frequencies of the incident and the Raman—scattered light, respectively.
For the interpretation of the vibrational spectra and derivation of the geometrical structure
of underlying molecule and clusters, so-called selection rules are widely used. These rules
are rather different for infrared and Raman excitations of the molecule. Whereas in infrared
spectroscopy the occurrence of a vibrational transition requires a change in the electric dipole
moment of the molecule, Raman lines go along with a change in the polarizability during the
vibration. Therefore, the selection rules for infrared and Raman transitions are widely used
to interprete the vibrational spectra and to derive the geometrical structure of the underlying

molecules and clusters.

For the treatment of the observed infrared and Raman spectra the theory of the point group
is used to extract most relevant information about the molecules. In particular, the point
group theory can define the spectral activity of polyatomic molecules or, by other words, to
answer the question, which vibrational transition is allowed in the infrared and Raman spectra
[18, 25, 27]. Therefore, in this section we demonstrate how to apply the BETHE package for
the analysis of the vibrational spectra. We start from the analysis of vibrational transitions
and their classification. Since the group-theoretical approach to the vibrational analysis was
described in Ref. [11] we will recall it very briefly just in order to demonstrate how computer
algebra may simplify the vibrational analysis, even if the complex molecule is involved in the

experiment.

3.2.1 Classification of vibrational transitions

According to the Born-Oppenheimer approximation, we can consider the molecular vibrations
independently of the states and motion of electrons. The vibrational motion of the N-atomic
molecule, in which its interatomic distances and internal angles change periodically without
producing any rotation or translation of the molecule as a whole, can be simply classified in
terms of 3N — 6 normal modes. Most easily this is seen by means of the total vibrational wave

function

U(n1,n,....ngn—6) = | [ ¢n, (Qk) (3.1)

which can be presented as the product of the oscillator functions 1, (Qy), associated with the
normal coordinates Q, k = 1,2,...,3N —6 [11]. For a wide range of temperatures and pressures
the molecule is found predominantly in the vibrational ground state, where all n; = 0. Several
types of transitions from the ground state to the excited vibrational states can be distinguished

in the molecule:

o Fundamental transitions: These transitions connect the ground level and the first excited

level with just a single quantum incorporated in one of the normal modes. For instance,
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n; = 1 while np = 0 for k& # j. The fundamental transitions are typically more
intense that any other kind of transition by at least one order of magnitude; their typical

frequencies are in the infrared region of about ~ 100-5000cm ™.

e Quertones: These transitions occur when a mode is excited beyond the first excited level
with a single quantum. It means, that n; > 1, n; = 0 for £ # j. Since the transition
to the first excited level is fundamental, transitions from the ground level to the m-th

excited level is called (m — 1)-th overtone.

e Combination bands: These transitions are observed if more than one vibration is excited.
By other words, a molecule has acquired two or more vibrational quanta, distributed

among two or more modes (n; > 1,n; > 1,....k #1,j,...)

e Hot bands are observed when an already excited vibration is further excited. The intensity
of the hot band is usually very weak. However, since the population of the initial state
increase with increasing the temperature, the intensity of the hot band will increase with

temperature. Hence the name ”"hot band” [18].

e QOccasionally so-called difference bands can be detected. These bands occur when the
molecule, which is already in a vibrationally excited state, gains another vibrational
quantum, while losing the one it possessed originally. Such bands are rare, since few

molecules exist initially in excited states except at high temperatures [14].

Before to analyze the vibrational transitions, the vibrational motion of the molecule should be
classified. This classification can be performed by the group theoretical considerations. Having

() of a molecule as described in the [13],

generated the reducible vibrational representation 7T'
the normal vibrations can be obtained from the decomposition of this representation into its

irreducible components according to the expressions (2.1) and (2.2)

700 =3 "1 (3.2)

From this decomposition one can define the symmetry type T(® of every normal mode and a
number m, of modes with a particular symmetry T(®. Moreover, the degree of degeneracy
for every frequency refers to the dimension of corresponding irreducible representation 7(¢).
The number of vibrational modes of the molecule is given by the total number of irreducible

representations, appearing in the Eq. (3.2).

3.2.2 Selection rules for the infrared and Raman spectroscopy

The group-theoretical basis for determination the spectral activities of the vibrational modes
is described in [13, 14, 18]. The computer algebraic approach to the vibrational problem is
explained in Ref. [11]. Moreover, in the section 4.2 of this paper a number of examples how to

determine the spectral activity of fundamental transitions is presented. In this section we will
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deal only with the overtones and combination bands — most frequently occurred nonfundamen-
tal transitions. For these transitions we will apply the selection rules, which tell us whether

the particular vibrational mode is active in one or the other or both types of the spectra.

The spectral activity of the molecules can be defined by analyzing the irreducible components
which are associated with the upper and lower states of some given transition. However, in case
of the nonfundamental transitions, care has to be taken about the degeneracy of the normal
modes involved and the number of photons. Consider, for instance, overtone. In case of the
nondegenerate vibrations, the spectral activity of overtone can be defined similarly as of the
fundamentals. The only distinction occurs, if the number of photons n; is even. In this case
the final state (overtone) function is always totally symmetric. To illustrate this, we use, to
be successive, the example of M3 molecule with three identical atoms at the corners of an
equilateral triangle (for instance, the carbon atoms in cyclopropane). The classification of the
vibrational modes and selection rules for fundamental vibrational transitions of this molecule
were performed in Ref. [11]. For the first overtone (transition from the ground to the second

excited state) of this molecule in the A} vibrational mode we have

> Bethe_spectral_activity(D3h, "A1’", infrared, 2);
false

> Bethe_spectral_activity(D3h, "A1’", Raman, 2);
true

where the number of photons is provided by the fourth argument. As seen from the output, the
first overtone of the A} mode is forbidden in the infrared spectrum but allowed in the Raman

spectrum.

In order to determine the possible symmetries of the excited states for degenerate modes a
number of general formulas have been derived in the literature [18]. For the doubly-degenerate

vibrational mode, for example, the characters x,(R) of the vibrational representation of every

symmetry operation R have to be calculated for the v-th level using the recursion formula
xo(B) =172 [x(R)xo-1(R) + x(R)] (3.3)

where X(]A%” ) is the character for the operation JA%, carried out v times. Being decomposed to the
irreducible components by the usual technique (see Eq.(2.1)and (2.2)), this representation gives
a number of irreducible components. These components define the symmetry of corresponding
level of doubly degenerate vibration. Then the spectral activity of the degenerate mode can
be determined. This quite tedious process is realized within the BETHE package. For instance,

for the doubly-degenerate E’ vibration of M3 molecule we have

> Bethe_spectral_activity(D3h, "E’", infrared, 2);
true

> Bethe_spectral_activity(D3h, "E’", Raman, 2);

20



true

The first overtone of the E’ vibration is allowed in both spectra. Spectral activity of the

triply-degenerate vibrations, where the recursion formula for characters has a form Ref. [18]

xo (1) = % 2X(R)xv-1(R) + % {X(B) = x2(R)} xoa(R) + x(RY) |, (3.4)

can be also defined in the BETHE package.

Combination bands are not much more complicated. As said before, the combination transition
process includes several vibrations. In this case the symmetry of excited state can be obtained
from the direct product of the symmetries of particular modes. If some of the included modes
are degenerate, one has to use the expression (3.3) or (3.4) to evaluate corresponding symmetry.
The transition moment integral, calculated with the corresponding symmetry of final state gives
the desired answer about the allowance of the combination transition. Consider the example
of combination, where the transition in the mode A} to the second excited state occur together
with the transition of £’ mode to the first excited state. Using the BETHE package we obtain

> Bethe_spectral_activity(D3h, ["A1’, "E’"], infrared, [2,1]);
true

> Bethe_spectral_activity(D3h, ["A1’, "E’"], Raman, [2,1]);
true

This result shows, that the combination {A] : 0 — 2; E' : 0 — 1} will be allowed in both
spectra. It does not mean, that this combination will be strong in both spectra. It only means,

that it may have some nonzero value.

Thus, we have shown, how overtones and combination bands can be treated by the BETHE
package. Although these transitions are generally much less intense then the fundamental
transitions, they may in some cases be more pronounced than a weak fundamentals. Of course,
the presence of such intense nonfundamental transitions in the infrared and Raman spectra
can introduce complications in the vibrational analysis. Occasionally, however, they can be
useful, since totally inactive fundamentals may be active as overtones or combination bands in
the infrared or Raman spectra, and this can give approximate frequencies for such vibrations
[28, 29]. Therefore, the analysis of the nonfundamental activity, supported by the BETHE

package is very important.

3.3 Crystal field splitting

Apart from the vibrational spectroscopy, the symmetry properties of a system are reflected also
by the splitting of the ground-state levels of ions, placed into an (external) crystal field. The
behavior of the energy levels in the crystal field helps to recognize the structure of atoms and

ions and to understand the nature of the bonding in transition metal complexes [30, 31, 32]. In
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this section we explain, how BETHE package helps to analyze such systems. Since the discussion
of the energy levels in the crystal field reveals the relationship between the wavefunctions, the
energy levels of the quantum system and the irreducible representations of its symmetry group,
the use of the symmetry theory in the quantum mechanic will be briefly recalled. Some details

about group-theoretical treatment of the crystal filed splitting reader can find also in Ref. [12].

3.3.1 Use of symmetry in the quantum mechanics. Wigner theorem.

The basis functions of the irreducible representations, mentioned in the Section 2.4.1, would be
of minor interest, if they did not have the physical meaning. In quantum physics these functions
can be interpreted as a wave functions of the molecular systems and help to classify these
systems in accordance to their symmetry. Actually, the behavior of the stationary quantum

system is determined by the wave function v, which is solution of the Schrédinger equation
ﬁ¢n = En¢n7 (3'5)

where H is the Hamiltonian of the system, E, is the energy of n-th level (i. e. its eigenvalue) and
1y, s the corresponding eigenfunction. Let us assume the fixed positions in the space for every
nuclei in the molecule. Then the Hamiltonian contains the kinetic energy operators of all valence
electrons, the Coulomb energy of their repulsion as well as the potential energy of electron-nuclei
interaction. Obviously, the point group symmetry operations R change neither the electron
kinetic energy nor the interaction between electrons. Moreover, even the potential energy of
the electron-nuclear interaction is not changed under the symmetry operations (because all
nuclei are going into the undistinguished positions). Therefore, the Hamiltonian is invariant
under the point group transformations. Mathematically, this statement can be expressed as
T(R) H T~'(R) = H for all operations R of the symmetry group G. The invariance of
the Hamiltonian under a particular group of transformations means that the quantum system
"belongs to” this symmetry group. In this case each of the eigenvalues F of the Hamiltonian is
associated with a certain representation of the group GG, while the corresponding eigenfunctions
Yi(r) (i =1,..,s) form a basis of this representation. Moreover, the degeneracy of the energy
level E is equal to the dimension s of this representation. Thus, each energy level of the
system is related to a certain irreducible representation of the symmetry group. Corresponding
wavefunctions form the basis of these irreducible representations. Every of these functions
belongs to some component of an irreducible representation (or to row of corresponding matrix)
of the symmetry group. This statement is called the Wigner theorem. This theorem allows to
classify the quantum states of the symmetry system according to the irreducible representations

of its symmetry group.

3.3.2 One-electron states in a crystal field

In order to explain the qualitative behavior of an atomic levels in a crystal field, we start
from the atom, having the single electron in the valence shell of the transition metal. It is
known, that the states of this atom belong to the continuous group O3 Ref. [7, 8] and can be

described by the spherical functions Y}, (¢, ¢). These functions are known to be degenerate in
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a) b)

Figure 3.1: Atom in the crystal environment of an a) octahedral configuration Op; b) tetrahe-

dral configuration Dyy,.

m = —1,—l+1,...,1 for the free atom and can be presented as
1 .
Vim0, 9) = 5=Oum(9)e"™, (3.6)

(leaving out the radial and the spin part of the wave function for the present). The symmetry
of O3 group is higher then the symmetry of any finite point group. If atom is placed into the
crystal environment, its symmetry is decreased. Lowering the symmetry results in the splitting
of energy levels. Therefore, the classification of the atomic states in the crystal field is based on
the decomposition of the O3 group representation to the irreducible components of the crystal
symmetry point group, as described in section 3.4.2. In order to make this decomposition,
the representations of the crystal symmetry point group in the basis of the spherical functions
Yim (¥, ¢) have to be found. As shown in Ref. [8, 13] the matrix representation, generated by

such a function for any rotation by the angle o has a form

etler 0 . 0 0
0 ell=Ne o 0 0
TO(R,) = | P : (3.7)
0 0 ...oeTil=ha g
0 0 ... 0 g ila

In the BETHE program we can evaluate this representation for the atom in the crystal envi-
ronment. Consider, for instance, the atom, placed into the octahedral environment. It means,
that this atom is sixfold coordinated with crystal atoms, as shown on Fig. 3.1 a). Clusters of
such type are mentioned very often in the literature. For instance, the manganese oxide cluster
MnOg, which is important for the phenomenon of colossal magnetoresistance [33]; another
example - chromium bromide CrBrg, magnetic properties of which are discussed in Ref. [34].
The behavior of the atomic energy levels of the central atom in the field of crystal atoms can

help to clarify the magnetic structure of these clusters.

Let us start from the assumption, that the atom, placed into octahedral environment, has one

d-electron in the valence shell. Although the full symmetry of the octahedron is Oy, we can
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gain all required information about the d-orbital by using only the pure rotational subgroup
O, because Oy, may be obtained from O by adding the inversion operator. However, d-orbitals
are even to the inversion, so that it is only the pure rotational operators of O will bring us
new information. Thus for the point group O we obtain the representation, generated by Yj,,

functions for d-electron

> Bethe_group representation(0, Ylm, 2);

where the Ylm is the keyword and the third argument [ = 2 refers to a single d-electron,
Here we have restricted ourselves to the characters of the representation. The full matrix
representation would be obtained from the same command by adding the keyword matriz as

a fourth argument.

The representation, generated by Yy, (9, ¢) functions is (generally) reducible in the crystal point
group. Therefore the irreducible components of this representation can be obtained according
to the Eq. (2.1) and (2.2). These components serve to classify the one-electron states in crystal
field. In particular, the sum over «y of the integers m., shows the number of atomic energy levels
as it will occur for the (214 1)-fold degenerate level of the free atom. Moreover, the degeneracy
of every level is seen from the dimension of corresponding component T™). Decomposition of
the representation, generated by Y}, (19, ¢) functions, to the irreducible components is provided

by the program
> Bethe_decompose _representation(0, wa);
Wb c= ["E", ||T2||]

i.e. the five-fold degenerate level of the d electron is split by the octahedral environment into
two levels, the doublet E and the triplet 75. This is seen from the Fig. 3.2 a) and b). This
diagram (as well as other splitting diagrams of this section) is purely qualitative and does not
demonstrate the relative energies of the levels. For other symmetries of the external crystal
field, of course, the representation T") in Eq. (3.6) might be irreducible, leaving the ionic level

degenerated as before.

As the result of some additional interactions and perturbations, the shape of the external
crystal can be distorted. In this case, owing to the reduction of the symmetry of the system, a
further level splitting is expected. If, for example, the octahedral symmetry of the crystal field
from above is reduced to a D4, symmetry (as shown on Fig. 3.1 b), the further level splitting

of the E and T5 levels can be obtained by carrying out a subduction of the group

> Bethe _group_subduction(0, "E", D4); Bethe group_subduction(0, "T2", D4);

["Al" S "Bl"]
I:IIBQII’ "E"]
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free — O — Dy
a) b) C)

Figure 3.2: d-level splitting in the crystal field: a) d-level of free atom; b) splitting in the

octahedral environment; c) splitting in the tetragonal environment.

and which shows that each of these levels is split now into a pair of (sub-) levels with only one
(E) still being degenerate (see Fig. 3.2 c¢)). Here the group label Dy, is changed to Dy by the

same reason as for Oy symmetry.

3.3.3 Many-electron states in a crystal fields

The method of the classification of one-electron states in crystal field, explained before, can be
quite easily generalized also to the case of the many-electron atom or ion, taking Pauili’s prin-
ciple into account. Owing to the coupling scheme and the inter-electron interaction, however,
two cases need to be distinguished: the case, when the crystal field is weak in comparison with
the electron-electron interaction within the valence shell and the case of the strong field, where
the crystal field is stronger, then the electron-electron interaction. Consider first the case of
the weak crystal field. If we neglect the spins of electrons, the splitting of a given (LS-) term
with total angular momentum L is the same as for a single [-shell electron. It arises from the
fact, that the ®(¢) factor of the wave function for L term is e'™? in exact analogy to the factor
e"™? in the wave function of single electron. For instance, for atoms or ions with an outer d?
configuration, we have the five LS terms 3F, ' D, 3P, 'G and 'S Ref. [13]. To get the splitting
of these terms we have to (i) generate the representation of Y7, functions for every term and
(ii) decompose these representation to the irreducible components (like in previous section).
The irreducible components, obtained in this decomposition, classify the splitting of many-
electron terms. Within the BETHE program, these two steps can be done automatically by the
procedure Bethe _group_subduction 03(), which generate the irreducible components of the
spherical harmonic Y7 ;s representation with given L. For instance, for the terms, mentioned

above, we have

> we_S:=Bethe_group_subduction 03(0, 0); we_P:=Bethe_group_subduction_03(0, 1);
we_D:=Bethe_group_subduction 03(0, 2); we_F:=Bethe_group_subduction 03(0, 3);
we_G:=Bethe_group_subduction 03(0, 4);
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Figure 3.3: Energy levels of d?-ion in an octahedral crystal field: (a)free atomic states; (b) a
weak crystal field; (c) a strong crystal field and weak interelectronic repulsion; (d) infinitely

strong crystal field (degeneracy of the energy levels is not shown).

we_S := ["A1"]

we_P := ["T1"]

we D := ["E", "T2"]

We_F c= ["AQ", "Tl", "T2"]
we_G c= ["Al", "E", "Tl", "T2"]

This result is demonstrated on Fig. 3.3 a) and b). Note, that the spin multiplicity of the split
terms will be the same like for the original LS terms, because the crystal field does not interact

directly with the spin of electrons.

The classification of the atomic states in the crystal filed, given before, is followed from the ap-
proach, where the crystal field is considered as a perturbation influencing the electronic states
of a free atom or ion. Such approach can be used only if the crystal field is weak in comparison
with the interelectron interaction. A rather different level splitting is found if the crystal field
becomes comparable or even stronger than the interaction among the electrons in the valence
shell. In this case the action of the crystal field on each electron should be considered first and
then the interelectron interaction is taken into account as a perturbation. According to this
scheme, in the first stage of classification, we omit the interelectron interaction. The repre-
sentations (3.6), generated by one-electron wave functions have to be found for every electron

separately, and then decomposed to the irreducible components. Consider again an atom with
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d? configuration, placed in the strong octahedral field. Using the results from above for the
splitting of a single d-electron (see section 4.3.2), we have the one two-dimensional component
FE and one three-dimensional component 75. In the strong crystal field the electrons begin to
couple in certain way, giving rise to a set of states of the entire configuration. For example, for
two d-electrons in the presence of the strong field we have three possible configurations EFF,
ET5 and T5T5. To define the symmetry properties of the corresponding states, we have to take
the direct product of the representations of the single electrons. Decomposition of this direct
product classifies the term splitting in the presence of the strong crystal field. For instance, for

the configuration 1575 we obtain

> wd := Bethe_group_direct_product(0, "T2", "T2");
Wd = [llAlll, IIEII’ ||T1||’ ||T2||] .

This result shows that the degenerate level T5T5 is split in the crystal environment into four
sublevels with symmetries Ay, E, T1 and T3 (see Fig. 3.3 ¢)-d)). Behavior of the levels in the
configurations FE and ET5 can be obtained by the same procedure. As seen from the Fig.
3.3, there exist a one-to-one correspondence between the states of the atom in the weak and in

the strong crystal field.

Similarly like above for the one-electron terms, the BETHE program help to define the splitting
of the many electron levels in the low-symmetry crystal filed, i.e. when the symmetry of the

surrounding crystal is distorted.

3.3.4 Spin-orbit interaction in a crystal field

In the previous sections we have shown how to determine the splitting of the states, character-
ized by integer values of the angular momentum quantum number [ or L. There are, however,
many cases of interest in which the concept of electron spin is important and we may want to
determine the splitting of a state, characterized by its total angular momentum J. This will be
the thing of importance in the number of phenomena, such as Zeeman effect and many others
[35, 36]. Since the concept of electron spin is included, the theory of the point groups can not

be applied to analyze such splitting. Therefore, one needs to use the double symmetry groups.

Consider the spin-orbit splitting in the case of one d-electron in an O cubic field. Like before,
we should consider separately the cases of the strong and weak (in comparison with the spin-
orbit interaction) crystal fields. If the cubic field is stronger than the spin-orbit interaction, we
should neglect the spin-orbit interaction at the first stage and define how the degenerate state

of free d-electron is split in the crystal field
> Bethe_group_subduction 03(0, 2);
["E", ||T2||]

We obtain two levels, related to the irreducible representations T and £. With allowance of
spin the orbital multiplet 2T will be not three-, but six-fold degenerate. To obtain the splitting
of this level resulting from the spin-orbit interaction, we need to take the direct product of the

irreducible representation 75 and the irreducible representation F /; of the double group O
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Figure 3.4: D-level splitting in the octahedral and tetrahedral fields (a) according to the scheme

free — O — O — Dy; (b) according to the scheme free — O — Dy — Dj,.

> Bethe_group_direct_product(0, "T2", "E1/2");
[||E5/2||’ ||F3/2||]

According to the Wigner theorem, each irreducible representation is related to a certain energy
level. It means that the spin-orbit interaction splits the 27, term into a doublet Fj /2 and
quadruplet Fj /o, called fine-structure levels (see Fig. 3.4 a)). Appearance of the double valued
irreducible representations for one-electron atom is reasonable: the fine structure levels in a
crystal field are enumerated either by single-valued irreducible representations (for even number
of electrons) or by double-valued irreducible representations (for odd number of electrons).

Similarly we can consider the term 2E, for which we obtain
> Bethe_group_direct_product(0, "E", "E1/2");
["F3/2"]
The existence of one irreducible representation indicates that in the cubic field term 2E is not
split by the spin-orbit interaction.

Imagine now that the octahedral complex O is tetragonally distorted to the Dy symmetry. If
the tetragonal field is weaker than the spin-orbit interaction, we need to make the subduction

of the O group irreducible representations, obtained above, to the group D4. We obtain

> Bethe_group_subduction(Q, "E5/2", D4);
Bethe group_subduction(0, "F3/2", D4);
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[[I|E3/2I|]] s [[llEl/zll, I|E3/2I|]]

Corresponding splitting is shown on Fig. 3.4(a). The scheme, realized before is free — O —
O — D4

Consider the case, where tetrahedral field is strong in comparison with the spin-orbit interac-
tion. In this case it seems to be reasonable to take into account the crystal field, not focusing
the attention on the spin-orbit interaction as the first consideration. In other words it is con-

venient to proceed from the tetragonal components of 275 and 2FE following the reduction from
O to Dy.

> Bethe _group_subduction(0, "T2", D4); Bethe group_subduction(0, "E", D4);
[["B2" s "E"]] s [["Al" s "Bl"]]

and then include the spin-orbit interaction by the direct product with the double-valued irre-

ducible representation (scheme free — O — Dy — Dy)

> Bethe_group.-direct_product(D4, "B2", "E1/2");
Bethe group direct_product(D4, "E", "E1/2");
Bethe group_direct_product (D4, "Al1", "E1/2");
Bethe group_direct_product(D4, "B1", "E1/2");

[llE3/2ll] s [I|E1/2I| R I|E3/2I|] s [llEl/Qll] s [llE3/2ll]

This result, of course, coincide (qualitatively) with the result already obtaining. The transition

from a weak to a strong spin-orbit interaction is expressed by the Fig. 3.4 b).

Of course, we can suppose already at the beginning, that in the system with one d-electron
the spin-orbit interaction is stronger, then the crystal octahedral field, or realize the scheme
free — O. According to this scheme, we should start from the total angular momentum J of
the system. For the atom with one d-electron (angular momentum of the system [ = 2 and spin
s = 1/2) we have to find possible total angular momenta J = 3/2,5/2 and make a subduction

of corresponding representation to the irreducible components of the octahedral group

> Bethe_group_subduction 03(0, 3/2); Bethe_group_subduction_03(0, 5/2);
[||F3/2||] s [llE5/2ll’ IIF3/2":|

This subduction demonstrate qualitatively the same splitting like in the scheme free — O —

0.

Up to now only the spin-orbit splitting of one-electron term was described. Let us consider
briefly the spin-orbit splitting of many-electron terms. The states of many-electron atoms are
numbered by two parameters: S (total spin of the system) and 7 (irreducible representation
of the electron term). To classify the fine-structure levels of ST term, one has to carry out
a number of manipulations. First of all the irreducible components of the representation T,

generated by the spin function have to be found. Then we form the direct product T' ® Tk.
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The irreducible components of this direct product gives the desired answer about the splitting

of many-electron term.

Consider the Ty term of the d° ion in the octahedral field. We have S =3/2, T' = Ty. By using
the BETHE program we can find the irreducible components of the representation, generated

by the spin

> Bethe_group_subduction 03(0, 3/2);
["F3/2"]

Then we take the direct product F3/, ® T

> Bethe_group_direct_product(0, "F3/2", "T2");
[||E1/2||’ ||E5/2||’ ||F3/2||’ IIF3/2"]

The result shows, that the level T, will be split in the octahedral field to the two doubly
degenerate levels E/p and Ej/ and two four-fold degenerate levels Fys.

3.3.5 'Wave functions of split levels.

In the previous sections we described how the MAPLE package BETHE can be used in order to
classify the splitting of atomic energy levels in the crystal field. The emphasize was placed to
demonstrate the flexibility of the BETHE package, where user can suppose different relations
between the interactions in the crystal and classify the corresponding splitting. Apart from
the classification, the BETHE package can be used in order to generate the wave functions
of the split levels. These functions are constructed from the basis functions of the irreducible
representations by means of the Clebsch-Gordan decomposition. The concept of the irreducible
representation basis functions and the Clebsch-Gordan coefficients for the symmetry group are
described in details in Ref. [12]. Moreover, several examples, concerning the generation of
the wave function for the split levels without taking in account the spin-orbit interaction are
presented in this reference. Therefore, we will focus only on the wave functions of the fine-

structure levels (when the spin-orbit interaction is taken into account).

Knowing the irreducible representations T, describing the fine structure levels, the corre-
sponding wavefunctions 1/1,(77) (m = 1..dim{T™}) can be constructed by means of the Clebsch-

Gordan decomposition

65 =" (aipk|sym) vl v (3.8)

ik
where « labels the irreducible representations 7(® of the electron term and § labels the ir-
reducible representations 7% of the spin function. The integer indices i and k enumerate
the corresponding basis functions of these representations and s is the index to account the
multiplicity of the irreducible representation 7(); (aifk|sym) are the Clebsch-Gordan coeffi-
cients, which can be generated by the BETHE package. Consider the example of one d-electron

in the octahedral filed in the state 27}, taking into account the spin-orbit interaction. The
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classification of states for this example was produced in section 4.3.4. Corresponding splitting
is demonstrated on Fig. 3.4 a). Since we have one d-electron, the spin part of this electron
refers to the double-valued irreducible representation E;/5. In the case under consideration th

expression (3.8) has the form

O =3 (Tai By s ym) ") " (3.9)

ik
where v = {Es5/2, 32}, i, k and m denote integer indices to enumerate the basis functions of
corresponding irreducible representations. To construct these wave functions we have to use
the Clebsch-Gordan coefficients for the direct product Ty ® E) /5. Although the BETHE group
can generate every coefficient separately by the procedure Bethe_CG_coefficient (), it seems

beneficial to calculate the whole matrix of the Clebsch-Gordan coefficients

> CGmat := Bethe CGmatrix(0, "T2", "E1/2");

L 1/2 1/2 1/2 ]
L 3 3 3 ]
[ o - - 0 - - 0 - —— -1/2 1]
L 3 3 6 ]
L ]
[ 1/2 1/2 1/2 ]
[ 3 3 3 ]
[ ——- 0 e 0 —— +1/21I 0 ]
[ 3 3 6 ]
L ]
[ 1/2 1/2 1/2 ]
[ 3 3 3 ]
[ --—- 0 -——-1/21 0 - ————+ 1/2 I 0 ]
[ 3 6 6 ]
CG_mat = [ ]
L 1/2 1/2 1/2 ]
[ 3 3 3 ]
[ o -—— 0 - ———+ 1/2 1 0 -——-1/2 1 1]
L 3 6 6 ]
L ]
L 1/2 1/2 1/2 ]
L 3 3 3 ]
[ o -—— 0 - —=-1/21 0 - - ]
L 3 6 3 ]
L ]
[ 1/2 1/2 1/2 ]
[ ——- 0 - — -1/21 0 - - 0 ]
[ 3 6 3 ]

This array can be understood by means of Table 3.1 The left column of this table shows six basis
function of the direct product To® By o (o, i = {12, 1; 12,2; T23; }, B,k = {E1)2,1; E1/2,2; },
i, B,k = {Ts, 1, Ey)9,1; Ta, 1, By 9,2; T2,2, By 5, 1; ...}), while the header of this table gives
the bases of the irreducible representations ym = {E5/51, E5/92, F3/51, ...}. The main body of

the table shows corresponding Clebsch-Gordan coefficients. From these coefficients the wave
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Table 3.1: Clebsch-Gordan coefficients for the O group product 75 ® Ey 5 .

a: [

Ty Eyp | v: Esp Ejsp F3/9 F3/9 F3/9 F3/9

1 k m: 1 2 1 2 3 4
11 0o ¥ 0 3 0 B
12 20 2 0 LE 0

2z 1 -g 0 $¥-] 0 34 1 0

2 2 0o ¥ 0 Byl 0 Vg
31 0 3 0 N 0 3
3 2 $ 0 g5 0 -3 0

functions of the split levels can be constructed. For instance, from first and fourth columns we

have
R e At a1
) I I
wr o VyngPie (VB Dyngbie (V8 Lypgie o)

Using same procedure we can construct the wave functions of the split levels for any type of
splitting, described in this section. Thus we have shown, that the BETHE package can be very
useful in analyzing of the term splitting in the crystal field and construction of corresponding
wave functions.
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Chapter 4
Possible future applications

From the examples, presented in the previous Chapter, the present capabilities of the BETHE
program can be seen for determining the crystal field splitting or the generation of the molecular
spectroscopic activities. However, there are several other applications, which would make
BETHE a much more powerful tool. In this section we would like to describe several future

applications, which could be easily developed on the basis BETHE package.

4.1 Frequencies of the molecular vibrations: Wilson‘s method

Although the group theory is quite powerful tool for the analysis of the vibrational spectra,
it suggests only qualitative way for analyzing the problems of molecular vibrations. Indeed,
the group theoretical approach provides the methods how to determine the number and the
symmetry type of molecular normal modes, the vibrational coordinates of the molecule as well
as the molecular spectral activity (see Sections 3.2 and [11]). Nevertheless, the group theory
can not tell us anything about the expected frequency of a particular vibration. However,
there is also a quantitative way to solve the vibrational problem which makes use of symmetry
considerations. This way help to recognize how the frequencies of the vibrations, which can
be obtained from the experiment, are related to the masses of the atoms, the bond angles and
bond lengths and most particularly to the force constants of the individual bonds and interbond
angles [37]. To describe the relationship between he vibrational frequencies and force constants,
the so-called Wilson’s method of F and G matrices is used [13, 38, 39]. In this section we briefly
describe this method. To illustrate the realization of Wilson’s method, we present the example
how to generate the relationship between the frequencies and force constants for particular
molecule. In the end of current section the approximate design of Maple procedures, which
are necessary in order to realize the Wilson’s method within the BETHE package, is presented.
Note, that the realization of the Wilson’s method requires the generation of the vibrational
normal coordinates (Q; in terms of the internal displacement vectors of the molecule. Generation
of these coordinates is supported by the BETHE package and was described in detail in Ref. [11].

Therefore, we suppose reader to be familiar with the principles of these coordinates generation.
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4.1.1 Vibrational secular equation

Let us analyze the molecular vibrational process by setting up the expressions for the kinetic
and potential energies of the molecule. We will employ the classical mechanics because it yields
a solution of the vibrational problem, which is easier to visualize than the quantum-mechanical
solution. Using a system of coordinates moving with the N-atomic molecule, we can present

the kinetic energy of this molecule as

N 2 2 2
dAfL'a dAya dAZOé
2T = E o . 4.1

The coordinates Az, ..., Azy can be replaced by a new set of coordinates ¢, ..., g3, defined

as follows

@1 = vVmilAzxy, g2 = vVmiAyi, @3 = /milz, @ = /malxo, ete. (4.2)

In fact they are the mass-weighted cartesian displacement coordinates. In terms of the time

derivatives of these coordinates, the kinetic energy is

3N
2T =) ¢} (4.3)
i=1

The potential energy will be some function of coordinates ¢’s. Suppose, that in the equilibrium

position the potential energy must to have a minimum and, therefore, the first derivatives

g—;/i = 0. Then, for sufficiently small amplitudes of vibration (when higher terms are neglected)

the potential energy can be expressed as
3N
2V = > fijqi45, (4.4)
i,j=1

in which the f;;’s are constants, given by

o*V
with fij = f]z

Since kinetic energy T is a function of velocities only and potential energy V is a function of

the coordinates only, the Newton’s equation of motion can be written in the form

dor v
———+—=0,j=1,2,...,3N. 4.6
Substitution of the expressions for T and V given above then yields the equations
3N
i+ Y fijai=0,j=1,2,...3N (4.7)
i=1

This is a set of 3N simultaneous second-order linear differential equations. Possible solutions

of these equations are

qi = Ajcos VAt + e, (4.8)
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where A;, A and € are properly chosen constants. If this expression is substituted in the

differential equations (4.7), a set of algebraic equations results:

3N
D (fij = 0i;\)Ai =0,j =1,2,..,3N, (4.9)
i=1
in which d;; is the Kronecker delta symbol. The (4.9) is the set of the linear algebraic equations
in the 3N unknown amplitudes A;. The nonvanishing solution of the system (4.9) exists only

for very special values of A, which satisfy the so-called secular equation

fuu—XA  fi2 fizs . f13N
- A
for S f3 f2,3N _o (4.10)
fang  fan2  fans . fansn — A

The elements of this determinant are the coefficients of the unknown amplitudes A; in the set
of equations (4.9). Generally it consist of 3N rows and columns (since there are 3N unknowns
A;). Each root Ap corresponds to a set of amplitudes A;; and consequently to one of the

solutions (4.8) of the original equations of motion.

