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Abstract

Genetic programming is known to provide good solu-
tions for many problems like the evolution of network pro-
tocols and distributed algorithms. In such cases it is most
likely a hardwired module of a design framework that as-
sists the engineer to optimize specific aspects of the sys-
tem to be developed. It provides its results in a fixed for-
mat through an internal interface. In this paper we show
how the utility of genetic programming can be increased re-
markably by isolating it as a component and integrating it
into the model-driven software development process. Our
genetic programming framework produces XMI-encoded
UML modelsthat can easily beloaded into widely available
modeling toolswhich in turn posses code generation aswell
as additional analysis and test capabilities. e use the evo-
lution of a distributed election algorithm as an example to
illustrate how genetic programming can be combined with
model-driven development. This example clearly illustrates
the advantages of our approach — the generation of source
code in different programming languages.

1 Introduction

Genetic programming is the automated generation of
computer programs by artificial evolution. Among many
other applications, it has successfully been used for creating
protocols with minimum communication costs [9, 31, 6],
software testing [8], and evolving hardware/software co-
designs [7].

In our previous work [28] we applied genetic program-
ming in the area of distributed computing. We were able to
evolve proactive aggregation protocols for large-scale dis-
tributed systems and to find local algorithms for sensor net-
works that create a specified global behavior [26, 27].

In that former work, genetic programming was inte-
grated as a fixed component into a software system, as is
the case in most of the other current activities in this area.

As a hardwired module, it provides its results through an
application-internal interface or at least in a format that usu-
ally can only be used by exactly this system. Especially
for the evolution of algorithms, such a restriction makes no
sense. Algorithms are general, platform-independent de-
scriptions of processes. It would thus be more reasonable
if they were returned in an independent format. Analogous
issues can be observed for many other applications of evo-
lutionary algorithms.

In this paper we discuss how the results of genetic
programming can be represented in a standardized for-
mat which allows them to be analyzed, transformed, and
tested. In the Section 2 we give an introduction into the
process of genetic programming and MDD, and how both
can be combined. In Section 4 we introduce the evolution
of a distributed election algorithm as an example for ge-
netic programming. Based on this example we demonstrate
how such automatically created algorithms can be stored as
XMil-encoded UML models in Section 5. In Section 6 we
apply standard means of model transformation by employ-
ing MOF<cript, a model to text transformation language,
to create source code from these models. 7 concludes the
article with some prospects on future work.

2 Genetic Programming and MDD

In this section we will elaborate on genetic programming
and model-driven development in general and then describe
how both technologies can be combined — with a minimum
amount of effort. Figure 1 illustrates the versatility of this
new approach.

2.1 Monolithic Genetic Programming

In many cases of genetic programming, the internal rep-
resentation of the solution candidates differs from the for-
mat in which the final results will be delivered. When
breeding distributed algorithms, for instance, the results of
the evolution should be delivered as C code. If we also
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Figure 1. A monolithic genetic programming
system with hard-wired output compared to
genetic programming with XMl output.

breed the programs in C code, some difficulties arise, es-
pecially when performing multi-objective optimization that
also takes non-functional criteria into consideration. Lim-
iting the runtime of a process in terms of the exact number
of executed instructions is practical impossible. Measuring
the precise memory consumption is also complicated, since
there is always some overhead caused by the libraries used.
For testing a distributed algorithm, one single execution of
the program does not suffice. Instead, multiple, message-
exchanging instances have to run in parallel. Obtaining re-
producible results then becomes impossible because of, for
instance, the scheduling done by the operating system.

All these complications can easily be avoided when
evolving the algorithms in an AST-like! representation, as
introduced by Koza in his trailblazing work [16]. Genetic
operators now can work on the trees with a much higher
chance of producing useful offsprings. The algorithms do
not need to be compiled anymore but can be interpreted di-
rectly, since the instructions in the AST can be executed on
simple virtual machines. A maximum runtime of the algo-
rithms being tested can easily be enforced by limiting the
count of interpretation steps. Parallelization can be imitated
by performing one interpretation step for each virtual ma-
chine in each simulated time unit.

