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Abstract

Restarting automata can be seen as analytical variants of classical au-
tomata as well as of regulated rewriting systems. We study a measure
for the degree of nondeterminism of (context-free) languages in terms
of deterministic restarting automata that are (strongly) lexicalized.
This measure is based on the number of auxiliary symbols (categories)
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used for recognizing a language as the projection of its characteristic
language onto its input alphabet. This type of recognition is typical
for analysis by reduction, a method used in linguistics for the creation
and verification of formal descriptions of natural languages. Our main
results establish a hierarchy of classes of context-free languages and
two hierarchies of classes of non-context-free languages that are based
on the expansion factor of a language.

1 Introduction

Automata with a restart operation were originally introduced in order to de-
scribe a method of grammar-checking for the Czech language (see, e.g., [9]).
These automata, which work in a fashion similar to the automata used in
this paper, started the investigation of restarting automata as a suitable tool
for modeling the so-called analysis by reduction. Analysis by reduction facil-
itates the development and testing of categories for syntactic and semantic
disambiguation of sentences of natural languages. It is often used (implic-
itly) for developing grammars for natural languages based on the notion
of dependency [10]. In particular, the Functional Generative Description
(FGD) for the Czech language developed in Prague (see, e.g., [11]) is based
on this method.

Analysis by reduction consists in stepwise simplifications (reductions)
of a given extended sentence (enriched by syntactical and semantical cat-
egories) until a correct simple sentence is obtained. Each simplification
replaces a small part of the sentence by an even shorter phrase. Here we
formalize analysis by reduction by using deterministic restarting automata
for characteristic languages, that is, these automata work on languages that
include auxiliary symbols (categories) in addition to the input symbols. By
requiring that the automata considered are lexicalized we restrict the lengths
of the blocks of auxiliary symbols that are allowed on the tape by a con-
stant. This restriction is quite natural from a linguistic point of view, as
these blocks of auxiliary symbols model the meta-language categories from
all linguistic layers with which an input string is being enriched when its
disambiguated form is being produced (see, e.g., [11]). We use deterministic
restarting automata in order to ensure the correctness preserving property
for the analysis.

While it is well-known that monotone deterministic restarting automata
without auxiliary symbols recognize exactly the deterministic context-free
languages [7], we will see that exactly the context-free languages are recog-
nized as proper languages of lexicalized (deterministic) restarting automata
that are monotone. Then we define the word-expansion factor of a restarting
automaton M. This is the maximal number of auxiliary symbols that M
uses simultaneously on its tape when processing a word from its character-
istic language Lc(M). If L is a (context-free) language, then the minimal



word-expansion factor for any lexicalized (deterministic) restarting automa-
ton M with proper language L can be seen as a measure for the degree of
nondeterminism of L. This is quite natural from a language-theoretic point
of view, as the auxiliary symbols inserted in an input sentence can be in-
terpreted as information that is used to single out a particular computation
of an otherwise nondeterministic restarting automaton. Corresponding no-
tions have been investigated before for finite-state automata, and for some
other devices [1, 4, 5]. An overview about degrees of nondeterminism for
pushdown automata can be found in [14].

For the monotone case we will see that strongly lexicalized RRWW-
automata and lexicalized RRWW-automata have exactly the same expres-
sive power. Accordingly, we establish three hierarchies of language classes
that are based on the word-expansion factor: one for monotone determin-
istic RRWW-automata that are (strongly) lexicalized, and two for the non-
monotone case. Observe that due to our result above the hierarchy for the
monotone case is a hierarchy of context-free languages above the level of
deterministic context-free languages.

The paper is structured as follows. In Section 2 we define the determin-
istic RRWW-automaton, which is the model of restarting automata we will
use, and restate some basic results on these automata. In particular, we
prove that the class of proper languages of deterministic RRWW-automata
is almost universal. Then in Section 3 we introduce our measure of non-
determinism and derive the announced results. In the concluding section
(Section 4) we summarize our results, describe some related decidability and
undecidability results, and present some open problems for future work.

2 Proper Languages of Restarting Automata

Here we describe in short the type of restarting automaton we will be dealing
with. More details on restarting automata in general can be found in [12].
In what follows, A denotes the empty word, and N4 and N denote the set of
positive and the set of nonnegative integers, respectively.