For the construction of the secular equation it is not necessary to use the cartesian coordinates
¢;- One can use another coordinates, in terms of which the kinetic and potential energies are,
respectively, quadratic forms in the velocities and coordinates respectively. For instance, we can
use the internal coordinates of the molecule s;, given by changes of the interatomic distances
and interbond angles. These coordinates describe only the internal vibrational motion, without
taking into account the rotational and translational motion of a hole molecule in the space. In
terms of the (3N — 6) internal coordinates the kinetic energy of vibration can be written in the

form
2T = (97" )ij4i8; (4.11)
i

where the coefficients (g71);; are the elements of inverted matrix g (see below), which involves
the masses and certain spatial relationship of the atoms. The potential energy, expressed in

the same internal coordinates can be presented as

2V = Zfijsisj (412)
ij

where f;; are corresponding force constants. A term such as fiis? represents the potential
energy of stretching a given bond or bending a given angle, while the cross terms represent
the energies of interaction between such motions. Therefore, the vibrational problem leads to

a secular equation

fu—(@Hur fiz—(g D2 o fin— (0
fa—(g 21 foo— (g7 DA . fon— (97 )m _0 (4.13)
fnl - (g_l)nl fn2 - (g_l)n2 frm - (g_l)rm)\
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where n = 3N — 6.

The secular equation (4.13) is of the fundamental importance in the study of vibration. How-
ever, in most cases this equation is of a high degree. Therefore, the method how to simplify
this equation is needed. This methods is provided by the symmetry consideration and is called
symmetry factorization of the secular equation. To perform this factorization, we need to use
the so-called symmetry coordinates or vibrational normal coordinates (Q;, expressed in terms
of the internal coordinates of the molecule [11]. The kinetic energy T of the molecule can be

expressed in terms of the vibrational coordinates @; as
2T =) (G ;Q;Q, (4.14)
jl
while the potential energy as

2V = FQ;Qu (4.15)

jl
Here the Fj; are again force constants, but pertain to vibrations described by the symmetry
coordinates ();@); and matrix G represents the kinetic energy of a molecule in terms of the

normal coordinates ;. In these coordinates the secular equation (4.13) will have a form

|F =G\ =0 (4.16)
or

|[FG — EXN =0 (4.17)

in which F'; G and E are matrices and the entire left-hand side of the equation is a determinant.
F' is a matrix of force constants, which brings the potential energies of the vibrations into the
equation, G is a matrix that brings the kinetic energies into the equation and E is a unit
matrix. Every parameters A depend on the particular vibrational frequencies v and are defined
by A = 4n?cv2.

4.1.2 Generation of the secular equation

The relationship between the frequencies of particular vibrations and the force constants can
be obtained from the master equation (4.17), introduced in the previous section. To generate
this secular equation for a particular molecule, we should start from the matrices f and g.
Then, by use the symmetry consideration, we obtain the matrices F' and G in the symmetry
factorized form. Finally, the secular equation in form (4.17) can be obtained. Solution of
this equation gives us the relationship between the force constants f;; and the frequencies of

particular vibrations.

The F matrix

Consider again an example of M3 molecule (symmetry group Dsp,). The vibrational analysis of

this molecule is produced in Section 3.2 and Ref. [11]. The 3N — 6 = 3 internal displacements
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s; of this molecule are presented by three interatomic distances r; and r9 and r3 as shown on
Fig. 4.1. The set of force constants for the M3 molecule can be expressed as a square array,
where the rows and columns are labeled by the internal displacements. Thus we have the f

matrix, or matrix of the f

B
| fu fiz fis
ro | fiz feo  fo3
r3 | fi3 fes  fs3

In this matrix the element fs; is replaced by fi2, f31 by fiz and fs2 by fo3 because of the

general requirement that the matrix be symmetrical about its diagonal. Moreover, since all
three internal displacements are equivalent (that is, they can be transformed to each other by
the symmetry operations of the Ds, group), we can also make the substitution fi1 = foo = f33
and fis = fiz3 = fo3. Finally, we have only two force constants fi; and fi3. This result is
not unexpected: although the M3 molecule has three vibrational modes, two of them belong
to one doubly degenerate irreducible representation E’ (see Ref. [11]). Therefore, these modes
have the same frequency. It means that only two frequencies are inherent in this molecule
and therefore, as a minimum two force constants should be found. Generally, the number
of force constants for polyatomic molecule can be determined from the vibrational reducible
representation of the molecule T() (see Ref. [11]). If m, specifies how many times every

(vib)

irreducible representation T() appears in the T then the number of the force constants

ny is defined as

ngp =Y my(m,+1)/2 (4.18)
ol

As determined in the [11], the vibrational representation for the M3 molecule is T("?) = A} +E'.

Therefore, ma; =1, mpr =1 and ny =1 x % +1x % = 2, as obtained before.

Thus, we have obtained the f matrix in the form

fir fiz fi2
=1 fiz fu fie (4.19)
fiz fiz fu

This is the force constants matrix for the M3 molecule. To provide the easiest route for dealing
with this matrix, we can make the symmetry factorization of this matrix. As said before, this
factorization can be achieved by use the vibrational normal coordinates ();. These coordinates,
associated with three vibrational modes of M3 molecule, have been generated in Ref. [11] in

terms of the internal displacements as
Q1(A}) %ﬁ + %m + %7‘3
QQ(E/) %7‘1 — %7’3 (4.20)

Q3(E') = _%7‘1 + %7‘2 - %7’3

and are shown graphically on Fig. 4.1. In order to simplify the matrix f, we need to express
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Figure 4.1: Vibrational modes of M3 complex in terms of the internal displacement vectors:

a)Ql(All)v b)Q2(E/)> C)Q3(E,)'

each of the two equations of the potential energy (4.12) and (4.15) in matrix notation:
2V =¢'fs (4.21)
2V = Q'FQ (4.22)

by writing the s; as a column matrix s and the @; as a column matrix Q, and taking s’ and Q’
as the corresponding row matrices. Moreover, the relationship between the internal coordinates
and the symmetry coordinates can be written in matrix form:

Q="Us (4.23)
where (for the M3 molecule) matrix U is

|

T2 T3

1 1 1

| f
Q|5 0 -5
Qs |-L 2 _L
B1°V6 VB Ve

Since matrix U describes a linear orthogonal transformation between the coordinates ); and

r;, the inverse of the matrix U its simply its transpose U’. Thus, (4.23) may be rewritten as
s=U"1Q'Q (4.24)
and we have
s =(U'Q) =Q'U. (4.25)

We can now equate the right-hand sides of two equations(4.21), and employ relations (4.23)
and (4.25). Finally, we obtain

UfU =F (4.26)

We thus obtain a simple matrix equation for transforming the f matrix into the ' matrix. For
the M3 molecule this can be presented as

11 1 41 1

/ VioVE VB fir fiz fi2 VeI i
F=UfU= 751 (2) —? fiz fuir fi2 ? 01 751 (4.27)

—% % —% f12 f12 fll ﬁ _ﬁ —%
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Thus, we obtain the F' matrix in the symmetry factorized form.

fi1+ 2f12 0 0
F = 0 fi1 — fio 0 (4.28)
0 0 fi1— fi2

The G matrix

The generation of G matrix can be produced similarly as for the F' matrix. As before, we start
from the constructing of ¢ matrix, which was introduced in Eq. (4.11)). For the M3 molecule

this matrix generally has a form

gi1 912 913
g=1| 912 92 g3 (4.29)
g13 923 933

where the requirement that the matrix should be symmetrical about its diagonal is taking
into account. Elements of g matrix can be expressed in terms of the atomic masses and the
dimensions of the molecule. Commonly used matrix elements g;; are tabulated in the form of
general expressions for different types of internal coordinates s; and s; involved. The specific
parameters of any molecule should be inserted into these expressions. Such a tabulation and
direction for its use is given, for instance, in Ref. [13, 38]. For the M3 molecule it is found
that gi11 = pu1 + p2, g12 = pacos(012), g13 = p1cos(013), go2 = p2 + 13, go3 = pi3 cos(fa3) and
933 = p1 + p3, where ; is the reciprocal mass of ¢ atom and 6;; is the angle between i-th and
j-th bonds. Since the three atoms of M3 molecule are identical and placed in the corners of
equilateral triangle, we have 1 = po = ug = u, 612 = 012 = b3 = 27 /3. Therefore, for the M;

molecule g matrix has the form
2u —p/2 —p/2
g=|—n/2 2u  —p/2 (4.30)
—u/2 —p/2 2p

The (symmetry factorized) G matrix may be constructed by the procedure analogous to that
used for the F' matrix (see Eq. (4.27))

w0 0
G=UgU=|0 5/2u 0 (4.31)
0 0 5/2u

Now the relationship between the frequencies of the fundamental modes and a set of force

constants can be recognized from the explicit form of the secular equation (4.17).

fi1+ 2f12 0 0 w0 0 A 00
0 f11 — f12 0 0 5/2,& 0 - 0 /\2 0 =0 (4.32)
0 0 f11 — f12 0 0 5/2/L 0 0 )\2

The root Ay of the secular equation occurs twice, because one of the normal modes is doubly

degenerate and there are two independent normal modes of vibration with the same frequency.
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This is the end of the symmetry analysis. From here the problem of generation the relationship

between the vibrational frequencies and force constants is a purely computational one.

Note, that after the symmetry factorization, the secular equation not always takes on such a
simple diagonal form like Eq. (4.32). For instance, the three-dimensional secular equation for
the molecule of water, constructed in Ref. [13], is symmetry factorized into one 2x2 block and
a one 1x1 block. Moreover, for most molecules — in contrast to the M3 molecule — the number
of the force constants exceeds the number of molecular vibrational modes. The most generally
applicable procedure for dealing with this problem is to measure the frequencies of isotopically
substituted molecules (for instance, involving the deuterium). Such molecules provide new sets

of equations involving different frequencies , but give rise to the same force constants.

4.1.3 Realization of the Wilson’s method within the Bethe framework.

The Wilson’s method, described above, makes extensive use of the symmetry. Therefore, it can
be easily realized by means of the BETHE program. Having specified the atomic coordinates
of particular molecule as the input of the problem, the user can obtain from the BETHE the
expressions for the force constants in terms of the vibrational frequencies (or vice versa) (see Eq.
4.32) for this molecule. The most difficult problem, which arises at the program realization
of Wilson’s method, is the generation of the g matrix. As said before, the elements of this
matrix are tabulated in form of the general expressions for different types of molecular bonds.
Therefore, the storage procedure for keeping the g;; elements need to be created. Remaining
parameters, such as internal coordinates and the vibrational normal coordinates, which are

necessary for the Wilson’s method, are already available by the BETHE package.

If the number and the symmetry types of the vibrational modes and the symmetry coordinates
for these modes are supposed to be known, the following steps should be done to generate the

relationship between the frequencies and force constants:

e Generation of the U-matrix (4.23), which express the transformation between the internal

displacement vectors and the vibrational normal coordinates;

e Generation of the f-matrix (4.19), taking into account the symmetry of this matrix about

the diagonal and equivalency of some internal displacements;
e Generation of the F-matrix in the symmetry-factored form (4.28);

e Tabulation of the elements of g-matrix for different types of internal coordinates s; and

553
e Generation of the g-matrix in the general form (4.29) and in the explicit form (4.30);
e Generation of the G-matrix in the symmetry-factored form (4.31);

e Construction of the secular equations F'G — EX = 0 (4.32);

e Generation of the relationships Fj;(Ag);
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Table 4.1: Commands of the BETHE program, to realize the Wilson-method

Bethe_generate_U_matrix() Generates the transformation matrix between the internal s and

symmetry S vibrational coordinates.

Bethe_generate_f_matrix( Generates the force constants matrix f.

)
(

Bethe_generate_F_matrix() Generates the (symmetry factored) force constants matrix F.
Bethe_generate_g_matrix() Generates the matrix g.

Bethe_g_matrix_elements() Returns the elements of the matrix g.
Bethe_generate_G_matrix() Generates the (symmetry factored) matrix G.
Bethe_generate_secular_equation() Generates the secular equation FG — EA = 0.

All of these steps can be realized on the basis of the package BETHE. In Table 4.1 the ap-
proximate list of procedures (without specification of the input-output parameters) is shown.
Apart from these "working” procedures, the ”testing” procedures for confirmation of some
results can be provided. For instance, the number of independent force constants in the f
matrix can be compared with the number ny of the force constants, calculated from the vi-
brational reducible representation of the molecule (see Eq. (4.18)). Therefore, the procedure
Bethe test_force_constants number (), returning the boolean variables true or false, is rec-

ommended to create.

4.2 Vibrational-electronic coupling and the Jahn-Teller effect

In the previous section the Wilson’s method for determining the relationship between the
vibrational frequencies and force constants has been suggested to realize within the BETHE
package. Another application of symmetry, which could be implemented into the BETHE, is
the problem of spontaneous distortion of the molecular symmetry, known as the Jahn-Teller
distortion or Jahn-Teller effect. This effect consists in the instability and spontaneous distortion
of the nuclei configuration of a molecule in degenerate electronic state. The presence of the
Jahn-Teller (JT) effect was supposed by Landau in the year 1934. Later it was verified by Jahn

and Teller and shown [40] to be true for all nonlinear molecular systems.

The theoretical treatment of the JT effect makes use of the symmetry and of the group theory.
This theory helps not only to predict the distortions of the molecular symmetry, but also to
find the final - stable - configuration of the molecule. Use of the CA approach to analyze the JT
distortion seems to be very effective. Therefore, we suggest to implement the also the JT effect
into the BETHE package. This section provides a brief explanation of the (quite complicated)
theoretical background of this effect. The details about the JT effect can be found in Refs.
[41, 45]. We start from the short outlook of the adiabatic approximation. Then the JT effect
is introduced as the deviation from this approximation. In the next sections the JT theorem is
provided, which allows to deduce a number of qualitative results without performing specific
calculations. Moreover, the methods how to construct and analyze the adiabatic potential

of the molecule are also presented. Finally, in section 5.2.5 we make the suggestions for the
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extension of the BETHE package.

4.2.1 Adiabatic approximation and vibronic interaction

It is known, that the structure and properties of a molecular system are determined by the
motion of its electrons and by their interaction. The motion and interaction of electrons are
governed by the quantum mechanical laws. However, because of the mathematical difficulties,
the quantum mechanical treatment of the molecular structure in most cases can be carried
out only if some simplifying approximations are introduced. Let us start from the adiabatic
or Born-Oppenheimer approximation, which is one of the most important simplifications in
quantum mechanics. This approximation is based on the fundamental inequality of the masses
and velocities of electrons and nuclei. Since the nuclei mass is about 2000 times that of the
electron, the velocity of the latter is much greater than that of the former. Therefore, it
can be assumed that every fixed position of the nuclei corresponds to a stationary electronic
state and that the motions of the nuclei are governed by the average field of the electrons.
This assumption enables us to ignore at the beginning the nuclei motions when solving the
electronic part of the problem, and then to use the mean electronic energy as the potential for

the nuclear motion.

To illustrate these stages, let us divide the total Hamiltonian of the Schrédinger equation into

three components:
H=H,+Hy+V(r,Q) (4.33)

where H, is the electronic component, including the kinetic energy of the electrons and the
interelectronic electrostatic interaction, H is the kinetic energy of the nuclei and V' (r, Q) is
the energy due to interaction of the electrons with the nuclei and internuclear repulsion (r
and () denote the whole set of coordinates of the electrons r;, ¢ = 1,2,...,n and nuclei Q,,
a = 1,2,....N, respectively). The operator V(r,Q) can be expanded as a series of small

displacements of the nuclei about the point @, = Q40 = 0 (chosen as origin):

ov 1 0?V
V(T, Q) = V(T, 0) + Za: <%>0 Qo + 5 azﬁ: <m>o QaQﬁ + ... (4.34)

If the first term of this expansion is regarded as the potential energy of the electrons in the

fixed nuclei, one can solve the electronic part of the Schrodinger equation
[H, + V(r,0) = &}.] px(r) =0 (4.35)

and obtain a set of energies €} and wave functions ¢ (r) for the given nuclear configuration
corresponding to the point Q,9. In order to see how these solutions vary under nuclear dis-

placements, the full Schrédinger equation
(H-E)¥(r,Q)=0 (4.36)

must be solved. According to the adiabatic approximation, the solution ¥(r, Q) of the Eq.

(4.36) can be expanded in terms of electronic functions (),

U(r,Q) = xr(@Q)pr(r) (4.37)
k
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where the expansion coefficients y;(Q) are functions of the nuclear coordinates. Substituting
equation (4.37) into equation (4.36), after some transformations one obtains the following

system of coupled equations for the functions yx(Q):

[Hg +€£(Q) — E1xx(Q) + Y Wim(Q)xm(Q) =0 (4.38)

m#£k

In this system Wy, (Q) denotes the electronic matrix element of the so-called vibronic inter-
action. This VIBRONIC interaction arises when the VIBRations of the nuclei generate the
mixing of the electrONIC states and can be expressed as that part of the electron-nuclear
interaction V' (r, @), which depends on @,

ov 1 o*V
Wir,@Q)=V(r,Q)—V(r,0) = <—> Qo+ = <7> QaQpg+ ... 4.39
r@=veQ-ve0 =Y (55) @+33 (Ggag;) %@+ 6
The vibronic interaction is especially strong in the case of the electronic degeneracy. The

member

er(Q) = ek + Win(Q) (4.40)

of the system (4.38) is the potential energy of the nuclei in the mean field of the electrons in
state ¢k (r). It is seen from the coupled system of equations (4.38) that if vibronic mixing of
different electronic states can be ignored (W, (Q) = 0 for k # m), the coupling between these

states vanishes and the system (4.38) decomposes into a set of simple equations:

[Hg +ex(Q) — El xx(Q) =0 (4.41)

each of which, for given k, represents the Schrodinger equation for the nuclei moving in the

mean field of the electrons in state @g(r).

In other words, if the motions of the nuclei and electrons are separated, the problem as a whole
can be solved in two stages. In the first stage, the electronic states ¢i(r) are determined as
solutions of equation (4.35) and used to calculate the potential energy of the nuclei e;(Q) by
equation (4.41). In the second stage the wave functions xx(Q) and energies E of the nuclei are
determined by the equation (4.41), the total wave function being ¥(r, Q) = @i (r)xx(Q). This
is the simple adiabatic approximation. Criterion for this approximation is that terms of the

vibronic mixing Wy, (Q) of different electronic states in equation (4.38) can be ignored, or
hw < |el, — ekl (4.42)

where fiw is the energy quantum of vibrations in the electronic state k or m and ¢, and )
are electronic states. By other words, the adiabatic approximation can be used, only if the
electronic states of the system are not degenerate.

4.2.2 Deviation from the adiabatic approximation. Vibronic constants.

The adiabatic approximation, described above, is very important for number of applications.

However, in some systems the electrons do not follow the motion of nuclei, while the nuclear
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states are determined not only by the average field of the electrons. The resulting coupling
between the electronic and nuclear motions is the essential deviation from the adiabatic ap-

proximation.

Consider a molecular system in which the electronic states are degenerate or there are near-
lying electronic states. For these electronic states criterion (4.42) is not satisfied and vibronic
interaction plays a significant role in determining the molecular properties. This interaction
Wim(Q) is given by the equation (4.39) and contains linear, quadratic, cubic, etc., terms. In
most cases it is enough to take into account the linear and quadratic terms. To simplify the
further analysis of the vibronic interaction, we will use the symmetry approach. Within this
approach, the nuclei coordinates @), can be specified as the normal vibrational coordinates
in terms of the Cartesian displacement vectors (see Ref. [11]). In order to determine these
coordinates, first of all the initial configuration of the molecule should be defined. Of course,
in a number of cases this configuration can be taken from the experiment. However, it is not
always possible to determine the initial configuration exactly. Therefore, the initial nuclear
configuration must be chosen at the point, where the electronic states are degenerate. Since
the electronic degeneracy is related to the symmetry of molecular system, the initial configu-
ration is one of highest symmetry. As described in Ref. [11], the normal coordinates @, can
be classified in terms of the irreducible representations 1" of the molecular symmetry group
and their components . Therefore, in the normal coordinates ()7~ the operator of vibronic

interaction (4.39) may be written in the form

oV %4
WinQ) = Z<3Q ) Orr+ Z 2 <8QT(1)718QT(2)’Y2> romQren,  (14)

T(l)»y T (),

Coeflicients of this expansion are the derivatives of the electron-nuclear interaction. The matrix
elements of these coefficients are the constants of vibronic coupling or vibronic constants. These
constants are of fundamental importance in the analysis of vibronic interaction effect. They
characterize the measure of coupling between the electronic structure and nuclear displace-
ments, i.e. the measure of influence of the nuclear displacements on the electron distribution.
If we denote the electronic states by appropriate irreducible representations 7,7",... of the

molecular symmetry group and suppose, that the states T' and T are not degenerate, then the

o= (3 )

TT'
Iz

matrix element

is called the linear vibronic constant. Following the rules of group theory, is nonzero if and

only if the direct product T'® T” contains the irreducible representation 7. If T or T' or both

FT’YT”Y’
Ty

However, according to the Wigner-Eckart theorem [8, 46], we can obtain following relation

. . . . . /
are degenerate, a set of linear vibronic constants must be introduced instead F%T.

between different components of the linear vibronic constants:

TyT'' .
Fp " = Fp T (TAT'Y |T), (4.45)

where (T5T"+'|T) are the Clebsch-Gordan coefficients for the symmetry group (see Ref. [3]).

Therefore, if one knows at least one vibronic constant of certain symmetry, all the others can be
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easily calculated by (4.45) using the Clebsch-Gordan coefficients. Some of the linear vibronic
constants have a clear physical meaning. For instance, the diagonal vibronic constant F% T has
the sense of the force, with which the electrons in state 1" affect the nuclei in the direction of
the normal coordinate Q). According to the group theoretical condition, the constant F%T
is nonzero if the symmetrized(!) part [T'® T] of the direct product T'® T' contains T' (see
Section 2.4.3). For nondegenerate T' the direct product [T' ® T always results in the totally
symmetric irreducible representation. Therefore, the nuclei configuration can be distorted only
in the direction of totally symmetric displacement, which does not change the symmetry of
the system. If the electronic state 71" is degenerate, the symmetrized part of the direct product
[T ® T] contains nontotally symmetric representations. Therefore, the molecular symmetry
can be distorted nonsymmetrically. These nonsymmetrical distortions are essential in the JT
effect.

Similarly to the linear vibronic constants, the quadratic (or second-order) vibronic constants

0*v
8QT(1)71 aQT(Z)ny 0

The totally symmetric part of the diagonal matrix element (4.46) forms the curvature of the

can be introduced as

rry _ 1
K =3 <T

T’> (4.46)

adiabatic potential and appears as its essential component %ZTW K%Q%T Corresponding
constant K% is called force constant. The remaining terms and the nondiagonal matrix elements
contain the quadratic vibronic constant G%T’, which must be distinguished from the force
constant (see Refs. [41, 43] for details).

4.2.3 Jahn-Teller theorem

The vibronic constants, introduced in the previous section, allow to formulate the so-called
Jahn-Teller theorem, which predicts the nonsymmetrical molecular distortions. This theorem
is based on the group-theoretical analysis of the behavior of the adiabatic potential of a molecule
near the point of electronic degeneracy. Suppose, that by solving the electronic Schrédinger
equation (4.35) for the nuclei fixed at the point Q75 = 0 we obtain an f-fold degenerate
electronic term, i. e. f states pi(r),k =1,2,..., f with identical energies €} = 9. To answer
the question how these energy levels vary under nuclear displacements Q75 # 0, the adiabatic
potential near the point of degeneracy must be determined. It can be done by estimating the
effect of the vibronic interaction terms W (r, Q) on the energy level ¢,. For sufficiently small

nuclear displacement Q- the AP ¢;(Q) can be obtained as a solution of the secular equation
|Wij - €| =0 (4.47)

where W;; are the matrix elements of the vibronic interaction operator (4.39) calculated with
the wave functions of the degenerate term. The presence of this term is assumed because of
the high symmetry of the system. Note, that since the totally symmetric displacements do not
change the symmetry of the system, we will omit these displacements. Moreover, the second

order terms of vibronic interaction operator may also be omitted due to the assumed small
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values of QTT Therefore, matrix elements of the vibronic interaction operator are

WT’YT’Y' = Z Fj?;TV/ QT& = Z F%QT& <T’7T7/‘TV> (4-48)
Ty Ty
where F% are the linear vibronic constants (4.44). If at least one of these constants s nonzero,
then at least one of the roots € of the equation (4.47) contains not only quadratic, but also
linear terms in appropriate displacement QT@ and, therefore, the adiabatic potential ex(Q) has
no minimum at the point QT;/ = 0 with respect to this displacement. The question whether
the vibronic constant FT:C is zero or not may be answered by means group-theoretical rule,
mentioned in previous section. Examining all types of the degenerate terms of all symmetry
point groups, Jahn and Teller showed, that for any orbital degenerate term T of any molecular
system there are nontotally symmetric displacements T with respect to which at least one of
the vibronic constants is nonzero, F% % 0. Therefore, the adiabatic potential of this term has
no minimum in the point Q5 = 0. This statement is just the JT theorem. The proof of this
theorem by means of an examination of all types of degenerate terms in all symmetry point
groups allows to reveal the JT active modes. These modes are the nuclei displacements Q75
for which the vibronic constant F%F is nonzero and which remove the electron degeneracy of

the electronic term 7.

4.2.4 Adiabatic potential and stability of the molecular configuration

As follows from the the JT theorem, at the point of the nuclei configuration, where the electronic
state is degenerate, the surface of the potential energy of the nuclei in the mean field of electrons
has no minimum. The question arises whether this surface possesses any minimum and where
this minimum is situated. Or, more generally, what is the stable configuration of the nuclei
in the presence of the JT effect. To answer this question the shape of the adiabatic potential
5(@7“»7) in the space of all nuclear displacements (75 must be determined. For the f-fold
degenerate electronic state 7' the adiabatic potential has f sheets e;(Q) k = 1,2, ..., f, which
intersect at the point of degeneracy. To determine e (Q75) we should first separate the totally
symmetric part of the diagonal matrix elements of the vibronic interactions, which give rise to
the constant Kg—: (see Eq. (4.46)). Then the f sheets of the adiabatic potential of an f-fold

degenerate electronic term are given by the following expressions

1

ek(Qr5) = 5 D K7 Q7 +K(Qrs), k=12, f (4.49)
Ty

where €} (Q75) are the roots of the secular equation

WY (Q7s) =" =0; 7,7 €T (v, =1,2,..., f) (4.50)

in which the diagonal matrix elements W2,

of the quadratic terms used in the force constant formation.

(Q75) do not contain the totally symmetric part

Here we illustrate, how to construct and analyze the adiabatic potential for a particular
molecule. Then we consider the octahedral molecule of type M Lg (symmetry group Op).
The JT distortion of such molecule is discussed very often in the literature [47, 48]. The shape
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of this molecule is shown on Fig. 4.2 a). By calling the irreducible representation of the group

Oy,
> Bethe_group(0Oh, irreps);
[llAlgll s llAzgll s llEgll s llTlgll s "ng" s llAlull s ||A2u|| s ||Eu|| s ||T1u|| s ||T2u||]

we define, which electronic states are presented in the M Lg molecule. Consider the doubly
degenerate electronic state E, (so-called E4-term). The systems with E,- or Ey,-term are very
widely spread, but in the same time quite simple to illustrate the JT effect. First of all we
need to define the JT active vibrational (or normal) modes of this molecule. To achieve this,
we need to specify the molecule M Lg as a collection of individual atoms, situated as shown on
the Fig. 4.2 a).

> ML6 := molecule(atom( M, [ 0, 0, 0]),
atom(L1, [ 0, 0, al),
atom(L2, [ 0, 0, -al),
atom(L3, [ 0, a, 0]),
atom(L4, [ 0, -a, 0]),
atom(L5, [ a, 0, 0]),
atom(L6, [ -a, 0, 01));

ML6 := molecule(atom( M, [0, O, 0]), atom(L1, [0, O, al),
atom(L2, [0, O, -al]), atom(L3, [0, a, 0]),
atom(L4, [0, -a, 0]), atom(L5, [a, O, 0]),
atom(L6, [-a, 0, 0]))

The vibrational modes of this molecule can be found as described in Ref. [11]:

> VR := Bethe group representation(0h, vibrational, ML6) ;

Bethe_decompose_representation(Oh, VR);

VR := [15, -1, -1, -1, O, O, O, O, O, O, O,

[llAlgll, llEgll, IITQgII, llTlull, llTlull, IIT2u||]

Then we need to define, which of these vibrational modes will be JT active in the E, state (i.e.
will destroy the octahedral symmetry in this state). According to the JT theorem we should
find the symmetrized part of the direct product £, ® E,

> Bethe_group._direct_product(Oh, "Eg", "Eg", symmetrized);

["Alg" S llEgll]
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Figure 4.2: Shape of octahedral M Lg molecule (a) and its normal displacements @, (b) and
Qu ().

The result shows, that nonzero parts of the vibronic interaction operator WVVV’(QT“?) for E,
term contain only type E, nontotally symmetric displacements Qs (the totally symmetric
displacement is not taken into account). Let us take the symbol e, for this representation, in
order to distinguish it from the state of the molecule. Therefore, we specify corresponding JT
problem as the E, — e, problem. It means, that the octahedral molecule in degenerate state E,
will be distorted in the direction of two normal coordinates Qe and Qe of the irreducible
representation e4. Since both included irreducible representations have the subscript g, we can
omit this subscript. Then the corresponding JT problem will be considered as E — e problem.
The two components Q¢ and @, of the normal displacements e (later we denote them @,
and @,) can be defined in the BETHE package as two sublists of the list Q

> Q := Bethe normal coordinates(Oh, ML6, "Eg", Cartesian);

1/2 1/2 1/2 1/2
3 3 3 3
Q:=((0, 0, 0, 0, 0, 0, 0, O, 0, 0,- -~--, O, 0,-~—-, 0,-——-, O, O,- --—-, O, O],
12 12 12 12
1 1 -1 1 -1 1
to, o, o, o, 0, --, o, 0, ---, 0, --, 0, 0, -=-, 0, --, 0, O, --, 0, 0]]
6 6 12 12 12 12

These sublists define the displacements of cartesian coordinates (z,y, z) of every atom, in the
same sequence as specified in the variable ML6. These coordinates are shown graphically on
Fig. 4.2 b)-c). Taking into account the Eq. (4.45), and retaining only the linear order vibronic

interaction terms, we can write the explicit form of the secular equation (4.50) for the F — e
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problem as (see [43])

(4.51)

FeEQu_EV _FeEQv -0
_FeEQv _FeEQu_EV

where

5 8V>
Fe ‘<U‘<6Qu .

This equation can be solved directly for €.

EI:jI:(Q’UnQU) = j:FeE\/ Q% + Q%

U> : (4.52)

(4.53)
er(Qu, Qu) = KF(Q% + Q) + FF\/Q2 + Q2
or, if to use the polar coordinates @, = pcos(¢), Q, = psin(¢),
el(p,¢) = £FFp (4.54)

ex(p, ¢) = 5K £ Flp

The surface of this adiabatic potential has the form of the rotation surface, called the ” Mex-
ican hut” and shown on the Fig. 4.3. As seen from this figure, the octahedral system M Lg
will be distorted along the bottom of the surface to the tetrahedral symmetries and various

continuously from one configuration to another (points a, b, ¢, d, e).

If in the equation (4.50) the second order terms are taken into account, the adiabatic potential

is defined in polar coordinates as

1
en(p, @) = KZp" £ pyV/F2 + G2p? + 2F.Gep cos(39) (4.55)

where G, is the quadratic vibronic constant. The surface of this adiabatic potential is more
complicated and shown on Fig. 4.4. Three minima (points 1, 3 and 5) of the AP correspond
to the three distortions of the M Lg molecule, as shown on the Fig. 4.5. .

4.2.5 Determining of the stable molecular configuration.

In the previous section we demonstrate, how to construct the adiabatic potential for the M Lg
molecule. The points (or curves) of minimum of this potential correspond to the stable con-
figuration of the molecule. The question arises, how to find these configurations, knowing the
values of the @, and @, at the minima points. Consider, for instance, the extremal point 3 in
Fig. 4.4. This point is defined by to the polar angle ¢ = 27 /3. Therefore, in this point

p o V3p

Qu = —ian =5 (4.56)

where the constant p can be expressed by means the constants F.¥, G and KF. To find a new
atomic coordinates of the M Lg we need to know the amplitudes of the @), and @, vibrations.
However, the label of the symmetry group of the distorted molecule can be found qualitatively.
To achieve this, we need to add every cartesian coordinate of M Lg by the small increment
according to the normal coordinates in point 3. It can be illustrated by the Table 4.2. The first
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Figure 4.3: Adiabatic potential of the octahedral molecule neglecting quadratic terms of vi-

bronic interaction (from www.mi.infm.it).
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Figure 4.4: Adiabatic potential of the octahedral molecule taking into account quadratic terms

of vibronic interaction (from www.mi.infm.it).