There exist similarities to this situation in almost all ap-
plications of genetic programming. In each of these cases,
a translation of the internal representation of the individuals

L Abstract Syntax Tree, see http://en.wikipedia.org/wiki/
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into a desired output format takes place. The disadvantage
of this direct translation is the fixed binding of the pheno-
types of the evolutionary algorithms to one single applica-
ble representation. Transforming the results into an inter-
mediate format which can be processed by different tools
would add great flexibility while only requiring little addi-
tional work.

2.2 Moded-Driven Development

Model-Driven Development (MDD) [2] and the Model-
Driven Architecture (MDA) [4, 22] guided by the OMG?
are key technologies for software and system design. Devel-
oping applications starts with an elaborate modeling phase
instead of writing program code from the start. The model
is a simple and intuitive specification of the application and
can be transformed into program code step-by-step: At the
beginning, a platform-independent model (PIM) is created
which only describes the semantics, abstracting from a spe-
cific technology. The PIM is transformed into a more fine-
grained, platform-specific model (PSM) bound to a certain
target technology. In the final step, the PSM is transformed
to source code in a programming language which can then
be compiled and deployed.

MDA recommends using the Unified Modeling Lan-
guage (UML) [10] for model specification, the most pop-
ular and wide-spread modeling language in software tech-
nology. The syntax of UML is defined by the UML meta-
model which in turn is an instance of the Meta-Object Fa-
cility (MOF) [15]. MOF models can be exchanged between
different MDD tools in the standardized XML Metadata In-
terchange format (XMI) [1]. For UML models a special
schema exists, allowing them to be serialized as XMI.

The basic idea is that these model transformations
to a more specific platform may be performed semi-
automatically by tools, preventing many programming er-
rors and thus decreasing software development costs. There
exist various methods to perform model transformations,
spanning from QVT (Query, View and Transformation,
model-to-model transformation) [14], MOF-Script (model-
to-source code) [17] to direct XML transformations using
XSLT style sheets.

2.3 Combining MDD and GP

After translating the results of genetic programming into
XMl-encoded UML models, they can be imported into a
wide range of MDD tools. It becomes now possible to use
their code generation and transformation abilities to trans-
late the models into implementations for a variety of target
platforms and programming languages. Furthermore, it en-
ables us to perform additional optimization, tests, and anal-

20bject Management Group, http://www.omg.org/



yses on the algorithms evolved using standardized software
engineering methods.

Genetic programming will in most cases not create
whole applications. Instead, it will just evolve a certain
functionality which can, for example, be encapsulated in a
module. It is quite possible that the application which this
module will later be part of is also modeled in UML with a
software design tool. Hence, it is possible to integrate the
bred algorithms directly into its model, achieving a consis-
tent view of the whole system in one common specification.
The software engineer no longer needs to patch different
application parts together.

It also becomes much easier to combine different genet-
ically evolved algorithms. One example for such a situa-
tion would be that an algorithm is needed which transmits
messages along the spanning tree of a sensor network if
the sensors detect the occurrence of a specific event. Since
sensor measures are always noisy, more than one adjacent
node should detect the event before its occurrence can be
regarded as confirmed. It is very unlikely that one could ge-
netically evolve an algorithm that is able to perform this
task as a whole. If we proceed according to the divide-
and-conquer scheme and split the task into different prob-
lems, solving them stepwise, chances are good that we will
be able to obtain a fully functional system. An algorithm
could be evolved that automatically finds and maintains a
spanning tree, using genotypes and phenotypes suitable for
graph problems. Another algorithm can be grown that opti-
mizes the detection of the event, using different genotypes,
phenotypes, parameters and simulation methods. If both
results are returned as XM, they can be combined in a soft-
ware design tool with very little effort.

3 Redated Work

In the last two decades, the area of automated protocol
generation using evolutionary algorithm has been visited by
different researchers. Yamaguchi et al. concentrate on find-
ing an optimum message exchange [30, 9] in order to re-
duce communication costs. Yamamoto and Tschudin were
able to evolve protocols based on their experimental Fraglet
model [25, 31]. Special applications like efficient broad-
casting were topics of studies like those of Comellas and
Giménez [6]. The evolution of distributed algorithms itself
is indeed a new area. One important perspective on the topic
is given by Qureshi [20, 21] who discusses the evolution of
agents. He showed that communication behavior could be
evolved along with agent cooperation and that it is possible
that agents can “learn” how to communicate with already
existing agents by genetic programming.