A one-way deterministic restarting automaton (det-RRWW-automaton
for short) is a deterministic machine M = (Q,3,T,¢,$, qo, k, d). It consists
of a finite-state control, a flexible tape, and a read/write window of a fixed
size k > 1. Here @) denotes a finite set of (internal) states that contains the
initial state qg, X is a finite input alphabet, and I' is a finite tape alphabet
that contains 3. The elements of I' \ ¥ are called auziliary symbols. The
additional symbols ¢,$ ¢ T' are used as markers for the left and the right
end of the workspace, respectively. They cannot be removed from the tape.
The behaviour of M is described by a transition function § that associates
transition steps to pairs (¢, u) consisting of a state ¢ and a possible content
u of the read /write window. There are four types of transition steps: move-



right steps, rewrite steps, restart steps, and accept steps. A move-right step
simply shifts the read /write window one position to the right and changes the
internal state. A rewrite step replaces the content of the read/write window
by a shorter word, in this way shortening the tape, shifts the read/write
window across the newly written factor, and changes the internal state. A
restart step causes M to place its read/write window over the left end of
the tape, so that the first symbol it sees is the left sentinel ¢, and to reenter
the initial state qg. Finally, an accept step simply causes M to halt and
accept. It is required that, when ignoring move-right operations, then in
any computation of M, rewrite steps and restart steps alternate, with a
rewrite step coming first. However, it is more convenient to describe M by
a finite set of so-called meta-instructions (see below).

A configuration of M is described by a string agl, where ¢ € @, and
either « = XA and 8 € {¢} - T*-{$} or @ € {¢} - T* and 3 € T'* - {$}; here
q represents the current state, @ is the current content of the tape, and it
is understood that the head scans the first £ symbols of § or all of § when
|8 < k. A restarting configuration is of the form gocw$, where w € I'*.

A rewriting meta-instruction for M has the form (Fy,u — v, Ey), where
E; and E5 are regular languages (often given in terms of regular expres-
sions), and u,v € I'* are words satisfying the restrictions k > |u| > |v|.
Starting from the restarting configuration go¢w$, M can execute this meta-
instruction only if w admits a factorization of the form w = wjuws such that
cw; € B1 and we$ € E». In this case the leftmost of these factorizations
is chosen, and go¢w$ is transformed into gocwivwse$. This computation is
called a cycle of M. It is expressed as w =§; wivws. In order to describe
the tail of an accepting computation, that is, that part that follows after
the last execution of a restart step, we use accepting meta-instructions of
the form (Ep, Accept), where the strings from the regular language E; are
accepted by M after scanning them from left to right.

The meta-instructions used to describe restarting automata can be in-
terpreted in a nondeterministic way. For example, the word w on the tape
may simultaneously admit factorizations that correspond to different meta-
instructions. Therefore we will always suppose that our restarting automata
are defined by explicit transition functions, which can be obtained from the
given descriptions by meta-instructions.

A word w € T'* is accepted by M, if there is a computation which,
starting from the restarting configuration goew$, consists of a finite sequence
of cycles that is followed by an application of an accepting meta-instruction.
By Lc(M) we denote the language consisting of all words accepted by M.
It is the characteristic language of M.

By Pr* we denote the projection from I'* onto ¥*, that is, Pr™ is the
morphism defined by a + a (a € ¥) and A +— X (A € T\X). If v := Pr¥(w),
then v is the X-projection of w, and w is an expanded version of v. For a
language L C I'*, Pr™(L) := { Pr(w) | w € L}.



In recent papers (see, e.g., [12]) restarting automata were mainly used as
acceptors. The (input) language accepted by a restarting automaton M is
the set L(M) := Lo(M)NX*, that is, it is the set of input words w € ¥* for
which there exists an accepting computation starting from the configuration
qo¢w$. Here, motivated by linguistic considerations to model the processing
of sentences that are enriched by syntactic and semantic categories, we are
rather interested in the so-called proper language of M, which is the set of
words Lp(M) := Pr¥*(Lc(M)). Hence, a word v € ¥* belongs to Lp(M) if
and only if there exists an expanded version u of v such that u € Lc(M).

We are also interested in some restrictions on rewrite-instructions (ex-
pressed by the second part of the class name): -WW denotes no restriction,
-W means that no auxiliary symbols are available (that is, I' = X), and -\
means that no auxiliary symbols are available and that each rewrite step is
simply a deletion (that is, if u — v is a rewrite instruction of M, then v is
obtained from u by deleting some symbols).

For each type X of restarting automata, we use Lc(X) to denote the class
of all characteristic languages of automata of this type. Analogously, £(X)
and Lp(X) denote the class of all input languages and the class of all proper
languages of these automata.

The following property is of central importance (see, e.g., [7]).

Definition 2.1 (Correctness Preserving Property.) An RRWW-auto-
maton M is correctness preserving if u € Lo(M) and u I—f\} v mply that
RS Lc(M).

It is easily seen that each deterministic RRWW-automaton is correctness
preserving. In proofs we will repeatedly use the following simple generaliza-
tion of a fact given in [12].

Proposition 2.2 For any RRWW-automaton M, there exists a constant p
such that the following property holds. Assume that uwvw =5, wv'w is a cycle
of M, where u = ujus - - u, for some non-empty words ui,...,uU, and a
constant n > p. Then there exist r,s € Ny, 1 <r < s <n, such that

7 c 7 !
ul . "UT—].(UT . ..us_l) us. . .unvw '—M ul ...ur_l(ur...us_l) us . ..unvw

holds for all i > 0, that is, u,---us—1 is a ‘pumping factor’ in the above
cycle. Similarly, such a pumping factor can be found in any factorization
of length greater than p of w. Such a pumping factor can also be found
in any factorization of length greater than p of a word accepted in a tail
computation.