Figure 4.5: Section of the lowest sheet of the adiabatic potential of the octahedral molecule

taking into account quadratic terms of vibronic interaction.
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Table 4.2: Determining of the atomic coordinates in the distorted M Lg molecule.

Atom Initial Displacement | Displacement Displacement Distorted
coordinate Qu Qv -Qu/2 +V3Q,/2 | configuration
0 0 0 0 0
M y 0 0 0 0 0
Z: 0 0 0 0 0
x: 0 0 0 0 0
L1 y: 0 0 0 0 0
. 1 1 1
/B a & 0 12 a 12
X: 0 0 0 0 0
L2 y: 0 0 0 0 0
. 1 1 1
Z: —a ~% 0 12 —a + 12
X: 0 0 0 0 0
. 1 3 1 1
Z: 0 0 0 0 0
X: 0 0 0 0 0
. 1 3 1 1
L4 y: —a 12 % 13 —a + 12
Z: 0 0 0 0 0
. 1 3 1 1
X: a — 12 % 6 a+ 5
L5 y: 0 0 0 0 0
Z: 0 0 0 0 0
. 1 3 1 1
X: —a P -¥ % —a— 3§
L6 y: 0 0 0 0 0
Z: 0 0 0 0 0

column of this table contents the names of the M Lg atoms. The second column gives the initial

atomic coordinates of M Lg as defined in the variable ML6. The third and fourth columns show

the displacements of these coordinates @), and Q,. The fifth column defines the displacement

of every coordinate in the point 3 of Fig. 4.5 according to the (4.56). Finally, sixth column

is obtained by the summation of the initial coordinates (second column) and displacement in

point 3 (fifth column). By other words, this column contains the qualitatively coordinates of

every atom in the distorted configuration of M Lg molecule. Taking these coordinates from the

last column, we can define the (highest) symmetry of the molecule in the point 3

> ML6new
(a-1/6,0,0],[-a-1/6,0,0]]:
Bethe_group_symmetry(highest, ML6new) ;

D2h

:= [[0,0,0],[0,0,a-1/12],[0,0,-a+1/12],

[0,a-1/12,0],[0,-a+1/12,0],

where the printout of variable ML6new is omitted due to the double point at the end. As

expected, the symmetry of the distorted molecule is Doj. The same technique can be used to
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define the symmetry of the molecule in any other minimal point of the adiabatic potential.

4.2.6 Realization of the Jahn-Teller problem within the Bethe framework.

The determination of the JT active displacements, the adiabatic potential and the stable con-
figuration of the symmetry molecules can be performed by the BETHE package. To achieve

this, following steps should be done:
e Determination of the degenerate states of the molecule;

e Generation of the vibrational modes and the normal coordinates of the molecule in terms

of the Cartesian displacements;
e Determination of the Jahn-Teller active vibrational modes;

e Construction of the secular equation (4.51) taking into account the Clebsch-Gordan co-

efficients. The vibronic constants are presented in this equation as the parameters;

e Generation of the adiabatic potential (4.54) or (4.55) in terms of the normal coordinates

(; where the force constants are presented as the parameters;
e Determination the minimum point of the adiabatic potential;
e Determination of the molecular configuration in the points of minimum;

The first and second steps are already supported by the BETHE package and have been presented
in the previous sections. The third step - determination of the Jahn-Teller active displace-
ments - also can be done by using the procedure Bethe_group_direct_product(). However,
it looks reasonable to organize the special procedure Bethe JT activity (), which will define
the JT active modes automatically (similar to the procedure Bethe_spectral_activity() of
the vibrational analysis). Then the procedures for the remaining steps, in which the adiabatic
potential of the molecule should be constructed and analyzed, should be created. Note, that
the Clebsch-Gordan coefficients, which are necessary for the adiabatic potential, are generated
by the procedure Bethe_CG_coefficient (). It should be emphasized, that the vibronic con-
stants are not defined directly. They are used as the parameters and the points of minimum of
the adiabatic potential will be defined in terms of these constants. In the last step the stable
configuration of the molecule should be defined, as described above. The approximate list of
procedures, which need to be created in order to realize the JT problem within the BETHE
package is presented in Table 4.3.
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Table 4.3: Commands of the BETHE program, to realize the Jahn-Teller problem

Bethe_JT _activity()

Bethe_secular_equation()

Bethe_secular_equation(..., solution)

Bethe_adiabatic_potential()

Bethe_adiabatic_potential(..., min)

Bethe_JT _distortion()

Defines, whether the given vibrational mode is JT active.
Returns a secular equation in terms of the normal coordinates ;

and vibronic constants K% , G%, Fzz: and adiabatic potential €.

Returns a solution of secular equation in terms of the normal co-
ordinates ); and vibronic constants K% G% F%F and adiabatic

potential €.

Returns the adiabatic potential € as a function of the normal co-
ordinates ); and vibronic constants K% , G%, Fzz:

Returns the minima points of adiabatic potential in terms the
vibronic constants K% G% F%F

Returns the stable configuration of molecule either in terms of the

atomic coordinates or as a name of corresponding symmetry group
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Chapter 5
Summary and Outlook

This thesis work was dedicated to use the CA approach for dealing with the group symmetries
and studying the symmetry properties of molecules and clusters. The MAPLE package BETHE,
created to extract and manipulate the group-theoretical data and to simplify some of the
symmetry applications, was introduced in Chapter 2. First of all the advantages of using
BETHE to generate the group theoretical data was demonstrated. In the current version, the
data of 72 frequently applied point groups can be used, together with the data for all of the
corresponding double groups. The emphasize of this work was placed to the applications of
this package in physics of molecules and clusters (Chapter 3). Apart from the analysis of the
spectral activity of molecules with point-group symmetry, it was demonstrated how BETHE
can be used to understand the field splitting in crystals or to construct the corresponding
wave functions. Several examples are worked out in Chapter 3 to display (some of) the present
features of the BETHE program. While we cannot show all the details explicitly, these examples
certainly demonstrate the great potential in applying computer algebraic techniques to study

the symmetry properties of molecules and clusters.

A special attention was placed in this thesis work on the flexibility of the BETHE package,
which makes it possible to implement another applications, as described in Chapter 4. This
implementation is very reasonable, because some of the most complicated steps of the possible
future applications are already realized within the BETHE. For instance, the vibrational coor-
dinates in terms of the internal displacement vectors for the Wilson’s method (Section 4.1) and
the same coordinates in terms of cartesian displacement vectors as well as the Clebsch-Gordan
coefficients for the Jahn-Teller problem (Section 4.2) are generated in the present version of
the program. For the Jahn-Teller problem, moreover, use of the CA tool seems to be even
inevitable, because this problem demands an analytical access to the adiabatic potential and,

therefore, can not be realized by the numerical algorithm.

However, the ability of the BETHE package is not exhausted by applications, mentioned in this
thesis work. There are various directions in which the BETHE program could be developed in
the future. Apart from (i) studying of the magnetic properties of materials [49, 51] and (ii)
optical transitions [8], interest can be pointed out for (iii) the vibronic spectroscopy [41, 42],
and many others. Implementation of these applications into the package can make BETHE a

much more powerful tool.
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Appendix: Description of
procedures and global variables of
the BETHE package.

Global variables of the BerueE program

The following global variable is initialized by (first) invoking the BETHE program and can be
re—defined by means of the procedure Bethe_set().

e Bethe_save_framework = nonrelativistic

Procedures for the Berue program

Auxiliary procedures

e Abasis(stringaiom, [a1,a2,a3],[01,11],[n2,l5],...) bethe-2

Auxiliary procedure to represent an atomic basis set {(r|a nilym), (r|a nglom), ...}
which is centered at the position a = (aq, az,as) and which is characterized by means of

stringatom-
Output: An unevaluated call to Abasis() is returned.

Argument options: (stringaiom,a1,a2,as],[n1,kappas],[ns,kappas],...) to represent a rel-
ativistic orbital basis {(r|a nikim), (r| a nsrom), ...} if a relativistic framework is
used.

Additional information: A few minor tests are made on the parameters list with regard
to the number and type of the arguments. & If the quantum numbers n; and I; are
given numerically, they must be integers and must fulfill the relation n; > [; + 1. & The
last parameter string,iom can be used to characterize either the sort of the atom or the

one—particle basis to which the orbital belongs.

See also: AO(), SO(), Bethe_set().

e AO([aj,a,a3],n,l,m,string,.y,) *"e-*
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Auxiliary procedure to represent a (nonrelativistic) atomic orbital (r|a nlm) which
is centered at the position a = (a1, az2,a3) and which is characterized by means of

stringatom-
Output: An unevaluated call to AO([a1,a2,a3],n,I,m,stringatom ) is returned.

Argument options: ([aj,a2,a3],n,kappa,m,string,iom) to represent a relativistic atomic

Dirac orbital (r|a nxm) if a relativistic framework is used.

Additional information: A few minor tests are made on the input parameters with
regard to the number and type of the arguments. & If the quantum numbers n, 1 and/or
m are given numerically, they must be integers and must fulfill the relations n > [+ 1
and |m| < [. & The last parameter string,iom can be used to characterize either the sort

of the atom or the one—particle basis to which the orbital belongs.

See also: SO(), Bethe_set().

atom(stringsgy) bethe-a

Auxiliary procedure to represent an atom with symbol Sy in the Periodic Table of Ele-

ments.
Output: An unevaluated call to atom(stringgy) is returned.

Argument options: (stringsy,[a;,a,a3]) to represent an atom with symbol Sy at the
atomic site a = (a1,a2,a3). An unevaluated call to atom(stringsy,[a1,a2,a3]) is returned.

& (stringsy,mass = m) to represent an atom with symbol Sy and atomic weight m.

Additional information: A few minor checks are made on the parameter list which
concern (i) the proper type of arguments. & Usually, stringg, represents an atom in
terms of it symbol in the Periodic Table of Elements; a few examples are "H”, "He”, or
"1i”. The use of such predefined symbols is however not necessary. & Atomic coordinates
are usually treated in A units; 1 A = 10719 m. & Further properties of the atom can
be added to the parameter list if they are given in terms of equations, i.e. in the form

keyword = value.
See also: Bethe_set(), SO().

molecule(atom;, atoms,, ...) b¢the-a

Auxiliary procedure to represent an molecule in terms of its individual atoms.
Output: An unevaluated call to molecule(atomy,atoms,...) is returned.

Argument options: (atom;j,atoms,distance = d) to represent a diatomic molecule at the

equilibrium distance d.

Additional information: A few minor checks are made on the parameter list that all
arguments represent either (i) atoms or (ii) describe further properties in terms of equa-
tions. & Further properties of the atom can be added to the parameter list if they are

given in terms of equations keyword = value.

60



See also: Bethe_molecule().

SO(Glabel,[a;,a2,a3],n,l,m,stringig ,mu,nu,string,iom ) *¢"¢-¢

Auxiliary procedure to represent a symmetry orbital (r|(Ga) nim; () pv) of the
irreducible representation 7(®) of the group G (with label Glabel) which is characterized

by means of stringtom-

Output: An unevaluated call to SO(Glabel,[a1,a2,a3],n,1,m,stringig,mu,nu,stringatom) is

returned.

Argument options: (Glabel,[a;,az,a3],n,kappa,m,stringig ,mu,nu,string,tom) to represent
a relativistic symmetry orbital <r| (Ga) nkm; T ,LU/> if a relativistic framework is

used.

Additional information: A few minor tests are made on the parameters list with regard
to the number and type of the arguments. & If the quantum numbers n, 1 and/or m are
given numerically, they must be integers and must fulfill the relations n > [+ 1 and
|m| < [. & The last parameter string,iom can be used to characterize either the sort of

the atom or the one—particle basis to which the orbital belongs.

See also: AO(), Bethe_set().

Main procedures

Bethe_angular_j(kappa) bethe_b
Return the total angular momentum j for a given relativistic angular momentum quantum
number x.

Output: A half-integer is returned.
See also: AO(), SO().

Bethe_angular_l(kappa) bethe_b

Return the (orbital) angular momentum quantum number [ = abs(k) — 1 for k < 0 or

Il = k for k > 0 for a given k.
Output: An integer is returned.

See also: AO(), SO().

Bethe_CG _coefficient(Glabel, stringir,, i, stringr,, s, k, stringgr,m) bethe_b

Calculates the Clebsch-Gordan (or Wigner) coefficient (i, Sk | sym) for the three
irreducible representations «, 3, and v of the group with label Glabel with the string
identifiers stringir,,, string g, and string g, .

Output: A number is returned.
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Additional information: The irreducible representation -~ with the string identifier
string g, has to be ’part of” the direct product T@®B) je. T@®0) = T g . ...
The procedure terminates with a proper ERROR message if this is not fulfilled. To deter-
mine the irreducible representations, which are contained in the direct product above, the
procedure Bethe_group_direct_product() can be invoked. & The indices i, k, and [ enumer-
ate the basis functions of corresponding irreducible representations and, therefore, have
to be less or equal the irreducible representation dimensions. To determine the dimen-
sion of an irreducible representation of a given group, the procedure Bethe_group_irrep(...,
dimension) can be utilized. The parameter s enumerates the multiplicity of the irreducible
representation v and differs from 1 only if the representation - is contained in the direct
product o x @ more then 1 time. The procedure terminates with an ERROR message if

the parameters i, k, [ and s are typed wrong.

See also: Bethe_group_direct_product(), Bethe_CG_matrix().

Bethe_CG _matrix(Glabel, stringr,, stringir,) bethe_b

Generates the matrix of the (non-vanishing) Clebsch-Gordan (or Wigner) coefficient for
the two irreducible representations «, 3 with the string identifiers stringr,, and stringr,,.
Output: A unitary matrix is returned.

Additional information: Elements of this matrix («i, Sk | sym) appears in the inter-
section of the avi, Bk rows with the sym columns. & The irreducible representation  are
the irreducible components of the direct product o x 8. These components are calculated
automatically. & The dimension of the returned matrix is the mn x mn, where m and n

are the dimensions of the irreducible representations stringl Ry and string/ Ra

See also: Bethe_group_direct_product(), Bethe_CGC_are_orthogonal().
Bethe_CGC_are_orthogonal(mat) b¢the-b
Tests whether the CG coefficients, which form the matrix mat, are orthogonal each other.

Output: A boolean variable TRUE or FALSE is returned.

Additional information: The CG coefficients are orthogonal each other if the conditions

Z <Oﬂﬁk | 8/7/1/>* <O‘Zﬁk | 87l> = 577’558’5ll’ (5'1)
ik
Z (aifBk | syl) {ad' B | sy1)" = SiprSp (5.2)
sl

are fulfilled.
See also: Bethe_ CG_coefficient().
bethe—pg—data

Bethe_chains_relations(invariant)

Return a list of subchains from which all the invariant group chains can derived.
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Output: A list is returned.

Argument options: (subduction) to return a list of subchains from which all the subduc-

tions can derived.

Additional information: The list of subchains are generated from the graphs 1-12 as dis-
played by Altmann & Herzig (1994, paragraph 9). & All subchains are listed in alphabet-
ical order and in the form [Glabel_up, Glabel_low] where the orders of the corresponding

group labels fulfill the relation h_up > h_low.

See also: Bethe_group_chain().

Bethe_cos(m, n) bethe—pg—data

Calculates the value of cos(m/n)*Pi.

Output: A number is returned.

Bethe_decompose_representation(Glabel, [chi;, chig, ..., chig], [stringso,,
stringso,, ..., stringgo,]) bethe b

Determines how many times each irreducible representation of the group G with label
Glabel is contained in a reducible representation with characters [chij,chis,...chi] where
k is the number of the symmetry operations [stringgo,,stringso,, ...,stringgo, ] of the
group Glabel.

Output: A list of irreducible representation identifiers [stringig, ,stringg,,...] of the

given group is returned.

Argument options: (Glabel,[chij,chig,...,chix]) to return the same result if the characters
are given in the internal standard order, i.e. as obtained by a call to the procedure
Bethe_group(Glabel,symmetry_operations).

& (Glabel,[chij ,chis,...,chig], spin_reps) to return the same result for the list of the spinor
representations of the group Glabel.

& (Glabel,[matrix; matrixs,...,matrix],[string so, ,string so,,...,stringgo, ]) to return the
same result if the reducible matrix representation is given explicitly.

& (Glabel,[matrix; ,matrixs,...,matrix]) to return the same result if the reducible matrix
representation is given explicitly and if they are given in the internal standard order.

& (Glabel, stringig,, stringg,,...) to return the same decomposition for the product
representation associated to stringr, x stringr, x ...

& (Glabel, polar_vector) to return a list of irreducible representation names [stringig,,
stringg,,, ...] of group Glabel, which describe the transformation of the polar vector r =
(. v, %)

& (Glabel, azial_vector) to return the list of irreducible representation names which de-
scribe the transformation of the axial vector R = (R, Ry, R.);

& (Glabel, cartesian_tensor, rank) to return the same for the representation of a cartesian

tensor function of rank rank.
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Additional information: At the output, an irreducible string identifier stringigr appears
as many times as it arises in the given reducible representation. The order of the irre-
ducible string identifiers is undetermined. & The internal standard order of the symmetry
operations is those as obtained by a call to Bethe_group(Glabel, operators). & Decompo-
sition of the double group representations is also supported by the program. In this case

k is considered as a number of the symmetry operations of corresponding double group.
See also: Bethe_group_representation().

Bethe Djmm(j, m, mp, alpha, beta, gamma) bethe-0

Returns a Wigner D-function if j,m,mp are given numerically. Formula 4.3(1) from Var-
shalovich et al. (1988) is used.
Output: A number or an unevaluated function call is returned.

Bethe_djmm(j, m, mp, beta) bethe-b

Returns a Wigner d-function if jm,mp are given numerically. Formula 4.3(2) from Var-
shalovich et al. (1988) is used.

Output: A number or an unevaluated function call is returned.

Bethe_direct_product(M1, M2) bethe-b

Calculates the direct (Kronecker) product of matrix M1 and matrix M2.

Output: A ning X ning matrix is returned where nq, ny are dimensions of the matrices
M1 and M2 respectively.

Additional information: The matrices M1 and M2 have to be square.

Bethe_function_return(m, listmol, listvib) bethe-b

Return a list of numbers for drawing the atoms molecule with coordinates listmol in the
different positions of vibration like defined by the list listvib for m oscillations.
Output: A list is returned.

Additional information: A normal coordinate in terms of the cartesian displacement

vectors should be used.
See also: molecule(), Bethe_function_display().

Bethe_generate_AO(stringaiom, [a1,a2,a3,[n1,l1],[ng,l5],...) Pethe-b

Generates a list of atomic orbitals (including all possible m’s) at the position a =
(a1,a2,a3) and for an atom with the identifier stringaiom-
Output: A list of (unevaluated) calls to AO() with proper quantum numbers is returned.

Argument options: (stringaiom,[a1,a2,as,[n1,kappai], [ng,kappasg],...) to generate a list

of relativistic orbitals (including all possible m’s) if a relativistic framework is used.
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Additional information: All atomic orbitals are located at the same site
a = (ay,a9,a3). & All principal quantum numbers n; and (orbital) angular momentum

numbers [; or x; must be of type integer.

See also: AO().

Bethe_generate_AO _basis(Glabel,AO;,AQ.,...) bethe-b

Generates an atomic basis by applying all symmetry operations of the point group G with
label Glabel to the atomic orbitals AOq, AOq, ... .

Output: A list of (unevaluated) calls to AO() with proper quantum numbers and with

positions of all equivalent atomic sites a is returned.

Additional information: To generate an atomic basis, it is typically enough to provide the
corresponding orbitals at one of the equivalent sites, i.e. atomic sites which are equivalent
under the symmetry operations of the group G. & Although returned in a list structure,

it is ensured that each atomic orbital only occurs once in the list.
See also: Bethe_generate_ AO().

Bethe_generate_sites(Glabel,[a;,a,,a,]) bethe-b

Generates all equivalent sites of the point a = (ay,ay,a,) under the symmetry operations
of the point group G with label Glabel.

Output: A list of sites | [agcl),aél),agl)], [a&z),ag),a@], [aﬁf’),af’),af’)], ...] is returned.

Argument options: (Glabel,[a;,a,,a;], [bz,by,b.], ...) to generate the same but for dif-
ferent sites a = (ag,ay,a.), b = (by,by,b,), ...; a list of lists is returned. & The input
a = (a1,as,as3) is always returned as first operand [[agl),aél),agl)], ...] of the output. &

The present version only supports cartesian coordinates.

See also: Bethe_group().

Bethe_generate_SO(SO(Glabel, [a;,a2,a3], n, 1, m, stringr, mu, nu, string,iom))
bethe_b

Expands a given symmetry orbital <r | (Ga) nlm; T(O‘),w/> of the group G and with one
of the atoms centered at position a = (a1, as,a3) in terms of the atomic orbitals with

quantum numbers n and [, centered at all equivalent sites.

Output: A list [[c1, AOq],[co, AOg], ...] is returned where ¢; are the mixing coefficients

and where AQO; describes an atomic orbital at one of the equivalent sites of the molecule.

Argument options: (SO,print) to print the expansion in terms of atomic orbitals in a

line mode which is much simpler to read. A NULL expression is returned in this case.

Additional information: If the keyword print is used, one line ¢; x AQO;() is printed for
each atomic orbital involved in the expansion. & The expansion coefficients are normalized
dueto > . c? =1

See also: Bethe_generate_ AO().
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e Bethe_generate_SO_basis(Glabel,Abasis;, Abasiss,...) bethe_b

Generates a complete but linear independent set of symmetry orbitals for the point group
G with label Glabel from the set of atomic orbitals as given by the basis sets Abasisy,
Abasisg, ... .

Output: A list of unevaluated calls to SO() is returned.

Argument options: (Glabel,Abasis;,Abasiss,...,explicit) to generate an explicit represen-
tation of the (set of) symmetry orbitals in terms of the corresponding atomic orbitals, |
[[c1, AO1],[c2, AOq], ...], ...].

& (Glabel,Abasis;,Abasiss,...,print) to print the complete but linear independent basis of
symmetry orbitals in line mode. A NULL expression is returned in this case.

& (Glabel,Abasisy,Abasiss,...,explicit,print) to generate and print an explicit representa-
tion of all symmetry orbitals in terms of atomic orbitals. A NULL expression is returned

in this case.

Additional information: To generate a symmetry orbital basis, it is typically enough
to provide the corresponding orbitals in the atomic basis set Abasis for just one of the
equivalent sites, i.e. for one of the atomic sites which are equivalent under the symmetry

operations of the group G.
See also: Bethe_generate_AQ_basis().

e Bethe_group() >¢te-b

Returns a list of all point groups (labels) which are presently supported by the BETHE
package.

Output: A list of Glabel’s is returned.

Argument options: (Glabel,implemented) to return true if the point groups G with label
Glabel is supported by the BETHE program and false otherwise. & (Glabel,No_class) or
(Glabel, No_class,double) to return the number of classes in the group or the or the corre-
sponding double group. & (Glabel, No_regular) to return the number of regular classes in
the group. & (Glabel,No_irregular) to return the number of irregular classes in the group.
& (Glabel, No_irreps) or (Glabel, No_irreps,double)to return the number of irreducible rep-
resentations of the group or the corresponding double group. & (Glabel, No_operators) or
(Glabel, No_operators, double)to return the number of symmetry operations of the group
or the corresponding double group. & (Glabel, No_Altmann) to return the number of the
table in the main reference book by Altmann & Herzig (1994). & (Glabel,crystallographic)
to return true if the group label indicates a crystallographic point group and false other-
wise. & (Glabel,crystal_system) to return, if Glabel denotes a crystallographic group, the
name of of the crystallographic system (such as triclinic, rhombic, ...) and FAIL other-
wise. & (Glabel,cubic) to return true if the Glabel indicates a cubic point group and false
otherwise. & (Glabel,cyclic) to return true if the Glabel indicates a cyclic point group and
false otherwise. & (Glabel,dihedral) to return true if the Glabel indicates a dihedral point

group and false otherwise. & (Glabel,icosahedral) to return true if the Glabel indicates
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a icosahedral point group and false otherwise. & (Glabel,proper) to return true if the
Glabel indicates a proper point group and false otherwise. & (Glabel,subgroup) to return
a list of the subgroups for the group Glabel. & (Glabel,irreps) or (Glabel,irreps,double)
to return a detailed list of all irreducible representations of the group or the correspond-
ing double group. & (Glabel,operators) or (Glabel,operators, double) to return a de-
tailed list of all symmetry operations of the group or the corresponding double group. &
(group_table) to print a detailed tabulation about all presently supported point groups
including the international (short and long) notation of the group as well as the notation
due to Schonfliess. & (Glabel,operator_details) to print a detailed list about all symmetry
operations of the group or the corresponding double group. & (Glabel,spinor_irreps) to
return a list of the spinor (double valued) irreducible representations of the group Glabel.
& (Glabel,symmetry_elements) to print a detailed list about all symmetry elements (with
respect to space fixed coordinates) of the group, i,.e. the choice of principal axis, the
center of symmetry, the reflection planes, etc. & (Glabel,ezamples) to print a table with

a number of molecules which obey this group.
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Short description of all keywords

crystallographic
crystall_system
cubic

cyclic

dihedral
examples

group_table

icosahedral
implemented
irreps

irreps, double

No_Altmann

No_class
No_class, double
No_irreqular
No_irreps

No_irreps, double

No_operators

No_operators, double

No_regular
operator_details
operators

operators, double

proper
SpInoT_1rreps
subgroup

symmetry_elements

Boolean value true or false

Prints a name of the crystal system

Boolean value true or false

Boolean value true or false

Boolean value true or false

Prints a few examples

Prints a summary about all presently supported
point groups

Boolean value true or false

Boolean value true or false

List of irreducible representation identifiers

List of irreducible representations identifiers in the
double group

Number of the tabulation by Altmann & Herzig
(1994)

Number of classes

Number of classes in the double group

Number of irregular classes

Number of irreducible representations

Number of irreducible representations in the double
group

Number of symmetry operations

Number of symmetry operations in the double
group

Number of regular classes

Prints a description of all symmetry operations
List of symmetry operation identifiers

List of symmetry operation identifiers in the double
group

Boolean value true or false

List of spinor irreducible representation identifiers
List of the subgroups

Prints a description of all symmetry elements

Additional information: Each irreducible representation of the group is described by an
individual string identifier which is used in the input and output of many commands.

& The irreducible representations of the standard and the double groups have different

68



string identifiers. & For the optional argument (Glabel,operator_details), the procedure

prints a short description of all the symmetry operations of the point group G:

Description of symmetry operations for the point group C2v:
E Identity operation
c2 Clockwise rotation about the z(principal)-axis by Pi
sigma_x Reflection through the (y-z) plane
sigma_y Reflection through the (x-z) plane

& For the optional argument (group_table), the procedure prints a list of all presently

supported groups in the form:

Notation

Glabel Schoenfliess Full Short Group description

Cs C_s m m Group of horizontal reflection
CI C_i ~1 ~1 Imroper cyclic group
c2 Cc_2 2 2 Proper cyclic group
C3 C_3 3 3 Proper cyclic group

& For the optional argument (Glabel,symmetry_elements), the procedure prints a short

description of all the symmetry elements of the point group G:

Symmetry elements of the point group C2v:
Cc_2 2-fold principal axis along the z-axis
sigma_y  Vertical (x-z) reflection plane

sigma_x Vertical (y-z) reflection plane

e Bethe_group_chain(Glabel) b¢the-b

Returns a list of invariant group chains which contain the group with label Glabel.
Output: A list of lists is returned.

Argument options: (Glabel;,Glabels,...) to return a list of invariant group chains which
contain all the given group labels. & (Glabely,...,down) to return the invariant group
chains which start with Glabel;. & (Glabely,...,up) to return the invariant group chains
which terminate with Glabel;. & (Glabely,...,subduction) to return the subduction group

chains which include the given Glabels.
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Additional information: The group chains are given as a list of group labels in descending
order of the group order, i.e. by starting with the group of highest symmetry. & The

subduction group chains are defined independently from the invariant group chains.

See also: Bethe_group().

Bethe_group_character(Glabel, stringg,stringgo) "¢

Returns the character x for the irreducible representation stringir and the symmetry

operation stringgo for the point group G with label Glabel.
Output: A number is returned.

Argument options: (Glabel, stringr) to return the characters for all the symmetry oper-
ations x1, X2, ... of the point group. A list of numbers is returned which refer to the sym-
metry operations of the group in the same sequence as obtained by Bethe_group(Glabel,
operators). & (Glabel, stringr,double) to return the same for the corresponding double
group.

See also: Bethe_group().

Bethe_group_class(Glabel, stringgo) b¢te-b

Returns a list of all symmetry operation identifiers, i.e. [stringso,, stringso,, ... ] which
belong to the same class as stringgo for the point group with label Glabel. Stringgo is

also included in this list so that the list contains at least one element.
Output: A list is returned.

Argument options: (Glabel, stringgo,order) to return the order of this class. A number
is returned in this case. & (Glabel, stringgo,double) to return the list of all symmetry
operation identifiers, i.e. which belong to the same class as stringso for the double group
with label Glabel. & (Glabel, stringso, double,order) to return the order of double group

class.
See also: Bethe_group().

Bethe_group_direct_product(Glabel, stringg,,stringg, ,...) bethe_b

Returns the direct product of the irreducible representations stringig, ® stringig, ® ...

in terms of such irreducible representation identifiers

Output: A list of irreducible representation identifiers [stringgr,, stringgr,, ...] is re-
turned.
Argument options: (Glabel, stringg,, stringig,,..., symmetrized) to return the sym-

metrized part of the direct product of the irreducible representation string g, with itself.
& (Glabel, stringg,, stringig, ..., antisymmetrized) to return the antisymmetrized part
of the direct product of the irreducible representation stringg, with itself. & (Glabel,

rep_list,, rep_listy, ...) to calculate the direct product of the two or more (reducible or
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irreducible) representations, rep.listr, ® rep.listig, ® ..., if these representations are
given explicitly. & (Glabel, rep_list,, rep_list,, ..., symmetrized) to calculate the sym-
metrized part of the direct product of the representation rep_list, with itself. & (Glabel,
rep_list,, rep.list,, ..., antisymmetrized) to calculate the antisymmetrized part of the di-
rect product of the representation rep_list, with itself. & (Glabel, stringg,, rep_listy) to
calculate the direct product of the irreducible representation stringr, and the explicitly
given representation rep_list,. & (Glabel, ..., matrices) to return the matrix representa-
tion of the direct product explicitly within a list structure; a list of matrices is returned.
& (Glabel, ..., characters) to return the characters of the direct product representation;

a list of numbers is returned.

Additional information: The result of this procedures is similar as obtained by Altmann
& Herzig (1994), tables Tn.8. & Since the irreducible components in the direct product
are the same for the point and double groups (as far as the irreducible representations
are the same), no distinction need to be made for these two groups with the same label
Glabel. & A representation can be given explicitly within a list of matrices structure,
where every matrix is assigned to each symmetry operator of the group Glabel. Of course,
all these matrices must have the same dimension and their sequence must agree with the
sequence of symmetrized operators as obtained from Bethe_group(Glabel, operators) or
Bethe_group(Glabel, operators, double), respectively. & If a group representation is given
explicitly, the number of list elements must agree with the number of symmetry operators
in either the vector or the double group with label Glabel, from which the kind of the

group is derived (if necessary).

See also: Bethe_group(), Bethe_group_irrep_manifold().

Bethe_group_Euler(Glabel, stringgg) b¢the-?

Returns the three Euler angles «, 3, for the symmetry operation stringgo of the point
group G with label Glabel.

Output: A list of three angles [alpha, beta, gamma] is returned.

Argument options: (Glabel, stringgo, matriz) to return the rotation matrix due to the

symmetry operator stringgo.

Additional information: The values of the Euler angles are taken from Altmann &
Herzig (1994), table Tn.1. & The Euler angles only specify 'pure’ rotations; additional
informations about the reflection planes, the center of inversion, or whether the symmetry
operation belongs to the point or double group may be required in order to characterize
the symmetry operations in general. & The Euler angles of the point group operation are
returned even if the symmetry operation belongs to the corresponding double group. & If
a third argument matriz is given, the 3 x 3 rotation matrix is returned including a proper
inversion at the origin of the coordinates, if necessary for this operation; note, however,
that a 3 x 3 rotation matrix is not sufficient to specify the symmetry operations of the

double group uniquely.
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See also: Bethe_group(), Bethe_group_character().

Bethe_group_inverse(Glabel, stringgo) b¢t-b

Returns the inverse symmetry operation to the operation stringgo for the point group
with label Glabel.
Output: A string is returned.

Argument options: (Glabel, stringgo,,stringso,,...) to return the inverse symmetry

operation to the product operation stringgo, ® stringgo, ® ...

Additional information: In the present version, the inverse is found for symmetry oper-

ations from the point and double group.

See also: Bethe_group().

Bethe_group_irrep(Glabel, stringr,stringgo) ethe-?

Returns the matrix of the irreducible representation stringr for the symmetry operation

stringgo of the point group with label Glabel.
Output: A matrix is returned.