Currently, a lot of research is done on the software engi-
neering sector in order to improve the model-driven devel-
opment approach [2]. For the model-to-text transformation,

many different approaches exist [3, 18] among which the
MOFScript [17] transformation (envisaged to become an
OMG standard) is one of the most promising. Interesting
in the context of this work is the masters thesis of Jim [13]
who describes how behavioral UML models can be trans-
lated to Java source. She also uses XMI to transport the
model data but instead of applying MOFScript, an XSLT
transformation performs the source generation.

With its current state of maturity, MDD gains value for
applications with more scientific character like the design
of multi-agent [19] or real-time systems [23]. No research
however has yet been conducted on the integration of ge-
netic programming into the model-driven software devel-
opment process itself.

4 Evolving Distributed
Algorithms

As already mentioned in the introduction, the focus of
our work is put on utilizing genetic programming for dis-
tributed systems. In this section we give an introduction on
how a desired behavior of a network can be translated into
algorithms that run on its nodes by genetic programming
[26]. After elaborating on the key aspects of this topic, we
give a small example which we will later use for demonstra-
tion purposes.

Today we experience a growing demand for distributed
systems of sensors [5]. These sensor networks are com-
posed of a large number of sensor nodes, small devices that
gather information about their environment and transmit it
wirelessly. They are restricted in resources like memory
size, processing speed, and — most importantly — battery
power. The communication among them is not reliable, and
the topology of their network is volatile. Distributed algo-
rithms for sensor nodes should thus be robust and as effi-
cient as possible.

To evaluate the fitness of such algorithms we simulate
whole sensor networks. In our simulation, sensor nodes are
represented as virtual machines with a fixed-size memory
architecture, asynchronous 1/0O, and a Turing-complete in-
struction set (similar to those discussed in [24, 29]).

As in reality, many nodes (i.e. the virtual machines) run
asynchronously in the simulation at approximately the same
speed, which may differ from node to node and cannot
be assumed to be constant. The communication is unre-
liable, and transmissions are broadcasted like radio waves
that spread into all directions and are received by any node
in range.

We apply multi-objective genetic programming since it
allows us to optimize the algorithms for different aspects.
In the functional objective functions, we perform a com-
parison of the observed behavior of the simulated network
(running the evolved algorithms) with the desired global be-
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havior. The evolutionary algorithm hence transforms global
behavior of a network into local behavior of single nodes,
thus effectively creating emergence. Non-functional objec-
tive functions are added to foster the economical use of re-
sources, especially for minimizing energy-expensive com-
munication.

4.1 Evolving an Election Algorithm

Election means to select one node out of a group of nodes
whereby at the end all nodes should have knowledge of the
ID of this special node. In distributed systems, an election
is performed, when e.g. a special node is needed to act as
a communication relay or as a coordinator. For the purpose
of this example, we assume that the active node with the
maximum 1D shall be selected.

In the simulations, we initialize all virtual machines with
their own ID in the first memory cell. If an algorithm makes
progress, the nodes should have assumed greater (valid) IDs
after some time. A fully functional algorithm would ac-
complish that the first memory cells of all nodes contain the
maximum ID. If the algorithm is also resource-friendly, it
should reach this goal with as few transmissions as possi-
ble.

Therefore, we apply three objective functions: the first
function, subject to maximization, is the aggregation of all
valid IDs stored in the first memory cells of the nodes over
all time steps (see equation 1).

=3 >

V time VY nodes n

n.mem(0] if valid(n.mem][0])
0 otherwise

1)
It is an indicator both for the functionality as well as the
convergence speed of the evolved algorithms. The second
and third objective functions both optimize non-functional
aspects. They are used to minimize the number of messages
sent and the instruction count of the algorithms.
One of the results obtained performing genetic program-
ming guided by these objective functions is displayed in

Figure 2. The algorithm consists of two parts: a proce-
dure that is called when the node starts up (procedure 0)
and an asynchronously called, interrupt-like routine which
receives incoming messages (procedure_1). In this simple
algorithm, the nodes constantly broadcast the greatest 1D
they have encountered in a loop, reducing the network traf-
fic only by performing dummy work. By constantly sending
(probably unnecessary) messages and thus not being opti-
mal, the algorithm ensures that nodes started later will still
take part in the election.