As deterministic restarting automata only accept Church-Rosser lan-
guages (see, e.g., [12]), we have the following complexity result.



Proposition 2.3 If M is a deterministic RRWW-automaton, then the
membership problem for the language Lc(M) is solvable in linear time.

In contrast to this result we will now show that the class Lp(det-RRWW)
of proper languages of deterministic RRWW-automata is ‘almost’ universal.

In [13] it is shown that the class CRL of Church-Rosser languages is
a basis for the class RE of recursively enumerable languages, that is, for
each recursively enumerable language L C 3*, there exists a Church-Rosser
language B on some alphabet A strictly containing ¥ such that Pr¥(B) = L.
As CRL coincides with the class of input languages of deterministic RRWW-
automata (see, e.g., [12]), there exists a deterministic RRWW-automaton
M’ with input alphabet A and tape alphabet T' such that L(M') = B.
Hence, L = Pr¥(B) C Pr¥(Lc(M")). However, the language Le(M’) will in
general also contain words for which the projection onto ¥ does not belong
to the language L, that is, the above inclusion is in general a strict one.
Accordingly, in order to derive the intended universality result we need a
somewhat more sophisticated construction.

In the following considerations we will restrict our attention to recur-
sively enumerable languages over the fixed two-letter alphabet g := {a, b}.
Let X1 := %o U {c}, let ¢o : £ — X§ be the injective morphism that is
defined by a +— aa and b — bb, and let ¢ : 35 — X7 denote the mapping that
is defined by p(w) := po(w)-c. Then ¢ is an encoding that can be computed
by a rational transducer. The following result expresses the universality of
Lp(det-RRWW) announced above.

Proposition 2.4 For each recursively enumerable language L C Ear, there
exists a det-RRWW-automaton M such that Lp(M)NES - c= p(L).

Proof. Let L C Ear be a recursively enumerable language. In the proof of
Theorem 7.1 of [13], a Church-Rosser language of the form B := { wde™™) |
w € L} is constructed from a Turing machine accepting the language L,
where m(w) is a unique integer associated with the word w.

Let Xj, := {a’,0'}, A" :=3X{ U {d, e}, and let ¢ : £ — {da’,b'}* be the
morphism induced by a — a’ and b — /. By B’ we denote the Church-
Rosser language B’ := { ¢/ (w)de™™) | w € L'}. As noted above there exists
a deterministic RRWW-automaton M’ = (Q', A", 1", ¢, $, ¢, k', ') satisfying
L(M') = B

From M’ we construct a deterministic RRWW-automaton M = (Q, %1,
I',¢,$,qo, k,9) satisfying Lp(M)NES-c = (L) as follows. As tape alphabet
I’ we take I' := IYUX1, where we assume that I'NY; = (). Given an input of
the form zede™, x € 3 and m > 0, the automaton M works in two phases:

e In the first phase M checks that the prefix xc is a word of the form
@(w) for some w € Xj. In the negative it halts and rejects, while in the
affirmative it replaces ¢(w) by the word ¢'(w) by deleting the suffix



¢ in the first cycle, and by rewriting the rightmost factor aa or bb by
a’ or ', respectively, in the following cycles. In this way the input
xede™ = p(w)de™ is transformed into the word ¢’ (w)de™. M detects
that this phase is complete when the tape content starts with a prefix
of the form ¢a’ or ¢b'.

e Now M simulates the automaton M’ step by step.

It follows that M is a deterministic RRWW-automaton. From the above
description it is easily seen that a word z € I'* belongs to the characteris-
tic language Lc (M) if and only if it belongs to the characteristic language
Lc(M'), or z = p(w)de™ for some word w € L and the corresponding in-
teger m, or z = po(wy)¢' (we)de™, where w = wiwy € L and m is the
corresponding integer. Thus, as the words in I'"* do not contain any occur-
rences of the input letters 31, we see that the proper language Lp(M) is the
set

Pret(Lo(M)) = {p(w) |w € LY U {@o(wr) | Fwe € Xf : wywy € L}
It follows that Lp(M) N XS - ¢ = (L), which proves our claim. O

Thus, a word w € ¥ belongs to the recursively enumerable language L
if and only if its image ¢(w) belongs to the proper language Lp(M). This
yields the following consequence.

Corollary 2.5 There exists a det-RRWW-automaton M such that the lan-
guage Lp(M) is non-recursive.

3 Lexicalized RRWW-Automata

From Proposition 2.4 and its corollary we see that proper languages of de-
terministic RRWW-automata are in general far more complex than the cor-
responding input and characteristic languages. Therefore we restrict our
attention in the following to deterministic RRWW-automata for which the
use of auxiliary symbols is somehow restricted.