Argument options: (Glabel, stringg, stringgo,mu,nu) to return the matrix element
[mu, nu]. A number is returned in this case. & (Glabel, stringir, dimension) to return
the dimension of the irreducible representation with string identifier stringg. & (Glabel,
string g ) to return the matrix representation for all the symmetry operations of the point
group. A list of matrices is returned which refer to the symmetry operations of the group
in the same sequence as obtained by Bethe_group(Glabel,operators). & (Glabel, string;pg,
stringgo,mu, nu, real) to calculate a real matrix element for the multidimensional irre-

ducible representations. A real number is returned in this case.

Additional information: To get a real matrix element for the multidimensional irre-
ducible representations, the pair of imaginary elements need to be transformed into pair
of real elements. It can be done by adding and subtracting the two matrix elements
for each representation and dividing the resulting characters by the greatest common

denominator.

See also: Bethe_group().

Bethe_group_irrep_manifold(Glabel, stringg,,, stringir,, stringir.) bethe_b

Returns the coefficient m., in the expansion of the direct product

7@ o 7B _ Z m, T)
Y

where T, TP and T refer to three irreducible representations of the point group

Glabel, denoted as stringg,,, stringir,, stringr,, -
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Output: A number is returned.

Additional information: Even if T(® and T%) are irreducible, the representation 7(®) x
T®) is generally not irreducible but can be decomposed due to the relation above where

the weights are given by
1 (0%
my = ﬁz epxs Xy X
gl

Here, h denotes the order of the group, ¢, the order of the class, and yx is the character of
the corresponding irreducible representation (Elliot & Dawber 1979). & The irreducible

representations of corresponding double groups are also supported by the program.
See also: Bethe_group(), Bethe_symmetry_operations().

Bethe_group_multiplication(Glabel, stringgo,,stringgso, ) *¢*"-

Returns the product operation of the two symmetry operations stringso, and stringso,
of the point group G with label Glabel as defined by Altmann & Herzig (1994) Tn.2-3.

Output: A stringgo is returned.

Argument options: (Glabel, stringso, ,stringso, ,double) to returns the product operation
of the two symmetry operation stringso, and stringso, for the corresponding double
group of G.

Additional information: If A, B are the symmetry operations associated to the symme-
try operation strings stringso, and stringso, , the results is the stringgo identifier which

belong to the product operation AB.
See also: Bethe_group().

Bethe_group_parameter(Glabel, stringgp) /¢

Returns the rotation angle and the unit vector which define the symmetry operation
stringgo of the point group G with label Glabel as defined by Altmann & Herzig (1994)
Tn.1.

Output: A list [¢, [n1, 12, n3]] is returned.

Argument options: (Glabel, stringgo, U_rotation) to return the set of angles (¢, ©, ®) of
the symmetry operation stringgo. & (Glabel, stringgo,quaternion) to return the quater-
nion parameters A and A of the same symmetry operation as defined by Altmann &
Herzig (1994).

Additional information: A parameterization of the symmetry operations in terms of ¢

and the unit vector (nj,ne,ng) is equivalent to the (more common) Euler angles.

See also: Bethe_group_Euler().
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e Bethe_group_representation(Glabel, polar_vector) b¢the-b

Calculates the characters for the representation which describes the transformation of a

polar vector r = (z,¥, z) as induced by the group (elements) with label Glabel.

Output: A list of numbers is returned which describe the characters of the symmetry

operations in the same sequence as obtained from Bethe_group(Glabel,operators).

Argument options: (Glabel, polar_vector,double) to calculate the same list of opera-
tors but for the double group. & (Glabel, polar_vector, matriz) or (Glabel, polar_vector,
matriz, double) to calculate an explicit matrix representation; a list of matrices is re-
turned. & (Glabel, azial_vector) to calculate the characters for the representation which
describes the transformation of a axial vector R = (R;, Ry, R.) as induced by the
group. & (Glabel, azial_vector,double) to calculate the same list of operators but for
the double group. & (Glabel, azial_vector, matriz) or (Glabel, azial_vector, matriz, dou-
ble) to calculate an explicit matrix representation; a list of matrices is returned. &
(Glabel, Yim,]) to calculate the characters for the transformation of the spherical har-
monics of (spherical tensor) rank [, i.e. of ¥;,,(0,¢), m = [l —1,...,—1 as induced
by the point group. & (Glabel, Yim,\l matriz) to calculate the explicit matrix repre-
sentation; a list of (2 + 1) x (20 4+ 1) matrices is returned. & (Glabel, jm.j) to calcu-
late the characters for the transformation of the spinor functions |[jm) of half-integer
(spherical tensor) rank j, i.e. of [jm) m = j,j —1,...,—j as induced by the point
group. & (Glabel, total[[a1,,a1y,21;],[a24,82y,82:],...]) to calculate the characters for a
set of 'atomic displacements’, centered at a; = (aiy,a1y,012), az = .... & (Glabel,
total,[[a15,21y,81],[825,82y,82;],...], matriz) to return the total matrix representation for
the same set of atomic displacements explicitly. & (Glabel, total, molecule) to calculate
the characters for the atoms of molecule, defined by the procedure molecule(). & (Glabel,
total, molecule, matriz) to return the total explicit matrix representation for the atoms
of molecule, defined by the procedure molecule(). & (Glabel, regular) to calculate the
characters of the reqular representation of the group.

& (Glabel, regular, matriz) to calculate the explicit matrix representation of the regular
representation. & (Glabel, regular, double) to calculate the characters of the reqular rep-
resentation of the double group. & (Glabel, vibrational,[[a1,,a1y,81;],[a24,82y,82;],...]) tO
calculate the characters of the vibrational representation for the set of atoms centered at
a; = (G1g,01y,a12), a2 = .... & (Glabel, vibrational, molecule) to calculate the charac-
ters of the vibrational representation for the atoms of molecule, defined by the procedure
molecule(). & (Glabel, Fuler) to return the Euler representation. A list of matrices is
returned. & (Glabel, vibrational, [[a15, a1y, a1;], [a2z, a2y, a2;],..]) to calculate the charac-
ters of representation which describe the transformation of the vibrational vectors. A list
of characters is returned. & (Glabel, cartesian_tensor, rank, matriz) to return an explicit
matrix representation of the group as generated by a set of cartesian tensor functions of
the given rank. A list of matrices is returned. & (Glabel, cartesian_tensor, rank) to return
the characters of the representation as generated by a set of cartesian tensor functions of

the given rank.
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Additional information: In the output, the sequence of characters and matrices al-
ways refer to the standard sequence of the symmetry operations as obtained by a call to

Bethe_group(Glabel, operators).

See also: Bethe_group(), molecule().

Bethe_group_subduction(Glabel, stringz, Glabely,,) ¢

Returns the irreducible components, which appear in the decomposition of the Glabel
group representation stringg to the group Glabelg,, as defined by Altmann & Herzig
(1994) Tn.9.

Output: A list of strings is returned.

Additional information: The representation stringig should be irreducible in the group
Glabel. Since the group Glabely,, is the subgroup of group Glabel, this representation is
(generally!) reducible in the group Glabelg,,. & The procedure terminates with proper
ERROR message, if the stringg is not irreducible representation of the group Glabel. &
If group Glabelgy, is not a subgroup of the group Glabel, the FAIL is returned.

See also: Bethe_decompose_representation().

Bethe_group_subduction_03(Glabel, [) bethe-b

Returns the irreducible components, which appear in the decomposition of the 03 group
representation, generated by the spherical functions Y, (¥, ¢) for given [, to the group
Glabel as defined by Altmann & Herzig (1994) Tn.10.

Output: A list of strings is returned.

Additional information: The parameter [ has to be either integer or half-integer. If
this condition is not fulfilled, the procedure terminates with proper ERROR message. &
03 group representation is constructed as a set of (2] + 1-dimensional) matrices, which
are necessary in order to generate the group symmetry transformations of the spherical

functions Yy, (9, ¢).

See also: Bethe_decompose_representation(), Bethe_group_representation().

Bethe_group_symmetry(Glabel, [[a;,as,a3], [b1,b2,bs],...]) bethe-b

Defines, whether the (atomic) sites a, b, ... are equivalent under the point group Glabel
transformations.
Output: A boolean variable true or false is returned.

Argument options: (which, [[aj,a2,a3], [b1,b2,bs],...]) to return a list of group labels,
under which the atomic sites a,b,... are equivalent. A list is returned. & (highest,
[[a1,a2,a3], [b1,b2,bs],...]) to return a group label of highest order group, under which the

atomic sites a, b, ... are equivalent.
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Additional information: To determine the point symmetry, it is enough to determine all
the equivalent sites of the atom at site a under the symmetry operations of every point

group and to compare these sites with the given list of atomic sites a, b, ....

See also: Bethe_generate_sites().

Bethe_group_tabulation(Glabel) ¢tre-b

Prints the group theoretical data in a neat format as appropriate, for instance, for a quick
comparison with the tables of Altmann & Herzig(1994).

Output: A NULL expression is returned.

Argument options: (Glabel, Cartesian_tensor) to print, in addition, the cartesian tensor
table for given group (Tn.5), & (Glabel, characters) to print, in addition, the character
table for given group (Tn.4), & (Glabel, direct_product) to print, in addition, the direct
product table for given group (Tn.8), & (Glabel, multiplication) to print, in addition, the
multiplication table for given group (Tn.2), & (Glabel, parameters) to print, in addition,
the parameters table for given group, i. e. the Euler angles («, 3,7), the angle and axis of
the rotation (¢, n), and the quaternion parameters (A, A) (Tn.1), & (Glabel, subduction)
to print, in addition, the subduction table for given group (Tn.9), & (Glabel, subduc-
tion_08) to print, in addition, the subduction from O3 table for given group (Tn.10).

Additional information: The standard printout of this procedure includes (i) the dif-
ferent notations and short description of the given group, (ii) the order of the group,
(iii) the numbers of point and double point group classes, (iv) the number of the corre-
sponding tabulation of the given group by Altmann & Herzig(1994), (v) an indicator of
crystallographic point group, (vi) the lists of the point and double point group operators
enclosing in brackets all operators of the same class, (vii) the numbers of regular and ir-
regular classes, (viii) the number of irreducible representation for point and double point
groups, (ix) a number of examples molecules for this symmetry, (x) a list of invariant

group chains, and (xi) a list of subduction group chains.

See also: Bethe_group().
Bethe_group_tabulation_cartesian_tensor(Glabel) bete-b

Prints a cartesian tensor table of the given group in a neat format as appropriate, for
instance, for a quick comparison with the tables Tn.5 of Altmann & Herzig(1994).
Output: A NULL expression is returned.

See also: Bethe_group_tabulation(), Bethe_group_tensor().

Bethe_group_tabulation_characters(Glabel) b¢the-b

Prints a character table of the given group in a neat format as appropriate, for instance,
for a quick comparison with the tables Tn.4 of Altmann & Herzig(1994).
Output: A NULL expression is returned.

See also: Bethe_group_tabulation(), Bethe_group_characters().
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e Bethe_group_tabulation_direct_product(Glabel) b¢the-b

Prints a direct product table of the given group in a neat format as appropriate, for
instance, for a quick comparison with the tables Tn.8 of Altmann & Herzig(1994).
Output: A NULL expression is returned.

See also: Bethe_group_tabulation(), Bethe_group_direct_product().

e Bethe_group_tabulation_multiplication(Glabel) b¢the-b

Prints a multiplication table of the given group in a neat format as appropriate, for
instance, for a quick comparison with the tables Tn.2 of Altmann & Herzig(1994).
Output: A NULL expression is returned.

See also: Bethe_group_tabulation(), Bethe_group_multiplication().

e Bethe_group_tabulation_parameters(Glabel) b¢the-b

Prints a table of parameters (Euler angles («, (3,7), angle and pole of rotation (¢, n) and
the quaternion parameters (A, A) of the given group in a neat format as appropriate, for
instance, for a quick comparison with the tables Tn.1 of Altmann & Herzig(1994).

Output: A NULL expression is returned.
See also: Bethe_group_tabulation(), Bethe_group_parameters().

e Bethe_group_tabulation_subduction(Glabel) bethe-b

Prints a subduction table of the given group in a neat format as appropriate, for instance,
for a quick comparison with the tables Tn.9 of Altmann & Herzig(1994).
Output: A NULL expression is returned.

See also: Bethe_group_tabulation(), Bethe_group_subduction().

e Bethe_group_tabulation_subduction_O3(Glabel) bethe-b
Prints a subduction from Og table of the given group in a neat format as appropriate,
for instance, for a quick comparison with the tables Tn.10 of Altmann & Herzig.
Output: A NULL expression is returned.
See also: Bethe_group_tabulation(), Bethe_group_subduction_03().

e Bethe_group_tensor(Glabel, string,,) -

Returns the list [rank, stringg|. which shows a rank of the symmetry function, decoded
by stringf,, and corresponding irreducible representation stringig (or list of representa-
tions) as defined by Altmann & Herzig (Tn.5).

Output: A list is returned.

Argument options: (Glabel, stringr, rank) to return a list of the basis functions of the

irreducible representation stringg with corresponding rank.
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Additional information: Only rank 1, 2 or 3 is available.

See also: Bethe_symmetry_tensors().

e Bethe_group_test(Glabel) b¢te-b

Carries out and reports about a number of tests on the group Glabel.
Output: A NULL expression is returned.

Argument options: (Glabel, characters) to test only the orthogonality relation for irre-
ducible representation characters as provided by the procedure Bethe_group_test_charac-
ters() & (Glabel, direct_product) to test only the property, that the direct product of two
representations is the sun of the symmetrized direct product and antisymmetrized direct
product, as provided by the procedure Bethe_group_test_direct_product() & (Glabel, irreps)
to test only orthogonality relations for the irreducible representations of the group Glabel
as provided by the procedure Bethe_group_test_irreps() & (Glabel, multiplication) to test
only the multiplication rules for the symmetry operations of the group Glabel as provided
by the procedure Bethe_group_test_multiplication() & (Glabel, simple) to make a number
of simple tests of the group Glabel as provided by the procedure Bethe_group_test_simple()

e Bethe_group_test_characters(Glabel) bethe-b

Test the implementation of the character table for given point group due to the required

orthogonality
3 XD (Ga)x P*(Ga) = g8as.

Output: A NULL expression is returned.

Additional information: The procedure prints the proper message if the condition of

characters orthogonality is not fulfilled.

See also: Bethe_group_test(), Bethe_group_characters().

e Bethe_group_test_direct_product(Glabel) bethe-b

Carries out and reports about whether the squared direct product of every irreducible rep-
resentation of group Glabel is equal to the sum of the symmetrized and antisymmetrized

parts of direct product.
Output: A NULL expression is returned.

Additional information: The procedure prints the proper message if the condition of
direct products equality is not fulfilled. & Test is carried for both of point and double

point group representations.
See also: Bethe_group_test(), Bethe_group_direct_product().

e Bethe_group_test_irreps(Glabel) bethe-b
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Carries out and reports about the test of orthogonality of the irreducible representations

of the point and the double group

« B)* g
> Ty (GO (Ga) = <605 813 60

«

Output: A NULL expression is returned.

Additional information: The procedure prints the proper message if the condition of

irreps orthogonality is not fulfilled.
See also: Bethe_group_test(), Bethe_group_irreps().

Bethe_group_test_multiplication(Glabel) b¢the-b

Carries out and reports about the test the 'multiplication table’ of the group. For each

element G, test that G, Gy, b = 1, ..., g generates again all symmetry operations.
Output: A NULL expression is returned.

Additional information: The procedure prints the proper message if the condition of

symmetry operation multiplication is not fulfilled.
See also: Bethe_group_test(), Bethe_group_multiplication().

Bethe_group._test_simple(Glabel) b¢te-b

Carries out and reports about a number of simple tests: (i) number of classes = number
of irreps for both point and double cases; (ii) order of group divided by the order to
subgroups must be an integer; (iii) number of symmetry operators = group order for
both point and double cases; (iv) class order must be integral divisor of a group order;

(v) class criterium G, = G,GpG,, 1 of all symmetry operators of the same class;
Output: A NULL expression is returned.

Additional information: The procedure prints the proper message if the conditions of
(i) - (v) are not fulfilled.

See also: Bethe_group_test(), Bethe_group().

Bethe_group_time_reversal(Glabel, stringg) "

Returns the symmetry behavior of the irreducible representation stringir under time

reversal.
Output: A string with the time reversal classification is returned.

Additional information: Addition of time-reversal operator (which is symmetry operator
for the Hamiltonian of many physical systems) to an existing symmetry group can lead
to increased degeneracy of wave functions of system. Irreducible representations of group
with time reversal can be classified by (i) equivalent to a real representations, (ii) not
equivalent to their complex conjugate representations, (iii) equivalent to their complex

conjugate representations, but not to a real representations.

Notation for time reversal classification (I is the representation stringg, I* - its complex

conjugate):
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I, I* Vector representation Spinor representation

a Real and equal No extra degeneracy = Doubled degeneracy
b Complex and inequivalent Doubled degeneracy = Doubled degeneracy

¢ Complex and equivalent Doubled degeneracy = No extra degeneracy

See also: Bethe_symmetry_characters().

Bethe_implemented() bethe—pg—data

Returns a list of a currently implemented point groups.
Output: A list is returned.

Additional information: Point group identifiers are returned in terms of their group
labels [Glabel;, Glabely, ...]. & Corresponding double groups are also supported by the

program.

See also: Bethe_group().

Bethe_internal_coordinates(Glabel, mol) b¢tie-b

To specify the internal coordinates of the molecule mol.

Output: A list of lists [[[aiz, Giy, @iz), (a2, Gy, aj2]], [[Giz, Gy, Gi2], [@ma s Gmy, Gmz],

[@nzs Gny, anzl], [[1, []]; -] is returned.

Argument options: (Glabel, mol, stretching) to return the stretching vibrational vectors.
A list of lists [[[aiz, @iy, Giz], [@jz, ajy, a;2]], [[],[]], --.] is returned in this case. & (Glabel,
mol, bending) to return the same for the bending vibrational vectors. A list of lists

[[[aim> Qg aiz]a [ajm> Ay, ajz]a [ak:w Ay akznv [Hv []7 []]7 ] is returned in this case.

Additional information: The molecule is defined by the procedure molecule(). & The
stretching internal coordinate can be specified as a vector between two different atoms ¢
and j, having the coordinates [aiz, @iy, Giz], [ajz, ajy, a;-], while bending internal coordi-
nates can be specified as an angle between three atoms i, 7 and k, having the coordinates
@iz, iy, Giz], [aja, Qjy, Aj2), [Oka, Qky, ak:]. & The number of output list member depends
of the molecule. & If the number of internal coordinates exceeds the number of normal
vibrations, the list of the internal coordinates contains so-called redundant coordinates,

which are not independent of other internal coordinates.
Bethe_Kronecker(a, b) bethe-b
Returns 1, if a = b and 0 otherwise.

Output: A number is returned.

Bethe_linearly_independent([[a;, a3, as,...], [b1, by, bs,...], ...]) tethe-b

Extracts the linearly independent sublists from the list [[a1, a9, ag,...], [b1, b2, bs,...], ...].

Output: A list of lists is returned.
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Additional information: In the output the members of sublists are linearly independent

to each other.

See also: .

Bethe_matrices_are_equal(M1, M2, dim) bethe-b

Returns true if the matrices M1 and M2, which must have both the dimension dim are

equal to each other and false otherwise.
Output: A boolean value of true or false is returned.

Additional information: Matrices are considered to be equal if they have the same
dimension dim and module of the difference between each pair of corresponding matrix
elements < 0.001.

Bethe_nonequivalent_angles(Glabel, mol) bethe-b

Generates the list of NONEQUIVALENT interbond angles of the molecule mol in terms

of the atomic coordinates.

Output: A list of lists [ ol af" 2], 28 af 2], 2 a8 a0, 10, 0, 0, ] s

returned.
Argument options:

Additional information: To define a molecule, the procedure molecule() can be used. &
Angles, which are nonequivalent, can not be transformed into each other by the symmetry

operations of the group Glabel.
See also: Bethe_nonequivalent_atoms(), Bethe_nonequivalent_distances().

Bethe_nonequivalent_atoms(Glabel, mol) ¢the-b

Generates the list of NONEQUIVALENT atoms of the molecule mol in terms of the
atomic coordinates.

Output: A list of lists | [agcl),agl),agl)], [],-..] is returned.

Argument options:

Additional information: To define a molecule, the procedure molecule() can be used. &
Atoms, which are nonequivalent, can not be transformed into each other by the symmetry

operations of the group Glabel.

See also: Bethe_nonequivalent_angles(), Bethe_nonequivalent_distances().

Bethe_nonequivalent_distances(Glabel, mol) b¢te-b

Generates the list of NONEQUIVALENT interatomic distances of the molecule mol in

terms of the atomic coordinates.
Output: A list of lists | [agcl),aél),agl)], [ag),ag),ag)ﬂ, ([, (], ---] is returned.

Argument options:
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Additional information: To define a molecule, the procedure molecule() can be used.
& Interatomic, which are nonequivalent, can not be transformed into each other by the

symmetry operations of the group Glabel.
See also: Bethe_nonequivalent_atoms(), Bethe_nonequivalent_angles().

Bethe_normal _coordinates(Glabel, mol, stringr, Cartesian) bethe_b

Calculates the vibrational coordinates of a molecule mol according with the irreducible

representation stringg in terms of its 3N Cartesian atomic coordinates.
Output: A list of lists [[c&),cg?, ceny cg\lf)z], [cﬁ),cﬁ), weey cg\z,)z], ...] is returned.

Argument options: (Glabel, mol, stringgr, stretching) to calculate the stretching normal
coordinates of a molecule according with the irreducible representation stringr in terms
of stretching internal coordinates of a molecule, defined in the procedure Bethe_inter-
nal_coordinates(..., stretching). A list of lists [[cgl),cg), cz())l), -, [c§2),c§2),c§2),

...],...] is returned in this case. & (Glabel, mol, stringr, stretching, listintgy,) to cal-
culate the stretching normal coordinates of a molecule mol according with the irre-

ducible representation stringr in terms of stretching internal coordinates of a molecule,

defined by the user as a listintg,, = [[[@iz, Giy, @iz), [@ja, ajy, ai:]], [],[]], -], A list of
lists [[cgl),cg), ci(,)l), -, [c§2),c§2), c:(f), ...],...] is returned in this case. & (Glabel, molecule,

stringr, bending) to calculate the bending normal coordinates of a molecule accord-
ing with the irreducible representation stringig in terms of bending internal coordi-
nates of a molecule, defined in the procedure Bethe_internal_coordinates(..., bending). A

. 1 1 1 2 2 2
list et b, e, 1 e, 7 e,

...] is returned in this case. & (Glabel, molecule,
string g, bending, listinty,q) to calculate the bending normal coordinates of a molecule
according with the irreducible representation stringgr in terms of bending internal coor-
dinates of a molecule, defined by the user as a listinty,g = [[[@iz, Giy, Giz], [@jz, Qjy, aj2],

[akay Aky, arz]], [[1, 1], 1], -] A list [[cgl),cgl),cgl), -, [cgz),cgz), céz), ..y ...] is returned in

this case.

Additional information: To define a molecule, the procedure molecule() can be used.
& For a given molecule, all the atomic coordinates must be specified explicitly, and
these coordinates must obey the symmetry of the point group Glabel. The procedure
terminates with a proper ERROR message if these conditions are not fulfilled. & The
set of internal coordinates, specified by the user should be complete, that is all of the
internal coordinates have to go each other under the symmetry operations of a group.
The procedure terminates with a proper ERROR message if these conditions are not
fulfilled. & The normal coordinates @);, calculated in terms of the Cartesian coordinates,

are defined as a coordinate transformation in the form

Qi = Qi(w1,y1, 21, T2, Y2, 22, .., TIN, Y3N, 23N ) =

6523:1 + cgiy)yl + cgiz)zl + 652:132 + ng)yg + cgiz)@ + ...

This list can contain also the coordinates of the translational and rotational motion, if

corresponding modes are inherent in given irreducible representation stringig. & The

82



internal coordinates (Q; are defined as a coordinate transformation

Qi = Qi(r1,7e,13,...) = cgi)rl + cg)rg + Cgi)Tg + ..

where every member cg-i) defines the increment of a proper internal coordinate as ob-
tained from the procedure Bethe_internal_coordinates(). & Sequence of atomic Cartesian
coordinates x1,y1, 21, T2, Y2, 22, ..., L3N, Y3N, 23N 1s defined by a molecule, while sequence
of internal (stretching or bending) coordinates ri,r9,73,... is defined by a procedure
Bethe_internal_coordinates(). & List of the normal coordinates can contain the equivalent

normal coordinates, obtained from the equivalent internal (or cartesian) coordinates.

See also: Bethe_internal_coordinates().

Bethe_normal_coordinates_bending(Glabel, mol, listint ,,q, string g, ldim) bethe-b

Calculates the normal coordinates of a molecule mol in terms of its internal (bending)
displacements vectors, defined by the variable listint ,,q according to the Idim component
of the irreducible representation stringig.

Output: A list of lists [[c&),cg?, oo cg\l,)z], [cﬁ),cﬁ), - 65\2]’ ...] is returned.

Argument options:

Additional information: To define a molecule, the procedure molecule() can be used.
& For a given molecule, all the atomic coordinates must be specified explicitly, and
these coordinates must obey the symmetry of the point group Glabel. The procedure
terminates with a proper ERROR message if these conditions are not fulfilled. & The
set of internal coordinates, defined by the variable listinty,y should be complete, that is
all of the internal coordinates have to go each other under the symmetry operations of
a group. The procedure terminates with a proper ERROR message if these conditions
are not fulfilled. & The internal bending coordinates (); are defined as a coordinate
transformation

Qi = Qi(a1,a0,as,...) = c&i)al + cg)ag + céi)ag + ..

where every member cg-i) defines the increment of a proper internal coordinate as ob-
tained from the procedure Bethe_internal_coordinates(). & List of the normal coordinates
can contain the equivalent normal coordinates, obtained from the equivalent internal co-

ordinates.

See also: Bethe_internal_coordinates(), Bethe_normal_coordinates().

Bethe_normal_coordinates_cartesian(Glabel, molecule, stringg, ldim) bethe-b

Calculates the normal coordinates of a molecule mol in terms of its cartesian displace-
ments vectors, defined automatically by the procedure, according to the Idim component

of the irreducible representation stringig.

Output: A list of lists [[c&?,c%}, ey cg\l,)z], [cgi),c%), ey cg\?)z], ...] is returned.
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Argument options:

Additional information: To define a molecule, the procedure molecule() can be used.
& For a given molecule, all the atomic coordinates must be specified explicitly, and
these coordinates must obey the symmetry of the point group Glabel. The procedure
terminates with a proper ERROR message if these conditions are not fulfilled. & The
normal coordinates @);, calculated in terms of the Cartesian coordinates, are defined as a

coordinate transformation in the form

Qi = Qi(x1,y1, 21,2, Y2, 22, ..., T3IN, Y3N, 23N )

= chl + Cgiy)yl + C§Q21 + 652332 + ng)yz + cgz)zz + ..

This list can contain also the coordinates of the translational and rotational motion, if

corresponding modes are inherent in given irreducible representation stringig.

& Sequence of atomic Cartesian coordinates x1, y1, 21, T2, Y2, 22, ..., L3N, Y3N, 23N 1S defined
by the molecule. & List of the normal coordinates can contain the equivalent normal

coordinates, obtained from the equivalent cartesian coordinates.

See also: Bethe_normal_coordinates().

Bethe_normal_coordinates_stretching(Glabel, mol, listint ., stringgr, ldim) bethe-

Calculates the normal coordinates of a molecule mol in terms of its internal (stretching)
displacements vectors, defined by the variable listint s, according to the Idim component
of the irreducible representation stringig.

Output: A list of lists [[c&?,c%}, ey cg\l,)z], [cgi),c%), ey cg\?)z], ...] is returned.

Argument options:

Additional information: To define a molecule, the procedure molecule() can be used.
& For a given molecule, all the atomic coordinates must be specified explicitly, and
these coordinates must obey the symmetry of the point group Glabel. The procedure
terminates with a proper ERROR message if these conditions are not fulfilled. & The
set of internal coordinates, defined by the variable listint g, should be complete, that is
all of the internal coordinates have to go each other under the symmetry operations of
a group. The procedure terminates with a proper ERROR message if these conditions
are not fulfilled. & The internal stretching coordinates (Q; are defined as a coordinate

transformation

Qi = Qi(T’l,T’Q,T‘g, ) = Cgi)rl + Cgi)T‘g + Céi)T‘g + ...

where every member cg-i) defines the increment of a proper internal coordinate as ob-
tained from the procedure Bethe_internal_coordinates(). & List of the normal coordinates
can contain the equivalent normal coordinates, obtained from the equivalent internal co-

ordinates.

See also: Bethe_internal_coordinates(), Bethe_normal_coordinates().
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e Bethe_normal_display(mol, norm_coord) b¢the-b

Displays the vibrational motion, defined by the normal coordinate norm_coord of a

molecule mol graphically.
Output: A NULL is returned.

Additional information: A normal coordinate in terms of the cartesian displacement
vectors should be used. & To define a molecule, the procedure molecule() can be used. &

Up to now only a two-dimensional animation is available.

See also: molecule(), Bethe_normal_coordinates().

e Bethe_normalize_SO(SO) bethe_b

Makes the coefficients of AOs normalized to unity.

Output: A symmetry orbital in terms of atomic orbitals with normalized coefficients is

returned.
Additional information:
See also: .

e Bethe_number_SO(Glabel, stringr, stringatom, [a1,a2,a3],[n,1] bethe-

Generates a number of symmetry orbitals, which have to be selected to obtain a linearly

independent set of orbitals.
Output: A number is returned.

Additional information: If the number of equivalent atoms is equal to the order of the
group, then the symmetry orbitals are linearly independent automatically and selection

is not necessary.

See also: .

e Bethe_print_orbital(AQ) bethe-b

Returns the string ”| stringatom: (21,a2,a3) n=n,, 1=l,, m=m, >” within the nonrela-

tivistic framework in order to facilitate the printout of atomic orbitals in the line mode.
Output: A string is returned.

Argument options: (SO) to return the string ”| stringatom: Glabel, (aj,a2,a3) n=n,, 1=1,,
m=my,; stringrg (mu, nu) >" within the nonrelativistic framework in order to facilitate the

printout of symmetry orbitals in the line mode.

Additional information: If a relativistic framework is set, either the string
7| stringatom: (a1,a2,a3) n=n,, kappa=kappa,, m=m, >" or
7| stringatom: Glabel, (aj,a2,as) n=n,, kappa=kappa,, m=m,; stringig(mu,nu) >" is

returned in this case.

See also: AO(), SO().
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e Bethe_product_contains_totally_symmetric(Glabel, stringg, listdipmom) bethe-b

Defines whether the direct product of the irreducible representation string;gz and one of
the irreducible representations from the list ”listdipmom” contains the totally symmetric

irreducible representation of the group Glabel.
Output: A boolean variable true or false is returned.
Argument options:

Additional information: The list ”listdipmom” has to contain the irreducible representa-
tions of the permanent dipole moment (for the infrared absorption) or the induced dipole

moment (for the Raman scattering).

See also: Bethe_spectral_activity(), Bethe_group_representation().

e Bethe_set(framework = nonrelativistic) "*the-b

Defines a nonrelativistic framework and notation for the use of the atomic orbitals, i.e.

(r|anlm) .
Output: A NULL expression is returned.

Argument options: (framework = relativistic) to define a relativistic framework and
notation for the atomic orbitals, i.e. (r|ankm) where k is the relativistic angular

momentum quantum number.

Additional information: The information about the framework of the atomic orbitals
is kept in the global variable Bethe_save_framework; its default is Bethe_save_framework
= nonrelativistic. & While, in the nonrelativistic framework, the group labels refer to
the point groups, they refer (automatically) to the double groups of the corresponding

symmetry in the relativistic case.

e Bethe_SO_are_linearly_independent (list1, list2) bethe-b
Defines, whether two symmetry orbitals listl and list2 are linearly independent each
other.

Output: A boolean variable true or false is returned.

See also: Bethe_generate_SO_basis().

e Bethe_SO_are_orthogonal(list cao) the-?

Defines, whether the symmetry orbitals from the list;,cao are mutually orthogonal. An
explicit representation of the symmetry orbitals in terms of the atomic orbital has to be

given.
Output: A boolean variable true or false is returned.

Additional information: A proper message is printed if two of the symmetry orbitals

from the list are not orthogonal to each other.

See also: Bethe_generate_SO_basis().
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e Bethe_spectral_activity (Glabel, stringir, infrared) cthe-b

Defines, whether the normal vibration having the symmetry type stringg is infrared

active.
Output: A boolean values true or false is returned.

Argument options: (Glabel, stringig, Raman) to return the boolean value true if the
normal vibration having the symmetry type stringrg is Raman active and false otherwise.
& (Glabel, [stringiry, stringire, ...], infrared) to extract a list of the infrared active modes.
A list of strings is returned. & (Glabel, [stringig;, stringirs, ...], Raman) to extract
a list of the Raman active modes. A list of strings is returned. & (Glabel, stringrg,
Raman, n) to return the boolean value true if (n-1)-th overtone in the normal vibration
having the symmetry type stringig is Raman active and false otherwise. & (Glabel,
stringr, infrared, n) to return the boolean value true if (n-1)-th overtone in the normal
vibration having the symmetry type stringg is infrared active and false otherwise. &
(Glabel, [stringr;, stringmra, ...], infrared, [ni, ng, ...]) to return the boolean value
true if combination of the transitions in the normal vibration having the symmetry type
stringr; from the fundamental to the n; excited level is infrared active and false otherwise
& (Glabel, [stringri, stringrs, ...|, Raman, [nq, ng, ...]) to return the boolean value
true if combination of the transitions in the normal vibration having the symmetry type

stringr; from the fundamental to the n; excited level is Raman active and false otherwise

See also: Bethe_normal_coordinates().

e Bethe_symmetry_characters(Glabel) bethe—pg—data

Return the character table of the point group with label Glabel in an internal list format.
Output: A list is returned.