5 CreatingaPIM

The example algorithm introduced in the previous sec-
tion has been evolved in an internal, pseudo code-like rep-
resentation — exactly as displayed in Figure 2. The next step
is to transform this pseudo code into a suitable UML model
and to create XMI-formatted output which will be used as
input for creating source code.

We have to analyze which entities must be specified in
order to describe an algorithm completely. In principle,
each algorithm is constituted by three parts:

1. the data structures the algorithm works on,

2. the primitive instructions used that work on that data
structures, and

3. the control flow (i.e. the sequence of primitive instruc-
tions).

While the control flow is a result of genetic program-
ming, the data structures (except for the memory size) and
the instruction semantics are predefined for the simulated
virtual machines.

In the next subsections, we discuss how these three parts
can be specified consistently using UML 2.

5.1 Control Flow Model

The control flow of an algorithm can easily be repre-
sented using an activity model in UML. In general, the sin-
gle procedures of an algorithm are modeled as compound
activities including a set of simple actions. Each of them
corresponds either to the execution of a single instruction
on the virtual hardware, or to a branch to another procedure.
Transitions mark the sequence of the instructions inside the
procedures and also denote unconditional jumps whereas
conditional jumps are represented by decision nodes.

Since we evolve distributed algorithms, we also need
means to model the sending and receiving of transmis-
sions: Broadcasting a message is modeled by sending a sig-
nal. The asynchronous mechanism of receiving messages
is modeled as a procedure running in parallel that contains
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Figure 3. The control flow of the evolved elec-
tion algorithm.

an infinite loop of a receive event action followed by a pro-
cedure call to the message handler. Figure 3 illustrates the
control flow of the example algorithm from Section 4.1.

5.2 DataMode

The nodes of a distributed system as well as the virtual
machines that we use to simulate our evolved algorithms
can be regarded as instances of a class and are therefore
modeled in a class diagram. They have a fixed-size memory,
a stack and a flag register. Parameters for procedures (also
integer numbers) are stored in an additional parameter list.
The interrupt-like procedure, which is invoked whenever a
message comes in, finds the message stored in this array.
These data structures can be modeled as member variables:
the memory mem, the parameter array params and the stack
stack are lists of integer numbers, whereas the flag z£ is a
boolean value. It should be noted that modeling nodes as
classes does not necessarily imply the application of object-

Node

men: int [0..1]
params. int[0..11
stack: int[0..101
zf: boolean

popQ : int
procedure_00) : void
procedure_10) : void
push(int) : void
send() : void

+ + + + +

Figure 4. The data structure definition of the
evolved election algorithm.

oriented programming. Classes are just means to specify
data structures along with operations working on them. Fig-
ure 4 shows the class diagram of the example algorithm.

5.3 Maodeling the Primitive Operations

Finally, the primitive operations used by the algorithms
must be specified. The pseudo code used in Figure 2 con-
tains three different types of operations:

1. Operations that modify the control flow like goto Or
procedure calls are already defined in the activity dia-
gram of Section 5.1 — as transitions, decision nodes, or
behavior-invoking actions.

2. Operations with trivial, self-defining semantics like
arithmetic operations or value assignments require no
additional specifications. The operations zf, params,
and mem Within (zf=params[0]<mem[0]) are already
defined as data structures in Section 5.2. Specifying
the operators “<” and “=" would involve re-using either
of them again or similar operators, and is therefore not

practical.

3. Other operations like pushing something onto the stack
(push) or transmitting all data currently on the stack
as message (send) need to be defined more precisely.
Their semantics can be specified as post-conditions us-
ing the Object Constraint Language OCL [12].

5.4 Using Profiles

UML 2 allows for customizing a metamodel using pro-
files. Profiles consist of stereotypes which extend meta-
classes and may introduce additional constraints helping to
verify model consistency.

Stereotypes are most effectively used when instances of
the metamodel have an arbitrary number of node types. In



that case, node types can be specified by one or more stereo-
types.

In our approach, the UML model which is created as a
result of the artifical evolution comprises a limited and pre-
defined set of node types. Hence, profile application has
only limited benefits, so we rely on the base UML meta-
model.