Definition 3.1 Let M = (Q,%,T,¢,$,q0,k,0) be a deterministic RRWW-
automaton.

(a) A word w € T'* is not immediately rejected by M if there erists a
meta-instruction of M that is applicable to the restarting configuration
qocw$, that is, M can either perform a cycle of the form w &5, z for
some word z € I'*, or M accepts w in a tail computation. By NIR(M)
we denote the set of all words that are not immediately rejected by M.

(b) The deterministic RRWW-automaton M is called lexicalized if there
exists a constant j € Ny such that, whenever v € (I' \ X)* is a factor
of a word w € NIR(M), then |v| < j.



(¢) M is called strongly lexicalized if it is lexicalized, and if each of its
rewrite steps only deletes symbols.

Strong lexicalization is a technique that is used in dependency (or cate-
gorially) based formal descriptions of natural languages [11].

If M is a lexicalized RRWW-automaton, and if w € I'* is an extended
version of an input word v = Pr¥(w) such that w is not immediately re-
jected by M, then |w| < (5 + 1) - |v| + j for some constant j > 0. Thus,
Lp(M) is context-sensitive, contrasting Proposition 2.4. Actually we have
the following stronger result.

Proposition 3.2 If M is a lexicalized RRWW-automaton, then the proper
language Lp(M) is growing context-sensitive.

Proof. Let M be a deterministic RRWW-automaton with input alphabet
3. and tape alphabet I', and assume that M is lexicalized with constant
j € N. Then no word w € Lc(M) contains any factor from (I' \ X)*
of length exceeding j. Thus, the morphism Pr* : I'* — X* has j-limited
erasing (see, e.g, [6]) on Lc(M). As M is a deterministic RRWW-automaton,
L¢c(M) is a Church-Rosser language, which implies that it belongs to the
class GCSL of growing context-sensitive languages [3]. This in turn implies
that Lp(M) = Pr¥(Lc(M)) is also growing context-sensitive, as this class
is closed under limited erasing [2]. O

Observe, however, that not every growing context-sensitive language is
the proper language of a lexicalized RRWW-automaton.

Proposition 3.3 The Church-Rosser language Lo := {a*" | n € N} is not
contained in Lp(lex-RRWW).

Proof. Assume that L. = Lp(M) for a lexicalized RRWW-automaton
M = (Q,{a},T,¢,$,q0,k,6), and let z := a®" € L., where n is a large
integer. Then there exists an extended version w € I'* of z such that
w € Lo(M). Thus, the computation of M with input w is accepting. Based
on the pumping lemma (Prop. 2.2) it is easily seen that this computation
cannot just consist of an accepting tail computation, that is, it begins with
a cycle of the form w F§, w’. From the correctness preserving property it
follows that w’ € L¢(M), which in turn implies that Pri®t(w') € Lo. Thus,
pria} (w') = a™ for some integer m satisfying 2" —k < m < 2" +k. From the
choice of z it follows that m = 2", that is, w’ is obtained from w by rewriting
some auxiliary symbols only. We can repeat this argument until eventually
M either rewrites some occurrences of the symbol a, which will then yield a
word @ € Lo(M) for which the projection Pri% (i) does not belong to the
language L, anymore, or until M accepts a word w in a tail computation
for which Pri®} (%) = 2" holds. In the latter case the pumping lemma can



be applied to show that Lp(M) contains words that do not belong to the
language L. In either case it follows that L. is not the proper language of
any lexicalized RRWW-automaton. O

In what follows we are only interested in lexicalized RRWW-automata
and their proper languages. By lex-RRWW we denote the class of these auto-
mata, and by str-RRWW we denote the class of strongly lexicalized RRWW-
automata. Recall from the definition that lexicalized RRWW-automata
are deterministic. Further, we are interested in RRWW-automata that are
monotone.

Each computation of an RRWW-automaton M can be described by a
sequence of cycles C1,Csy ..., Cy, where C), is the last cycle, which is followed
by the tail of the computation. Each cycle C; of this computation contains a
unique configuration of the form ¢zquy$ in which a rewrite step is executed.
By D,(C;) we denote the right distance |y$| of this cycle. The sequence
of cycles C1,Cy,...,C, is called monotone if D,(Cy) > D, (Cy) > -+ >
D,(C),) holds. A computation of M is called monotone if the corresponding
sequence of cycles is monotone. Observe that the tail of the computation is
not taken into account here. Finally, an RRWW-automaton is called mono-
tone if each of its computations is monotone. We use the prefix mon- to
denote this property. Concerning the expressive power of lexicalized RRWW-
automata that are monotone we have the following result.

Theorem 3.4 The class CFL of context-free languages coincides with the
class of proper languages of monotone RRWW-automata that are (strongly)
lexicalized, that is,

CFL = Lp(lex-mon-RRWW) = Lp(str-mon-RRWW).