Additional information: The character tables are provided explicitly for each point group
in a list with the format: [m, n, matrix(m,n), raw_labels, traw_labels, column_labels, dou-
ble_column_labels] where m,n denotes the dimension of the matrix, raw_labels is a list of
irreducible representations [stringsg,, ..., stringsg,, |, traw_labels is a list of time-reversal
classifications of irreducible representations, column_labels is a list of classes with list of
symmetry operations [[stringso,,, ..., stringso,, ], [stringso,, ..., stringso,,, ],...] inside of
each class of the corresponding point group and column_labels is a list of classes with list
of symmetry operations [[stringso,,, .., stringso,, ], [stringso,, , .., stringso,,, ],...] inside
of each class of the corresponding double group. From this information, the characters
can be derived for all combinations (stringspr, stringgp). Procedure is organized as a list

of references to a set of subprocedures, appropriate of the families of groups (see table).
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Bethe_symmetry_characters_Cis Cis: (Ci, Cs)
Cn: (C2, ..., C10)

() | Cav: (C2v, ..., C10v)
Bethe_symmetry_characters_Cnh() | Cnh: (C2h, ..., C10h)
Bethe_symmetry_characters_Dn() | Dn: (D2, ..., D10)
Bethe_symmetry_characters_Dnd() | Dnd: (D2d, ..., D10d)
Bethe_symmetry_characters_Dnh() | Dnh: (D2h, ..., D10h)
Bethe_symmetry_characters_Sn() | Sn: (S4, ..., S20)
Bethe_symmetry_characters_O() O: (O, Oh, T, Th, Td)

Bethe_symmetry_characters_I() I: (Ic, Ich)

|

)
)

Bethe_symmetry_characters_Cnv

Bethe_symmetry_characters_Cn

See also: Bethe_group_character(), Bethe_group_class().

Bethe_symmetry_description(Glabel, stringgo) bethe—pg—data

Returns a text string which describes the symmetry operation stringgo for a point group
with label Glabel.

Output: A text string is returned.

Additional information: The identifier stringgo is usually enough to characterize the
symmetry operation; the group label Glabel is used only if the string identifier itself is
not unique. & The procedure stores the description of all known symmetry operations in
a list [[stringso,, Glabel/”all”, ”description text”], [stringso,, Glabel/”all”, ”description
text”],...] where the second entry ”all” is used if the corresponding string identifier
represents the same symmetry operations for all groups (which contain this operation

string).

See also: Bethe_group(), , Bethe_symmetry_elements(), Bethe_symmetry_operations().

Bethe_symmetry_elements(Glabel) bethe—pg—data

Return a list of strings which describes all symmetry elements of of the point group with
label Glabel.

Output: A list of strings is returned.

Additional information: Position of the vertical reflection planes is described by an-
gle ”phi”, which is azimuth angle of anticlockwise rotation of this plane around Z-axis
respecting the ZX-plane. Procedure is organized as a list of references to a set of subpro-

cedures, appropriate of the families of groups (see table).
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Cis: (Ci, Cs)
Cn: (C2, ..., C10)

() | Cav: (C2v, ..., C10v)
Bethe_symmetry_elements_Cnh() | Cnh: (C2h, ..., C10h)
Bethe_symmetry_elements_ Dn() | Dn: (D2, ..., D10)
Bethe_symmetry_elements_Dnd() | Dnd: (D2d, ..., D10d)
Bethe_symmetry_elements_Dnh() | Dnh: (D2h, ..., D10h)
Bethe_symmetry_elements_Sn() | Sn: (S4, ..., S20)
Bethe_symmetry_elements_O() O: (O, Oh, T, Th, Td)
Bethe_symmetry_elements_I() I: (Ic, Ich)

Bethe_symmetry_elements_Cis

|

)
)

Bethe_symmetry_elements_Cnv

Bethe_symmetry_elements_Cn

See also: Bethe_symmetry_operations().
Bethe_symmetry_is_fulfilled (Glabel, mol) bethe-

Defines, whether the molecule mol fulfills the symmetry of the group Glabel.
Output: A boolean variable true or false is returned.

Argument options:

Additional information: The molecule is defined by the procedure molecule()
See also: .

Bethe_symmetry_matrices(Glabel) bethe—pg—data

Return the table of irreducible matrix representations for the point group with label

Glabel in an internal list format.
Output: A list is returned.

Additional information: The tables of irreducible matrix representations are provided
explicitly for point groups, which have the irreducible representation with dimension
> 2, in a list with the format: [m, n, matrix(m,n), raw_labels, column_labels] where
m,n denotes the dimension of the matrix, raw_labels is a list of matrix representations
dimension > 2 [stringg,, ..., stringg,, ], and column_labels is a list of symmetry operations
[stringso,, ..., stringso,] of the corresponding point group. From this information, the
matrices can be derived for all combinations (stringir, stringso). Procedure is organized
as a list of references to a set of subprocedures, appropriate of the families of groups (see
table).
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Bethe_symmetry_matrices_Cis Cis: (Ci, Cs)

Cn: (C2, ..., C10)

) | Cnv: (C2v, ..., C10v)
) | Cnh: (C2h, ..., C10h)
Dn: (D2, ..., D10)
Dnd: (D2d, ..., D10d)
Dnh: (D2h, ..., D10h)

0
0

Bethe_symmetry_matrices_Cnv

Bethe_symmetry_matrices_Cn

(
(

Bethe_symmetry_matrices_Dn()

Bethe_symmetry_matrices_Cnh

Bethe_symmetry_matrices_Dnd()

Bethe_symmetry_matrices_Dnh()

Bethe_symmetry_matrices_Sn() | Sn: (S4, ..., S20)
Bethe_symmetry_matrices_O() O: (O, Oh, T, Th, Td)
Bethe_symmetry_matrices_I() I: (Ic, Ich)

See also: Bethe_group_irrep().

e Bethe_symmetry_operations(Glabel) bethe—pg—data

Return a list of all symmetry operations of the point group with label Glabel: [[stringso,,
[Euler alpha, beta, gamma], inversion], [stringso,, [Euler alpha, beta, gamma], inversion],

[stringso,, [Euler alpha, beta, gammal, inversion],...].
Output: A list of lists is returned.

Argument options: (Glabel,double_group) to return the symmetry operation for the

corresponding double group.

Additional information: stringsp is a name of the symmetry operation oh the point
group with label Glabel, [Euler alpha, beta, gamma] - list of three Euler angles for opera-
tion stringgo and inversion is ‘true‘, if the symmetry operation stringgp is a combination

of rotation and spatial inversion and ‘false‘, if strongsg is a pure rotation.

Procedure is organized as a list of references to a set of subprocedures, appropriate of the

families of groups (see table).

Bethe_symmetry_operations_Cis() | Cis: (Ci, Cs)
Bethe_symmetry_operations_Cn() | Cn: (C2, ..., C10)
Bethe_symmetry_operations_Cnv() | Cnv: (C2v, ..., C10v)

(
(

Bethe_symmetry_operations_Dn()

) | Cnh: (C2h, ..., C10h)
Dn: (D2, ..., D10)

Bethe_symmetry_operations_Cnh

Bethe_symmetry_operations_Dnd|()

Dnd: (D2d, ..., D10d)

Bethe_symmetry_operations_Dnh()

Dnh: (D2h, ..., D10h)

Bethe_symmetry_operations_Sn()

Sn: (S4, ..., S20)

Bethe_symmetry_operations_O()

O: (O, Oh, T, Th, Td)

Bethe_symmetry_operations_I()

I: (Ic, Ich)

See also: Bethe_symmetry_elements().

e Bethe_symmetry_properties(Glabel) bethe—pg—data
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Returns the list of properties of the point group with label Glabel: [?Description of the
group”, [group order, No. of reg. classes, No. of irreg. classes, Table-No by Altmann,
crystallographic, crystall system, proper], [list of subgroups]|, [list of suboperators], [list
of stringrr (standard)], [list of spinor stringsr], [list of examples] ]

Output: A list is returned.

Additional information:

Short description of all properties

group order

Number of the symmetry operations of the point group

No. of reg. classes

Number of regular classes

No. of irreg. classes

Number of irregular classes

Table-No by Altmann

Number of the tabulation by Altmann and Herzig (1994).

crystallographic

‘true‘ or ‘false‘ in dependence whether Glabel is a

crystallographic group or not

crystall system

Name of the crystal system (rhombic, triclinic,...) for the

crystallographic groups

proper

‘true‘ or ‘false‘ in dependence whether Glabel is a

proper symmetry group or not

list of stringir

List of all irreducible representations string

identifiers for the point group

list of spinor stringig

List of spinor irreducible representations string

identifiers for corresponding double group

list of examples

Examples of molecules of given point group

Procedure is organized as a list of references to a set of subprocedures, appropriate of the

families of groups (see table).

Bethe_symmetry_properties_Cis() | Cis: (Ci, Cs)
Bethe_symmetry_properties_Cn() | Cn: (C2, ..., C10)
Bethe_symmetry_properties_Cnv() | Cnv: (C2v, ..., C10v)

(
(

Bethe_symmetry_properties_Dn()

Bethe_symmetry_properties_Cnh() | Cnh: (C2h, ..., C10h)
Dn: (D2, ..., D10)
Dnd: (D2d, ..., D10d)

Dnh: (D2h, ..., D10h)

Bethe_symmetry_properties_Dnd|()

Bethe_symmetry_properties_Dnh()

Bethe_symmetry_properties_Sn() Sn: (S4, ..., S20)
Bethe_symmetry_properties_O() O: (O, Oh, T, Th, Td)
Bethe_symmetry_properties_I() I: (Ic, Ich)

See also: Bethe_group().

e Bethe_symmetry_tensors(Glabel) bethe—pg—data

Output: A list of lists is returned.
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Additional information: Returns the list of lists: [ [list of irreps or products of irreps|,
[list of rank-1 functions], [list of rank-2 functions|, [list of rank-3 functions]], which is
information about the transformation behavior of the p, d, and f functions as well as the

standard rotations.All symmetry functions are decoded by strings; the following strings

are allowed ("no” no function) rank-1: "x”, 7y”, 727, "Rx”, "Ry”, "Rz”. rank-2:
7 b

9 v 2 9 9 v ” 9 2 9 2 99 9
XX 9 Xy 9 Xz 9 yy 9 yz 9 77

, Txx-yy”?, Uxx4yy”. rank-3: Uxxx”, Uxxy”, "xxz”,

” )

” b)) b2 ) b)) ” b)) b)) b)) b)) b))
Xyy , Xyz , XzZZ-, "yyy , YyZz , Y7z,
Txxx-xyy”, "xxy-yyy”, "xxz-yyz’. Procedure is organized as a list of references to a set

2

ZZZ” , 7 XXX"‘ny” , 7 XXy+yyy77 , 7 XXZ"‘yyZ” ,

of subprocedures, appropriate of the families of groups (see table).

Bethe_symmetry_tensors_Cis() | Cis: (Ci, Cs)
Bethe_symmetry_tensors_Cn() | Cn: (C2, ..., C10)

() | Cuav: (C2v, ..., C10v)
() | Cnh: (C2h, ..., C10h)
Bethe_symmetry_tensors_Dn() | Dn: (D2, ..., D10)
Bethe_symmetry_tensors_Dnd() | Dnd: (D2d, ..., D10d)
Bethe_symmetry_tensors_Dnh() | Dnh: (D2h, ..., D10h)
Bethe_symmetry_tensors_Sn() Sn: (54, ..., S20)
Bethe_symmetry_tensors_O() O: (O, Oh, T, Th, Td)
Bethe_symmetry_tensors_I() I: (Ic, Ich)

Bethe_symmetry_tensors_Cnv

Bethe_symmetry_tensors_Cnh

See also: Bethe_group_tensors().

Bethe_tabulate(AQ) bethe-b

Returns a table of all the quantum numbers and string identifiers of the atomic orbital

AO.
Output: A table T is returned.

Argument options: (SO) to return a table of all the quantum numbers and string iden-

tifiers of the symmetry orbital SO.

Additional information: For an atomic orbital AO, T has the entries T[a], T[n],
T[1], T[m], T[symbol] in the nonrelativistic case and

Tlal, T[n], Tlkappal, TIm], T[symbol] in the relativistic case. & For a symmetry
orbital SO, T has the entries T[label], T[a]l, T[n], T[1], T[m], T[IR],

T[mu], T[nul, T[symbol] in the nonrelativistic case and T[label], T[al, T[n],
Tlkappal, T[m], T[IR], T[mul, T[nul, T[symbol] in the relativistic case. & The
entry T[a] returns a list of the three coordinates [a;,a2,a3] which have to be interpreted

in line with the predefined coordinates, see Bethe_set().
See also: AO(), SO().

Bethe_transform_vector(Glabel, stringso, [a1,a2,a3]) e

Transforms the components (aj,as,ag) of a given position vector a under the symmetry

operation stringgo of the point group G with label Glabel.
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Output: The three new components of the vector [ajnew,agnew,agnew| are returned in

a list.

Additional information: To transform the components of vector, it is enough to multi-
ply its components with the rotation matrix of the corresponding symmetry operation

string so, obtained by the procedure Bethe_group_Euler(..., matrix).

See also: Bethe_group_Euler().
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Abstract

To facilitate the use of group theory in the analysis of vibrational spectra, a set of Maple procedures is provided generating
the normal coordinates and determining the spectral activities of polyatomic molecules. Our program, Ealedi8based
on the frequently applied point groups and provides an interactive access to the group data as needed in physical chemistry and
elsewhere. Owing to the demand of the users the normal coorslioftiee molecules are provided either in terms of Cartesian
or internal coordinates.

Program summary

Title of program: BETHE

Catalogue numberADUH

Program summary URLhttp://cpc.cs.qub.ac.uk/summaries/ADUH

Program obtainable from:CPC Program Library, Queen’s University of Belfast, N. Ireland

Licensing provisionsNone

Computers for which the program is designe&li computers with a license of the computer algebra package e
Installations: University of Kassel (Germany)

Operating systems under which the program has been tesfiedx 8.1+ and Windows 2000

Program language usedMAPLE 7 and 8

Memory required to execute with typical data0—-30 MB

No. of lines in distributed program including test data, efic1:859

No. of bytes in distributed program including test data, €3d.2 229

Distribution format:tar.gz

Nature of the physical problemtnteraction of the infrared light with the molecule can lead to the excitation of the molecular
vibrations [1]. Analysis of such vibrations is performed by the point group theory and helps to interpret the molecular spectra.

Y This paper and its associated computer program are availablbevi@omputer Physics Communiicans homepage on ScienceDirect
(http://www.sciencedirect.com/science/journal/00104655
* Corresponding author.
E-mail addressrykhli@physik.uni-kassel.déK. Rykhlinskaya).
1 Maple is a registered trademark of Waterloo Maple Inc.

0010-4655/$ — see front mattér 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.cpc.2004.06.088
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Method of solution:Point group theory is applied to determine the normal coordinates of symmetric molecules and to carry out
a spectroscopic analysis of their vibmatal modes. The direct product of the irreddeibepresentations is utilized to obtain the
selection rules for infrared and Raman spectroscopy.

Restrictions onto the complexity of the problefihe computation of the normal coordinates is supported for rather a large
number of symmetries; in the present version the group data are provided for the cyclic and related’gréyps€,, C,.1,

Chv, the dihedral group®,,, D,,;,, D, 4, the improper cyclic groupSy, (n < 10), the cubic group®, T, Oy, Ty, T; and the
icosahedral groups, 7.

Unusual features of the programAll commands of the BTHE program are available for interactive work. Apart from the
analysis of the vibrational motion of molecules, we also provide the group theoretical data of all the presently implemented
point and double groups. The notation of the symmetry operations and the irreducible representations follows the compilation
by Altmann and Herzig [2]. For reference to the program, a brief description of all the available commands is given in the user
manualBet he- conmands. ps and is distributed together with the code.

Typical running time: Although the program replies ‘promptly’ on most requests, the running time depends strongly on the
particular task.

References:

[1] E.B. Wilson, J.C. Decius, P.C. Cross, Mallar Vibrations, McGraw-Hill, New York, 1955.

[2] S. Altmann, P. Herzig, Point-Group Theory Tables, Clarendon Press, Oxford, 1994.

0 2004 Elsevier B.V. All rights reserved.
PACS:02.20.-a; 33.20.Tp; 33.20.Ea; 33.20.Fb

Keywords:Fundamental transition; Infrared abstiop; Irreducible representation; Normalardinates; Point group; Raman scattering;
Vibrational modes; Vibrational spectroscopy

1. Introduction

During the last decade, a large number of experimeat® tbeen carried out for studying the properties of
molecules and clustef$—3]. In order to first resolve the structure and the bonds of the molecules, the techniques
of vibrational spectroscopy have often been applied. ésé¢techniques the incident radiation is used to excite the
vibrations of molecules, that is to promote a molecule to a state of higher energy, in which its vibrational amplitude
is increased. Treatment of the obtained spectra can give us the information about the structure of (polyatomic)
molecules.

To investigate the observed (vibrational) spectra, experimental methods are widely used today: infrared
and Raman spectroscopd] which are based on quite different physical principles. While, for instance, infrared
spectroscopy concerns the absorption of (infrared) lighé molecule, owing to its vibrational frequencies, Ra-
man spectroscopy refers to the scattering of light. iftfiared spectroscopy can therefore be taken as a direct
measurement of the vibrational frequencies whereasamah spectroscopy, they justcur as the differences in
the frequencies of the incident and the Raman-scattered light, respectively. However, not only the mechanisms are
rather different for infrared and Raman excitations of th@euoule but also the selection rules for such vibrational
transitions. While, in infrared spectroscopy, the occurrence of a vibrational transition requires a change in the elec-
tric dipole moment of the molecule, Raman lines go along with a change in the polarizability during the vibration.
Therefore, the selection rules for infrared and Raman itiens are widely used to interpret the vibrational spectra
and to derive the geometrical structure of the underlying molecules and clusters.

The studying of vibrational spectroscopy and, in particular, evaluation of the selection rules, makes extensive
use of the molecular symmetry. The symmetry considerations are known to be an inevitable tool for studying
the behavior of physical systems in many branches of modern physics. In molecular physics, for instance, the
point-group theory (and symmetries) provides the mathematical basis for interpretation of the spectra of molecules
and crystals. In practice, however, the applicationh& molecular symmetries to spectroscopy problems may
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become rather cumbersome. Although, nominally, the basic relations of group theory are known, there are several
shortcomings which make the access to the group datficiest and difficult to use. Apart from an often very
compressed compilation of the group data in some tables or appendices of textbooks, only parts of these data are
usually displayed explicitly and without providing theausvith the exact definition of the symmetry operations,

the matrices of the irreducible representations and further data.

Today, an alternative and promising route for dealing with group theory is offered by computer algebra. To
make use of this line and in order to support the application of the point groups in molecular spectroscopy, here
we present the BTHE program which helps determine the normal coordinates of symmetric molecules as well as
their (spectroscopic) activities in infrared and Raman spectroscopy. Developed within the framewoxkiaf, M
the BETHE program provides, in addition, also the most basic group data for a numipairgfgroup families
including the cyclic and their related grou@s, Cs, C,, C,, andC,,, the dihedral group®,,, D,,; and D,,, the
improper cyclic groups,, (n =2, ..., 10), the cubic group®, T, O;, T, T; as well as the icosahedral groups
1, 1.

In the next section, we start with recalling some of Hasic elements from the theory of the point groups as
well as from the normal coordinates analysis and vibredl spectroscopy. However, no attempt will be made to
explain neither the vibrational phenomena nor the experiments in detail for which we must refer to the literature.
Section3, later, provides a short description of the B41e program and how it is implemented within theaWLE
environment. The main emphasis is aucse placed on a few examples in Sectomwhich illustrates the use of
the program and how BrHE can be used in daily research work. Finally, a short outlook onto future extensions
and applications of thisgrkage is given in Sectidh

2. Theoretical background

Let us start with some of the basic principles which are necessary to understarefrthe ogram. Of course,
not much need to be said here about the theory of the point groups since this theory has been presented in a large
number of monographs and te¥%6]. In this paper, moreover, we assume that the reader is familiar with the basic
concepts of the (point) group theory and the analysis of vibrational spectra.

2.1. Molecular and point group symmetries

The symmetries of molecules and clusters may help simplify many of the problems which are concerned with
their structure. To make the idea of molecular symmetries quantitative, of course, we must first classify these
symmetry properties. As known for a long time, such a classification is achieved in teayrmiofetry operations
which can be found for a given symmetry and which transform the molecule inggaivalent configuration
i.e., into one which is geometrically indistinguishable from the original configuration. For a molecule with a finite
number of atoms, these symmetry operations describ&anseabout a certain axis and angle, reflections through
a mirror plane, inversion through a point (usually takes the origin of the coordinates) as well as the identity
operations which leaves the molecule unchanged. The combination of a r@atda successive) reflection is
called an improper rotation and may also form a symmetry operation of the molecule. In the literature, different
notations are found to express the symmetry operations of the point groups; iretiteE Brogram, we use a
notation of the symmetry operations (aneducible representations, see below) which is similar to the notation of
Altmann and Herzid6].

Mathematically speaking, the set of symmetry operations of a molecule or cluster fgrospand, hence,
can be treated by means of group theory. Because the n@lecist not be shifted in space by carrying out these
operations, at least one point has to be fixed in space (and gave originally rise to the notiopadhtigeoups.

Owing to the set of symmetry operations, the point groups can be arranged in tegrogpfamiliesas shown
in Table 1 Such families are formed, for instance, by the cyclic graipand the symmetry grou,, where all
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Table 1
Classification of the point groups in termsgup families All these group have been
implemented already into theEBHE program

C; Cs

C2 C3 Ca Cs Ce C7 Cs Co C10

Co Cap Cay Csy Cev (& Cay Coy Cio
Con Cah Cap Csp Cel Cn Ca Con Cion
D2 D3 Dy Dg De D7 Dg Dg Dig

Daq D3y Dy Dsy Dey D74 Dgy Doy Dy
Do D3y, Dy, Ds), Degjy D Dgj, Doy, Dion
S4 Se Sg S10 S12 S14 S16 S18 $20
0] T Oy, Ty Ty 1 Iy

symmetry operations denote proper (or improper) rotetiaround one or another (symmetry) axis of the molecule.
Further groups with a cyclic rotation axis are the families of @hg andC,, groups which, in addition, possess

either ahorizontalor vertical plane of reflection respectively. Further families—often with a rapidly increasing
number of symmetry operations—are the dihedral grabpsD,;, and D4, the cubic group®, T, Oy, T, and

T, as well as the icosahedral groupsnd ;. In the BETHE program, we utilize this concept of group families

for the implementation of the group data; all groups, which are printélible 1 are already supported by the
program. In general, the symmetry of a molecule can be classified uniquely by using a systematic procedure to test
the molecule for special classes of symmetry opera{ghs

To take advantage of group theory, one has to deal wjtresentationsf the group, i.e., with (various sets of)
transformations as induced by the symmetry operations in some given vectorspagghysics, we may usually
restrict ourselves to matrix representations which refer to some orthonormal basis, tdéké&hbiviously, however,
these representations of a group are umaijuebut may depend on the basis, i.e., the choice of the coordinates
as well as on further parameters. The great benefitaigtheory is that any represation can be decomposed
into—a rather small number ofireducible representation&hose characters are unique and independent of the
basis. In this decomposition, the sum of the dimensions of the involved irreducible components is equal to the
dimension of the reducible representation and, thus, equal to the dimension of the considered veciorispace
an irreducible representation, in contrast, no further decomposition of the vector space into invariant subspaces can
be obtained. Again, several notations can be found foirteducible representations of the point groups, known
also as Mulliken symbols, in dependence on the dimensidrttee ‘physical origin’ of some given representation.

As mentioned before, we follow the notation from R@f. in the BETHE program.

For a given reducible representation, the irreduciblagonents of this representation can be obtained by stan-
dard techniquefb]. For most practical applications it is not necessary to know the explicit matrices of (ir-)reducible
representations, but only tlebaracters that means the traces of the corresponding matrices. The characters of a
representation are often denoted jpyand can be used, for instance, to determine the number of (inequivalent)
irreducible representations, which are ‘involved’ in some reducible representation by using the great orthogonal-
ity theorem[7], they are the characters of the irreducible representations are already known for the group under
consideration.

2.2. Molecular vibrations

2.2.1. Normal modes of vibrations

Many problems of physics and chemistry require the theoretical analysis of the vibrational spectra of the mole-
cule to determine, for instance, its spectral activity in the interaction with the radiation field or the distortion of
molecular configuration under an external field. Group-theoretical arguments can be used to provide this analysis
without that quantum chemical computations.

Our attention will be placed on the vilifanal motion of molecules, in whitits interatomic distances and
internal angles change periodically without producing any translation or rotation of the molecule as a whole.
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The overall vibrations of a molecule, of course, result from the superposition of a number of relatively simple
vibrational motions which are known as thermal vibrationsor normal modes of vibrationf a molecule. The
number of these modes is defined by the number of the atoms in the molecule and assumes a Yal®é 6b63
the case of nonlinear molecules. Eadlthese vibrations has its characteristic frequency but—if many of them are
superposed—the periods of the vibrations are difficult to discern and so it may look rather aperiodical.

To determine the normal modes of a molecule, a so-chlégthonic approximatiomeed to be considered for
its vibrational motior[9]. Within this approximation, we start by assuming an equilibrium position for the atoms
in a molecule around which they vibrate with a small ditape. Of course, any displacements of a particular atom
from this equilibrium position can be describa terms of three components along the y-, andz-axes. For
a whole molecule withv atoms, therefore,/8 component$x1, y1, 21, X2, y2, 22, - - -, XN, YN, Z2n) 0 specify the
total displacement. Below, we denote these componenys.,y, . .., gan, wheregi, g2 andgs refers to thexs, y1
andz; components of atom %4, g5 andgs to those of atom 2, and so on. At equilibrium this position is associated
with the minimum of the potential energy. Expanding this potential in a Taylor series in the coordinates
by ignoring terms of order higher than the quadratrotg we can write the Hamiltoan for the molecule in the
harmonic approximation

13N 1
.2
H= 5 Elml'qi +5 Eij kijqiq; 1)
i=

wherem; the masses arid; the force constants.
For the sake of simplicity, instead of the treatment of the vibrational problem in the representation of
the 3V coordinatey1, g2, ..., g3y, it is more convenient to operate directly with the vibrational coordinates

01, 02, ..., Q3n—e Which correspond to theN8— 6 vibrational degrees of freedom of the molecule. These normal
coordinates can be defined by a linear transformation of the coordipates
gi = aixQk (2)

k
which allows one to write the Hamiltonigd) in the form:

1 . 1
H:E;Q5+E;w,§Q% 3

The Qy are called thewormal coordinatesf the system along which the normal vibrations proceedanare the
corresponding frequencies. In tesmof the normal coordinates, tiedore, the total Hamiltonia®/ of the molecule
scan be presented just as a sum of simple harmonic oscillators with the Hamiligpiavhile the total wave
function & of the (vibrational) motion may be expressesiaproduct of the well-known (harmonic oscillator)
wave functionsy,, (Qx), one for each normal coordinate. The totalraitional energy is the sum of the energies
of 3N — 6 harmonic oscillators.

The great advantage of the normal coordinates is that they have to possess a certain symmetry. In other words,
the normal coordinates which are related to the vibrational modes with the same frequency, form a basis of (or, as
it is sometimes briefly said, ‘belong to’) an irreducible representafiéh of the molecular symmetry group. This
property allow us to apply the point group theory for thesslification of the normal modes according to irreducible
representations of the symmetry group. A proof of this theorem about the normal modes is described in detail in
many textbook$10,11]

2.2.2. Classification of the normal vibrations

The knowledge of the symmetry type of the normal coortisaf a molecule allow us to simplify the vibrational
analysis and derive its spectral properties. At the beginning of our analysis, however, we neither know the names
of the irreducible representations, which correspond to the normal coordinates of the considered molecule, nor
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how often these representations occur in the decomposition. Nevertheless, the symmetry properties of the normal
modes as described above makes it possible to obtain the set of irreducible representations without that the normal
coordinates being known explicitly.

To obtain this set or, in other words, to classify themat vibrations, several steps have to be carried out.
First of all we need to construct@N — 6)-dimensional reducible representation of the symmetry group of the
molecule, related to its vibrational motion. To achieve this, we have to return to the sEtatb®ic coordinates
(or displacements) of thy atoms of the molecule. If all atoms areuind in an equilibrium configuration, the set
of the 3V displacements forms a basis of & &limensional (reducible) representation of the group which is also
as thetotal representatio ™Y, In order to find this representation, we may attach local Cartesian coordinates to
each of the atom and may choose that all.tfaxes are in parallel, and similar also for thandz axes. Moreover,
the orientation of the;, y; andz; axes must agree for all atomic coordinates with the orientation of the molecular
coordinates in which the symmetry operations are esped. For the molecule of water such an arrangement
of the coordinates are shown @ig. 1a). Then, the total representati@i® is just given by a matrix which
represent a transformation of the&valimensional displacement vector:, y1, z1, X2, ¥2, 22, - - -, XN YN, ZN), @S
induced by the group; see R§] for further details on the constructing of the total representation. Since the total
representation refers to alN3coordinates of the molecule, it still contains—apart from the vibrational motion
of the molecule—also its translational and rotational motion. Therefore, to get the (vibrational) representation
7V which is related only to the vibrational modes of molegtie translational and rotational representations
need to be ‘separated’ frorhe total representatich™?. For most cases, however, we need not to know tkie 3
dimensional matrices of the irreducible representation but may restrict ourselves just to the characters of this matrix
representation. Then, the charastef vibrational representatioﬂ"ib) are simply obtained by subtracting the
characters for an overall translation oration of the molecule from the charactgré® of the total representation,
separately for each of the symmetry operations of the group.

Having ones obtained the vibrational representati6éf?’ of a molecule, its reducible in most cases and, hence,
has to be reduced into which is irreducible compon@Hts before the number of equivalent representations can
be determined. For the reduction

T = 3™, 7@ (4)
o

we follow standard techniques and obtain the weighisin the decomposition simply from the characters (i.e.,
without knowing the matrices explicitly) due to

1 .
ma == Cpx™x ", (5)
8 p
where g is the order of the point group and, the number of group elements in the class to which also the

symmetry operationp belongs. Of course, the set of irreducible representafidfistogether with their weights
mg provides us with all the information about the numbgvibrational modes of the molecule, the degeneracy of

Fig. 1. Set of the basis vectors fop8 molecule: a) Cartesian displacement vectors; b) internal displacement vectors.
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the frequencies as well as the symmetry type of all tibeational modes. While the number of vibrational modes
is equal to the number of irreducible representations in¢helse dimension of the irreducible representation will
refer to the degeneracy ofdttorresponding frequencies.

Although the Cartesian displacements are known @®ular basis for determining the symmetries of the
vibrational modes and for classifying the vibrational motion of a molecule, they are not always that easy to apply
in practice. In many applications in physical chemistry use is instead made of (so-datkxdpl coordinates
which refer either to the interatdmdistances or the bond angles at the equilibrium positions of the atoms. If
a displacement of the atoms occurs, these interoatdinates are then associated with the so-caltestching
vectorsand thebond-angle deformation vectorndowever, there is no common agreement about how the internal
coordinates have to be chosen. As a rule, however, one often starts with a number of stretching vectors between
some bonded atoms and then adds as many bond-angle deformation vectors as needed in order to obtain a total
set of 3V — 6 internal displacements (displacement vectors). In th® Fholecule, for example, we need three
internal displacement vectors in orderrepresent the three normal modes; here, a convenient way is to use the two
stretching vectors; andr,, and the bond—angle deformation veetas shown irig. 1b). The use of these internal
coordinates then enables us to classify the stretchinpanding modes separately, i.e., we obtain the two different
reducible representatiorigs® and7(e"d  for which the stretching vectors or, respectively, the bond angles form
a basis. Having these representations, they can be decomposed in a similar manner as sha@h 8olatetimes,
the irreducible components of the bending and stretchiodes do not agree with the irreducible components of
the complete vibrational representation. In this case there is so catfladdant coordinateSuch a coordinate can
be ignored, since it does not correspond to a physically possible vibr§@pns

2.2.3. Construction of normal coordinates

As discussed above, the classification of the normal vibrations provides us with very useful information about the
molecular vibrations. Beside of this classification, however, we usually need to construct the normal coordinates
also explicitly, where we can start from either the Cagrdilisplacements or the internal displacements of the
molecule. In practice, the normal coordinates, taken basés functions of the irreducible representations of the
group, are most easily obtained by means ofglaection operator methadn this method the property of this
operator to generate the functions of the desired symmetry are utilized. In general, any projector of a irreducible
representation leaves all those functions unaffected, which belong to the basis of that representation, while the
function (components) of other representations are pregemtit. The (generalized) point group projection operator
has a form

~ S
Pi(ﬂl) — Ea Z ]-;.(iol)*(Ga)T(Ga)» (6)
a

whereg is the order of the group,, is the dimension of the irreducible representafid®y and whereG, refers to

the set of symmetry operations of the group. MoreoVeé€;,) denotes the induced matrix operation which may act
in space of displacements, whﬂél“)(Ga) is one of the diagonal element of the irreducible representation matrix.
If applied to the set of atomic (Ceesian) displacement vectorg, y;, andz;, the projection operatdb) gives rise

to the normal displacemei,; of the molecule

PPx; = Qui = CxyX1+ Cyyy1+ - + v (7)

The application ofFi“ on.x; may give zero, of course, which meanstttias particular displacement is not con-
tained in the normal coordinat@,;; to obtain this coordina, one has to cycle through all the displacemérits

If, instead of the Cartesian coordinates, use is made of the internal coordinates we may follow a similar proce-
dure by applying the projection operatdf) to the sets of the stretching vectofisro, ... and bending angles
a1,a2,.... As a result we will have so callesymmetry-adapted linear combinati¢BALC) of the basis vec-
tors[5]. Projection operator, taken in the fori®) allows to construct the SALC fanulti degenerate irreducible
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representationg8]. Of course, the SALC must be normalized, which means that the sum of squares of the coef-
ficients in the SALC must be equal one. Vibrational coorthsaconstructed using this method are called usually
symmetry coordinate§hese coordinates generally are repredants of the normal modes of vibration. Eventu-

ally, the symmetry coordinates can be defined separfielyoth, the stretching as well as the bending modes of
the vibrations.