6 Transformingthe UML Models

One of the main goals of the MDD-based development
is the possibility of automatically transforming the model
to code using transformation tools. In our work, we sup-
port such automatic source code generation using the MOF-
Script language, a model-to-text transformation language
obtained from the MODELWARE project [22]. MOFScript
is currently a candidate in the OMG RFP process on MOF
Model-to-Text Transformation [17] and is intended to cover
the aspects required in the context of text generation in soft-
ware engineering.

At present, MOFScript supports transforming UML
models created using an EMF-based® implementation of a
subset of OMG UML 2.x metamodel, obtained from the
Eclipse UML2 Project [11]. The Eclipse UML2 Project
does not support any graphical notation but there are tools
like Borland Together Architect* and Omondo®, which can
help to visualize the models.

In the following, we show a Java source code fragment
generated solely using MOFScript transformations. This
code corresponds to the model of procedure 1 in Figure 3.
During the transformation, different actions are identified
as Activity nodes and they are given numbers, starting from
o. In this particular case, the action zf=params [0] >mem [0]
is denoted as action o, the conditional jump as action 1 and
xchg (params [0], mem[0]) as action 2, while the initial ac-
tion is not numbered. The for loop in the generated code
always starts with the number of the action that executes
right at the beginning of the procedure. After each action,
the control flow transcends to the next one by assigning its
number to the ip variable, until a value greater or equal to
the total count of actions (in this case 3) is selected which
will lead to the termination of the loop. This more complex
approach serves to emulate jump instructions that are not
available in Java.

1 public class Node2

private final int[] mem;
private final int[] stack;
private int stackPtr;

private int[] params;
private boolean zf;

~ o o s w N

3Eclipse Modeling Framework
4http://www.borland.com/de/products/together/
5http://www.omondo.com/

8 ..

9 public void procedure 1()

10 int ip;

1 for (ip = 0; ip < 3;) {

12 switch (ip) {

13 case 0: { zf = params[0] < mem[O0];
14 ip = 1;

15 break; }

16 case 1: { if (zf) ip = 3;

17 else ip = 2;

18 break; }

19 case 2: { xchg (params, 0, mem, O0);
20 ip = 3;

21 break; }

2 }

23 }

2% }

% ...

%}

MOFScript is capable of producing all sorts of text out-
put, so source code in other programming languages like C
or C++ can be as well produced with very little effort. The
result of such a transformation to C++ is shown below. The
existence of jump instructions makes this result much more
readable and also grants a higher performance. Most of the
goto instructions in the code below could have been omit-
ted, but including them illustrates the analogy to the Java
example.

1.,
2 int[] mem;

3 int [] stack;
4 int stackPtr;
5 int [] params;
6 bool zf;

;

8

9

void procedure 0() {
10 a0: push(mem[0]) ; goto al;
1 al: zf = mem[0] > params[0]; goto a2;
12 a2: zf = mem[0] > params[0]; goto a3;
13 a3: zf = mem[0] > params[0]; goto a4;
14 a4: params[0] = mem[O0]; goto a5;
15 a5: send() ; goto al;
16 a6:;
1}
18
19 void procedure 1() {
20 a0: zf = params[0] < mem[0]; goto al;
21 al: 1if(zf) goto a3;
22 else goto a2;
23 a2: xchg(params, 0, mem, 0); goto a3;
24 a3:;

5}

Generally, MOFScript can make use of UML profiles by
using stereotypes as key values for node searches. As pro-
files are applied to the model, the XMI output also changes.
MDD applications to be used in this tool chain are there-
fore required to support user-defined profiles. However, the
structure of the created model does not require extensive
searches. Together with our discussion in section 5.4, we
decided not to apply profiles within the transformation pro-



Cess.

7 Conclusions

The goal of our work is to prove the utility of genetic pro-
gramming as a tool for developing distributed algorithms.
Recently we have contributed two successful applications
[26, 28] in that area.

Finding cases where genetic programming can assist in
creating distributed systems is, however, only one step. It is
likewise important to incorporate its results into the appli-
cation development.

In this paper we have shown that the utility of genetic
programming can remarkably be enhanced by integrating it
into the model-driven development process. Furthermore,
we have demonstrated that such integration can be accom-
plished using existing and widely available tools.

In the future we will perform research mainly in two di-
rections, specifically extending the use of genetic program-
ming to other domains in the context of distributed systems
as well as enhancing its integration into the application de-
velopment process according to current software engineer-
ing practices and tools.
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