Proof. If M is a monotone RRWW-automaton, then its characteristic lan-
guage Lc(M) is context-free [7]. As Lp(M) = Pr¥(Lg(M)), and as CFL is
closed under morphisms, it follows that Lp(M) is context-free.

Conversely, assume that L C X* is a context-free language. Without
loss of generality we may assume that L does not contain the empty word.
Thus, there exists a context-free grammar G = (N, 3, S, P) for L that is in
Greibach normal form, that is, each rule of P has the form A — « for some
string o € ¥ - N* (see, e.g., [6]). For the following construction we assume
that the rules of G are numbered from 1 to m.

From G we construct a new grammar G’ := (N,X U B, S, P’), where
B :={V,|1<i<m}isa set of new terminal symbols that are in
one-to-one correspondence to the rules of GG, and

P':={A—V,a|(A— «)istheithruleof G, 1 <i<m}.

Obviously, a word w € (X U B)* belongs to L(G") if and only if w has the
formw = V;,a1Vi,az - - - V;, ay, for some integer n > 0, where ay, ..., a, € X,

in



i1y.-.,in € {1,...,m}, and these indices describe a (left-most) derivation
of w := ajag---a, from S in G. Thus, Pr*(L(G")) = L(G) = L. From w
this derivation can be reconstructed deterministically. In fact, the language
L(G’) is deterministic context-free. Hence, there exists a monotone deter-
ministic RR-automaton M for this language [7]. By interpreting the symbols
of B as auxiliary symbols, we obtain a monotone deterministic RRWW-
automaton M’ such that Pr¥(Lo(M')) = Pr®(L(M)) = Pr*(L(G")) = L.

It remains to verify that M’ is lexicalized. From the observation above
we see that within each word w € L(G’), symbols from B and terminal
symbols from ¥ occur alternatingly. As the RR-automaton M is correctness
preserving, each restarting configuration of M within an accepting compu-
tation is of the form goey$ for some v € L(G’). Thus, it only contains factors
from BT of length one. It follows that M’ is lexicalized with constant 1. As
M is an RR-automaton, all rewrite operations of M’ are deletions. Hence,
M’ is in fact strongly lexicalized. |

Together with Propositions 3.2 and 3.3 this yields the following conse-
quence, as CRL is incomparable to CFL under inclusion [3].

Corollary 3.5 Lp(lex-RRWW) is a proper subclass of GCSL that is incom-
parable under inclusion to the class CRL of Church-Rosser languages.

Next we introduce a static complexity measure for lexicalized RRWW-
automata.

Definition 3.6 Let M = (Q,%,T,¢,8,qo,k,0) be an RRWW-automaton,
and let m € N. The automaton M is said to have word-expansion m,
denoted by W(M) = m, if each word from the set NIR(M) contains at

most m occurrences of auxiliary symbols, that is, if w € NIR(M), then
PN (w)] < m.

By W(m)-RRWW we denote the class of lexicalized RRWW-automata
with word-expansion of degree m, and the strongly lexicalized variant of
this class is denoted by the additional prefix str-.

Theorem 3.7 For allm € N, if M is a W(m)-RRWW-automaton, then the
membership problem for the language Lp (M) is solvable deterministically in
time O(n™*1).

Proof. Let m € N, and assume that M = (Q,%,T,¢,$,qo, k,9) is a lexi-
calized RRWW-automaton with word-expansion of degree m. Then a word
w € ¥* belongs to the language Lp(M) if and only if there exists an ex-
pansion u € I' of w such that u € Lc(M). Thus, u is obtained from w
by inserting at most m auxiliary letters. There are j := |I' \. ¥| many such
symbols available to M, and there are (leJn“m) options to place m symbols

10



within the expanded version of w of length |w|+m. Hence, there are at most
(‘wL:m) (4 +1)™ many words of the form required for u. Accordingly, these
words can be enumerated in a systematic way, and for each of them it can be
checked in linear time whether or not it belongs to Lo (M) (Proposition 2.3).
This yields the time bound O((n +m)™ - (j +1)™ - (n+m)) = O(n™*1), as

m and j are fixed. O

Here we are interested in the classes Lp((str-)W(m)(-mon)-RRWW). As
monotone deterministic RR-automata accept the deterministic context-free
languages [7], we have the following result.

Proposition 3.8
DCFL = Lp(str-W(0)-mon-RRWW) = Lp(W(0)-mon-RRWW).

Actually, the correspondence between monotone strongly lexicalized
RRWW-automata and monotone lexicalized RRWW-automata carries over
to all finite degrees of word-expansion.

Proposition 3.9
For all m € N, Lp(str-W(m)-mon-RRWW) = Lp(W(m)-mon-RRWW).