2.3. Molecular spectroscopy

2.3.1. Vibrational transitions

In the last subsections, we saw how to classify the vibrational motion of a molecule to obtain its normal (vi-
brational) coordinates. In the following, we shall tHere show how the information about the structure of the
polyatomic molecules can be obtained from the vibrational spectrum.

As said before, we are mainly concerned with two kindgibfational spectroscopy, namely infrared and Raman
spectroscopy. In contrast to other branches of modeectspscopy such as (photo-)electron spectroscopy, the
infrared and Raman spectra refer both to transitions betteevibrational states of the molecule, in the electronic
ground or some particular excited state of the moledube a given electronic comfuration, of course, each of
the vibrational states can be characterized in terms of a (vibrational) wave functemd can be labeled by
some set of quantum numberswhich just denote the absorbed quanta in the various normal modes. For further
discussion, it appears useful to distinguish now between several vibrational states of a molecule. The vibrational
groundstate refers to no quanta of excitations, .= 0 for all k, and hence to the wave functi@n(0, 0, ..., 0)
must be invariant under all the symmetry operations of the group. For this reason, the vibrational ground state
must always be transform according to togally symmetridrreducible representation which has the characters
x = +1 for all of the symmetry operations of the underlying point group. Above this ground state, there are several
low-excited states with just a single quantum incorporated in one of the normal modes, for ingtaadewhile
all other quantum number,, = 0 for m # k. This set of low-excited levels are usually called thadamental
(vibrational) levels of the molecule. Apart from the fundamental levels, there are further so-cathdxination
levelsin which two or several normal modes are excited but with just a single quantum each. Finally, all the excited
states with more than one quantum absorbed in a particular normal mode are knowovastihredevels or briefly
overtones. Those of the vibrational transitions, whichrect the ground and fundamental levels are usually called
fundamentatransitions. Such a transitions generally give rise to infrared bands and Raman lines which are more
intense by at least an order of magnitude than any other kinds of transitions. Therefore, we will deal only with
the fundamentals here. For these tidoss, typical frequencies of the abserblight are in the infrared region of
about~ 100-5000 cm?. Such infrared radiation, or course, generally excites not only molecular vibrations but
also rotations of the molecule as a whole. The rotational structure of the bands can be observed, in particular, in the
spectra of a gaseous moleculéls However, in most cases the separationibfational energy levels is greater and
the transitions occur at higher frequencies than do the ootatiransitions. Therefore, here the rotational structure
of the vibrational bands will be neglected.

2.3.2. Infrared and Raman spectra

At this stage of our discussion, it might be necessary to give a brief account on the methods which are available
in order to observe ‘vibrational spectra’ and to obtain the sort of information that one usually wishes to extract from
their analysis. Further details on this subject can be found of course in most textbooks on molecular spectroscopy,
Refs.[4,12]. As mentioned before, vibrational spectra are obtained by two rather different techniques. In infrared
spectroscopy, light with a broad frequency distribution is passed through some sample and the intensity of the
transmitted light is observed as function of the frequency. The vibrational transitions are then obtained as minima
in the absorption spectra. In Raman spectroscopy, in contrast, its not the transmitted but the scattered light which
is of interest and which can be observed in (almost) any direction with respect to the incident radiation. In order to
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extract the information about the scattering by the molecules, obviously, a monochromatic light source should be
used.

Let us now try to understand the phenomena of vibratitmasitions from a microsapic viewpoint. Both, an
infrared and a Raman transitions may occur only if a change is caused diptiie momenof the molecule. In
particular, an infrared transition take place if a permanent dipole moment of molecule vibrates at a certain eigen
frequency around some equilibrium value. Hence, asitation of the molecule can only occur if the frequency
of the incident radiation is approximately equal to the frequency of the internal moment or, respectively, the eigen
frequency of the corresponding vibrational mode. In Rama&gespscopy, in contrast, we have to consider a dipole
moment which isnducedby the external light field. If, for exani@, we assume the molecule to be placed in some
electric fielde, this induced dipole moment is given by

Rind = €q, (8)

wherew denotes theolarizability of the molecule, the measure for how easily the electronic configuration can
be distorted by the field. Polarizability is a molecular property whose magnitude varies with the fregy@scy

a molecule oscillates. If a molecule is idiated by monochronti light of frequencyv, then light of frequency

v as well asv + vg is emitted by a molecule. Thus the vibrational frequencies are obsenRanaan shiftrom

the incident frequency in the visible region. Detailed explanation of this process can be found inE3f.In
general, of course, the polarizability is ax33 Cartesian symmetry tensor with the nine components= o;,

j. k={x,y,z}, which refer to the various directions in space.

2.3.3. Symmetry selection rules for infrared and Raman spectra

With this microscopic view in mind for a vibrational excitation of a molecule, we may now return to the so-called
symmetry selection ruleghich apply in infrared and Raman spectroscopy. In fact, these rules determine which of
the transitions, as possible due to the Ritz’ combination principle, will be actually observed in the spectrum. Or,
in a more spectroscopic terminology, they should tell us which of the vibrational modes are active in one or the
other or both types of the spectra. As discussed before, a wave fungtjas assigned to each of these modes.
If, in the following, we denote the total wave functions for the initial and final (vibrational) state% laynd ¥,
respectively, a transition from the ground to any of the fundamental levels with, say, an excitatioritbfrioemal
mode can be written as

@ =[Tvn = ¥, [ [ Yn =¥ 9)
k k#j

In infrared spectroscopy, of course, this change of theavfiamctions must arise from the interaction of a change in

the dipole momeng with the incident radiation. Sae, for such a transition, thegivability is directly proportional

to the (square of thejansition moment

M;y Zfdf W;[LWZ', (10)

an excitation of the modg¢ is forbiddenin the infrared spectrum if this integral vanishes. Therefore, in order

to analyze the infrared activity of a given (fundamentedpsition, we have to consider the three components of

the dipole moment vectqu,, uy, 1, and of the transition integrlL0), respectively. In practice, however, we

need not deal with the wave functions(i0) explicitly, since we know from group theory that all these integrals
become zero unless the direct product of the irreducible representations, associated with the integral functions
'), I'(ux,y.2), I'(¥y), contains also thtally symmetrigrreducible representatigf3]. This follows from the

fact that if the this direct product does not contain the totally symmetric irreducible representation, all components
of the integrand are nonsymmetric with respect to one or more symmetry and the integral over all space vanishes.
To construct this direct product, we have to define shimmetries of the three components of the inte¢ta).

Of course, the ground-state wave functignalways forms a basis for the totally symmetric representation of the
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group, while the wave functions of final statég are the same as those of the vector that describes the vibrational
modes. Finally, the symmetry properties of the dipole moment compopegnts, and., are the same as those of
atranslational vecta, y, z) along the same axis. Therefore, in order to decide whether the transition md@gent
vanishes, we need to form the (three) direct products

I'(x)
() x {F(y)} x I'(¥r) (11)

I'(z)
which arises from the totally symmetric representation of the vibrational ground state, the irreducible representa-
tions of any of the translational vector components, or z, and the irreducible representation of the vibrational
mode j. If any of these products will by itself contain the totally symmetric irreducible representation of the
molecular point group, the cosponding fundamental transitiog $aid to be infrared active.

The selection rules for Raman spectroscopy can be derived along similar lines. Since a vibrational transition will

occur only if the polarizabilityr changes in course of the vibration, a Raman transition requires a honvanishing
transition moment of the type

Mif Zfdf ‘I/;Ol‘lfi. (12)

Its again possible to analyze this expression by group-theoretical arguments and by making use of the fact that
the components ;. of the polarizability tensor olys the same symmetries like the product of the corresponding
coordinates. To find the selection rules for a Raman activity of some transitions, therefore, we just need to analyze
the direct products of three irreducible represtates with the second one being replaced by those?of 2, z2,

Xy, yz, Or zx, respectively.

3. Outlinetothe BETHE program

The BETHE program has been designed as an interactive tool in order to facilitate the application of point-
group techniques in physics and chemistry. In the present version, we support the group data for a num-
ber of point-group families including the cyclic and their related grougs,, C,, and C,;,, the symmetry
groups Su,, the dihedral groups,, D,s and D,;, (n = 2,...,10), the cubic groupsO, T, Oy, Ty, T4 as
well as the icosahedral grougs/, (seeTable 1. For these groups, the EBHE program provides the de-
finition of the symmetry operators (within various types of parameterization), the character tables, the no-
tation and matrices of the irreducible representations as well as the decomposition of different types of di-
rect products into their irreducible components. Both, ploént and thedouble groups are equally well sup-
ported by the program. Owing to the simple and interactive but still quite general access to the group data,
this program might be helpful not only for occasionaleubut also for more advanced research work. In
this first version of BTHE, emphasis is placed on the determinatidrthee normal coordint@s of the vibrat-
ing molecules and clusters with internal symmetry andheir spectroscopic activity. The graphical presen-
tation of the molecule and animation of the molecular vibration process is also available irethe Bro-
gram.

Following MAPLE'’s philosophy, the BTHE program has been organized in a hierarchical order. It presently
includes about 70 procedures which can be either invoked interactively or sirsptias a language element in
order to built up commands at some higher level of the hierarchy. In practice, however, only about 10 (main)
procedures need to be known by the user; they are listed and briefly explaimadlén2for a first impression
about the BTHE program. More detailed information about their arguments and the output of these commands
can be obtained from a user manual which is distributed with the code. In addition, a few examples are displayed
below to illustrate some of the basic features of the program.
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Table 2

Main commands of the BrHE program

molecule() Represent a molecule in terms of its individual atoms.

Bethe_decompose_representation()  Returasrteducible representations, which are cargediin the in the (reducible) representation.

Bethe_group() Provides the bagiaint group data and notations.

Bethe_group_character() Provides the character ofengiveducible representation and symmetry operation.

Bethe_group_direct_product( ) Returns theect productof the irreducible representations.

Bethe_group_irrep() Provides the matrépresentation of a given irreduciblepresentation and symmetry operation.

Bethe_group_representation( ) Calculatesrépresentation which describes the transfation of a vibrational vector as induced by
the symmetry group.

Bethe_group_projector() Evaluatémetgeneralized projection operatehich projects vector from the spaéeinto the subspace
Ly of the irreducible representatiah(®) .

Bethe_normal_coordinates() Calculatestbemal coordinate®f a molecule in terms of its Cartesian displacement vectors or
internal displacement vectors.

Bethe_normal_display() Displays the \athional motion of a molecule graphically.

Bethe_spectral_activity() Determines, whether the vibrational mode of molecule is infrared or Raman active.

As known from MAPLE'S recent upgrades, most of its internal commands make use of rather short names
and often of some abbreviations to a given mathematical context. Although this convention might be favorable
for a frequent application of the commands, it has thadliantage that these names are usually not that easy to
remember. In the BTHE program, therefore, we follow a slightly different concept by introducing names from
which the purpose of the procedure can be derived (or, at least, be kept in mind). This concept sometimes results
in rather long names but may simplify the application and design (or readability) of new code which still need to
be implemented. Moreover, all the commands of ther B program begin with the additional prefBet he_ to
distinguish them from MPLE’s internal functionality.

In the future, we intent to developeEBHE along several lines. For several applications additional group data
such as the Clebsch—Gordon coefficients or symmetrized basis functions are needed and could be derived from the
data which are available. The access to such data however will require the implementation of additional (or new)
algorithms and, possibly, new data structures. Last bueast e intend, of course, to provide further applications
in physics and chemistry, i.e., further tasks which could be solved interactively by means afthe Brogram
and in a similar manner as shown for the normal coordinates below.

4. Examples

In order to demonstrate the capabilities of theTB e program, we shall collect and display here several exam-
ples. They describe the specification of a molecules in theH& program as well as the derivation of its normal
coordinates and its spectral activity. These examples rivaytige reader also a first glimpse on the interactive use
of the program.

4.1. Determination of the normal coordinates of a molecule

The normal coordinates of a molecule are known to provide a basis in terms of which the vibrations of the
molecule can be classified. To demonstrate the basic steps in the derivation of the normal coordinates of a molecule,
let us consider the (very simple) example dfg complex, i.e., of a plain tri-atomic molecule with equal distances.
Obviously, such a molecule has &x3 — 6 = 3 normal coordinates. The symmetry of this molecule is given by
D3, and, if we assume that one of the equivalent atoms has the coordifate8), we can immediately generate
the full set of atomic coordinates by typing

> set _M3 := Bethe_generate_sites(D3h,[1, 0, 0]);
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set MB =[] 1, 0, 0],
1/2

[-12/2, - 1/2 3 , 0],
1/2

[-1/2, 1/2 3 , 011

Alternatively, we may also consider tld¢; molecule just as a collection of (individual) atoms and may treat it by
the variable

> MB : = nol ecul e(at on( AL, [ 1, o0, 0]),
atom(A2,[-1/2, -sqrt(3)/2, 0]),
atom(A3,[-1/2, sqrt(3)/2, 0]) );

MB : = nol ecul e(atonm( AL, | 1, o0, 0]),
1/2

atom(A2, [-1/2, - 1/2 3 , 0]),
1/2

atom(A3, [-1/2, 1/2 3 , 0]))

below, where the two (auxiliary) procedurason( ) andnol ecul e( ) have been introduced in order to keep

the relevant information about either a single atom or molecule closely together. To derive the normal coordinates,
of course, we need first to determine th¥ X 3N total representation of the group. As described above, this
representation is associated with the Cartesian aigphents of all the atoms and aoats for the translational,
rotational, and vibrational motion of the molecule. In fact, however, we need not to generate this representation
here explicitly but may restrict ourselves to the characters of that part of the total representation which refers to the
vibrations of the molecule. By means of the B4E program, these characters are simply obtained by

> VR : = Bet he_group_representation(D3h, vibrational, M);
VR:=[3, 0, O, 1, 1, 1, 3, 0, O, 1, 1, 1]

By use the keywordvibrational the translational and rotational components of the representation are taken away.
In this example the symmetry elements are not arranged to a classes in order to simplify the summation over the
symmetry operations. From the list of charactiRswe can derive the irreducible representations by carrying out

the decomposition o¥R into its irreducible components

> Bet he_deconpose_representation(D3h, VR);
["AL", "E]

with which the normal modes are associated. The dimessof these (irreducible) representations give us
for each component directly the number of—energdicdegenerate—vibrational modes. Having once these
representations, moreover, we can also obtain thenabicoordinates in terms of the Cartesian displace-
ments[[cﬁ), c%) e cﬁ&g], [c(li), cg), e, c@], el [cSN_B), cf,N_G), e C;\%v—e)]]. In the BETHE program, this

is achieved by ’

> Q"A1'" := Bethe_normal coordi nates(D3h, M3, "Al'", Cartesian);
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Q"Al'" :=[[ 1, 0, 0,
1/ 2

-1/2, - 1/23 , 0
1/ 2

-1/2, 123 , 0]

where the second and third paramekd,and” A1’ ", here describe the moleculedarespectively the particular
irreducible component as found in the decomposition of totadational representatiom addition, the last para-
meter ‘Cartesian’ is used akaywordin order to specify that the normal coordinates are to be returned in terms of
the Cartesian displacements.

Similarly, we may obtain also the other two normal coordinates which are associated with the irreducible repre-
sentatior' E' "

> Q"E" := Bethe_nornal coordi nates(D3h, M3, "E' ", Cartesian);
Q"E" =1l 0, -1, 0,
1/2 1/2
[ 1/2 3 , /2, 0, -1/2 3 , 1/2, 0],
[ 11 01 O!
1/2 1/2
-1/ 2, 1/2 3 , 0, -1/ 2, -1/2 3 , 0]1]
1
3 2
V] (NA]II) V2 (HE’N) V3(|IE’|I )

Fig. 2. Vibrational modes of th&f3 complex.

-0.4

06

a) b)

Fig. 3. Graphical presentation of the“ E’” vibrational mode of theV 3 complex (two frames).
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where each sublists of the [i&t " E’' " defines one of the allowed normal coordinates of irreducible representation
"E ". As expected, these three coordinates are of course the same as sheagnZnup to an (unimportant)

unitary transformation oV>(" E' ") and V3(" E' "), respectively. In order to get a quick impression about the
molecular vibrations of the considered structure, the normal coordinates of the molecule can be displayed also
graphically.

> Bet he_nornal _di splay(M3, Q"E "[1]);

Two frames from the animated picture of tie(" E' ") mode are shown iifrig. 3. Fig. 3a) shows the initial
configuration of the molecule, while Fig. 3b) the vibrationally distorted molecule is depicted.

4.2. Infrared and Raman activity of vibrational modes

The classification of the normal vibrations has pd®d us with the information about the number of normal
modes and their symmetry type. We may utilize this information in order to derive the spectroscopic infrared and
Raman activities of the molecular vibrations (and could do it even if we would not know the normal coordinates of
these vibrations explicity). From Secti@we know that the molecul#fz has one vibration which is associated
with the irreducible representatiorAl’ " and a (two-dimensional) vibration associated with the representation
"E ".We can ask about the infrared activity of these vibrations by typing

> | R active "Al'" := Bethe_spectral _activity(D3h, M3, "Al'", infrared);
IR active "Al'" := fal se

and

> |R active "E " := Bethe_spectral _activity(D3h, M3, "E ", infrared);
IR active "E'" := true

Here, again, the second and third arguments describe the molecule and the symmetry of vibrational mode, respec-
tively, while the fourth argumentnf r ar ed serves as a keyword in order to specify the kind of the spectroscopic
activity.

Of course, the activity of a vibrational modes in Raman spectroscopy can be obtained along the same lines if
the keywordramanis used

> Raman_active "Al'" := Bethe_spectral activity(D3h, M3, "Al'", Raman);
Raman_active "Al'" := true

> Raman_active "E' " := Bethe_spectral _activity(D3h, M3, "E'", Raman);
Raman_active "E'" := true

To conclude this section, the example of tifg molecule shows us that only théd1’ " mode is active in the
infrared spectrum but that the tWd= " modes can be found in both, the infrared and Raman spectra.

4.3. Normal coordinates in termg mternal displacement vectors

As it was mentioned already, for some physical and chemical applications the treatment of the vibrations within
the framework of the Cartesian displacement vectors is@gtconvenient. In these cases one has to use the inter-
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Vl ("Al") VZ(”E’”) V3(HE’")

Fig. 4. Vibrational modes a#/3 complex in terms of the internal displacement vectors.

nal displacements vectors of the raolle (stretching vectors and bond andeformation vectors). This example
illustrates how to obtain the normal coordinates of Migmolecule in terms of the inteal displacement vectors.

In order to achieve this, first of all we need to specifg thternal displacement vectors in terms of the names of
individual atoms:

> M3_stretching := Bethe_internal (D3h, M, stretching);
MB_stretching := [[ Al, A2], [ A2, A3], [ A3, A1l]]

Since theM3 complex must have 33 — 6 = 3 internal coordinates, then set of three stretching vectors is enough

to describe the vibrational process (in general case we could specify also the bond angle deformation vectors).
The irreducible representations names, which refer to the vibrational modes dfstiheolecule, was found in
Section4.1 Therefore, we can immediately obtain the list of the vibrational coordinates in terms of the internal

displacement$[c§1), cgl), el c,il)], [cf), cf), el c,(f)], .... Now we can find the stretching vibrational coordi-
nates ofM3 molecule:
> Q. str := Bethe_normal coordinates(D3h, M, stretching);

-1/2 -1/ 2 -1/2

Qstr :=1[[ 3 , 3 , 3 1,
-1/2 -1/ 2

[ 2 , 0, -2 1,

-1/2 -1/2  -1/2

[ -6 , 26 , -6 11

Every sublist ofQ st r defines the displacement of three vectBs st r et chi ng. The vibrations of the\/s
molecule, defined b§) st r are shown irFig. 4.

4.4. Geometrical structure and the spectral properties of thB-+HD—BH molecule

The moleculeM3, whose vibrational and spectral properties was discussed in the previous subsections, is the
trivial sample of the polyatomic molecule. Of course, theTBE package may be applied for studies on more
complicated molecules. In this subsection, for example, we will considetiftgoxanemolecule HB-O-BH,
which have been discussed frequently in the literaflide-16] This molecule can obey different symmetries in
dependence on the chemical environment and the process of its formation. Ab initio calculations of the geomet-
rical structure of the diboroxane nemlule, using the potential energy surface, have been performed by using the
GAUSSIAN progran14]. Several experiments, based on the X-ray diffraction method as well as on the spectro-
scopic data was carried out to clarify this structure, éesv, results of these experiments was not consistent each
other, Refs[16,17] Therefore, the further analysis of this molecule still highly desired.
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a) b) ¢)

Fig. 5. Possible symmetrie$ the diboroxane molecule: d),,; symmetry, b)Do;, symmetry, c)Cp, symmetry.

In this contribution, we will apply the BTHE package to interpretation of the vibrational spectra of the diborox-
ane molecule. Of course, the types of the vibrational modes and the spectral activities of these modes will change
in dependence on the two geometrical characteristics:

(i) the B—O-B linkage is linear or bend,
(i) the BH2 groups are coplanar or penpdicular to each other.

Therefore, we will analyze the spectral activities of the vibrational modes for three different geometries of the
diboroxane molecul®2,, Do, andCa,, which are shown ifrig. 5. First, theDy,; configuration will be considered.
In order to specify this molecule, we need to know chioates of at least one atom from each set of equivalent
atoms, that is O, B and H atoms. Once we make the qualitative analysis, we can specify the coordinates of atoms
rather arbitrarily, keeping, the molecular symmetry. Further we will specify the hole molecule in terms of individual
atoms.

Apparently, the diboroxane molecule frdfig. 5a) fulfills the D2; symmetry only if the O atom is at the origin
of the coordinates and if the B—O-B bond is alargxis. Let us start with specification of the atomic coordinates

> coord O:=[0, O, 0]; coord B:=1[0, O, 1]; coord H:=[0.5, 0.5, 1.5];

coord O : =] 0, 0, 0]
coord B : =] 0, 0, 1]
coord H:=1] 0.5, 0.5, 1.5]

and use this input to generate the coordinates of the other atoms from the three sets of equivalent atoms

> set O := Bethe_generate sites(D2d, coord O;
> set B := Bethe_generate sites(D2d, coord B);
> set _H := Bethe_generate sites(D2d, coord H);
set_ O:=[[ O, 0, 0]]
set_ B:=1]] 0, 0, 1], [ 0, 0, -1]1
set H:=[[ 0.5, 0.5, 1.5], [ -0.5, -0.5, 1.5],
[ 0.5, -0.5, -1.5], [ -0.5, 0.5, -1.5]]
To obtain the complete set of atomic coordinates we may simply type
> set_all _D2d := [op(set_O, op(set_B), op(set H];
set _all_D2d :=[[ 0, 0, 0], [ 0, 0, 1],
[ 0, 0, -1], [ 0.5, 0.5, 1.5],
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[-0.5, -0.5, 1.5], [ 0.5, -0.5, -1.5],
[-0.5, 0.5, -1.5]]

This set may be utilized now in order to find the number and the symmetry types of the vibrational modes.

> VR D2d : = Bethe_group_representation(D2d, vibrational, set_all_D2d);
> VI _D2d := Bethe_deconpose _representation(D2d, VR D2d);

VR D2d :=[15, -1, 1, 1, -1, -1, 5, 5]

vi_Db2d := ["ALl", "Al", "Al1", "B1", "B2", "B2", "B2",

"E', "E', "E', "E"]

As seen from the output of the program, the; configuration of the diboroxane molecule has 11 vibrational
modes, four of which E" are doubly degenerate (number of vibrational degrees of freedom for this molecule is
3x7—-6=15).

Let us define now those of vibrational modes, which are infrared and Raman active

> | R active := Bethe spectral activity(D2d, VI _D2d, infrared);
> Ranman_active : = Bethe spectral activity(D2d, VI _D2d, Ranman) ;

IR _active = [ "B2", "B2", "B2", "E', "E', "E', "E']

Raman_active := [ "A1", "A1", "A1", "B1", "B2", "B2", "B2",

"E', "E', "E', "E'].

Thus, seven bands are common for both spectra and the Raman spectrum has four bands not found in the infrared.
Similarly to the Dy, configuration case we may proceed the vibrational analysis abgheconfiguration (see

Fig. 5)). The complete set of coordinatest _al | _D2h can be found by the same way. To define the symmetry

of the vibrational modes, we need to specify the characters as well as the irreducible componenispiioep

vibrational representation:

> VR_D2h : = Bethe_group_representation(D2h, vibrational, set_all_D2h);
> VI _D2h : = Bet he_deconpose_representation(D2h, VR D2h);

VR D2h := 15, -1, -1, -1, -3, 1, 9, 5]

Vi _D2h := 1 "Ag", "Ag", "Ag", "B2g", "B3g",

"B3g", "Blu", "Blu", "Blu", "Blu",
"B2u", "B2u", "B2u", "B3u", "B3u"]

ThereforeDo;, configuration of the diboroxane molecule h&sriondegenerate normal modes of vibrations. The
lists of the infrared and Raman active vibrational modes may be found then by typing

> | R active := Bethe_spectral _activity(D2h, VI_D2h, infrared);
> Raman_active : = Bethe_spectral _activity(D2h, VI_D2h, Ranman);

IR active := ["Blu", "Blu", "Blu", "Blu", "B2u", "B2u",
"B2u", "B3u", "B3u"]
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Raman_active := [ "Ag", "Ag", "Ag", "B2g", "B3g", "B3g"].

This result illustrates the so calledutual exclusion ruleAccording to this rule, in a molecule with the center of
symmetry onlyu (ungerad¢ modes can be infrared active and oglfgeradd modes can be Raman active (no
mode can be both infrared and Raman active).

Spectral activity of theCs, configuration of the diboroxane molecule (d&g. 5)) is obtained by the similar
way:

> VR _C2v = Bethe_group_representati on(C2v, vibrational, set_all_ C2v);
> VI _Q2v = Bet he_deconpose_representati on(C2v, VR C2v);
> | R active .= Bethe_spectral activity(C2v, VI _C2v,infrared);
> Raman_active : = Bethe spectral activity(C2v, VI _C2v, Ranman) ;

VR C2v :=[15, 1, 1, 7]

VI_C2v :=["Al", "Al1", "ALl", "Al", "A1", "Al", "A2", "A2",

1", "B1", "B1", "B1", "B1", "B2", "B2"]
IR active := ["AL1", "Al", "A1", "A1l", "Al", "Al1", "Bl1l", "B1",

"B1*, "B1", "B1", "B2", "B2"]

Raman_active := ["Al", "Al1", "Al", "A1", "Al", "Al", "A2", "A2",

"B1", "B1", "B1", "B1", "B1", "B2", "B2"]

This result tells us that in th€o, configuration all 15 vibrational modes are active in the Raman spectrum and only
13 modes are infrared active.

We found, that the symmetry types of the vibrational modes as well as their spectral activity are different
depending on the mutual orientation of the Bitoups. Therefore, the use of the presented package helps define
the spectral active modes of vibration and can be used for their interpretation of the spectra and the study of the
geometrical structure of the diboroxane molecule and others.

5. Outlook

From our examples in Sectioh the present capabilities of theEBHE program can be seen for generating
the normal coordinates and the spectroscopic activities of molecules. In the future, we will enlarge the number
of applications of the program by following various lines. For more complete analysis of the vibrational spectra
it would be highly desirable if the problem of molecular vibrations could be solved also quantitatively by just
typing a few lines interactively. This means, that we need to address the frequencies of the particular vibrations.
These frequencies are determined by the potential energy of the system and are related to the masses of the atoms,
the bond angles and bond lengths. The potential energy arises from the interaction between the individual atoms
and can be described in terms of the force constants. Therefore, the relationship between the frequencies of the
vibrations and force constants need to be expressed. For this purpose, the use of the internal coordinates as a basis
for the normal coordinates is more suitable, since the fasostants, expressed in terms of the internal coordinates,
have a clearer physical meaning then those, expressed in terms of Cartesian coordinates. The meginold;of
matrices, developed in RgPB] can be used. In addition, the selection rules for the other types of the vibrational
transitions, such as overtones and the combination bands, will be included inteth& Backage.
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Apart from the analysis of the vibrational spectra, there are several other extensions which wouldanake B
a much more powerful tool. A well known phenomenon from molecular interactions with light is the spontaneous
distortion of a molecule due to its vibrational motion. This phenomenon is known akaktime-Teller effecand
depends on the interaction between the electrons and the nuclei. The theory of this effect is based, again, upon
a group—theoretical analysis of the adiabatic potential of the (polyatomic) molecule when the electronic states
become nearly degenerated. The question abogebmetrical stabilityf the molecule is then related to searching
for minimum of the potential surface. €lprogram realization of the group thg@pplications, mentioned above,
will certainly make BETHE attractive to a wider class of users.
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Abstract

Symmetry-adapted molecular basis functions are widely applied for the electronic structure computations of molecules and
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Nature of the physical problenMolecular and solid-state quantum computations can be simplified considerably if the symmetry

of the systems with respect to the rotation and inversion of the coordinates is taken into account. To exploit such symmetries,
however, symmetry-adapted basis functions need to be constructed instead of using—as usual—the atomic orbitals as the (one
particle) basis. These so-callegmmetry orbitalsare invariant with respect to the symmetry operations of the group and are
different for the point and double groups, i.e. for nonrelativistic and relativistic computations.

Method of solutionProjection operator techniques are applied to generate the symmetry-adapted orbital functions as a linear
combinations of atomic orbitals.

Restrictions onto the complexity of the probléfhe generation of the symmetry orbitals is supported for the cyclic and related
groupsC;, Cs, Cp, Cyup, Chy, the dihedral group®,,, Dy,;,, D4, the improper cyclic groupSy,, (n < 10), the cubic groups

0,T, Oy, Ty, T; as well as the icosahedral groupand/y,. In all these cases, the symmetry orbitals can be obtained for either

the point or double groups by usinganrelativisticor, respectivelyrelativistic framework for the computations.

Unusual features of the progranAll commands of the BTHE program are available for interactive work. Apart from the sym-
metry orbitals generation, the program also provides a simple access to the group theoretical data for the presently implemented
groups from above. The notation of the symmetry operations and the irreducible representations follows the compilation by
Altmann and Herzig [Point-Group Theory Tables, Clarendon Press, Oxford, 1994]. For a quick reference to the program, a
description of all user-relevant commands is given in the (user) maatadhe- conmands. ps and is distributed together

with the code.

Typical running time:Although the program replies ‘promptly’ on most requests, the running time depends strongly on the
particular task.

0 2005 Elsevier B.V. All rights reserved.

PACS:02.20.-a; 31.15.Hz

Keywords:Atomic and molecular orbital; Double group; Point group; Projection operator; Symmetry orbital

1. Introduction

Symmetry considerations are known to play a crucial role in (almost) all branches of modern physics, including
elementary particle physics in quite a similar manner as the physics of atoms and molecules, or of the solid state.
Utilizing the symmetry of a system often help simplify its theoretical description and to obtain insight into its
behavior. Apart from the group-theoretical analysis of the system, however, computational tools are also required
to make fully use of the symmetries. Therefore, in order to facilitate, for instance, the vibrational analysis of poly-
atomic molecules, we recently developed theTBE program[1] which help determine their normal coordinates
and spectral activities. In this program, the group data were implemented (or derived) for all the frequently applied
point groups including the cyclic and related groups Cs, C,, Cnn, Cny, the dihedral group®,,, D, D4,
the improper cyclic group$,, (n < 10), the cubic group®, T, Oy, Ty, T; as well as the icosahedral groups
and’,.

Apart from the vibrational analysis of molecules, the generation of Hyeinmetry-adapted basis functioms
briefly, symmetry orbitalgs also of quite general interest. In particular, in a recent years a large number of in-
vestigations was carried out to study the electronic structure of molel@+ék In order to resolve this structure,
the (experimental) techniques of the X-ray diffraction and absorption, photoelectron spectroscopy and others have
been applied. The theoretical interpretation of such experimental data requires the generation of the molecular
wave functions. The symmetry orbitals can be used in order to reduce the size of the (position) space in which
the molecular wave functions need to be treated explicitly. Therefore, with this paper we present the extension of
the BETHE package, which provides the construction of symmetry-adapted basis functions for polyatomic mole-
cules.