Proof. Let m € N, and let L = Lp(M) for some monotone lexicalized
RRWW-automaton M = (Q,%,I,¢,$,q0,k,6). Thus, L = Pr*(Lc(M)).
Consider the deterministic RRW-automaton M’ := (Q,T',T', ¢, $, qo, k, ) that
is obtained from M by simply interpreting all symbols of ' as input sym-
bols. Then M’ is also monotone, and L(M') = Lc(M') = Lo(M). Tt
follows that L(M') is a deterministic context-free language, which in turn
implies that there exists a monotone deterministic RR-automaton M =
(Q I,T,¢$,do,k,0) satisfying L(M) = L(M') = Lo(M). Tt follows that
Ms, = (Q 3, 1e, $, qo,k 5) is a monotone deterministic RRWW-automaton
satisfying LP(ME) L. In fact, M can be designed in such a way that Ms;
is lexicalized with the same constant as the original automaton M. Here we
simply have to guarantee that no rewriting meta-instruction of M can be
applied to any word that contains a factor from (I' \ X)* of length exceed-
ing j, where j is the corresponding constant for M. Hence, M, is strongly
lexicalized. Actually, if M has word-expansion of degree m, then so does
Ms,. This completes the proof. O

The proper languages of monotone (strongly) lexicalized RRWW-auto-
mata with word-expansion of degree 0 are exactly the deterministic context-
free languages, while the proper languages of monotone (strongly) lexical-
ized RRWW-automata with unbounded word-expansion cover all context-
free languages (Theorem 3.4). Hence, the degree of word-expansion of mono-
tone (strongly) lexicalized RRWW-automata can be interpreted as a measure
for the degree of nondeterminism of context-free languages. It remains to

11



show that the resulting classes of proper languages form an infinite hier-
archy. For doing so we consider a number of example languages. For the
following considerations we fix the alphabet ¥ := {a, b}.

Proposition 3.10 The language Ly, := {ww® | w € S} of palindromes
of even length belongs to the class Lp(str-W(1)-mon-RRWW), but it is not
contained in the class Lp(W(0)-RRWW).

Proof. Let My, be the RRWW-automaton that is given through the meta-
instructions (¢ - X, 2Cz — C,%j - $) and (¢ - C - §, Accept), where z € %y.
M1 is deterministic, as to each word over the alphabet ¥oU{C} at most one
of its meta-instructions applies, and the place of rewriting is unambiguous.
Further, all rewrite steps are simply deletions, and it is easily seen that
M1 is monotone, and that W(Mp,) = 1. Also it is rather obvious that
Lp(Mpal) = Lpal holds.

On the other hand, it is known that L, is not a Church-Rosser lan-
guage [8], and so it is not the input language of any deterministic RRWW-
automaton. However, each lexicalized RRWW-automaton with word-
expansion of degree 0 is just a deterministic RRW-automaton. For such an
automaton the proper language, the input language, and the characteristic
language are all identical. Accordingly, Ly, is not the proper language of any
deterministic RRW-automaton, which implies that Ly, ¢ Lp(W(0)-RRWW).

O

Now, for all m > 2, let L,(m) := Lya1 - ({c} - Lpal)™ L.

Proposition 3.11
Ly(m) € Lp(str-W(m)-mon-RRWW) \ Lp(W(m — 1)-RRWW) for all m > 2.

Proof. Let m > 2, and let M,, be the RRWW-automaton that is given by
the following sequence of meta-instructions, where x € 3:

(0) (¢-(Ce)™1C - $, Accept),
(1) (¢-3§,2Cx — C, 55 - (C'ES'C'EE)m_I -$),
(2) (¢-Cec- -3, 2Cx — C, 35 (c-35-C-T5)m 2. §),

(m) (¢- (Ce)™ 1.5, 2Ca — C, 5% - §).

Then M,, is a monotone deterministic RRWW-automaton, and it is eas-
ily seen that Lc(M,,) = ﬁpal < (c- f/pal)m_l, where ﬁpal is the language
of palindromes of even length with the middle marked by an occurrence
of the symbol C. Thus, Lp(M,,) = Ly(m). As M,, has word-expansion
of degree m, and as it is strongly lexicalized, this proves that L,(m) €
Lp (str-W(m)-mon-RRWW).

On the other hand, assume that M is any lexicalized RRWW-automaton
with word-expansion m — 1 such that Lp(M) = L,(m) holds, let ¥ :=
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Yo U{c}, and let T' be the tape alphabet of M. For a word of the form
z = wpwlewywle- - cw,wk € L,(m), where wy, ..., w, € 3§ are words
of sufficient length, there exists a word a € Lo(M) such that Pr¥(a) = 2z
and |alr.x < m — 1. Thus, the middle of at least one of the palindromes
wiwlR, 1 < i < m, is not marked by an occurrence of an auxiliary symbol.
This means that M will not be able to correctly process this particular
palindrome, as M is deterministic, and as it must satisfy the correctness
preserving property. It follows that Lp(M) # L,(m) holds, implying that

Ly(m) & Lp(W(m — 1)-RRWW). 0

From these propositions we immediately obtain the following proper hi-
erarchy results.