The BETHE package generates the symmetry orbitals from the set of atomic orbitals according to the LCAO
method[5] by means of the group theory techniques. This method, based on the molecular symmetry properties, is
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very well known in quantum chemistry. Several computer programs have been developed nowadays to construct the
symmetry orbitals for selected applications (for instaf@&]). However, being implemented within the traditional
computer languages (such as Fortran), these programs are not flexible enough to work with the algebraic properties
of groups. Moreover, most of such programs support a very restricted set of either fpoimdouble[7] groups.

The BETHE package is applicable for most common groups mentioned above (single and double).

In the next section, therefore, let us start with recalling some of the basic concepts in using symmetry orbitals
for molecular computations. Apart from the classification of the finite groups and a brief note on the differences
between the point and corresponding double groups, this includes the explicit construction of the symmetry orbitals
by means of projection operators. Some general properties of the symmetry orbitals are also summarized in this
section. This is followed in Sectiadby a short description of theEHE program and how it can be used within
a MAPLE environment. The examples in Sectidtater display the capabilities of the program with emphasis on
the generation of the symmetry orbitals within both, a nonrelativistic and relativistic framework. A brief outlook
on possible extensions of theeBHE program is finally given in Sectiob.

2. Theoretical background

Since the theoretical background of tliite groupshas been worked out long time ago, here we assume the
reader to be familiar with its basic features as well as with the concept of using symmetry orbitals in molecular
computations. Today, there are many texts available on this topic including, for example, the books by Elliott and
Dawber[8] and Balasubramanidf]. In the following, therefore, we restrict ourselves to rather a short account of
the theory and with emphasis on ttheublegroups, just enough in order to understand the implementation and the
use of the program below.

2.1. Point and double group symmetries

In group theory, the symmetry of a physical object is determined by the set of transformations which leads to a
geometrically indistinguishable configuration of the object. For a finite (non-spherical) system such as a molecule,
these transformations are known to be the proper and improper rotations, i.e. pure rotations around some axis or
rotations with an additional inversion at the origin, and are called the symmetry operations of the group. They form
the (finite) subgroups of the groups of orthogonal transformations in 3-dimensional space. In practice, five types
of symmetry operations are usually distinguished, including (i) the identity operét(which leaves the object as
itis), (i) an n-fold rotationC,, about some axis, and (jii) the inversionf all coordinates at the origin. Moreover,
there are (iv) reflectioné at some mirror plane, or—in a combined form—(v) rotations by°3@0about some
axis followed by a reflection through a plane which is perpendicular &itr@toreflection). The complete set of
theh symmetry operations is said to fornrsgmmetry grou and is treated by means gifoup theory Of course,
the occurrence of the various types of symmetry operations can be used also to distinguish betweerpdiftgrent
familiesas recently discussed in Rgf].

All the types (i)—(v) of symmetry operation, as mentioned above, refergimoanetricaltransformation of the
object. To ‘add’ the concept of the electron spin to the point groups, one has first to recognize that the wave function
of a particle with spins = 1/2 changes its sign under the rotation af and is invariant only under a rotatia
by 47 (around any axis in space). A rotatidii by 27, in contrast, does not give rise to the identify ¥ = E).

Since the elementt’ commutes however with all the operatiofisf the point group, it can be used to generate the
h additional symmetry elements of the double grgUpy taking £’S = $’, with the consequence that the number

of symmetry operations of the group is simplgubledwhen compared to the number of the corresponding point
group, i.e. without the spin. If a group contains the rotatitnas one of the symmetry operators, moreover, we
haveC” = £’ for the point group and’?" = E for the corresponding double group. Using the similar rule as for
the point group$5,8], the double group operators can be collected intagthap classes
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The symmetry operations of an object (or its symmetry group) would be of minor interest perhaps, if they
would not give rise tanduced transformationand to a great simplification in describing the system by using
group theory. In fact, the relation between the symmetry operations and their induced transformations is the topic
of therepresentation theorgf the groups and one of the main reasons for studying symmetries in Nature (maybe
apart from their beauty). Often, such induced transformation can be expressed by matrices and are called the
representationsf the group (assigning one matrix to each of the symmetry operators). Since, in general, we may
choose the basis for a representation (in some given vector gpae¢her freely, the matrix representations of a
group are not unique and will usually depend on the choice of the coordinates as well as on some further parameters.
The great advantage in using group theory is, however, that any (reducible) representatican be decomposed
into—a rather small number ofirreducible representation® (S), which are unique and independent of the
basis up to a unitary transformation. Irreducible representations of the point groups are calledsirsgiallyalued
or vectorrepresentations. In theEBHE program, the chemical (Mulliken) notation is used to denote and identify
the irreducible representations, analogy to RE®].

Several standard techniques exist today for determining the irreducible components of a given reducible repre-
sentatior{5]. Instead of an explicit matrix representation, hereby it is often sufficient to knoshémactersof the
irreducible representations, i.e. the traces of the corresponding matrices. Moreover, as the number of the symmetry
operations is (two times) larger for the double than for the corresponding point group, the number of the irreducible
representation also increases in the case of the double groups although typically not by a factor of 2. That is, apart
from the (single-valued) representations of the corresponding point group, the double group has a number of the
so-calleddouble-valuedr spinorrepresentations. In the literature these (additional) representations are marked by
some half-integer superscript showing its dimension to bej2+- 1. The irreducible representations for the point
and double groups are shown explicitly in REf0], using the well-known symmetrp@ (§') = £D®(§) with
the sign in dependence of the class to which the symmetry opergtimeiongs.

The double groups are important for a number of applications in chemistry including, for example, the theory
of the transition metal ions and relativistic molecular structure calculations based on Dirac’s Hamiltonian. In the
BETHE program, therefore, special attention has been paid to support the point and double groups equally well.

2.2. Construction of symmetry orbitals

For symmetric molecules, the computational costs in the electronic structure calculations can be reduced signif-
icantly if asymmetrizedne-particle basis or, briefly, the concept of ‘symmetry orbitals’ is applied. In practice, this
concept allows to reduce the (size of the) position space in which the molecular orbital functions need to be treated
explicitly. Moreover, since the construction of the symmetry orbitals is a pgetynetricatask (independent of
the details of the electronic structure), it can be carried out algebraically for any given symmetry group and actually
before the quantum-chemical computations start.

To construct the molecular orbital functions, let us begin with the atomic orbitals

Py (rq
lanlm) = #Ylm Oas Pa) 1)

a

which are given in spherical coordinates, 6,, ¢,) and which are centered at the positiof the atoms. Using
the LCAO method (i.e. the linear combination of atomic orbitals), the molecular orbitals can be constructed from
the orbital functiong1) either immediately

WI] = Z Cn,anlm|anlm) (2)

anlm

or by first making use of an expansion in terms of symmetry orbitals

1//17 ZZBn,riuhill«) (3)

Tip
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which are sought to be invariant under the (symmetry) operations of the group and are characterized by the group
indicesi, T, andu, referring to one of the irreducible representations of the group. Of course, the symmetry orbitals
are found again as linear combinations of atomic orbitals

ITin) =) Avig.amlanim) @
am

with coefficientsA+;, . determined by the symmetry and the number of the (equivalent) atoms. In molecular
computations, the coefficients, ..;» and B, ;. are often obtained variationally and, hence, are utilized to de-
scribe the detailed bond of the molecule apart from its symmetry.

The symmetry orbitaltiu) with index t = (anlmv) can be generated using group theory. In theTBE
program, the construction of this function is based ongfmp projection operatotechnique. To this end, the
projection operator

s n; . A A
Pl = ;’ > DO (5)
§

is used in order to compute a bases for all the (involved) irreducible representations of the group:, ddvestes
the order of the group ani the symmetry operations. In this expression, moreover, the maﬂﬂ&é(sﬁ) refer to
theith irreducible representation of the group with dimensipand with matrix eIememQ(‘) (3.

The projection operatof®) have to be applied to an (atomic) basis which includes the orbital functions of all the
atoms involved in the molecule. To generate this basis, therefore, we first need to apply the symmetry operations of
the group to the atomic orbitalanim) from at least one of thequivalentatoms in the molecule. Since, however,
any spatial symmetry operancﬁhcan be presented either as a pure rotafiea R, given by the Euler angles, 8
andy, or improper rotatior = / R, we may write

1
Slanlm) = (=1 Y~ R, (e, B, y)|(Sa)nim’), (6)

m'=—1
where(Sa) now refers to an equivalent site of the atom which was at the positimiginally. The factor—1)'%,
moreover, accounts for the parity of the atomic orbitals in case of an inversion, namely
_ { 1 if § contains an inversian
0 otherwise

As usual, the rotation matriR («, B, y) is parameterized in terms of the Euler angles$, andy and can be
calculated, for instance, by using Wigner’s form{da]. For a given symmetry, therefore, all tequivalentsites

of an atom are visited if the summation in E§) includes all the symmetry operators of the group. Combining
Egs.(5) and (6) the symmetry orbitals can be expressed explicitly in terms of the atomic basis by

lanlmvip) = ZCZZla’menlm) )
with the symmetry coefficients

l
Zaa 5 DS (D™ RL (@ B.y) ®)

and wherex refers to one of the equivalent atoms for the atom at positidioreover, since the generation of the
nonrelativistic symmetry orbitals is associated to the point group symmetry, the projection oferats to run
through all the symmetry operators of the group.
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Instead of the—nonrelativistic—atomic orbitdlly, we may start equivalently from a relativistic description of
the atoms, based on Dirac’s Hamiltonidr2]. In this case, the atomic orbitals (for an electron with spia1/2)
are given by the Dirac spinors

i e N )
il QO ba) )
wherex is the relativistic angular momentum quantum number and where, again, spherical coordinates are used

and centered at the positiarof the atom. The Dirac spinors consists out of the two (upper and lower) Pauli spinors
with the (s = 1/2) spinor spherical harmonics

lankm) = ( 9)

$2iem B, Pa) = Z(lm - mssmsljm>yl,m—ms (Oa, ¢a)XsmS (10)

mg

for the spin-angular part of the atomic orbitals, sometimes known also as the spherical (or Dirac) spin-orbitals.
When compared with Eq1), the relativistic quantum number

z{—(j+l/2)=—(l+1) for j=1+1/2,

j+1/2=1 forj=1-1/2 (11)

replaces the orbital angular momentum quantum nurhdaut now contains information about the total angular
momentum; and again the parityl) of the atomic orbital.

Since the relativistic orbitalginkm) in Eq. (9) always refer to a half-integer total angular momentjnthe
double-valuedrreducible representations (with the corresponding superscripéed to be taken into account in
this case in the definition of the projection operai®&j)s However, the summation over the symmetry operators can
still be restricted to those of the corresponding point group because the contributions from the two (double group)
operationsS and$’ are equal. If this observation is used, the orklén Eq. (5) must refer also to the order of the
point group and not to the order of the double group as it appears in the formal definition.

2.3. Linear independence of the symmetry orbitals

As seen from Eq(3), the symmetry orbitals from the last subsection are used as a basis for the molecular
computations. These functions should be therefore linear independent and complete (with respect to the atomic
one-particle symmetry) in order to avoid technical difficulties. In general, however, the straightforward application
of the projection operator(&) leads to a number of symmetry orbitals which is larger than the number of the
(underlying) atomic orbitals and, hence, to linearly-dependent orbitals. For instance, if theteeargvalent
atoms ¢ =1,..., A) in the molecule and if we consider the atomic orbitals/n) with fixed quantum numbers
n andl, there areA(2/ 4+ 1) atomic orbitals in total butv = Ah(2/ + 1) symmetry orbitals wheré is the order
of the point group. As shown in R€fL3], it is sufficient to apply the projection operators only to one fromahe
equivalent atoms, reducing the numbente= (2] 4+ 1) symmetry orbitals. A linear-independent set of symmetry
orbitals is therefore obtained automatically if the number of (equivalent) atoms and the order of the group are equal,
A = h, while it is linear-dependent fot < 4.

To derive a linear-independent set of symmetry orbitals, we shall first determine their ndmnii@r each
irreducible representation () of the group which is given by Ref14]

1 . N N
Ni=3 Zx<’>*<5>x(5), (12)
S

wherey ) (S) denotes the character of the representation, corresponding to the transformation of the atomic orbitals
lanlm). Since the matrix elements of the latter representation are
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Daii.am (S) = (=D R}, 2 (98, 52 (13)
the numbemnV; can be written
n; . A A~
Ni=22 ) DX E) YR (93, 5, (14)
§ am

if Eq. (6) is taken into account. Furthe¥; linearly independent basis functiofasi/mvi ) have to be found. The
symmetry-adapted basis functions, constructed by this way are linearly independent.

3. Outlinetothe BETHE program

The BETHE program has been designed as an interactive tool for applications in chemistry and physics which are
based on the point and double group symmetries. Hereby, the main emphasis is placed on providing a user-friendly
tool which requires neither much knowledge about the group theoretical background nor about the—very large
number of—names and abbreviations as used in the literature. Owing to its special design, we therefore expect
the BETHE program of interest in both the teaching of the basic elements of group theory by means of the finite
groups as well as in more advanced research studies. In the present versiorHef ®e support all finite groups
of common interest including the cyclic and their related gropsC,, andC,;, the symmetry group$z,, the
dihedral group9,,, D,q andD,, (n =2, ..., 10), the cubic group®, T, Oy, T, T; as well as the icosahedral
groups! and Iy, respectively. While the attention in the present development of #1iHB program was mainly
focused on the generation and the use of the symmetry orbitals for molecular computations, the simple access
to a great deal of group-theoretical data for the point and double groups is certainly also worthwhile to mention.
In the generation and expansion of the symmetry orbitals (in terms of the atomic orbitals of equivalent atoms)
both, nonrelativistic and relativistic computations are equally supported. The procedures, which are necessary to
generate the symmetry orbitals are listed brieflyaile 1

The full package is distributed by a tar file of th&BHE root directory Bet he. t ar ), which contains the
source code library, filemapl ei ni t, guide for installation as well as the documentation for the program. Having
adapted the mapl ei ni t file in the home directory of the user (as briefly explained iRead. ne file of the

Table 1
Main commands of the BrHE program. A more detailed description of these procedures is given in the user-rBatih&- commrands. ps
which is distributed with the code

AO() Auxiliary procedure to represent an atomic orbital an/m) which is centered at the position
a=(ay,az,a3).
SO() Auxiliary procedure to represent a symmetry orhitdl(Ga) nim; T uv).
Abasis() Auxiliary procedure to represent an atomic basig(sétan/m)} which is centered at the position
a= (a1, ay,az).
Bethe_generate_AO() Generates a list of atomic orbitals (including's)lat the sitea = (a1, ap, a3) and for an atom with
the identifier stringtom.
Bethe_generate_AQO_basis() Generates an atomic basis by applying all symmetry operations of the paihiviffolabel d abel
to the atomic orbitals A@, AO,, ... of a given orbital basis.
Bethe_generate_SO() Expands a symmetry orbitalGaynim; T ® pv) in terms of the atomic orbitals of a set of equivalent
atoms.
Bethe_generate_SO_basis() Generates a complete, but linear independent basis of symmetry orbitals for the gintthraiel
G abel from the set of atomic orbitals as described by the atomic basis sets Abas&sis, . . ..
Bethe_group() Provides the basic group data and notations.
Bethe_set() Defines either a relativistic or nonrelativistic framework for the generation of the atomic orbitals and

the internal interpretation of the quantum numbers.
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program), the BTHE program can be invoked like any other module oAME. Then, by using the command
wi t h( Bet he) user may load all procedures and initialize the internal settings of HeiB package:

> wi t h(Bet he);
Vel come to Bet hel
Bet he_save_franework : = nonrel ativistic

At any (re-) start of the program, the internal framework, as defined by the global vaBablee _save_
f ramewor k, is set tononr el ati vi sti c as the default of the program. This initial setting of the framework
which influences the internal interpretation of the quantum numbers (see below), however, can be ‘overwritten
easily by means of the commaBét he_set () . Details about the use this global definition will become obvious
in our examples in Sectiof.2

Apart from the generation of the symmetry orbitals, theTBE program also facilitates the access to basic
data of the point and double groups, following in its notation mainlyRbmt-Group Theory Tablely Altmann
and Herzig[10]. It provides, for instance, the number and a detailed definition of the symmetry operations, the
characters, irreducible representations, and further information by using the condehd gr oup() with
a proper set of keywords; cf. the manualBet he- conmands. pdf . In order to keep the notations as sim-
ilar as they appear in the literature, we often use string identifiers for the communication with and within the
program, i.e. in the input and output of many procedures and for the internal identification of the symmetry op-
erations and irreducible representation of a particular group. A notation like grimgstringr, for instance,
refers to the name of one of the symmetry operations or irreducible representations of the group, respectively.
The list of all possible string identifiers for a given group (with laklabel ) is obtained by typing in the
commandsBet he_gr oup(d abel , oper at ors) andBet he_group(d abel , i rreps), and with an
additional keyworddoubleif the symmetry operations and representations of the corresponding double group
are requested. Since the double group is obtained simply by ‘doubling’ the number of symmetry operations due to
the (non-identical) rotation about2 all operator strings appear basically twice for the double group, with one of
them having a leading capital letter “R”.

4. Examples

To illustrate the use of the BrHE program, below we display and explain a few examples. They show the
simple (and fast) access to the symmetry operations, irreducible representations, and to other group-theoretical
data as well as the generation of symmetry orbitals for a molecule, if its symmetry and the coordinates of (at least)
one atom for each sort efjuivalentatoms are known. In all examples below we used accubégiys = 6 in order
to make the output of the program more compact.

4.1. Access and use double-group data

For the sake of simplicity, let us start with the point grodg, which is obtained from the cyclic grou@s
by adding three vertical mirror planes. The symmetry of this group is fulfiled approximately, for instance, by
the chlorometane molecule GHI. With the BETHE program, we may first ask for the number and type of the
symmetry operators which, of course, are different for the point giipand the corresponding double group
and assign them to some working variables

> wn
wa

Bet he_group(C3v, No_operators);
Bet he_gr oup(C3v, operators);
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wn_dbl := Bethe_group(C3v, No_operators, double);
wa_dbl := Bethe_group(C3v, operators, double);
wn =6
wa := ["E', "C3+", "C3-", "sigma_vl1", "sigma_v2", "sigma_v3"]
wn_dbl := 12
wa_dbl :=[ "E', "C3+", "C3-", "sigma_v1", “"sigma_v2", "sigma_v3",

"RE", "RC3+", "RC3-", "Rsigma_vl", "Rsigma_v2", "Rsignma_v3"]

As mentioned before, the group data for the double groups are usually obtained by adding the kieyeted
to the list of parameters. To derive, in addition, the characters and the matrices of the irreducible representations
for the C3, symmetry, we first determine again the corresponding (string) identifiers which are used internally to
distinguish between the different irreducible representations of the group

> wb : = Bethe_group(C3v, irreps);
wb_dbl := Bethe_group(C3v, irreps, double);
woh = ["ALl", "A2", "E"]
wb_dbl :=["A1", "A2", "E', "E1/2", "E3/2~1", "E3/2"2"]

For both cases, the point and the double group, we can also determine the characters and the explicit matrix
representation for either a single symmetry operation

> wc : = Bethe_group_character(C3v, "E1/2", "RC3+");
wd := Bethe_group_irrep(C3v, "El/2", "RC3+");
we =1
[ 1/ 2 ]
[ /2 - 1/21 3 0 ]
wd = ]
[ 1/ 2]
[ 0 /2 +1/21 3 ]

or for all the symmetry operators as define in the hesandwa_dbl above

> we := Bethe_group_character(C3v, "E1/2");
we_dbl := Bethe_group_character(C3v, "E1/ 2", double);

we :=[2, 1, 1, 0, 0, 0]
we_dbl :=1[2, 1, 1, 0, 0, 0, -2, -1, -1, 0, 0, O]
In a similar way, we may determine the explicit (irreducible) matrix representations

>V\g:
wh

Bet he_group_irrep(C3v, "E1/2");
Bet he\ _group\ _irrep(C3v, "E1/2", double):
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[ 1/2 ]
[1 0] [1/2- 121 3 0 ]

wg =[] 1.1 |
[0 1 | 1/ 2]
[ 0 12+ 121 3 ]

where, for the sake of brevity, we only show the first two matrices and also suppress the printout for the double
group by using a colon at the end of the line.

The symmetry grouf@’s, is quite simple and, perhaps, no computational tools are required to derive the char-
acters and irreducible matrix representations for this group. In practice, however, much more complicated groups
are often needed in molecular computations, for which these data are difficult or at least tedious to collect. In the
following, for instance, we look at the less trivial case of a molecule diltledralsymmetry and demonstrate how
its symmetry adapted basis functions can be derived.

4.2. Generation of the symmetry orbitals

Let us consider théerrocenemolecule Fe(GHs), for which the electronic and magnetic properties have been
discussed recently in the literaturks,16] It has been found of interest, in particular, for studying the transition
metal complexes and the nanostructured materials. This molecule consists of an iron atom “sandwiched” between
two identical parallel gHs rings. Although ferrocene is known to exist alsolin; symmetry (staggered fer-
rocene), here we consider the symmaeiry, (eclipsed ferrocene) as displayedriy. 1 As seen from the figure,
there are three sorts of atoms which transform equivalently under the action of the symmetry operations of the
group. They are formed by (i) the central iron atom, (ii) the ten carbon atoms and (iii) the ten hydrogen atoms. Be-
low, we generate the symmetry orbitals for the carbon atoms within both, the nonrelativistic and relativistic frame-
work, while the symmetry orbitals for the central Fe atom and hydrogen atoms follow from using very similar lines.

We start with anonr el ati vi st i ¢ framework for the atomic and symmetry orbitals as this istbfaultof
the BETHE program. As usual, there is associated an atomic basis with each set of equivalent atoms which need to
be sufficient for the description of the molecule. However, in order to keep the output of the following (interactive)
commands at a feasible size, let us just consider therBitals @ = 2,1 = 1) as a part of the basis for the carbon

Zy\ H

Fig. 1. Geometry of the ferrocene molecule Fgig)-.
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atoms. By adopting the distance between#faxis and (any of) carbon atom asand the distance from the iron
atom to the plane of €Hs asb (cf. Fig. 1), this basis is defined in BrHe simply by typing

> basis_C := Abasis(atomC, [a,0,b], [2,1]);
basis C := Abasis(atomC[a,0,b],[2,1])

where the first list[ a, 0, b] , from the parameters above refers to the position of one of the (equivalent) carbon
atoms and the second li§t2, 1], to the principal and orbital angular momentum quantum numbers of ghe 2
orbital. The commandbasi s() is an auxiliary procedure which returns its inpuevaluatedand which simply
serves for keeping the relevant information together. Insteadsiwfggeorbital list ([ 2, 1] ) any number of such
lists for specifying the orbitals could be followed as additional parameters in order to enlarge the atomic basis
for this sort of atoms. By giving the principal and orbital angular quantum momentum numbers, however, all the
magnetic substates/m) are then taken into account automatically.

To specify the orbital basis for one of the equivalent sites is sufficient to generate a list of symmetry orbitals
associated with this sort of atoms and the given symmetry

> Bet he_gener at e_SO basi s(D5h, basis_C, print);

1) D5h | atomC [a, 0, b], n=2, I=1, m= 1; Al'(1, 1) >
2) Dsh | atomC[a, 0, b], n=2, I=1, nr O; Al'(1, 1) >
3) Dsh | atomC [a, O, b], n=2, I=1, nm= 1, A2'(1, 1) >
4) D5h | atomC [a, O, b], n=2, I=1, m= 1; E1'(1, 1) >
5) D5h | atomC [a, 0O, b], n=2, I=1, m= 0; E1'(1, 1) >
6) Dsh | atomC[a, O, b], n=2, I=1, m=-1;, E1'(1, 1) >
7) Dsh | atomC[a, 0, b], n=2, I=1, n= 1, E1'(2, 1) >
8) Dsh | atomC[a, O, b], n=2, I=1, n 0; E1'(2, 1) >
29) D5h | atomC [a, 0, b], n=2, I=1, m= O; E2'*(2, 1) >
30) Dsh | atomC [a, O, b], n=2, I=1, m=-1;, E2°'(2, 1) >

where the third argumenpr i nt, has been used to force the program to print the symmetry orbitals in a line
mode; aNULL expression is returned in this case. As seen from the output, each line represents one of the sym-
metry orbitals in a notation similar to E§7). The last column in this output clearly indicates the irreducible
representation of the groups;, including the indices of the matrix elements in the matrix representation. Of
course, this is still a rather formal classification of the symmetry orbitals without knowing their expansion in
terms of the atomic orbitals at the different (but equivalent) sites of the molecule. The same command can be
invoked in order to obtain such an explicit expansion by adding the keyexpticit as one of the last argu-
ments:

> Bet he_generat e_SO basi s(D5h, basis_C, explicit, print);

1. SO D5h | atomC|[a, 0, b], n=2, I=1, m= 1; Al'(1, 1) >

1) -.223606+0. *1, |] a, 0, b], n=2, I=1, n=-1>
2)-.0690983+. 212662*1, |[ a*cos(2/5*Pi), -a*sin(2/5*Pi), b], n=2, I=1, m=-1>
3)-.0690983-.212662*1, |[ a*cos(2/5*Pi), a*sin(2/5*Pi), b], n=2, I=1, m=-1>
4) .180901+.131432*1, |[-a*cos(1/5*Pi), -a*sin(l/5*Pi), b], n=2, |I=1, ne=1>
5) .180901-.131432*1, |[-a*cos(1/5*Pi), a*sin(1/5*Pi), b], n=2, I=1, m=-1>
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28) .0690983+.212662*1, |[ a*cos(2/5*Pi), -a*sin(2/5*Pi), -b], n=2, I=1, nmr 1>
29) .0690983-.212662*1, |[ a*cos(2/5*Pi), a*sin(2/5*Pi), -b], n=2, I=1, nr 1>
30) -.180901+.131432*1, |[-a*cos(1l/5*Pi), -a*sin(1/5*Pi), -b], n=2, I=1, nm= 1>
2. SO Dsh | atomC[a, O, b], n=2, I=1, nr O; Al'(1, 1) >
1) 0., |[ a, 0, b], n=2, I=1, ne-1>
2) 0., |[ a*cos(2/5*Pi), -a*sin(2/5*Pi), b], n=2, I=1, m=-1>
3) 0., |[ a*cos(2/5*Pi), a*sin(2/5*Pi), b], n=2, I=1, nme-1>
0., |[-a*cos(1/5*Pi), -a*sin(1/5*Pi), b], n=2, |=1, m=-1>

4)

Again, the line mode (keyworgr i nt) is used to list the contributions from the atomic orbitals at different
sites and with different:-quantum numbers. For each symmetry orbital, the expansion coefficients are normalized
o) ; cl.2 = 1. Without the optional argumept i nt , the expansion of the symmetry orbitals are returned in a list
structure [SQ@, SO, ...] which can be processed further, cf. the manualBi¢ he- commands. pdf . A similar
but slightly more sophisticated list structure is also returned fana i ci t expansion of the symmetry orbitals,
allowing to make use of the output for other computations.

The last paragraphs clearly showed how easily we may generate the symmetry-adapted basis if a nonrela-
tivistic notation (framework) is assumed for the atomic orbitals. In fact, the program supports the generation
of these symmetry orbitals for the 72 most common finite point groups. In relativistic computations, the rela-
tivistic angular momentum quantum numbetreplaces’ the orbital momenturand provides the information
about the parity and total angular momentum of the orbitals. To generate the symmetry orbitals wélain a
tivistic framework, we may follow very similar lines as before by first ‘re-defining’ the framewonlelativis-
tic

> Bethe_set (framework = relativistic);

Framework is changed to relativistic

To keep the output of the BrHE commands feasible for displaying it within this work, again, let us restrict
ourselves to the 2y > relativistic orbital ¢ = 2, x = 1) as the atomic basis for the carbon atoms

> basis_C := Abasis(atomC, [a,0,b], [2,1]);
basis_C := Abasis(atomC, [a,0,b], [2,1])

where the second list in the inpuk, m] = [2, 1], now automatically refers to the relativistic quantum numbers.
Again, either gormallist of all symmetry orbitals

> Bet he_gener at e_SO basi s(D5h, basis_C, print);

1) Dsh | atomC [a, 0, b], n=2, kappa=1, n¥-1/2; E1/2(1, 1) >
2) Dsh | atomC [a, 0, b], n=2, kappa=1l, n= 1/2; E1/2(1, 1) >
3) Dsh | atomC [a, 0, b], n=2, kappa=1l, n=-1/2; E1/2(2, 2) >
4) D5h | atomC [a, 0, b], n=2, kappa=1, m= 1/2; E1/2(2, 2) >
5) Dsh | atomC [a, 0, b], n=2, kappa=1l, m=-1/2; E3/2(1, 1) >
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19) D5h | atom C [a, 0, b], n=2, kappa=1l, nm=-1/2; E9/2(2, 2) >
20) D5h | atomC [a, 0, b], n=2, kappa=1, nr 1/2; E9/2(2, 2) >

or their explicit expansion in terms of the (relativistic) atomic orbitals are obtained by typing the same command
as before at MPLE’s prompt

> Bet he_generat e_SO basi s(D5h, basis_C, explicit, print);

1. SO D5h | atomC [a, O, b], n=2, kappa=1, m=-1/2; E1/2(1, 1) >

1) .316227+0.*1, || a, 0, b], n=2, kappa=1, n¥-1/2>
2) .0977197-.300750*1, |[ a*cos(2/5*Pi), -a*sin(2/5*Pi), b], n=2, kappa=1l, m=-1/2>
3) .0977197+.300750*1, |[ a*cos(2/5*Pi), a*sin(2/5*Pi), b], n=2, kappa=1, n¥-1/2>
4) -.255833-.185874*1, |[-a*cos(1l/5*Pi), -a*sin(1l/5*Pi), b], n=2, kappa=1l, ne-1/2>
19) 0.+0.*1, |[ a*cos(2/5*Pi), a*sin(2/5*Pi),-b], n=2, kappa=1l, nmr 1/2>
20) 0.+0.*1, |[-a*cos(1/5*Pi), -a*sin(1l/5*Pi),-b], n=2, kappa=1, m= 1/2>

2. SO D5h | atomC [a, 0, b], n=2, kappa=1l, n¥ 1/2; E1/2(1, 1) >

In comparison to the nonrelativistic case from above, the last column now displagpitite representation
of the symmetry orbitals by using the group-theoretical data for the corresponding double group. Of course,
this is in close relation and agreement with the half-integer total angular momenta of the relativistic orbitals,
51/2, P1/2, P3/2,d3/2, .. ..

For practical computations, obviously the symmetry orbitals should be orthogonal and complete (for the given
one-particle symmetry), by removing all the linear-dependent symmetry orbitals. IngheeBorogram, this
orthogonalization is carried out internally during the execution of the program and can be tested simply, if one
starts from the explicit expansion of these symmetry orbitals in terms of the atomic orbitals as explained above. To
test for this orthogonality, the proceduBet he_SO ar e_ort hogonal () is provided

> |ist_SO := Bethe_generate_SO basi s(D5h, basis_C, explicit):
Bet he_SO are_orthogonal (1ist_SO;

true

and confirms the expected result. In the first line, now the list structure returned for the expansion coefficients and
atomic orbitals is utilized to perform this test in detail.

5. Outlook
The examples in Sectiohdisplay (some of) the present features of therBE program and clearly demonstrate

how computer-algebra can be used today for applying group theory in chemistry and physics. In the present version
of the BETHE program, the data of the 72 most frequently applied point groups can be utilized, not counting the
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corresponding double groups. Of course, there are a number of different directions, in whicthe @ogram

could be developed in the future, including (a) the vibrational analysis of molecules as an extensionbf; Ref.

(b) tools for investigating the level splitting of atoms in external crystal fields (ligand field theory); (c) the study of
magnetic properties of materials if the point and double groups are combined with the time reversion (operation)
in order to generate the magnetic point or the color groups, respectively. For the analysis of molecular spectra,
moreover, (d) the spontaneous distortion of the symmetry of molecules due to the electronic-vibrational coupling
in the molecular motion, which is known as thahn-Teller effecfrom the literature, might be also interesting.
Related or additional suggestions from the site of the users are therefore very welcome. Other group-theoretical
data such as various commonly applied regular and irregular representations of the finite groups, their Clebsch—
Gordan coefficients, and others are perhaps of more mathematical interest but could be derived, if a few additional
algorithms are designed and implemented.
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Abstract

The theory of the point and double groups has been widely used in quantum physics to understand the structure and dynamical properties of
molecules and solids. In order to construct wave functions for such systems, one often needs the Clebsch—Gordan coefficients for the symmetry
groups. Here, we present an extension of the BETHE program to support the calculation of the Clebsch—-Gordan coefficients as applied, for
instance, in crystal field theory. Apart from the generation of the Clebsch—Gordan coefficients, the program also provides a simple access to the
group theoretical data for all frequently applied point and double groups.

Program summary

Title of program: BETHE

Catalogue number: ADUH_v3_0

Program summary URL: http://cpc.cs.qub.ac.uk/summaries/ ADUH_v3_0

Program obtainable from: CPC Program Library, Queen’s University of Belfast, N. Ireland

Reference in CPC to previous versions: Comput. Phys. Comm. 162 (2004) 124-142; Comput. Phys. Comm. 171 (2005) 119-132

Catalog identifiers of previous versions: ADUH, ADVU

Does the new version supersede the old version?: Yes

Licensing provisions: None

Computers for which the program is designed: All computers with a license of the computer algebra package MAPLE [Maple is a registered
trademark of Waterloo Maple Inc.]

Installations: University of Kassel (Germany)

Operating systems under which the program has been tested: Linux 8.1+ and Windows 2000

Programming language used: MAPLE 7 and 8

Memory required to execute with typical data: 10-30 MB

No. of lines in distributed program, including test data, etc.: 11024

No. of bytes in distributed program, including test data, etc.: 210244

Distribution format: tar.gz

Nature of the physical problem: The energy levels of atoms, placed into a crystal environment, can be classified by using group theory. In order to
represent, for instance, the wave functions, which are associated with these atomic levels, one often requires the Clebsch—Gordan coefficients of
the underlying symmetry group of the overall system. These coefficients arise in the coupling of the electronic wave functions (subsystems) and
therefore help investigate the interaction between the many-electron atom and the external field of the crystal.

Method of solution: In the framework of the BETHE program [K. Rykhlinskaya, S. Fritzsche, Comput. Phys Comm. 162 (2004) 124-142;
K. Rykhlinskaya, S. Fritzsche, Comput. Phys Comm. (2005), in press], we previously defined data structures to deal with a large number of
group parameters of the point and double groups. Among other parameters, here we also implemented the irreducible (matrix) representations

* This paper and its associated computer program are available via the Computer Physics Communications homepage on ScienceDirect (http://www.sciencedirect.
com/science/journal/00104655).
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of these groups which are utilized in the present extension of the program in order to generate the Clebsch—Gordan coefficients for the point and
double groups. In practice, of course, these coefficients are obtained by means of a proper summation over the matrix elements of the irreducible
representations of the group.

Reasons for the new version: Extension of the program.

Summary of revision: A number additional procedure have been created to generate the Clebsch—Gordan coefficients for the symmetry groups
(Bethe_CG_matrix(), Bethe_CG_coefficient(), Bethe_group_direct_product(), etc.)

Restrictions onto the complexity of the problem: The generation of the Clebsch—Gordan coefficients is supported for the cyclic and related groups
Ci, Cs, Cy, Cypy» Chy, the dihedral groups Dy, Dy}, D,q, the improper cyclic groups S, (n < 10), the cubic groups O, T, Oy, Tj,, Ty as well as
the icosahedral groups / and Ij,. Both the point and the double groups are supported.

Unusual features of the program: All commands of the BETHE program are available for interactive work. Apart from the generation of the
Clebsch—Gordan coefficients, the program also provides a simple access to the group theoretical data for all the groups specified above. The
notation of the symmetry operations and of the irreducible representations follows the compilation by Altmann and Herzig [S. Altmann, P. Herzig,
Point-Group Theory Tables, Clarendon Press, Oxford, 1994]. For a quick reference to the program, a description of all user-relevant commands is
given in the (user) manual Bethe-commands . pdf which is distributed together with the code.

Typical running time: Although the program replies ‘promptly’ on most requests, the running time depends strongly on the particular task.

© 2006 Elsevier B.V. All rights reserved.

PACS: 02.20.-a; 71.70.-d

Keywords: Clebsch—Gordan coefficients; Coupling of subsystems; Crystal field theory; Direct product; Double group; Molecular physics; Physical chemistry;
Point group

1. Introduction

In recent years, a large number of studies have been carried out to understand the spectra of atoms which are placed in a potential
of lower than spherical symmetry [1-3]. Such a potential occurs for instance for atoms in a crystal field. In order to explore the
structure of atoms, incorporated into a crystal, the experimental techniques of magnetic resonance [1] and optical absorption [3]
have been applied. These techniques demonstrate the splitting of some of the degeneracies, inherent in the energy levels of the free
atom. The details of this splitting depend on the symmetry of the crystal field (potential) and, therefore, can be analyzed by means
of group theory. To simplify this analysis, the theory of so-called Clebsch—Gordan (CG) coefficients has been developed earlier,
which help describe the interelectronic interaction of the atoms in the crystal field and which facilitate the construction of the wave
functions of the individual levels. Apart from the crystal field theory, the CG coefficients are used also in other applications of group
theory, such as the study of vibronic effects [4] or magnetic circular dichroism [5].

The CG coefficients of any (finite) group are obtained from group theory by analyzing the direct products of the irreducible
representations of the group. In physics, they are best known for the SO3 rotation group, associated with the coupling of angular
momenta. For the point and double groups, however, the generation of the CG coefficients often becomes rather cumbersome as it
requires not only the knowledge of group theory but also the—fast and reliable—access to the parameters and representations of the
group. In contrast to other group data for the point and double groups, which have been tabulated in a large number of monographs
and texts [cf. Refs. [6,7]], the CG coefficients are less often available; they are given, for instance, in the compilation by Altmann
and Herzig [6] but are not so simple to use because of the great number of abbreviations and conventions which had to be made in
this tabulation.

An alternative route for generating the CG coefficients for the point and double groups is offered by computer algebra today.
In order to utilize this route, we have recently developed the BETHE program [8,9], a set of MAPLE procedures which provide a
simple and interactive access to the group data for the 72 most frequently applied point groups (and the associated double groups). In
addition to the group data, this program also facilitates a number of standard tasks from physical chemistry, including the generation
of the symmetry orbitals, normal coordinates, or the analysis of the vibrational spectra. Since the BETHE program has been found
useful in various applications of group theory, here we present an extension of this code which allows the computation and the use
of the CG coefficients for both the point and double groups specified above.

In the next section we briefly recall the theoretical background and the definition of the CG coefficients as well as a few
of their properties. Section 3 provides a short description of the BETHE program, while a few simple examples are shown in
Section 4. In Section 5, we describe the level splitting of a (two-electron) molecular ion in a tetrahedral environment including the
construction of the two-particle wave functions. Finally, a short outlook onto the future development of the program is given in
Section 6.

2. Theoretical background

The generation and use of the CG coefficients is based on group theory. However, since the theory of the finite groups has been
discussed in a large number of texts (see, for instance, Refs. [6,7,10]), not much needs to be said here again about the definition of
the point and double groups. Instead, we shall restrict ourselves to a few selected topics from the representation theory of groups,
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just enough in order to understand the implementation and the use of the BETHE program. We shall also explain how the CG
coefficients of the point or double groups can be generated by starting from the irreducible representations of the corresponding

group.
2.1. Concept of group representations. Direct products

One of the great benefits of group theory is that it helps to classify the molecular states and properties of symmetric molecules
by using the symmetry operations of the underlying point group. Therefore, understanding the symmetry operations of a molecule
allows one to obtain the molecular geometry, i.e. the relative distances and angles of all the atoms and nuclei in the equilibrium
configuration. Perhaps an even greater simplification in the description of molecules and solids can be achieved, however, by
utilizing the representations of the group, i.e. the induced transformation (of the elements of some vector spaces L) as obtained, for
instance, in classical or quantum mechanics. Usually, a representation of a group is generated by analyzing the behavior of some
vector quantity in a vector space L under the symmetry operations of the group. In quantum physics, for example, the representation
theory helps classify the molecular states. Below, we shall restrict ourselves to matrix representations which are associated with an

orthonormal basis ey, ..., €, in L. For such a basis, the transformation of the vectors e; is given by
n
¢ =Se; = eTi;(S) (1)
i=1
for each symmetry operation S of the group, i.e. by the set of n? coefficients {T,:,‘(S‘), i,j=1,...,n}. Of course, such a vector
space L need not refer (necessarily) to the position vectors or, more generally, vectors in R" but may denote also some function
space with the (orthonormal) basis {¢; (r), i =1, ..., n}. Similarly to Eq. (1), the transformations of these basis functions are then
given by
n
Vi) =8y, =Y @78, )

i=1

where, for a given j, the expansion coefficients refer to the jth column of the matrix T(S‘). Since, in general, we can choose the
basis rather arbitrarily within the vector space L, the representations of a group are not defined uniquely but usually depend on
the basis, i.e. the particular choice of the coordinates and further parameters. The great benefit of group theory is that, for finite
groups, any representation can be decomposed into (a rather small number of) irreducible representations which, up to a unitary
transformation, are unique and independent of the basis.

The irreducible representations of a group are of fundamental importance and useful for many practical applications. Most of the
properties of these representations can be derived from the so-called great orthogonality theorem [7,11] which refer to the matrix
elements (or characters, i.e. the traces of the corresponding matrices). One particular property of the irreducible representations
concerns the ‘orthogonality relation’

> E;a)(S)Tj(f "(8) = 88upbi;bpg/ e ©

S

which is important for the generation of the CG coefficients. In this relation, Tif:) and Tj(f ) are the matrix elements of the irreducible

representations 7@ and T#); g is the order of the symmetry group G (i.e. the number of symmetry operations); n,, is the dimension
of the irreducible representation 7(*). The relation (3) can also be used to show that the basis functions, which belong to different
irreducible representations, are orthogonal to each other.

To take advantage of the representation theory, one has to deal with the direct product of representations which appears frequently
in quantum mechanical applications of groups. From a mathematical viewpoint, the direct product of two or more irreducible
representations is equivalent to the direct products of the associated matrices and has been considered in many textbooks [7,11].
Therefore, let us remind the reader only that the direct product of a n x n matrix A and m x m matrix B results in the nm x nm matrix
denoted by A ® B. In group theory, the direct products of two irreducible representations 7® and T#) of the symmetry group G
is again a valid representation of the group, but generally reducible. Therefore, the representation 7@®8) can be decomposed into
its irreducible components 7 )

TS =3 a, T, )
14

where the coefficients a, are obtained from the characters of the irreducible representations T@_ T® and TV involved [7,10].
The dot over the summation sign in Eq. (4) denotes that this is not the usual matrix summation but direct sum of matrices, which
are usually not all of the same dimension. This symbol for the summation means that every matrix of the product representation
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T©@®B) can be composed from the square matrices 7, arranged down the diagonal with zeros elsewhere. The decomposition of
the direct product matrices into their block-diagonal form is achieved by means of a non-singular unitary matrix C @)

TW.D

(C(aﬂ))—lT(Ol@ﬂ)C(Otﬂ) — T(r.ay) (5)

whose matrix elements are denoted by (xifk|sym) and are known as the Clebsch—Gordan coefficients of the symmetry group
G. In this notation «, B and y denotes the irreducible representations T@, T® and T™), while i, k and m denotes integer
indices to enumerate the corresponding basis functions of these representations. Parameter s refers to the multiple occurrence of
the irreducible representation y in the direct product of o and 8.

2.2. Derivation and properties of the Clebsch—Gordan coefficients

As mentioned above, the CG coefficients are the elements of the unitary matrix C*?) which enables one to transform the
(matrices of the) direct product into its block-diagonal form (5). In order to derive the elements of this matrix, we can write the
expansion (4) also in the form

T@®B) _ ZT(%S)’ (6)
ys

where s € {1..a,} denotes an index that accounts for the multiplicity of the irreducible representation T, To obtain the CG
coefficients (aifk|sym) explicitly, we have to insert 7, obtained from the transformation (5), into the expansion (6):

T@®B) _ C(Wﬁ)zayT(V)(C(aﬂ))—l — C(aﬁ)ZT(%S)(C(Otﬂ))—l' (7
% vs

From this expression, we may find for the symmetry operation S the matrix elements of the matrix 7 @®#):

TP @) =TT G = Y (wiklsym) Tyl () (@jpllsyn)*. ®)

ysmn

Multiplying (8) by Trfl),/’g*(g ) and by performing the summation over all symmetry operations S of the group G, we find

ST OOTLOTE S =D (@ipklsym) T TNV (S @jllsyn)* ©)

S § ysmn

from which, taking into account the orthogonality property for the irreducible representations (3), we finally obtain

Y (aiBklsym)(ajpllsyn)* = '% YT OTI T ES). (10)
S

N

Eq. (10) can be utilized to derive all or individual CG coefficients which are associated with the three irreducible representations
7@, T® and T, respectively. This is achieved by applying the following scheme, for instance. If we consider firsti = j, k =1
and m = n, at least one non-zero coefficient can be calculated up to its phase. From this coefficient, others are obtained, including
the relative phase, by keeping the parameters i, k and m fixed and varying only the indices j, [ and n. In the BETHE program, we
follow the phase convention by Altmann and Herzig [6]. Using such a step-wise variation of the indices j, /, ... it is clear, of course,
that the individual CG coefficients are obtained only after the whole matrix of CG coefficients has been constructed before.

In general, the CG coefficients arise whenever a symmetry-adapted basis is needed for the (direct) product representation of
two or more irreducible representations. Let us suppose that the functions {wi(a), i=1,...,ny}and {W,Eﬂ ), k=1,...,ng} form

orthogonal bases of the irreducible representations 7@ and T®), respectively. Then, we may construct a set of product functions
()
{wm , m= 1,...,"1]/}

)= taipklsym)y Oy (1)
ik
which transform according to the irreducible representation 7, i.e. form a basis for this representation. From the linear combi-

nation (11), a number of important properties can be seen for the CG coefficients. Since the product functions 1//1.(“) w,gﬂ ) form an

)
m

orthogonal set (due to construction), the function v,,” can also be orthonormalized. Therefore, the CG coefficients obey the two
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Table 1
Main commands of the BETHE program. A more detailed description of these procedures is given in the user-manual Bethe-commands . pdf which is distributed
with the code

Bethe_decompose_representation() Returns the irreducible representations which are contained in some given (reducible) representation of the group.

Bethe_group() Provides the basic group data and notations.

Bethe_group_direct_product() Returns the direct product of two or more irreducible representations.

Bethe_group_irrep() Returns the matrices of the irreducible representations.

Bethe_group_representation() Calculates different types of representations of a group as they occur frequently in the literature.

Bethe_CG_coefficient() Generates the CG coefficient («ifk|sym) if all the representations and indices are given explicitly.

Bethe_CG_matrix() Generates a whole array of CG coefficients {(xiBk|sym)} for the three irreducible representation «, 8, and y,
respectively.

Bethe_CGC_are_orthogonal() Tests whether the CG coefficients satisfy the orthogonality relations (12), (13).

orthogonality relations

Z(aiﬁkls/y/m/)*(aiﬂklwm> =8y 855 Smm’ 12)
ik
Z(aiﬁklswrtﬂai’ﬂk/lsww* = 8;ir bk - 13)
ysm

Moreover, by applying these orthogonality relations, we also obtain the transformation

v uP =3 (ipklsym)* g, (14)

sm

which is the inverse to Eq. (11) from above and refers to a ‘de-coupling’ of the subsystems in a quantum mechanical treatment.
3. Extension of the BETHE program

The general setup of the BETHE program need not to be explained here in much detail as it has been described in two previous
papers [8,9]. Instead, we shall mainly discuss those features of the program which are required in order to make use of the code.
Originally, BETHE was designed with the intention to provide a computer algebraic tool which facilitates the use of the point group
symmetry (and theory) in chemistry and physics. This program is based on a set of MAPLE procedures which are available for
interactive work and for constructing new commands at some higher level of the hierarchy.

In order to support the generation of CG coefficients for the point and double groups, a number of new procedures have been
developed recently. The procedure Bethe CG_matrix (), for instance, supports the generation of a whole matrix array of
CG coefficients, while the procedure Bethe_CG_coefficient () just provides some individual coefficient. The procedures
Bethe_CGC_are_orthogonal (), moreover, enables one to perform a quick test of whether the calculated CG coefficients sat-
isfy the orthogonality properties as described above. Table 1 lists all important procedures of the BETHE program which are needed
for the generation of CG coefficients. A more detailed description of these procedures is given in the file Bethe-commands . pdf
which contains a quick reference of all user-relevant commands and which is provided together with the code.

As before, the program is distributed as a single Bethe. tar file of the BETHE root directory which contains the source code
library, the file .mapleinit and a short guide for the installation. Having adapted the .mapleinit file in the home directory
of the user (as briefly explained in a Read . me file of the program), the BETHE program can be invoked like any other module of
MAPLE. By using the command with (Bethe), the user may load all procedures and initialize the internal settings of the BETHE
program:

> with (Bethe) ;
Welcome to Bethe!

4. Examples: Generation of the CG coefficients

To demonstrate the capabilities of the BETHE program, let us briefly demonstrate the computation of CG coefficients as it
appears in practice. These examples describe the generation of two individual CG coefficients as well as of a whole matrix of these
coefficients. In order to obtain these coefficients, of course, some group data are required and it is shown how to derive them from
the program.

Let us consider the tetrahedral point group 7;. The symmetry of this group is approximately fulfilled, for instance, by the
methane molecule (CHy), carbon tetrachloride (CCly) as well as by a few others. To generate the CG coefficients for the group
T,, we first need to know the irreducible representations of the group. In the BETHE program, these irreducible representations are
denoted by some string identifiers and are obtained simply by
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> wa := Bethe_group(Td, irreps);
wa := ["Al", "A2", "E", "T1", "T2"]

In the output above, the first two strings "A1l" and "A2" refer to one-dimensional irreducible representations, "E" to a two-
dimensional one, while "T1" and "T2" are three-dimensional irreducible representations. From these irreducible representations,
for example, we may consider the direct product A} ® E and ask for its irreducible components

> wb := Bethe_group_direct_product(Td, "Al", "E");
wb := ["E"]

which shows that this product is irreducible by itself as easily seen from the character of the individual representations. Since A
is the totally symmetric representation, it does not change the character of any other representation. Therefore, to generate the CG
coefficients (wifk|sym) of T, only the dimension of the representations need to be taken into account in order to specify the indices
i, k and m, respectively. The dimension of an irreducible representation can be obtained by using Bethe_group_irrep ()
with the keyword dimension; moreover, the parameter s enumerates the multiplicity of the irreducible representation 7 and
refers to the integers 1, 2, a,, where a, was defined above. if the representation T is contained more than once in the direct
product 7@ @ T With these restrictions in mind, we can calculate for instance the two CG coefficients (A1 1E1|1E1) and
(A11E1|1E2) by

> wc_1 := Bethe_CG_coefficient(Td, "aAl", 1, "E", 1, 1, "E", 1);
wc_2 := Bethe CG_coefficient(Td, "aA1", 1, "E", 1, 1, "E", 2);
we_ 1l :=1
wc_2 := 0

and similarly for the second dimension of the representation E with m = 2, i.e. the CG coefficients (A;1E2|1E1) and
(A11E2|1E2), respectively. Of course, the procedure would terminate with a proper ERROR message if either one of the irre-
ducible representations or the corresponding indices is not allowed for the group given.

The choice of the irreducible representation A; and E in the direct product above is very simple and, perhaps, no explicit
computations are needed in this case. A less trivial case concerns the direct product £ @ E which gives rise to a 4-dimensional
representation and which must be reducible due to the output above. Indeed, the irreducible components of this product are given
by

> wd := Bethe_group_direct_product(Td, "E", "E");
wd i = ["Al", I|A2|l, IIEH]

or, symbolically, E ® E = A} @ A, @ E. Using the conventions from above, we can calculate the CG coefficients (E2E1|1A21)
and (E2E1|1E1)

> we_1l := Bethe_CG_coefficient(Td, "E", 2, "E", 1, 1, "A2", 1);
we_2 := Bethe_CG_coefficient(Td, "E", 2, "E", 1, 1, "E", 1);
1/2
2
we_ 1l := - ———-
2
we_2 :=0

and could apply them in further computations.

As mentioned earlier, however, the algorithm for calculating the CG coefficients implies that one first obtains the ‘whole array’ of
CG coefficients for the given combinations of irreducible representations ¢, 8, and y of the group before the individual coefficient
can be extracted. In many applications, therefore, it seems beneficial to calculate (and obtain) all the corresponding CG coefficients
together prior to other calculations. This option is supported by the command Bethe_CG_matrix() which returns the array of CG
coefficients as associated with the product representation. For the direct product £ ® E, for instance, we obtain

> wf := Bethe_CG_matrix(Td, "E", "E");



K. Rykhlinskaya, S. Fritzsche / Computer Physics Communications 174 (2006) 903-913 909

Table 2
Clebsch—Gordan coefficients for the 7;; group product £ ® E
'R B:
E E y Ay Ay E
i k m 1 1 1 2
1 1 0 0 0 1
1 2 V2/2 V2/2 0 0
2 1 V2/2 -v2/2 0 0
2 2 0 0 1 0
[ O 0 0 1]
[ 1
[ 1/2 1/2 ]
[2 2 ]
[---- -——— 0 0]
[ 2 2 1
wf = [ ]
[ 1/2 1/2 ]
(2 2 1
[--=== - -—=—= 0 0]
[ 2 2 1
[ 1
[0 0 1 0]

an array of CG coefficients. The columns of this array can be labeled by the basis functions of the direct product in the same
sequence as obtained by the procedure Bethe_group_direct_ product (). The rows of this array refer to the basis func-
tions of the irreducible representations, specified in the input of the procedure Bethe_CG_matrix (). It can be understood by
means of Table 2. As seen from this table, the left column of the table shows four basis functions of the direct product £ @ E
(wi ={E1, E2}, Bk={E1, E2}, xifk ={E1E1, E1E2, E2E1, E2E?2}), while the header of the table gives the bases of the irre-
ducible representations ym = {A11, Az1, E1, E2}. The main body of the table then shows the CG coefficients (E1E1|E1) =0,
(E1E1|E2) =1, (E1E2|A(1) = \/E/Z, etc. From this table, therefore, all the basis functions of the direct product £ ® E can be
obtained. For instance, the second and third columns of the body of Table 2 gives us the wave functions WIA 2 and le .

V2 V2
vie=Sulvd - il

E E  E
I/f1 = I/fz 1//2
etc. In addition, we can test the orthogonality (relations) of the CG coefficients by calling the procedure
> Bethe_CGC_are_orthogonal (wf) ;

true

on the output from above, i.e. on the array of CG coefficients.

Up to the present, we have restricted our examples on the (vector) point groups and, in particular, the group 7. Instead of
the vector groups, the CG coefficients are sometimes needed also for the double groups and the irreducible representations which
are associated to these groups. A more detailed discussion of the representations of the double groups can be found in Ref. [12].

Similarly as before, we can obtain the string identifiers of the irreducible representations of the double groups by using the keyword
double

> wa_dbl := Bethe_group(Td, irreps, double);
wa_dbl .= ["Al", "A2"1 “E“I "Tl", "T2"1 "El/2", "E5/2": ||F3/2l|]

and can use these string identifiers to calculate the CG coefficients for the direct product E1,2 ® E5;, which contains the irreducible
representations A; and 7>. For the irreducible representations E1,2 ® Es/2, the array of CG coefficients is given by
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> wf_dbl := Bethe CG_matrix(Td, "E1/2", "E5/2");
[ 1/2 1/2 1]

[ 2 2 ]

[ 0 -—-- 0 -—-- ]

[ 2 2]

[ ]

[ 1/2 1/2 ]

[ 2 2 ]

[ ---- 0 ---- 0 ]

[ 2 2 ]

wE_dbl := [ ]
[ 1/2 1/2 ]

[ 2 2 ]

[- ---- 0 - 0o ]

[ 2 2 ]

[ ]

[ 1/2 1/2]

[ 2 2]

[0 -—-- 0 - -]

[ 2 2 ]

Rows of the array wf_dbl can be marked by the basis functions of the direct product E1» ® Es5/2 (aifk = {E121E5)21,
E1p1Es)2, E122E5)21, E1/22E5/52}) and the columns correspond to the basis functions ym = {A31, T»1, 152, T,3}. Again,
the individual CG coefficient can be obtained for the double group similarly like above by using the procedure Bethe_CG_
coefficient ().

5. Physical applications of the Clebsch—Gordan coefficients

In the examples above, we have shown how the CG coefficients can be generated by means of the BETHE program. However,
these coefficients would probably be of little interest without their ‘physical meaning’ in the description of many-particle quantum
systems and, in particular, for many-electron atoms (or ions) which are embedded in some crystal field. For such atoms, the level
splitting and observed spectra can be characterized by means of the irreducible representations of the symmetry group of the crystal.
Moreover, the CG coefficients of this group help to construct the wave functions of the embedded atom. In this section, therefore, we
shall demonstrate how BETHE can be used to analyze the level splitting of atoms in a tetrahedral crystal environment. To facilitate
the description let us briefly recall, however, how group theory occurs in the quantum mechanical treatment of atoms embedded
into a crystal field.

5.1. Symmetry in quantum mechanics

Many important problems concerning the electronic structure of atoms, molecules and solids are described by starting from the
Schrodinger equation H Y (r) = E;; (r). The eigenfunctions ; (r) of the Hamiltonian H are known as the wave functions of the
quantum system considered and contain the whole quantum mechanical knowledge about the system and its behavior. If it has
symmetry, however, group theory may help in the treatment by analyzing the properties of Hamiltonian and its invariance under
certain group transformation. Here, the invariance of a Hamiltonian with regard to a particular symmetry group means that the states
of the quantum system must “belong” to this group and that the eigenvalues E; are associated with a certain representation of the
group, while the corresponding eigenfunctions v; (r) form a basis of this representation. Hence, the wave functions of a symmetric
quantum system are the basis functions of the irreducible representations of the corresponding symmetry group.

Now, let us consider two subsystems with coordinates r; and r3, respectively, whose wave functions transform under the group

G, i.e. that the (one-particle) functions w/(.a)(rl) and wl(ﬂ )(rz) form bases for irreducible representations T@ and T . Of course,

the combined system with the (antisymmetrized) product functions wj(.a)(rl)wl(ﬂ ) (r2) is then described by the reducible represen-

tation 7(@®A) and remains degenerate in this subspace (of the overall Hilbert space) if the two subsystems do not interact with
one another. An interaction of the subsystems, in contrast, usually leads to a level splitting of the energies of the total system and
to a ‘reduced’ degeneracy which can be obtained from Eq. (4). Since, in general, the direct product 7@®#) is reducible into the

irreducible components T [cf. Section 2.1], the wave functions 1#,53/) (r1, r2) of the total system (i.e. the basis functions of TO)
can be obtained as linear combinations of wi(a) (r 1)1#,5’6 ) (r2) by using the CG coefficients

W @) =Y (wipklsym)y @ ey (). (15)

ik
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| gives the probability to find each of the subsystems in the one-particle states wl.(a) (r1)

and w}gﬁ ) (r2), while the total system is described by the wave function %51;/) (rq, rp). Therefore, the CG coefficients have to be

normalized by the relation

> aiBklsym)

ik

Physically, the parameters |{(«iBk|sym)

|2: 1. (16)

The proper normalization of the CG coefficients ensures that, if the product functions form an orthonormal set themselves, the

)
m

functions v, ' (ry, ) are also normalized.

5.2. Group-theoretical classification of levels in crystal fields

As discussed above, the level splitting of an atom embedded in a crystal field can be analyzed by means of the point group
symmetry of the surrounding crystal. In fact, the atom-crystal interaction usually results into an additional level splitting of the
atomic energy levels whose details can be found by using the (irreducible) representations and CG coefficients of the underlying
symmetry group. Although, of course, we do not know the irreducible representations from the very beginning, we may use them
to classify the split atomic levels in terms of the irreducible representations of the symmetry group of the crystal.

To lay down the grounds for further discussions, let us start here from the case of (effective) one-electron atom embedded in a
crystal. If we omit the spin of the electron here, the (one-electron) angular states of the free atom

1 .
Yim (9, ) = E@zm(ﬁ)e'"’“’ (17)

belong to the group Rj3 (the continuous group of rotations of the sphere with fixed center) and, hence, are (2/ + 1) times degenerate
due to the orbital angular momentum / of the electron [11]. Of course, the symmetry of the R3 rotation group is higher then the
symmetry of any finite point group. The decrease in symmetry, when the atom is introduced into a crystal, then leads to the splitting
of the atomic energy levels. The classification of the atomic states in the crystal field is based on the decomposition of the R3 group
representation T as generated by the functions ¥}, (9, ¢) into its irreducible components T) of the crystal symmetry point group.
This gives rise to the decomposition

T=Y a1, (18)
Y

analogous to Eq. (4) and where a,, denotes how often the irreducible representation T occurs in the representation 7. An explicit
formula for the coefficient a, as well for the construction of the R3 group representation 7 can be found in many textbooks [7,
10,11]. The irreducible components as obtained by the decomposition (18) serve to classify the one-electron states in the crystal
field. In particular, the sum over y of the integers a,, shows the number of atomic energy levels as it will occur for the (2/ + 1)-fold
degenerate level of the free atom. Moreover, the degeneracy of every level is seen from the dimension of corresponding component
TW) .

For atoms in a crystal field, the classification of the atomic levels discussed above can be generalized to the case of many-
electron atoms and ions. In this case, however, the interelectron interaction has usually to be taken into account as well. Depending
on the strength of the crystal field with respect to the interelectron interaction, three cases of weak, intermediate and strong crystal
fields are often distinguished. In the following, we will restrict our discussion to a strong crystal field. In this case, the influence
of the crystal field should be considered separately for each electron before the interelectron interaction is taken into account as
an additional perturbation. According to our discussion above, therefore, we should construct the R3 group representation for the
angular part Y, of each electron independently of the occupation of the other electrons. To account for several electrons in the
atom, we then take the direct product of these representations and decompose it for the symmetry group of the crystal in order
to obtain information about the number and degeneracy of many-electron states in a strong crystal field. When the states of the
electrons in the crystal field are classified in terms of the irreducible representations, the wave functions of these states can be
constructed by use the CG coefficients (see Eq. (15)).

5.3. Example: Two-electron ions in a crystal environment

In order to demonstrate how the classification of the level splitting and the construction of the wave functions can be performed
by the BETHE program, let us consider the (MnO4)>~ molecular ion. For this ion, the optical and magnetic properties have been
discussed rather often in the literature [3,13]. Scott and coworkers [3], for instance, measured the optical absorption spectra of the
(MnO4)3~ molecular ion in a strong tetrahedral crystal field; their spectra show a number of bands which are clearly related to the
level splitting in such a crystal environment. Different theoretical methods have been applied to obtain a theoretical interpretation
of these measurements, including the molecular orbital approach by Deghoul et al. [13] based upon the density-functional theory,
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Fig. 1. Tetrahedral configuration of the molecular ion (MnO4)3*.

in order to calculate the parameters of the terms. To understand such spectra, a group theoretical classification of the terms and the
construction of the wave function can be performed using the CG coefficients as defined above.

In the (MnO4)>~ molecular ion, the 3d> configuration ion of Mn>t is fourfold coordinated with O%~ ions (see Fig. 1). As seen
from the figure, therefore, the O?~-environment obeys a tetrahedral 7; symmetry. In accordance to the strong-field regime, the
interelectronic interaction can be omitted and (the characters of) the representation, generated by the Y;,, part of the single electron
wave function, have to be found

> wa := Bethe_group_representation(Td, Ylm, 2);

wa := [5, 1, 1,1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1]

Here, Td is the label of the symmetry group of the surrounding crystal, Y1m a keyword which defines the kind of representa-
tion, and the third argument 2 determines the orbital quantum number / of the d-electron. The list of numbers wa stands for the
characters of the representation which refer to the symmetry operations of the group 7, in the same sequence as obtained by the
procedure Bethe_group (Td, operators). The corresponding list of the explicitly calculated (five-dimensional) matrices
of this representation could be obtained also by adding the keyword matrix to the list of parameters,

> wa_m := Bethe_group_representation(Td, Ylm, 2, matrix):

but are omitted here as they are not required for the further analysis. Using the (list of) characters wa from above, we find the
irreducible components of this induced representation by

> wb := Bethe_decompose_representation(Td, wa) ;
Wb = [IIEH’ IITZH]

a result which shows immediately that the five-fold degenerate level of a single d-electron is split within a tetrahedral environment
into the two-fold degenerate level E and the three-fold level 75. In the strong field regime, these single-electron states give rise
to the three two-electron configurations 7>75, ET, and EE. Let us restrict here to the latter case with the two electron belonging
each to the irreducible representation E, i.e. to the product space E ®@ E for the two-electron ion. Since the wave functions of the
two-electron states must transform as the irreducible components of this direct product E ® E = A1 & A> @ E [cf. Section 4], we
see that the 4-fold degenerate level E ® E will be split in a strong-field tetrahedral environment into the two nondegenerate levels
A1 and A; as well as a doubly degenerate level E (of the two-electron system). In order to construct also the wave functions which
correspond to these levels, the matrix wf of the CG coefficients from Section 4 can be utilized immediately. For instance, the wave
functions of the levels A; and A, can be expressed from the product functions of two (one-electron) E states by

2 2

Yt (e, 1) = %z/xf )Yy (1) + %wf )Y (r2),
2 2

Ui ey, 1) = %wﬁ r)YE (r) - %wf DY E ).

Similarly, we could construct as well the wave functions for the degenerated two-particle level E.
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6. Summary and outlook

The BETHE program has been grown in several directions during the last few years. It presently supports the 72 most widely
applied point (and corresponding double) symmetry groups and can be used to solve a number of the quantum physical problems
related to the symmetry of molecules, clusters and solids. With the present extension of the program, we provide a number of
procedures to calculate the CG coefficients for point and double groups. These coefficients help to analyze the splitting of the
atomic energy levels in the crystal field. The interactive design of program presented may help the user in following the literature
and in daily research work.

Since the BETHE program has been found useful for practical applications, it will be developed in the future. There are several
extensions, which would make BETHE a much more powerful tool. In particular the problem of molecular symmetry distortion,
known also as Jahn—Teller effect, is intended to be implemented into the BETHE package. In this problem, a theoretical analysis of
the molecular adiabatic potential has to be performed by using symmetry considerations about the molecules. In addition, a more
detailed treatment of the atomic energy levels into the crystal field (taking in account also the spin—orbit interaction) would be
useful for studying the magnetic properties of materials. Finally, the further development of the vibrational analysis of the molecule
(namely, the treatment of the nonfundamental vibrational transitions as well as of related problems, such as resonance Raman
spectroscopy or the polarization of the vibrational modes and many others), which was started originally in Ref. [8], would be
certainly desirable. Besides this short list of topics, there are further extensions which would make the BETHE program a more
attractive tool and for which suggestions from the users are very welcome.
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