Theorem 3.12 For each m € N, the following relations hold:

(a) Lp(W(m)-mon-RRWW) < Lp(W(m + 1)-mon-RRWW).
(b) Lp(str-W(m)-RRWW) C  Lp(str-W(m + 1)-RRWW).
(c) Lp(W(m)-RRWW) € Lp(W(m + 1)-RRWW).
(d) Lp(st-W(m + 1)-mon-RRWW) &  Lp(W(m)-RRWW).

Finally, let L .+ = U;s; ({c} - Lpal)'-
Proposition 3.13 L.+ € Lp(W(m)-RRWW) for any m > 0.

Proof. Let M’ be a lexicalized RRWW-automaton with word-expansion of
degree m, and let w := cwicwac- - cwpy41, Where wy, ..., wp41 are palin-
dromes of sufficient even length over Xj. In order to enable M’ to accept
the word w, auxiliary symbols are needed to mark the middle of each of
these palindromes just as in the proofs above. However, as M’ only has
word-expansion of degree m, the middle of at most m of these palindromes
can be marked by an auxiliary symbol. It follows that Lp(M’) # L+ O

On the other hand, it is easily seen that L, + is the proper language of
the strongly lexicalized RRWW-automaton M+ on I' := {a,b,c,C} that is
given through the following meta-instructions, where x € ¥g:

(1) (¢ (cC) -c-E§,2Cx — C, X - (c-X5-C-E5)* - 9),
(2) (¢ (cC)™ - $,Accept).

Obviously, Mpaﬁ is monotone, but it has unbounded word expansion. Thus,
we obtain the following proper inclusions.

Corollary 3.14

(@) UpsoLrp(W(m)-mon-RRWW) C Lp(lex-mon-RRWW).
() U,,>0 L£p(st-W(m)-RRWW) C Lp(str-RRWW).
(©) Umso £p(W(m)-RRWW) C Lp(lex-RRWW).
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According to Theorem 3.12 we have three hierarchies of language classes
that are based on the degree of word-expansion of lexicalized RRWW-
automata. It remains to separate these hierarchies from one another.

First we show that the classes of the monotone hierarchy are strictly con-
tained in the corresponding classes of the non-monotone hierarchies. For es-
tablishing this separation it suffices to realize that there exists a determinis-
tic RR-automaton M such that the input language L := L(M) is not context-
free (see, e.g., [12]). As a deterministic RR-automaton, M can also be seen as
a strongly lexicalized RRWW-automaton with word-expansion of degree 0.
Since L = L¢(M) = Lp(M), it follows that L € Lp(str-W(0)-RRWW).
However, L is not the proper language of any monotone lexicalized RRWW-
automaton by Theorem 3.4. Thus, we obtain the following separation result.

Corollary 3.15
Lp(W(m)-mon-RRWW) C Lp(str-W(m)-RRWW) for all m > 0.

Finally, we want to separate the hierarchy of proper languages of strongly
lexicalized RRWW-automata from the corresponding hierarchy for lexical-
ized RRWW-automata. To this end we consider the example language

Lexpo = {a®ba"b---a=1ba' | n >0, ip,...,i, >0, and
Im>0:37% 27 i; =2"} U b,

for which we have the following result.
Proposition 3.16 Lexpo € Lp(W(0)-RRWW) N Lp(str-RRWW).

Proof. Let M be the deterministic RRW-automaton that is given through
the following meta-instructions:

(1) (¢-a* aab— ba,Xf-9), (3) (¢-a*,a* — baa,$),
(2) (e,b— N\ X5-9), (4) (¢-{\ a,aa} -$, Accept).

If w = b for some m > 0, then obviously w is accepted by M. If w =
a®ba’tb---a'»—1ba'" is given as input to M, where n,ig,...,i, > 0, and
Z?:o 27 -i; = 2™ for some m > 0, then the first occurrence of b is first
shifted to the left end of the word. As Z?:o 27 - 4; = 2™ we see that ig is
an even number. Thus, this particular occurrence of b is then deleted. This
results in the word wy := a®/?t1p. .. gin=1bain, As Q0/2+i1+) 5o 2 iy =
(>0 27.i;)/2 = 2™~ we see that this word belongs to the language Lexpo-
This continues until all occurrences of the letter b have been deleted. The
resulting word is of the form a2 for some | > 0. If I <1, then the word
is accepted, otherwise an occurrence of b is generated at the right end of
the word and shifted through the word as described above, which results
in the word a2 '. Tt follows that L(M) = Lp(M) = Lexpo. As M is an
RRW-automaton, we see that Lexpo € Lp(W(0)-RRWW) holds.
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GCSL
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CFL

/

str-mon-RRWW=<—>lex-mon-RRWW —>str-RRWW — > lex-RRWW

Umzostr—W(m)—mon<—>Um20W(m)—mon%Umzostr—W(m)%UmZOW(m)
str-W(m)-mon<——=W(m)-mon———str-W(m) ——>W(m)

str-W(2)-mon<——>W(2)-mon——str-W(2) ———=W(2)

str-W(1)-mon<——=W(1)-mon———str-W(1) ———W(1)

str-W(0)-mon<———=W(0)-mon———str-W(0) ———=W(0)

DCFL

Figure 1: Inclusion relations between language classes defined by various
types of lexicalized RRWW-automata. Here str-W(m)-mon denotes the lan-
guage class Lp(str-W(m)-mon-RRWW), and similarly for the other classes.
An arrow denotes a proper inclusion, while a double arrow denotes equal-
ity. Classes that are not (directly or indirectly) connected are incomparable
under inclusion.

On the other hand, assume that M’ is a strongly lexicalized RRWW-
automaton with input alphabet Y and tape alphabet I' such that Lexpo =
Lp(M') holds. Then a contradiction can be derived in the same way as in
the proof of Proposition 3.3. Thus, it follows that Leypo is not the proper
language of any strongly lexicalized RRWW-automaton. O

The inclusion results on the classes of proper languages of the various
types of lexicalized RRWW-automata are summarized in the diagram in
Figure 1.
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4 Concluding Remarks

We have introduced the degree of word-expansion as a new measure for
the degree of nondeterminism for proper languages of restarting automata.
Based on this measure we have obtained infinite hierarchies of language
classes for monotone and for non-monotone RRWW-automata that are
(strongly) lexicalized. In the monotone case these classes form an infinite
hierarchy between DCFL and CFL.

It is known that it is decidable whether a given RRWW-automaton is
monotone [7]. Here we are concerned with the properties of being lexicalized
and of having word-expansion of finite degree.

Proposition 4.1 The following problems are decidable:

(a) INSTANCE : A deterministic RRWW-automaton M and j € N.
QUESTION : Is M lezicalized with constant j?¢

(b) INSTANCE : A deterministic RRWW-automaton M.
QUESTION :  Is M lezicalized?

(¢) INSTANCE : A lexicalized RRWW-automaton M and m € N.
QUESTION : Does M have word-expansion of degree m?

(d) INSTANCE : A lexicalized RRWW-automaton M.
QUESTION : Does M have word-expansion of finite degree?

Proof. Let M = (Q,%,T,¢,$, qo, k, 9) be a deterministic RRWW-automaton
that is given through a sequence of rewriting meta-instructions ((E; 1, u; —
vi, B 2))1<i<r and an accepting meta-instruction (Ep, Accept). By LEFT we
denote the language that is described by the regular expression LEFT :=
EoUUi_1(Eix - ui - E;2). It consists of those words to which some meta-
instruction of M applies. Thus, LEFT = NIR(M). Then M is lexicalized
with constant j if and only if LEFT C ASJ - (% ASH)* where A ;=T\ X.
Hence, it is decidable whether M is lexicalized with constant j.

Further, for the set LEFT we can effectively construct a deterministic
finite-state acceptor A. Then the number p of states of A can serve as the
constant in the pumping lemma for the regular language LEFT. Now M is
not lexicalized if and only if there exists a word in the language LEFT that
contains a factor from A* of length p. Thus, M is lexicalized if and only
if it is lexicalized with constant p — 1. This, however, is decidable as seen
above.

Next observe that W(M) = m if and only if the regular language
LEFTA = PrA(LEFT) satisfies the condition LEFTA C AS™. Finally,
M has word-expansion of finite degree if and only if W(M) < p/, where p’
is the pumping constant for the language LEFTA. As above this constant
can be determined from LEFTA. O

Based on the above results the minimal constant j of lexicalization can
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be determined for a given lexicalized RRWW-automaton. Also the minimal
degree of word-expansion can be computed, in case it is finite. In contrast
to the above decidability results, we have the following undecidability result
for languages.

Proposition 4.2 The following problem of languages is undecidable:

INSTANCE : A context-free language L and a constant m € N.
QUESTION : Does L € Lp(W(m)-mon-RRWW) hold?

Proof. For m = 0 this is simply the problem of deciding whether a given
context-free language is deterministic context-free, which is known to be
undecidable (see, e.g., [6]). For m > 1, consider the language L, := L -
¢ Ly(m), where we assume that ¢ is not contained in the alphabet of L.
For accepting the suffix L,(m) we need m occurrences of auxiliary symbols
according to Proposition 3.11. Thus, L,, € Lp(W(m)-mon-RRWW) if and
only if L € DCFL. This means that the problem of deciding whether or not
L,, is accepted by a monotone lexicalized RRWW-automaton with word-
expansion of degree m is undecidable. O

Any lexicalized RRWW-automaton has word-expansion that is bounded
from above by a linear function. Thus, it is conceivable that there are
languages that cannot occur as proper languages of lexicalized RRWW-
automata with a constant degree of word-expansion, but which can be ob-
tained as proper languages of lexicalized RRWW-automata for which the
degree of word-expansion is bounded from above by a slowly growing sub-
linear function.
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